Science.gov

Sample records for deep hawk-i survey

  1. The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep K-band number counts

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Dunlop, J. S.; Paris, D.; Targett, T. A.; Boutsia, K.; Castellano, M.; Galametz, A.; Grazian, A.; McLure, R.; Merlin, E.; Pentericci, L.; Wuyts, S.; Almaini, O.; Caputi, K.; Chary, R.-R.; Cirasuolo, M.; Conselice, C. J.; Cooray, A.; Daddi, E.; Dickinson, M.; Faber, S. M.; Fazio, G.; Ferguson, H. C.; Giallongo, E.; Giavalisco, M.; Grogin, N. A.; Hathi, N.; Koekemoer, A. M.; Koo, D. C.; Lucas, R. A.; Nonino, M.; Rix, H. W.; Renzini, A.; Rosario, D.; Santini, P.; Scarlata, C.; Sommariva, V.; Stark, D. P.; van der Wel, A.; Vanzella, E.; Wild, V.; Yan, H.; Zibetti, S.

    2014-10-01

    We present the results of a new, ultra-deep, near-infrared imaging survey executed with the Hawk-I imager at the ESO VLT, of which we make all the data (images and catalog) public. This survey, named HUGS (Hawk-I UDS and GOODS Survey), provides deep, high-quality imaging in the K and Y bands over the portions of the UKIDSS UDS and GOODS-South fields covered by the CANDELS HST WFC3/IR survey. In this paper we describe the survey strategy, the observational campaign, the data reduction process, and the data quality. We show that, thanks to exquisite image quality and extremely long exposure times, HUGS delivers the deepest K-band images ever collected over areas of cosmological interest, and in general ideally complements the CANDELS data set in terms of image quality and depth. In the GOODS-S field, the K-band observations cover the whole CANDELS area with a complex geometry made of 6 different, partly overlapping pointings, in order to best match the deep and wide areas of CANDELS imaging. In the deepest region (which includes most of the Hubble Ultra Deep Field) exposure times exceed 80 hours of integration, yielding a 1 - σ magnitude limit per square arcsec of ≃28.0 AB mag. The seeing is exceptional and homogeneous across the various pointings, confined to the range 0.38-0.43 arcsec. In the UDS field the survey is about one magnitude shallower (to match the correspondingly shallower depth of the CANDELS images) but includes also Y-band band imaging (which, in the UDS, was not provided by the CANDELS WFC3/IR imaging). In the K-band, with an average exposure time of 13 hours, and seeing in the range 0.37-0.43 arcsec, the 1 - σ limit per square arcsec in the UDS imaging is ≃27.3 AB mag. In the Y-band, with an average exposure time ≃8 h, and seeing in the range 0.45-0.5 arcsec, the imaging yields a 1 - σ limit per square arcsec of ≃28.3 AB mag. We show that the HUGS observations are well matched to the depth of the CANDELS WFC3/IR data, since the majority

  2. Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Fontana, A.; Boutsia, K.; Grazian, A.; Pentericci, L.; Bouwens, R.; Dickinson, M.; Giavalisco, M.; Santini, P.; Cristiani, S.; Fiore, F.; Gallozzi, S.; Giallongo, E.; Maiolino, R.; Mannucci, F.; Menci, N.; Moorwood, A.; Nonino, M.; Paris, D.; Renzini, A.; Rosati, P.; Salimbeni, S.; Testa, V.; Vanzella, E.

    2010-02-01

    Aims: We perform a deep search for galaxies in the redshift range 6.5≤ z≤ 7.5, to measure the evolution of the number density of luminous galaxies in this redshift range and derive useful constraints on the evolution of their luminosity function. Methods: We present here the first results of an ESO Large Programme, which exploits the unique combination of area and sensitivity provided in the near-IR by the camera Hawk-I at the VLT. We have obtained two Hawk-I pointings on the GOODS South field for a total of ˜32 observing hours, covering ˜90 arcmin^2. The images reach Y=26.7 mag for the two fields. We used public ACS images in the z band to select z-dropout galaxies with the colour criteria Z-Y≥ 1, Y-J<1.5, and Y-K<2. The other public data in the UBVRIJK bands are used to reject possible low redshift interlopers. The output has been compared with extensive Monte Carlo simulations to quantify the observational effects of our selection criteria, as well as the effects of photometric errors. Results: We detect 7 high-quality candidates in the magnitude range Y=25.5-26.7. This interval samples the critical range for M_* at z>6 (M1500≃ -19.5 to -21.5). After accounting for the expected incompleteness, we rule out a luminosity function constant from z=6 to z=7 at a 99% confidence level, even including the effects of cosmic variance. For galaxies brighter than M1500=-19.0, we derive a luminosity density ρ_UV= 1.5+2.0-0.9 × 1025 erg s-1 Hz^{-1 Mpc-3}, implying a decrease by a factor 3.5 from z=6 to z≃ 6.8. On the basis of our findings, we make predictions for the surface densities expected in future surveys, based on ULTRA-VISTA, HST-WFC3, or JWST-NIRCam, evaluating the best observational strategy to maximise their impact.

  3. HAWK-I Takes Off

    NASA Astrophysics Data System (ADS)

    2007-08-01

    /VLT) HAWK-I takes images in the 0.9 to 2.5 micron domain over a large field-of-view of 7.5 x 7.5 arcminutes. This is nine times larger than that of ISAAC, another near-infrared imager on the VLT that went into operation in late 1998. ISAAC has shown how deep near-infrared images can contribute uniquely to the discovery and study of large, distant galaxies, and to the study of discs around stars or even very low mass objects, down to a few Jupiter masses. HAWK-I will build on this experience by being able to study much larger areas with an excellent image quality. HAWK-I has four 2k x 2k array detectors, i.e. a total of 16 million 0.1 arcsecond pixels. "Until the availability of the James Webb Space Telescope in the next decade, it is clear that 8-m class telescopes will provide the best sensitivity achievable in the near-infrared below 3 microns," explained Mark Casali, the ESO scientist responsible for the instrument. Given the wide field, fine sampling and the high sensitivity of HAWK-I, the deepest scientific impact is expected in the areas of faint sources. "With its special filter set, HAWK-I will allow us to peer into the most distant Universe," said Markus Kissler-Patig, the Instrument Scientist. "In particular, with HAWK-I, we will scrutinise the very first objects that formed in the Universe." HAWK-I will also be very well suited for the search for the most massive stars and for the least massive objects in our Galaxy, such as hot Jupiters. But HAWK-I will also be a perfect instrument for the study of outer Solar System bodies, such as distant, icy asteroids and comets. HAWK-I is the eleventh instrument to be installed at ESO's VLT. It bridges the gap between the first and the second generation instruments to be installed on this unique facility.

  4. Deep Imaging Survey

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is the first Deep Imaging Survey image taken by NASA's Galaxy Evolution Explorer. On June 22 and 23, 2003, the spacecraft obtained this near ultraviolet image of the Groth region by adding multiple orbits for a total exposure time of 14,000 seconds. Tens of thousands of objects can be identified in this picture.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  5. CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD

    SciTech Connect

    Galametz, Audrey; Grazian, Andrea; Fontana, Adriano; Castellano, Marco; Ferguson, Henry C.; Dahlen, Tomas; Grogin, Norman; Huang, Kuang-Han; Koekemoer, Anton M.; Ashby, M. L. N.; Willner, S. P.; Barro, Guillermo; Faber, Sandy M.; Guo, Yicheng; Kocevski, Dale D.; Lee, Kyoung-Soo; McGrath, Elizabeth J.; Peth, Michael; Almaini, Omar; Collaboration: CANDELS team; and others

    2013-06-01

    We present the multiwavelength-ultraviolet to mid-infrared-catalog of the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey field observed as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). Based on publicly available data, the catalog includes the CANDELS data from the Hubble Space Telescope (near-infrared WFC3 F125W and F160W data and visible ACS F606W and F814W data); u-band data from CFHT/Megacam; B, V, R{sub c} , i', and z' band data from Subaru/Suprime-Cam; Y and K{sub s} band data from VLT/HAWK-I; J, H, and K band data from UKIDSS (Data Release 8); and Spitzer/IRAC data (3.6, 4.5 {mu}m from SEDS; 5.8 and 8.0 {mu}m from SpUDS). The present catalog is F160W-selected and contains 35, 932 sources over an area of 201.7 arcmin{sup 2} and includes radio- and X-ray-detected sources and spectroscopic redshifts available for 210 sources.

  6. ESO imaging survey: infrared deep public survey

    NASA Astrophysics Data System (ADS)

    Olsen, L. F.; Miralles, J.-M.; da Costa, L.; Madejsky, R.; Jørgensen, H. E.; Mignano, A.; Arnouts, S.; Benoist, C.; Dietrich, J. P.; Slijkhuis, R.; Zaggia, S.

    2006-09-01

    This paper is part of the series presenting the final results obtained by the ESO Imaging Survey (EIS) project. It presents new J and Ks data obtained from observations conducted at the ESO 3.5 m New Technology Telescope (NTT) using the SOFI camera. These data were taken as part of the Deep Public Survey (DPS) carried out by the ESO Imaging Survey program, significantly extending the earlier optical/infrared EIS-DEEP survey presented in a previous paper of this series. The DPS-IR survey comprises two observing strategies: shallow Ks observations providing nearly full coverage of pointings with complementary multi-band (in general {UBVRI}) optical data obtained using ESO's wide-field imager (WFI) and deeper J and Ks observations of the central parts of these fields. Currently, the DPS-IR survey provides a coverage of roughly 2.1 square degrees ( 300 SOFI pointings) in Ks with 0.63 square degrees to fainter magnitudes and also covered in J, over three independent regions of the sky. The goal of the present paper is to briefly describe the observations, the data reduction procedures, and to present the final survey products which include fully calibrated pixel-maps and catalogs extracted from them. The astrometric solution with an estimated accuracy of ⪉0.15 arcsec is based on the USNO catalog and limited only by the accuracy of the reference catalog. The final stacked images presented here number 89 and 272, in J and K_s, respectively, the latter reflecting the larger surveyed area. The J and Ks images were taken with a median seeing of 0.77 arcsec and 0.8 arcsec. The images reach a median 5σ limiting magnitude of JAB˜23.06 as measured within an aperture of 2´´, while the corresponding limiting magnitude in KsAB is 21.41 and 22.16 mag for the shallow and deep strategies. Although some spatial variation due to varying observing conditions is observed, overall the observed limiting magnitudes are consistent with those originally proposed. The quality of the data

  7. The Gemini Deep Planet Survey

    NASA Astrophysics Data System (ADS)

    Lafrenière, David; Doyon, René; Marois, Christian; Nadeau, Daniel; Oppenheimer, Ben R.; Roche, Patrick F.; Rigaut, François; Graham, James R.; Jayawardhana, Ray; Johnstone, Doug; Kalas, Paul G.; Macintosh, Bruce; Racine, René

    2007-12-01

    We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around 85 nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope, and angular differential imaging was used to suppress the speckle noise of the central star. Typically, the observations are sensitive to angular separations beyond 0.5" with 5 σ contrast sensitivities in magnitude difference at 1.6 μm of 9.5 at 0.5", 12.9 at 1", 15.0 at 2", and 16.5 at 5". These sensitivities are sufficient to detect planets more massive than 2 MJ with a projected separation in the range 40-200 AU around a typical target. Second-epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are unrelated background stars. A detailed statistical analysis of the survey results is presented. Assuming a planet mass distribution dn/dm~m-1.2 and a semimajor-axis distribution dn/da~a-1, the 95% credible upper limits on the fraction of stars with at least one planet of mass 0.5-13 MJ are 0.28 for the range 10-25 AU, 0.13 for 25-50 AU, and 0.093 for 50-250 AU; this result is weakly dependent on the semimajor-axis distribution power-law index. The 95% credible interval for the fraction of stars with at least one brown dwarf companion having a semimajor axis in the range 25-250 AU is 0.019+0.083-0.015, irrespective of any assumption on the mass and semimajor-axis distributions. The observations made as part of this survey have resolved the stars HD 14802, HD 166181, and HD 213845 into binaries for the first time. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National

  8. Pan-STARRS-1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Huber, Mark

    2015-08-01

    The Panoramic Survey Telescope And Rapid Response System-1 (Pan-STARRS-1, PS1) has been in full science operation since Spring 2010 and concluded the observing program for the PS1 Science Consortium (PS1SC) in early 2014. The Medium Deep Survey (MDS) component of the program regularly visited 10 fields (~7 sq. deg. each) with significant multi-wavelength overlap from previous and concurrent surveys (e.g. SDSS, DEEP2, CDFS, COSMOS, GALEX) for 25% of the total time allocation. The cadence generally includes the g,r,i,z filters for a MDS field every 3 days over the 6-8 month season the field is visible, with the y filter done primarily during bright time. The nightly stacks of eight exposures typically reach depths of r,i~23.5 mag. Development work continued to improve the single exposure processing though to deep stacks during the transient event discovery and other science consortium programs over the course of the survey, the culmination of those improvements being applied in a more uniformly reprocessed dataset used for the public data release. A summary of the MDS public data release products will be presented.For details on PS1 and the Science Collaboration, visit http://ps1sc.org/

  9. DeepSurveyCam--A Deep Ocean Optical Mapping System.

    PubMed

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-28

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor.

  10. DeepSurveyCam—A Deep Ocean Optical Mapping System

    PubMed Central

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-01

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor. PMID:26828495

  11. DeepSurveyCam--A Deep Ocean Optical Mapping System.

    PubMed

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-01

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor. PMID:26828495

  12. Pan-STARRS-1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Huber, Mark; PS1-IPP Team, PS1 Science Consortium

    2015-01-01

    The Panoramic Survey Telescope And Rapid Response System-1 (Pan-STARRS-1, PS1) has been in full operation since Spring 2010 and concluded the PS1 Science Consortium (PS1SC) observational program in early 2014. The Medium Deep Survey (MDS) component of the program, allocated 25% of the time, regularly visited 10 fields (~7 sq. deg. each) with significant multi-wavelength overlap from previous and concurrent surveys (e.g. SDSS, DEEP2, CDFS, COSMOS, GALEX). The cadence generally includes the g,r,i,z filters for a MDS field every 3 days with a nightly stack depth of r,i~23.5 mag and the y filter primarily during bright time over the 6-8 month season the field is visible. While regularly producing data for the transient event discovery and science consortium programs, development work continued to improve the single exposures though production of deep stacks for reprocessing into the final and public release. The data products, to be publicly available after the post-observing proprietary period, will be summarized.For details on PS1 and the Science Collaboration, visit http://ps1sc.org/

  13. Deep multicolor surveys of the galaxy population

    NASA Astrophysics Data System (ADS)

    Szokoly, Gyula Pal

    1999-10-01

    I present various surveys that benefit from the tremendous improvements in observational astronomy in recent years and I develop new techniques to analyze data obtained in these new generation of surveys. In participation of upcoming, very deep near-infrared galaxy surveys, I constructed a survey aimed at determining the near-infrared luminosity function of galaxies. The evolutionary effects are much weaker at the red end of the atmospheric window ranging from the near- ultraviolet to about 2.2 μ m than in the optical and UV bands, as the infrared light coming from a galaxy is dominated by the old stellar population, while optical luminosity is strongly affected by the star formation history of galaxies. Measuring the luminosity function of galaxies is essential to interpret future surveys. Utilizing my deep, large area, multi-color optical galaxy survey, I studied the structure evolution of the Universe on cosmologically relevant scales. The multicolor nature of the survey (B, V, R and I bands) made it possible to estimate the radial distance to a very large number of galaxies very efficiently. Using these photometric redshifts, one can reduce the effects of galaxy evolution by analyzing galaxies at roughly the same redshift (lookback time). Due to the large area (about 1.5 square degrees) and very faint limiting magnitude (I = 23.8), structure evolution can be studied with a very high precision. I also propose a new object detection technique to replace traditional methods that use a single band or an arbitrarily co-added image. Our new technique uses all available bands of a survey and provides a nearly optimal way to take advantage of all the information available. We demonstrate the strength of this technique using the Hubble Deep Field, where we show that we can extend the detection limit significantly. We also show that this method can identify a significant number of objects that traditional techniques usually can not detect. Finally I propose a new

  14. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; Croton, D.; Dave, R.; Dunlop, J. S.; Egami, E.; Faber, S.; Finlator, K.; Grogin, N. A.; Guhathakurta, P.; Hernquist, L.; Hora, J. L.; Illingworth, G.; Kashlinsky, A; Koekmoer, A. M.; Koo, D. C.; Moseley, H.

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  15. SEDS: The Spitzer Extended Deep Survey

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.; SEDS Team

    2009-05-01

    The Spitzer Extended Deep Survey (SEDS) will provide a unique opportunity to obtain the first complete census of the assembly of stellar mass and black holes as a function of cosmic time back to the era of reionization, yielding unique information on galaxy formation in the early Universe. The survey will also measure galaxy clustering over a wide redshift range, which will provide the critical link between galaxies and their dark matter halos and critical tests of models of early star formation. SEDS will achieve these goals by tracing the stellar mass growth in mass-selected samples of galaxies via their broadband spectral energy distributions. The baseline proposal is an unbiased survey with 12 hours/pointing at 3.6 and 4.5 microns over five well-studied fields of 0.90 square degree total. We expect to find (a) >10,000 galaxies at z = 4--6 (including 100 galaxies at z = 6), reaching galaxies down to 5 x 109 Msun at z = 6, necessary to robustly measure M* at that redshift, i.e., the galaxies that dominate the global stellar mass density, and (b) >100 massive galaxies at z = 7, which will firmly anchor the high mass end of the early galaxy populations and provide targets bright enough for future spectroscopic follow-up with 20--30 meter telescopes, JWST, and ALMA. The proposed five-field deep survey will enable several secondary science objectives. These include: (1) galaxy evolution in the redshift range z 1--4, (2) mid-infrared variability for AGN identification, and (3) measurement of the cosmic infrared background spatial fluctuations. SEDS is the most efficient and most highly optimized program that we can imagine to achieve core scientific goals of the warm mission and is a unique program that will leave an important legacy for years to come.

  16. SEDS: The Spitzer Extended Deep Survey

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Willner, Steven; Arendt, Rick; Ashby, Matt; Barmby, Pauline; Bell, Eric; Bouwens, Rychard; Cattaneo, Andrea; Cox, Thomas J.; Croton, Darren; Dave, Romeel; Dunlop, James; Egami, Eiichi; Faber, Sandy; Finlator, Kristian; Guhathakurta, Puragra; Hernquist, Lars; Hora, Joseph; Huang, Jiasheng; Illingworth, Garth; Kashlinsky, Alexander; Koekemoer, Anton; Koo, David; Labbe, Ivo; Lai, Kamson; Li, Yuexing; Lin, Lihwai; Mather, John; Mo, Houjun; Moseley, Harvey; Nandra, Kirpal; Newman, Jeffrey; Noeske, Kai; Ouchi, Masami; Papovich, Casey; Rigopoulou, Dimitra; Rix, Hans-Walter; Robertson, Brant; Sarajedini, Vicki; Simard, Luc; Smith, Howard; Wechsler, Risa; Weiner, Ben; Wilson, Gillian; Wuyts, Stijn; Yamada, Toru; Yan, Haojing; van der Wel, Arjen

    2008-12-01

    The Spitzer Extended Deep Survey (SEDS) will provide a unique opportunity to obtain the first complete census of the assembly of stellar mass and black holes as a function of cosmic time back to the era of reionization, yielding unique information on galaxy formation in the early UniverseE The survey will also measure galaxy clustering over a wide redshift range, which will provide the critical link between galaxies and their dark matter halos and critical tests of models of early star formation. SEDS will achieve these goals by tracing the stellar mass growth in mass-selected samples of galaxies via their broadband spectral energy distributions. The baseline proposal is an unbiased survey with 12 hours/pointing at 3.6 and 4.5 microns over five well-studied fields of 0.90 square degree total. We expect to find (a) >10,000 galaxies at z D 4--6 (including ~1000 galaxies at z D 6), reaching galaxies down to ~5 x 10^9 Msun at z D 6, necessary to robustly measure M* at that redshift, i.e., the galaxies that dominate the global stellar mass density, and (b) >100 massive galaxies at z D 7, which will firmly anchor the high mass end of the early galaxy populations and provide targets bright enough for future spectroscopic follow-up with 20--30 meter telescopes, JWST, and ALMA. The proposed five-field deep survey will enable several secondary science objectives. These include: (1) galaxy evolution in the redshift range z ~ 1--4, (2) AGN variability, and (3) measurement of the cosmic infrared background spatial fluctuations. SEDS is the most efficient and most highly optimized program that we can imagine to achieve core scientific goals of the warm mission. The opportunity to probe the Universe so widely and at such a depth at mid-IR wavelengths will not come again in the foreseeable future. SEDS is a unique program that will leave an important legacy for years to come.

  17. The BMW Deep X-Ray Cluster Survey

    NASA Astrophysics Data System (ADS)

    Guzzo, Luigi; Moretti, Alberto; Campana, Sergio; Covino, Stefano; Dell'Antonio, Ian; Lazzati, Davide; Longhetti, Marcella; Molinari, Emilio; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    We briely describe the main features and first results of the BMW survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. The sky coverage, surface density and first deep CCD images of the candidates indicate that this sample can represent an excellent complement to the existing PSPC deep cluster surveys.

  18. The Gemini Deep Planet Survey - GDPS

    SciTech Connect

    Lafreniere, D; Doyon, R; Marois, C; Nadeau, D; Oppenheimer, B R; Roche, P F; Rigaut, F; Graham, J R; Jayawardhana, R; Johnstone, D; Kalas, P G; Macintosh, B; Racine, R

    2007-06-01

    We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope and angular differential imaging was used to suppress the speckle noise of the central star. Detection limits for the 85 stars observed are presented, along with a list of all faint point sources detected around them. Typically, the observations are sensitive to angular separations beyond 0.5-inch with 5{sigma} contrast sensitivities in magnitude difference at 1.6 {micro}m of 9.6 at 0.5-inch, 12.9 at 1-inch, 15 at 2-inch, and 16.6 at 5-inch. For the typical target of the survey, a 100 Myr old K0 star located 22 pc from the Sun, the observations are sensitive enough to detect planets more massive than 2 M{sub Jup} with a projected separation in the range 40-200 AU. Depending on the age, spectral type, and distance of the target stars, the minimum mass that could be detected with our observations can be {approx}1 M{sub Jup}. Second epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are unrelated background stars. A detailed statistical analysis of the survey results, which provide upper limits on the fractions of stars with giant planet or low mass brown dwarf companions, is presented. Assuming a planet mass distribution dn/dm {proportional_to} m{sup -1.2} and a semi-major axis distribution dn/da {proportional_to} a{sup -1}, the upper limits on the fraction of stars with at least one planet of mass 0.5-13 M{sub Jup} are 0.29 for the range 10-25 AU, 0.13 for 25-50 AU, and 0.09 for 50-250 AU, with a 95% confidence level; this result is weakly dependent on the semi-major axis distribution power-law index. Without making any assumption on the mass and semi-major axis distributions, the fraction of stars with at least one brown dwarf companion having a semi-major axis in the

  19. Deep Surveys for Inner Oort Cloud Objects

    NASA Astrophysics Data System (ADS)

    Trujillo, Chadwick A.; Tholen, David J.; Sheppard, Scott S.

    2015-11-01

    We are undertaking two deep wide-field surveys to discover extremely distant solar system objects. While our target solar system population is the Inner Oort Cloud objects such as 2012 VP113 and Sedna, we are also sensitive to other populations with high perihelia such as the Scattered Kuiper Belt Objects and the highest perihelion Kuiper Belt Objects which have similar arguments of perihelion to the Inner Oort Cloud Objects. These unusual populations are thought to consist primarily of highly eccentric objects which spend most of their orbits hundreds or thousands of AU from the sun. Large aperture telescopes are needed to reach the faintness limits, red magnitudes of 23.5 to 25, required for detection of even the large members of the population. In addition, wide fields of view are also needed since the sky density of the detectable members of the populations approach 1 in 100 square degrees even with large telescopes.Our primary discovery instruments are the Dark Energy Camera (DECam) on the 4 meter Blanco Telescope at the Cerro Tololo Inter-American Observatory and Hyper Suprime-Cam (HSC) on Subaru Telescope at Maunakea. Each of these instruments has a tremendously wide field of view considering the size of the telescope they are mounted on. DECam has a field of view of about 3 square degrees and HSC has a field of view of about 1.75 square degrees. We will present our survey progress in terms of sky area covered and new objects discovered and highlight some of our more interesting findings.

  20. Site Characterization of Deep Bedrock with Integrated Geophysical Survey

    NASA Astrophysics Data System (ADS)

    Son, J.; Kim, C.; Eun, S. B.

    2015-12-01

    In order to utilize the deep underground storage facility stable for a long time, precise site characterization is required before its construction. Various kinds of geophysical survey as well as drilling and geological survey should be used to know the status of deep bedrock. A research had been conducted to make the site characterization of deep bedrock for several years, and to achieve its purpose, integrated geophysical survey were applied to the test area which had gneiss bedrock. DC resistivity survey for six surficial profiles was conducted to find the appropriate location of drilling survey. Cross-hole/surface-to-hole resistivity tomography survey and borehole reflection radar survey were applied to the drill holes after its installation completed. Three bore holes of which length was 500 meter were drilled to investigate the status of deep bedrock, and cross-hole tomography survey was applied between two boreholes among these. Also borehole reflection radar survey was conducted to another two boreholes. Deep seated fracture zones which were not identified with the surficial geological and resistivity survey were found through the analysis of tomography section. Fracture zones were consisted of steep slope fault and these were also identified with the result of borehole radar section. After the basic survey was completed, one of three holes was extended to the depth of 1 km. Radar reflection survey which was only available to the deep drill-hole was applied. Because steel casing was installed to the depth of 750 m to stabilize the extended drill-hole, resistivity method was not available and borehole radar reflection method was only available among the geophysical method used in this research. Through results of radar reflection survey, several fracture zones were identified for the newly extended section of drill hole and some of those facture has relatively large size and passed through the bore hole.

  1. Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    NASA Astrophysics Data System (ADS)

    Libralato, M.; Bellini, A.; Bedin, L. R.; Piotto, G.; Platais, I.; Kissler-Patig, M.; Milone, A. P.

    2014-03-01

    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8 m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field (in the Large Magellanic Cloud). We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2 m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields. Catalogs, fortran code, and distortion maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A80Based on observations with the 8 m VLT ESO telescope.

  2. VizieR Online Data Catalog: A 1689 HAWK-I J-band image (Petrushevska+, 2016)

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Amanullah, R.; Goobar, A.; Fabbro, S.; Johansson, J.; Kjellsson, T.; Lidman, C.; Paech, K.; Richard, J.; Dahle, H.; Ferretti, R.; Kneib, J. P.; Limousin, M.; Nordin, J.; Stanishev, V.

    2016-10-01

    The NIR data were obtained with the High Acuity Wide field K-band imager mounted on the VLT (Programmes ID 082.A-0431, 0.83.A-0398, 090.A-0492, 091.A-0108, P.I. Goobar). The HAWK-I has an array of four 2048x2048 HgCdTe detectors covering a total area of 7.5'x7.5' with a sampling of 0.106"/pix per pixel. The chips are separated by a 15" gap. (2 data files).

  3. A very deep IRAS survey at the north ecliptic pole

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Hacking, P. B.; Condon, J. J.

    1987-01-01

    The data from approximately 20 hours observation of the 4- to 6-square degree field surrounding the north ecliptic pole have been combined to produce a very deep IR survey at the four IRAS bands. Scans from both pointed and survey observations were included in the data analysis. At 12 and 25 microns the deep survey is limited by detector noise and is approximately 50 times deeper than the IRAS Point Source Catalog (PSC). At 60 microns the problems of source confusion and Galactic cirrus combine to limit the deep survey to approximately 12 times deeper than the PSC. These problems are so severe at 100 microns that flux values are only given for locations corresponding to sources selected at 60 microns. In all, 47 sources were detected at 12 microns, 37 at 25 microns, and 99 at 60 microns. The data-analysis procedures and the significance of the 12- and 60-micron source-count results are discussed.

  4. The variable sky of deep synoptic surveys

    SciTech Connect

    Ridgway, Stephen T.; Matheson, Thomas; Mighell, Kenneth J.; Olsen, Knut A.; Howell, Steve B.

    2014-11-20

    The discovery of variable and transient sources is an essential product of synoptic surveys. The alert stream will require filtering for personalized criteria—a process managed by a functionality commonly described as a Broker. In order to understand quantitatively the magnitude of the alert generation and Broker tasks, we have undertaken an analysis of the most numerous types of variable targets in the sky—Galactic stars, quasi-stellar objects (QSOs), active galactic nuclei (AGNs), and asteroids. It is found that the Large Synoptic Survey Telescope (LSST) will be capable of discovering ∼10{sup 5} high latitude (|b| > 20°) variable stars per night at the beginning of the survey. (The corresponding number for |b| < 20° is orders of magnitude larger, but subject to caveats concerning extinction and crowding.) However, the number of new discoveries may well drop below 100 per night within less than one year. The same analysis applied to GAIA clarifies the complementarity of the GAIA and LSST surveys. Discovery of AGNs and QSOs are each predicted to begin at ∼3000 per night and decrease by 50 times over four years. Supernovae are expected at ∼1100 per night, and after several survey years will dominate the new variable discovery rate. LSST asteroid discoveries will start at >10{sup 5} per night, and if orbital determination has a 50% success rate per epoch, they will drop below 1000 per night within two years.

  5. A deep 6-centimeter radio source survey.

    PubMed

    Fomalont, E B; Kellermann, K I; Wall, J V; Weistrop, D

    1984-07-01

    The Very Large Array has been used to survey a small region of sky at a wavelength of 6 centimeters down to a completeness level of 60 microjanskys-about 100 times weaker than the faintest radio sources that have been detected with other instruments. The observed source count at flux densities below 100 millijanskys converges in a manner similar to the lower frequency counts, although there is some evidence for an excess of sources weaker than 100 microjanskys. The sources in the survey are preferentially identified with faint galaxies. PMID:17775641

  6. The BMW Deep X-ray Cluster Survey

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Guzzo, L.; Campana, S.; Covino, S.; Lazzati, D.; Longhetti, M.; Molinari, E.; Panzera, M. R.; Tagliaferri, G.; dell'Antonio, I.

    We describe the main features of the BMW survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. The sky coverage, surface density and first deep optical CCD images of the candidates indicate that this sample can represent an excellent complement to the existing PSPC deep cluster surveys and will provide us with a fully independent probe of the evolution of the cluster abundance, in addition to significantly increasing the number of clusters known at z>0.6.

  7. A Deep Optical Survey of the Ecliptic

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1997-01-01

    This was an observing-intensive investigation into the newly discovered regions of the solar system beyond Neptune. The research was focussed on the use of unique imaging facilities on telescopes atop Mauna Kea, Hawaii, although other observatories (in Arizona and Chile) were also occasionally used. We secured about 20 nights of telescope time per year for our 'Medium Depth Wide Area' survey (JLC96). In this, we covered 5 sq. deg. of sky to apparent red magnitude 24.2. We used a high quantum efficiency Tektronix 2048x2048 CCD for all observations in this program. We secured observing time at the UH 2.2 meter for testing the suitability of a much larger array CCD camera for survey work (an 8192x8192 pixel device). We obtained observing runs at the twin Schmidt telescopes of Kitt Peak National Observatory and Cerro-Tololo InterAmerican Observatory in order to assess the number of bright Kuiper Belt objects, Centaurs and gas giant Trojans.

  8. Initial results from a ROSAT deep survey in Lynx

    NASA Technical Reports Server (NTRS)

    Anderson, S. F.; Windhorst, R. A.; Maccacaro, T.; Burstein, D.; Franklin, B. E.; Griffiths, R. E.; Koo, D. C.; Mathis, D. F.; Morgan, W. A.; Neuschaefer, L. W.

    1992-01-01

    Preliminary results from a deep (70 ksec) Rosat survey of the high galactic latitude selected area Lynx.3A are presented. Lynx.3A sensitivity was previously studied in both the optical radio, with deep Westerbork surveys and deep multicolor Charge Couple Device (CCD) images form the Palomar 200 inch Four-Shooter. About 70 x-ray sources were detected within the central 40 foot diameter region of the Position Sensitive Proportional Counter (PSPC), observed surface densities of approximately 200 x-ray sources/sq deg are suggested, and these x-ray sources alone account for approximately 30 percent of the cosmic x-ray background (0.9 to 2.2 keV). An initial look at the observed x-ray logN - logS curve is presented, but a detailed assessment requires further study. The 4 sigma limit of about 7 times 10 to the minus 15th power erg/s.sq cm (0.5 to 2.0 keV) is considerably deeper then the Einstein deep surveys, and of comparable sensitivity to the deepest current Rosat surveys. Cross correlation with our Four Shooter optical catalogs yields at least one likely optical candidate for nearly all of the Rosat x-ray sources; a number of the likely optical identifications have colors of quasi-stellar objects (and stellar PSF), but in other cases galaxies/groups are also viable candidates.

  9. MOIRCS Deep Survey. IX. Deep Near-Infrared Imaging Data and Source Catalog

    NASA Astrophysics Data System (ADS)

    Kajisawa, Masaru; Ichikawa, Takashi; Tanaka, Ichi; Yamada, Toru; Akiyama, Masayuki; Suzuki, Ryuji; Tokoku, Chihiro; Katsuno Uchimoto, Yuka; Konishi, Masahiro; Yoshikawa, Tomohiro; Nishimura, Tetsuo; Omata, Koji; Ouchi, Masami; Iwata, Ikuru; Hamana, Takashi; Onodera, Masato

    2011-03-01

    We present deep J-, H-, and Ks-band imaging data of the MOIRCS Deep Survey (MODS), which was carried out with the Multi-Object Infrared Camera and Spectrograph (MOIRCS) mounted on the Subaru Telescope in the GOODS-North region. The data reach 5σ total limiting magnitudes for point sources of J = 23.9, H = 22.8, and Ks = 22.8 (Vega magnitude) over 103 arcmin2 (wide field). In 28 arcmin2 of the survey area, which is an ultra-deep field of the MODS (deep field), the data reach 5σ depths of J = 24.8, H = 23.4, and Ks = 23.8. The spatial resolutions of the combined images are FWHM ˜0''.6 and ˜0''.5 for the wide and deep fields in all bands, respectively. Combining the MODS data with the multi-wavelength public data taken with the HST, Spitzer, and other ground-based telescopes in the GOODS field, we constructed a multi-wavelength photometric catalog of Ks-selected sources. Using the catalog, we present Ks-band number counts and near-infrared color distribution of the detected objects; we also demonstrate some selection techniques with the NIR colors for high redshift galaxies. These data and catalog are publicly available via Internet.

  10. Constraints on star-forming galaxies at z >= 6.5 from HAWK-I Y-band imaging of GOODS-South

    NASA Astrophysics Data System (ADS)

    Hickey, Samantha; Bunker, Andrew; Jarvis, Matt J.; Chiu, Kuenley; Bonfield, David

    2010-05-01

    We present the results of our search for high-redshift Lyman-break galaxies over the GOODS-South field. We use Hubble Space Telescope (HST)-ACS data in B, V, i' & z', Very Large Telescope (VLT)-ISAAC J and Ks, Spitzer-Infrared Array Camera (IRAC) 3.6, 4.5, 5.8 and 8.0 μm data in conjunction with the new HAWK-I Y-band science verification data to search for dropout galaxies in the redshift range 6 < z < 9. We survey ~119arcmin2 to YAB = 25.7 (5σ), of which 37.5arcmin2 reaches YAB = 25.9. Candidate z' and Y dropouts were selected on the basis of a colour cut of (Y - J)AB > 0.75mag and (z' - Y)AB > 1.0mag, respectively. We find no robust Y-drops (z ~ 9) brighter than JAB < 25.4. In our search for z'-band dropouts (z ~ 6.5- 7.5), we identify four possible candidates, two with z'-drop colours and clear Spitzer-IRAC detections and two less likely candidates. We also identify two previously known Galactic T-dwarf stellar contaminants with these colours, and two likely transient objects seen in the Y-band data. The implications if all or none of our candidates is real on the ultraviolet galaxy luminosity functions at z > 6.5 are explored. We find our number of z'-drop candidates to be insufficient based on the expected number of z' drops in a simple no-evolution scenario from the z = 3 Lyman-break galaxy luminosity function but we are consistent with the observed luminosity function at z ~ 6 (if all our candidates are real). However, if one or both of our best z'-drop candidates are not z > 6.5 galaxies, this would demand evolution of the luminosity function at early epochs, in the sense that the number density of ultraviolet luminous star-forming galaxies at z > 7 is less than at z ~ 6. We show that the future surveys to be conducted with the European Southern Observatory VISTA telescope over the next 5yr will be able to measure the bulk of the luminosity function for both z' and Y dropouts and thus provide the strongest constraints on the level of star-formation within

  11. Cool Dwarf Scale Heights from the Deep Lens Survey

    NASA Astrophysics Data System (ADS)

    Thorman, P.; Loomba, D.; Boeshaar, P.; Ryan, R.

    2011-12-01

    We have added 1.12 sq. deg. of survey J-band (1.2μm) deep imaging (J = 21.4, 5σ) from Palomar WIRC and 2.5 sq. deg. of targeted FLAMINGOS imaging (median depth J = 20.44, 5σ) to 4 sq. deg. of deep Rz' imaging from the Deep Lens Survey. Using color models derived from photometry and spectroscopy of known M, L, and T dwarfs, we assign a spectral type probability to each object, and calculate model likelihoods for sech2 and exponential disks of various scale heights by comparing the predicted distance distribution to the estimated object distances. The best-fit exponential scale heights for M9-L2 and L2-L5 dwarfs are ZS = 345 pc and 324 pc, respectively; however, the sech2 models show a possible decrease in the scale height from Z0 = 575 pc to 175 pc between those two groups, which may indicate a weakness in the previously used exponential models.

  12. The Canada-France Deep Fields Photometric Redshift Survey

    NASA Astrophysics Data System (ADS)

    Brodwin, M.; Lilly, S. J.; McCracken, H. J.; Foucaud, S.; Le Fèvre, O.; Crampton, D.

    2002-12-01

    The Canada-France Deep Fields is a UBVRIZ imaging survey covering 1 deg2 to I ~ 25. A template-fitting photometric redshift algorithm has been developed and rigorously tested, producing redshifts with a dispersion of Δ z/(1+z) ~ 0.08 for galaxies at 0Deep Field. Statistically motivated confidence intervals are computed taking into account the unique redshift likelihood function for each galaxy. Previous results from the CFDF include measurements of the angular correlation function of galaxies to I ~ 25 (McCracken et al. 2001, A&A, 376, 756) and of colour-selected Lyman Break Galaxies (Foucaud et al. 2002, submitted). The CFDF photometric redshift survey, calibrated with CFRS spectroscopy, was designed to study galaxy evolution since z ~ 1.3. With the full 3-D spatial information, real-space clustering and luminosity density evolution will be quantified over this redshift range. In this talk I will present the first results from the photometric redshift component of the survey.

  13. Hα Emitting Galaxies in the Deep And Wide Narrowband Survey

    NASA Astrophysics Data System (ADS)

    Gonzalez, Alicia; Malhotra, Sangeeta; Rhoads, James E.; DAWN Collaboration

    2016-06-01

    We present new measurements of the Hα luminosity function (LF) and star formation rate (SFR) volume density for galaxies at z˜0.62. Our results are part of the Deep And Wide Narrowband Survey (DAWN), a unique infrared imaging program with large areal coverage (˜1.1 deg2 over 5 fields) and sensitivity (9.9 × 10-18 erg/cm2/s at 5σ). The present sample, based on a single DAWN field, contains 85 Hα emission-line candidates at z˜0.62, 25% of which have spectroscopic confirmations. These candidates have been selected through comparison of narrow and broad-band images and through matching with existing catalogs in the COSMOS field. The dust-corrected LF is well described by a Schechter function. We calculate a SFR density of ρSFR =10(-1.15±0.07) M○ / yr/ Mpc3. We compare our results to already existing surveys at similar redshifts and find that our faint slope of the LF is flatter than that of most other surveys and that our SFR density is higher than that reported from similar surveys at z<2.

  14. Ultra-deep K-band Imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, G. B.; Marchesini, D.; Labbé, I.; Spitler, L.; Lange-Vagle, D.; Barker, E. A.; Tanaka, M.; Fontana, A.; Galametz, A.; Ferré-Mateu, A.; Kodama, T.; Lundgren, B.; Martis, N.; Muzzin, A.; Stefanon, M.; Toft, S.; van der Wel, A.; Vulcani, B.; Whitaker, K. E.

    2016-09-01

    We have recently completed a deep near-infrared imaging survey with the High Acuity Wide Field K-band Imager (HAWK-I), nicknamed KIFF (Ks-band Imaging of the Frontier Fields). KIFF provides ultra-deep images of six fields around massive galaxy clusters that have also recently been observed with the Hubble and Spitzer Space Telescopes as part of the Frontier Fields programme. Each of the KIFF mosaics is among the deepest Ks-band images ever obtained, and, with a boost from strong gravitational lensing by the galaxy clusters, they will be used to reveal the stellar populations of galaxies seen only a few hundred million years after the Big Bang. Fully reduced images are made available to the community through the Phase 3 infrastructure of the ESO Science Archive Facility.

  15. Normal and Starburst Galaxies in Deep X-ray Surveys

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2006-01-01

    This talk will cover progress of the last several years in unraveling the nature of normal and starburst galaxies in deep X-ray surveys. This includes discussion of the normal galaxy X-ray Luminosity Function in deep field and cluster surveys and what it tells us about the binary populations in galaxies. The utility of broad band X-ray emission, especially as compared to other multiwavelength measurements of current/recent star formation, will be reviewed. These broad band X-ray measurements of star formation are based upon X-ray/Star Formation Rate correlations that span the currently available redshift range (0 < z < 1). I will also discuss new efforts underway to systematically characterize the X-ray emission from galaxies in group and cluster environments, including a new effort underway in the Coma cluster of galaxies. I will finish with discussion of the redshift frontier for studies of X-ray star formation, currently 2 approx.4, where the UV-selected Lyman Break galaxies are the best glimpse we have into X-ray emission from star formation in the early Universe. Lyman Break galaxies are of particular interest due to the overlap in basic properties with starburst galaxies in the more local Universe. Understanding the outflows in such starburst galaxies is of critical importance to constraining the "stellar" portion of cosmic feedback. The talk will close with a brief discussion of distant normal galaxy science with future X-ray observatories such as the upcoming Con-X/XEUS mission(s).

  16. ESO imaging survey. Deep public survey: Multi-color optical data for the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Arnouts, S.; Vandame, B.; Benoist, C.; Groenewegen, M. A. T.; da Costa, L.; Schirmer, M.; Mignani, R. P.; Slijkhuis, R.; Hatziminaoglou, E.; Hook, R.; Madejsky, R.; Rité, C.; Wicenec, A.

    2001-11-01

    This paper presents multi-passband optical data obtained from observations of the Chandra Deep Field South (CDF-S), located at alpha ~ 3h 32m, delta ~ -27o 48'. The observations were conducted at the ESO/MPG 2.2 m telescope at La Silla using the 8kx8k Wide-Field Imager (WFI). This data set, taken over a period of one year, represents the first field to be completed by the ongoing Deep Public Survey (DPS) being carried out as a part of the ESO Imaging Survey (EIS) project. This paper describes the optical observations, the techniques employed for un-supervised pipeline processing and the general characteristics of the final data set. Image processing has been performed using multi-resolution image decomposition techniques adapted to the EIS pipeline. The automatic processing steps include standard de-bias and flat-field, automatic removal of satellite tracks, de-fringing/sky-subtraction, image stacking/mosaicking and astrometry. Stacking of dithered images is carried out using pixel-based astrometry which enables the efficient removal of cosmic rays and image defects, yielding remarkably clean final images. The final astrometric calibration is based on a pre-release of the GSC-II catalog and has an estimated intrinsic accuracy of la 0.10 arcsec, with all passbands sharing the same solution. The paper includes data taken in six different filters (U'UBVRI). The data cover an area of about 0.25 square degrees reaching 5sigma limiting magnitudes of U'AB=26.0, UAB=25.7, BAB=26.4, VAB=25.4, RAB=25.5 and IAB= 24.7 mag, as measured within a 2 x FWHM aperture. The optical data covers an area of ~ 0.1 square degrees for which moderately deep observations in two near-infrared bands are also available, reaching 5sigma limiting magnitudes of JAB ~ 23.4 and KAB ~ 22.6. The current optical/infrared data also fully encompass the region of the deep X-ray observations recently completed by the Chandra telescope. The optical data presented here, as well as the infrared data released

  17. Simulation of deep one- and two-dimensional redshift surveys

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Gott, J. Richard, III

    1991-01-01

    It is shown that slice or pencil-beam redshift surveys of galaxies can be simulated in a box with nonequal sides. This method saves a lot of computer time and memory while providing essentially the same results as from whole-cube simulations. A 2457.6/h Mpc-long rod (out to a redshift z = 0.58 in two opposite directions) is simulated using the standard biased cold dark matter model as an example to mimic the recent deep pencil-beam surveys by Broadhurst et al. (1990). The structures (spikes) seen in these simulated samples occur when the narrow pencil-beam pierces walls, filaments, and clusters appearing randomly along the line-of-sight. A statistical test for goodness of fit to a periodic lattice has been applied to the observations and the simulations. It is found that the statistical significance level (P = 15.4 percent) is not strong enough to reject the null hypothesis that the observations and the simulations were drawn at random from the same set.

  18. Precision cosmology with a combination of wide and deep Sunyaev-Zel'dovich cluster surveys

    SciTech Connect

    Khedekar, Satej; Majumdar, Subhabrata; Das, Sudeep

    2010-08-15

    We show the advantages of a wedding cake design for Sunyaev-Zel'dovich cluster surveys. We show that by dividing up a cluster survey into a wide and deep survey, one can essentially recover the cosmological information that would be diluted in a single survey of the same duration due to the uncertainties in our understanding of cluster physics. The parameter degeneracy directions of the deep and wide surveys are slightly different, and combining them breaks these degeneracies effectively. A variable depth survey with a few thousand clusters is as effective at constraining cosmological parameters as a single depth survey with a much larger cluster sample.

  19. Deep crustal reflections from a Vibroseis survey in northern Switzerland

    NASA Astrophysics Data System (ADS)

    Finckh, P.; Ansorge, J.; Mueller, St.; Sprecher, Chr.

    1984-10-01

    In 1982 a Vibroseis survey comprising 180 km of reflection profiles was run in northern Switzerland in order to investigate the suitability of the crystalline basement for the deposition of highly radioactive waste. A configuration was chosen with 144 channels, 25 m of geophone spacing, 20 s sweeps ranging from 11 to 61 Hz and stacking of 4 or 8 sweeps of 3 simultaneous vibrators at twice the geophone spacing. The listening time was generally 4 s and at 4 sites it was extended to 11s for the detection of deeper crustal reflectors. This survey unravelled the complicated fault and thrust system beneath the Swiss folded Jura mountains. The stack from 4 s to 11 s reveals clearly a strong sloping reflector between 3.0 and 3.5 s which is strong evidence for a pronounced differentiation in the upper crust. A series of reflections is observed between 5.8 and 7.2 s the top of which can be correlated with the Conrad discontinuity. A strong "layered" signal between 9.0 and 9.5 s is interpreted as reflections from the M-discontinuity. The main features are compatible with results from nearby refraction surveys in the southern Rhinegraben rift system which show a distinct velocity increase of about 0.5 km/s in the lower crust at a depth ranging from 15 to 20 km, followed by an inversion zone or a laminated structure before reaching the Moho at about 27 km depth. The correlation of the field recordings with the first 10 s of the up-sweep only, shows some loss of resolution in the uppermost 3 s because of the lower frequency content of the signal. However, the lower parts of the sections are nearly identical. The fact that the deeper reflectors in the sections can consistently be traced laterally is a strong argument for using this processing technique. Thus high-coverage Vibroseis surveys utilizing up-sweep can be processed for deep crustal reflections even if the recording time is restricted to the standard 4 s, provided the surface static corrections are carried out with high

  20. Asteroid Size-Frequency Distribution (The ISO Deep Asteroid Survey)

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    2001-01-01

    A total of six deep exposures (using AOT CAM01 with a 6" PFOV) through the ISOCAM LW10 filter (IRAS Band 1, i.e., 12 micro-m) were obtained on an approximately 15 arcminute square field centered on the ecliptic plane. Point sources were extracted using the technique described by Desert, et al. Two known asteroids appear in these frames and 20 sources moving with velocities appropriate for main belt asteroids are present. Most of the asteroids detected have flux densities less than 1 mJy, i.e., between 150 and 350 times fainter than any of the asteroids observed by Infrared Astronomy Satellite (IRAS). These data provide the first direct measurement of the 12 micro-m sky-plane density for asteroids on the ecliptic equator. The median zodiacal foreground, as measured by ISOCAM during this survey, is found to be 22.1 +/- 1.5 mJy per pixel, i.e., 26.2 +/- 1.7 MJy/sr. The results presented here imply that the actual number of kilometer-sized asteroids is significantly greater than previously believed and in reasonable agreement with the Statistical Asteroid Model.

  1. The WIRCam Deep Survey. II. Mass selected clustering

    NASA Astrophysics Data System (ADS)

    Bielby, R. M.; Gonzalez-Perez, V.; McCracken, H. J.; Ilbert, O.; Daddi, E.; Le Fèvre, O.; Hudelot, P.; Kneib, J.-P.; Mellier, Y.; Willott, C.

    2014-08-01

    We present an analysis of the clustering of galaxies from z ≈ 2 to the present day using the WIRCam Deep Survey (WIRDS). WIRDS combines deep optical data from the CFHTLS Deep fields with its own deep near-infrared data, providing a photometric data-set over an effective area of 2.4 deg2, from which accurate photometric redshifts and stellar masses can be estimated. We use the data to calculate the angular correlation function for galaxy samples split by star-formation activity, stellar mass and redshift. Using WIRDS with its large total area and multiple fields gives a low cosmic variance contribution to the error, which we estimate to be less than ~2.8%. Based on power-law fits, we estimate the real-space clustering for each sample, determining clustering lengths and power-law slopes. For galaxies selected by constant mass, we find that the clustering scale shows no evolution up to z ≈ 2. Splitting the galaxy sample by mass, we see a consistent trend for higher mass galaxies to have larger clustering scales at all redshifts considered. We use our results to test the galform semi-analytical model of galaxy formation and evolution. The observed trends are well matched by the model galaxies for both the redshift evolution and the mass dependence of the galaxy clustering. We split the galaxy population into passive and star-forming populations based on rest-frame dust-corrected NUV-r colours. We find that the passive galaxy populations show a significantly larger clustering scale at all redshifts than the star-forming population below masses of M⋆ ~ 1011 h-1 M⊙, showing that even at z ≈ 2 passive galaxies exist in denser environments than the bulk of the star-forming galaxy population. For star-forming galaxies with stellar masses of M⋆ ≳ 1011 h-1 M⊙, we find a clustering strength of ~8 h-1 Mpc across all redshifts, comparable to the measurements for the passive population. Additionally, for star-forming galaxies we see that clustering strength

  2. The Secret Lives Of Galaxies Unveiled In Deep Survey

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Two of NASA's Great Observatories, bolstered by the largest ground-based telescopes around the world, are beginning to harvest new clues to the origin and evolution of galaxies. It's a bit like finding a family scrapbook containing snapshots that capture the lives of family members from infancy through adolescence to adulthood. "This is the first time the cosmic tale of how galaxies build themselves has been traced reliably to such early times in the universe's life," said Mauro Giavalisco, head of the Hubble Space Telescope (HST) portion of the survey, and research astronomer at the Space Telescope Science Institute (STScI) in Baltimore. The HST has joined forces with the Chandra X-ray Observatory to survey a relatively broad swath of sky encompassing tens of thousands of galaxies stretching far back into time. The Space Infrared Telescope Facility (SIRTF), scheduled for launch in August, will soon join this unprecedented survey. Called the Great Observatories Origins Deep Survey (GOODS), astronomers are studying galaxy formation and evolution over a wide range of distances and ages. The project is tracing the assembly history of galaxies, the evolution of their stellar populations, and the gusher of energy from star formation and active nuclei powered by immense black holes. HST astronomers report the sizes of galaxies clearly increase continuously from the time the universe was about 1 billion years old to an age of 6 billion years. This is approximately half the current age of the universe, 13.7 billion years. GOODS astronomers also find the star birth rate rose mildly, by about a factor of three, between the time the universe was about one billion years old and 1.5 billion years old, and remained high until about 7 billion years ago, when it quickly dropped to one-tenth the earlier "baby boomer" rate. This is further evidence major galaxy building trailed off when the universe was about half its current age. GOODS Chandra Deep Fields South Chandra Deep Field

  3. The Secret Lives Of Galaxies Unveiled In Deep Survey

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Two of NASA's Great Observatories, bolstered by the largest ground-based telescopes around the world, are beginning to harvest new clues to the origin and evolution of galaxies. It's a bit like finding a family scrapbook containing snapshots that capture the lives of family members from infancy through adolescence to adulthood. "This is the first time the cosmic tale of how galaxies build themselves has been traced reliably to such early times in the universe's life," said Mauro Giavalisco, head of the Hubble Space Telescope (HST) portion of the survey, and research astronomer at the Space Telescope Science Institute (STScI) in Baltimore. The HST has joined forces with the Chandra X-ray Observatory to survey a relatively broad swath of sky encompassing tens of thousands of galaxies stretching far back into time. The Space Infrared Telescope Facility (SIRTF), scheduled for launch in August, will soon join this unprecedented survey. Called the Great Observatories Origins Deep Survey (GOODS), astronomers are studying galaxy formation and evolution over a wide range of distances and ages. The project is tracing the assembly history of galaxies, the evolution of their stellar populations, and the gusher of energy from star formation and active nuclei powered by immense black holes. HST astronomers report the sizes of galaxies clearly increase continuously from the time the universe was about 1 billion years old to an age of 6 billion years. This is approximately half the current age of the universe, 13.7 billion years. GOODS astronomers also find the star birth rate rose mildly, by about a factor of three, between the time the universe was about one billion years old and 1.5 billion years old, and remained high until about 7 billion years ago, when it quickly dropped to one-tenth the earlier "baby boomer" rate. This is further evidence major galaxy building trailed off when the universe was about half its current age. GOODS Chandra Deep Fields South Chandra Deep Field

  4. Deep near-infrared survey of the Southern Sky (DENIS)

    NASA Technical Reports Server (NTRS)

    Deul, E.

    1992-01-01

    DENIS (Deep Near-Infrared Survey of the Southern Sky) will be the first complete census of astronomical sources in the near-infrared spectral range. The challenges of this novel survey are both scientific and technical. Phenomena radiating in the near-infrared range from brown dwarfs to galaxies in the early stages of cosmological evolution, the scientific exploitation of data relevant over such a wide range requires pooling expertise from several of the leading European astronomical centers. The technical challenges of a project which will provide an order of magnitude more sources than given by the IRAS space mission, and which will involve advanced data-handling and image-processing techniques, likewise require pooling of hardware and software resources, as well as of human expertise. The DENIS project team is composed of some 40 scientists, computer specialists, and engineers located in 5 European Community countries (France, Germany, Italy, The Netherlands, and Spain), with important contributions from specialists in Australia, Brazil, Chile, and Hungary. DENIS will survey the entire southern sky in 3 colors, namely in the I band at a wavelength of 0.8 micron, in the 1.25 micron J band, and in the 2.15 micron K' band. The sensitivity limits will be 18th magnitude in the I band, 16th in the J band, and 14.5th in the K' band. The angular resolution achieved will be 1 arcsecond in the I band, and 3.0 arcseconds in the J and K' bands. The European Southern Observatory 1 m telescope on La Silla will be dedicated to survey use during operations expected to last four years, commencing in late 1993. DENIS aims to provide the astronomical community with complete digitized infrared images of the full southern sky and a catalogue of extracted objects, both of the best quality and in readily accessible form. This will be achieved through dedicated software packages and specialized catalogues, and with assistance from the Leiden and Paris Data Analysis Centers. The data

  5. The VIMOS-VLT deep survey: the group catalogue

    NASA Astrophysics Data System (ADS)

    Cucciati, O.; Marinoni, C.; Iovino, A.; Bardelli, S.; Adami, C.; Mazure, A.; Scodeggio, M.; Maccagni, D.; Temporin, S.; Zucca, E.; De Lucia, G.; Blaizot, J.; Garilli, B.; Meneux, B.; Zamorani, G.; Le Fèvre, O.; Cappi, A.; Guzzo, L.; Bottini, D.; Le Brun, V.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Arnouts, S.; Bolzonella, M.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Ilbert, O.; Lamareille, F.; McCracken, H. J.; Marano, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Vergani, D.; Pérez-Montero, E.

    2010-09-01

    Aims: We present a homogeneous and complete catalogue of optical galaxy groups identified in the purely flux-limited (17.5 ≤ IAB ≤ 24.0) VIMOS-VLT deep redshift Survey (VVDS). Methods: We use mock catalogues extracted from the Millennium Simulation, to correct for potential systematics that might affect the overall distribution as well as the individual properties of the identified systems. Simulated samples allow us to forecast the number and properties of groups that can be potentially found in a survey with VVDS-like selection functions. We use them to correct for the expected incompleteness and, to asses in addition, how well galaxy redshifts trace the line-of-sight velocity dispersion of the underlying mass overdensity. In particular, on these mock catalogues we train the adopted group-finding technique i.e., the Voronoi-Delaunay Method (VDM). The goal is to fine-tune its free parameters, recover in a robust and unbiased way the redshift and velocity dispersion distributions of groups (n(z) and n(σ), respectively), and maximize, at the same time, the level of completeness and purity of the group catalogue. Results: We identify 318 VVDS groups with at least 2 members in the range 0.2 ≤ z ≤ 1.0, among which 144 (/30) with at least 3 (/5) members. The sample has an overall completeness of ~60% and a purity of ~50%. Nearly 45% of the groups with at least 3 members are still recovered if we run the algorithm with a particular parameter set that maximizes the purity (~75%) of the resulting catalogue. We use the group sample to explore the redshift evolution of the fraction fb of blue galaxies (U-B ≤ 1) in the redshift range 0.2 ≤ z ≤ 1. We find that the fraction of blue galaxies is significantly lower in groups than in the global population (i.e. in the whole ensemble of galaxies irrespective of their environment). Both of these quantities increase with redshift, the fraction of blue galaxies in groups exhibiting a marginally significant steeper

  6. EXTENDED PHOTOMETRY FOR THE DEEP2 GALAXY REDSHIFT SURVEY: A TESTBED FOR PHOTOMETRIC REDSHIFT EXPERIMENTS

    SciTech Connect

    Matthews, Daniel J.; Newman, Jeffrey A.; Coil, Alison L.; Cooper, Michael C.; Gwyn, Stephen D. J. E-mail: janewman@pitt.edu E-mail: m.cooper@uci.edu

    2013-02-15

    This paper describes a new catalog that supplements the existing DEEP2 Galaxy Redshift Survey photometric and spectroscopic catalogs with ugriz photometry from two other surveys: the Canada-France-Hawaii Legacy Survey (CFHTLS) and the Sloan Digital Sky Survey (SDSS). Each catalog is cross-matched by position on the sky in order to assign ugriz photometry to objects in the DEEP2 catalogs. We have recalibrated the CFHTLS photometry where it overlaps DEEP2 in order to provide a more uniform data set. We have also used this improved photometry to predict DEEP2 BRI photometry in regions where only poorer measurements were available previously. In addition, we have included improved astrometry tied to SDSS rather than USNO-A2.0 for all DEEP2 objects. In total this catalog contains {approx}27, 000 objects with full ugriz photometry as well as robust spectroscopic redshift measurements, 64% of which have r > 23. By combining the secure and accurate redshifts of the DEEP2 Galaxy Redshift Survey with ugriz photometry, we have created a catalog that can be used as an excellent testbed for future photo-z studies, including tests of algorithms for surveys such as LSST and DES.

  7. DEEP 21 cm H I OBSERVATIONS AT z {approx} 0.1: THE PRECURSOR TO THE ARECIBO ULTRA DEEP SURVEY

    SciTech Connect

    Freudling, Wolfram; Zwaan, Martin; Staveley-Smith, Lister; Meyer, Martin; Catinella, Barbara; Minchin, Robert; Calabretta, Mark; Momjian, Emmanuel; O'Neil, Karen

    2011-01-20

    The 'ALFA Ultra Deep Survey' (AUDS) is an ongoing 21 cm spectral survey with the Arecibo 305 m telescope. AUDS will be the most sensitive blind survey undertaken with Arecibo's 300 MHz Mock spectrometer. The survey searches for 21 cm H I line emission at redshifts between 0 and 0.16. The main goals of the survey are to investigate the H I content and probe the evolution of H I gas within that redshift region. In this paper, we report on a set of precursor observations with a total integration time of 53 hr. The survey detected a total of eighteen 21 cm emission lines at redshifts between 0.07 and 0.15 in a region centered around {alpha}{sub 2000} {approx} 0{sup h}, {delta} {approx} 15{sup 0}42'. The rate of detection is consistent with the one expected from the local H I mass function. The derived relative H I density at the median redshift of the survey is {rho}{sub H{sub I}}[z = 0.125] = (1.0 {+-} 0.3){rho}{sub 0}, where {rho}{sub 0} is the H I density at zero redshift.

  8. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    SciTech Connect

    Grogin, Norman A.; Ferguson, Henry C.; Koekemoer, Anton M.; Brown, Thomas M.; Casertano, Stefano; Kocevski, Dale D.; Faber, S. M.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Cassata, Paolo; Castellano, Marco; Challis, Peter; Chary, Ranga-Ram; and others

    2011-12-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z > 1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10{sup 9} M{sub Sun} to z Almost-Equal-To 2, reaching the knee of the ultraviolet luminosity function of galaxies to z Almost-Equal-To 8. The survey covers approximately 800 arcmin{sup 2} and is divided into two parts. The CANDELS/Deep survey (5{sigma} point-source limit H = 27.7 mag) covers {approx}125 arcmin{sup 2} within Great Observatories Origins Deep Survey (GOODS)-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-deep Survey) and covers the full area to a 5{sigma} point-source limit of H {approx}> 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered 'wedding-cake' approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.

  9. Deep 20-GHz survey of the Chandra Deep Field South and SDSS Stripe 82: source catalogue and spectral properties

    NASA Astrophysics Data System (ADS)

    Franzen, Thomas M. O.; Sadler, Elaine M.; Chhetri, Rajan; Ekers, Ronald D.; Mahony, Elizabeth K.; Murphy, Tara; Norris, Ray P.; Waldram, Elizabeth M.; Whittam, Imogen H.

    2014-04-01

    We present a source catalogue and first results from a deep, blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array, with follow-up observations at 5.5, 9 and 18 GHz. The Australia Telescope 20 GHz (AT20G) deep pilot survey covers a total area of 5 deg2 in the Chandra Deep Field South and in Stripe 82 of the Sloan Digital Sky Survey. We estimate the survey to be 90 per cent complete above 2.5 mJy. Of the 85 sources detected, 55 per cent have steep spectra (α _{1.4}^{20} < -0.5) and 45 per cent have flat or inverted spectra (α _{1.4}^{20} ≥ -0.5). The steep-spectrum sources tend to have single power-law spectra between 1.4 and 18 GHz, while the spectral indices of the flat- or inverted-spectrum sources tend to steepen with frequency. Among the 18 inverted-spectrum (α _{1.4}^{20} ≥ 0.0) sources, 10 have clearly defined peaks in their spectra with α _{1.4}^{5.5} > 0.15 and α 9^{18} < -0.15. On a 3-yr time-scale, at least 10 sources varied by more than 15 per cent at 20 GHz, showing that variability is still common at the low flux densities probed by the AT20G-deep pilot survey. We find a strong and puzzling shift in the typical spectral index of the 15-20-GHz source population when combining data from the AT20G, Ninth Cambridge and Tenth Cambridge surveys: there is a shift towards a steeper-spectrum population when going from ˜1 Jy to ˜5 mJy, which is followed by a shift back towards a flatter-spectrum population below ˜5 mJy. The 5-GHz source-count model by Jackson & Wall, which only includes contributions from FRI and FRII sources, and star-forming galaxies, does not reproduce the observed flattening of the flat-spectrum counts below ˜5 mJy. It is therefore possible that another population of sources is contributing to this effect.

  10. A Deep Chandra ACIS Survey of M51

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Long, Knox S.; Kilgard, Roy E.

    2016-08-01

    We have obtained a deep X-ray image of the nearby galaxy M51 using Chandra. Here we present the catalog of X-ray sources detected in these observations and provide an overview of the properties of the point-source population. We find 298 sources within the D 25 radii of NGC 5194/5, of which 20% are variable, a dozen are classical transients, and another half dozen are transient-like sources. The typical number of active ultraluminous X-ray sources in any given observation is ˜5, and only two of those sources persist in an ultraluminous state over the 12 yr of observations. Given reasonable assumptions about the supernova remnant population, the luminosity function is well described by a power law with an index between 1.55 and 1.7, only slightly shallower than that found for populations dominated by high-mass X-ray binaries (HMXBs), which suggests that the binary population in NGC 5194 is also dominated by HMXBs. The luminosity function of NGC 5195 is more consistent with a low-mass X-ray binary dominated population. Based on observations made with NASA's Chandra X-ray Observatory, which is operated by the Smithsonian Astrophysical Observatory under contract #NAS83060, and the data were obtained through program GO1-12115.

  11. A Deep Chandra ACIS Survey of M51

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Long, Knox S.; Kilgard, Roy E.

    2016-08-01

    We have obtained a deep X-ray image of the nearby galaxy M51 using Chandra. Here we present the catalog of X-ray sources detected in these observations and provide an overview of the properties of the point-source population. We find 298 sources within the D 25 radii of NGC 5194/5, of which 20% are variable, a dozen are classical transients, and another half dozen are transient-like sources. The typical number of active ultraluminous X-ray sources in any given observation is ˜5, and only two of those sources persist in an ultraluminous state over the 12 yr of observations. Given reasonable assumptions about the supernova remnant population, the luminosity function is well described by a power law with an index between 1.55 and 1.7, only slightly shallower than that found for populations dominated by high-mass X-ray binaries (HMXBs), which suggests that the binary population in NGC 5194 is also dominated by HMXBs. The luminosity function of NGC 5195 is more consistent with a low-mass X-ray binary dominated population. Based on observations made with NASA's Chandra X-ray Observatory, which is operated by the Smithsonian Astrophysical Observatory under contract #NAS83060, and the data were obtained through program GO1-12115.

  12. Radio variability in the Phoenix Deep Survey at 1.4 GHz

    NASA Astrophysics Data System (ADS)

    Hancock, P. J.; Drury, J. A.; Bell, M. E.; Murphy, T.; Gaensler, B. M.

    2016-09-01

    We use archival data from the Phoenix Deep Survey to investigate the variable radio source population above 1 mJy beam-1 at 1.4 GHz. Given the similarity of this survey to other such surveys we take the opportunity to investigate the conflicting results which have appeared in the literature. Two previous surveys for variability conducted with the Very Large Array (VLA) achieved a sensitivity of 1 mJy beam-1. However, one survey found an areal density of radio variables on time-scales of decades that is a factor of ˜4 times greater than a second survey which was conducted on time-scales of less than a few years. In the Phoenix deep field we measure the density of variable radio sources to be ρ = 0.98 deg-2 on time-scales of 6 months to 8 yr. We make use of Wide-field Infrared Survey Explorer infrared cross-ids, and identify all variable sources as an active galactic nucleus of some description. We suggest that the discrepancy between previous VLA results is due to the different time-scales probed by each of the surveys, and that radio variability at 1.4 GHz is greatest on time-scales of 2-5 yr.

  13. A Deep Submillimeter Survey of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Pierce-Price, D.; Richer, J. S.; Greaves, J. S.; Holland, W. S.; Jenness, T.; Lasenby, A. N.; White, G. J.; Matthews, H. E.; Ward-Thompson, D.; Dent, W. R. F.; Zylka, R.; Mezger, P.; Hasegawa, T.; Oka, T.; Omont, A.; Gilmore, G.

    2000-12-01

    We present first results from a submillimeter continuum survey of the Galactic center ``central molecular zone'' (CMZ), made with the Submillimeter Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. SCUBA's scan-map mode has allowed us to make extremely wide field maps of thermal dust emission with unprecedented speed and sensitivity. We also discuss some issues related to the elimination of artifacts in scan-map data. Our simultaneous 850/450 μm maps have a total size of approximately 2.8d×0.5d (400×75 pc) elongated along the Galactic plane. They cover the Sagittarius A region, including Sgr A*, the circumnuclear disk, and the 20 and 50 km s-1 clouds; the area around the Pistol; Sgr B2, the brightest feature on the maps; and at their Galactic western and eastern edges the Sgr C and Sgr D regions. There are many striking features such as filaments and shell-like structures as well as point sources such as Sgr A* itself. The total mass in the CMZ is greater than that revealed in previous optically thin molecular line maps by a factor of ~3, and new details are revealed on scales down to 0.33 pc across this 400 pc-wide region.

  14. The deep XMM-Newton Survey of M 31

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Pietsch, W.; Haberl, F.; Hatzidimitriou, D.; Barnard, R.; Williams, B. F.; Kong, A. K. H.; Kolb, U.

    2011-10-01

    Aims: The largest Local Group spiral galaxy, M 31, has been completely imaged for the first time, obtaining a luminosity lower limit ~1035 erg s-1 in the 0.2-4.5 keV band. Our XMM-Newton EPIC survey combines archival observations along the major axis, from June 2000 to July 2004, with observations taken between June 2006 and February 2008 that cover the remainder of the D25 ellipse. The main goal of the paper is to study the X-ray source population of M 31. Methods: An X-ray catalogue of 1897 sources was created, with 914 detected for the first time. Source classification and identification were based on X-ray hardness ratios, spatial extent of the sources, and cross correlation with catalogues in the X-ray, optical, infrared, and radio wavelengths. We also analysed the long-term variability of the X-ray sources and this variability allows us to distinguish between X-ray binaries and active galactic nuclei (AGN). Furthermore, supernova remnant classifications of previous studies that did not use long-term variability as a classification criterion could be validated. Including previous Chandra and ROSAT observations in the long-term variability study allowed us to detect additional transient or at least highly variable sources, which are good candidate X-ray binaries. Results: Fourteen of the 30 supersoft source (SSS) candidates represent supersoft emission of optical novae. Many of the 25 supernova remnants (SNRs) and 31 SNR candidates lie within the 10 kpc dust ring and other star-forming regions in M 31. This connection between SNRs and star-forming regions implies that most of the remnants originate in type II supernovae. The brightest sources in X-rays in M 31 belong to the class of X-ray binaries (XRBs). Ten low-mass XRBs (LMXBs) and 26 LMXB candidates were identified based on their temporal variability. In addition, 36 LMXBs and 17 LMXB candidates were identified owing to correlations with globular clusters and globular cluster candidates. From optical and X

  15. Initial OSSE Sky Survey Observation: Deep Survey in the Virgo Region

    NASA Technical Reports Server (NTRS)

    Cameron, Robert

    2000-01-01

    The OSSE Virgo survey covered about 1% of the sky, using eight weeks of observing time on the Compton Gamma Ray Observatory, and was performed in conjunction with the EGRET and COMPTEL instruments on CGRO. A fundamental aspect of the survey was the development of data reduction techniques for the scanning data from the OSSE detectors. A direct algebraic approach for spatially deconvolving the data was developed. For the survey work, no background observations isolated from the survey region were acquired, unlike normal discrete source observations. The survey, reduction method covers the mapped region with a grid of pixels, and estimates the flux from each pixel by least-squares agreement with the data, assuming positivity constraints. This technique has led to the detection of compact sources at hard X-ray energies within the Virgo region, and the OSSE survey studies have been extended to the south galactic pole and north Ecliptic pole, with similar analysis techniques.

  16. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS

    SciTech Connect

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Harker, Justin J.; Lai, Kamson; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan Renbin; Kassin, Susan A.; Konidaris, N. P. E-mail: djm70@pitt.edu E-mail: mdavis@berkeley.edu E-mail: koo@ucolick.org E-mail: phillips@ucolick.org; and others

    2013-09-15

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z {approx} 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M{sub B} = -20 at z {approx} 1 via {approx}90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg{sup 2} divided into four separate fields observed to a limiting apparent magnitude of R{sub AB} = 24.1. Objects with z {approx}< 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted {approx}2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z {approx} 1.45, where the [O II] 3727 A doublet lies in the infrared. The DEIMOS 1200 line mm{sup -1} grating used for the survey delivers high spectral resolution (R {approx} 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or

  17. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Technical Reports Server (NTRS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Wilmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Kirby, Evan N.; Lotz, Jennifer M.

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. < 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other

  18. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Connolly, A. J.; Kaiser, N.; Kirby, Evan N.; Lemaux, Brian C.; Lin, Lihwai; Lotz, Jennifer M.; Luppino, G. A.; Marinoni, C.; Matthews, Daniel J.; Metevier, Anne; Schiavon, Ricardo P.

    2013-09-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ~ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z ~ 1 via ~90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg2 divided into four separate fields observed to a limiting apparent magnitude of R AB = 24.1. Objects with z <~ 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45, where the [O II] 3727 Å doublet lies in the infrared. The DEIMOS 1200 line mm-1 grating used for the survey delivers high spectral resolution (R ~ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift

  19. Deep X-ray and UV Surveys of Galaxies with Chandra, XMM-Newton, and GALEX

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2006-01-01

    Only with the deepest Chandra surveys has X-ray emission from normal and star forming galaxies (as opposed to AGN, which dominate the X-ray sky) been accessible at cosmologically interesting distances. The X-ray emission from accreting binaries provide a critical glimpse into the binary phase of stellar evolution and studies of the hot gas reservoir constrain past star formation. UV studies provide important, sensitive diagnostics of the young star forming populations and provide the most mature means for studying galaxies at 2 < zeta < 4. This talk will review current progress on studying X-ray emission in concert with UV emission from normal/star-forming galaxies at higher redshift. We will also report on our new, deep surveys with GALEX and XMM-Newton in the nearby Coma cluster. These studies are relevant to DEEP06 as Coma is the nearest rich cluster of galaxies and provides an important benchmark for high-redshift studies in the X-ray and UV wavebands. The 30 ks GALEX (note: similar depth to the GALEX Deep Imaging Survey) and the 110 ks XMM observations provide extremely deep coverage of a Coma outskirts field, allowing the construction of the UV and X-ray luminosity function of galaxies and important constraints on star formation scaling relations such as the X-ray-Star Formation Rate correlation and the X-ray/Stellar Mass correlation. We will discuss what we learn from these deep observations of Coma, including the recently established suppression of the X-ray emission from galaxies in the Coma outskirts that is likely associated with lower levels of past star formation and/or the results of tidal gas stripping.

  20. THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD

    SciTech Connect

    Cooper, Michael C.; Aird, James A.; Coil, Alison L. E-mail: acoil@ucsd.edu

    2011-03-15

    We present the results of spectroscopic observations in the GOODS-N field completed using DEIMOS on the Keck II telescope as part of the DEEP3 Galaxy Redshift Survey. Observations of 370 unique targets down to a limiting magnitude of R {sub AB} = 24.4 yielded 156 secure redshifts. In addition to redshift information, we provide sky-subtracted one- and two-dimensional spectra of each target. Observations were conducted following the procedures of the Team Keck Redshift Survey (TKRS), thereby producing spectra that augment the TKRS sample while maintaining the uniformity of its spectral database.

  1. Cathodic protection survey of deep-water structures and subsea installations

    SciTech Connect

    Leask, L.J. )

    1989-11-01

    The successful and efficient cathodic protection (CP) survey of a deep water structure using a remotely operated vehicle (ROV) has remained an enigma to many corrosion engineers in oil companies. The location of the corrosion group within the company structure often plays a major role in the success of the project. Operators locate their corrosion departments in different groups, some in the offshore/onshore operations and others in the design group. This location often has a bearing on the financial and operational approach to the project. The author discusses how a successful CP survey is both an achievable and exciting project with experienced preplanning and selection of the correct equipment.

  2. CP survey of deep water structures and subsea installations using an ROV

    SciTech Connect

    Leask, L.J. )

    1989-01-01

    The successful and efficient CP survey of a deep water structure using a remotely operated vehicle (ROV) has remained an enigma to many corrosion engineers in oil companies. The location of the corrosion group within the company structure often plays a major role in the success of the project. Operators locate their corrosion departments in different groups, some in the offshore/onshore operations and others in the design group. This location often has a bearing on the financial and operational approach to the project. This paper discusses how a successful CP survey is both an achievable and exciting project with experienced pre- planning and selection of the correct equipment.

  3. A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan

    PubMed Central

    Shao, Kwang-Tsao; Lin, Jack; Yeh, Hsin-Ming; Lee, Mao-Yin; Chen, Lee-Sea; Lin, Hen-Wei

    2014-01-01

    Abstract The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia fig, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish. However, in the past, no research vessels were employed to collect fish data on site. Only specimens, caught by bottom trawl fishing in the waters hundreds of meters deep and missing precise locality information, were collected from Dasi and Donggang fishing harbors. Began in 2001, with the support of National Science Council, research vessels were made available to take on the task of systematically collecting deep-sea fish specimens and occurrence records in the waters surrounding Taiwan. By the end of 2006, a total of 3,653 specimens, belonging to 26 orders, 88 families, 198 genera and 366 species, were collected in addition to data such as sampling site geographical coordinates and water depth, and fish body length and weight. The information, all accessible from the “Database of Taiwan’s Deep-Sea Fauna and Its Distribution (http://deepsea.biodiv.tw/)” as part of the “Fish Database of Taiwan,” can benefit the study of temporal and spatial changes in distribution and abundance of fish fauna in the context of global deep-sea biodiversity. PMID:25610339

  4. A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan.

    PubMed

    Shao, Kwang-Tsao; Lin, Jack; Yeh, Hsin-Ming; Lee, Mao-Yin; Chen, Lee-Sea; Lin, Hen-Wei

    2014-01-01

    The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia fig, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish. However, in the past, no research vessels were employed to collect fish data on site. Only specimens, caught by bottom trawl fishing in the waters hundreds of meters deep and missing precise locality information, were collected from Dasi and Donggang fishing harbors. Began in 2001, with the support of National Science Council, research vessels were made available to take on the task of systematically collecting deep-sea fish specimens and occurrence records in the waters surrounding Taiwan. By the end of 2006, a total of 3,653 specimens, belonging to 26 orders, 88 families, 198 genera and 366 species, were collected in addition to data such as sampling site geographical coordinates and water depth, and fish body length and weight. The information, all accessible from the "Database of Taiwan's Deep-Sea Fauna and Its Distribution (http://deepsea.biodiv.tw/)" as part of the "Fish Database of Taiwan," can benefit the study of temporal and spatial changes in distribution and abundance of fish fauna in the context of global deep-sea biodiversity.

  5. CANDELS: The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    NASA Technical Reports Server (NTRS)

    Grogin, Norman A.; Koekemoer, anton M.; Faber, S. M.; Ferguson, Henry C.; Kocevski, Dale D.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Casertano, Stefano; Cassata, Paolo; Challis, Peter; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; DeMello, Duilla; Gardner, Jonathan P.; Straughn, Amber N.

    2011-01-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.

  6. A Deep, High-Resolution Survey of the Low-Frequency Radio Sky

    NASA Astrophysics Data System (ADS)

    Lenc, E.; Garrett, M. A.; Wucknitz, O.; Anderson, J. M.; Tingay, S. J.

    2008-01-01

    We report on the first wide-field, very long baseline interferometry (VLBI) survey at 90 cm. The survey area consists of two overlapping 28 deg2 fields centered on the quasar J0226+3421 and the gravitational lens B0218+357. A total of 618 sources were targeted in these fields, based on identifications from Westerbork Northern Sky Survey (WENSS) data. Of these sources, 272 had flux densities that, if unresolved, would fall above the sensitivity limit of the VLBI observations. A total of 27 sources were detected as far as 2° from the phase center. The results of the survey suggest that at least 10% of moderately faint (S ~ 100 mJy) sources found at 90 cm contain compact components smaller than ~0.1''-0.3'' and stronger than 10% of their total flux densities. A ~90 mJy source was detected in the VLBI data that was not seen in the WENSS and NRAO VLA Sky Survey (NVSS) data and may be a transient or highly variable source that has been serendipitously detected. This survey is the first systematic (and nonbiased), deep, high-resolution survey of the low-frequency radio sky. It is also the widest field of view VLBI survey with a single pointing to date, exceeding the total survey area of previous higher frequency surveys by 2 orders of magnitude. These initial results suggest that new low-frequency telescopes, such as LOFAR, should detect many compact radio sources and that plans to extend these arrays to baselines of several thousand kilometers are warranted.

  7. The CfA Einstein Observatory extended deep X-ray survey

    NASA Technical Reports Server (NTRS)

    Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.

    1991-01-01

    All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.

  8. The infrared medium-deep survey. II. How to trigger radio AGNs? Hints from their environments

    SciTech Connect

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin; Chapman, Scott; Pak, Soojong; Edge, Alastair

    2014-12-10

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ∼25 deg{sup 2} and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (M{sub u} – M{sub r} ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  9. The Infrared Medium-Deep Survey. II. How to Trigger Radio AGNs? Hints from their Environments

    NASA Astrophysics Data System (ADS)

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Chapman, Scott; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Pak, Soojong; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin; Edge, Alastair

    2014-12-01

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ~25 deg2 and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (Mu - Mr ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  10. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Coil, Alison L.; Cooper, Michael C.; Dutton, Aaron A.; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Noeske, Kai; Rosario, David J.; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  11. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Marinoni, Christian; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; Faber, S.M.; Finkbeiner, Douglas P.; Guhathakurta, Puragra; Kaiser, Nick; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  12. DEEP GALEX UV SURVEY OF THE KEPLER FIELD. I. POINT SOURCE CATALOG

    SciTech Connect

    Olmedo, Manuel; Chávez, Miguel; Bertone, Emanuele; Lloyd, James; Mamajek, Eric E.; Martin, D. Christopher; Neill, James D.

    2015-11-10

    We report observations of a deep near-ultraviolet (NUV) survey of the Kepler field made in 2012 with the Galaxy Evolution Explorer (GALEX) Complete All-Sky UV Survey Extension (CAUSE). The GALEX-CAUSE Kepler survey (GCK) covers 104 square degrees of the Kepler field and reaches a limiting magnitude of NUV ≃ 22.6 at 3σ. Analysis of the GCK survey has yielded a catalog of 669,928 NUV sources, of which 475,164 are cross-matched with stars in the Kepler Input Catalog. Approximately 327 of 451 confirmed exoplanet host stars and 2614 of 4696 candidate exoplanet host stars identified by Kepler have NUV photometry in the GCK survey. The GCK catalog should enable the identification and characterization of UV-excess stars in the Kepler field (young solar-type and low-mass stars, chromospherically active binaries, white dwarfs, horizontal branch stars, etc.), and elucidation of various astrophysics problems related to the stars and planetary systems in the Kepler field.

  13. FIRBACK. II. Data reduction and calibration of the 170 μ m ISO deep cosmological survey

    NASA Astrophysics Data System (ADS)

    Lagache, G.; Dole, H.

    2001-06-01

    We present the final reduction and calibration of the FIRBACK ISOPHOT data. FIRBACK is a deep cosmological survey performed at 170 mu m. This paper deals with the ISOPHOT C200 camera with the C160 filter. We review the whole data reduction process and compare our final calibration with DIRBE (for the extended emission) and IRAS (for point sources). The FIRBACK source extraction and galaxy counts is discussed in a companion paper (Dole et al. \\cite{Doleprep}). Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the UK) and with the participation of ISAS and NASA.

  14. The WIRCAM Deep Infrared Cluster Survey. I. Groups and clusters at z ⪆ 1.1

    NASA Astrophysics Data System (ADS)

    Bielby, R. M.; Finoguenov, A.; Tanaka, M.; McCracken, H. J.; Daddi, E.; Hudelot, P.; Ilbert, O.; Kneib, J. P.; Le Fèvre, O.; Mellier, Y.; Nandra, K.; Petitjean, P.; Srianand, R.; Stalin, C. S.; Willott, C. J.

    2010-11-01

    Aims: We use a combination of CFHTLS deep optical data, WIRcam Deep Survey (WIRDS) near-infrared data and XMM-Newton survey data to identify z ⪆ 1.1 clusters in the CFHTLS D1 and D4 fields. Counterparts to such clusters can not be identified without deep near-infrared data and as such the total of ≈ 1 deg2 of J, H and Ks band imaging provided by WIRDS is an indispensable tool in such work. Methods: Using public XMM X-ray data, we identify extended X-ray sources in the two fields. The resulting catalogue of extended X-ray sources was then analyzed for optical/near-infrared counterparts, using a red-sequence algorithm applied to the deep optical and near-infrared data. Redshifts of candidate groups and clusters were estimated using the median photometric redshifts of detected counterparts and where available these were combined with spectroscopic data (from VVDS deep and ultra-deep and using AAT AAOmega data). Additionally, we surveyed X-ray point sources for potential group systems at the limit of our detection range in the X-ray data. A catalogue of z > 1.1 cluster candidates in the two fields has been compiled and cluster masses, radii and temperatures have been estimated using the scaling relations. Results: The catalogue of group and cluster candidates consists of 15 z ⪆ 1.1 objects. We find several massive clusters (M ⪆ 1014 {M_⊙}) and a number of lower mass clusters/groups. Three of the detections are previously published extended X-ray sources. Of note is JKSC 041 (previously detected via Chandra X-ray data and reported as a z = 1.9 cluster based on UKIDSS infrared imaging) for which we identify a number of structures at redshifts of z = 0.8, z = 0.96, z = 1.13 and z = 1.49 (but see no evidence of a structure at z = 1.9). We also make an independent detection of the massive cluster, XMMXCS J2215.9-1738, for which we estimate a redshift of z = 1.37 (compared to the spectroscopically confirmed redshift of z = 1.45). We use the z ⪆ 1.1 catalogue to

  15. The DEEP3 Galaxy Redshift Survey: Keck/DEIMOS Spectroscopy in the GOODS-N Field

    NASA Astrophysics Data System (ADS)

    Cooper, Michael C.; Aird, James A.; Coil, Alison L.; Davis, Marc; Faber, S. M.; Juneau, Stéphanie; Lotz, Jennifer M.; Nandra, Kirpal; Newman, Jeffrey A.; Willmer, Christopher N. A.; Yan, Renbin

    2011-03-01

    We present the results of spectroscopic observations in the GOODS-N field completed using DEIMOS on the Keck II telescope as part of the DEEP3 Galaxy Redshift Survey. Observations of 370 unique targets down to a limiting magnitude of R AB = 24.4 yielded 156 secure redshifts. In addition to redshift information, we provide sky-subtracted one- and two-dimensional spectra of each target. Observations were conducted following the procedures of the Team Keck Redshift Survey (TKRS), thereby producing spectra that augment the TKRS sample while maintaining the uniformity of its spectral database. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Very deep IRAS survey - constraints on the evolution of starburst galaxies

    SciTech Connect

    Hacking, P.; Houck, J.R.; Condon, J.J.

    1987-05-01

    Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background without extreme evolution at high redshifts. 21 references.

  17. A very deep IRAS survey - Constraints on the evolution of starburst galaxies

    NASA Astrophysics Data System (ADS)

    Hacking, Perry; Condon, J. J.; Houck, J. R.

    1987-05-01

    Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background without extreme evolution at high redshifts.

  18. When is stacking confusing? The impact of confusion on stacking in deep H I galaxy surveys

    NASA Astrophysics Data System (ADS)

    Jones, Michael G.; Haynes, Martha P.; Giovanelli, Riccardo; Papastergis, Emmanouil

    2016-01-01

    We present an analytic model to predict the H I mass contributed by confused sources to a stacked spectrum in a generic H I survey. Based on the ALFALFA (Arecibo Legacy Fast ALFA) correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest Square Kilometre Array precursor H I surveys. Stacking with LADUMA (Looking At the Distant Universe with MeerKAT) and DINGO UDEEP (Deep Investigation of Neutral Gas Origins - Ultra Deep) data will only be mildly impacted by confusion if their target synthesized beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES (COSMOS H I Large Extragalactic Survey) 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST (Five hundred metre Aperture Spherical Telescope) will be the most impeded by confusion, with H I surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the redshift evolution of the H I density of the Universe and the H I correlation function. However, we argue that the two idealized cases we adopt should bracket the true evolution, and the qualitative conclusions are unchanged regardless of the model choice. The profile shape of the signal due to confusion (in the absence of any detection) was also modelled, revealing that it can take the form of a double Gaussian with a narrow and wide component.

  19. The Metal Abundances across Cosmic Time (MACT) Survey. I. Optical Spectroscopy in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malhotra, Sangeeta; Malkan, Matthew A.; Rigby, Jane R.; Kashikawa, Nobunari; de los Reyes, Mithi A.; Rhoads, James E.

    2016-09-01

    Deep rest-frame optical spectroscopy is critical for characterizing and understanding the physical conditions and properties of the ionized gas in galaxies. Here, we present a new spectroscopic survey called “Metal Abundances across Cosmic Time” or { M }{ A }{ C }{ T }, which will obtain rest-frame optical spectra for ˜3000 emission-line galaxies. This paper describes the optical spectroscopy that has been conducted with MMT/Hectospec and Keck/DEIMOS for ≈1900 z = 0.1-1 emission-line galaxies selected from our narrowband and intermediate-band imaging in the Subaru Deep Field. In addition, we present a sample of 164 galaxies for which we have measured the weak [O iii]λ4363 line (66 with at least 3σ detections and 98 with significant upper limits). This nebular emission line determines the gas-phase metallicity by measuring the electron temperature of the ionized gas. This paper presents the optical spectra, emission-line measurements, interstellar properties (e.g., metallicity, gas density), and stellar properties (e.g., star formation rates, stellar mass). Paper II of the { M }{ A }{ C }{ T } survey (Ly et al.) presents the first results on the stellar mass-gas metallicity relation at z ≲ 1 using the sample with [O iii]λ4363 measurements.

  20. Attitudes and behaviour regarding deep dentin caries removal: a survey among German dentists.

    PubMed

    Schwendicke, F; Meyer-Lueckel, H; Dörfer, C; Paris, S

    2013-01-01

    Incomplete removal of deep caries has been shown to reduce the risks of pulp exposure and postoperative pulpal complications. It is therefore of interest whether dentists perform one- or two-step incomplete excavation, and which criteria and methods they use to assess and provide removal of deep caries. This study investigated the attitudes and behaviour of dentists in northern Germany using a new, validated questionnaire. The survey included 2,346 practitioners, 821 (35%) of whom responded. Demographic and sensitivity analysis did not indicate selection bias. 50% of dentists considered only complete excavation, even if pulp exposure was likely. If caries was to be removed incompletely, 77% considered two-step excavation. Hardness was the most important criterion to assess excavation. To treat an exposed pulp, 75% of dentists considered direct capping, 70% refused incomplete excavation fearing caries progression or pulp damage, and 59% reported to prefer more invasive treatment to facilitate restoration longevity. Over 50% recognised an influence of professional regulations on their treatment decisions. There was a moderate correlation between attitudes and behaviour of dentists, with dentists who suspected residual caries to be harmful rejecting incomplete excavation and vice versa. Cluster analysis identified two groups of dentists with opposite attitudes and behaviour, independently from dentist's age or gender. In conclusion, the majority of surveyed dentists was sceptical about leaving caries during excavation and does not practice incomplete caries removal. Therefore, benefits of partial excavation should be highlighted in under- and postgraduate education and regulatory incentives modified to promote minimally invasive techniques.

  1. The Metal Abundances across Cosmic Time (MACT) Survey. I. Optical Spectroscopy in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malhotra, Sangeeta; Malkan, Matthew A.; Rigby, Jane R.; Kashikawa, Nobunari; de los Reyes, Mithi A.; Rhoads, James E.

    2016-09-01

    Deep rest-frame optical spectroscopy is critical for characterizing and understanding the physical conditions and properties of the ionized gas in galaxies. Here, we present a new spectroscopic survey called “Metal Abundances across Cosmic Time” or { M }{ A }{ C }{ T }, which will obtain rest-frame optical spectra for ∼3000 emission-line galaxies. This paper describes the optical spectroscopy that has been conducted with MMT/Hectospec and Keck/DEIMOS for ≈1900 z = 0.1–1 emission-line galaxies selected from our narrowband and intermediate-band imaging in the Subaru Deep Field. In addition, we present a sample of 164 galaxies for which we have measured the weak [O iii]λ4363 line (66 with at least 3σ detections and 98 with significant upper limits). This nebular emission line determines the gas-phase metallicity by measuring the electron temperature of the ionized gas. This paper presents the optical spectra, emission-line measurements, interstellar properties (e.g., metallicity, gas density), and stellar properties (e.g., star formation rates, stellar mass). Paper II of the { M }{ A }{ C }{ T } survey (Ly et al.) presents the first results on the stellar mass–gas metallicity relation at z ≲ 1 using the sample with [O iii]λ4363 measurements.

  2. The Vimos VLT deep survey. Global properties of 20,000 galaxies in the IAB < 22.5 WIDE survey

    NASA Astrophysics Data System (ADS)

    Garilli, B.; Le Fèvre, O.; Guzzo, L.; Maccagni, D.; Le Brun, V.; de la Torre, S.; Meneux, B.; Tresse, L.; Franzetti, P.; Zamorani, G.; Zanichelli, A.; Gregorini, L.; Vergani, D.; Bottini, D.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Gavignaud, I.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zucca, E.; Blaizot, J.; Bongiorno, A.; Cucciati, O.; Mellier, Y.; Moreau, C.; Paioro, L.

    2008-08-01

    .1 deg2 for a sample limited in magnitude to IAB = 22.5. Comparing galaxy densities from the four fields shows that in a redshift bin Δz = 0.1 at z ~ 1 one still has factor-of-two variations over areas as large as ~ 0.25 deg2. This level of cosmic variance agrees with that obtained by integrating the galaxy two-point correlation function estimated from the F22 field alone. It is also in fairly good statistical agreement with that predicted by the Millennium simulations. The VVDS WIDE survey currently provides the largest area coverage among redshift surveys reaching z ~ 1. The variance estimated over the survey fields shows explicitly how clustering results from deep surveys of even 1 deg2 size should be interpreted with caution. The survey data represent a rich data base to select complete sub-samples of high-quality spectra and to study galaxy ensemble properties and galaxy clustering over unprecedented scales at these redshifts. The redshift catalog of the 4 deg2 F22 field is publicly available at http://cencosw.oamp.fr.

  3. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  4. The 2 Ms Chandra Deep Field-North Survey and the 250 ks Extended Chandra Deep Field-South Survey: Improved Point-source Catalogs

    NASA Astrophysics Data System (ADS)

    Xue, Y. Q.; Luo, B.; Brandt, W. N.; Alexander, D. M.; Bauer, F. E.; Lehmer, B. D.; Yang, G.

    2016-06-01

    We present improved point-source catalogs for the 2 Ms Chandra Deep Field-North (CDF-N) and the 250 ks Extended Chandra Deep Field-South (E-CDF-S) Surveys, implementing a number of recent improvements in Chandra source-cataloging methodology. For CDF-N/E-CDF-S, we provide a main catalog that contains 683/1003 X-ray sources detected with wavdetect at a false-positive probability threshold of 10-5 that also satisfy a binomial-probability source-selection criterion of P\\lt 0.004/P < 0.002. Such an approach maximizes the number of reliable sources detected: a total of 196/275 main-catalog sources are new compared to the Alexander et al. CDF-N/Lehmer et al. E-CDF-S main catalogs. We also provide CDF-N/E-CDF-S supplementary catalogs that consist of 72/56 sources detected at the same wavdetect threshold and having P of 0.004-0.1/0.002-0.1 and {K}s≤slant 22.9/{K}s≤slant 22.3 mag counterparts. For all ≈ 1800 CDF-N and E-CDF-S sources, including the ≈ 500 newly detected ones (these being generally fainter and more obscured), we determine X-ray source positions utilizing centroid and matched-filter techniques; we also provide multiwavelength identifications, apparent magnitudes of counterparts, spectroscopic and/or photometric redshifts, basic source classifications, and estimates of observed active galactic nucleus and galaxy source densities around respective field centers. Simulations show that both the CDF-N and E-CDF-S main catalogs are highly reliable and reasonably complete. Background and sensitivity analyses indicate that the on-axis mean flux limits reached represent a factor of ≈ 1.5-2.0 improvement over the previous CDF-N and E-CDF-S limits. We make our data products publicly available.

  5. Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey -- UDS Field

    NASA Astrophysics Data System (ADS)

    Faber, Sandra

    2010-09-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey {CANDELS}is designed to document the ?rst third of galactic evolution from z =8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IRand ACS. It will also find the first Type Ia SNe beyond z > 1.5 andestablish their accuracy as standard candles for cosmology. Fivepremier multi-wavelength sky regions are selected from the SpitzerExtragalactic Deep Survey {SEDS} to provide complementary IRAC imagingdata down to 26.5 AB mag, a unique resource for stellar masses at allredshifts. The use of ?ve widely separated ?elds mitigates cosmicvariance and yields statistically robust and complete samples ofgalaxies down to 10^9 solar masses out to z 8.The program merges two originally separate MCT proposals. The Faberprogram incorporates a ?Wide? imaging survey in three separate fieldsto 2 orbit depth over 0.2 sq. degrees, plus a ?Deep? imaging surveyto 12 orbit depth in the two GOODS regions over 0.04 sq. degrees.In combination with ultra-deep imaging from the Hubble Ultradeep Fieldprogram {GO 11563}, the result is a three-tiered strategy that ef?cientlysamples both bright/rare and faint/common extragalactic objects. TheFerguson program adds an extensive high-redshift Type Ia SNe search,plus ultraviolet "daytime" UVIS exposures in GOODS-N to exploit theCVZ opportunity in that field.This program, GO 12064, is part of the Wide mosaic survey, which has thefollowing field centers and sizes: Field ID RA{2000} Dec{2000} WFC3 Dim. PA on sky UDS 02 17 38 -05 12 02 4x11 270 COSMOS 10 00 31 +02 24 00 4x11 180 EGS 14 19 31 +52 54 10 3x15 41 Science highlights from the Wide program: * Underlying structural properties of galaxies as revealed by WFC3-IR images sensitive to older stars {beyond the 4000-A break} and less affected by dust than ACS. A key redshift is z 2, where star-formation peaks, QSOs are most abundant, and where restframe B-band is still accessible to WFC3. Sample questions include: - Structure in young

  6. INTEGRAL/IBIS deep extragalactic survey: M81, LMC and 3C 273/Coma fields

    NASA Astrophysics Data System (ADS)

    Mereminskiy, Ilya A.; Krivonos, Roman A.; Lutovinov, Alexander A.; Sazonov, Sergey Yu.; Revnivtsev, Mikhail G.; Sunyaev, Rashid A.

    2016-06-01

    We present results of a deep survey of three extragalactic fields, M81 (exposure of 9.7 Ms), Large Magellanic Cloud (6.8 Ms) and 3C 273/Coma (9.3 Ms), in the hard X-ray (17-60 keV) energy band with the IBIS telescope onboard the INTEGRAL observatory, based on 12 years of observations (2003-2015). The combined survey reaches a 4σ peak sensitivity of 0.18 mCrab (2.6 × 10-12 erg s-1 cm-2) and sensitivity better than 0.25 and 0.87 mCrab over 10 per cent and 90 per cent of its full area of 4900 deg2, respectively. We have detected in total 147 sources at S/N > 4σ, including 37 sources observed in hard X-rays for the first time. The survey is dominated by extragalactic sources, mostly active galactic nuclei (AGN). The sample of identified sources contains 98 AGN (including 64 Seyfert galaxies, seven low-ionization nuclear emission-line region galaxies, three X-ray bright optically normal galaxies, 16 blazars and eight AGN of unclear optical class), two galaxy clusters (Coma and Abell 3266), 17 objects located in the Large and Small Magellanic Clouds (13 high- and two low-mass X-ray binaries and two X-ray pulsars), three Galactic cataclysmic variables, one ultraluminous X-ray source (M82 X-1) and one blended source (SWIFT J1105.7+5854). The nature of 25 sources remains unknown, so that the survey's identification is currently complete at 83 per cent. We have constructed AGN number-flux relations (log N-log S) and calculated AGN number densities in the local Universe for the entire survey and for each of the three extragalactic fields.

  7. A 6 GHz Synoptic Survey of the COSMOS Deep Field with the JVLA

    NASA Astrophysics Data System (ADS)

    Sink, Joseph R.; Myers, Steven T.

    2016-01-01

    The Cosmic Evolution Survey (COSMOS) covers two square degrees, and is observed over a large portion of the electromagnetic spectrum from X-ray to Radio. Key science goals of COSMOS include probing the evolution of galaxies, AGN, and large scale structures of the Universe. As well as constraining cosmological models and the star and structure formation history of the Universe. The wide range of frequencies and deep surveys are suitable for many astrophysical studies.Beginning in 2013, observations of the COSMOS field in C-band (4 - 8 GHz) using the JVLA have been carried out in every configuration spanning 21 months (April 2013 - Jan 2015) for a total of 13 observations. The observations are comprised of 1 hour time blocks using a technique called On-The-Fly Mosaicking (OTFM). Using OTFM we see an increased efficiency for an allotted observation block by collecting data as the array scans across the field, rather than a pointed mosaic which requires settle down time after each new pointing. Each observation consists of 2160 1-second integrations on 432 phase centers that require calibration and image processing before they can be mosaicked to create the final image of the entire COSMOS field.The primary science goal of this survey is to identify, catalog, and study the variable and transient radio sources in the COSMOS field, comparing these to other radio, optical, IR, and X-ray observations. The main class of variables we are interested in Active Galactic Nuclei.

  8. RATS-Kepler - a deep high-cadence survey of the Kepler field

    NASA Astrophysics Data System (ADS)

    Ramsay, Gavin; Brooks, Adam; Hakala, Pasi; Barclay, Thomas; Garcia-Alvarez, David; Antoci, Victoria; Greiss, Sandra; Still, Martin; Steeghs, Danny; Gänsicke, Boris; Reynolds, Mark

    2014-01-01

    We outline the purpose, strategy and first results of a deep, high-cadence, photometric survey of the Kepler field using the Isaac Newton Telescope on La Palma and the MDM 1.3 m Telescope on Kitt Peak. Our goal was to identify sources located in the Kepler field of view which are variable on a time-scale of a few minutes to 1 h. The astrophysically most-interesting sources would then have been candidates for observation using Kepler using 1 min sampling. Our survey covered ˜42 per cent of the Kepler field of view, and we have obtained light curves for 7.1 × 105 objects in the range 13 < g < 20. We have discovered more than 100 variable sources which have passed our two stage identification process. As a service to the wider community, we make our data products and cleaned CCD images available to download. We obtained Kepler data of 18 sources which we found to be variable using our survey, and we give an overview of the currently available data here. These sources include a pulsating DA white dwarf, 11 δ Sct stars which have dominant pulsation periods in the range 24 min to 2.35 h, three contact binaries, and a cataclysmic variable (V363 Lyr). One of the δ Sct stars is in a contact binary.

  9. A very deep IRAS survey at l(II) = 97 deg, b(II) = +30 deg

    NASA Technical Reports Server (NTRS)

    Hacking, Perry; Houck, James R.

    1987-01-01

    A deep far-infrared survey is presented using over 1000 scans made of a 4 to 6 sq. deg. field at the north ecliptic pole by the IRAS. Point sources from this survey are up to 100 times fainter than the IRAS point source catalog at 12 and 25 micrometers, and up to 10 times fainter at 60 and 100 micrometers. The 12 and 25 micrometer maps are instrumental noise-limited, and the 60 and 100 micrometer maps are confusion noise-limited. The majority of the 12 micrometer point sources are stars within the Milky Way. The 25 micrometer sources are composed almost equally of stars and galaxies. About 80% of the 60 micrometer sources correspond to galaxies on Palomar Observatory Sky Survey (POSS) enlargements. The remaining 20% are probably galaxies below the POSS detection limit. The differential source counts are presented and compared with what is predicted by the Bahcall and Soneira Standard Galaxy Model using the B-V-12 micrometer colors of stars without circumstellar dust shells given by Waters, Cote and Aumann. The 60 micrometer source counts are inconsistent with those predicted for a uniformly distributed, nonevolving universe. The implications are briefly discussed.

  10. Search for cosmic strings in the Great Observatories Origins Deep Survey

    SciTech Connect

    Christiansen, J. L.; Albin, E.; James, K. A.; Goldman, J.; Maruyama, D.; Smoot, G. F.

    2008-06-15

    We search Hubble Space Telescope Treasury Program images collected as part of the Great Observatories Origins Deep Survey for pairs of galaxies consistent with the gravitational lensing signature of a cosmic string. Our technique includes estimates of the efficiency for finding the lensed galaxy pair. In the north (south) survey field we find no evidence out to a redshift of greater than 0.5 (0.3) for cosmic strings to a mass per unit length limit of G{mu}/c{sup 2}<3.0x10{sup -7} at 95% confidence limits (C.L.). In the combined 314.9 arcmin{sup 2} of the north and south survey fields this corresponds to a global limit on {omega}{sub strings}<0.02. Our limit on G{mu}/c{sup 2} is more than an order of magnitude lower than searches for individual strings in cosmic microwave background (CMB) data. Our limit is higher than other CMB and gravitational wave searches, however, we note that it is less model dependent than these other searches.

  11. Deep sea three component magnetic survey using ROV in the hydrothermal vent of the Lau Basin

    NASA Astrophysics Data System (ADS)

    Kim, C.; Park, C.

    2011-12-01

    We conducted magnetic survey at Apr., 2011 in the western slope of the caldera of TA25, the Lau Basin, the southwestern Pacific using IBRV(Ice Breaker Research Vessel) ARAON of KORDI(Korea Ocean Research and Development Institute), ROV(Remotely Operated Vehicle) of Oceaneering Co. and three component magnetometer(Fig. 1,Fig. 2). The deep-sea three component magnetic survey lines are the 13 N-S lines(100 m spacing) and the 2 E-W lines(Fig. 2). The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the magnetic survey, the magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively(Fig. 2). We wanted to make the distance between the magnetometer sensor and ROV over 2 m long to reduce the noise effect of ROV. But, for the safe of deployment and recovery of ROV, the distance between the magnetometer sensor and ROV was 126 cm(Fig. 2). In the magnetic survey, ROV followed the planning tracks at 25~30 m above seafloor using the altimeter and USBL(Ultra Short Base Line) of ROV. IBRV ARAON accompanied ROV on the magnetic survey. The three component magnetometer measure the X(North), Y(East) and Z(Vertical) vector components of a magnetic field. A motion sensor(Oxtans) provided us the data of pitch, roll, yaw for the correction of the magnetic data to the motion of ROV. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON using magnetometer software. The precision positions of magnetic data were merged by the post-processing of USBL of ROV. Hydrothermal fluids over Curie temperature can quickly alter or replace the iron-rich magnetic minerals, reducing the magnetic remanence of the crustal rocks, in some cases to near 0A/m magnetization. So, the obtained three component magnetic data are fully utilized by finding possible hydrothermal vents of the survey area.

  12. MID-INFRARED VARIABILITY FROM THE SPITZER DEEP WIDE-FIELD SURVEY

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S.; Assef, Roberto J.; Stern, Daniel; Eisenhardt, P. R.; Gorjian, V.; Griffith, R.; Ashby, Matthew L. N.; Brodwin, M.; Bock, J. J.; Borys, C.; Brand, K.; Grogin, N.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, Arjun; Gonzalez, A.; Ivison, R.

    2010-06-10

    We use the multi-epoch, mid-infrared Spitzer Deep Wide-Field Survey to investigate the variability of objects in 8.1 deg{sup 2} of the NOAO Deep Wide Field Survey Booetes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 {mu}m bands. Out of 474, 179 analyzed sources, 1.1% meet our standard variability selection criteria that the two light curves are strongly correlated (r>0.8) and that their joint variance ({sigma}{sub 12}) exceeds that for all sources with the same magnitude by 2{sigma}. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBooetes survey, radio catalogs, 24 {mu}m selected active galactic nucleus (AGN) candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects, although most of the stellar, galaxy, and unclassified sources are false positives. For our standard selection criteria, 11%-12% of the mid-IR counterparts to X-ray sources, 24 {mu}m AGN candidates, and spectroscopically identified AGNs show variability. The exact fractions depend on both the search depth and the selection criteria. For example, 12% of the 1131 known z>1 AGNs in the field and 14%-17% of the known AGNs with well-measured fluxes in all four Infrared Array Camera bands meet our standard selection criteria. The mid-IR AGN variability can be well described by a single power-law structure function with an index of {gamma} {approx} 0.5 at both 3.6 and 4.5 {mu}m, and an amplitude of S {sub 0} {approx_equal} 0.1 mag on rest-frame timescales of 2 yr. The variability amplitude is higher for shorter rest-frame wavelengths and lower luminosities.

  13. THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH

    SciTech Connect

    Weiss, A.; Kovacs, A.; Menten, K. M.; Coppin, K.; Smail, Ian; Greve, T. R.; Walter, F.; Dannerbauer, H.; Dunlop, J. S.; Ivison, R. J.; Knudsen, K. K.; Bertoldi, F.; Alexander, D. M.; Brandt, W. N.; Chapman, S. C.; Cox, P.; De Breuck, C.; Gawiser, E.; Lutz, D.; Koekemoer, A. M.

    2009-12-20

    We present a sensitive 870 mum survey of the Extended Chandra Deep Field South (ECDFS) combining 310 hr of observing time with the Large Apex BOlometer Camera (LABOCA) on the APEX telescope. The LABOCA ECDFS Submillimetre Survey (LESS) covers the full 30' x 30' field size of the ECDFS and has a uniform noise level of sigma{sub 870{sub m}}u{sub m} approx 1.2 mJy beam{sup -1}. LESS is thus the largest contiguous deep submillimeter survey undertaken to date. The noise properties of our map show clear evidence that we are beginning to be affected by confusion noise. We present a catalog of 126 submillimeter galaxies (SMGs) detected with a significance level above 3.7sigma, at which level we expect five false detections given our map area of 1260 arcmin{sup 2}. The ECDFS exhibits a deficit of bright SMGs relative to previously studied blank fields but not of normal star-forming galaxies that dominate the extragalactic background light (EBL). This is in line with the underdensities observed for optically defined high redshift source populations in the ECDFS (BzKs, DRGs, optically bright active galactic nucleus, and massive K-band-selected galaxies). The differential source counts in the full field are well described by a power law with a slope of alpha = -3.2, comparable to the results from other fields. We show that the shape of the source counts is not uniform across the field. Instead, it steepens in regions with low SMG density. Towards the highest overdensities we measure a source-count shape consistent with previous surveys. The integrated 870 mum flux densities of our source-count models down to S{sub 870{sub m}}u{sub m} = 0.5 mJy account for >65% of the estimated EBL from COBE measurements. We have investigated the clustering of SMGs in the ECDFS by means of a two-point correlation function and find evidence for strong clustering on angular scales <1' with a significance of 3.4sigma. Assuming a power-law dependence for the correlation function and a typical

  14. The Hawaii K-band galaxy survey. 1: Deep K-band imaging

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Gardner, J. P.; Hu, E. M.; Songaila, A.; Hodapp, K.-W.; Wainscoat, R. J.

    1994-01-01

    We present the results of a very deep K-band survey with a 5 sigma total galaxy magnitude limit of K = 21.9 in the deepest field. A 5 sigma K-band-selected sample of 123 galaxies is presented, together with their optical colors. Only three galaxies in this sample are not detected at the 1 sigma level in Kron-Cousins I band. At K less than or = 20 the reddest (I-K) color is 5.1 +/- 0.4, and 15 of the 123 objects in the deep field sample have (I-K) greater than 4. In the blue, the galaxies show a rapid blueward trend at magnitudes beyond K = 19, dropping from a median (B-K) = 6 at K = 18 to a median (B-K) of only 4.2 at K = 21.5. The surface density of (I-K) greater than 4 objects is interpreted to imply either that there is a significant evolution toward later types in the colors of the normal galaxy population beyond z = 11 or that galaxies have faded by that redshift.

  15. A Deep HRI Survey of Low-Mass PMS Stars in NGC 2264

    NASA Technical Reports Server (NTRS)

    Patten, Brian

    1999-01-01

    Brian Patten is the Principal Investigator of the NASA ADP project 'A Deep HRI Survey of Low-Mass PMS Stars in NGC 2264'. This project was funded to support primarily the data reduction and analysis for new ROSAT data to be acquired in ROSAT AO8. For AO8 we were awarded two deep (100 ks) exposures with the ROSAT HRI instrument of a rotation and proper-motion selected sample of young (3 Myr - 15 Myr), low-mass, PMS stars in the populous star-forming region NGC 2264. These X-ray data were to be combined with an extensive rotation database for members of this cluster to allow us, for the first time, to probe the early evolution of magnetic dynamo activity for both fully convective stars and those stars found lower on the Hayashi tracks which have developed radiative cores. This database would have been used to study the interrelationship between coronal activity level, interior structure, and rotation rate as a function of mass and age.in the PMS and to define empirical constraints for theoretical models of angular momentum and magnetic dynamo evolution.

  16. Shear wave velocity analysis of a deep seated gravel landslide structure using the microtremor survey method

    NASA Astrophysics Data System (ADS)

    Su, L.; Xu, X.; Liao, H.; Geng, X.-Y.

    2015-09-01

    The depth and geometry of potential failure surface is the fundamental for evaluating the mechanisms of a landslide. Traditional techniques to acquire information on potential sliding surface are mainly drilling, pitting, and trenching, but these techniques are time consuming and expensive. In this study, microtremor signals and the dispersion curves of surface wave are extracted from the vertical component of microtremor records using the spatial autocorrelation (SPAC) method to estimate shear wave velocity structure. The results suggest that the buried depth of phyllite bedrock is approximately 47.4m, and the thickness of weathered bedrock layer is about 9.9m at about 57.3m deep, which could be interpreted as the potential sliding surface of this landslide, in accordance with borehole data. The microtremor survey method (MSM) is flexible, non-invasive, relatively quick and deployable on the landslide. It clearly demonstrat that it is an effective tool to improve the drilling success rate, and hence allow a large scale and high density investigation of structure characteristics of a deep seated landslide.

  17. Cosmic Shear Results from the Deep Lens Survey. II. Full Cosmological Parameter Constraints from Tomography

    NASA Astrophysics Data System (ADS)

    Jee, M. James; Tyson, J. Anthony; Hilbert, Stefan; Schneider, Michael D.; Schmidt, Samuel; Wittman, David

    2016-06-01

    We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude {r}{lim}˜ 27 (5σ ), is designed as a precursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing \\gt 10 deg2 cosmic shear surveys. Combining the DLS tomography with the 9 yr results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives {{{Ω }}}m={0.293}-0.014+0.012, {σ }8={0.833}-0.018+0.011, {H}0={68.6}-1.2+1.4 {\\text{km s}}-1 {{{Mpc}}}-1, and {{{Ω }}}b=0.0475+/- 0.0012 for ΛCDM, reducing the uncertainties of the WMAP9-only constraints by ˜50%. When we do not assume flatness for ΛCDM, we obtain the curvature constraint {{{Ω }}}k=-{0.010}-0.015+0.013 from the DLS+WMAP9 combination, which, however, is not well constrained when WMAP9 is used alone. The dark energy equation-of-state parameter w is tightly constrained when baryonic acoustic oscillation (BAO) data are added, yielding w=-{1.02}-0.09+0.10 with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to w=-1.03+/- 0.03. Our joint constraints are fully consistent with the final Planck results and also with the predictions of a ΛCDM universe.

  18. High Resolution Deep X-ray Surveys: A Unique Probe of the High-Z Universe

    NASA Astrophysics Data System (ADS)

    Civano, Francesca

    2015-10-01

    Understanding the origin and growth of the supermassive black holes SMBHs that lie at the centers of most, if not all, galaxies at all redshifts is crucial for obtaining the full picture of both BH and galaxy evolution. Enormous progress has been made in the understanding of the galaxy population in the Universes first few Gyrs. On the contrary, there is still the puzzle that giant SMBHs already exist at z=6-7, implying massive seed black holes or highly super-Eddington accretion at the earliest times. This is because the search for z6 Active Galactic Nuclei i.e., accreting SMBHs is still limited to the optically selected sources from the SDSS or CFHQS surveys, which probe the unobscured accretion. Instead, X-ray surveys can probe the obscured high-z, low mass population, which represent the bulk of rapid early SMBH growth, and are therefore essential for obtain an unbiased sample of the accreting SMBHs. I will present the most recent results on the high redshift Universe as we know it from the current Chandra X-ray surveys and discuss what we can expect from planned and proposed future X-ray observatories. High spatial resolution is crucial to locate faint X-ray sources and identify their counterpart in future deep optical images. Increasing the surveys sensitivity to the limits allowed by the X-ray Surveyor, we will be able to collect sizable samples of z6 low luminosity and low mass AGN to study their early growth. Comparison with galaxy formation and evolution at similar redshift will provide the means to understand the SMBH-galaxy relation at the earliest epochs.

  19. MOIRCS DEEP SURVEY. IV. EVOLUTION OF GALAXY STELLAR MASS FUNCTION BACK TO z {approx} 3

    SciTech Connect

    Kajisawa, M.; Ichikawa, T.; Yamada, T.; Akiyama, M.; Tokoku, C.; Yoshikawa, T.; Tanaka, I.; Suzuki, R.; Konishi, M.; Uchimoto, Y. K.; Ouchi, M.; Iwata, I.; Hamana, T.; Onodera, M.

    2009-09-10

    We use very deep near-infrared (NIR) imaging data obtained in MOIRCS Deep Survey (MODS) to investigate the evolution of the galaxy stellar mass function back to z {approx} 3. The MODS data reach J = 24.2, H = 23.1, and K = 23.1 (5{sigma}, Vega magnitude) over 103 arcmin{sup 2} (wide) and J = 25.1, H = 23.7, and K = 24.1 over 28 arcmin{sup 2} (deep) in the GOODS-North region. The wide and very deep NIR data allow us to measure the number density of galaxies down to low stellar mass (10{sup 9}-10{sup 10} M{sub sun}) even at high redshift with high statistical accuracy. The normalization of the mass function decreases with redshift, and the integrated stellar mass density becomes {approx}8%-18% of the local value at z {approx} 2 and {approx}4%-9% at z {approx} 3, which are consistent with results of previous studies in general fields. Furthermore, we found that the low-mass slope becomes steeper with redshift from {alpha} {approx} -1.3 at z {approx} 1 to {alpha} {approx} -1.6 at z {approx} 3 and that the evolution of the number density of low-mass (10{sup 9}-10{sup 10} M{sub sun}) galaxies is weaker than that of M* ({approx}10{sup 11} M{sub sun}) galaxies. This indicates that the contribution of low-mass galaxies to the total stellar mass density has been significant at high redshift. The steepening of the low-mass slope with redshift is an opposite trend expected from the stellar mass dependence of the specific star formation rate reported in previous studies. The present result suggests that the hierarchical merging process overwhelmed the effect of the stellar mass growth by star formation and was very important for the stellar mass assembly of these galaxies at 1 {approx}< z {approx}< 3.

  20. The morphology of faint galaxies in Medium Deep Survey images using WFPC2

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Casertano, S.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G. F.; Glazebrook, K.; Santiago, B.; Huchra, J. P.; Windhorst, R. A.

    1994-01-01

    First results from Hubble Space Telescope (HST) Medium Deep Survey images taken with Wide Field/Planetary Camera-2 (WFPC2) demonstrate that galaxy classifications can be reliably performed to magnitudes I814 approximately less than 22.0 in the F815W band. Published spectroscopic surveys to this depth indicate a mean redshift of bar-z approximately 0.5. We have classified over 200 galaxies in nine WFPC2 fields according to a basic morphological scheme. The majority of these faint galaxies appear to be similar to regular Hubble-sequence examples observed at low redshift. To the precision of our classification scheme, the relative proportion of spheroidal and disk systems of normal appearance is as expected from nearby samples, indicating that the bulk of the local galaxy population was in place at half the Hubble time. However, the most intriguing result is the relatively high proportion (approximately 40%) of objects which are in some way anomalous, and which may be of relevance in understanding the origin of the familiar excess population of faint galaxies established by others. These diverse objects include apparently interacting pairs whose multiple structure is only revealed with HST's angular resolution, galaxies with superluminous star-forming regions, diffuse low surface brightness galaxies of various forms, and compact galaxies. These anomalous galaxies contribute a substantial fraction of the excess counts at our limiting magnitude, and may provide insights into the 'faint blue galaxy' problem.

  1. SXDF-ALMA 2-arcmin2 deep survey: 1.1-mm number counts

    NASA Astrophysics Data System (ADS)

    Hatsukade, Bunyo; Kohno, Kotaro; Umehata, Hideki; Aretxaga, Itziar; Caputi, Karina I.; Dunlop, James S.; Ikarashi, Soh; Iono, Daisuke; Ivison, Rob J.; Lee, Minju; Makiya, Ryu; Matsuda, Yuichi; Motohara, Kentaro; Nakanishi, Kouichiro; Ohta, Kouji; Tadaki, Ken-ich; Tamura, Yoichi; Wang, Wei-Hao; Wilson, Grant W.; Yamaguchi, Yuki; Yun, Min S.

    2016-06-01

    We report 1.1-mm number counts revealed with the Atacama Large Millimeter/submillimeter Array (ALMA) in the Subaru/XMM-Newton Deep Survey Field (SXDF). The advent of ALMA enables us to reveal millimeter-wavelength number counts down to the faint end without source confusion. However, previous studies are based on the ensemble of serendipitously detected sources in fields originally targeting different sources and could be biased due to the clustering of sources around the targets. We derive number counts in the flux range of 0.2-2 mJy by using 23 (≥4σ) sources detected in a continuous 2.0-arcmin2 area of the SXDF. The number counts are consistent with previous results within errors, suggesting that the counts derived from serendipitously detected sources are not significantly biased, although there could be field-to-field variation due to the small survey area. By using the best-fitting function of the number counts, we find that ˜40% of the extragalactic background light at 1.1 mm is resolved at S1.1mm > 0.2 mJy.

  2. White dwarfs in the UKIRT infrared deep sky survey data release

    SciTech Connect

    Tremblay, P.-E.; Kalirai, J. S.; Leggett, S. K.; Lodieu, N.; Bergeron, P.; Ludwig, H.-G.

    2014-06-20

    We have identified 8 to 10 new cool white dwarfs from the Large Area Survey (LAS) Data Release 9 of the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS). The data set was paired with the Sloan Digital Sky Survey to obtain proper motions and a broad ugrizYJHK wavelength coverage. Optical spectroscopic observations were secured at Gemini Observatory and confirm the degenerate status for eight of our targets. The final sample includes two additional white dwarf candidates with no spectroscopic observations. We rely on improved one-dimensional model atmospheres and new multi-dimensional simulations with CO5BOLD to review the stellar parameters of the published LAS white dwarf sample along with our additional discoveries. Most of the new objects possess very cool atmospheres with effective temperatures below 5000 K, including two pure-hydrogen remnants with a cooling age between 8.5 and 9.0 Gyr, and tangential velocities in the range 40 km s{sup –1} ≤v {sub tan} ≤ 60 km s{sup –1}. They are likely thick disk 10-11 Gyr old objects. In addition, we find a resolved double degenerate system with v {sub tan} ∼ 155 km s{sup –1} and a cooling age between 3.0 and 5.0 Gyr. These white dwarfs could be disk remnants with a very high velocity or former halo G stars. We also compare the LAS sample with earlier studies of very cool degenerates and observe a similar deficit of helium-dominated atmospheres in the range 5000 < T {sub eff} (K) < 6000. We review the possible explanations for the spectral evolution from helium-dominated toward hydrogen-rich atmospheres at low temperatures.

  3. COOL WHITE DWARFS FOUND IN THE UKIRT INFRARED DEEP SKY SURVEY

    SciTech Connect

    Leggett, S. K.; Nitta, A.; Lodieu, N.

    2011-07-01

    We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint reduced proper motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg{sup 2} of sky resulted in seven new white dwarfs with effective temperature T{sub eff} {approx} 6000 K. The current follow-up of 1400 deg{sup 2} of sky has produced 13 new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K {<=}T{sub eff} {<=} 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km s{sup -1} {<=} v{sub tan} {<=} 85 km s{sup -1} and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K {<=}T{sub eff} {<=} 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km s{sup -1} {<=} v{sub tan} {<=} 100 km s{sup -1}. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.

  4. Deep VLT/HAWKI and Keck/MOSFIRE K-band imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel; Marchesini, Danilo

    2015-08-01

    We will present recently-obtained deep K-band imaging of the first four Frontier Fields, Abell 2744 and MACS 0416 with the VLT/HAWK-I instrument and MACS-0717 and MACS-1149 with Keck/MOSFIRE. The final HAWK-I mosaics reach a depth of K~26 AB (5-sigma) with superb ground-based image quality ~0.4" FWHM across the field; shorter integrations with MOSFIRE reach K~25 AB and with FWHM~0.5". The 7'x7' HAWKI field of view provides ideal simultaneous coverage of both the HST cluster and parallel fields (with additional area also covered by Subaru optical and IRAC imaging), and the K band at 2.2 µm crucially fills the gap between the deep space-based imaging bandpasses observed with HST and Spitzer. The addition of the 2.2 µm imaging and photometry greatly improves the constraints on both the photometric redshifts and the stellar-population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to, and including, the redshifts of the targeted galaxy clusters. The reduced, aligned mosaics of all the K-band fields are made freely available to the Frontier Fields community; identical deep HAWK-I observations of the final two Frontier Fields (Abell 370 and Abell S1063) have been awarded and will be obtained in the upcoming ESO observing periods.

  5. Investigating the Local and High Redshift Universe With Deep Survey Data and Ground-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Masters, Daniel Charles

    Large multiwavelength surveys are now driving the frontiers of astronomical research. I describe results from my work using data from two large astronomical surveys: the Cosmic Evolution Survey (COSMOS), which has obtained deep photometric and spectroscopic data on two square degrees of the sky using many of the most powerful telescopes in the world, and the WFC3 Infrared Spectroscopic Parallels (WISP) Survey, which uses the highly sensitive slitless spectroscopic capability of the Hubble Space Telescope Wide Field Camera 3 to detect star-forming galaxies over most of the universe's history. First I describe my work on the evolution of the high-redshift quasar luminosity function, an important observational quantity constraining the growth of the supermassive black holes in the early universe. I show that the number density of faint quasars declines rapidly above z ˜ 3. This result is discussed in the context of cosmic reionization and the coevolution of galaxies and their central black holes. Next I present results of a multi-year campaign of near-infrared spectroscopy with FIRE, a world-class near-infrared spectrometer on the Magellan Baade 6.5 meter telescope in Chile, targeting emission-line galaxies at z ˜ 2 discovered with the Hubble Space Telescope. Our results showed that the typical emission-line galaxy at this redshift has low-metallicity, low dust obscuration, high ionization parameter, and little evidence for significant active galactic nucleus (AGN) contribution to the emission lines. We also find evidence that high redshift star-forming galaxies have enhanced nitrogen abundances. This result has interesting implications for the nature of the star formation in such galaxies -- in particular, it could mean that a large fraction of such galaxies harbor substantial populations of Wolf-Rayet stars, which are massive, evolved stars ejecting large amounts of enriched matter into the interstellar medium. Finally, I will discuss the discovery of three

  6. IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA

    SciTech Connect

    Donley, J. L.; Koekemoer, A. M.; Brusa, M.; Salvato, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J. S.; Miyaji, T.; Sanders, D. B.; Trump, J. R.

    2012-04-01

    Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L{sub 2-10keV}(erg s{sup -1}) {>=}44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N{sub H} (cm{sup -2}) = 23.5 {+-} 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.

  7. Deep CCD Field Surveys: Numbers of Very Low Mass Stars in the Halo and Disk

    NASA Astrophysics Data System (ADS)

    Boeshaar, Patricia C.; Tyson, Tony; Bernstein, Gary

    1994-12-01

    Deep three band (B_J < 27.5, R < 26.4, I < 25 mag) CCD images of 12 high galactic latitude fields covering a total of 144 arcmin(2) on the sky have been obtained as part of a 4-m survey done at CTIO over the past decade. Together with a single 2048(2) CCD field covering 48 sq. arcmin on the sky obtained at KPNO, these data have been analyzed to search for M dwarfs near the halo and disk hydrogen burning limits. Our color data have been carefully calibrated using stars of different luminosities which have spectroscopically determined metallicities, in order to separate out the different population types. We find no evidence for a population of very low mass M dwarfs sufficient to account for an important fraction of the halo dark matter. For the least luminous halo M subdwarfs (M_V ~ 15) our survey is complete out to 3000 pc, covering a volume of approx. 205,000 pc(3) . We detect 6 objects having colors consistent with M subdwarfs of M_V = 13.5 -- 15, though this sample may be contaminated by 1--2 misclassified compact high redshift galaxies of similar color which appear stellar. Our finding is consistent with the halo luminosity function determined in the solar neighborhood by Dahn and Liebert (1994 Proceedings of the ESO workshop: "The Bottom of the Main Sequence and Beyond"). They predict that we should find 5 +/- 3 of the least luminous subdwarfs within our volume. By comparison, the halo luminosity function of Richer and Fahlman (1992, Nature 358, 383) would predict over five times as many low mass M subdwarfs than we find in our surveys. Moreover, with a completeness limit of 500 pc, we find no excess of the least luminous disk M dwarfs (dM8-9, M_V ~ 18 -- 19) beyond that predicted by the luminosity function determined from a large area CCD Transit Instrument Survey (Kirpatrick et al 1994, ApJS 94, 749). Our data similarly suggest that the latest M dwarfs have a scale height much smaller than the 350 pc. value widely used for earlier M dwarfs.

  8. A Systematic Survey of Protoclusters at z ~ 3-6 in the CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Toshikawa, Jun; Kashikawa, Nobunari; Overzier, Roderik; Malkan, Matthew A.; Furusawa, Hisanori; Ishikawa, Shogo; Onoue, Masafusa; Ota, Kazuaki; Tanaka, Masayuki; Niino, Yuu; Uchiyama, Hisakazu

    2016-08-01

    We present the discovery of three protoclusters at z ˜ 3-4 with spectroscopic confirmation in the Canada-France-Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ˜ 3-6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 1014 M ⊙ at z = 0. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3-4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ˜ 5-6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (˜1.0 physical Mpc). The Lyα equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ˜ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ˜ 6.

  9. SCORPIO: a deep survey of radio emission from the stellar life-cycle

    NASA Astrophysics Data System (ADS)

    Umana, G.; Trigilio, C.; Franzen, T. M. O.; Norris, R. P.; Leto, P.; Ingallinera, A.; Buemi, C. S.; Agliozzo, C.; Cavallaro, F.; Cerrigone, L.

    2015-11-01

    Radio emission has been detected in a broad variety of stellar objects from all stages of stellar evolution. However, most of our knowledge originates from targeted observations of small samples, which are strongly biased to sources which are peculiar at other wavelengths. In order to tackle this problem we have conducted a deep 1.4 GHz survey by using the Australian Telescope Compact Array, with a net bandwidth of 1.7 GHz (1.4-3.1 GHz) , following the same observing setup as that used for the Australia Telescope Large Area Survey project, this time choosing a region more appropriate for stellar work. In this paper, the Stellar Continuum Originating from Radio Physics In Ourgalaxy (SCORPIO) project is presented as well as results from the pilot experiment. The achieved rms is 30 μJy and the angular resolution ˜10 arcsec. 614 point-like sources have been extracted just from the pilot field. Only 34 of them are classified in SIMBAD or the NASA/IPAC Extragalactic Database. About 80 per cent of the extracted sources are reported in one of the inspected catalogues and 50 per cent of them appears to belong to a reddened stellar/Galactic population. However, the evaluation of extragalactic contaminants is very difficult without further investigations. Interesting results have been obtained for extended radio sources that fall in the SCORPIO field. Many roundish-like structures (indicated as bubbles in the following) have been found, some of which are classified at other wavelengths. However, for all of these sources, our project has provided us with images of unprecedented sensitivity and angular resolution.

  10. A Systematic Survey of Protoclusters at z ~ 3–6 in the CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Toshikawa, Jun; Kashikawa, Nobunari; Overzier, Roderik; Malkan, Matthew A.; Furusawa, Hisanori; Ishikawa, Shogo; Onoue, Masafusa; Ota, Kazuaki; Tanaka, Masayuki; Niino, Yuu; Uchiyama, Hisakazu

    2016-08-01

    We present the discovery of three protoclusters at z ˜ 3–4 with spectroscopic confirmation in the Canada–France–Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ˜ 3–6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 1014 M ⊙ at z = 0. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3–4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ˜ 5–6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (˜1.0 physical Mpc). The Lyα equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ˜ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ˜ 6.

  11. Tracing Evolution of Starbursts and AGNs using Ultra-deep Radio and mm/smm Surveys

    NASA Astrophysics Data System (ADS)

    Yun, Min S.; Gim, Hansung; Morrison, Glenn; Hales, Christopher A.; Momjian, Emmanuel; Owen, Frazer; Kellermann, Ken; Aretxaga, Itziar; Giavalisco, Mauro; Hughes, David; Lowenthal, James; Miller, Neal; Kawabe, Ryohei; Kohno, Kotaro

    2015-08-01

    There is growing evidence supporting a rapid build up of metals among massive galaxies during their rapid growth via an intense starburst in the early epochs. These star formation activities may be largely obscured in the UV and optical light, as in the local universe. If the growth of supermassive blackholes occurs at or nearly the same time, the accompanying AGN activity may also be heavily obscured. Ultra-deep surveys in the radio and far-infrared can offer extinction-free view of these systems, and the advent of new facilities such as the Jansky VLA, ALMA, and LMT now allows us to probe directly the population of starburst galaxies that are responsible for the bulk of the stellar mass build-up during the epoch of galaxy growth (SFR > 10-100 M⊙/yr at z≈2 or earlier). We will present our analysis of the properties of the micro-Jansky radio sources identified by new Jansky VLA surveys of the GOODS and COSMOS fields using the rich archival data already available (Herschel, Spitzer, Chandra, ALMA, LMT, etc.). Specifically, we find evidence for two populations of microJy radio sources with distinct spectral index distribution. We explore whether this reflects differences in the underlying powering mechanisms by examining their radio-FIR correlation and X-ray properties. We also find the previously reported apparent systematic change in the "q-value" with increasing redshift, and we examine the reality of this trend in some detail. Finally, we will also examine the spatial extent of activities for a subset of the sample where high angular resolution (better than 1") information is available.

  12. The VIMOS VLT Deep Survey. Testing the gravitational instability paradigm at z ~ 1

    NASA Astrophysics Data System (ADS)

    Marinoni, C.; Guzzo, L.; Cappi, A.; Le Fèvre, O.; Mazure, A.; Meneux, B.; Pollo, A.; Iovino, A.; McCracken, H. J.; Scaramella, R.; de la Torre, S.; Virey, J. M.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Picat, J. P.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Ilbert, O.; Lamareille, F.; Marano, B.; Mathez, G.; Merighi, R.; Paltani, S.; Pellò, R.; Pozzetti, L.; Radovich, M.; Vergani, D.; Zamorani, G.; Zucca, E.; Abbas, U.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; Buzzi, A.; Cucciati, O.; de Ravel, L.; Gregorini, L.; Mellier, Y.; Merluzzi, P.; Perez-Montero, E.; Taxil, P.; Temporin, S.; Walcher, C. J.

    2008-08-01

    We have reconstructed the three-dimensional density fluctuation maps to z˜ 1.5 using the distribution of galaxies observed in the VVDS-Deep survey. We use this overdensity field to measure the evolution of the probability distribution function and its lower-order moments over the redshift interval 0.7< z <1.5. We apply a self-consistent reconstruction scheme which includes a complete non-linear description of galaxy biasing and which has been thoroughly tested on realistic mock samples. We find that the variance and skewness of the galaxy distribution evolve over this redshift interval in a way that is remarkably consistent with predictions of first- and second-order perturbation theory. This finding confirms the standard gravitational instability paradigm over nearly 9 Gyr of cosmic time and demonstrates the importance of accounting for the non-linear component of galaxy biasing to consistently reproduce the higher-order moments of the galaxy distribution and their evolution.

  13. Testing CDM predictions with a deep HI survey of the Sculptor group

    NASA Astrophysics Data System (ADS)

    Westmeier, Tobias; Koribalski, Baerbel; Meyer, Martin; Popping, Attila; Obreschkow, Danail

    2013-04-01

    As a consequence of the cold dark matter (CDM) paradigm, galaxies are thought to form and evolve in a continuous process of mergers and accretion of dark-matter haloes. Some of the predictions resulting from this scenario include the presence of hundreds of satellites in galaxies groups like our Local Group as well as the presence of a "cosmic web" of dark matter and gas that interconnects galaxies, groups, and clusters. To put the predictions of the CDM paradigm to the test, we propose to map the northern part of the nearby Sculptor group in the 21-cm HI emission down to an extremely low HI column density level of about 1.4×10^17 cm^-2, using the multi-beam system at Parkes. The aims of the observations are to directly detect and study the cosmic web and to create a complete census of gaseous galaxies and satellites with M_HI >~ 10^6 M_sun to investigate the "missing satellites" problem. The survey data will be complemented with archival data at UV, optical, and IR wavelengths as well as existing, deep ATCA HI data of the major Sculptor group galaxies.

  14. DEEP NEAR-INFRARED SURVEY OF THE PIPE NEBULA. II. DATA, METHODS, AND DUST EXTINCTION MAPS

    SciTech Connect

    Roman-Zuniga, Carlos G.; Lada, Charles J.; Lombardi, Marco

    2010-12-20

    We present a new set of high-resolution dust extinction maps of the nearby and essentially starless Pipe Nebula molecular cloud. The maps were constructed from a concerted deep near-infrared imaging survey with the ESO-VLT, ESO-NTT, CAHA 3.5 m telescopes, and 2MASS data. The new maps have a resolution three times higher than the previous extinction map of this cloud by Lombardi et al. and are able to resolve structures down to 2600 AU. We detect 244 significant extinction peaks across the cloud. These peaks have masses between 0.1 and 18.4 M{sub sun}, diameters between 1.2 and 5.7 x 10{sup 4} AU (0.06 and 0.28 pc), and mean densities of about 10{sup 4} cm{sup -3}, all in good agreement with previous results. From the analysis of the mean surface density of companions we find a well-defined scale near 1.4 x 10{sup 4} AU below which we detect a significant decrease in structure of the cloud. This scale is smaller than the Jeans length calculated from the mean density of the peaks. The surface density of peaks is not uniform but instead it displays clustering. Extinction peaks in the Pipe Nebula appear to have a spatial distribution similar to the stars in Taurus, suggesting that the spatial distribution of stars evolves directly from the primordial spatial distribution of high-density material.

  15. Measuring M Dwarf Rotation in the Pan-STARRS 1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Fong, Erin R.; Williams, Peter K. G.; Berger, Edo

    2016-01-01

    The rise of large-format CCDs and automated detection methods has greatly increased the tractability of large-scale studies of stellar rotation. Studies of the relationship between stellar rotation and magnetic activity show a strong correlation, supporting the concept of a rotationally-driven dynamo. However, the number of confirmed rotation periods for stars in the fully convective regime, whose magnetic dynamos are less well understood, remains low. Here we report on ongoing work to measure rotation periods for the M dwarf stellar population observed by the Pan-STARRS 1 Medium Deep Survey (PS1/MDS). We refine an initial sample of around 4.3 million sources using color cuts in each of the five Pan-STARRS 1 filters. Of these sources, we estimate there to be around 135,000 sources which are candidate M dwarfs with a spectral type of M1 or higher. We discuss the outcomes of various rotation period detection methods and present preliminary results. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.

  16. Enhancing the Legacy of Spitzer and Herschel with the MOSFIRE Deep Evolution Field Survey

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen

    The next frontier for comprehensive galaxy surveys is the epoch at z~1.5-3.5, the peak of star formation and black hole activity. Despite the new windows that Spitzer and Herschel have opened up into the stellar and dust emission of distant galaxies and AGN during this key epoch, these studies have been limited by the lack of spectroscopic redshifts and the unknown physical conditions (e.g., metallicities, ionization) within the targeted galaxies. To realize the full potential of Spitzer and Herschel, we require a large spectroscopic survey that will: (a) efficiently assemble spectroscopic redshifts for large samples of galaxies at z=1.4-3.8; (b) yield the physical conditions, including the ionization and metallicities of these galaxies; and (c) easily obtain spectroscopic redshifts even for very dusty/confused galaxies. To this end, our team has been allocated a large program of 47 Keck nights with the multi-object near-IR spectrograph MOSFIRE to carry out the MOSFIRE Deep Evolution Field Survey (MOSDEF) in three of the Hubble CANDELS fields. MOSDEF will obtain rest-optical spectra of ~1500 galaxies at redshifts z=1.4-3.8, targeting many of the optical nebular emission lines and continuum features (e.g., [OII], [OIII], H-beta, H-alpha, [NII], [SII], 4000 Angstrom break, Ca H and K, and Mbg) that until now have been inaccessible for large samples of distant galaxies, but which are routinely used to measure the SFRs, dust attenuation, metal and gas content, and ionization and dynamical properties in nearby galaxies. MOSDEF spectroscopy provides a critical supporting role for the analysis of Spitzer and Herschel observations of distant galaxies. With this transformative dataset, we will perform the following analyses. First, we will use Spitzer and Herschel imaging, aided with spectroscopic redshifts from MOSDEF, to construct individual and mean dust SEDs for galaxies at redshifts 1.4

  17. Conducting health survey research in a deep rural South African community: challenges and adaptive strategies

    PubMed Central

    2013-01-01

    Background In many parts of the developing world, rural health requires focused policy attention, informed by reliable, representative health data. Yet there is surprisingly little published material to guide health researchers who face the unique set of hurdles associated with conducting field research in remote rural areas. Methods In this paper we provide a detailed description of the key challenges encountered during health survey field research carried out in 2010 in a deep rural site in KwaZulu-Natal, South Africa. The aim of the field research was to collect data on the health of children aged 10 to 17 years old, and their primary adult caregivers, as part of a larger national health survey; the research was a collaboration between several South African and foreign universities, South African national government departments, and various NGO partners. In presenting each of the four fieldwork challenges encountered on this site, we describe the initial planning decisions made, the difficulties faced when implementing these in the field, and the adaptive strategies we used to respond to these challenges. We reflect on learnings of potential relevance for the research community. Results Our four key fieldwork challenges were scarce research capacity, staff relocation tensions, logistical constraints, and difficulties related to community buy-in. Addressing each of these obstacles required timely assessment of the situation and adaptation of field plans, in collaboration with our local NGO partner. Adaptive strategies included a greater use of local knowledge; the adoption of tribal authority boundaries as the smallest geopolitical units for sampling; a creative developmental approach to capacity building; and planned, on-going engagement with multiple community representatives. Conclusions We argue that in order to maintain high scientific standards of research and manage to ‘get the job done’ on the ground, it is necessary to respond to fieldwork challenges

  18. The VIMOS-VLT Deep Survey: evolution in the halo occupation number since z ~ 1

    NASA Astrophysics Data System (ADS)

    Abbas, U.; de la Torre, S.; Le Fèvre, O.; Guzzo, L.; Marinoni, C.; Meneux, B.; Pollo, A.; Zamorani, G.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pozzetti, L.; Radovich, M.; Vergani, D.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; Cucciati, O.; de Ravel, L.; Gregorini, L.; Perez-Montero, E.; Mellier, Y.; Merluzzi, P.

    2010-08-01

    We model the evolution of the mean galaxy occupation of dark matter haloes over the range 0.1 < z < 1.3, using the data from the VIMOS-VLT Deep Survey. The galaxy projected correlation function wp(rp) was computed for a set of luminosity-limited subsamples and fits to its shape were obtained using two variants of halo occupation distribution (HOD) models. These provide us with a set of best-fitting parameters, from which we obtain the average mass of a halo and average number of galaxies per halo. We find that after accounting for the evolution in luminosity and assuming that we are largely following the same population, the underlying dark matter halo shows a growth in mass with decreasing redshift as expected in a hierarchical structure formation scenario. Using two different HOD models, we see that the halo mass grows by 90 per cent over the redshift interval z = [0.5, 1.0]. This is the first time the evolution in halo mass at high redshifts has been obtained from a single data survey and it follows the simple form seen in N-body simulations with M(z) = M0 e-βz, and β = 1.3 +/- 0.30. This provides evidence for a rapid accretion phase of massive haloes having a present-day mass M0 ~ 1013.5 h-1 Msolar, with a m > 0.1 M0 merger event occurring between redshifts of 0.5 and 1.0. Furthermore, we find that more luminous galaxies are found to occupy more massive haloes irrespective of the redshift. Finally, the average number of galaxies per halo shows little increase from redshift z ~ 1.0 to ~0.5, with a sharp increase by a factor of ~3 from z ~ 0.5 to ~0.1, likely due to the dynamical friction of subhaloes within their host haloes. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, program 070.A-9007(A), and on data obtained at the Canada-France-Hawaii Telescope, operated by the CNRS of France, CNRC in Canada and the University of Hawaii. E-mail: abbas@oato.inaf.it

  19. IMPROVED MOCK GALAXY CATALOGS FOR THE DEEP2 GALAXY REDSHIFT SURVEY FROM SUBHALO ABUNDANCE AND ENVIRONMENT MATCHING

    SciTech Connect

    Gerke, Brian F.; Wechsler, Risa H.; Behroozi, Peter S.; Yan, Renbin; Coil, Alison L.

    2013-09-15

    We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in a manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mock catalogs can be usefully applied. Nevertheless, careful comparisons show that our new mock catalogs accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2.

  20. A Rapid Radiocarbon Method for Age Surveys of Southern Ocean Deep-sea Corals

    NASA Astrophysics Data System (ADS)

    Burke, A.; Robinson, L. F.; Gerlach, D. S.; Jenkins, W. J.; McNichol, A. P.

    2008-12-01

    Deep-sea corals provide a unique archive of past ocean radiocarbon because they are sessile and can be dated independently using U-series nuclides. One difficulty, however, is that using current techniques it is impractical to date large numbers of corals in order to determine which specimens have the appropriate ages for radiocarbon reconstructions. Here we present results from a quick method of making graphite for radiocarbon dating that reduces the amount of sample preparation time, thus allowing us to date a greater number of corals. In addition, these rapid age surveys provide important information on coral age populations, allowing us to examine coral distributions through time. The corals used in this study come from a sample set of about 6,000 specimens of Flabellum, Balanophyllia and Desmophyllum spp. collected from the Drake Passage area (50S -70S, 120 m-1700 m depth). Replicate samples from a single coral yielded a standard deviation of 81 years (n=9). Variations in sample mass (3 to 85 mg) have no clear effect on the Fm and furthermore, a simple cleaning using methanol yields the same results as a more involved cleaning procedure that includes an oxidizing solution and perchloric acid rinse. To improve the efficiency of the method, we assumed a delta13C = 0 per mil. This assumption is likely our largest source of uncertainty, resulting in offsets of up to 200 radiocarbon years over a reasonable range of delta13C. This level of uncertainty is sufficiently low to allow distinction between corals from different time periods over the past 35 ky (e.g. Last Glacial Maximum, Younger Dryas, etc.). To date, we have found corals from Burdwood Bank dating from the modern to the Younger Dryas and corals from the Drake Passage dating from the modern to Heinrich Event 1, which will be used in future paleo-climatic reconstructions in this important part of the ocean.

  1. Assessing the deep drilling potential of Lago de Tota, Colombia, with a seismic survey

    NASA Astrophysics Data System (ADS)

    Bird, B. W.; Wattrus, N. J.; Fonseca, H.; Velasco, F.; Escobar, J.

    2015-12-01

    Reconciling orbital-scale patterns of inter-hemispheric South American climate during the Quaternary requires continuous, high-resolution paleoclimate records that span multiple glacial cycles from both hemispheres. Southern Andean Quaternary climates are represented by multi-proxy results from Lake Titicaca (Peru-Bolivia) spanning the last 400 ka and by pending results from the Lago Junin Drilling Project (Peru). Although Northern Andean sediment records spanning the last few million years have been retrieved from the Bogota and Fúquene Basins in the Eastern Cordillera of the Colombian Andes, climatic reconstructions based on these cores have thus far been limited to pollen-based investigations. When viewed together with the Southern Hemisphere results, these records suggest an anti-phased hemispheric climatic response during glacial cycles. In order to better assess orbital-scale climate responses, however, independent temperature and hydroclimate proxies from the Northern Hemisphere are needed in addition to vegetation histories. As part of this objective, an effort is underway to develop a paleoclimate record from Lago de Tota (3030 m asl), the largest lake in Colombia and the third largest lake in the Andes. One of 17 highland tectonic basins in Eastern Cordillera, Lago de Tota formed during Tertiary uplift that deformed pre-foreland megasequences, synrift and back-arc megasequences. The precise age and thickness of sediments in the Lago de Tota basin has not previously been established. Here, we present results from a recent single-channel seismic reflection survey collected with a small (5 cubic inch) air gun and high-resolution CHIRP sub-bottom data. With these data, we examine the depositional history and sequence stratigraphy of Lago de Tota and assess its potential as a deep drilling target.

  2. Blue not brown: UKIRT Infrared Deep Sky Survey T dwarfs with suppressed K-band flux

    NASA Astrophysics Data System (ADS)

    Murray, D. N.; Burningham, B.; Jones, H. R. A.; Pinfield, D. J.; Lucas, P. W.; Leggett, S. K.; Tinney, C. G.; Day-Jones, A. C.; Weights, D. J.; Lodieu, N.; Pérez Prieto, J. A.; Nickson, E.; Zhang, Z. H.; Clarke, J. R. A.; Jenkins, J. S.; Tamura, M.

    2011-06-01

    We have used blue near-infrared colours to select a group of 12 spectroscopically confirmed United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) T dwarfs later than T4. From amongst these, we identify the first two kinematic halo T-dwarf candidates. Blue near-infrared colours have been attributed to collisionally induced hydrogen absorption, which is enhanced by either high surface gravity or low metallicity. Proper motions are measured and distances estimated, allowing the determination of tangential velocities. U and V components are estimated for our objects by assuming Vrad= 0. From this, ULAS J0926+0835 is found to have U= 62 km s-1 and V=-140 km s-1, and ULAS J1319+1209 is found to have U= 192 km s-1 and V=-92 km s-1. These values are consistent with potential halo membership. However, these are not the bluest objects in our selection. The bluest is ULAS J1233+1219, with J-K=-1.16 ± 0.07, and surprisingly this object is found to have young disc-like U and V. Our sample also contains Hip 73786B, companion to the metal-poor K5 dwarf Hip 73786. Hip 73786 is a metal-poor star, with [Fe/H] =-0.3 ± 0.1 and is located at a distance of 19 ± 0.7 pc. U, V, W space velocity components are calculated for Hip 73786A and B, finding that U=-48 ± 7 km s-1, V=-75 ± 4 km s-1 and W=-44 ± 8 km s-1. From the properties of the primary, Hip 73786B is found to be at least 1.6-Gyr old. As a metal-poor object, Hip 73786B represents an important addition to the sample of known T dwarf benchmarks.

  3. The VIMOS VLT Deep Survey: Final Public Release of ~ 35 000 Galaxies and Active Galactic Nuclei Covering 13 Billion Years of Evolution

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Bondi, M.; Bongiorno, A.; Bottini, D.; Cappi, A.; Cassata, P.; Charlot, S.; Ciliegi, P.; Contini, T.; Cucciati, O.; de la Torre, S.; Foucaud, S.; Franzetti, P.; Garilli, B.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; Le Brun, V.; Lemaux, B.; López-Sanjuan, C.; Maccagni, D.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Mellier, Y.; Merighi, R.; Merluzzi, P.; Moreau, C.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Scaramella, R.; Scodeggio, M.; Tasca, L.; Tresse, L.; Vergani, D.; Vettolani, G.; Zamorani, G.; Zanichelli, A.; Zucca, E.

    2014-03-01

    The VIMOS VLT Deep Survey (VVDS) final and public data release offers an excellent opportunity to revisit galaxy evolution with a sample of 35 016 galaxies and active galactic nuclei covering the redshift range 0 < z < 6.7. The VVDS includes three tiered surveys, the wide, deep and ultra-deep surveys, covering up to 8.7 square degrees, and each magnitude-selected with limits iAB = 22.5, 24 and 24.75 respectively. The VVDS redshifts, spectra, and all associated multi-wavelength data are available at http://cesam.lam.fr/vvds. The highlights and scientific legacy of the VVDS are summarised.

  4. AKARI North Ecliptic Pole Deep Survey. Revision of the catalogue via a new image analysis

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuhara, H.; Wada, T.; Arimatsu, K.; Oi, N.; Takagi, T.; Oyabu, S.; Goto, T.; Ohyama, Y.; Malkan, M.; Pearson, C.; Małek, K.; Solarz, A.

    2013-11-01

    Context. We present the revised near- to mid-infrared catalogue of the AKARI North Ecliptic Pole deep survey. The survey has the unique advantage of continuous filter coverage from 2 to 24 μm over nine photometric bands, but the initial version of the survey catalogue leaves room for improvement in the image analysis stage; the original images are strongly contaminated by the behaviour of the detector and the optical system. Aims: The purpose of this study is to devise new image analysis methods and to improve the detection limit and reliability of the source extraction. Methods: We removed the scattered light and stray light from the Earth limb, and corrected for artificial patterns in the images by creating appropriate templates. We also removed any artificial sources due to bright sources by using their properties or masked them out visually. In addition, for the mid-infrared source extraction, we created detection images by stacking all six bands. This reduced the sky noise and enabled us to detect fainter sources more reliably. For the near-infrared source catalogue, we considered only objects with counterparts from ground-based catalogues to avoid fake sources. For our ground-based catalogues, we used catalogues based on the CFHT/MegaCam z' band, CFHT/WIRCam Ks band and Subaru/Scam z' band. Objects with multiple counterparts were all listed in the catalogue with a merged flag for the AKARI flux. Results: The detection limits of all mid-infrared bands were improved by ~20%, and the total number of detected objects was increased by ~2000 compared with the previous version of the catalogue; it now has 9560 objects. The 5σ detection limits in our catalogue are 11, 9, 10, 30, 34, 57, 87, 93, and 256 μJy in the N2, N3, N4, S7, S9W, S11, L15, L18W, and L24 bands, respectively. The astrometric accuracies of these band detections are 0.48, 0.52, 0.55, 0.99, 0.95, 1.1, 1.2, 1.3, and 1.6 arcsec, respectively. The false-detection rate of all nine bands was decreased

  5. GTC/OSIRIS SPECTROSCOPIC IDENTIFICATION OF A FAINT L SUBDWARF IN THE UKIRT INFRARED DEEP SKY SURVEY

    SciTech Connect

    Lodieu, N.

    2010-01-10

    We present the discovery of an L subdwarf in 234 deg{sup 2} common to the UK InfraRed Telescope (UKIRT) Infrared Deep Sky Survey Large Area Survey Data Release 2 and the Sloan Digital Sky Survey Data Release 3. This is the fifth L subdwarf announced to date, the first one identified in the UKIRT Infrared Deep Sky Survey, and the faintest known. The blue optical and near-infrared colors of ULAS J135058.86+081506.8 and its overall spectra energy distribution are similar to the known mid-L subdwarfs. Low-resolution optical (700-1000 nm) spectroscopy with the Optical System for Imaging and low Resolution Integrated Spectroscopy spectrograph on the 10.4 m Gran Telescopio de Canarias reveals that ULAS J135058.86+081506.8 exhibits a strong K I pressure-broadened line at 770 nm and a red slope longward of 800 nm, features characteristics of L-type dwarfs. From direct comparison with the four known L subdwarfs, we estimate its spectral type to be sdL4-sdL6 and derive a distance in the interval 94-170 pc. We provide a rough estimate of the space density for mid-L subdwarfs of 1.5 x 10{sup -4} pc{sup -3}.

  6. The XMM Deep Survey in the CDF-S. VII. UV catalogue of the Optical Monitor observations

    NASA Astrophysics Data System (ADS)

    Antonucci, M.; Talavera, A.; Vagnetti, F.; Trevese, D.; Comastri, A.; Paolillo, M.; Ranalli, P.; Vignali, C.

    2015-02-01

    Context. The XMM-Newton X-ray observatory has repeatedly observed the Chandra Deep Field-South (CDF-S) in 33 epochs (2001-2010) through the XMM-CDFS Deep Survey. During the X-ray observations, XMM-OM targeted the central 17 × 17 arcmin2 region of the X-ray field of view, providing simultaneous optical/UV coverage of the CDF-S. The resulting set of data can be used to build an XMM-OM catalogue of the CDF-S, filling the UV spectral coverage between the optical surveys and GALEX observations. Aims: We present the UV catalogue of the XMM-CDFS Deep Survey. Its main purpose is to provide complementary UV average photometric measurements of known optical/UV sources in the CDF-S, taking advantage of the unique characteristics of the survey (UV and X-ray simultaneous data, time monitoring ~8.5 years, multi-wavelength photometry). The data reduction is also intended to improve the standard source detection on individual observations by cataloguing faint sources by stacking their exposure images. Methods: We re-processed the XMM-OM data of the survey and stacked the exposures from consecutive observations using the standard Science Analysis System (SAS) tools to process the data obtained during single observations. Average measurements of detections with SAS good quality flags from individual observations and from stacked images were joined to compile the catalogue. Sources were validated through the cross-identification within the ESO Imaging survey (Arnouts et al. 2001) and the COMBO-17 survey (Wolf et al. 2004). Results: Photometric data of 1129 CDF-S sources are provided in the catalogue, and optical/UV/X-ray photometric and spectroscopic information from other surveys are also included. The stacking extends the detection limits by ~1 mag in the three UV bands, contributing ~30% of the catalogued UV sources. The comparison with the available measurements in similar spectral bands confirms the validity of the XMM-OM calibration. The combined COMBO-17/X-ray classification

  7. Worldwide estimates of deep natural gas resources based on the U.S. Geological Survey World Petroleum Assessment 2000

    USGS Publications Warehouse

    Dyman, T.S.; Crovelli, R.A.; Bartberger, C.E.; Takahashi, K.I.

    2002-01-01

    The U.S. Geological Survey recently assessed undiscovered conventional gas and oil resources in eight regions of the world outside the U.S. The resources assessed were those estimated to have the potential to be added to reserves within the next thirty years. This study is a worldwide analysis of the estimated volumes and distribution of deep (>4.5 km or about 15,000 ft), undiscovered conventional natural gas resources based on this assessment. Two hundred forty-six assessment units in 128 priority geologic provinces, 96 countries, and two jointly held areas were assessed using a probabilistic Total Petroleum System approach. Priority geologic provinces were selected from a ranking of 937 provinces worldwide. The U.S. Geological Survey World Petroleum Assessment Team did not assess undiscovered petroleum resources in the U.S. For this report, mean estimated volumes of deep conventional undiscovered gas resources in the U.S. are taken from estimates of 101 deep plays (out of a total of 550 conventional plays in the U.S.) from the U.S. Geological Survey's 1995 National Assessment of Oil and Gas Resources. A probabilistic method was designed to subdivide gas resources into depth slices using a median-based triangular probability distribution as a model for drilling depth to estimate the percentages of estimated gas resources below various depths. For both the World Petroleum Assessment 2000 and the 1995 National Assessment of Oil and Gas Resources, minimum, median, and maximum depths were assigned to each assessment unit and play; these depths were used in our analysis. Two-hundred seventy-four deep assessment units and plays in 124 petroleum provinces were identified for the U.S. and the world. These assessment units and plays contain a mean undiscovered conventional gas resource of 844 trillion cubic ft (Tcf) occuring at depths below 4.5 km. The deep undiscovered conventional gas resource (844 Tcf) is about 17% of the total world gas resource (4,928 Tcf) based on

  8. De-biased populations of Kuiper belt objects from the deep ecliptic survey

    SciTech Connect

    Adams, E. R.; Benecchi, S. D.; Gulbis, A. A. S.; Elliot, J. L.; Buie, M. W.; Trilling, D. E.; Wasserman, L. H.

    2014-09-01

    The Deep Ecliptic Survey (DES) was a survey project that discovered hundreds of Kuiper Belt objects from 1998 to 2005. Extensive follow-up observations of these bodies has yielded 304 objects with well-determined orbits and dynamical classifications into one of several categories: Classical, Scattered, Centaur, or 16 mean-motion resonances with Neptune. The DES search fields are well documented, enabling us to calculate the probability on each frame of detecting an object with its particular orbital parameters and absolute magnitude at a randomized point in its orbit. The detection probabilities range from a maximum of 0.32 for the 3:2 resonant object 2002 GF {sub 32} to a minimum of 1.5 × 10{sup –7} for the faint Scattered object 2001 FU {sub 185}. By grouping individual objects together by dynamical classes, we can estimate the distributions of four parameters that define each class: semimajor axis, eccentricity, inclination, and object size. The orbital element distributions (a, e, and i) were fit to the largest three classes (Classical, 3:2, and Scattered) using a maximum likelihood fit. Using the absolute magnitude (H magnitude) as a proxy for the object size, we fit a power law to the number of objects versus H magnitude for eight classes with at least five detected members (246 objects). The Classical objects are best fit with a power-law slope of α = 1.02 ± 0.01 (observed from 5 ≤ H ≤ 7.2). Six other dynamical classes (Scattered plus five resonances) have consistent magnitude distribution slopes with the Classicals, provided that the absolute number of objects is scaled. Scattered objects are somewhat more numerous than Classical objects, while there are only a quarter as many 3:2 objects as Classicals. The exception to the power law relation is the Centaurs, which are non-resonant objects with perihelia closer than Neptune and therefore brighter and detectable at smaller sizes. Centaurs were observed from 7.5 < H < 11, and that population is best

  9. A visual survey technique for deep-water fishes: estimating anglerfish Lophius spp. abundance in closed areas.

    PubMed

    McIntyre, F D; Collie, N; Stewart, M; Scala, L; Fernandes, P G

    2013-10-01

    A visual survey technique was employed to estimate the abundance and distribution of anglerfish Lophius spp. in areas where destructive sampling methods, such as trawling, are unacceptable. To enable visual surveying at depths of over 300 m, a deep towed vehicle was developed equipped with video, lights and other sensors and was towed at speeds of up to 1·5 m s⁻¹ and altitudes of up to 10 m (from the seabed) to survey large areas of the seabed around the Rockall Bank in the north-west Atlantic Ocean. The system allowed for areas up to 125 000 m² to be surveyed, a substantial area comparable to that surveyed by demersal-trawl sampling. Lophius spp. densities ranged from 15 to 736 fish km⁻²; these are comparable to estimated Lophius spp. densities determined by trawl surveys in adjacent areas. Estimates of Lophius spp. abundance in the closed areas ranged between 99,855 and 176,887 for the time series considered (2007-2011). PMID:24090546

  10. Chandra ACIS Survey of M33 (ChASeM33): A Deep X-ray Survey of the Nearest Face-on Spiral Galaxy

    NASA Astrophysics Data System (ADS)

    Gaetz, Terrance J.; Tuellmann, R.; Plucinsky, P. P.; Kuntz, K.; Long, K. S.; Williams, B.; Blair, W. P.; Edgar, R. J.; Ghavamian, P.; Haberl, F.; Helfand, D.; Hughes, J. P.; Kirshner, R.; Mazeh, T.; Pannuti, T.; Pietsch, W.; Shporer, A.; Smith, R. K.; Winkler, P. F.; ChASeM33 Team

    2009-01-01

    The Chandra ACIS Survey of M33 (ChASeM33) is a deep survey of the nearest face-on Spiral Galaxy. The 1.4 Ms survey covers the galaxy out to R 18 arcmin ( 4 kpc at 790 kpc), providing the most extensive high spatial resolution assessment of the X-ray source populations available for M33. Mosaic images of the ChASeM33 observations show several hundred individual X-ray sources as well as soft diffuse emission from the hot interstellar medium. Bright extended emission surrounds the nucleus and is also detected from the giant HII regions NGC604 and IC131. Fainter extended emission and numerous individual sources appear to trace the inner spiral structure. An initial source catalog based on 2/3 of the survey data has been published, and published papers based on the survey include: the discovery of the first eclipsing black hole binary system, an analysis of the brightest supernova remnant in M33, an analysis of the giant HII region NGC604, and an analysis of a number of transient sources. A catalog for the whole survey has now been prepared. We will discuss the improvements made in reducing the data and the approach for detecting and characterizing sources. Adjacent poster presentations include analyses of the new catalog, the X-ray emitting giant HII region (IC131), the supernova remnant population, a preliminary analysis of the diffuse emission, and initial results of a new radio survey complementing the X-ray survey. Support for this work was provided by NASA through Chandra Award Number G06-7073A and contract NAS8-03060.

  11. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    SciTech Connect

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P.; Yan Haojing

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

  12. Overview of North Ecliptic Pole Deep Multi-wavelength Survey as a Probe of the Cosmic Noon Era

    NASA Astrophysics Data System (ADS)

    Matsuhara, Hideo; Oi, Nagisa

    2015-08-01

    An overview of the North Ecliptic Pole deep (0.5 deg2, NEP-Deep) multi-wavelength survey covering from X-ray to radio-wave is presented. The NEP-Deep provides us with several thousands of 15 μm or 18 μm selected sample of galaxies, which is the largest sample ever made at these wavelengths. A continuous filter coverage in the mid-infrared wavelength (7, 9, 11, 15, 18, and 24 μm) is unique and vital to diagnose the contributions from starbursts and AGNs in the galaxies out to z=2. The goal of the project is to resolve the nature of the cosmic star formation history at the cosmic noon era (e.g. z=1--2), and to find a clue to understand its decline from z=1 to present universe by utilizing the unique power of the multiwavelength survey. To achieve the goal we use a few diagnostic physical parameters unique to the NEP dataset: specific star-formation rate, dust attenuation, and obscured AGN fraction, etc.It is also noteworthy that the NEP is the legacy field thanks to its high visibility by the space observatories, such as eROSITA, Euclid, JWST, and SPICA. SPICA, the next generation large cooled space telescope is extremely powerful to study the rise and fall of the cosmic star-formation history in the universe.

  13. Ultra-deep K S-band Imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.

    2016-09-01

    We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6–4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s∼ 26.0 (AB, point sources) and have excellent image quality (FWHM ∼ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ∼ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ∼ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.

  14. Ultra-deep K S-band Imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.

    2016-09-01

    We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6-4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s˜ 26.0 (AB, point sources) and have excellent image quality (FWHM ˜ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ˜ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ˜ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.

  15. The ROSAT Deep Survey. 2; Optical Identification, Photometry and Spectra of X-Ray Sources in the Lockman Field

    NASA Technical Reports Server (NTRS)

    Schmidt, M.; Hasinger, G.; Gunn, J.; Schneider, D.; Burg, R.; Giacconi, R.; Lehmann, I.; MacKenty, J.; Truemper, J.; Zamorani, G.

    1998-01-01

    The ROSAT Deep Survey includes a complete sample of 50 X-ray sources with fluxes in the 0.5 - 2 keV band larger than 5.5 x 10(exp -15)erg/sq cm/s in the Lockman field (Hasinger et al., Paper 1). We have obtained deep broad-band CCD images of the field and spectra of many optical objects near the positions of the X-ray sources. We define systematically the process leading to the optical identifications of the X-ray sources. For this purpose, we introduce five identification (ID) classes that characterize the process in each case. Among the 50 X-ray sources, we identify 39 AGNs, 3 groups of galaxies, 1 galaxy and 3 galactic stars. Four X-ray sources remain unidentified so far; two of these objects may have an unusually large ratio of X-ray to optical flux.

  16. The WIRCam Deep Survey. I. Counts, colours, and mass-functions derived from near-infrared imaging in the CFHTLS deep fields

    NASA Astrophysics Data System (ADS)

    Bielby, R.; Hudelot, P.; McCracken, H. J.; Ilbert, O.; Daddi, E.; Le Fèvre, O.; Gonzalez-Perez, V.; Kneib, J.-P.; Marmo, C.; Mellier, Y.; Salvato, M.; Sanders, D. B.; Willott, C. J.

    2012-09-01

    We present a new near-infrared imaging survey in the four CFHTLS deep fields: the WIRCam Deep Survey or "WIRDS". WIRDS comprises extremely deep, high quality (FWHM ~ 0.6″) J, H, and Ks imaging covering a total effective area of 2.1 deg2 and reaching AB 50% completeness limits of ≈ 24.5. We combine our images with the CFHTLS to create a unique eight-band ugrizJHKS photometric catalogues in the four CFHTLS deep fields; these four separate fields allow us to make a robust estimate of the effect of cosmic variance for all our measurements. We use these catalogues in combination with ≈ 9800 spectroscopic redshifts to estimate precise photometric redshifts (σΔz/(1 + z) ≲ 0.03 at i < 25), galaxy types, star-formation rates and stellar masses for a unique sample of ≈ 1.8 million galaxies. Our JHKs number counts are consistent with previous studies. We apply the "BzK" selection to our gzK filter set and find that the star forming BzK selection successfully selects 76% of star-forming galaxies in the redshift range 1.4 < z < 2.5 in our photometric catalogue, based on our photometric redshift measurement. Similarly the passive BzK selection returns 52% of the passive 1.4 < z < 2.5 population identified in the photometric catalogue. We present the mass functions of the total galaxy population as a function of redshift up to z = 2 and present fits using double Schechter functions. A mass-dependent evolution of the mass function is seen with the numbers of galaxies with masses of M ≲ 1010.75 still evolving at z ≲ 1, but galaxies of higher mass reaching their present day numbers by z ~ 0.8-1. This is consistent with the present picture of downsizing in galaxy evolution. We compare our results with the predictions of the GALFORM semi-analytical galaxy formation model and find that the simulations provide a relatively successful fit to the observed mass functions at intermediate masses (i.e. 10 ≲ log (M/M⊙) ≲ 11). However, as is common with semi

  17. Explained: Why many surveys of distant galaxies miss 90% of their targets

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Astronomers have long known that in many surveys of the very distant Universe, a large fraction of the total intrinsic light was not being observed. Now, thanks to an extremely deep survey using two of the four giant 8.2-metre telescopes that make up ESO's Very Large Telescope (VLT) and a unique custom-built filter, astronomers have determined that a large fraction of galaxies whose light took 10 billion years to reach us have gone undiscovered. The survey also helped uncover some of the faintest galaxies ever found at this early stage of the Universe. Astronomers frequently use the strong, characteristic "fingerprint" of light emitted by hydrogen known as the Lyman-alpha line, to probe the amount of stars formed in the very distant Universe [1]. Yet there have long been suspicions that many distant galaxies go unnoticed in these surveys. A new VLT survey demonstrates for the first time that this is exactly what is happening. Most of the Lyman-alpha light is trapped within the galaxy that emits it, and 90% of galaxies do not show up in Lyman-alpha surveys. "Astronomers always knew they were missing some fraction of the galaxies in Lyman-alpha surveys," explains Matthew Hayes, the lead author of the paper, published this week in Nature, "but for the first time we now have a measurement. The number of missed galaxies is substantial." To figure out how much of the total luminosity was missed, Hayes and his team used the FORS camera at the VLT and a custom-built narrowband filter [2] to measure this Lyman-alpha light, following the methodology of standard Lyman-alpha surveys. Then, using the new HAWK-I camera, attached to another VLT Unit Telescope, they surveyed the same area of space for light emitted at a different wavelength, also by glowing hydrogen, and known as the H-alpha line. They specifically looked at galaxies whose light has been travelling for 10 billion years (redshift 2.2 [3]), in a well-studied area of the sky, known as the GOODS-South field. "This is

  18. Trends in Continuous Deep Sedation until Death between 2007 and 2013: A Repeated Nationwide Survey

    PubMed Central

    Cohen, Joachim; Rietjens, Judith

    2016-01-01

    Background Continuous deep sedation until death is a highly debated medical practice, particularly regarding its potential to hasten death and its proper use in end-of-life care. A thorough analysis of important trends in this practice is needed to identify potentially problematic developments. This study aims to examine trends in the prevalence and practice characteristics of continuous deep sedation until death in Flanders, Belgium between 2007 and 2013, and to study variation on physicians’ degree of palliative training. Methods Population-based death certificate study in 2007 and 2013 in Flanders, Belgium. Reporting physicians received questionnaires about medical practices preceding the patient’s death. Patient characteristics, clinical characteristics (drugs used, duration, artificial nutrition/hydration, intention and consent), and palliative care training of attending physician were recorded. We posed the following question regarding continuous deep sedation: ‘Was the patient continuously and deeply sedated or kept in a coma until death by the use of one or more drugs’. Results After the initial rise of continuous deep sedation to 14.5% in 2007 (95%CI 13.1%-15.9%), its use decreased to 12.0% in 2013 (95%CI 10.9%-13.2%). Compared with 2007, in 2013 opioids were less often used as sole drug and the decision to use continuous deep sedation was more often preceded by patient request. Compared to non-experts, palliative care experts more often used benzodiazepines and less often opioids, withheld artificial nutrition/hydration more often and performed sedation more often after a request from or with the consent of the patient or family. Conclusion Worldwide, this study is the first to show a decrease in the prevalence of continuous deep sedation. Despite positive changes in performance and decision-making towards more compliance with due care requirements, there is still room for improvement in the use of recommended drugs and in the involvement of

  19. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  20. Bent-tailed Radio Sources in the Australia Telescope Large Area Survey of the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Dehghan, S.; Johnston-Hollitt, M.; Franzen, T. M. O.; Norris, R. P.; Miller, N. A.

    2014-11-01

    Using the 1.4 GHz Australia Telescope Large Area Survey, supplemented by the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field South. Here we present a catalog of 56 detections, which include 45 BT sources, 4 diffuse low-surface-brightness objects (1 relic, 2 halos, and 1 unclassified object), and a further 7 complex, multi-component sources. We report BT sources with rest-frame powers in the range 1022 <= P 1.4 GHz <= 1026 W Hz-1, with redshifts up to 2 and linear extents from tens of kiloparsecs up to about 1 Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here, one is the most distant BT source yet detected at a redshift of 2.1688. Two of the sources are found to be associated with known clusters: a wide-angle tail source in A3141 and a putative radio relic which appears at the infall region between the galaxy group MZ 00108 and the galaxy cluster AMPCC 40. Further observations are required to confirm the relic detection, which, if successful, would demonstrate this to be the least powerful relic yet seen with P 1.4 GHz = 9 × 1022 W Hz-1. Using these data, we predict future 1.4 GHz all-sky surveys with a resolution of ~10 arcsec and a sensitivity of 10 μJy will detect of the order of 560,000 extended low-surface-brightness radio sources of which 440,000 will have a BT morphology.

  1. Bent-tailed radio sources in the australia telescope large area survey of the Chandra deep field south

    SciTech Connect

    Dehghan, S.; Johnston-Hollitt, M.; Franzen, T. M. O.; Norris, R. P.; Miller, N. A.

    2014-11-01

    Using the 1.4 GHz Australia Telescope Large Area Survey, supplemented by the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field South. Here we present a catalog of 56 detections, which include 45 BT sources, 4 diffuse low-surface-brightness objects (1 relic, 2 halos, and 1 unclassified object), and a further 7 complex, multi-component sources. We report BT sources with rest-frame powers in the range 10{sup 22} ≤ P {sub 1.4} {sub GHz} ≤ 10{sup 26} W Hz{sup –1}, with redshifts up to 2 and linear extents from tens of kiloparsecs up to about 1 Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here, one is the most distant BT source yet detected at a redshift of 2.1688. Two of the sources are found to be associated with known clusters: a wide-angle tail source in A3141 and a putative radio relic which appears at the infall region between the galaxy group MZ 00108 and the galaxy cluster AMPCC 40. Further observations are required to confirm the relic detection, which, if successful, would demonstrate this to be the least powerful relic yet seen with P {sub 1.4} {sub GHz} = 9 × 10{sup 22} W Hz{sup –1}. Using these data, we predict future 1.4 GHz all-sky surveys with a resolution of ∼10 arcsec and a sensitivity of 10 μJy will detect of the order of 560,000 extended low-surface-brightness radio sources of which 440,000 will have a BT morphology.

  2. A Survey of z ~ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. I. A Flux-Limited Sample at zAB < 21

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Fan, Xiaohui; Annis, James; Becker, Robert H.; White, Richard L.; Chiu, Kuenley; Lin, Huan; Lupton, Robert H.; Richards, Gordon T.; Strauss, Michael A.; Jester, Sebastian; Schneider, Donald P.

    2008-03-01

    We present the discovery of five quasars at z ~ 6 selected from 260 deg2 of the Sloan Digital Sky Survey (SDSS) southern survey, a deep imaging survey obtained by repeatedly scanning a stripe along the celestial equator. The five quasars with 20 < zAB < 21 are 1-2 magnitudes fainter than the luminous z ~ 6 quasars discovered in the SDSS main survey. One of them was independently discovered by the UKIRT Infrared Deep Sky Survey. These quasars, combined with another z ~ 6 quasar known in this region, make a complete flux-limited quasar sample at zAB < 21. The sample spans the redshift range 5.85 <= z <= 6.12 and the luminosity range -26.5 <= M 1450 <= -25.4 (H 0 = 70 km s-1 Mpc-1, Ω m = 0.3, and ΩΛ = 0.7). We use the 1/Va method to determine that the comoving quasar spatial density at langzrang = 6.0 and langM 1450rang = -25.8 is (5.0 ± 2.1) × 10-9 Mpc-3 mag-1. We model the bright-end quasar luminosity function (QLF) at z ~ 6 as a power law Φ(L 1450) vprop L β 1450. The slope β calculated from a combination of our sample and the luminous SDSS quasar sample is -3.1 ± 0.4, significantly steeper than the slope of the QLF at z ~ 4. Based on the derived QLF, we find that the quasar/active galactic nucleus (AGN) population cannot provide enough photons to ionize the intergalactic medium (IGM) at z ~ 6 unless the IGM is very homogeneous and the luminosity (L*1450) at which the QLF power law breaks is very low. Based on observations obtained with the Sloan Digital Sky Survey, which is owned and operated by the Astrophysical Research Consortium; the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution; the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration, and was made possible by the generous financial

  3. A Very High Resolution, Deep-Towed Multichannel Seismic Survey in the Yaquina Basin off Peru ? Technical Design of the new Deep-Tow Streamer

    NASA Astrophysics Data System (ADS)

    Bialas, J.; Breitzke, M.

    2002-12-01

    Within the project INGGAS a new deep towed acoustic profiling instrument consisting of a side scan sonar fish and a 26 channel seismic streamer has been developed for operation in full ocean depth. The digital channels are build by single hydrophones and three engineering nodes (EN) which are connected either by 1 m or 6.5 m long cable segments. Together with high frequent surface sources (e.g. GI gun) this hybrid system allows to complete surveys with target resolutions of higher frequency content than from complete surface based configurations. Consequently special effort has been addressed to positioning information of the submerged towed instrument. Ultra Short Base Line (USBL) navigation of the tow fish allows precise coordinate evaluation even with more than 7 km of tow cable. Specially designed engineering nodes comprise a single hydrophone with compass, depth, pitch and roll sensors. Optional extension of the streamer up to 96 hydrophone nodes and 75 engineering nodes is possible. A telemetry device allows up- and downlink transmission of all system parameters and all recorded data from the tow fish in real time. Signals from the streamer and the various side scan sensors are multiplexed along the deep-sea cable. Within the telemetry system coaxial and fiber optic connectors are available and can be chosen according to the ships needs. In case of small bandwidth only selected portions of data are transmitted onboard to provide full online quality control while a copy of the complete data set is stored within the submerged systems. Onboard the record strings of side scan and streamer are demultiplexed and distributed to the quality control (QC) systems by Ethernet. A standard marine multichannel control system is used to display shot gather, spectra and noise monitoring of the streamer channels as well as data storage in SEG format. Precise navigation post processing includes all available positioning information from the vessel (DGPS), the USBL, the

  4. The Fornax Deep Survey with VST. I. The Extended and Diffuse Stellar Halo of NGC 1399 out to 192 kpc

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Capaccioli, M.; Grado, A.; Limatola, L.; Spavone, M.; Napolitano, N. R.; Paolillo, M.; Peletier, R. F.; Cantiello, M.; Lisker, T.; Wittmann, C.; Venhola, A.; Hilker, M.; D'Abrusco, R.; Pota, V.; Schipani, P.

    2016-03-01

    We have started a new, deep multi-imaging survey of the Fornax cluster, dubbed the Fornax Deep Survey (FDS), at the VLT Survey Telescope (VST). In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC 1399 in the core of the cluster. We found that the core of the Fornax cluster is characterized by a very extended and diffuse envelope surrounding the luminous galaxy NGC 1399: we map the surface brightness out to 33 arcmin (˜192 kpc) from the galaxy center and down to μg ˜ 31 mag arcsec-2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region on the west side of NGC 1399 and toward NGC 1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC 1387 on its east side is stripped away. By fitting the light profile, we found that there exists a physical break radius in the total light distribution at R = 10 arcmin (˜58 kpc) that sets the transition region between the bright central galaxy and the outer exponential halo, and that the stellar halo contributes 60% of the total light of the galaxy (Section 3.5). We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive bright cluster galaxies (i.e., 13\\lt {log}{M}200/{M}⊙ \\lt 14), we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with stellar mass in the range 108-1011 M⊙. This might suggest that the halo of NGC 1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, different from the Virgo

  5. Joint US-Japan Observations with the Infrared Space Observatory (ISO): Deep Surveys and Observations of High-Z Objects

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    1997-01-01

    Several important milestones were passed during the past year of our ISO observing program: (1) Our first ISO data were successfully obtained. ISOCAM data were taken for our primary deep field target in the 'Lockman Hole'. Thirteen hours of integration (taken over 4 contiguous orbits) were obtained in the LW2 filter of a 3 ft x 3 ft region centered on the position of minimum HI column density in the Lockman Hole. The data were obtained in microscanning mode. This is the deepest integration attempted to date (by almost a factor of 4 in time) with ISOCAM. (2) The deep survey data obtained for the Lockman Hole were received by the Japanese P.I. (Yoshi Taniguchi) in early December, 1996 (following release of the improved pipeline formatted data from Vilspa), and a copy was forwarded to Hawaii shortly thereafter. These data were processed independently by the Japan and Hawaii groups during the latter part of December 1996, and early January, 1997. The Hawaii group made use of the U.S. ISO data center at IPAC/Caltech in Pasadena to carry out their data reduction, while the Japanese group used a copy of the ISOCAM data analysis package made available to them through an agreement with the head of the ISOCAM team, Catherine Cesarsky. (3) Results of our LW2 Deep Survey in the Lockman Hole were first reported at the ISO Workshop "Taking ISO to the Limits: Exploring the Faintest Sources in the Infrared" held at the ISO Science Operations Center in Villafranca, Spain (VILSPA) on 3-4 February, 1997. Yoshi Taniguchi gave an invited presentation summarizing the results of the U.S.-Japan team, and Dave Sanders gave an invited talk summarizing the results of the Workshop at the conclusion of the two day meeting. The text of the talks by Taniguchi and Sanders are included in the printed Workshop Proceedings, and are published in full on the Web. By several independent accounts, the U.S.-Japan Deep Survey results were one of the highlights of the Workshop; these data showed

  6. The SCUBA-2 Cosmology Legacy Survey: galaxies in the deep 850 μm survey, and the star-forming `main sequence'

    NASA Astrophysics Data System (ADS)

    Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Roseboom, I.; Geach, J. E.; Cirasuolo, M.; Aretxaga, I.; Bowler, R. A. A.; Banerji, M.; Bourne, N.; Coppin, K. E. K.; Chapman, S.; Hughes, D. H.; Jenness, T.; McLure, R. J.; Symeonidis, M.; Werf, P. van der

    2016-06-01

    We investigate the properties of the galaxies selected from the deepest 850-μm survey undertaken to date with (Submillimetre Common-User Bolometer Array 2) SCUBA-2 on the James Clerk Maxwell Telescope as part of the SCUBA-2 Cosmology Legacy Survey. A total of 106 sources (>5σ) were uncovered at 850 μm from an area of ≃150 arcmin2 in the centre of the COSMOS/UltraVISTA/Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field, imaged to a typical depth of σ850 ≃ 0.25 mJy. We utilize the available multifrequency data to identify galaxy counterparts for 80 of these sources (75 per cent), and to establish the complete redshift distribution for this sample, yielding bar{z} = 2.38± 0.09. We have also been able to determine the stellar masses of the majority of the galaxy identifications, enabling us to explore their location on the star formation rate:stellar mass (SFR:M*) plane. Crucially, our new deep 850-μm-selected sample reaches flux densities equivalent to SFR ≃ 100 M⊙ yr-1, enabling us to confirm that sub-mm galaxies form the high-mass end of the `main sequence' (MS) of star-forming galaxies at z > 1.5 (with a mean specific SFR of sSFR = 2.25 ± 0.19 Gyr-1 at z ≃ 2.5). Our results are consistent with no significant flattening of the MS towards high masses at these redshifts. However, our results add to the growing evidence that average sSFR rises only slowly at high redshift, resulting in log10sSFR being an apparently simple linear function of the age of the Universe.

  7. Development of novel electromagnetic antenna for deep target marine CSEM survey

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Yahya, Noorhana; Shafie, Afza; Nasir, Nadeem; Kashif, Muhammad; Zaid, Hasnah Mohd

    2012-09-01

    Marine controlled source electromagnetic method (MCSEM) is a new and versatile method for hydrocarbon detection. Deep sea hydrocarbon reservoir exploration is still challenging and expensive. Due to unreliability for the detection of DHIs using seismic data, new methods have been investigated. Sea bed logging (SBL) is a new technique for the detection of deep target hydrocarbon and has potential to reduce the risks of DHIs (direct hydrocarbon indicators) in deep sea environment. The magnitude of EM waves is very important for the detection of deep target hydrocarbon reservoir below 4000m from the sea floor. Nanotechnology has been introduced very effective and shows promising results in many research fields. Ferrite magnetic materials play an important role in many applications due to its versatile magnetic properties. The aluminum based EM antenna is developed and NiZn, YIG ferrite as magnetic feeders are used to increase the field strength from EM antenna. FESEM images show that grain size increases with the increase of sintering temperature and ranges from 30 to 60nm for Ni0.8Zn0.2Fe2O4 where as grain size increases from 45 to 110nm for Y3Fe5O12 samples. Due to better magnetic properties, samples (Ni0.8Zn0.2Fe2O4-PVDF) sintered at 950°C and (Y3Fe5O12-PVDF) sintered at 1350°C were used as magnetic feeders for the EM antenna. It was investigated that magnitude of EM waves from the novel EM antenna with (Ni0.8Zn0.2Fe2O4-PVDF) sintered at 950°C and Y3Fe5O12-PVDF) sintered at 1150°C increases up to 143% and 220% respectively in the lab scale environment. Modeling results by using CST software shows that new EM antenna with magnetic feeders has an ability to increase the D, E, B and H field components. This novel EM antenna with magnetic feeders may be used for the deep target hydrocarbon detection due to enhanced field strength. This new EM transmitter based on nanotechnology may open new horizons for oil and gas industry for deep target hydrocarbon reservoir.

  8. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  9. Multiparametrical survey to understand the dynamic of monitored deep seated Landslide (La Clapière DSL)

    NASA Astrophysics Data System (ADS)

    Palis, Edouard; Lebourg, Thomas; Vidal, Maurin; Vitard, Clement; Tric, Emmanuel

    2014-05-01

    The geology and the structure of a deep seated landslide (La Clapiere with 65 million m3, south eastern France) explains the complex hydrology of the site which plays a key-role in the destabilization and the multiphase dynamics of the slope (water circulation within the sliding mass, fluid exchanges between superficial and deep layers aquifer through faults). To understand fluid circulations within the unstable slope, a pluri-annual multi parametric survey was set up, but since 18 months the survey combines new research multiparametric station. The landslide (La Clapiere) is located in the Argentera-Mercantour massif, and it has been instrumented since 1982 by academic researchers and since 2003 by the Multidisciplinary Observatory of Versant Instabilities (OMIV, the French National Observation Service (SNO)). A permanent electrical tomography monitoring was installed on the landslide since November 2012 to complement the actual monitoring system (GPS, seismic, pluviometric and hydrogeologic data). The aim of this study is to analyze the temporal evolution of resistivity, positioning and pluviometry during the November 2012 to March 2013 period. A qualitative and statistical approach by clustering, principal component analysis (PCA), and probability density function (Pdf) of resistivity data, coupled with pluviometric and GPS data provides a better understanding of the dynamics in this place. Rainfall induces strong accelerations of the rockslide movement. This new statistical study also explained the major roles of the fault and the basement of the landslide, and the time chronology of the water flow in the massif.

  10. VizieR Online Data Catalog: International Deep Planet Survey results (Galicher+, 2016)

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafreniere, D.; Doyon, R.; Nielsen, E. L.

    2016-07-01

    Ages, spectral types and distances of 286 nearby stars. Contrast detection limits of the imaging survey. Multiple stellar systems. Detected exoplanets, sub-stellar candidates and background objects. (5 data files).

  11. Deep seismic survey images crustal structure of Tornquist Zone beneath southern Baltic Sea

    SciTech Connect

    Not Available

    1991-06-01

    The Tornquist Zone is Europe's longest tectonic lineament and bisects the continent in a NW-SE direction from the North Sea (off NW Denmark) to the Black Sea. New deep seismic reflection and coincident refraction data have been collected across its 50 km wide, intensely faulted and inverted NW part. The marine reflection profile in the area north of Bornholm Island shows a tilted block structure in the rigid upper crust, whereas the lower crust seems to be more gently uplifted. A complex transition from the highly reflective lower crust to the mantle is indicated by mantle reflections and a curious wide-angle event recorded by a landstation on Bornholm Island. The authors suggest that deep-reaching inversion tectonics, induced by Alpine and Carpathian orogeny, were responsible for the development of the gross crust-mantle structure of the Tornquist Zone in the study area, which seems to be similar to that in Poland.

  12. Spectroscopic CCD surveys for quasars at large redshift. I - A deep PFUEI survey. [Prime Focus Universal Extragalactic Instrument

    NASA Technical Reports Server (NTRS)

    Schmidt, M.; Schneider, D. P.; Gunn, J. E.

    1986-01-01

    A survey for faint quasars has been conducted using slitless spectroscopy with the PFUEI at the 200 inch (5 m) telescope. The survey covers a total of 0.91 sq deg in 113 fields at galactic latitudes above 30 deg. Calibrated spectra in the range 4500-7200 A were obtained for more than 9000 objects. Emission-line candidates were selected on the basis of two criteria: the equivalent width must exceed 50 A, and the signal-to-noise ratio of the detection of the line versus the sky background should be larger than 7. Among 45 candidates so selected, subsequent slit spectroscopy confirmed 27 emission-line objects. Among these, 17 are emission-line galaxies with redshifts in the range 0.04-0.31, and 10 are quasars with redshifts between 0.91 and 2.66. The well-defined selection criteria for these objects, together with the distribution of rest frame equivalent widths of the emission lines, allow derivation of the area of sky covered as a function of the continuum limiting magnitude. The observed number of quasars in the redshift range 0.7-2.7 agrees well with that predicted by the luminosity function models published by Schmidt and Green in 1983. It is concluded that quasars with an absolute magnitude of M(B) = -25 suffer a redshift cutoff near or below a redshift of 3.

  13. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys

    USGS Publications Warehouse

    Quattrini, Andrea; Demopoulos, Amanda

    2016-01-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013–2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494–4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities

  14. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys.

    PubMed

    Quattrini, Andrea M; Demopoulos, Amanda W J

    2016-12-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013-2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494-4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our

  15. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys.

    PubMed

    Quattrini, Andrea M; Demopoulos, Amanda W J

    2016-12-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013-2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494-4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our

  16. THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG

    SciTech Connect

    Schinnerer, E.; Sargent, M. T.; Bondi, M.; Smolcic, V.; Bertoldi, F.; Datta, A.; Carilli, C. L.; Blain, A.; Scoville, N. Z.; Ciliegi, P.; Koekemoer, A.

    2010-06-15

    In the context of the VLA-COSMOS Deep project, additional VLA A array observations at 1.4 GHz were obtained for the central degree of the COSMOS field and combined with the existing data from the VLA-COSMOS Large project. A newly constructed Deep mosaic with a resolution of 2.''5 was used to search for sources down to 4{sigma} with 1{sigma} {approx} 12 {mu}Jy beam{sup -1} in the central 50' x 50'. This new catalog is combined with the catalog from the Large project (obtained at 1.''5 x 1.''4 resolution) to construct a new Joint catalog. All sources listed in the new Joint catalog have peak flux densities of {>=}5{sigma} at 1.''5 and/or 2.''5 resolution to account for the fact that a significant fraction of sources at these low flux levels are expected to be slightly resolved at 1.''5 resolution. All properties listed in the Joint catalog, such as peak flux density, integrated flux density, and source size, are determined in the 2.''5 resolution Deep image. In addition, the Joint catalog contains 43 newly identified multi-component sources.

  17. The VIMOS VLT deep survey. The K-band follow-up in the 0226-04 field

    NASA Astrophysics Data System (ADS)

    Temporin, S.; Iovino, A.; Bolzonella, M.; McCracken, H. J.; Scodeggio, M.; Garilli, B.; Bottini, D.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Picat, J. P.; Scaramella, R.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Cucciati, O.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Vergani, D.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; de la Torre, S.; Lamareille, F.; Mellier, Y.; Walcher, C. J.

    2008-04-01

    We present a new K_s-band survey that represents a significant extension to the previous wide-field K_s-band imaging survey within the 0226-04 field of the VIMOS-VLT deep survey (VVDS). The new data add ~458 arcmin2 to the previous imaging program, thus allowing us to cover a total contiguous area of ~600 arcmin2 within this field. Sources were identified both directly on the final K-band mosaic image and on the corresponding, deep χ^2-g'r'i' image from the CFHT Legacy Survey in order to reduce contamination, while ensuring compilation of a truly K-selected catalogue down to the completeness limit of the K_s-band. The newly determined K_s-band magnitudes are used in combination with the ancillary multiwavelength data for determining accurate photometric redshifts. The final catalogue totals ~52 000 sources, out of which ~4400 have a spectroscopic redshift from the VVDS first epoch survey. The catalogue is 90% complete down to KVega = 20.5 mag. We present K_s-band galaxy counts and angular correlation function measurements down to this magnitude limit. Our results are in good agreement with previously published work. We show that using K magnitudes to determine photometric redshifts significantly lowers the incidence of catastrophic errors. The data presented in this paper are publicly available through the CENCOS database. Based on observations collected at the European Southern Observatory New Technology Telescope, La Silla, Chile, programme 075.A-0752(A), on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, programme 070.A-9007(A), and on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products

  18. Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey -- GOODS-South Field, Non-SNe-Searched Visits

    NASA Astrophysics Data System (ADS)

    Faber, Sandra

    2011-10-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey {CANDELS}is designed to document the ?rst third of galactic evolution from z =8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IRand ACS. It will also find the first Type Ia SNe beyond z > 1.5 andestablish their accuracy as standard candles for cosmology. Fivepremier multi-wavelength sky regions selected from the SpitzerExtragalactic Deep Survey {SEDS} provide complementary IRAC imagingdata down to 26.5 AB mag, a unique resource for stellar masses at allredshifts. The use of ?ve widely separated ?elds mitigates cosmicvariance and yields statistically robust and complete samples ofgalaxies down to 10^9 solar masses out to z 8.The program merges two originally separate MCT proposals. The Faberprogram incorporates a ?Wide? imaging survey in three separate fieldsto 2 orbit depth over 0.2 sq. degrees, plus a ?Deep? imaging surveyto 12 orbit depth in the two GOODS regions over 0.04 sq. degrees.When combined with ultra-deep imaging from the Hubble Ultradeep Fieldprogram {GO 11563}, the result is a three-tiered strategy that ef?cientlysamples both bright/rare and faint/common extragalactic objects. TheFerguson program adds an extensive high-redshift Type Ia SNe search,plus ultraviolet "daytime" UVIS exposures in GOODS-N to exploit theCVZ opportunity in that field.This program, GO 12064, is part of the Wide mosaic survey, which has thefollowing field centers and sizes: Field ID RA{2000} Dec{2000} WFC3 Dim. PA on sky UDS 02 17 38 -05 12 02 4x11 270 COSMOS 10 00 31 +02 24 00 4x11 180 EGS 14 19 31 +52 54 10 3x15 41 Science highlights from the Wide program: * Underlying structural properties of galaxies as revealed by WFC3-IR images sensitive to older stars {beyond the 4000-A break} and less affected by dust than ACS. A key redshift is z 2, where star-formation peaks, QSOs are most abundant, and where restframe B-band is still accessible to WFC3. Sample questions include: - Structure in young vs. old

  19. CHILES Con Pol: Probing galaxy evolution, the dark Universe, and cosmic magnetism with a deep 1000 hour Jansky VLA survey

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Chiles Con Pol Collaboration

    2014-04-01

    We recently started a 1000 hour campaign to observe 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz with the Jansky VLA, as part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an unprecedented SKA-era sensitivity of 0.7 uJy per 4 arcsecond FWHM beam. Here we present the key goals of CHILES Con Pol, which are to (i) produce a source catalog of legacy value to the astronomical community, (ii) measure differential source counts in total intensity, linear polarization, and circular polarization in order to constrain the redshift and luminosity distributions of source populations, (iii) perform a novel weak lensing study using radio polarization as an indicator of intrinsic alignment to better study dark energy and dark matter, and (iv) probe the unknown origin of cosmic magnetism by measuring the strength and structure of intergalactic magnetic fields in the filaments of large scale structure. The CHILES Con Pol source catalog will be a useful resource for upcoming wide-field surveys by acting as a training set for machine learning algorithms, which can then be used to identify and classify radio sources in regions lacking deep multiwavelength coverage.

  20. The DEEP2 Galaxy Redshift Survey: The Evolution of Void Statistics from z ~ 1 to z ~ 0

    NASA Astrophysics Data System (ADS)

    Conroy, Charlie; Coil, Alison L.; White, Martin; Newman, Jeffrey A.; Yan, Renbin; Cooper, Michael C.; Gerke, Brian F.; Davis, Marc; Koo, David C.

    2005-12-01

    We present measurements of the void probability function (VPF) at z~1 using data from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Redshift Survey and its evolution to z~0 using data from the Sloan Digital Sky Survey (SDSS). We measure the VPF as a function of galaxy color and luminosity in both surveys and find that it mimics trends displayed in the two-point correlation function, ξ: namely, that samples of brighter, red galaxies have larger voids (i.e., are more strongly clustered) than fainter, blue galaxies. We also clearly detect evolution in the VPF with cosmic time, with voids being larger in comoving units at z~0. We find that the reduced VPF matches the predictions of a ``negative binomial'' model for galaxies of all colors, luminosities, and redshifts studied. This model lacks a physical motivation but produces a simple analytic prediction for sources of any number density and integrated two-point correlation function, ξ¯. This implies that differences in the VPF across different galaxy populations are consistent with being due entirely to differences in the population number density and ξ¯. We compare the VPF at z~1 to N-body ΛCDM simulations and find good agreement between the DEEP2 data and mock galaxy catalogs. Interestingly, we find that the dark matter particle reduced VPF follows the physically motivated ``thermodynamic'' model, while the dark matter halo reduced VPF more closely follows the negative binomial model. The robust result that all galaxy populations follow the negative binomial model appears to be due primarily to the clustering of dark matter halos. The reduced VPF is insensitive to changes in the parameters of the halo occupation distribution, in the sense that halo models with the same ξ¯ will produce the same VPF. For the wide range of galaxies studied, the VPF therefore does not appear to provide useful constraints on galaxy evolution models that cannot be gleaned from studies of ξ¯ alone.

  1. CANDIDATE CLUSTERS OF GALAXIES AT z > 1.3 IDENTIFIED IN THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD SURVEY

    SciTech Connect

    Rettura, A.; Stern, D.; Martinez-Manso, J.; Gettings, D.; Gonzalez, A. H.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Stanford, S. A.; Bartlett, J. G.

    2014-12-20

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg{sup 2} Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≤ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density n{sub c}=(0.7{sub −0.6}{sup +6.3})×10{sup −7} h{sup 3} Mpc{sup −3} and a spatial clustering correlation scale length r {sub 0} = (32 ± 7) h {sup –1} Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M {sub min}, we derive that at z = 1.5 these clusters reside in halos larger than M{sub min}=1.5{sub −0.7}{sup +0.9}×10{sup 14} h{sup −1} M{sub ⊙}. We find that the mean mass of our cluster sample is equal to M{sub mean}=1.9{sub −0.8}{sup +1.0}×10{sup 14} h{sup −1} M{sub ⊙}; thus, our sample contains the progenitors of

  2. Feasibility of a time-domain electromagnetic survey for mapping deep-sea hydrothermal deposits

    NASA Astrophysics Data System (ADS)

    Jang, H.; KIM, H. J.

    2014-12-01

    Marine controlled-source electromagnetic (CSEM) surveying has already become a popular tool for hydrocarbon exploration. Possible targets of the marine CSEM survey, other than hydrocarbon, may be marine hydrothermal mineral deposits. In transient EM (TEM) measurements, secondary fields which contain information on hydrothermal deposits in the seafloor can be measured in the absence of strong primary fields. The TEM system is useful to the development of compact, autonomous instruments which are well suited to submersible-based surveys. In this paper, we investigate the possibility of applying an in-loop TEM system to the detection of marine hydrothermal deposits through a one-dimensional modeling and inversion study. The feasibility study showed that TEM responses are very sensitive to a highly conductive layer. Time-domain target responses are larger and appear earlier in horizontal magnetic fields than in vertical ones. An inverse problem is formulated with the Gauss-Newton method and solved with the damped and smoothness-constrained least-squares approach. The test example for a marine hydrothermal TEM survey demonstrated that the depth extent, conductivity and thickness of the highly conductive layer are well resolved.

  3. A Survey Analysis of Alcohol Use at a Black University in the Deep South.

    ERIC Educational Resources Information Center

    Grenier, Charles E.; Borskey, Erma J.; Folse, Debbie W.

    1998-01-01

    Presents findings from a scientific survey of student drug and alcohol behavior at Southern University, an all-black university. Results indicate that alcohol and wine coolers are the drinks of choice. Most of the students are moderate drinkers; however, 13% can be classified as relatively high risk. (MKA)

  4. CHILES Con Pol: An ultra-deep JVLA survey probing galaxy evolution and cosmic magnetism

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Momjian, Emmanuel; van Gorkom, Jacqueline; Rupen, Michael P.; Greiner, Maksim; Ensslin, Torsten A.; Bonzini, Margherita; Padovani, Paolo; Harrison, Ian; Brown, Michael L.; Gim, Hansung; Yun, Min S.; Maddox, Natasha; Stewart, Adam; Fender, Rob P.; Tremou, Evangelia; Chomiuk, Laura; Peters, Charee; Wilcots, Eric M.; Lazio, Joseph

    2015-08-01

    We are undertaking a 1000 hour campaign with the Karl G. Jansky VLA to survey 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz. Our observations are part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an SKA-era sensitivity of 500 nJy per 4 arcsecond resolving beam, the deepest view of the radio sky yet. CHILES Con Pol will open new and fertile parameter space, with sensitivity to star formation rates of 10 Msun per year out to an unprecedented redshift of z=2, and ultra-luminous infrared galaxies and sub-millimeter galaxies out to redshifts of z=8 and beyond. This rich resource will extend the utility of radio band studies beyond the usual radio quasar and radio galaxy populations, opening sensitivity to the starforming and radio-quiet AGN populations that form the bulk of extragalactic sources detected in the optical, X-ray, and infrared bands. In this talk I will outline the key science of CHILES Con Pol, including galaxy evolution and novel measurements of intergalactic magnetic fields. I will present initial results from the first 180 hours of the survey and describe our forthcoming Data Release 1. I invite the astronomical community to consider unique science that can be pursued with CHILES Con Pol radio data.

  5. Regional Comparisons from a Global Survey of Deep-Ocean Sound

    NASA Astrophysics Data System (ADS)

    Haxel, J. H.; Dziak, R. P.; Matsumoto, H.; Lau, T. K.; Mellinger, D. K.; Fowler, M. J.

    2008-12-01

    A NOAA Pacific Marine Environmental Lab archive of continuous deep-ocean sound recordings from hydrophones deployed in the equatorial East Pacific (EEP), central Mid-Atlantic (CMA), northern Mid-Atlantic (NMA), Bering Sea (BS), Antarctic Peninsula (ANP), and Indian Ocean (IO) provides insight into the overall structure for the deep-water global sound field. The hydrophones are moored in the SOFAR channel, taking advantage of the efficient propagation characteristics that enable the instruments to effectively monitor large sections of the global oceans. Although not always concurrent, the deployment of the hydrophone arrays from 1996 to present allows for an up-to-date assessment of the global-scale distribution of ocean sound levels in discrete frequency bands. Comparisons of intra- and inter-annual time-averaged ambient-sound levels reveal strong latitudinal variations, where higher latitudes correspond with higher noise levels. Seismic and volcanic activity dominate the lower frequency bands (0-10 Hz) within all of the hydrophone arrays. Of interest is the periodic nature of broad-band ice noise observed in the ANP acoustic data, suggesting a climate link for these signals related to ice breakup during seasonal warming events (Matsumoto et al., 2008). In addition, the multi-species marine-mammal vocalizations observed in all of our hydrophone datasets dominate sound-energy levels at specific frequencies.

  6. A Deep Percolation Model for Estimating Ground-Water Recharge: Documentation of Modules for the Modular Modeling System of the U.S. Geological Survey

    USGS Publications Warehouse

    Vaccaro, J.J.

    2007-01-01

    A daily water-budget model for estimating ground-water recharge, the Deep Percolation Model, was modularized for inclusion into the U.S. Geological Survey's Modular Modeling System. The model was modularized in order to facilitate estimation of ground-water recharge under a large range in climatic, landscape, and land-use and land-cover conditions. The model can be applied to areas as large as regions or as small as a field plot. An overview of the Modular Modeling System and the Deep Percolation Model is presented. Data requirements, parameters, and variables for the model are described. The modules that compose the Deep Percolation Model are documented.

  7. Mapping the deep: The past and future promise of transneptunian surveys

    NASA Astrophysics Data System (ADS)

    Bannister, M.

    2014-07-01

    Exploring the populations and structure of the outer Solar System requires us to examine the sky. The improving sophistication of astronomical techniques have brought us in the last century from painstaking naked-eye examination of photographic plates to identify moving sources, to supercomputer-powered image subtraction that can pull moving sources from the depths of the Galactic plane. Such advances in our ability to discover new objects have allowed us to build an understanding of the Solar System's distant populations. The continued effort to survey the sky for new discoveries has explored the phase space of much of the transneptunian (TNO) size distribution. At the largest end, from wide-field surveys with small-to-medium optical telescopes in both North and Southern Hemispheres, the dwarf planets are now complete to m˜19.5 (Schwamb et al. 2014) and nearing completion to m˜21.5. Infrared surveys such as WISE have constrained the absence of a brown dwarf or large gas giant planet such that there can be no Saturn out to 28,000 au and no Jupiter out to 82,000 au (Luhman 2014). Similarly, pulsar timing measurements exclude line-of-sight shifts of the Solar System's barycentre due to any lurking giant planet (Verbiest et al. 2008); such timing measurements will only be improved by the Square Kilometre Array's all-sky decadal measurements of pulsars (Seto & Cooray 2007). The smaller, more abundant TNOs have been slowly constrained by surveys on larger facilities (as listed in Kavelaars et al and Petit et al. 2008): their part of the size distribution has a clear change in slope near H of 7 (Fraser et al. 2014). Characterisation of objects for their size, albedo, thermal properties and density has followed more slowly: Spitzer and Herschel have given us thermal properties; broad-band photometric surveys have shown that the colours of TNOs present distinct surface classes, ranging from the reddest in the Solar System to fully neutral reflectors; while large

  8. Documentation for the machine-readable version of a deep objective-prism survey for large Magellanic cloud members

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    This catalog contains 1273 proven or probable Large Magellanic Cloud (LMC) members, as found on deep objective-prism plates taken with the Curtis Schmidt telescope at Cerro Tololo Inter-American Observatory in Chile. The stars are generally brighter than about photographic magnitude 14. Approximate spectral types were determined by examination of the 580 A/mm objective-prism spectra; approximate 1975 positions were obtained by measuring relative to the 1975 coordinate grids on the Uppsala-Mount Stromlo Atlas of the LMC (Gascoigne and Westerlund 1961), and approximate photographic magnitudes were determined by averaging image density measures from the plates and image-diameter measures on the 'B' charts. The machine-readable version of the LMC survey catalog is described to enable users to read and process the tape file without problems or guesswork.

  9. The optical identification content of the Einstein Observatory deep X-ray survey of a region in Pavo

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Murray, S. S.; Giacconi, R.; Bechtold, J.; Murdin, P.; Smith, M.; Macgillivray, H. T.; Ward, M.; Danziger, J.; Lub, J.

    1983-01-01

    Results are presented from the Einstein deep X-ray survey in Pavo, with correlated optical and radio observations of a complete sample of candidate identifications. There are 16 X-ray sources detected with positional accuracy better than 10 arcsec, of which five are identified, with a further seven (and a maximum nine) probable identifications. Of the identified sources, four are QSOs with J-magnitude about 20 (one is an inverted spectrum radio source) and one is associated with extended emission from a pair or cluster of galaxies. Of the probable identifications, one is a galaxy and the rest are a subset of a yellow stellar object population which may also be QSOs. Identifications with QSOs and QSO candidates with J less than 24 account for 60-80 percent of the detected sources.

  10. THE VERY LARGE ARRAY 1.4 GHz SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: SECOND DATA RELEASE

    SciTech Connect

    Miller, Neal A.; Bonzini, Margherita; Mainieri, Vincenzo; Padovani, Paolo; Rosati, Piero; Fomalont, Edward B.; Kellermann, Kenneth I.; Tozzi, Paolo; Vattakunnel, Shaji

    2013-04-01

    Deep radio observations at 1.4 GHz for the Extended Chandra Deep Field South were performed in 2007 June through September and presented in a first data release. The survey was made using six separate pointings of the Very Large Array with over 40 hr of observation per pointing. In the current paper, we improve on the data reduction to produce a second data release (DR2) mosaic image. This DR2 image covers an area of about a third of a square degree, reaches a best rms sensitivity of 6 {mu}Jy, and has a typical sensitivity of 7.4 {mu}Jy per 2.''8 by 1.''6 beam. We also present a more comprehensive catalog, including sources down to peak flux densities of five or more times the local rms noise along with information on source sizes and relevant pointing data. We discuss in some detail the consideration of whether sources are resolved under the complication of a radio image created as a mosaic of separate pointings each suffering some degree of bandwidth smearing, and the accurate evaluation of the flux densities of such sources. Finally, the radio morphologies and optical/near-IR counterpart identifications are used to identify 17 likely multiple-component sources and arrive at a catalog of 883 radio sources, which is roughly double the number of sources contained in the first data release.

  11. The Sloan Digital Sky Survey COADD: 275 deg{sup 2} of deep Sloan Digital Sky Survey imaging on stripe 82

    SciTech Connect

    Annis, James; Soares-Santos, Marcelle; Dodelson, Scott; Hao, Jiangang; Jester, Sebastian; Johnston, David E.; Kubo, Jeffrey M.; Lampeitl, Hubert; Lin, Huan; Miknaitis, Gajus; Yanny, Brian; Strauss, Michael A.; Gunn, James E.; Lupton, Robert H.; Becker, Andrew C.; Ivezić, Željko; Fan, Xiaohui; Jiang, Linhua; Seo, Hee-Jong; Simet, Melanie

    2014-10-20

    We present details of the construction and characterization of the coaddition of the Sloan Digital Sky Survey (SDSS) Stripe 82 ugriz imaging data. This survey consists of 275 deg{sup 2} of repeated scanning by the SDSS camera over –50° ≤ α ≤ 60° and –1.°25 ≤ δ ≤ +1.°25 centered on the Celestial Equator. Each piece of sky has ∼20 runs contributing and thus reaches ∼2 mag fainter than the SDSS single pass data, i.e., to r ∼ 23.5 for galaxies. We discuss the image processing of the coaddition, the modeling of the point-spread function (PSF), the calibration, and the production of standard SDSS catalogs. The data have an r-band median seeing of 1.''1 and are calibrated to ≤1%. Star color-color, number counts, and PSF size versus modeled size plots show that the modeling of the PSF is good enough for precision five-band photometry. Structure in the PSF model versus magnitude plot indicates minor PSF modeling errors, leading to misclassification of stars as galaxies, as verified using VVDS spectroscopy. There are a variety of uses for this wide-angle deep imaging data, including galactic structure, photometric redshift computation, cluster finding and cross wavelength measurements, weak lensing cluster mass calibrations, and cosmic shear measurements.

  12. UltraVISTA: a new ultra-deep near-infrared survey in COSMOS

    NASA Astrophysics Data System (ADS)

    McCracken, H. J.; Milvang-Jensen, B.; Dunlop, J.; Franx, M.; Fynbo, J. P. U.; Le Fèvre, O.; Holt, J.; Caputi, K. I.; Goranova, Y.; Buitrago, F.; Emerson, J. P.; Freudling, W.; Hudelot, P.; López-Sanjuan, C.; Magnard, F.; Mellier, Y.; Møller, P.; Nilsson, K. K.; Sutherland, W.; Tasca, L.; Zabl, J.

    2012-08-01

    In this paper we describe the first data release of the UltraVISTA near-infrared imaging survey of the COSMOS field. We summarise the key goals and design of the survey and provide a detailed description of our data reduction techniques. We provide stacked, sky-subtracted images in YJHKs and narrow-band filters constructed from data collected during the first year of UltraVISTA observations. Our stacked images reach 5σAB depths in an aperture of 2″ diameter of ~25 in Y and ~24 in JHKs bands and all have sub-arcsecond seeing. To this 5σ limit, our Ks catalogue contains 216 268 sources. We carry out a series of quality assessment tests on our images and catalogues, comparing our stacks with existing catalogues. The 1σ astrometric rms in both directions for stars selected with 17.0 < Ks(AB) < 19.5 is ~0.08″ in comparison to the publicly-available COSMOS ACS catalogues. Our images are resampled to the same pixel scale and tangent point as the publicly available COSMOS data and so may be easily used to generate multi-colour catalogues using this data. All images and catalogues presented in this paper are publicly available through ESO's "phase 3" archiving and distribution system and from the UltraVISTA web site. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium.Catalogs are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/544/A156

  13. A deep survey for Galactic Wolf-Rayet stars. I - Motivation, search technique, and first results

    NASA Technical Reports Server (NTRS)

    Shara, Michael M.; Smith, Lindsey F.; Potter, Michael; Moffat, Anthony F. J.

    1991-01-01

    Results are presented from a survey of large areas of the southern Milky Way for Wolf-Rayet (WR) stars to 17-18th magnitude, carried out using direct narrowband and broadband Schmidt plates. Thirteen new WR stars were detected in an about 40-deg-sq region in Carina, where 24 WR stars were already known; the new stars were found to be significantly redder, fainter, and farther away than the known stars. Of the new WR stars, 11 are of subtype WN, and two are WC, compared to the 17 WN and seven WC stars among the previously known WR stars in the same area.

  14. Deep Magnetotelluric survey on Crete Island across the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Kalisperi, D.; Smirnov, M.; Kokologiannakis, A.; Pentes, G.; Makris, J. P.

    2013-12-01

    Crete Island is located in a prominent position at the fore-arc of the Hellenic Subduction Zone (HSZ), thus enabling onshore study of the Earth's deep structure. The area is characterized by a complicated geological and geotectonic setting as well as by intense geodynamics that manifests itself in high seismicity. The aim of the ongoing research project 'MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)' is to contribute to the investigation of the geoelectric structure of Southern Aegean, and particularly to try to image the Hellenic Subduction Zone. In this context, onshore magnetotelluric (MT) measurements were carried out in July 2013 on Crete Island, comprising three parallel profiles aligned to the North-South (NS) direction, yielding a site spacing of about 5 to 10 km. In total, 21 broad-band MT soundings were conducted in the period range of 0.003-1000 s organized in the three 36Km, 30Km and 42Km long NS trending profiles. Data were collected using two different types of MT instruments (an EMI MT24LF and two Uppsala type MTU2000 systems) which were running simultaneously. We present the resulting model of the conductivity structure of the HSZ in the area of Crete.

  15. The International Deep Planet Survey. I. The frequency of wide-orbit massive planets around A-stars

    NASA Astrophysics Data System (ADS)

    Vigan, A.; Patience, J.; Marois, C.; Bonavita, M.; De Rosa, R. J.; Macintosh, B.; Song, I.; Doyon, R.; Zuckerman, B.; Lafrenière, D.; Barman, T.

    2012-08-01

    Breakthrough direct detections of planetary companions orbiting A-type stars confirm the existence of massive planets at relatively large separations, but dedicated surveys are required to estimate the frequency of similar planetary systems. To measure the first estimation of the giant exoplanetary systems frequency at large orbital separation around A-stars, we have conducted a deep-imaging survey of young (8-400 Myr), nearby (19-84 pc) A- and F-stars to search for substellar companions in the ~10-300 AU range. The sample of 42 stars combines all A-stars observed in previous AO planet search surveys reported in the literature with new AO observations from VLT/NaCo and Gemini/NIRI. It represents an initial subset of the International Deep Planet Survey (IDPS) sample of stars covering M- to B-stars. The data were obtained with diffraction-limited observations in H- and Ks-band combined with angular differential imaging to suppress the speckle noise of the central stars, resulting in typical 5σ detection limits in magnitude difference of 12 mag at 1'', 14 mag at 2'' and 16 mag at 5'' which is sufficient to detect massive planets. A detailed statistical analysis of the survey results is performed using Monte Carlo simulations. Considering the planet detections, we estimate the fraction of A-stars having at least one massive planet (3-14 MJup) in the range 5-320 AU to be inside 5.9-18.8% at 68% confidence, assuming a flat distribution for the mass of the planets. By comparison, the brown dwarf (15-75 MJup) frequency for the sample is 2.0-8.9% at 68% confidence in the range 5-320 AU. Assuming power law distributions for the mass and semimajor axis of the planet population, the AO data are consistent with a declining number of massive planets with increasing orbital radius which is distinct from the rising slope inferred from radial velocity (RV) surveys around evolved A-stars and suggests that the peak of the massive planet population around A-stars may occur

  16. Galaxy evolution from deep multi-wavelength infrared surveys: a prelude to Herschel

    NASA Astrophysics Data System (ADS)

    Franceschini, A.; Rodighiero, G.; Vaccari, M.; Berta, S.; Marchetti, L.; Mainetti, G.

    2010-07-01

    Context. Studies of the generation and assembly of stellar populations in galaxies largely benefit from far-IR observations, considering that the IR flux is a close prior to the rate of star formation (the bulk of which happens in dust-obscured environments). At the same time, major episodes of nuclear AGN accretion are also dust-obscured and visible in the IR. Aims: At the end of the Spitzer cryogenic mission and the onset of the Herschel era, we review our current knowledge of galaxy evolution at IR wavelengths, and model it to achieve as far as a complete view of the evolution of cosmic sources. We also develop new tools for the analysis of background fluctuations to constrain source counts in regimes of high confusion, as it happens for the Herschel sub-mm surveys. Methods: We analysed a wide variety of new data on galaxy evolution and high-redshift source populations from Spitzer cosmological surveys, and confront them with complementary data from mm ground-based observations and constraints from the far-IR diffuse radiation, as well as preliminary results from Herschel surveys. Results: These data confirm earlier indications about a very rapid increase in galaxy volume emissivity with redshift up to z ≃ 1 [ ρ(z) ∝ (1+z)4] , the fastest evolution rate observed for galaxies at any wavelengths. The observed Spitzer counts require a combination of fast evolution for the dominant population and a bumpy spectrum with substantial PAH emission at z ~ 1 to 2. Number counts at long wavelengths (70 through 1100 μm) confirm these results. All the present data require that the fast observed evolution from z = 0 to 1 flattens around redshift 1 and then keeps approximately constant up to z ≃ 2.5 at least. Our estimated redshift-dependent bolometric comoving energy density keeps lower at z ⪆ 1.5 than some previously published results based on either large extinction corrections, or large spectral extrapolations. Conclusions: The present-day IR/sub-mm data provide

  17. A deep redshift survey of IRAS galaxies towards the Bootes void

    NASA Technical Reports Server (NTRS)

    Dey, Arjun; Strauss, Michael A.; Huchra, John

    1990-01-01

    Redshifts were measured for a complete sample of galaxies detected by the IRAS within 11.5 deg of the center of the void in Bootes discovered by Kirshner et al (1981). There are 12 IRAS galaxies within the void as defined by the above authors, seven of which were discovered in this survey. One of these has a companion at the same redshift. The resulting density of IRAS galaxies in the void is measured to be between 1/6 and 1/3 of the average density; the uncertainty is dominated by Poisson statistics. Good agreement is found between the selection function and number density derived from the present sample and those derived from the all-sky sample of Strauss (1989). The optical spectra of the newly found galaxies in the void are typical of IRAS galaxies in the field.

  18. A deep Spitzer survey of circumstellar disks in the young double cluster, h and χ Persei

    SciTech Connect

    Cloutier, Ryan; Currie, Thayne; Jayawardhana, Ray; Rieke, George H.; Kenyon, Scott J.; Balog, Zoltan E-mail: currie@astro.utoronto.ca E-mail: skenyon@cfa.harvard.edu

    2014-12-01

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ∼12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ{sub 0}) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M {sub ☉} stars appear lower than for 1-2.5 M {sub ☉} stars in other 10-30 Myr old clusters.

  19. Deep CCD Photometry and RR Lyrae Survey for the Outer-Halo Globular Cluster NGC 6229

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Borissova, J.; Spassova, N.; Ferraro, F. R.; Buonanno, R.; Sweigart, A. V.

    1997-12-01

    Deep BV CCD photometry for a large field covering the outer-halo Galactic globular cluster NGC 6229 is presented. For the first time, a color-magnitude diagram (CMD) reaching below the main-sequence turnoff has been obtained for this cluster. Previous results regarding the overall morphology of the horizontal and giant branches are confirmed. In addition, several candidate blue straggler stars are identified. However, a preliminary analysis of the cluster's CMD suggests that the putative extreme horizontal branch population suggested by Borissova et al. (1997, AJ, 113, 692) may not be present. Unfortunately, the innermost cluster regions could not be studied due to crowding. Comparison of the cluster CMD locus with the latest isochrones from VandenBerg (1997, private communication) is also presented, as is a study of the cluster age relative to a few well-studied reference globulars, using both the ``horizontal" and ``vertical" methods. We also report on an investigation of the variable stars in NGC 6229. We obtained new light curves and re-derived the periods, amplitudes and mean V and B-V magnitudes for 17 RR Lyrae stars listed in Sawyer Hogg's (1973, Publ. David Dunlap Obs., 3, No. 6) catalog. We obtained the first light curves for the RR Lyrae candidates No. 155 and No. 88 (Carney et al. 1991, AJ, 101, 1699), and confirm variability of their star No. 134, as well as of the RR Lyrae stars V3, V8 and V12 suspected by Borissova et al. (1997). A search for variable stars in our 5 x 5 arcmin field does not lead to any new variable candidates.

  20. Atwater Valley Deep-Towed Sidescan Sonar Imagery and Bathymetric Survey

    SciTech Connect

    Joan M. Gardner; Mike Czarnecki; Rick Hagen; Clyde Nishimura; Warren Wood; Chad Vaughn; Jody Bruton; Pat Hart; Emil Bergeron; Deborah Hutchinson

    2005-11-22

    The purpose of this project was to conduct detailed surface mapping of one of the areas drilled by the Joint Industry Project with ChevronTexaco to understand gas hydrates in the Gulf of Mexico. The gently sloping, mostly flat floor of the Mississippi Canyon is interrupted by mounds and depressions that presumably reflect the complex geology and geohydrology related to turbidite deposition and pervasive salt tectonism. The seafloor mounds we mapped in this study occur in approximately 1300 water depth along the floor of the Mississippi Canyon in lease block areas Atwater Valley 13 and 14. High resolution sidescan sonar (100 kHz and 500 kHz) backscatter imagery, and chirp sub-bottom profiler data were collected using the DT1 deep-towed oceanographic mapping instrument, concentrating on the region directly adjacent to and surrounding two mounds identified as, mounds D and F, and in the region directly adjacent to and surrounding the mounds. The backscatter data have been mosaiced and normalized to provide information on the shape and extent of the mounds, the possible lateral extent of fauna, such as mussel and clam fields on the mounds, possible seep related flows and the occurrence of carbonate material. The extent of a mudflow can be mapped on the southeastern side of mound F. The backscatter data show extremely high-resolution detail about the shape, relief, and morphology of the mounds. This information, coupled with porewater chemistry , DTAGS and heatflow data form a coherent picture of possible mechanics for fluid venting and flora/fauna of the seeps in this region.

  1. A Deep Spitzer Survey of Circumstellar Disks in the Young Double Cluster, h and χ Persei

    NASA Astrophysics Data System (ADS)

    Cloutier, Ryan; Currie, Thayne; Rieke, George H.; Kenyon, Scott J.; Balog, Zoltan; Jayawardhana, Ray

    2014-12-01

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ~12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ0) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M ⊙ stars appear lower than for 1-2.5 M ⊙ stars in other 10-30 Myr old clusters.

  2. Morphological Survey of Microbial Mats Near Deep-Sea Thermal Vents †

    PubMed Central

    Jannasch, Holger W.; Wirsen, Carl O.

    1981-01-01

    A microscopic survey is presented of the most commonly observed and morphologically conspicuous microorganisms found attached to natural surfaces or to artificial materials deposited in the immediate vicinity of thermal submarine vents at the Galapagos Rift ocean spreading zone at a depth of 2,550 meters. Of special interest were the following findings: (i) all surfaces intermittently exposed to H2S-containing hydrothermal fluid were covered by layers, ca. 5 to 10 μm thick, of procaryotic, gram-negative cells interspaced with amorphous metal (Mn-Fe) deposits; (ii) although some of the cells were encased by dense metal deposits, there was little apparent correlation between metal deposition and the occurrence of microbial mats, (iii) highly differentiated forms appeared to be analogues of certain cyanobacteria, (iv) isolates from massive mats of a prosthecate bacterium could be identified as Hyphomicrobium spp., (v) intracellular membrane systems similar to those found in methylotrophic and nitrifying bacteria were observed in approximately 20% of the cells composing the mats, (vi) thiosulfate enrichments made from mat material resulted in isolations of different types of sulfur-oxidizing bacteria including the obligately chemolithotrophic genus Thiomicrospira. Images PMID:16345722

  3. Radio properties of M33 supernova remnants: results from a new deep JVLA Survey

    NASA Astrophysics Data System (ADS)

    Long, Knox S.; White, Richard L.; Becker, Robert H.; Helfand, David J.; Blair, William P.; Winkler, P. Frank

    2016-06-01

    We have carried out new 6 and 20 cm observations of M33 with the Jansky Very Large Array, primarily to study the properties of supernova remnants in the galaxy. Our scaled array observations have a limiting sensitivity of about 25 μJy (5σ) and a resolution of 5`` (FWHM), corresponding to a spatial resolution of 20 pc at the distance of M33. We detect about 85 of the SNRs contained in the list of 137 optically identified SNRs described by Long et al. (2010), and a few additional objects from the survey of Lee & Lee (2014). A substantial fraction of the optical SNRs not detected are in regions where emission from H II recombination makes identification of non-thermal emission from the SNR difficult. We also discuss a blind search for SNRs based on the radio emission alone. Of the SNRs we detect in this search at radio wavelengths, 53 have also been detected at X-ray wavelengths. Thus we are able make a direct comparison of the X-ray, optical, and radio properties of the SNRs in M33, the first time that has been possible to a significant extent in an external spiral galaxy.

  4. Deep Photometry of Galaxies in the VEGAS Survey: The Case of NGC 4472

    NASA Astrophysics Data System (ADS)

    Spavone, M.

    The VST-VEGAS project is aimed at observing and studying a rich sample of nearby early-type galaxies in order to systematically characterize their properties over a wide baseline of sizes and out to the faint outskirts where data are rather scarce so far. The external regions of galaxies more easily retain signatures about the formation and evolution mechanisms which shaped them, as their relaxation time are longer, and they are more weakly influenced by processes such as mergers, secular evolution, central black hole activity, and supernova feedback on the ISM, which tend to level age and metallicity gradients. The collection of a wide photometric dataset of a large number of galaxies in various environmental conditions, may help to shed light on these questions. To this end VEGAS exploits the potential of the VLT Survey Telescope (VST) which provides high quality images of 1 deg2 field of view in order to satisfy both the requirement of high resolution data and the need of studying nearby, and thus large, objects. We present a detailed study of the surface photometry of the elliptical galaxy NGC4472 and of smaller ETGs in its field, performed by using new g and i bands images to constrain the formation history of this nearby giant galaxy, and to investigate the presence of very faint substructures in its surroundings.

  5. A deep proper motion catalog within the Sloan digital sky survey footprint

    SciTech Connect

    Munn, Jeffrey A.; Harris, Hugh C.; Tilleman, Trudy M.; Hippel, Ted von; Kilic, Mukremin; Liebert, James W.; Williams, Kurtis A.; DeGenarro, Steven; Jeffery, Elizabeth E-mail: hch@nofs.navy.mil E-mail: ted.vonhippel@erau.edu E-mail: jamesliebert@gmail.com E-mail: studiofortytwo@yahoo.com

    2014-12-01

    A new proper motion catalog is presented, combining the Sloan Digital Sky Survey (SDSS) with second epoch observations in the r band within a portion of the SDSS imaging footprint. The new observations were obtained with the 90prime camera on the Steward Observatory Bok 90 inch telescope, and the Array Camera on the U.S. Naval Observatory, Flagstaff Station, 1.3 m telescope. The catalog covers 1098 square degrees to r = 22.0, an additional 1521 square degrees to r = 20.9, plus a further 488 square degrees of lesser quality data. Statistical errors in the proper motions range from 5 mas year{sup −1} at the bright end to 15 mas year{sup −1} at the faint end, for a typical epoch difference of six years. Systematic errors are estimated to be roughly 1 mas year{sup −1} for the Array Camera data, and as much as 2–4 mas year{sup −1} for the 90prime data (though typically less). The catalog also includes a second epoch of r band photometry.

  6. A Pilot Deep Survey for X-Ray Emission from fuvAGB Stars

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Sanz-Forcada, J.; Sánchez Contreras, C.; Stute, M.

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ˜(0.002-0.2) L⊙ and the X-ray-emitting plasma temperatures are ˜(35-160) × 106 K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  7. Low solar elongation searches for NEO: a deep sky test and its implications for survey strategies

    NASA Astrophysics Data System (ADS)

    Boattini, Andrea; Milani, A.; Gronchi, G. F.; Spahr, T.; Valsecchi, G. B.

    2007-05-01

    A survey for NEOs aiming at 90% completeness for a given size range cannot ignore that a significant fraction of the population passes in the neighborhood of opposition either never or very rarely or only in very poor observing conditions. Thus, a fraction of the available telescope time needs to be used at low solar elongations in the so called "sweet spots". However, there are several penalties for such sweet spot observations: i) poorer observing conditions, implying a lower limiting magnitude; ii) shorter available observing time for each night; iii) more difficult orbit determination. Other classes of objects are poorly observed either because of higher apparent magnitude (especially Main Belt Asteroids, MBAs) or because of too slow motion (distant objects); however, this makes easier to find the NEOs. We have tested the observations and the mathematical methods of identification/orbit determination on two sweet spot test runs conducted in 2005. One performed at La Silla (ESO) with the 2.2-m and 3.5-m NTT and the other one conducted at Mauna Kea with 3.6-m CFHT and 8.3-m Subaru. Also, when short arc observations from different observing nights have to be identified, a specific difficulty occurs at the sweet spots: the same set of observations from three nights can be fitted to two incompatible orbits, in most cases including one NEO (often Aten) and one MBA. This can lead to two different failures in deciding wether a NEO has been discovered: a false positive leads to the waste of resources (follow-up, computations) for a MBA which would be more easily discovered at opposition, a false negative leads to the loss of the NEO which may not be reobservable soon. In this way we generated a large number of examples of possible discoveries with two well determined but incompatible solutions. Most of the MBA-NEO alternatives resulted in a known MBA or in a new designated one as soon as it was confirmed by a later observations. Of the 9 real NEOs detected, 1 has been

  8. The Host Galaxy Properties of Variability Selected AGN in the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Gezari, S.; Kumar, S.; Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-07-01

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV - r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  9. Molecular survey of sulphate-reducing bacteria in the deep-sea sediments of the west Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xiao, Xiang; Zhang, Haiyan; Wang, Fengping

    2008-08-01

    The sulfate-reducing bacteria (SRB) community in the deep-sea sediments of the west Pacific Warm Pool (WP) was surveyed by molecular phylogenetic analyses using primers targeting the 16S rRNA gene fragments of SRB. Specific 16S rRNA gene libraries from five sediment layers (1-cm, 3-cm, 6-cm, 10-cm and 12-cm layer) of the 12-cm core of WP-0 were constructed. The clones in the five libraries were differentiated by restriction fragment length polymorphism (RFLP) and representative clones were selected to sequence. It was found that the clones fell into four groups, which were closest related to Desulfotomaculum, Desulfacinum, Desulfomonile and Desulfanuticus. Desulfacinum-like clones were only detected in the upper layers of the sediment core, whereas Desulfomonile-like clones were only present in the deeper layers. Fluorescence in situ hybridization (FISH) was further carried out to visualize and count the SRB and bacteria in the five sediment layers. It was found that SRB constituted only a small proportion of the bacteria community (0.34% 1.95%), it had the highest content in the 3-cm layer (1.95%) and had a depth-related decreasing tendency along the 12-cm core.

  10. OT2_sserje01_2: THE HERSCHEL-AKARI NEP DEEP SURVEY: the cosmological history of stellar mass assembly and black hole accretion

    NASA Astrophysics Data System (ADS)

    Serjeant, S.

    2011-09-01

    We propose a far-IR and submm mapping survey of the premier AKARI deep field in the North Ecliptic Pole, in PACS/SPIRE parallel mode. This is the only major deep infrared field not yet covered by Herschel guaranteed or open time key projects. The outstanding and unparalleled continuous mid-IR photometric coverage from AKARI, far better than equivalent Spitzer surveys, enables a wide range of galaxy evolution diagnostics unachievable in any other survey field (including Herschel HerMES/PEP fields), by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN dust tori. The investment by AKARI in the NEP represents ~10 percent of the entire pointed observations available throughout the lifetime of AKARI. Our proposal remedies the remarkable omission from Herschel's legacy surveys of the premier extragalactic deep field from another IR space telescope. We will simultaneously identify and find photometric redshifts for the Herschel point source population, make stacking analysis detections of the galaxies which dominate the submm extragalactic background light as a function of redshift, determine the bolometric power outputs of the galaxies that dominate the submm background, compare the UV/optical/mid-IR continuum/PAH/far-IR/submm/radio star formation rate estimator in the most comprehensive IR survey data set to date, and track the coupled stellar mass assembly and black hole accretion throughout most of the history of the Universe. In OT1 the HOTAC concluded "The science output from the proposed survey will be outstanding [...] The panel was convinced that these observations should be done" but it since became clear that priority 2 time is very unlikely to be executed, so we request reclassification to priority 1.

  11. THE BLACK HOLE-BULGE MASS RELATION OF ACTIVE GALACTIC NUCLEI IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY

    SciTech Connect

    Schramm, Malte; Silverman, John D.

    2013-04-10

    We present results from a study to determine whether relations-established in the local universe-between the mass of supermassive black holes (SMBHs) and their host galaxies are in place at higher redshifts. We identify a well-constructed sample of 18 X-ray-selected, broad-line active galactic nuclei (AGNs) in the Extended Chandra Deep Field-South Survey with 0.5 < z < 1.2. This redshift range is chosen to ensure that Hubble Space Telescope (HST) imaging is available with at least two filters that bracket the 4000 A break, thus providing reliable stellar mass estimates of the host galaxy by accounting for both young and old stellar populations. We compute single-epoch, virial black hole (BH) masses from optical spectra using the broad Mg II emission line. For essentially all galaxies in our sample, their total stellar mass content agrees remarkably well, given their BH masses, with local relations of inactive galaxies and active SMBHs. We further decompose the total stellar mass into bulge and disk components separately with full knowledge of the HST point-spread function. We find that {approx}80% of the sample is consistent with the local M{sub BH}-M{sub *,{sub Bulge}} relation even with 72% of the host galaxies showing the presence of a disk. In particular, bulge-dominated hosts are more aligned with the local relation than those with prominent disks. We further discuss the possible physical mechanisms that are capable of building up the stellar mass of the bulge from an extended disk of stars over the subsequent 8 Gyr.

  12. Luminous and High Stellar Mass Candidate Galaxies at z ≈ 8 Discovered in the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    NASA Astrophysics Data System (ADS)

    Yan, Haojing; Finkelstein, Steven L.; Huang, Kuang-Han; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Newman, Jeffrey A.; Somerville, Rachel S.; Davé, Romeel; Faber, S. M.; Papovich, Casey; Guo, Yicheng; Giavalisco, Mauro; Lee, Kyoung-soo; Reddy, Naveen; Cooray, Asantha R.; Siana, Brian D.; Hathi, Nimish P.; Fazio, Giovanni G.; Ashby, Matthew; Weiner, Benjamin J.; Lucas, Ray A.; Dekel, Avishai; Pentericci, Laura; Conselice, Christopher J.; Kocevski, Dale D.; Lai, Kamson

    2012-12-01

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ≈ 8. Its two-tiered "wide and deep" strategy bridges significant gaps in existing near-infrared surveys. Here we report on z ≈ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin2 to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J < 26.2 mag, and are >1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z ≈ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ≈ 8. Their derived stellar masses are on the order of a few × 109 M ⊙, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ≈ 8. The high number density of very luminous and very massive galaxies at z ≈ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.

  13. ISOCAM observations in the Lockman Hole . II. The 14.3 μm deep survey: Data reduction, catalogue and source counts

    NASA Astrophysics Data System (ADS)

    Rodighiero, G.; Lari, C.; Fadda, D.; Franceschini, A.; Elbaz, D.; Cesarsky, C.

    2004-12-01

    We present a new analysis of the ISOCAM 14.3 μm deep survey in a 20 × 20 square arcmins area in the Lockman Hole. This survey is intermediate between the ultra-deep surveys and the shallow surveys in the ELAIS fields. The data have been analyzed with the method presented by Lari et al. (\\cite{Lar01}). We have produced a catalogue of 283 sources detected above the 5-σ threshold, with fluxes in the interval 0.1-8 mJy. The catalogue is 90% complete at 1 mJy. The positional accuracy, estimated from the cross-correlation of infrared and optical sources, is around 1.5 arcsec. The search for the optical counterparts of the sources in the survey is performed on a medium-deep r' band optical image (5σ depth of r'=25), making use of the radio detections when available. The photometry has been checked through simulations and by comparing the data with those presented in a shallower and more extended ISOCAM survey in the Lockman Hole, that we have presented in a companion paper. Only 15% of the 14.3 μm sources do not have an optical counterpart down to r'=25 mag. We use the 6.7/14.3 μm colour as a star/galaxy separator, together with a visual inspection of the optical image and an analysis of the observed Spectral Energy Distribution of the ISOCAM sources. The stars in the sample turn out to be only 6% of the sample. We discuss the 14.3 μm counts of extragalactic sources, combining our catalogue with that obtained from the shallower ISOCAM survey. The data in the two surveys are consistent, and our results fully support the claims in previous works for the existence of an evolving population of infrared galaxies, confirming the evident departure from non-evolutionary model predictions. Based on observations obtained with the Infrared Space Observatory, an ESA science mission with instruments and contributions funded by ESA Member States and the USA (NASA). Tables 2 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130

  14. New Measurements of the Cosmic Infrared Background Fluctuations in Deep SpitzerllRAC Survey Data and their Cosmological Implications

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Ashby, M. L. N.; Fazio, G. G.; Mather, J.; Moseley, S. H.

    2012-01-01

    We extend the previous measurements of CIB fluctuations to angular scales of less than or equal to 1 degree new data obtained in the course of the 2,000+ hour Spitzer Extended Deep Survey. Two fields with completed observations of approximately equal to 12 hr/pixel are analyzed for source-subtracted CIB fluctuations at 3.6 and 4.5 micrometers. The fields, EGS and UDS, cover a total area of approximately 0.25 deg and lie at high Galactic and Ecliptic latitudes, thus minimizing cirrus and zodiacal light contributions to the fluctuations. The observations have been conducted at 3 distinct epochs separated by about 6 months. As in our previous studies, the fields were assembled using the self-calibration method which is uniquely suitable for probing faint diffuse backgrounds. The assembled fields were cleaned off the bright sources down to the low shot noise levels corresponding to AB mag approximately equal to 25, Fourier-transformed and their power spectra evaluated. The noise was estimated from the time-differenced data and subtracted from the signal isolating the fluctuations remaining above the noise levels. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs of observations indicating that zodiacal light contributes negligibly to the fluctuations. By comparing to the measurements for the same regions at 8 micrometers we demonstrate that Galactic cirrus cannot account for the levels of the fluctuations either. The signal appears isotropically distributed on the sky as required by its origin in the CIB fluctuations. This measurement thus extends our earlier results to the important range of sub-degree scales. We find that the CIB fluctuations continue to diverge to more than 10 times those of known galaxy populations on angular scales out to less than or equal to 1 degree. The low shot noise levels remaining in the diffuse maps indicate that the large scale fluctuations arise from spatial

  15. Size evolution of star-forming galaxies with 2 Deep Survey

    NASA Astrophysics Data System (ADS)

    Ribeiro, B.; Le Fèvre, O.; Tasca, L. A. M.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Maccagni, D.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Fontana, A.; Giavalisco, M.; Hathi, N. P.; Koekemoer, A.; Pforr, J.; Tresse, L.; Dunlop, J.

    2016-08-01

    Context. The size of a galaxy encapsulates the signature of the different physical processes driving its evolution. The distribution of galaxy sizes in the Universe as a function of cosmic time is therefore a key to understand galaxy evolution. Aims: We aim to measure the average sizes and size distributions of galaxies as they are assembling before the peak in the comoving star formation rate density of the Universe to better understand the evolution of galaxies across cosmic time. Methods: We used a sample of ~1200 galaxies in the COSMOS and ECDFS fields with confirmed spectroscopic redshifts 2 ≤ zspec ≤ 4.5 in the VIMOS Ultra Deep Survey (VUDS), representative of star-forming galaxies with iAB ≤ 25. We first derived galaxy sizes by applying a classical parametric profile-fitting method using GALFIT. We then measured the total pixel area covered by a galaxy above a given surface brightness threshold, which overcomes the difficulty of measuring sizes of galaxies with irregular shapes. We then compared the results obtained for the equivalent circularized radius enclosing 100% of the measured galaxy light r100T ~2.2 to those obtained with the effective radius re,circ measured with GALFIT. Results: We find that the sizes of galaxies computed with our non-parametric approach span a wide range but remain roughly constant on average with a median value r100T ~2.2 kpc for galaxies with 2

  16. The VIMOS VLT Deep Survey. Evolution of the major merger rate since z ~ 1 from spectroscopically confirmed galaxy pairs

    NASA Astrophysics Data System (ADS)

    de Ravel, L.; Le Fèvre, O.; Tresse, L.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Vergani, D.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; Cucciati, O.; de La Torre, S.; Gregorini, L.; Memeo, P.; Perez-Montero, E.; Mellier, Y.; Merluzzi, P.; Temporin, S.

    2009-05-01

    Context: The rate at which galaxies grow via successive mergers is a key element in understanding the main phases of galaxy evolution. Aims: We measure the evolution of the fraction of galaxies in pairs and the merging rate since redshift z 1 assuming a (H0 = 70 km s-1 Mpc-1, ΩM = 0.3 and ΩΛ = 0.7) cosmology. Methods: From the VIMOS VLT Deep Survey we use a sample of 6464 galaxies with I_AB ≤ 24 to identify 314 pairs of galaxies, each member with a secure spectroscopic redshift, which are close in both projected separation and in velocity. Results: We estimate that at z 0.9, 10.9 ± 3.2% of galaxies with MB(z) ≤ -18-Qz (Q = 1.11) are in pairs with separations Δ rp ≤ 20 h-1 kpc, Δ v≤ 500 km s-1, and with Δ MB ≤ 1.5, significantly larger than 3.8 ± 1.7% at z 0.5; thus, the pair fraction evolves as (1 + z)m with m = 4.73 ± 2.01. For bright galaxies with MB(z = 0) ≤ -18.77, the pair fraction is higher and its evolution with redshift is flatter with m = 1.50 ± 0.76, a property also observed for galaxies with increasing stellar masses. Early-type pairs (dry mergers) increase their relative fraction from 3% at z 0.9 to 12% at z 0.5. The star formation rate traced by the rest-frame [OII] EW increases by 26 ± 4% for pairs with the smallest separation rp ≤ 20 h-1 kpc. Following published prescriptions to derive merger timescales, we find that the merger rate of MB(z) ≤ -18-Qz galaxies evolves as N_mg = (4.96 ± 2.07)×10-4×(1 + z)2.20 ± 0.77 mergers Mpc-3 Gyr-1. Conclusions: The merger rate of galaxies with MB(z) ≤ -18-Qz has significantly evolved since z 1 and is strongly dependent on the luminosity or stellar mass of galaxies. The major merger rate increases more rapidly with redshift for galaxies with fainter luminosities or stellar mass, while the evolution of the merger rate for bright or massive galaxies is slower, indicating that the slow evolution reported for the brightest galaxies is not universal. The merger rate is also strongly

  17. The VIMOS VLT Deep Survey. Tracing the galaxy stellar mass assembly history over the last 8 Gyr

    NASA Astrophysics Data System (ADS)

    Vergani, D.; Scodeggio, M.; Pozzetti, L.; Iovino, A.; Franzetti, P.; Garilli, B.; Zamorani, G.; Maccagni, D.; Lamareille, F.; Le Fèvre, O.; Charlot, S.; Contini, T.; Guzzo, L.; Bottini, D.; Le Brun, V.; Picat, J. P.; Scaramella, R.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Ciliegi, P.; Foucaud, S.; Gavignaud, I.; Ilbert, O.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Radovich, M.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; Cucciati, O.; de la Torre, S.; Gregorini, L.; Perez-Montero, E.; Mellier, Y.; Merluzzi, P.; Temporin, S.

    2008-08-01

    Aims: Our aim is to investigate the history of mass assembly for galaxies of different stellar masses and types. Methods: We selected a mass-limited sample of 4048 objects from the VIMOS VLT Deep Survey (VVDS) in the redshift interval 0.5 ≤ z ≤ 1.3. We then used an empirical criterion, based on the amplitude of the 4000 ÅBalmer break (D_n4000), to separate the galaxy population into spectroscopically early- and late-type systems. The equivalent width of the [OII]3727 line is used as proxy for the star formation activity. We also derived a type-dependent stellar mass function in three redshift bins. Results: We discuss to what extent stellar mass drives galaxy evolution, showing for the first time the interplay between stellar ages and stellar masses over the past 8 Gyr. Low-mass galaxies have small D_n4000 and at increasing stellar mass, the galaxy distribution moves to higher D_n4000 values as observed in the local Universe. As cosmic time goes by, we witness an increasing abundance of massive spectroscopically early-type systems at the expense of the late-type systems. This spectral transformation of late-type systems into old massive galaxies at lower redshift is a process started at early epochs (z > 1.3) and continuing efficiently down to the local Universe. This is also confirmed by the evolution of our type-dependent stellar mass function. The underlying stellar ages of late-type galaxies apparently do not show evolution, most likely as a result of a continuous and efficient formation of new stars. All star formation activity indicators consistently point towards a star formation history peaked in the past for massive galaxies, with little or no residual star formation taking place in the most recent epochs. In contrast, most of the low-mass systems show just the opposite characteristics, with significant star formation present at all epochs. The activity and efficiency of forming stars are mechanisms that depend on galaxy stellar mass, and the stellar

  18. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-Ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of red shift using an approach based on observational data obtained at in different wavelength bands from local to deep galaxy surveys. Our empirically based approach allows us, for the firs.t time, to obtain a completely model independent determination of the IBL and to quantify its uncertainties. Using our results on the IBL, we then place upper and lower limits on the opacity of the universe to gamma-rays, independent of previous constraints.

  19. The VVDS-VLA deep field. II. Optical and near infrared identifications of VLA S1.4 GHz > 80 μ Jy sources in the VIMOS VLT deep survey VVDS-02h field

    NASA Astrophysics Data System (ADS)

    Ciliegi, P.; Zamorani, G.; Bondi, M.; Pozzetti, L.; Bolzonella, M.; Gregorini, L.; Garilli, B.; Iovino, A.; McCracken, H. J.; Mellier, Y.; Radovich, M.; de Ruiter, H. R.; Parma, P.; Bottini, D.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Picat, J. P.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnaboldi, M.; Arnouts, S.; Bardelli, S.; Cappi, A.; Charlot, S.; Contini, T.; Foucaud, S.; Franzetti, P.; Guzzo, L.; Ilbert, O.; Marano, B.; Marinoni, C.; Mathez, G.; Mazure, A.; Meneux, B.; Merighi, R.; Merluzzi, P.; Paltani, S.; Pollo, A.; Zucca, E.; Bongiorno, A.; Busarello, G.; Gavignaud, I.; Pellò, R.; Ripepi, V.; Rizzo, D.

    2005-10-01

    In this paper we present the optical and near-infrared identifications of the 1054 radio sources detected in the 20 cm deep radio survey down to a 5σ flux limit of ~80 μJy obtained with the VLA in the VIMOS VLT Deep Survey VVDS-02h deep field. Using U,B,V,R,I and K data, with limiting magnitudes of UAB˜25.4, BAB˜26.5, VAB˜26.2, RAB˜25.9 IAB˜25.0, JAB˜24.2, KAB˜23.9 (50% completeness) we identified 718 radio sources (~74% of the whole sample). The photometric redshift analysis shows that, in each magnitude bin, the radio sample has a higher median photometric redshift than the whole optical sample, while the median (V-I)AB color of the radio sources is redder than the median color of the whole optical sample. These results suggest that radio detection is preferentially selecting galaxies with higher intrinsic optical luminosity. From the analysis of the optical properties of the radio sources as function of the radio flux, we found that while about 35% of the radio sources are optically unidentified in the higher radio flux bin (S> 1.0 mJy), the percentage of unidentified sources decreases to about 25% in the faintest bins (S< 0.5 mJy). The median IAB magnitude for the total sample of radio sources, i.e. including also the unidentified ones, is brighter in the faintest radio bins than in the bin with higher radio flux. This suggests that most of the faintest radio sources are likely to be associated to relatively lower radio luminosity objects at relatively modest redshift, rather than radio-powerful, AGN type objects at high redshift. Using a classification in early-type and late-type galaxies based on the (B-I)AB color and the photometric redshift, we found that the majority of the radio sources below ~0.15 mJy are indeed late-type star forming galaxies. Finally, the radio sources without optical counterpart in our deep imaging have a median radio flux of 0.15 mJy, equal to that of identified sources. Given the very faint optical limits, these

  20. A LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH-SUBMILLIMETER PROPERTIES OF NEAR-INFRARED SELECTED GALAXIES

    SciTech Connect

    Greve, T. R.; Walter, F.; Bell, E. F.; Dannerbauer, H.; Rix, H.-W.; Schinnerer, E.; Weiss, A.; Kovacs, A.; Smail, I.; Coppin, K. E. K.; Alexander, D.; Zheng, X. Z.; Knudsen, K. K.; Bertoldi, F.; De Breuck, C.; Dickinson, M.; Gawiser, E.; Lutz, D.; Brandt, N.; Chapman, S. C.

    2010-08-10

    Using the 330 hr ESO-MPG 870 {mu}m survey of the Extended Chandra Deep Field South (ECDF-S) obtained with the Large Apex BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX), we have carried out a stacking analysis at submillimeter (submm) wavelengths of a sample of 8266 near-infra-red (near-IR) selected (K {sub vega} {<=} 20) galaxies, including 893 BzK galaxies, 1253 extremely red objects (EROs), and 737 distant red galaxies (DRGs), selected from the Multi-wavelength Survey by Yale-Chile (MUSYC). We measure average 870 {mu}m fluxes of 0.22 {+-} 0.01 mJy (22.0{sigma}), 0.48 {+-} 0.04 mJy (12.0{sigma}), 0.39 {+-} 0.03 mJy (13.0{sigma}), and 0.43 {+-} 0.04 mJy (10.8{sigma}) for the K {sub vega} {<=} 20, BzK, ERO, and DRG samples, respectively. For the BzK, ERO, and DRG sub-samples, which overlap to some degree and are likely to be at z {approx_equal} 1-2, this implies an average far-IR luminosity of {approx}(1-5) x 10{sup 11} L{sub sun} and star formation rate (SFR) of {approx}20-90 M{sub sun} . Splitting the BzK galaxies into star-forming (sBzK) and passive (pBzK) galaxies, the former is significantly detected (0.50 {+-} 0.04 mJy, 12.5{sigma}) while the latter is only marginally detected (0.34 {+-} 0.10 mJy, 3.4{sigma}), thus confirming that the sBzK and pBzK criteria to some extent select obscured, star-forming, and truly passive galaxies, respectively. The K {sub vega} {<=} 20 galaxies are found to contribute 7.27 {+-} 0.34 Jy deg{sup -2} (16.5% {+-} 5.7%) to the 870 {mu}m extragalactic background light (EBL). sBzK and pBzK galaxies contribute 1.49 {+-} 0.22 Jy deg{sup -2} (3.4% {+-} 1.3%) and 0.20 {+-} 0.14 Jy deg{sup -2} (0.5% {+-} 0.3%) to the EBL. We present the first delineation of the average submm signal from the K {sub vega} {<=} 20 selected galaxies and their contribution to the submm EBL as a function of (photometric) redshift, and find a decline in the average submm signal (and therefore IR luminosity and SFR) by a factor {approx}2

  1. A survey of surveys

    SciTech Connect

    Kent, S.M.

    1994-11-01

    A new era for the field of Galactic structure is about to be opened with the advent of wide-area digital sky surveys. In this article, the author reviews the status and prospects for research for 3 new ground-based surveys: the Sloan Digital Sky Survey (SDSS), the Deep Near-Infrared Survey of the Southern Sky (DENIS) and the Two Micron AU Sky Survey (2MASS). These surveys will permit detailed studies of Galactic structure and stellar populations in the Galaxy with unprecedented detail. Extracting the information, however, will be challenging.

  2. COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON {Omega} {sub M} AND {sigma}{sub 8} WITH A TWO-DIMENSIONAL ANALYSIS

    SciTech Connect

    Jee, M. James; Tyson, J. Anthony; Schneider, Michael D.; Wittman, David; Schmidt, Samuel; Hilbert, Stefan

    2013-03-01

    We present a cosmic shear study from the Deep Lens Survey (DLS), a deep BVRz multi-band imaging survey of five 4 deg{sup 2} fields with two National Optical Astronomy Observatory (NOAO) 4 m telescopes at Kitt Peak and Cerro Tololo. For both telescopes, the change of the point-spread-function (PSF) shape across the focal plane is complicated, and the exposure-to-exposure variation of this position-dependent PSF change is significant. We overcome this challenge by modeling the PSF separately for individual exposures and CCDs with principal component analysis (PCA). We find that stacking these PSFs reproduces the final PSF pattern on the mosaic image with high fidelity, and the method successfully separates PSF-induced systematics from gravitational lensing effects. We calibrate our shears and estimate the errors, utilizing an image simulator, which generates sheared ground-based galaxy images from deep Hubble Space Telescope archival data with a realistic atmospheric turbulence model. For cosmological parameter constraints, we marginalize over shear calibration error, photometric redshift uncertainty, and the Hubble constant. We use cosmology-dependent covariances for the Markov Chain Monte Carlo analysis and find that the role of this varying covariance is critical in our parameter estimation. Our current non-tomographic analysis alone constrains the {Omega} {sub M}-{sigma}{sub 8} likelihood contour tightly, providing a joint constraint of {Omega} {sub M} = 0.262 {+-} 0.051 and {sigma}{sub 8} = 0.868 {+-} 0.071. We expect that a future DLS weak-lensing tomographic study will further tighten these constraints because explicit treatment of the redshift dependence of cosmic shear more efficiently breaks the {Omega} {sub M}-{sigma}{sub 8} degeneracy. Combining the current results with the Wilkinson Microwave Anisotropy Probe 7 year (WMAP7) likelihood data, we obtain {Omega} {sub M} = 0.278 {+-} 0.018 and {sigma}{sub 8} = 0.815 {+-} 0.020.

  3. The Swift serendipitous survey in deep XRT GRB fields (SwiftFT). I. The X-ray catalog and number counts

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Capalbi, M.; Giommi, P.; Perri, M.; Stratta, G.; Angelini, L.; Burrows, D. N.; Campana, S.; Chincarini, G.; Cusumano, G.; Gehrels, N.; Moretti, A.; Nousek, J.; Osborne, J. P.; Tagliaferri, G.

    2011-04-01

    Aims: An accurate census of the active galactic nuclei (AGN) is a key step in investigating the nature of the correlation between the growth and evolution of super massive black holes and galaxy evolution. X-ray surveys provide one of the most efficient ways of selecting AGN. Methods: We searched for X-ray serendipitous sources in over 370 Swift-XRT fields centered on gamma ray bursts detected between 2004 and 2008 and observed with total exposures ranging from 10 ks to over 1 Ms. This defines the Swift Serendipitous Survey in deep XRT GRB fields, which is quite broad compared to existing surveys (~33 square degrees) and medium depth, with a faintest flux limit of 7.2 × 10-16 erg cm-2 s-1 in the 0.5 to 2 keV energy range (4.8 × 10-15 erg cm-2 s-1 at 50% completeness). The survey has a high degree of uniformity thanks to the stable point spread function and small vignetting correction factors of the XRT, moreover is completely random on the sky as GRBs explode in totally unrelated parts of the sky. Results: In this paper we present the sample and the X-ray number counts of the high Galactic-latitude sample, estimated with high statistics over a wide flux range (i.e., 7.2 × 10-16 ÷ ~ 5 × 10-13 erg cm-2 s-1 in the 0.5-2 keV band and 3.4 × 10-15 ÷ ~ 6 × 10-13 erg cm-2 s-1 in the 2-10 keV band). We detect 9387 point-like sources with a detection Poisson probability threshold of ≤ 2 × 10-5, in at least one of the three energy bands considered (i.e. 0.3-3 keV, 2-10 keV, and 0.3-10 keV), for the total sample, while 7071 point-like sources are found at high Galactic-latitudes (i.e. |b| ≥ 20 deg). The large number of detected sources resulting from the combination of large area and deep flux limits make this survey a new important tool for investigating the evolution of AGN. In particular, the large area permits finding rare high-luminosity objects like QSO2, which are poorly sampled by other surveys, adding precious information for the luminosity function

  4. Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey. I. The evolution of the mass-metallicity relation up to z ~ 0.9

    NASA Astrophysics Data System (ADS)

    Lamareille, F.; Brinchmann, J.; Contini, T.; Walcher, C. J.; Charlot, S.; Pérez-Montero, E.; Zamorani, G.; Pozzetti, L.; Bolzonella, M.; Garilli, B.; Paltani, S.; Bongiorno, A.; Le Fèvre, O.; Bottini, D.; Le Brun, V.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Cappi, A.; Ciliegi, P.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Pellò, R.; Pollo, A.; Radovich, M.; Vergani, D.; Zucca, E.; Romano, A.; Grado, A.; Limatola, L.

    2009-02-01

    Aims: We want to derive the mass-metallicity relation of star-forming galaxies up to z ~ 0.9, using data from the VIMOS VLT Deep Survey. The mass-metallicity relation is commonly understood as the relation between the stellar mass and the gas-phase oxygen abundance. Methods: Automatic measurement of emission-line fluxes and equivalent widths have been performed on the full spectroscopic sample of the VIMOS VLT Deep Survey. This sample is divided into two sub-samples depending on the apparent magnitude selection: wide (IAB < 22.5) and deep (IAB < 24). These two samples span two different ranges of stellar masses. Emission-line galaxies have been separated into star-forming galaxies and active galactic nuclei using emission line ratios. For the star-forming galaxies the emission line ratios have also been used to estimate gas-phase oxygen abundance, using empirical calibrations renormalized in order to give consistent results at low and high redshifts. The stellar masses have been estimated by fitting the whole spectral energy distributions with a set of stellar population synthesis models. Results: We assume at first order that the shape of the mass-metallicity relation remains constant with redshift. Then we find a stronger metallicity evolution in the wide sample as compared to the deep sample. We thus conclude that the mass-metallicity relation is flatter at higher redshift. At z ~ 0.77, galaxies at 109.4 solar masses have -0.18 dex lower metallicities than galaxies of similar masses in the local universe, while galaxies at 1010.2 solar masses have -0.28 dex lower metallicities. By comparing the mass-metallicity and luminosity-metallicity relations, we also find an evolution in mass-to-light ratio: galaxies at higher redshifts being more active. The observed flattening of the mass-metallicity relation at high redshift is analyzed as evidence in favor of the open-closed model. Based on data obtained with the European Southern Observatory Very Large Telescope

  5. Comparison of galaxy clusters selected by weak-lensing, optical spectroscopy, and X-rays in the deep lens survey F2 field

    SciTech Connect

    Starikova, Svetlana; Jones, Christine; Forman, William R.; Vikhlinin, Alexey; Kurtz, Michael J.; Fabricant, Daniel G.; Murray, Stephen S.; Geller, Margaret J.; Dell'Antonio, Ian P.

    2014-05-10

    We compare galaxy clusters selected in Chandra and XMM-Newton X-ray observations of the 4 deg{sup 2} Deep Lens Survey (DLS) F2 field to the cluster samples previously selected in the same field from a sensitive weak-lensing shear map derived from the DLS and from a detailed galaxy redshift survey—the Smithsonian Hectospec Lensing Survey (SHELS). Our Chandra and XMM-Newton observations cover 1.6 deg{sup 2} of the DLS F2 field, including all 12 weak-lensing peaks above a signal-to-noise ratio of 3.5, along with 16 of the 20 SHELS clusters with published velocity dispersions >500 km s{sup –1}. We detect 26 extended X-ray sources in this area and confirm 23 of them as galaxy clusters using the optical imaging. Approximately 75% of clusters detected in either X-ray or spectroscopic surveys are found in both; these follow the previously established scaling relations between velocity dispersion, L {sub X}, and T {sub X}. A lower percentage, 60%, of clusters are in common between X-ray and DLS samples. With the exception of a high false-positive rate in the DLS weak-lensing search (5 out of 12 DLS candidates appear to be false), differences between the three cluster detection methods can be attributed primarily to observational uncertainties and intrinsic scatter between different observables and cluster mass.

  6. A Very High-Resolution Deep-Towed Multichannel Seismic Survey in the Yaquina Basin off Peru - First Data Processing Results

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bialas, J.; Kostrov, A.

    2002-12-01

    The finely layered hemipelagic sediment coverage of the Yaquina Basin off Peru shows various features which can be related to the occurrence of fluid flow and gas hydrates. These features were the first test targets studied by a newly developed hybrid deep-towed digital multichannel seismic streamer and side scan sonar system. The streamer configuration used for this survey had an overall length of 75 m and consisted of a 50 m lead-in cable and 26 digital nodes separated by 1 m long cables. A conventional GI gun of 0.7 l volume and a Prakla-type airgun of 1.6 l volume were used as seismic sources and excited frequencies between about 20 - 300 Hz. Compared to formerly used deep-towed systems the determination of the position and depth of the streamer and side scan sonar fish is significantly improved by two components included in the newly developed system: (1) The ultra-short base line (USBL) system POSIDONIA maps the track and depth of the side scan sonar fish. (2) Three engineering nodes located at the beginning, middle and end of the streamer monitor the heading and depth variations along the streamer by a compass and depth sensor. By interpolation of these values depth and geographical coordinates of each streamer node can be computed relative to the position of the side scan sonar fish. Subsequent multichannel data processsing steps have to consider the asymmetric source-receiver geometry of the hybrid system and mainly include two steps: (1) A wavefield continuation which corrects the depth variations of the streamer and determines the wavefield in a constant reference depth. (2) A pre-stack migration which images the sedimentary structures based on all multichannel data. Examples from two locations are presented. In the first area, the deep tow seismic line crosses a formerly recorded MCS line (RV Sonne Cruise SO146, 2000) along which a weak BSR was observed. In the deep tow data several very small scale blanking zones or faults are additionally observed

  7. The XMM deep survey in the CDF-S. VIII. X-ray properties of the two brightest sources

    NASA Astrophysics Data System (ADS)

    Iwasawa, K.; Vignali, C.; Comastri, A.; Gilli, R.; Vito, F.; Brandt, W. N.; Carrera, F. J.; Lanzuisi, G.; Falocco, S.; Vagnetti, F.

    2015-02-01

    We present results from the deep XMM-Newton observations of the two brightest X-ray sources in the Chandra Deep Field South (CDFS), PID 203 (z = 0.544) and PID 319 (z = 0.742). The long exposure of 2.5 Ms over a 10 year period (net 4 yr with a 6 yr gap) makes it possible to obtain high quality X-ray spectra of these two Type I AGN with X-ray luminosity of 1044 erg s-1, which is the typical luminosity for low-redshift PG quasars, and track their X-ray variability both in flux and spectral shape. Both sources showed X-ray flux variability of ~10-20% in rms, which is similar in the soft (0.5-2 keV) and hard (2-7 keV) bands. PID 203, which has evidence for optical extinction, shows modest amount of absorption (NH≤ 1 × 1021 cm-2) in the X-ray spectrum. Fe K emission is strongly detected in both objects with EW ~ 0.2 keV. The lines in both objects are moderately broad and exhibit marginal evidence for variability in shape and flux, indicating that the bulk of the line emission comes from their accretion disks rather than distant tori.

  8. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  9. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    SciTech Connect

    Cardamone, Carolin N.; Van Dokkum, Pieter G.; Urry, C. Megan; Brammer, Gabriel; Taniguchi, Yoshi; Gawiser, Eric; Bond, Nicholas; Taylor, Edward; Damen, Maaike; Treister, Ezequiel; Cobb, Bethany E.; Schawinski, Kevin; Lira, Paulina; Murayama, Takashi; Saito, Tomoki; Sumikawa, Kentaro

    2010-08-15

    We present deep optical 18-medium-band photometry from the Subaru telescope over the {approx}30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find {approx}40,000 galaxies with R {sub AB} < 25.3, the median 5{sigma} limit of the 18 medium bands. Photometric redshifts are determined using the EAzY code and compared to {approx}2000 spectroscopic redshifts in this field. The medium-band filters provide very accurate redshifts for the (bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 < z < 1.2 and at z {approx}> 3.5. For 0.1 < z < 1.2, we find a 1{sigma} scatter in {Delta}z/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that {approx}20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.

  10. Deep structure of the Texas Gulf passive margin and its Ouachita-Precambrian basement: Results of the COCORP San Marcos arch survey

    SciTech Connect

    Culotta, R.; Latham, T.; Oliver, J.; Brown, L.; Kaufman, S. ); Sydow, M. )

    1992-02-01

    This COCORP deep seismic survey provides a comprehensive image of the southeast-Texas part of the Gulf passive margin and its accreted Ouachita arc foundation. Beneath the updip limit of the Cenozoic sediment wedge, a prominent antiformal structure is imaged within the interior zone of the buried late Paleozoic Ouachita orogen. The structure appears to involve Precambrian Grenville basement. The crest of the antiform is coincident with the Cretaceous-Tertiary Luling-Mexia-Talco fault zone. Some of these faults dip to the northwest, counter to the general regional pattern of down-to-the-basin faulting, and appear to sole into the top of the antiform, suggesting that the Ouachita structure has been reactivated as a hingeline to the subsiding passive margin. The antiform may be tied via this fault system and the Ouachita gravity gradient to the similar Devils River, Waco, and Benton uplifts, interpreted as Precambrian basement-cored massifs. Above the Paleozoic sequence, a possible rift-related graben is imaged near the updip limit of Jurassic salt. Paleoshelf edges of the major Tertiary depositional sequences are marked by expanded sections disrupted by growth faults and shale diapirs. Within the Wilcox Formation, the transect crosses the mouth of the 900-m-deep Yoakum Canyon, a principal pathway of sediment delivery from the Laramide belt to the Gulf. Beneath the Wilcox, the Comanchean (Lower Cretaceous) shelf edge, capped by the Stuart City reef, is imaged as a pronounced topographic break onlapped by several moundy sediment packages. Because this segment of the line parallels strike, the topographic break may be interpreted as a 2,000-m-deep embayment in the Cretaceous shelf-edge, and possibly a major submarine canyon older and deeper than the Yoakum Canyon.

  11. A survey of dental practitioners in Wales to evaluate the management of deep carious lesions with vital pulp therapy in permanent teeth.

    PubMed

    Chin, J S; Thomas, M B; Locke, M; Dummer, P M H

    2016-09-23

    Objective To evaluate the management of deep carious lesions with vital pulp therapy in permanent teeth by dental practitioners within Wales.Design Postal questionnaire.Setting General practitioners (GDS), community (CDS) and hospital-based dentists (HDS) in Wales.Methods Community and hospital dental services with a remit for provision of restorative dentistry (CDS = 71; HDS = 46) and general dental practitioners (N = 510) were approached regarding their management of deep carious lesions with vital pulp therapy in permanent teeth. The postal questionnaire took the form of an anonymous survey. Questions covered usage parameters, training issues and reasons for material choice.Results The response rate was 29%. The majority of HDS (89%) used MTA or Biodentine for vital pulp therapy in contrast to GDS (41%) and CDS (32%). The main reasons cited for avoiding the use of MTA or Biodentine included cost, lack of training and difficulty in material handling.Conclusion Usage of MTA or Biodentine for vital pulp therapies is low in the general dental and community dental settings. Cost and lack of training are the main barriers for the uptake of these materials. Postgraduate training may be useful in addressing these barriers. Increasing their adoption would be advantageous as they have been shown to produce a more predictable outcome compared to traditional materials (for example, calcium hydroxide). PMID:27659637

  12. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: SOURCE CATALOG AND MULTIPLICITY

    SciTech Connect

    Hodge, J. A.; Walter, F.; Decarli, R.; Karim, A.; Smail, I.; Swinbank, A. M.; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C.; Biggs, A. D.; De Breuck, C.; Ivison, R. J.; Weiss, A.; Bertoldi, F.; Brandt, W. N.; Chapman, S. C.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Greve, T. R.; and others

    2013-05-01

    We present an Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 survey of 126 submillimeter sources from the LABOCA ECDFS Submillimeter Survey (LESS). Our 870 {mu}m survey with ALMA (ALESS) has produced maps {approx}3 Multiplication-Sign deeper and with a beam area {approx}200 Multiplication-Sign smaller than the original LESS observations, doubling the current number of interferometrically-observed submillimeter sources. The high resolution of these maps allows us to resolve sources that were previously blended and accurately identify the origin of the submillimeter emission. We discuss the creation of the ALESS submillimeter galaxy (SMG) catalog, including the main sample of 99 SMGs and a supplementary sample of 32 SMGs. We find that at least 35% (possibly up to 50%) of the detected LABOCA sources have been resolved into multiple SMGs, and that the average number of SMGs per LESS source increases with LESS flux density. Using the (now precisely known) SMG positions, we empirically test the theoretical expectation for the uncertainty in the single-dish source positions. We also compare our catalog to the previously predicted radio/mid-infrared counterparts, finding that 45% of the ALESS SMGs were missed by this method. Our {approx}1.''6 resolution allows us to measure a size of {approx}9 kpc Multiplication-Sign 5 kpc for the rest-frame {approx}300 {mu}m emission region in one resolved SMG, implying a star formation rate surface density of 80 M{sub Sun} yr{sup -1} kpc{sup -2}, and we constrain the emission regions in the remaining SMGs to be <10 kpc. As the first statistically reliable survey of SMGs, this will provide the basis for an unbiased multiwavelength study of SMG properties.

  13. SXDF-ALMA 2 arcmin2 deep survey: Resolving and characterizing the infrared extragalactic background light down to 0.5 mJy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuki; Tamura, Yoichi; Kohno, Kotaro; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David; Ikarashi, Soh; Ishii, Shun; Ivison, Rob J.; Izumi, Takuma; Kawabe, Ryohei; Kodama, Tadayuki; Lee, Minju; Makiya, Ryu; Matsuda, Yuichi; Nakanishi, Kouichiro; Ohta, Kouji; Rujopakarn, Wiphu; Tadaki, Ken-ichi; Umehata, Hideki; Wang, Wei-Hao; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2016-08-01

    We present a multiwavelength analysis of five submillimeter sources (S1.1mm = 0.54-2.02 mJy) that were detected during our 1.1 mm deep continuum survey in the Subaru/XMM-Newton Deep Survey Field (SXDF)-UDS-CANDELS field (2 arcmin2, 1σ = 0.055 mJy beam-1) using the Atacama Large Millimeter/submillimeter Array (ALMA). The two brightest sources correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy (SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If we exclude the two brightest sources, the contribution of the ALMA-detected faint SMGs to the infrared extragalactic background light is estimated to be ˜ 4.1^{+5.4}_{-3.0}Jy deg-2, which corresponds to ˜ 16^{+22}_{-12}% of the infrared extragalactic background light. This suggests that their contribution to the infrared extragalactic background light is as large as that of bright SMGs. We identified multiwavelength counterparts of the five ALMA sources. One of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared region despite its infrared luminosity (L_IR˜eq 1× 10^{12} L_{⊙} or SFR ≃ 100 M⊙ yr-1). By fitting the spectral energy distributions at the optical-to-near-infrared wavelengths of the remaining four ALMA sources, we obtained the photometric redshifts (zphoto) and stellar masses (M*): zphoto ≃ 1.3-2.5, M* ≃ (3.5-9.5) × 1010 M⊙. We also derived their star formation rates (SFRs) and specific SFRs as ≃30-200 M⊙ yr-1 and ≃0.8-2 Gyr-1, respectively. These values imply that they are main sequence star-forming galaxies.

  14. SXDF-ALMA 2 arcmin2 deep survey: Resolving and characterizing the infrared extragalactic background light down to 0.5 mJy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuki; Tamura, Yoichi; Kohno, Kotaro; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David; Ikarashi, Soh; Ishii, Shun; Ivison, Rob J.; Izumi, Takuma; Kawabe, Ryohei; Kodama, Tadayuki; Lee, Minju; Makiya, Ryu; Matsuda, Yuichi; Nakanishi, Kouichiro; Ohta, Kouji; Rujopakarn, Wiphu; Tadaki, Ken-ichi; Umehata, Hideki; Wang, Wei-Hao; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2016-10-01

    We present a multiwavelength analysis of five submillimeter sources (S1.1mm = 0.54-2.02 mJy) that were detected during our 1.1 mm deep continuum survey in the Subaru/XMM-Newton Deep Survey Field (SXDF)-UDS-CANDELS field (2 arcmin2, 1σ = 0.055 mJy beam-1) using the Atacama Large Millimeter/submillimeter Array (ALMA). The two brightest sources correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy (SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If we exclude the two brightest sources, the contribution of the ALMA-detected faint SMGs to the infrared extragalactic background light is estimated to be ˜ 4.1^{+5.4}_{-3.0}Jy deg-2, which corresponds to ˜ 16^{+22}_{-12}% of the infrared extragalactic background light. This suggests that their contribution to the infrared extragalactic background light is as large as that of bright SMGs. We identified multiwavelength counterparts of the five ALMA sources. One of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared region despite its infrared luminosity (L_IR˜eq 1× 10^{12} L_{⊙} or SFR ≃ 100 M⊙ yr-1). By fitting the spectral energy distributions at the optical-to-near-infrared wavelengths of the remaining four ALMA sources, we obtained the photometric redshifts (zphoto) and stellar masses (M*): zphoto ≃ 1.3-2.5, M* ≃ (3.5-9.5) × 1010 M⊙. We also derived their star formation rates (SFRs) and specific SFRs as ≃30-200 M⊙ yr-1 and ≃0.8-2 Gyr-1, respectively. These values imply that they are main sequence star-forming galaxies.

  15. The Hubble Space Telescope Medium Deep Survey with the Wide Field and Planetary Camera. 1: Methodology and results on the field near 3C 273

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Casertano, S.; Im, M.; Wyckoff, E. W.; Ellis, R. S.; Gilmore, G. F.; Elson, R. A. W.; Glazebrook, K.

    1994-01-01

    We present results from the Medium Deep Survey (MDS), a Key Project using the Hubble Space Telescope (HST). Wide Field Camera (WFC) images of random fields have been taken in 'parallel mode' with an effective resolution of 0.2 sec full width at half maximum (FWHM) in the V(F555W) and I(F785LP) filters. The exposures presented here were targeted on a field away from 3C 273, and resulted in approximately 5 hr integration time in each filter. Detailed morphological structure is seen in galaxy images with total integrated magnitudes down to V approximately = 22.5 and I approximately = 21.5. Parameters are estimated that best fit the observed galaxy images, and 143 objects are identified (including 23 stars) in the field to a fainter limiting magnitude of I approximately = 23.5. We outline the extragalactic goals of the HST Medium Deep Survey, summarize our basic data reduction procedures, and present number (magnitude) counts, a color-magnitude diagram for the field, surface brightness profiles for the brighter galaxies, and best-fit half-light radii for the fainter galaxies as a function of apparent magnitude. A median galaxy half-light radius of 0.4 sec is measured, and the distribution of galaxy sizes versus magnitude is presented. We observe an apparent deficit of galaxies with half-light radii between approximately 0.6 sec and 1.5 sec, with respect to standard no-evolution or mild evolution cosmological models. An apparent excess of compact objects (half-light radii approximately 0.1 sec) is also observed with respect to those models. Finally, we find a small excess in the number of faint galaxy pairs and groups with respect to a random low-redshift field sample.

  16. LOFAR/H-ATLAS: a deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field

    NASA Astrophysics Data System (ADS)

    Hardcastle, M. J.; Gürkan, G.; van Weeren, R. J.; Williams, W. L.; Best, P. N.; de Gasperin, F.; Rafferty, D. A.; Read, S. C.; Sabater, J.; Shimwell, T. W.; Smith, D. J. B.; Tasse, C.; Bourne, N.; Brienza, M.; Brüggen, M.; Brunetti, G.; Chyży, K. T.; Conway, J.; Dunne, L.; Eales, S. A.; Maddox, S. J.; Jarvis, M. J.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Röttgering, H. J. A.; Valiante, E.; White, G. J.

    2016-10-01

    We present Low-Frequency Array (LOFAR) High-Band Array observations of the Herschel-ATLAS North Galactic Pole survey area. The survey we have carried out, consisting of four pointings covering around 142 deg2 of sky in the frequency range 126-173 MHz, does not provide uniform noise coverage but otherwise is representative of the quality of data to be expected in the planned LOFAR wide-area surveys, and has been reduced using recently developed `facet calibration' methods at a resolution approaching the full resolution of the data sets (˜10 × 6 arcsec) and an rms off-source noise that ranges from 100 μJy beam-1 in the centre of the best fields to around 2 mJy beam-1 at the furthest extent of our imaging. We describe the imaging, cataloguing and source identification processes, and present some initial science results based on a 5σ source catalogue. These include (i) an initial look at the radio/far-infrared correlation at 150 MHz, showing that many Herschel sources are not yet detected by LOFAR; (ii) number counts at 150 MHz, including, for the first time, observational constraints on the numbers of star-forming galaxies; (iii) the 150-MHz luminosity functions for active and star-forming galaxies, which agree well with determinations at higher frequencies at low redshift, and show strong redshift evolution of the star-forming population; and (iv) some discussion of the implications of our observations for studies of radio galaxy life cycles.

  17. Preliminary results of the Deep Freeze 85 marine geologic and geophysical survey of the Antarctic Peninsula continental shelf and South Orkney Plateau

    SciTech Connect

    Anderson, J.B.; Bartek, L.; Griffith, T.; Herron, M.; Kennedy, D.; Singer, J.; Smith, M.

    1985-01-01

    Seismic profiles from the South Orkney Plateau show a relatively thick (>0.7 seconds), laminated sequence resting on block faulted acoustic basement and deformed strata. This represents the rifting of the plateau from the Antarctic Peninsula and subsequent pelagic sedimentation. A glacial erosional surface and associated glacial trough were identified on the platform, and possible basal till collected in at least one piston core. Seismic lines from the continental shelf north of the South Shetland Plateau show gently folded reflectors that have been truncated by a widespread erosional unconformity and probable moraines situated near the shelf edge. A line across the Bransfield Strait, a modern back-arc basin, shows the structural features of the basin and thick (>1.0 second) laminated sediments within the center of the basin. One of several deep channels which dissect the shelf was surveyed, but the origin of these features remains uncertain. Geophysical data and piston cores were acquired in several of the bays and fjords of the peninsula region. This is the first detailed survey of Antarctic bays and fjords. The preliminary results show striking differences in sedimentation between Antarctic fjords and those of Arctic and Subarctic regions, the most important difference being the limited role of meltwater runoff in the supply of sediment to Antarctic fjords.

  18. Bacteria as part of bioluminescence emission at the deep ANTARES station (North-Western Mediterranean Sea) during a one-year survey

    NASA Astrophysics Data System (ADS)

    Martini, S.; Michotey, V.; Casalot, L.; Bonin, P.; Guasco, S.; Garel, M.; Tamburini, C.

    2016-10-01

    Bioluminescent bacteria have been studied during a one-year survey in 2011 at the deep ANTARES site (Northwestern Mediterranean Sea, 2000 m depth). The neutrino underwater telescope ANTARES, located at this station, has been used to record the bioluminescence at the same depth. Together with these data, environmental variables (potential temperature, salinity, nutrients, dissolved organic carbon and oxygen) have been characterized in water samples. The year 2011 was characterized by relatively stable conditions, as revealed by minor variability in the monitored oceanographic variables, by low bioluminescence and low current speed. This suggests weak eukaryote participation and mainly non-stimulated light emission. Hence, no processes of dense water have affected the ANTARES station during this survey. Abundance of bioluminescent bacteria belonging to Photobacterium genus, measured by qPCR of the luxF gene, ranged from 1.4×102 to 7.2×102 genes mL-1. Their effective activity was confirmed through mRNA luxF quantification. Our results reveal that bioluminescent bacteria appeared more active than the total counterpart of bacteria, suggesting an ecological benefit of this feature such as favoring interaction with macro-organisms. Moreover, these results show that part of the bioluminescence, recorded at 2000 m depth over one year, could be due to bioluminescent bacteria in stable hydrological conditions.

  19. SPLAT: Using Spectral Indices to Identify and Characterize Ultracool Stars, Brown Dwarfs and Exoplanets in Deep Surveys and as Companions to Nearby Stars

    NASA Astrophysics Data System (ADS)

    Aganze, Christian; Burgasser, Adam J.; Martin, Eduardo; Konopacky, Quinn; Masters, Daniel C.

    2016-06-01

    The majority of ultracool dwarf stars and brown dwarfs currently known were identified in wide-field red optical and infrared surveys, enabling measures of the local, typically isolated, population in a relatively shallow (<100 pc radius) volume. Constraining the properties of the wider Galactic population (scale height, radial distribution, Population II sources), and close brown dwarf and exoplanet companions to nearby stars, requires specialized instrumentation, such as high-contrast, coronagraphic spectrometers (e.g., Gemini/GPI, VLT/Sphere, Project 1640); and deep spectral surveys (e.g., HST/WFC3 parallel fields, Euclid). We present a set of quantitative methodologies to identify and robustly characterize sources for these specific populations, based on templates and tools developed as part of the SpeX Prism Library Analysis Toolkit. In particular, we define and characterize specifically-tuned sets spectral indices that optimize selection of cool dwarfs and distinguish rare populations (subdwarfs, young planetary-mass objects) based on low-resolution, limited-wavelength-coverage spectral data; and present a template-matching classification method for these instruments. We apply these techniques to HST/WFC3 parallel fields data in the WISPS and HST-3D programs, where our spectral index set allows high completeness and low contamination for searches of late M, L and T dwarfs to distances out to ~3 kpc.The material presented here is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX15AI75G.

  20. A deep x ray survey in the Lockman hole and the soft x ray log N - log S

    NASA Technical Reports Server (NTRS)

    Hasinger, G.; Burg, R.; Giacconi, R.; Hartner, G.; Schmidt, M.; Truemper, J.; Zamorani, G.

    1992-01-01

    The longest pointed observation (152 ksec) with the Rosat position sensitive proportional counter in the direction of the absolutely lowest neutral hydrogen column density is discussed. 26 shallower fields from the Rosat medium sensivity survey are analyzed. 1176 X-ray sources were detected in at least one Rosat energy band in these fields covering a total solid angle of 9.3 deg; 661 of these sources constitute a statistically complete sample detected in the hard band with 0.5 to 2 keV fluxes greater than 2.5 times 10 to the power of minus 15 erg/sq cm s. The faintest limiting flux of the survey is analyzed. Detailed simulations show that confusion effects and other selection biases are relatively small and can be corrected for in the sample. From an analysis in the Lockman field, a best fit slope of approximately 1.8 is found for the extrapolation of the differential X-ray counts below 2.5 times 10 to the power of minus 15 erg/sq cm s. On the basis of this analysis an upper limit of approximately 25% can be found for a truly diffuse background component in the Rosat hard band.

  1. A tale of two sutures: COCORP's deep seismic surveys of the Grenville province in the eastern U.S. midcontinent

    NASA Astrophysics Data System (ADS)

    Culotta, Raymond C.; Pratt, T.; Oliver, J.

    1990-07-01

    A pair of oppositely dipping, crustal-scale shear zones imaged within Grenville basement beneath the Paleozoic cover of Ohio can be correlated, via geopotential lineaments, with similarly oriented geologic and seismically imaged structures hundreds of kilometres to the northeast and southwest, suggesting a relatively simple structural framework for the eastern midcontinent region. An east-dipping zone extending from Lake Huron through western Ohio, and possibly farther southwest, marks the western edge of the Grenville province. Perhaps of greater consequence to an understanding of Grenville tectonics is the discovery of a west-dipping zone underlying the Appalachian basin from northern Alabama to New York within the Grenville province. Correlation of this feature with the seismogenic Clarendon-Linden fault in western New York and a boundary between terranes containing magmatic-arc rocks exposed in Canada suggests that it could mark the site of an intra-Grenville province suture zone. Implications of this interpretation are that the Precambrian foundation of the eastern U.S. midcontinent comprises a relatively simple assemblage of laterally extensive terranes or belts of coeval terranes accreted by familiar plate tectonic processes, and that deep seismic profiling is an effective tool for mapping the three-dimensional distribution of these terranes.

  2. The LABOCA survey of the Extended Chandra Deep Field-South - radio and mid-infrared counterparts to submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Biggs, A. D.; Ivison, R. J.; Ibar, E.; Wardlow, J. L.; Dannerbauer, H.; Smail, Ian; Walter, F.; Weiß, A.; Chapman, S. C.; Coppin, K. E. K.; De Breuck, C.; Dickinson, M.; Knudsen, K. K.; Mainieri, V.; Menten, K.; Papovich, C.

    2011-06-01

    We present radio and infrared (3.6-24 μm) counterparts to submillimetre galaxies (SMGs) detected in the Extended Chandra Deep Field-South with the Large APEX Bolometer Camera (LABOCA) 870-μm bolometer camera on the 12-m Atacama Pathfinder Experiment. Using the Very Large Array at 1.4 GHz and Spitzer, we have identified secure counterparts to 79 of the 126 SMGs [signal-to-noise ratio (S/N) > 3.7, S870 > 4.4 mJy] in the field, 62 via their radio and/or 24-μm emission, the remainder using a colour-flux cut on Infrared Array Camera 3.6- and 5.8-μm sources chosen to maximize the number of secure, coincident radio and 24-μm counterparts. In constructing our radio catalogue, we have corrected for the effects of 'flux boosting', then used the corrected flux densities to estimate the redshifts of the SMGs based on the radio/submm spectral indices. The effect of the boosting correction is to increase the median redshift by 0.2 resulting in a value of ? (1σ errors) for the secure radio counterparts, in agreement with other studies, both spectroscopic and photometric.

  3. Absolute magnetization of the seafloor at a basalt-hosted hydrothermal site: Insights from a deep-sea submersible survey

    NASA Astrophysics Data System (ADS)

    Szitkar, Florent; Dyment, Jérôme; Fouquet, Yves; Choi, Yujin; Honsho, Chie

    2015-02-01

    The analysis of high-resolution vector magnetic data acquired by deep-sea submersibles (DSSs) requires the development of specific approaches adapted to their uneven tracks. We present a method that takes advantage of (1) the varying altitude of the DSS above the seafloor and (2) high-resolution multibeam bathymetric data acquired separately, at higher altitude, by an Autonomous Underwater Vehicle, to estimate the absolute magnetization intensity and the magnetic polarity of the shallow subseafloor along the DSS path. We apply this method to data collected by DSS Nautile on a small active basalt-hosted hydrothermal site. The site is associated with a lack of magnetization, in agreement with previous findings at the same kind of sites: the contrast between nonmagnetic sulfide deposits/stockwork zone and strongly magnetized basalt is sufficient to explain the magnetic signal observed at such a low altitude. Both normal and reversed polarities are observed in the lava flows surrounding the site, suggesting complex history of accumulating volcanic flows.

  4. Barcoding Beetles: A Regional Survey of 1872 Species Reveals High Identification Success and Unusually Deep Interspecific Divergences

    PubMed Central

    Pentinsaari, Mikko; Hebert, Paul D. N.; Mutanen, Marko

    2014-01-01

    With 400 K described species, beetles (Insecta: Coleoptera) represent the most diverse order in the animal kingdom. Although the study of their diversity currently represents a major challenge, DNA barcodes may provide a functional, standardized tool for their identification. To evaluate this possibility, we performed the first comprehensive test of the effectiveness of DNA barcodes as a tool for beetle identification by sequencing the COI barcode region from 1872 North European species. We examined intraspecific divergences, identification success and the effects of sample size on variation observed within and between species. A high proportion (98.3%) of these species possessed distinctive barcode sequence arrays. Moreover, the sequence divergences between nearest neighbor species were considerably higher than those reported for the only other insect order, Lepidoptera, which has seen intensive analysis (11.99% vs up to 5.80% mean NN divergence). Although maximum intraspecific divergence increased and average divergence between nearest neighbors decreased with increasing sampling effort, these trends rarely hampered identification by DNA barcodes due to deep sequence divergences between most species. The Barcode Index Number system in BOLD coincided strongly with known species boundaries with perfect matches between species and BINs in 92.1% of all cases. In addition, DNA barcode analysis revealed the likely occurrence of about 20 overlooked species. The current results indicate that DNA barcodes distinguish species of beetles remarkably well, establishing their potential to provide an effective identification tool for this order and to accelerate the discovery of new beetle species. PMID:25255319

  5. A tale of two sutures: COCORP's deep seismic surveys of the Grenville province in the eastern U. S. midcontinent

    SciTech Connect

    Culotta, R.C.; Oliver, J.; Pratt, T. )

    1990-07-01

    A pair of oppositely dipping, crustal-scale shear zones imaged within Grenville basement beneath the Paleozoic cover of Ohio can be correlated, via geopotential lineaments, with similarly oriented geologic and seismically imaged structures hundreds of kilometres to the northeast and southwest, suggesting a relatively simple structural framework for the eastern midcontinent region. An east-dipping zone extending from Lake Huron through western Ohio, and possibly farther southwest, marks the western edge of the Grenville province. Perhaps of greater consequence to an understanding of Grenville tectonics is the discovery of a west-dipping zone underlying the Appalachian basin from northern Alabama to New York within the Grenville province. Correlation of this feature with the seismogenic Clarendon-Linden fault in western New York and a boundary between terranes containing magmatic-arc rocks exposed in Canada suggests that it could mark the site of an intra-Grenville province suture zone. Implications of this interpretation are that the Precambrian foundation of the eastern U.S. midcontinent comprises a relatively simple assemblage of laterally extensive terranes or belts of coeval terranes accreted by familiar plate tectonic processes, and that deep seismic profiling is an effective tool for mapping the three-dimensional distribution of these terranes.

  6. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    SciTech Connect

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C.; Biggs, A. D.; Ivison, R. J.; Brandt, W. N.; Chapman, S. C.; Coppin, K. E. K.; Dannerbauer, H.; Greve, T. R.; Karim, A.; Menten, Karl M.; Schinnerer, E.; Walter, F.; Wardlow, J. L.; and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  7. COMOVING SPACE DENSITY AND OBSCURED FRACTION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE SUBARU/XMM-NEWTON DEEP SURVEY

    SciTech Connect

    Hiroi, Kazuo; Ueda, Yoshihiro; Akiyama, Masayuki; Watson, Mike G.

    2012-10-10

    We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts (3 < z < 5) in the Subaru/XMM-Newton Deep Survey field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at z > 3 with intrinsic (de-absorbed and rest-frame 2-10 keV) luminosities of L{sub X} = 10{sup 44-45} erg s{sup -1} detected in the 0.5-2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the 1/V{sub max} method, we confirm that the comoving space density of luminous AGNs decreases with redshift above z > 3. When combined with the Chandra-COSMOS result of Civano et al., the density decline of AGNs with L{sub X} = 10{sup 44-45} erg s{sup -1} is well represented by a power law of (1 + z){sup -6.2{+-}0.9}. We also determine the fraction of X-ray obscured AGNs with N{sub H} > 10{sup 22} cm{sup -2} in the Compton-thin population to be 0.54{sup +0.17}{sub -0.19}, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59 {+-} 0.09. Comparing our result with that obtained in the local universe, we conclude that the obscured fraction of luminous AGNs increases significantly from z = 0 to z > 3 by a factor of 2.5 {+-} 1.1.

  8. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median

  9. The MOSFIRE Deep Evolution Field (MOSDEF) Survey: Rest-frame Optical Spectroscopy for ~1500 H-selected Galaxies at 1.37 < z < 3.8

    NASA Astrophysics Data System (ADS)

    Kriek, Mariska; Shapley, Alice E.; Reddy, Naveen A.; Siana, Brian; Coil, Alison L.; Mobasher, Bahram; Freeman, William R.; de Groot, Laura; Price, Sedona H.; Sanders, Ryan; Shivaei, Irene; Brammer, Gabriel B.; Momcheva, Ivelina G.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Aird, James; Azadi, Mojegan; Kassis, Marc; Bullock, James S.; Conroy, Charlie; Davé, Romeel; Kereš, Dušan; Krumholz, Mark

    2015-06-01

    In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R = 3000-3650) rest-frame optical spectra (˜3700-7000 Å) for ˜1500 galaxies at 1.37≤ z≤ 3.80 in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals: 1.37≤ z≤ 1.70, 2.09≤ z≤ 2.61, and 2.95≤ z≤ 3.80, down to fixed {H}{AB} (F160W) magnitudes of 24.0, 24.5, and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [O ii] λ λ 3727,3730, Hβ, [O iii] λ λ 4960,5008, Hα, [N ii] λ λ 6550,6585, and [S ii] λ λ 6718,6733) and stellar continuum and absorption features (e.g., Balmer lines, Ca-ii H and K, Mgb, 4000 Å break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ˜80% of the targets we derive a robust redshift from either emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass (˜ {10}9-{10}11.5 {M}⊙ ) and star formation rate (˜ {10}0-{10}3 {M}⊙ {{yr}}-1). The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active.

  10. OTELO SURVEY: DEEP BVRI BROADBAND PHOTOMETRY OF THE GROTH STRIP. II. OPTICAL PROPERTIES OF X-RAY EMITTERS

    SciTech Connect

    Povic, M.; Perez GarcIa, A. M.; Bongiovanni, A.; Castaneda, H.; Lorenzo, M. Fernandez; Lara-Lopez, M. A.; Sanchez-Portal, M.; Alfaro, E.; Gallego, J.; Gonzalez-Serrano, J. I.; Gonzalez, J. J. E-mail: miguel.sanchez@sciops.esa.in

    2009-11-20

    The Groth field is one of the sky regions that will be targeted by the OSIRIS Tunable Filter Emission Line Object survey in the optical 820 nm and 920 nm atmospheric windows. In the present paper, public Chandra X-ray data with total exposure time of 200 ks are analyzed and combined with optical broadband data of the Groth field, in order to study a set of optical structural parameters of the X-ray emitters and its relation with X-ray properties. To this aim, we processed the raw, public X-ray data using the Chandra Interactive Analysis of Observations, and determined and analyzed different structural parameters, in order to produce a morphological classification of X-ray sources. We present the morphology of 340 X-ray emitters with optical counterpart detected. Objects have been classified by X-ray type using a diagnostic diagram relating X-ray-to-optical ratio (X/O) to hardness ratio. We did not find any clear correlation between X-ray and morphological types. We analyzed the angular clustering of X-ray sources with optical counterpart using two-point correlation functions. A significant positive angular clustering was obtained from a preliminary analysis of four subsamples of the X-ray sources catalog. The clustering signal of the optically extended counterparts is similar to that of strongly clustered populations like red and very red galaxies, suggesting that the environment plays an important role in active galactic nuclei phenomena. Finally, we combined optical structural parameters with other X-ray and optical properties, and we confirmed an anticorrelation between the X/O ratio and the Abraham concentration index, which might suggest that early-type galaxies have lower Eddington rates than those of late-type galaxies.

  11. A new deep, hard X-ray survey of M31: Identifying Black Holes and Neutron Stars in the X-ray Binary Population of our Nearest Neighbor

    NASA Astrophysics Data System (ADS)

    Wik, Daniel R.; Hornschemeier, Ann E.; Yukita, Mihoko; Ptak, Andrew; Lehmer, Bret; Maccarone, Thomas J.; Antoniou, Vallia; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Venters, Tonia M.; Williams, Benjamin F.; Eracleous, Michael; Plucinsky, Paul P.; Pooley, David A.

    2016-04-01

    X-ray binaries (XRBs) trace old and new stellar populations in galaxies, and thus star formation history and star formation rate. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium (IGM) at Cosmic Dawn and may also play a significant role in reionization. Until recently, the hard emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. The launch of NuSTAR, the first focusing hard X-ray observatory, has allowed us to resolve the brightest XRBs (down to LX ~ few times 10^38 erg/s) in galaxies like NGC 253, M83, and M82 up to 4 Mpc away. To reach much lower X-ray luminosities that are more typical of XRBs in the Milky Way (Lx <~ 10^37 erg/s), we have observed M31 in 4 NuSTAR fields for more than 1 Ms total exposure, covering younger stellar population in a swath of the disk (within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey) and the older populations of the bulge. We detect 120 sources in the 4-25 keV band and over 40 hard band (12-25 keV) accreting black holes and neutron stars, distinguished by their spectral shape in this band. The luminosity function (LF) of the hard band detected sources are compared to Swift/BAT-derived LFs of the Milky Way population, which reveals an excess of luminous sources in M31 when correcting for star formation rate and stellar mass. We also discuss implications for this updated understanding of XRB populations on early-Universe measurements in, e.g., the 7 Ms Chandra Deep Field survey.

  12. An alma survey of submillimeter galaxies in the extended Chandra deep field-south: The agn fraction and X-ray properties of submillimeter galaxies

    SciTech Connect

    Wang, S. X.; Brandt, W. N.; Luo, B.; Smail, I.; Alexander, D. M.; Danielson, A. L. R.; Karim, A.; Simpson, J. M.; Swinbank, A. M.; Hodge, J. A.; Walter, F.; Lehmer, B. D.; Wardlow, J. L.; Xue, Y. Q.; Chapman, S. C.; Coppin, K. E. K.; Dannerbauer, H.; De Breuck, C.; Menten, K. M.; Van der Werf, P. E-mail: niel@astro.psu.edu

    2013-12-01

    The large gas and dust reservoirs of submillimeter galaxies (SMGs) could potentially provide ample fuel to trigger an active galactic nucleus (AGN), but previous studies of the AGN fraction in SMGs have been controversial largely due to the inhomogeneity and limited angular resolution of the available submillimeter surveys. Here we set improved constraints on the AGN fraction and X-ray properties of the SMGs with Atacama Large Millimeter/submillimeter Array (ALMA) and Chandra observations in the Extended Chandra Deep Field-South (E-CDF-S). This study is the first among similar works to have unambiguously identified the X-ray counterparts of SMGs; this is accomplished using the fully submillimeter-identified, statistically reliable SMG catalog with 99 SMGs from the ALMA LABOCA E-CDF-S Submillimeter Survey. We found 10 X-ray sources associated with SMGs (median redshift z = 2.3), of which eight were identified as AGNs using several techniques that enable cross-checking. The other two X-ray detected SMGs have levels of X-ray emission that can be plausibly explained by their star formation activity. Six of the eight SMG-AGNs are moderately/highly absorbed, with N {sub H} > 10{sup 23} cm{sup –2}. An analysis of the AGN fraction, taking into account the spatial variation of X-ray sensitivity, yields an AGN fraction of 17{sub −6}{sup +16}% for AGNs with rest-frame 0.5-8 keV absorption-corrected luminosity ≥7.8 × 10{sup 42} erg s{sup –1}; we provide estimated AGN fractions as a function of X-ray flux and luminosity. ALMA's high angular resolution also enables direct X-ray stacking at the precise positions of SMGs for the first time, and we found four potential SMG-AGNs in our stacking sample.

  13. He II emitters in the VIMOS VLT Deep Survey: Population III star formation or peculiar stellar populations in galaxies at 2 < z < 4.6?

    NASA Astrophysics Data System (ADS)

    Cassata, P.; Le Fèvre, O.; Charlot, S.; Contini, T.; Cucciati, O.; Garilli, B.; Zamorani, G.; Adami, C.; Bardelli, S.; Le Brun, V.; Lemaux, B.; Maccagni, D.; Pollo, A.; Pozzetti, L.; Tresse, L.; Vergani, D.; Zanichelli, A.; Zucca, E.

    2013-08-01

    Aims: The aim of this work is to identify He II emitters at 2 < z < 4.6 and to constrain the source of the hard ionizing continuum that powers the He II emission. Methods: We assembled a sample of 277 galaxies with a highly reliable spectroscopic redshift at 2 < z < 4.6 from the VIMOS-VLT Deep Survey (VVDS) Deep and Ultra-Deep data, and we identified 39 He II λ1640 emitters. We studied their spectral properties, measuring the fluxes, equivalent widths (EW), and full width at half maximum (FWHM) for most relevant lines, including He II λ1640, Lyα line, Si II λ1527, and C IV λ1549. Results: About 10% of galaxies at z ~ 3 and iAB ≤ 24.75 show He II in emission, with rest frame equivalent widths EW0 ~ 1-7 Å, equally distributed between galaxies with Lyα in emission or in absorption. We find 11 (3.9% of the global population) reliable He II emitters with unresolved He II lines (FWHM0 < 1200 km s-1), 13 (4.6% of the global population) reliable emitters with broad He II emission (FWHM0 > 1200 km s-1), 3 active galactic nuclei (AGN), and an additional 12 possible He II emitters. The properties of the individual broad emitters are in agreement with expectations from a Wolf-Rayet (W-R) model. Instead, the properties of the narrow emitters are not compatible with this model, nor with predictions of gravitational cooling radiation produced by gas accretion, unless this is severely underestimated by current models by more than two orders of magnitude. Rather, we find that the EW of the narrow He II line emitters are in agreement with expectations for a Population III (PopIII) star formation, if the episode of star formation is continuous, and we calculate that a PopIII star formation rate (SFR) of 0.1-10 M⊙ yr-1 alone is enough to sustain the observed He II flux. Conclusions: We conclude that narrow He II emitters are powered either by the ionizing flux from a stellar population rare at z ~ 0 but much more common at z ~ 3, or by PopIII star formation. As proposed by

  14. The Deep2 Galaxy Redshift Survey: Mean Ages and Metallicities ofRed Field Galaxies at Z ~; 0.9 from Stacked Keck/Deimos Spectra

    SciTech Connect

    Schiavon, Ricardo P.; Faber, S.M.; Konidaris, Nicholas; Graves,Genevieve; Willmer, Christopher N.A.; Weiner, Benjamin J.; Coil, AlisonL.; Cooper, Michael C.; Davis, Marc; Harker, Justin; Koo, David C.; Newman, Jeffrey A.; Yan, Renbin

    2006-10-19

    As part of the DEEP2 galaxy redshift survey, we analyze absorption line strengths in stacked Keck/DEIMOS spectra of red field galaxies with weak to no emission lines, at redshifts 0.7 {approx}< z {approx}< 1. Comparison with models of stellar population synthesis shows that red galaxies at z {approx} 0:9 have mean luminosity-weighted ages of the order of only 1 Gyr and at least solar metallicities. These ages cannot be reconciled with a scenario where all stars evolved passively after forming at very high z. Rather, a significant fraction of stars can be no more than 1 Gyr old, which means that some star formation in the stacked populations continued to at least z {approx} 1:2. Furthermore, a comparison of these distant galaxies with a local SDSS sample, using stellar populations synthesis models, shows that the drop in the equivalent width of H{delta} from z {approx} 0:9 to 0.1 is less than predicted by passively evolving models. This admits of two interpretations: either each individual galaxy experiences continuing low-level star formation, or the red-sequence galaxy population from z {approx} 0:9 to 0.1 is continually being added to by new galaxies with younger stars.

  15. An Empirical Determination of the Intergalactic Background Light from UV to FIR Wavelengths Using FIR Deep Galaxy Surveys and the Gamma-Ray Opacity of the Universe

    NASA Astrophysics Data System (ADS)

    Stecker, Floyd W.; Scully, Sean T.; Malkan, Matthew A.

    2016-08-01

    We have previously calculated the intergalactic background light (IBL) as a function of redshift from the Lyman limit in the far-ultraviolet to a wavelength of 5 μm in the near-infrared range, based purely on data from deep galaxy surveys. Here, we use similar methods to determine the mid- and far-infrared IBL from 5 to 850 μm. Our approach enables us to constrain the range of photon densities by determining the uncertainties in observationally determined luminosity densities and spectral gradients. By also including the effect of the 2.7 K cosmic background photons, we determine upper and lower limits on the opacity of the universe to γ-rays up to PeV energies within a 68% confidence band. Our direct results on the IBL are consistent with those from complimentary γ-ray analyses using observations from the Fermi γ-ray space telescope and the H.E.S.S. air Čerenkov telescope. Thus, we find no evidence of previously suggested processes for the modification of γ-ray spectra other than that of absorption by pair production alone.

  16. A Deep Near-Infrared Survey of the N 49 Region around the Soft Gamma-Ray Repeater 0526-66

    NASA Technical Reports Server (NTRS)

    Klose, S.; Henden, A. A.; Geppert, U.; Greiner, J.; Guetter, H. H.; Hartmann, D. H.; Kouveliotou, C.; Luginbuhl, C. B.; Stecklurn, B.; Vrba, F. J.

    2004-01-01

    We report the results of a deep near-infrared survey of the vicinity of supernova remnant N49 in the Large Magellanic Cloud (LMC), which contains the soft gamma-ray repeater (SGR) 0526-66. Two of the four confirmed SGRs are potentially associated with compact stellar clusters. We thus searched for a similar association of SGR0526-66, and find the unexplored young stellar cluster SL 463 at a projected distance of approx. 30 pc from the SGR. This constitutes the third cluster-SGR link, and lends support to scenarios in which SGR progenitors originate in young, embedded clusters. If real, the cluster-SGR association constrains the age and thus the initial mass of these stars. In addition, our high-resolution images of the super- nova remnant N49 reveal an area of excess K-band flux in the southeastern part of the SNR. This feature coincides with the maximum flux area at 8.28 microns as detected by the Midcourse Space Experiment (MSX satellite), which we identify with IRAS 052594607.

  17. Lake Nam Co (Tibet, China) - a suitable target for a deep drilling project as confirmed by a preliminary airgun seismic survey

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Daut, G.; Wenau, S.; Gernhardt, F.; Wang, J.; Schwenk, T.; Haberzettl, T.; Zhu, L.; Maeusbacher, R.

    2014-12-01

    Lake Nam Co, located on the central Tibetan Plateau at the intersection of the Westerlies and the Indian Ocean Summer Monsoon, is well suited to study the monsoonal regime over different time scales. High-resolution and continuous sedimentary records from the Tibetan Plateau are still rare and only few reach back to the Last Glacial Maximum. For Nam Co, numerous multiproxy studies unravel the regional paleoclimate and paleoenvironmental history for the past 24,000 years. These promising results demonstrate the potential of Lake Nam Co as a geoarchive, but nature, thickness and geologic time of the sediment fill have not yet been determined. Therefore the Institute of Tibetan Plateau Research (Chinese Academy of Sciences) and the Universities of Bremen and Jena jointly carried out an airgun multichannel seismic survey at Nam Co in June/July 2014. As main equipment, a micro GI Gun(2 x 0.1 L) was used in conjunction with a 64 m long seismic streamer (32 channels/2 m spacing) to achieve deep signal penetration, to confirm a thick sediment infill and to prove the suitability for deep coring of several hundred meters. Although only few lines could be shot due to technical and weather issues, several lines particularly from the deepest part of the lake provide new insight. Preliminary data processing and interpretation reveal a well layered sediment cover of >700 m in the center of the lake. Seismic facies appears to vary in a cyclic manner, indicating a coupling to climatically-driven changes in lake level and sediment delivery. From a comparison with the Holocene/Late Glacial sedimentary and seismic record, several similar units could be imaged. Furthermore, rapid sedimentation is confirmed from the continuous cover of growth faults and doming, and continuous sedimentation throughout glacial/interglacial cycles appears likely due to the absence of erosional unconformities. By tentatively assigning these units to marine isotope stages, different seismostratigraphies can

  18. The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2 < z < 2.5

    NASA Astrophysics Data System (ADS)

    Hathi, N. P.; Le Fèvre, O.; Ilbert, O.; Cassata, P.; Tasca, L. A. M.; Lemaux, B. C.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Guaita, L.; Koekemoer, A.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-04-01

    The aim of this paper is to investigate spectral and photometric properties of 854 faint (iAB ≲ 25 mag) star-forming galaxies (SFGs) at 2 < z < 2.5 using the VIMOS Ultra-Deep Survey (VUDS) spectroscopic data and deep multi-wavelength photometric data in three extensively studied extragalactic fields (ECDFS, VVDS, COSMOS). These SFGs were targeted for spectroscopy as a result of their photometric redshifts. The VUDS spectra are used to measure the UV spectral slopes (β) as well as Lyα equivalent widths (EW). On average, the spectroscopically measured β (-1.36 ± 0.02), is comparable to the photometrically measured β (-1.32 ± 0.02), and has smaller measurement uncertainties. The positive correlation of β with the spectral energy distribution (SED)-based measurement of dust extinction Es(B-V) emphasizes the importance of β as an alternative dust indicator at high redshifts. To make a proper comparison, we divide these SFGs into three subgroups based on their rest-frame Lyα EW: SFGs with no Lyα emission (SFGN; EW ≤ 0 Å), SFGs with Lyα emission (SFGL; EW > 0 Å), and Lyα emitters (LAEs; EW ≥ 20 Å). The fraction of LAEs at these redshifts is ~10%, which is consistent with previous observations. We compared best-fitSED-estimated stellar parameters of the SFGN, SFGL and LAE samples. For the luminosities probed here (~ L∗), we find that galaxies with and without Lyα in emission have small but significant differences in their SED-based properties. We find that LAEs have less dust, and lower star-formation rates (SFR) compared to non-LAEs. We also find that LAEs are less massive compared to non-LAEs, though the difference is smaller and less significant compared to the SFR and Es(B-V). When we divide the LAEs according to their Spitzer/IRAC 3.6 μm fluxes, we find that the fraction of IRAC-detected (m3.6 ≲ 25 mag) LAEs is much higher than the fraction of IRAC-detected narrow band (NB)-selected LAEs at z ≃ 2-3. This could imply that UV-selected LAEs

  19. A NEW INFRARED COLOR CRITERION FOR THE SELECTION OF 0 < z < 7 AGNs: APPLICATION TO DEEP FIELDS AND IMPLICATIONS FOR JWST SURVEYS

    SciTech Connect

    Messias, H.; Afonso, J.; Salvato, M.; Mobasher, B.; Hopkins, A. M.

    2012-08-01

    It is widely accepted that observations at mid-infrared (mid-IR) wavelengths enable the selection of galaxies with nuclear activity, which may not be revealed even in the deepest X-ray surveys. Many mid-IR color-color criteria have been explored to accomplish this goal and tested thoroughly in the literature. Besides missing many low-luminosity active galactic nuclei (AGNs), one of the main conclusions is that, with increasing redshift, the contamination by non-active galaxies becomes significant (especially at z {approx}> 2.5). This is problematic for the study of the AGN phenomenon in the early universe, the main goal of many of the current and future deep extragalactic surveys. In this work new near- and mid-IR color diagnostics are explored, aiming for improved efficiency-better completeness and less contamination-in selecting AGNs out to very high redshifts. We restrict our study to the James Webb Space Telescope wavelength range (0.6-27 {mu}m). The criteria are created based on the predictions by state-of-the-art galaxy and AGN templates covering a wide variety of galaxy properties, and tested against control samples with deep multi-wavelength coverage (ranging from the X-rays to radio frequencies). We show that the colors K{sub s} - [4.5], [4.5] - [8.0], and [8.0] - [24] are ideal as AGN/non-AGN diagnostics at, respectively, z {approx}< 1, 1 {approx}< z {approx}< 2.5, and z {approx}> 2.5-3. However, when the source redshift is unknown, these colors should be combined. We thus develop an improved IR criterion (using K{sub s} and IRAC bands, KI) as a new alternative at z {approx}< 2.5. KI does not show improved completeness (50%-60% overall) in comparison to commonly used Infrared Array Camera (IRAC) based AGN criteria, but is less affected by non-AGN contamination (revealing a >50%-90% level of successful AGN selection). We also propose KIM (using K{sub s} , IRAC, and MIPS 24 {mu}m bands, KIM), which aims to select AGN hosts from local distances to as far

  20. The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Cassata, P.; Cucciati, O.; Garilli, B.; Ilbert, O.; Le Brun, V.; Maccagni, D.; Moreau, C.; Scodeggio, M.; Tresse, L.; Zamorani, G.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Bondi, M.; Bongiorno, A.; Bottini, D.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; de la Torre, S.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Iovino, A.; Lemaux, B.; López-Sanjuan, C.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Mellier, Y.; Merighi, R.; Merluzzi, P.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Scaramella, R.; Tasca, L.; Vergani, D.; Vettolani, G.; Zanichelli, A.; Zucca, E.

    2013-11-01

    Context. Deep representative surveys of galaxies at different epochs are needed to make progress in understanding galaxy evolution. Aims: We describe the completed VIMOS VLT Deep Survey and the final data release of 35 016 galaxies and type-I AGN with measured spectroscopic redshifts covering all epochs up to redshift z ~ 6.7, in areas from 0.142 to 8.7 square degrees, and volumes from 0.5 × 106 to 2 × 107 h-3 Mpc3. Methods: We selected samples of galaxies based solely on their i-band magnitude reaching iAB = 24.75. Spectra were obtained with VIMOS on the ESO-VLT integrating 0.75 h, 4.5 h, and 18 h for the Wide, Deep, and Ultra-Deep nested surveys, respectively. We demonstrate that any "redshift desert" can be crossed successfully using spectra covering 3650 ≤ λ ≤ 9350 Å. A total of 1263 galaxies were again observed independently within the VVDS and from the VIPERS and MASSIV surveys. They were used to establish the redshift measurements reliability, to assess completeness in the VVDS sample, and to provide a weighting scheme taking the survey selection function into account. We describe the main properties of the VVDS samples, and the VVDS is compared to other spectroscopic surveys in the literature. Results: In total we have obtained spectroscopic redshifts for 34 594 galaxies, 422 type-I AGN, and 12 430 Galactic stars. The survey enabled identifying galaxies up to very high redshifts with 4669 redshifts in 1 ≤ zspec ≤ 2, 561 in 2 ≤ zspec ≤ 3, and 468 with zspec > 3, and specific populations like Lyman-α emitters were identified out to z = 6.62. We show that the VVDS occupies a unique place in the parameter space defined by area, depth, redshift coverage, and number of spectra. Conclusions: The VIMOS VLT Deep Survey provides a comprehensive survey of the distant universe, covering all epochs since z ~ 6, or more than 12 Gyr of cosmic time, with a uniform selection, which is the largest such sample to date. A wealth of science results derived from

  1. Deep Advanced Camera for Surveys Imaging in the Globular Cluster NGC 6397: the Cluster Color-Magnitude Diagram and Luminosity Function

    NASA Astrophysics Data System (ADS)

    Richer, Harvey B.; Dotter, Aaron; Hurley, Jarrod; Anderson, Jay; King, Ivan; Davis, Saul; Fahlman, Gregory G.; Hansen, Brad M. S.; Kalirai, Jason; Paust, Nathaniel; Rich, R. Michael; Shara, Michael M.

    2008-06-01

    We present the color-magnitude diagram (CMD) from deep Hubble Space Telescope imaging in the globular cluster NGC 6397. The Advanced Camera for Surveys (ACS) was used for 126 orbits to image a single field in two colors (F814W, F606W) 5' SE of the cluster center. The field observed overlaps that of archival WFPC2 data from 1994 and 1997 which were used to proper motion (PM) clean the data. Applying the PM corrections produces a remarkably clean CMD which reveals a number of features never seen before in a globular cluster CMD. In our field, the main-sequence stars appeared to terminate close to the location in the CMD of the hydrogen-burning limit predicted by two independent sets of stellar evolution models. The faintest observed main-sequence stars are about a magnitude fainter than the least luminous metal-poor field halo stars known, suggesting that the lowest-luminosity halo stars still await discovery. At the bright end the data extend beyond the main-sequence turnoff to well up the giant branch. A populous white dwarf cooling sequence is also seen in the cluster CMD. The most dramatic features of the cooling sequence are its turn to the blue at faint magnitudes as well as an apparent truncation near F814W = 28. The cluster luminosity and mass functions were derived, stretching from the turnoff down to the hydrogen-burning limit. It was well modeled with either a very flat power-law or a lognormal function. In order to interpret these fits more fully we compared them with similar functions in the cluster core and with a full N-body model of NGC 6397 finding satisfactory agreement between the model predictions and the data. This exercise demonstrates the important role and the effect that dynamics has played in altering the cluster initial mass function.

  2. Microclimate controls on weathering: Insights into deep critical zone evolution from seismic refraction surveys in the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    West, N.; Kirby, E.; Nyblade, A.; Brantley, S. L.; Clarke, B. A.

    2015-12-01

    The formation of regolith is fundamental to the functioning and structure of the critical zone - the physically and chemically altered material formed from in situ parent bedrock that is available for transport. Understanding how regolith production and transport respond to perturbations in climate and/or tectonic forcing remains a first-order question. At the Susquehanna Shale Hills Critical Zone Observatory (SSHO), high resolution LiDAR-derived topographic data and depths to hand auger refusal reveal a systematic asymmetry in hillslope gradient and mobile regolith thickness; both are greater on north-facing hillslopes. Hydrologic and geochemical studies at the SSHO also suggest asymmetric sediment transport, fluid flow, and mineral weathering with respect to hillslope aspect. Here, we combine shallow seismic surveys completed along 4 hillslope transects (2 north-facing and 2-south facing), 2 ridgetops transects, and subsurface observations in boreholes to investigate the role of climate in inducing fracturing and priming the development of the observed asymmetry. Comparisons of shallow p-wave velocities with borehole and pit observations lead us to hypothesize the presence of three distinct layers at SSHO: 1) a deep, high velocity layer that is consistent with unweathered shale bedrock; 2) an intermediate velocity layer that is consistent with fractured and chemically altered bedrock which overlies unaltered bedrock, and 3) a shallow, slow velocity layer that is consistent with mobile material or shallow soil. Shallow p-wave velocity profiles suggest differences in thickness for both the mobile and immobile regolith material with respect to aspect. Patterns of p-wave velocities with depth are consistent with patterns of fracture densities observed in boreholes and with predictive cracking intensity models related to frost action. The models and data are consistent with climate as a primary driver for the development of asymmetry in the subsurface architecture at

  3. An alma survey of sub-millimeter galaxies in the extended Chandra deep field south: Sub-millimeter properties of color-selected galaxies

    SciTech Connect

    Decarli, R.; Walter, F.; Hodge, J. A.; Rix, H.-W.; Schinnerer, E.; Smail, I.; Swinbank, A. M.; Karim, A.; Simpson, J. M.; Chapman, S.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Greve, T. R.; Ivison, R.; Knudsen, K. K.; Lindroos, L.; Van der Werf, P.; Weiß, A.

    2014-01-10

    We study the sub-millimeter properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-millimeter wavelengths. We base our study on 344 GHz ALMA continuum observations of ∼20''-wide fields centered on 86 sub-millimeter sources detected in the LABOCA Extended Chandra Deep Field South (ECDFS) Sub-millimeter Survey. We select various classes of galaxies (K-selected, star-forming sBzK galaxies, extremely red objects, and distant red galaxies) according to their optical/near-infrared fluxes. We find clear, >10σ detections in the stacked images of all these galaxy classes. We include in our stacking analysis Herschel/SPIRE data to constrain the dust spectral energy distribution of these galaxies. We find that their dust emission is well described by a modified blackbody with T {sub dust} ≈ 30 K and β = 1.6 and infrared luminosities of (5-11) × 10{sup 11} L {sub ☉} or implied star formation rates of 75-140 M {sub ☉} yr{sup –1}. We compare our results with those of previous studies based on single-dish observations at 870 μm and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also after removing sources individually detected in ALESS maps. We report a similar discrepancy by repeating our analysis on 1.4 GHz observations of the whole ECDFS. Hence, we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of redshift.

  4. Deep-sea survey for the detection of methane at the “Santa Maria di Leuca” cold-water coral mounds (Ionian Sea, South Italy)

    NASA Astrophysics Data System (ADS)

    Etiope, G.; Savini, A.; Lo Bue, N.; Favali, P.; Corselli, C.

    2010-03-01

    The "Santa Maria di Leuca" Cold-Water Coral (CWC) province (northern Ionian Sea) was investigated for the first time to detect eventual occurrence of methane anomalies as a possible indication of hydrocarbon seepage stimulating the coral growth. Most coral mounds have developed in correspondence with tectonic scarps and faults, orthogonal to the southern margin and trending NW-SE, which could be potential sites of gas escape. A visual and instrumental inspection was performed by using a new deep-sea probe equipped with video-cameras, sonar, CTD, methane sensors, and a water sampler. Eight areas were explored by 10 surveys, depths ranging from 380 to 1100 m, for a total of more than 26 h of continuous video and instrumental recording. Sediments were also sampled by gravity corers and analysed in laboratory. The images allowed to assess distribution, abundance and geometry of the colonies, most of which are developed on morphological highs often characterised by tectonic scarps. All data indicate however the lack of a significant occurrence of methane, both in seawater and sediments. No direct or indirect expressions of gas seepage were recognised on the seabed. Weak methane anomalies were detected only in seawater at the base of some fault-linked scarps, where more reducing conditions and bacterial methanogenesis are possibly enhanced by less water circulation. The faults are not fluid-bearing as previously suggested by high-resolution geophysical signatures. The development of the coral colonies thus cannot be attributed to seeping fluids, but to a favourable physiographic position with exposure to nutrient-rich currents.

  5. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    SciTech Connect

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M.; Meurer, Gerhardt R.; Burgett, W. S.; Huber, M. E.; Kaiser, N.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Chambers, K. C.; Metcalfe, N.; Price, P. A.

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples of galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.

  6. A PUBLIC, K-SELECTED, OPTICAL-TO-NEAR-INFRARED CATALOG OF THE EXTENDED CHANDRA DEEP FIELD SOUTH (ECDFS) FROM THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC)

    SciTech Connect

    Taylor, Edward N.; Franx, Marijn; Quadri, Ryan F.; Damen, Maaike; Hildebrandt, Hendrik; Van Dokkum, Pieter G.; Herrera, David; Gawiser, Eric; Bell, Eric F.; Barrientos, L. Felipe; Blanc, Guillermo A.; Castander, Francisco J.; Gonzalez-Perez, Violeta; Hall, Patrick B.; Kriek, Mariska; Labbe, Ivo; Lira, Paulina; Maza, Jose; Rudnick, Gregory; Treister, Ezequiel

    2009-08-01

    We present a new, K-selected, optical-to-near infrared photometric catalog of the Extended Chandra Deep Field South (ECDFS), making it publicly available to the astronomical community.{sup 22}Imaging and spectroscopy data and catalogs are freely available through the MUSYC Public Data Release webpage: http://www.astro.yale.edu/MUSYC/. The data set is founded on publicly available imaging, supplemented by original z'JK imaging data collected as part of the MUltiwavelength Survey by Yale-Chile (MUSYC). The final photometric catalog consists of photometry derived from UU {sub 38} BVRIz'JK imaging covering the full 1/2 x 1/2 square circ of the ECDFS, plus H-band photometry for approximately 80% of the field. The 5{sigma} flux limit for point sources is K{sup (AB)}{sub tot}= 22.0. This is also the nominal completeness and reliability limit of the catalog: the empirical completeness for 21.75 < K < 22.00 is {approx}>85%. We have verified the quality of the catalog through both internal consistency checks, and comparisons to other existing and publicly available catalogs. As well as the photometric catalog, we also present catalogs of photometric redshifts and rest-frame photometry derived from the 10-band photometry. We have collected robust spectroscopic redshift determinations from published sources for 1966 galaxies in the catalog. Based on these sources, we have achieved a (1{sigma}) photometric redshift accuracy of {delta}z/(1 + z) = 0.036, with an outlier fraction of 7.8%. Most of these outliers are X-ray sources. Finally, we describe and release a utility for interpolating rest-frame photometry from observed spectral energy distributions, dubbed InterRest.{sup 23}InterRest is available via http://www.strw.leidenuniv.nl/{approx}ent/InterRest. Documentation and a complete walkthrough can be found at the same address.

  7. A Public, K-Selected, Optical-to-Near-Infrared Catalog of the Extended Chandra Deep Field South (ECDFS) from the Multiwavelength Survey by Yale-Chile (MUSYC)

    NASA Astrophysics Data System (ADS)

    Taylor, Edward N.; Franx, Marijn; van Dokkum, Pieter G.; Quadri, Ryan F.; Gawiser, Eric; Bell, Eric F.; Barrientos, L. Felipe; Blanc, Guillermo A.; Castander, Francisco J.; Damen, Maaike; Gonzalez-Perez, Violeta; Hall, Patrick B.; Herrera, David; Hildebrandt, Hendrik; Kriek, Mariska; Labbé, Ivo; Lira, Paulina; Maza, José; Rudnick, Gregory; Treister, Ezequiel; Urry, C. Megan; Willis, Jon P.; Wuyts, Stijn

    2009-08-01

    We present a new, K-selected, optical-to-near infrared photometric catalog of the Extended Chandra Deep Field South (ECDFS), making it publicly available to the astronomical community.22Imaging and spectroscopy data and catalogs are freely available through the MUSYC Public Data Release webpage: http://www.astro.yale.edu/MUSYC/. The data set is founded on publicly available imaging, supplemented by original z'JK imaging data collected as part of the MUltiwavelength Survey by Yale-Chile (MUSYC). The final photometric catalog consists of photometry derived from UU 38 BVRIz'JK imaging covering the full 1/2 × 1/2 square degrees of the ECDFS, plus H-band photometry for approximately 80% of the field. The 5σ flux limit for point sources is K^{(AB)}_{tot} = 22.0. This is also the nominal completeness and reliability limit of the catalog: the empirical completeness for 21.75 < K < 22.00 is gsim85%. We have verified the quality of the catalog through both internal consistency checks, and comparisons to other existing and publicly available catalogs. As well as the photometric catalog, we also present catalogs of photometric redshifts and rest-frame photometry derived from the 10-band photometry. We have collected robust spectroscopic redshift determinations from published sources for 1966 galaxies in the catalog. Based on these sources, we have achieved a (1σ) photometric redshift accuracy of Δz/(1 + z) = 0.036, with an outlier fraction of 7.8%. Most of these outliers are X-ray sources. Finally, we describe and release a utility for interpolating rest-frame photometry from observed spectral energy distributions, dubbed InterRest.23InterRest is available via http://www.strw.leidenuniv.nl/~ent/InterRest. Documentation and a complete walkthrough can be found at the same address.

  8. The XMM deep survey in the CDF-S. III. Point source catalogue and number counts in the hard X-rays

    NASA Astrophysics Data System (ADS)

    Ranalli, P.; Comastri, A.; Vignali, C.; Carrera, F. J.; Cappelluti, N.; Gilli, R.; Puccetti, S.; Brandt, W. N.; Brunner, H.; Brusa, M.; Georgantopoulos, I.; Iwasawa, K.; Mainieri, V.

    2013-07-01

    Nuclear obscuration plays a key role in the initial phases of AGN growth, yet not many highly obscured active galactic nuclei (AGN) are currently known beyond the local Universe, and their search is an active topic of research. The XMM-Newton survey in the Chandra Deep Field South (XMM-CDFS) aims at detecting and studying the spectral properties of a significant number of obscured and Compton-thick (NH ≳ 1024 cm-2) AGN. The large effective area of XMM-Newton in the 2-10 and 5-10 keV bands, coupled with a 3.45 Ms nominal exposure time (2.82 and 2.45 Ms after light curve cleaning for MOS and PN, respectively), allows us to build clean samples in both bands, and makes the XMM-CDFS the deepest XMM-Newton survey currently published in the 5-10 keV band. The large multi-wavelength and spectroscopic coverage of the CDFS area allows for an immediate and abundant scientific return. In this paper, we present the data reduction of the XMM-CDFS observations, the method for source detection in the 2-10 and 5-10 keV bands, and the resulting catalogues. A number of 339 and 137 sources are listed in the above bands with flux limits of 6.6 × 10-16 and 9.5 × 10-16 erg s-1 cm-2, respectively. The flux limits at 50% of the maximum sky coverage are 1.8 × 10-15 and 4.0 × 10-15 erg s-1 cm-2, respectively. The catalogues have been cross-correlated with the Chandra ones: 315 and 130 identifications have been found with a likelihood-ratio method, respectively. A number of 15 new sources, previously undetected by Chandra, is found; 5 of them lie in the 4 Ms area. Redshifts, either spectroscopic or photometric, are available for ~ 95% of the sources. The number counts in both bands are presented and compared to other works. The survey coverage has been calculated with the help of two extensive sets of simulations, one set per band. The simulations have been produced with a newly-developed simulator, written with the aim of the most careful reproduction of the background spatial

  9. THE EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY: OPTICAL SPECTROSCOPY OF FAINT X-RAY SOURCES WITH THE VLT AND KECK

    SciTech Connect

    Silverman, J. D.; Mainieri, V.; Rosati, P.; Salvato, M.; Hasinger, G.; Bergeron, J.; Capak, P.; Szokoly, G.; Gilli, R.; Tozzi, P.; Vignali, C.; Alexander, D. M.; Brandt, W. N.; Luo, B.; Rafferty, D.; Xue, Y. Q.; Lehmer, B. D.; Bauer, F. E.

    2010-11-15

    We present the results of a program to acquire high-quality optical spectra of X-ray sources detected in the Extended-Chandra Deep Field-South (E-CDF-S) and its central 2 Ms area. New spectroscopic redshifts, up to z = 4, are measured for 283 counterparts to Chandra sources with deep exposures (t {approx} 2-9 hr per pointing) using multi-slit facilities on both VLT (VIMOS) and Keck (DEIMOS), thus bringing the total number of spectroscopically identified X-ray sources to over 500 in this survey field. Since our new spectroscopic identifications are mainly associated with X-ray sources in the shallower 250 ks coverage, we provide a comprehensive catalog of X-ray sources detected in the E-CDF-S including the optical and near-infrared counterparts, determined by a likelihood routine, and redshifts (both spectroscopic and photometric), that incorporate published spectroscopic catalogs, thus resulting in a final sample with a high fraction (80%) of X-ray sources having secure identifications. We demonstrate the remarkable coverage of the luminosity-redshift plane now accessible from our data while emphasizing the detection of active galactic nuclei (AGNs) that contribute to the faint end of the luminosity function (L {sub 0.5-8keV} {approx} 10{sup 43}-10{sup 44} erg s{sup -1}) at 1.5 {approx}< z {approx}< 3 including those with and without broad emission lines. Our redshift catalog includes 17 type-2 QSOs at 1 {approx}< z {approx}< 3.5 that significantly increases such samples (2x). Based on our deepest (9 hr) VLT/VIMOS observation, we identify 'elusive' optically faint galaxies (R {sub mag} {approx} 25) at z {approx} 2-3 based upon the detection of interstellar absorption lines (e.g., O II+Si IV, C II], C IV); we highlight one such case, an absorption-line galaxy at z = 3.208 having no obvious signs of an AGN in its optical spectrum. In addition, we determine accurate distances to eight galaxy groups with extended X-ray emission detected both by Chandra and XMM

  10. A deep x-ray survey of the Pleiades cluster and the B6-A3 main sequence stars in Orion

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre

    1993-01-01

    We have obtained deep ROSAT images of three regions within the Pleiades open cluster. We have detected 317 X-ray sources in these ROSAT PSPC images, 171 of which we associate with certain probable members of the Pleiades cluster. We detect nearly all Pleiades members with spectral types later than G0 and within 25 arcminutes of our three field centers where our sensitivity is highest. This has allowed us to derive for the first time the luminosity function for the G, K, and M dwarfs of an open cluster without the need to use statistical techniques to account for the presence of upper limits in the data sample. Because of our high X-ray detection frequency down to the faint limit of the optical catalog, we suspect that some of our unidentified X-ray sources are previously unknown, very low-mass members of the Pleiades. A large fraction of the Pleiades members detected with ROSAT have published rotational velocities. Plots of L(sub x)/L(sub bol) versus spectroscopic rotational velocity show tightly correlated 'saturation' type relations for stars with (B - V)(sub O) greater than 0.60. For each of several color ranges, X-ray luminosities rise rapidly with increasing rotation rate until v sin i approximately equals 15 km/s, and then remain essentially flat for rotation rates up to at least v sin i approximately equal to 100 km/s. The dispersion in rotation among low-mass stars in the Pleiades is by far the dominant contributor to the dispersion in L(subx) at a given mass. Only about 35 percent of the B.A. and early F stars in the Pleiades are detected as X-ray sources in our survey. There is no correlation between X-ray flux and rotation for these stars. The X-ray luminosity function for the early-type Pleiades stars appears to be bimodal, with only a few exceptions. We either detect these stars at fluxes in the range found for low-mass stars or we derive X-ray limits below the level found for most Pleiades dwarfs. The X-ray spectra for the early-type Pleiades stars

  11. Structure and photometry of an I less than 20.5 galaxy sample from the Hubble Space Telescope medium deep survey

    NASA Astrophysics Data System (ADS)

    Phillips, Andrew C.; Bershady, Matthew A.; Forbes, Duncan A.; Koo, David C.; Illingworth, Garth D.; Reitzel, David B.; Griffiths, Richard E.; Windhorst, Rogier A.

    1995-05-01

    A set of 100 faint galaxies from nine Hubble Space Telescope (HST) Wide Field Camera (WFC) I-band images have been analyzed as part of the Medium Deep Survey (MDS) Key Project. This sample reaches a depth of I approximately less than or equal to 20.5 (corresponding to B approximately 22-23) and complements the first set of fainter galaxies analyzed by the MDS team. Images were deconvolved using the Lucy-Richardson algorithm and a newly developed procedure designed to yield a more reliable determination of structure in the low-S/N regime. These deconvolved images were used to characterize the structure of the galaxies through quantative measurements of total magnitudes, half-light radii, exponential disk scale lengths, and disk-to-total rations. Extensive testing was done to establish the validity of the procedures used and to characterize the degree of systematic errors present in the analysis techniques. The observed size-magnitude distribution appears consistent with a scenario in which luminous galaxies have evolved little in intrinsic luminosity, size, or structure over recent epochs in a 'normal' cosmology (0 less than q0 less than 0.5 and Lambda0 = 0). The predicted nonevolving distributions were based on models designed to fit existing counts, colors, and redshifts of faint galaxies and on the observed correlations between metric rest-frame size and luminosity found in a nearby galaxy sample studied by Kent (1984-1985). The typical galaxy in our sample is expected to be at z approximately equal to 0.3, and to have a luminosity approximately 0.5 mag fainter than L* and a half-light radius of approximately 1 sec or approximately 6 kpc (H 0 = 50 km/s Mpc). The observed distribution of disk-to-total ratios, while uncertain, is in agreement with that of Kent's sample and thus supports the view that substantial evolution has not occurred over the look-back times characteristic of our sample.

  12. The Vimos VLT Deep Survey. Stellar mass segregation and large-scale galaxy environment in the redshift range 0.2 < z < 1.4

    NASA Astrophysics Data System (ADS)

    Scodeggio, M.; Vergani, D.; Cucciati, O.; Iovino, A.; Franzetti, P.; Garilli, B.; Lamareille, F.; Bolzonella, M.; Pozzetti, L.; Abbas, U.; Marinoni, C.; Contini, T.; Bottini, D.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Scaramella, R.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Cappi, A.; Charlot, S.; Ciliegi, P.; Foucaud, S.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; McCracken, H. J.; Marano, B.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Radovich, M.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; de La Torre, S.; de Ravel, L.; Gregorini, L.; Memeo, P.; Perez-Montero, E.; Mellier, Y.; Temporin, S.; Walcher, C. J.

    2009-07-01

    Context: Hierarchical models of galaxy formation predict that the properties of a dark matter halo depend on the large-scale environment surrounding the halo. As a result of this correlation, we expect massive haloes to be present in larger number in overdense regions than in underdense ones. Given that a correlation exists between a galaxy stellar mass and the hosting dark matter halo mass, the segregation in dark matter halo mass should then result in a segregation in the distribution of stellar mass in the galaxy population. Aims: In this work we study the distribution of galaxy stellar mass and rest-frame optical color as a function of the large-scale galaxy distribution using the VLT VIMOS Deep Survey sample, in order to verify the presence of segregation in the properties of the galaxy population. Methods: We use VVDS redshift measurements and multi-band photometric data to derive estimates of the stellar mass, rest-frame optical color, and of the large-scale galaxy density, on a scale of approximately 8 Mpc, for a sample of 5619 galaxies in the redshift range 0.2 0.7. However, when we consider only galaxies in narrow bins of stellar mass, in order to exclude the effects of stellar mass segregation on galaxy properties, we no longer observe any significant color segregation. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, program 070.A-9007(A), and on data obtained at the Canada-France-Hawaii Telescope

  13. The case for a deep-atmospheric in situ mission to address the highest priority Decadal Survey questions for Venus (Invited)

    NASA Astrophysics Data System (ADS)

    Atreya, S. K.; Garvin, J. B.; Glaze, L. S.; Campbell, B. A.; Fisher, M. E.; Flores, A.; Gilmore, M. S.; Johnson, N.; Kiefer, W. S.; Lorenz, R. D.; Mahaffy, P. R.; Ravine, M. A.; Webster, C. R.; Zolotov, M. Y.

    2013-12-01

    Current understanding of Venus lags behind that for Mars, with a major disparity of information concerning noble and trace gases and the small scale surface processes needed for comparative studies of terrestrial planet evolution. Despite global surface mapping by Magellan, discoveries by Venera landers, and ongoing atmospheric observations by the Venus Express (VEx) orbiter, significant questions about Venus remain unanswered. To place Venus into its proper context with respect to Mars and Earth, it is necessary to obtain new measurements that address top issues identified in the National Research Council (NRC) Solar System Decadal Survey: (1) evolution of the atmosphere, history of climate, and evidence of past hydrologic cycles; (2) history of volatiles and sedimentary cycles; and (3) planetary surface evolution. To answer these questions, new measurements are needed. First and foremost, in situ noble gas measurements are needed to constrain solar system formation and Venus evolution. In particular, the isotopic ratios of Xe and Kr can provide unique insights into planetary accretion. Isotopic measurements of nitrogen (15N/14N) will place important constraints on atmospheric loss processes. Current knowledge of this ratio has a substantial uncertainty of ×20%. VEx observations of hydrogen isotopes indicate the D/H ratio above the clouds is substantially greater than measured by Pioneer Venus, and varies with height. High precision measurements of the vertical distribution of the D/H isotopic ratio below the cloud layers will provide constraints on models of the climate history of water on Venus. The majority of atmospheric mass is located below the clouds. Current data suggest intense interaction among atmospheric gases down to the surface. The haze within the cloud region of unknown composition plays a central role in the radiative balance. Photochemically-derived species (H2SO4, OCS, CO, Sn) are subjected to thermochemical reactions below the clouds

  14. Discovery of a rich proto-cluster at z = 2.9 and associated diffuse cold gas in the VIMOS Ultra-Deep Survey (VUDS)

    NASA Astrophysics Data System (ADS)

    Cucciati, O.; Zamorani, G.; Lemaux, B. C.; Bardelli, S.; Cimatti, A.; Le Fèvre, O.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Thomas, R.; Vanzella, E.; Zucca, E.; Amorin, R.; Capak, P.; Cassarà, L. P.; Castellano, M.; Cuby, J. G.; de la Torre, S.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Moreau, C.; Paltani, S.; Ribeiro, B.; Salvato, M.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Taniguchi, Y.; Tresse, L.; Vergani, D.; Wang, P. W.; Charlot, S.; Contini, T.; Fotopoulou, S.; López-Sanjuan, C.; Mellier, Y.; Scoville, N.

    2014-10-01

    High-density environments are crucial places for studying the link between hierarchical structure formation and stellar mass growth in galaxies. In this work, we characterise a massive proto-cluster at z = 2.895 that we found in the COSMOS field using the spectroscopic sample of the VIMOS Ultra-Deep Survey (VUDS). This is one of the rare structures at z ~ 3 not identified around an active galactic nucleus (AGN) or a radio galaxy, thus it represents an ideal laboratory for investigating the formation of galaxies in dense environments. The structure comprises 12 galaxies with secure spectroscopic redshift in an area of ~ 7' × 8', in a total z range of Δz = 0.016. The measured galaxy number overdensity is δg = 12 ± 2. This overdensity has a total mass of M ~ 8.1 × 1014 M⊙ in a volume of 13 × 15 × 17 Mpc3. Simulations indicate that such an overdensity at z ~ 2.9 is a proto-cluster, which will collapse in a cluster of total mass Mz = 0 ~ 2.5 × 1015 M⊙ at z = 0, i.e. a massive cluster in the local Universe. We analysed the properties of the galaxies within the overdensity, and we compared them with acontrol sample at the same redshift but outside the overdensity. We could not find any statistically significant difference between the properties (stellar mass, star formation rate, specific star formation rate, NUV-r and r - K colours) of the galaxies inside and outside the overdensity, but this result might be due to the lack of statistics or possibly to the specific galaxy population sampled by VUDS, which could be less affected by environment than the other populations not probed by the survey. The stacked spectrum of galaxies in the background of the overdensity shows a significant absorption feature at the wavelength of Lyα redshifted at z = 2.895 (λ = 4736 Å), with a rest frame equivalent width (EW) of 4 ± 1.4 Å. Stacking only background galaxies without intervening sources at z ~ 2.9 along their line of sight, we find that this absorption feature has

  15. Beowawe geothermal-resource assessment. Final report. Shallow-hole temperature survey geophysics and deep test hole Collins 76-17

    SciTech Connect

    Jones, N.O.

    1983-03-01

    Geothermal resource investigation field efforts in the Beowawe Geysers Area, Eureka County, Nevada are described. The objectives included acquisition of geotechnical data for understanding the nature and extent of the geothermal resource boundaries south of the known resource area. Fourteen shallow (<500 feet) temperature-gradient holes plus geophysics were used to select the site for a deep exploratory well, the Collins 76-17, which was completed to a total depth of 9005 feet. Maximum downhole recorded temperature was 311/sup 0/F, but no flow could be induced.

  16. A REST-FRAME OPTICAL VIEW ON z {approx} 4 GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS

    SciTech Connect

    Oesch, P. A.; Illingworth, G. D.; Gonzalez, V.; Holden, B. P.; Magee, D.; Trenti, M.; Van Dokkum, P. G.

    2013-08-01

    We present a study of rest-frame UV-to-optical color distributions for z {approx} 4 galaxies based on the combination of deep HST/ACS+WFC3/IR data with Spitzer/IRAC imaging. In particular, we use new, ultra-deep data from the IRAC Ultradeep Field program (IUDF10), together with previous, public IRAC data over the GOODS fields. Our sample contains a total of {approx}2600 galaxies selected as B-dropout Lyman-break Galaxies in the HUDF and its deep parallel field HUDF09-2, as well as GOODS-North/South. This sample is used to investigate the UV continuum slopes {beta} and Balmer break colors (J{sub 125} - [4.5]) as a function of rest-frame optical luminosity (using [4.5] to avoid optical emission lines). We find that galaxies at M{sub z} < -21.5 (roughly corresponding to L{sup *}{sub z{approx}4}) are significantly redder than their lower luminosity counterparts. The UV continuum slopes and the J{sub 125} - [4.5] colors are well correlated, indicating that the dust reddening at these redshifts is better described by an SMC-like extinction curve, rather than the typically assumed Calzetti reddening. After dust correction, we find that the galaxy population shows mean stellar population ages in the range 10{sup 8.5} to 10{sup 9} yr, with a dispersion of {approx}0.5 dex, and only weak trends as a function of luminosity. Only a small fraction of galaxies shows Balmer break colors consistent with extremely young ages, younger than 100 Myr. Under the assumption of smooth star-formation histories, this fraction is 12%-19% for galaxies at M{sub z} < -19.75. Our results are consistent with a gradual build-up of stars and dust in galaxies at z > 4 with only a small fraction of stars being formed in short, intense bursts of star-formation.

  17. Phylogenetic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Yakimov, Michail M.; Cappello, Simone; Crisafi, Ermanno; Tursi, Angelo; Savini, Alessandra; Corselli, Cesare; Scarfi, Simona; Giuliano, Laura

    2006-01-01

    Living deep-water coral assemblages were discovered recently inhabiting the Mediterranean Sea between the depths of 300 and 1000 m off the Cape of Santa Maria di Leuca (Apulian platform, Ionian Sea). This living assemblage was dominated by two colonial scleractinian corals, Lophelia pertusa and Madrepora oculata. Two other corals, Desmophyllum crystagalli and Stenocyathus vermiformis were also recovered from this site, but were much less common. The composition of the metabolically active fraction of the microbial community associated with living specimens of L. pertusa was determined. Dead corals, proximal sediments and overlying seawater were also sampled and analyzed. Complementary 16S ribosomal DNA (crDNA) was obtained from total RNA extracted from all samples that had been subjected to reverse transcription-PCR amplification. Domain-specific 16S PCR primers were used to construct four different 16S crDNA libraries containing 45 Archaea and 201 Bacteria clones. Using Archaea-specific primers, no amplification products were obtained from any coral samples (live and dead). Living specimens of L. pertusa seem to possess a specific microbial community different from that of dead coral and sediment samples. The majority of all coral-associated riboclones was related to the Holophaga-Acidobacterium and Nitrospira divisions (80%). Moreover, more than 12% of all coral-associated riboclones formed a separate deep-branching cluster within the α- Proteobacteria with no known close relatives. The metabolically active fraction of the bacterial community colonizing the dead corals was dominated by Proteobacteria related to the gamma and epsilon subdivisions (74% and 26% of all clones, respectively). Phylogenetic analysis of the Archaea clone library retrieved from proximal sediments indicated an exclusive dominance by the members of Crenarchaea Marine Group I (MGI), a lineage of unculturable microorganisms, widely distributed in marine habitats. In contrast, bacterial

  18. A deep/wide 1-2 GHz snapshot survey of SDSS Stripe 82 using the Karl G. Jansky Very Large Array in a compact hybrid configuration

    NASA Astrophysics Data System (ADS)

    Heywood, I.; Jarvis, M. J.; Baker, A. J.; Bannister, K. W.; Carvalho, C. S.; Hardcastle, M.; Hilton, M.; Moodley, K.; Smirnov, O. M.; Smith, D. J. B.; White, S. V.; Wollack, E. J.

    2016-08-01

    We have used the Karl G. Jansky Very Large Array to image ˜100 deg2 of SDSS Stripe 82 at 1-2 GHz. The survey consists of 1026 snapshot observations of 2.5 min duration, using the hybrid CnB configuration. The survey has good sensitivity to diffuse, low surface brightness structures and extended radio emission, making it highly synergistic with existing 1.4 GHz radio observations of the region. The principal data products are continuum images, with 16 × 10 arcsec resolution, and a catalogue containing 11 782 point and Gaussian components resulting from fits to the thresholded Stokes-I brightness distribution, forming approximately 8948 unique radio sources. The typical effective 1σ noise level is 88 μJy beam-1. Spectral index estimates are included, as derived from the 1 GHz of instantaneous bandwidth. Astrometric and photometric accuracy are in excellent agreement with existing narrowband observations. A large-scale simulation is used to investigate clean bias, which we extend into the spectral domain. Clean bias remains an issue for snapshot surveys with the VLA, affecting our total intensity measurements at the ˜1σ level. Statistical spectral index measurements are in good agreement with existing measurements derived from matching separate surveys at two frequencies. At flux densities below ˜35σ the median in-band spectral index measurements begin to exhibit a bias towards flatness that is dependent on both flux density and the intrinsic spectral index. In-band spectral curvature measurements are likely to be unreliable for all but the very brightest components. Image products and catalogues are publicly available via an FTP server.

  19. A Deep Survey of Low-Redshift Absorbers and Their Connections with Galaxies: Probing the Roles of Dwarfs, Satellites, and Large-Scale Environment

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph

    2014-10-01

    In the not-too-distant past, the study of galaxy evolution neglected the vast interface between the stars in a galaxy and intergalactic space except for the dynamical effects of dark matter. Thanks to QSO absorption line spectroscopy and the Cosmic Origins Spectrograph {COS}, the circumgalactic medium {CGM} has come into sharp focus as a rich ecosystem playing a vital role in the evolution of the host galaxy. However, attributing the gas detected in absorption with host dwarf galaxies detected in optical surveys around the sightline becomes very difficult very quickly with increasing redshift. In addition, both targeted UV spectroscopy and ground-based galaxy surveys are resource intensive, which complicates compiling large, statistically robust samples of very-low-redshift absorber/galaxy pairs. We propose a CGM study of unprecedented statistical power by exploiting the vast number of sightlines in the HST/COS archive located within the Sloan Digital Sky Survey {SDSS} footprint to compile an estimated sample of 586 absorbers at z<0.015. This very-low-redshift criterion enables spectroscopic completeness down to L<0.01 L* galaxies in publicly available optical imaging and spectroscopy.Our survey is uniquely poised to address the following questions: {1} What is the role of dwarf galaxies that would be undetectable at higher redshift in giving rise to the gas detected in QSO spectroscopy? {2} How does galaxy environment and large-scale structure affect the CGM and what are the implications for environmental quenching of star formation? {3} How efficiently do feedback mechanisms expel metal-enriched gas to great distances into the galaxy halo and into the IGM?

  20. The XMM deep survey in the CDF-S. IX. An X-ray outflow in a luminous obscured quasar at z ≈ 1.6

    NASA Astrophysics Data System (ADS)

    Vignali, C.; Iwasawa, K.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Ranalli, P.; Cappelluti, N.; Mainieri, V.; Georgantopoulos, I.; Carrera, F. J.; Fritz, J.; Brusa, M.; Brandt, W. N.; Bauer, F. E.; Fiore, F.; Tombesi, F.

    2015-11-01

    In active galactic nuclei (AGN)-galaxy co-evolution models, AGN winds and outflows are often invoked to explain why super-massive black holes and galaxies stop growing efficiently at a certain phase of their lives. They are commonly referred to as the leading actors of feedback processes. Evidence of ultra-fast (v ≳ 0.05c) outflows in the innermost regions of AGN has been collected in the past decade by sensitive X-ray observations for sizable samples of AGN, mostly at low redshift. Here we present ultra-deep XMM-Newton and Chandra spectral data of an obscured (NH≈ 2 × 1023 cm-2), intrinsically luminous (L2-10 keV≈ 4 × 1044 erg s-1) quasar (named PID352) at z ≈ 1.6 (derived from the X-ray spectral analysis) in the Chandra Deep Field-South. The source is characterized by an iron emission and absorption line complex at observed energies of E ≈ 2-3 keV. While the emission line is interpreted as being due to neutral iron (consistent with the presence of cold absorption), the absorption feature is due to highly ionized iron transitions (FeXXV, FeXXVI) with an outflowing velocity of , as derived from photoionization models. The mass outflow rate - ~2 M⊙ yr-1 - is similar to the source accretion rate, and the derived mechanical energy rate is ~9.5 × 1044 erg s-1, corresponding to 9% of the source bolometric luminosity. PID352 represents one of the few cases where indications of X-ray outflowing gas have been observed at high redshift thus far. This wind is powerful enough to provide feedback on the host galaxy.

  1. Debris in the deep: Using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA

    NASA Astrophysics Data System (ADS)

    Schlining, Kyra; von Thun, Susan; Kuhnz, Linda; Schlining, Brian; Lundsten, Lonny; Jacobsen Stout, Nancy; Chaney, Lori; Connor, Judith

    2013-09-01

    Anthropogenic marine debris is an increasing concern because of its potential negative impacts on marine ecosystems. This is a global problem that will have lasting effects for many reasons, including: (1) the input of debris into marine environments is likely to continue (commensurate with population increase and globalization), (2) accumulation, and possibly retention, of debris will occur in specific areas due to hydrography and geomorphology, and (3) the most common types of debris observed to date will likely persist for centuries. Due to the technical challenges and prohibitive costs of conducting research in the deep sea, little is known about the abundance, types, sources, and impacts of human refuse on this vast habitat, and the extreme depths to which this debris is penetrating has only recently been exposed. We reviewed 1149 video records of marine debris from 22 years of remotely operated vehicle deployments in Monterey Bay, covering depths from 25 m to 3971 m. We characterize debris by type, examine patterns of distribution, and discuss potential sources and dispersal mechanisms. Debris was most abundant within Monterey Canyon where aggregation and downslope transport of debris from the continental shelf are enhanced by natural canyon dynamics. The majority of debris was plastic (33%) and metal (23%). The highest relative frequencies of plastic and metal observations occurred below 2000 m, indicating that previous studies may greatly underestimate the extent of anthropogenic marine debris on the seafloor due to limitations in observing deeper regions. Our findings provide evidence that submarine canyons function to collect debris and act as conduits for debris transport from coastal to deep-sea habitats.

  2. Deep learning

    NASA Astrophysics Data System (ADS)

    Lecun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-01

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

  3. Deep learning.

    PubMed

    LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-28

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

  4. Deep learning.

    PubMed

    LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-28

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. PMID:26017442

  5. A Periodically Varying Luminous Quasar at z = 2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi

    2015-08-01

    Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers, and the strongest sirens of gravitational waves (GWs) in the cosmos. And yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of a SMBHB in the time domain: periodic variability caused by a mass accretion rate that is modulated by the binary's orbital motion. We report our first significant periodically varying quasar detection from the systematic search in the Pan-STARRS1 (PS1) Medium Deep Survey, a result recently accepted for publication in The Astrophysical Journal Letters. Our SMBHB candidate, PSO J334.2028+01.4075, is a luminous radio-loud quasar at z = 2.060, with extended baseline photometry from the Catalina Real-Time Transient Survey, as well as archival spectroscopy from the FIRST Bright Quasar Survey. The observed period (542 ± 15 days) and estimated black hole mass (log(MBH/M⊙) = 9.97 ± 0.50), correspond to an orbital separation of 7+8-4 Schwarzschild radii (~ 0.006+0.007-0.003 pc), assuming the rest-frame period of the quasar variability traces the orbital period of the binary. This SMBHB candidate, discovered at the peak redshift for SMBH mergers, is in a physically stable configuration for a circumbinary accretion disk, and within the regime of GW-driven orbital decay. Our search with PS1 is a benchmark study for the exciting capabilities of LSST, which will have orders of magnitude larger survey power, and will potentially pinpoint the locations of thousands of SMBHBs in the variable night sky.

  6. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  7. Deep Lysimeter

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-06-01

    A deep lysimeter including a hollow vessel having a chamber, a fill conduit extending into the chamber through apertures, a semi-permeable member mounted on the vessel and in fluid communication with the fill conduit, and a line connection for retrieving the lysimeter.

  8. Deep Trouble.

    ERIC Educational Resources Information Center

    Popke, Michael

    2002-01-01

    Discusses how the safety-related ruling by the National Federation of State High School Associations to eliminate the option of using 18-inch starting platforms in pools less than 4 feet deep may affect operators of swimming pools and the swim teams who use them. (EV)

  9. A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches.

    PubMed

    Atkins, M S; Teske, A P; Anderson, O R

    2000-01-01

    Eighteen strains of flagellated protists representing nine species were isolated and cultured from four deep-sea hydrothermal vents: Juan de Fuca Ridge (2,200 m), Guaymas Basin (2,000 m), 21 degrees N (2,550 m) and 9 degrees N (2,000 m). Light and electron microscopy were used to identify flagellates to genus and, when possible, species. The small subunit ribosomal RNA genes of each vent species and related strains from shallow-waters and the American Type Culture Collection were sequenced then used for comparative analysis with database sequences to place taxa in an rDNA tree. The hydrothermal vent flagellates belonged to six different taxonomic orders: the Ancyromonadida, Bicosoecida, Cercomonadida, Choanoflagellida, Chrysomonadida, and Kinetoplastida. Comparative analysis of vent isolate and database sequences resolved systematic placement of some well-known species with previously uncertain taxonomic affinities, such as Ancyromonas sigmoides, Caecitellus parvulus, and Massisteria marina. Many of these vent isolates are ubiquitous members of marine, freshwater, and terrestrial ecosystems worldwide, suggesting a global distribution of these flagellate species.

  10. Survey report of NOAA Ship McArthur II cruises AR-04-04, AR-05-05 and AR-06-03: habitat classification of side scan sonar imagery in support of deep-sea coral/sponge explorations at the Olympic Coast National Marine Sanctuary

    USGS Publications Warehouse

    Intelmann, Steven S.; Cochrane, Guy R.; Bowlby, C. Edward; Brancato, Mary Sue; Hyland, Jeffrey

    2007-01-01

    Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral-sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises, Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed.

  11. A New Deep, Hard X-ray Survey of M31: Monitoring Black Hole and Neutron Star Accretion States in the X-ray Binary Population of Our Nearest Neighbor

    NASA Astrophysics Data System (ADS)

    Wik, Daniel R.; Hornschemeier, Ann E.; Yukita, Mihoko; Ptak, Andrew; Lehmer, Bret; Maccarone, Thomas J.; Antoniou, Vallia; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Venters, Tonia M.; Williams, Benjamin F.; Eracleous, Michael; Plucinsky, Paul P.; Pooley, David A.

    2016-01-01

    X-ray binaries (XRBs) trace old and new stellar populations in galaxies, and thus star formation history and star formation rate. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium at Cosmic Dawn and may also play a significant role in reionization. Until recently, the hard emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. The launch of NuSTAR, the first focusing hard X-ray observatory, has allowed us to resolve the brightest XRBs (down to LX ~ few times 1038 erg/s) in galaxies like NGC 253, M83, and M82 up to 4 Mpc away. To reach much lower X-ray luminosities that are more typical of XRBs in the Milky Way (LX <~ 1037 erg/s), we have observed M31 in 3 NuSTAR fields, up to 5 visits apiece for more than 1 Ms total exposure, mostly within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey. Our monitoring campaign reveals over 40 accreting black holes and neutron stars -- distinguished from each other by their spectral shape in the hard band -- some of which undergo state changes over the month-long timescales captured by our legacy survey to date. We also discuss implications for this updated understanding of XRB populations on early-Universe measurements in, e.g., the 7 Ms Chandra Deep Field survey.

  12. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) extends to low stellar mass and high SFR. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFRs, with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 decimal exponent (dex) above the redshift (z) approximately equal to 1 stellar mass-SFR relation, and 0.23 plus or minus 0.23 decimal exponent (dex) below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 decimal exponent (dex), but significant dispersion remains (0.29 decimal exponent (dex) with 0.16 decimal exponent (dex) due to measurement uncertainties). This dispersion suggests that gas accretion, star formation and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately 100 (sup plus 310) (sub minus 75) million years that suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 97.3 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas, but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  13. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    SciTech Connect

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.; and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  14. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  15. MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z {approx} 3

    SciTech Connect

    Kajisawa, M.; Ichikawa, T.; Yamada, T.; Akiyama, M.; Uchimoto, Y. K.; Yoshikawa, T.; Onodera, M.

    2010-11-01

    We study the evolution of star formation activity of galaxies at 0.5 < z < 3.5 as a function of stellar mass, using very deep NIR data taken with the Multi-Object Infrared Camera and Spectrograph on the Subaru telescope in the GOODS-North region. The NIR imaging data reach K{approx} 23-24 Vega magnitude and they allow us to construct a nearly stellar-mass-limited sample down to {approx}10{sup 9.5-10} M{sub sun} even at z {approx} 3. We estimated star formation rates (SFRs) of the sample with two indicators, namely, the Spitzer/MIPS 24 {mu}m flux and the rest-frame 2800 A luminosity. The SFR distribution at a fixed M{sub star} shifts to higher values with increasing redshift at 0.5 < z < 3.5. More massive galaxies show stronger evolution of SFR at z {approx}> 1. We found galaxies at 2.5 < z < 3.5 show a bimodality in their SSFR distribution, which can be divided into two populations by a constant SSFR of {approx}2 Gyr{sup -1}. Galaxies in the low-SSFR group have SSFRs of {approx}0.5-1.0 Gyr{sup -1}, while the high-SSFR population shows {approx}10 Gyr{sup -1}. The cosmic SFR density (SFRD) is dominated by galaxies with M{sub star} = 10{sup 10-11} M{sub sun} at 0.5 < z < 3.5, while the contribution of massive galaxies with M{sub star} = 10{sup 11-11.5} M{sub sun} shows a strong evolution at z>1 and becomes significant at z {approx} 3, especially in the case with the SFR based on MIPS 24 {mu}m. In galaxies with M{sub star} = 10{sup 10-11.5} M{sub sun}, those with a relatively narrow range of SSFR ({approx}<1 dex) dominates the cosmic SFRD at 0.5 < z < 3.5. The SSFR of galaxies that dominate the SFRD systematically increases with redshift. At 2.5 < z < 3.5, the high-SSFR population, which is relatively small in number, dominates the SFRD. Major star formation in the universe at higher redshift seems to be associated with a more rapid growth of stellar mass of galaxies.

  16. A search for fast optical transients in the Pan-STARRS1 medium-deep survey: M-dwarf flares, asteroids, limits on extragalactic rates, and implications for LSST

    SciTech Connect

    Berger, E.; Leibler, C. N.; Chornock, R.; Foley, R. J.; Soderberg, A. M.; Rest, A.; Price, P. A.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Huber, M. E.; Magnier, E. A.; Tonry, J. L.; Metcalfe, N.; Stubbs, C. W.

    2013-12-10

    We present a search for fast optical transients (τ ∼ 0.5 hr-1 day) using repeated observations of the Pan-STARRS1 Medium-Deep Survey (PS1/MDS) fields. Our search takes advantage of the consecutive g {sub P1} r {sub P1} observations (16.5 minutes in each filter), by requiring detections in both bands, with non-detections on preceding and subsequent nights. We identify 19 transients brighter than 22.5 AB mag (S/N ≳ 10). Of these, 11 events exhibit quiescent counterparts in the deep PS1/MDS templates that we identify as M4-M9 dwarfs at d ≈ 0.2-1.2 kpc. The remaining eight transients lack quiescent counterparts, exhibit mild but significant astrometric shifts between the g {sub P1} and r {sub P1} images, colors of (g – r){sub P1} ≈ 0.5-0.8 mag, non-varying light curves, and locations near the ecliptic plane with solar elongations of about 130°, which are all indicative of main-belt asteroids near the stationary point of their orbits. With identifications for all 19 transients, we place an upper limit of R {sub FOT}(τ ∼ 0.5 hr) ≲ 0.12 deg{sup –2} day{sup –1} (95% confidence level) on the sky-projected rate of extragalactic fast transients at ≲ 22.5 mag, a factor of 30-50 times lower than previous limits; the limit for a timescale of ∼1 day is R {sub FOT} ≲ 2.4 × 10{sup –3} deg{sup –2} day{sup –1}. To convert these sky-projected rates to volumetric rates, we explore the expected peak luminosities of fast optical transients powered by various mechanisms, and find that non-relativistic events are limited to M ≈ –10 to ≈ – 14 mag for a timescale of ∼0.5 hr to ∼1 day, while relativistic sources (e.g., gamma-ray bursts, magnetar-powered transients) can reach much larger luminosities. The resulting volumetric rates are ≲ 13 Mpc{sup –3} yr{sup –1} (M ≈ –10 mag), ≲ 0.05 Mpc{sup –3} yr{sup –1} (M ≈ –14 mag), and ≲ 10{sup –6} Mpc{sup –3} yr{sup –1} (M ≈ –24 mag), significantly above the nova, supernova

  17. Deep crustal structure of the North-West African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey)

    NASA Astrophysics Data System (ADS)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Schnurle, P.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabdellouahed, M.; Reichert, C.

    2015-08-01

    The structure of the Moroccan and Nova Scotia conjugate rifted margins is of key importance for understanding the Mesozoic break-up and evolution of the northern central Atlantic Ocean basin. Seven combined multichannel reflection (MCS) and wide-angle seismic (OBS) data profiles were acquired along the Atlantic Moroccan margin between the latitudes of 31.5° and 33° N during the MIRROR seismic survey in 2011, in order to image the transition from continental to oceanic crust, to study the variation in crustal structure, and to characterize the crust under the West African Coast Magnetic Anomaly (WACMA). The data were modeled using a forward modeling approach. The final models image crustal thinning from 36 km thickness below the continent to approximately 8 km in the oceanic domain. A 100 km wide zone characterized by rough basement topography and high seismic velocities up to 7.4 km/s in the lower crust is observed westward of the West African Coast Magnetic Anomaly. No basin underlain by continental crust has been imaged in this region, as has been identified north of our study area. Comparison to the conjugate Nova Scotian margin shows a similar continental crustal thickness and layer geometry, and the existence of exhumed and serpentinized upper mantle material on the Canadian side only. The oceanic crustal thickness is lower on the Canadian margin.

  18. The Infrared Medium-Deep Survey. V. A New Selection Strategy for Quasars at z > 5 Based on Medium-Band Observations with SQUEAN

    NASA Astrophysics Data System (ADS)

    Jeon, Yiseul; Im, Myungshin; Pak, Soojong; Hyun, Minhee; Kim, Sanghyuk; Kim, Yongjung; Lee, Hye-In; Park, Woojin

    2016-02-01

    Multiple color selection techniques are successful in identifying quasars from wide-field broad-band imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 ≲ z ≲ 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R ˜ 15. By conducting medium-band observations of high redshift quasars at 4.7 ≤ z ≤ 6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of Δ{z}/(1+{z}) = 0.002 - 0.026. The selection technique can be extended to z ˜ 7, suggesting that the medium-band observation can be powerful in identifying quasars even at the re-ionization epoch.

  19. Deep Vein Thrombosis

    MedlinePlus

    Deep vein thrombosis, or DVT, is a blood clot that forms in a vein deep in the body. Most deep vein ... the condition is called thrombophlebitis. A deep vein thrombosis can break loose and cause a serious problem ...

  20. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype

    PubMed Central

    2014-01-01

    Background Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes. Results We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event. Conclusions As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures. PMID:24739459

  1. ISO deep far-infrared survey in the ``Lockman Hole". II. Power spectrum analysis: evidence of a strong evolution in number counts

    NASA Astrophysics Data System (ADS)

    Matsuhara, H.; Kawara, K.; Sato, Y.; Taniguchi, Y.; Okuda, H.; Matsumoto, T.; Sofue, Y.; Wakamatsu, K.; Cowie, L. L.; Joseph, R. D.; Sanders, D. B.

    2000-09-01

    We investigate the characteristics of FIR brightness fluctuations at 90 mu m and 170 mu m in the Lockman Hole, which were surveyed with ISOPHOT aboard the Infrared Space Observatory (ISO). We first calculated the angular correlation function of each field and then its Fourier transform (the angular Power Spectral Density: PSD) over the spatial frequency range of f=0.05-1 arcmin-1. The PSDs are found to be rather flat at low spatial frequencies (f <= 0.1 arcmin-1), slowly decreasing toward higher frequencies. These spectra are unlike the power-law ones seen in the IR cirrus fluctuations, and are well explained by randomly distributed point sources. Furthermore, point-to-point comparison between 90 mu m and 170 mu m brightness shows a linear correlation between them, and the slope of the linear fit is much shallower than that expected from the IR cirrus color, and is consistent with the color of galaxies at low or moderate redshift (z<1). We conclude that the brightness fluctuations in the Lockman Hole are not caused by the IR cirrus, but are most likely due to faint star-forming galaxies. We also give the constraints on the galaxy number counts down to 35 mJy at 90 mu m and 60 mJy at 170 mu m, which indicate the existence of a strong evolution down to these fluxes in the counts. The galaxies responsible for the fluctuations also significantly contribute to the cosmic infrared background radiation. Based on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA. The ISOPHOT data presented in this paper was reduced using PIA, which is a joint development by ESA Astrophysics Division and the ISOPHOT consortium.

  2. Accelerated evolution of the Lyα luminosity function at z ≳ 7 revealed by the Subaru ultra-deep survey for Lyα emitters at z = 7.3

    SciTech Connect

    Konno, Akira; Ouchi, Masami; Ono, Yoshiaki; Shibuya, Takatoshi; Naito, Yoshiaki; Momose, Rieko; Yuma, Suraphong; Shimasaku, Kazuhiro; Nakajima, Kimihiko; Furusawa, Hisanori; Iye, Masanori

    2014-12-10

    We present the ultra-deep Subaru narrowband imaging survey for Lyα emitters (LAEs) at z = 7.3 in the Subaru/XMM-Newton Deep Survey (SXDS) and Cosmic Evolution Survey (COSMOS) fields (∼0.5 deg{sup 2}) with a total integration time of 106 hr. Exploiting our new sharp bandwidth filter, NB101, installed on the Suprime-Cam, we have reached L(Lyα) = 2.4 × 10{sup 42} erg s{sup –1} (5σ) for z = 7.3 LAEs, about four times deeper than previous Subaru z ≳ 7 studies, which allows us to reliably investigate the evolution of the Lyα luminosity function (LF) for the first time down to the luminosity limit same as those of Subaru z = 3.1-6.6 LAE samples. Surprisingly, we only find three and four LAEs in the SXDS and COSMOS fields, respectively, while one expects a total of ∼65 LAEs by our survey in the case of no Lyα LF evolution from z = 6.6 to 7.3. We identify a decrease of the Lyα LF from z = 6.6 to 7.3 at the >90% confidence level from our z = 7.3 Lyα LF with the best-fit Schechter parameters of L{sub Lyα}{sup ∗}=2.7{sub −1.2}{sup +8.0}×10{sup 42} erg s{sup −1} and ϕ{sup ∗}=3.7{sub −3.3}{sup +17.6}×10{sup −4} Mpc{sup −3} for a fixed α = –1.5. Moreover, the evolution of the Lyα LF is clearly accelerated at z > 6.6 beyond the measurement uncertainties including cosmic variance. Because no such accelerated evolution of the UV-continuum LF or the cosmic star formation rate (SFR) is found at z ∼ 7, but suggested only at z > 8, this accelerated Lyα LF evolution is explained by physical mechanisms different from a pure SFR decrease but related to the Lyα production and escape in the process of cosmic reionization. Because a simple accelerating increase of intergalactic medium neutral hydrogen absorbing Lyα cannot be reconciled with Thomson scattering of optical depth measurements from WMAP and Planck, our findings may support new physical pictures suggested by recent theoretical studies, such as the existence of HI clumpy clouds within

  3. The luminosity function at the end of the main sequence: Results of a deep, large-area, CCD survey for cool dwarfs

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy; Mcgraw, John T.; Hess, Thomas R.; Liebert, James; Mccarthy, Donald W., Jr.

    1994-01-01

    The luminosity function at the end of the main sequence is determined from V, R, and I data taken by the charge coupled devices (CCD)/Transit Instrument, a dedicated telescope surveying an 8.25 min wide strip of sky centered at delta = +28 deg, thus sampling Galactic latitudes of +90 deg down to -35 deg. A selection of 133 objects chosen via R - I and V - I colors has been observed spectroscopically at the 4.5 m Multiple Mirror Telescope to assess contributions by giants and subdwarfs and to verify that the reddest targets are objects of extremely late spectral class. Eighteen dwarfs of type M6 or later have been discovered, with the latest being of type M8.5. Data used for the determination of the luminosity function cover 27.3 sq. deg down to a completeness limit of R = 19.0. This luminosity function, computed at V, I, and bolometric magnitudes, shows an increase at the lowest luminosities, corresponding to spectral types later than M6- an effect suggested in earlier work by Reid & Gilmore and Legget & Hawkins. When the luminosity function is segregated into north Galactic and south Galactic portions, it is found that the upturn at faint magnitudes exists only in the southern sample. In fact, no dwarfs with M(sub I) is greater than or equal to 12.0 are found within the limiting volume of the 19.4 sq deg northern sample, in stark contrast to the smaller 7.9 sq deg area at southerly latitudes where seven such dwarfs are found. This fact, combined with the fact that the Sun is located approximately 10-40 pc north of the midplane, suggests that the latest dwarfs are part of a young population with a scale height much smaller than the 350 pc value generally adopted for other M dwarfs. These objects comprise a young population either because the lower metallicities prevelant at earlier epochs inhibited the formation of late M dwarfs or because the older counterparts of this population have cooled beyond current detection limits. The latter scenario would hold if these

  4. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-10-10

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 {mu}Jy at the field center and redshift {approx}5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P {approx}> 3 x 10{sup 24} W Hz{sup -1}) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for {approx}30% of the sample and {approx}60% of all AGNs, and outnumbering radio-loud AGNs at {approx}< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  5. Deep learning in neural networks: an overview.

    PubMed

    Schmidhuber, Jürgen

    2015-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. PMID:25462637

  6. Deep learning in neural networks: an overview.

    PubMed

    Schmidhuber, Jürgen

    2015-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

  7. Deep blast

    NASA Astrophysics Data System (ADS)

    From southern New Mexico to the Great Slave Lake of Canada, scientists from the United States and Canada recently detonated 10 underground chemical explosions to generate a clearer picture of the Earth's crust and upper mantle. Called Project Deep Probe, the experiment is designed to see through the crust and into the upper mantle to a depth of 300 miles.In the United States, Earth scientists from Rice University, Purdue University, and the University of Oregon are participating in the project. “Researchers hope to get a picture of the upper mantle beneath the Rocky Mountains and the Colorado Plateau, to understand the role the mantle played in formation and uplift,” says Alan Levander of Rice. To enhance that “picture,” 750 portable seismographs were placed along a roughly north-south line extending from Crownpoint, New Mexico to Edmonton, Alberta. The seismic recordings will be used to enhance weak seismic waves that penetrated the upper mantle.

  8. Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey. II. Extending the mass-metallicity relation to the range z ≈ 0.89-1.24

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, E.; Contini, T.; Lamareille, F.; Brinchmann, J.; Walcher, C. J.; Charlot, S.; Bolzonella, M.; Pozzetti, L.; Bottini, D.; Garilli, B.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Cappi, A.; Ciliegi, P.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Radovich, M.; Vergani, D.; Zamorani, G.; Zucca, E.

    2009-02-01

    Aims: We present a continuation of our study about the relation between stellar mass and gas-phase metallicity in the VIMOS VLT Deep Survey (VVDS). In this work we extend the determination of metallicities up to redshift ≈1.24 for a sample of 42 star-forming galaxies with a mean redshift value of 0.99. Methods: For a selected sample of emission-line galaxies, we use both diagnostic diagrams and empirical calibrations based on [Oii] emission lines along with the empirical relation between the intensities of the [Oiii] and [Neiii] emission lines and the theoretical ratios between Balmer recombination emission lines to identify star-forming galaxies and to derive their metallicities. We derive stellar masses by fitting the whole spectral energy distribution with a set of stellar population synthesis models. Results: These new methods allow us to extend the mass-metallicity relation to higher redshift. We show that the metallicity determinations are consistent with more established strong-line methods. Taken together this allows us to study the evolution of the mass-metallicity relation up to z ≈ 1.24 with good control of systematic uncertainties. We find an evolution with redshift of the average metallicity of galaxies very similar to those reported in the literature: for a given stellar mass, galaxies at z ~ 1 have, on average, a metallicity ~ 0.3 dex lower than galaxies in the local universe. However we do not see any significant metallicity evolution between redshifts z ~ 0.7 (Paper I) and z ~ 1.0 (this paper). We find also the same flattening of the mass-metallicity relation for the most massive galaxies as reported in Paper I at lower redshifts, but again no apparent evolution of the slope is seen between z ~ 0.7 and z ~ 1.0. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, program 070.A-9007, and on data obtained at the Canada-France-Hawaii Telescope, operated by the CNRS in France, CNRC in Canada and the

  9. The Pan-STARRS1 medium-deep survey: The role of galaxy group environment in the star formation rate versus stellar mass relation and quiescent fraction out to z ∼ 0.8

    SciTech Connect

    Lin, Lihwai; Chen, Chin-Wei; Coupon, Jean; Hsieh, Bau-Ching; Jian, Hung-Yu; Foucaud, Sebastien; Norberg, Peder; Bower, R. G.; Cole, Shaun; Arnalte-Mur, Pablo; Draper, P.; Heinis, Sebastien; Phleps, Stefanie; Chen, Wen-Ping; Lee, Chien-Hsiu; Burgett, William; Chambers, K. C.; Denneau, L.; Flewelling, H.; Hodapp, K. W.; and others

    2014-02-10

    Using a large optically selected sample of field and group galaxies drawn from the Pan-STARRS1 Medium-Deep Survey (PS1/MDS), we present a detailed analysis of the specific star formation rate (SSFR)—stellar mass (M {sub *}) relation, as well as the quiescent fraction versus M {sub *} relation in different environments. While both the SSFR and the quiescent fraction depend strongly on stellar mass, the environment also plays an important role. Using this large galaxy sample, we confirm that the fraction of quiescent galaxies is strongly dependent on environment at a fixed stellar mass, but that the amplitude and the slope of the star-forming sequence is similar between the field and groups: in other words, the SSFR-density relation at a fixed stellar mass is primarily driven by the change in the star-forming and quiescent fractions between different environments rather than a global suppression in the star formation rate for the star-forming population. However, when we restrict our sample to the cluster-scale environments (M > 10{sup 14} M {sub ☉}), we find a global reduction in the SSFR of the star-forming sequence of 17% at 4σ confidence as opposed to its field counterpart. After removing the stellar mass dependence of the quiescent fraction seen in field galaxies, the excess in the quiescent fraction due to the environment quenching in groups and clusters is found to increase with stellar mass, although deeper and larger data from the full PS1/MDS will be required to draw firm conclusions. We argue that these results are in favor of galaxy mergers to be the primary environment quenching mechanism operating in galaxy groups whereas strangulation is able to reproduce the observed trend in the environment quenching efficiency and stellar mass relation seen in clusters. Our results also suggest that the relative importance between mass quenching and environment quenching depends on stellar mass—the mass quenching plays a dominant role in producing quiescent

  10. The Capodimonte Deep Field

    NASA Astrophysics Data System (ADS)

    2001-04-01

    A Window towards the Distant Universe Summary The Osservatorio Astronomico Capodimonte Deep Field (OACDF) is a multi-colour imaging survey project that is opening a new window towards the distant universe. It is conducted with the ESO Wide Field Imager (WFI) , a 67-million pixel advanced camera attached to the MPG/ESO 2.2-m telescope at the La Silla Observatory (Chile). As a pilot project at the Osservatorio Astronomico di Capodimonte (OAC) [1], the OACDF aims at providing a large photometric database for deep extragalactic studies, with important by-products for galactic and planetary research. Moreover, it also serves to gather experience in the proper and efficient handling of very large data sets, preparing for the arrival of the VLT Survey Telescope (VST) with the 1 x 1 degree 2 OmegaCam facility. PR Photo 15a/01 : Colour composite of the OACDF2 field . PR Photo 15b/01 : Interacting galaxies in the OACDF2 field. PR Photo 15c/01 : Spiral galaxy and nebulous object in the OACDF2 field. PR Photo 15d/01 : A galaxy cluster in the OACDF2 field. PR Photo 15e/01 : Another galaxy cluster in the OACDF2 field. PR Photo 15f/01 : An elliptical galaxy in the OACDF2 field. The Capodimonte Deep Field ESO PR Photo 15a/01 ESO PR Photo 15a/01 [Preview - JPEG: 400 x 426 pix - 73k] [Normal - JPEG: 800 x 851 pix - 736k] [Hi-Res - JPEG: 3000 x 3190 pix - 7.3M] Caption : This three-colour image of about 1/4 of the Capodimonte Deep Field (OACDF) was obtained with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the la Silla Observatory. It covers "OACDF Subfield no. 2 (OACDF2)" with an area of about 35 x 32 arcmin 2 (about the size of the full moon), and it is one of the "deepest" wide-field images ever obtained. Technical information about this photo is available below. With the comparatively few large telescopes available in the world, it is not possible to study the Universe to its outmost limits in all directions. Instead, astronomers try to obtain the most detailed

  11. Preventing Deep Vein Thrombosis

    MedlinePlus

    ... Patient Education FAQs Preventing Deep Vein Thrombosis Patient Education Pamphlets - Spanish Preventing Deep Vein Thrombosis FAQ174, August 2011 PDF ... Your Practice Patient Safety & Quality Payment Reform (MACRA) Education & Events Annual ... Pamphlets Teen Health About ACOG About Us Leadership & ...

  12. Taoism and Deep Ecology.

    ERIC Educational Resources Information Center

    Sylvan, Richard; Bennett, David

    1988-01-01

    Contrasted are the philosophies of Deep Ecology and ancient Chinese. Discusses the cosmology, morality, lifestyle, views of power, politics, and environmental philosophies of each. Concludes that Deep Ecology could gain much from Taoism. (CW)

  13. Deep Web video

    ScienceCinema

    None Available

    2016-07-12

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  14. Deep Space Telecommunications

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  15. Deep Web video

    SciTech Connect

    None Available

    2009-06-01

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  16. Deep drilling; Probing beneath the earth's surface

    SciTech Connect

    Rosen, J.250

    1991-06-01

    This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.

  17. Operation Deep Sweep

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Fifty scientists and a crew of 18 have embarked on a 64,000 km odyssey to explore the Pacific from pole to pole—the most ambitious program in the history of the marine geology branch of the U.S. Geological Survey (USGS). Called Operation Deep Sweep, the 1-year cruise will search areas above the Arctic Circle, off of Alaska, to McMurdo Sound in Antarctica. The 63-m, 1,300-tonne research vessel Samuel P. Lee sailed from its home port of Redwood City, Calif., to San Francisco to begin the first leg of the lengthy journey.According to USGS officials and the cosponsoring Circum-Pacific Council for Energy and Mineral Resources of the American Association of Petroleum Geologists, the cruise will ultimately involve 150 scientists, some of them representing Germany, France, Australia, and New Zealand. David Howell, branch chief of Pacific Marine Geology for the USGS, said the voyage of the Lee was “the most far reaching and of the longest duration” ever attempted by his unit. He said the cruise would string together a large number of scientific experiments spanning the Pacific. Howell likened the voyage to the Lewis and Clark Expedition of 1803-1806 (which explored Louisiana and the western United States) because “we're going into unknown territory and into regions not studied except in the most cursory manner.”

  18. USGS assesses deep undiscovered gas resource

    SciTech Connect

    Dyman, T.S.; Schmoker, J.W.; Root, D.H.

    1998-04-20

    The US Geological Survey (USGS) estimated in 1995 that 1,412 tcf of technically recoverable natural gas remained to be discovered or developed in US onshore areas. A significant part of that resource base, 114 tcf, is undiscovered gas in deep sedimentary basins assessed by the USGS in onshore areas and state waters. This article contains: (1) descriptions of the deep gas plays supplied by USGS province geologists; (2) estimates of undiscovered technically-recoverable gas from these plays; and, (3) comparisons of the USGS estimates with other recent deep gas assessments. For detailed discussions of the deep gas plays and maps illustrating the play outlines, refer to the 1995 USGS National Petroleum Assessment CD-ROM.

  19. Use of Data Envelopment Analysis in an Evaluation of the Efficiency of the DEEP Program for Economic Education.

    ERIC Educational Resources Information Center

    Diamond, Arthur M., Jr.; Medewitz, Jeanette N.

    1990-01-01

    Analyzes data from the National Assessment of Economic Education Survey using data envelopment analysis. Determines whether high school economics classes in the Developmental Economic Education Program (DEEP) produce higher achievement levels than non-DEEP classes. Calculates technical efficiency of DEEP and non-DEEP classes. Reports results…

  20. Deep Space Communication

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    2012-01-01

    ITU defines deep space as the volume of Space at distances from the Earth equal to, or greater than, 2 106 km. Deep Space Spacecraft have to travel tens of millions of km from Earth to reach the nearest object in deep space. Spacecraft mass and power are precious. Large ground-based antennas and very high power transmitters are needed to overcome large space loss and spacecraft's small antennas and low power transmitters. Navigation is complex and highly dependent on measurements from the Earth. Every deep space mission is unique and therefore very costly to develop.

  1. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Presented is Deep Space Network (DSN) progress in flight project support, tracking and data acquisition (TDA) research and technology, network engineering, hardware and software implementation, and operations.

  2. The deep space network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Summaries are given of Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  3. Deep vein thrombosis - discharge

    MedlinePlus

    DVT - discharge; Blood clot in the legs - discharge; Thromboembolism - discharge; Venous thromboembolism - deep vein thrombosis; Post-phlebitic syndrome - discharge; Post-thrombotic syndrome - discharge

  4. A deep reef in deep trouble

    NASA Astrophysics Data System (ADS)

    Menza, C.; Kendall, M.; Rogers, C.; Miller, J.

    2007-10-01

    The well-documented degradation of shallower reefs which are often closer to land and more vulnerable to pollution, sewage and other human-related stressors has led to the suggestion that deeper, more remote offshore reefs could possibly serve as sources of coral and fish larvae to replenish the shallower reefs. Yet, the distribution, status, and ecological roles of deep (>30 m) Caribbean reefs are not well known. In this report, an observation of a deep reef which has undergone a recent extensive loss of coral cover is presented. In stark contrast to the typical pattern of coral loss in shallow reefs, the deeper corals were most affected. This report is the first description of such a pattern of coral loss on a deep reef.

  5. A deep reef in deep trouble

    USGS Publications Warehouse

    Menza, Charles; Kendall, M.; Rogers, C.; Miller, J.

    2007-01-01

    The well-documented degradation of shallower reefs which are often closer to land and more vulnerable to pollution, sewage and other human-related stressors has led to the suggestion that deeper, more remote offshore reefs could possibly serve as sources of coral and fish larvae to replenish the shallower reefs. Yet, the distribution, status, and ecological roles of deep (>30 m) Caribbean reefs are not well known. In this report, an observation of a deep reef which has undergone a recent extensive loss of coral cover is presented. In stark contrast to the typical pattern of coral loss in shallow reefs, the deeper corals were most affected. This report is the first description of such a pattern of coral loss on a deep reef.

  6. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory

  7. VizieR Online Data Catalog: z~4-7 Lyman break galaxies in Hubble deep fields (Harikane+, 2016)

    NASA Astrophysics Data System (ADS)

    Harikane, Y.; Ouchi, M.; Ono, Y.; More, S.; Saito, S.; Lin, Y.-T.; Coupon, J.; Shimasaku, K.; Shibuya, T.; Price, P. A.; Lin, L.; Hsieh, B.-C.; Ishigaki, M.; Komiyama, Y.; Silverman, J.; Takata, T.; Tamazawa, H.; Toshikawa, J.

    2016-07-01

    We use 10 deep optical-near-IR imaging data sets of the Hubble Ultra Deep Field (HUDF), Great Observatories Origins Deep Survey (GOODS)-North-Deep, GOODS-North-Wide, GOODS-South-Deep, GOODS-South-Wide, Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)-All-Wavelength Extended Groth Strip International Survey (AEGIS), CANDELS-Cosmological Evolution Survey (COSMOS), CANDELS-Ultra Deep Survey (UDS), Hubble Frontier Field (HFF)-Abell2744P, and HFF-MACS0416P that are taken with ACS and WFC3 on the HST. The total area of the Hubble data is ~600arcmin2. The typical FWHMs of the PSFs of ACS and WFC3 images are 0.1" and 0.2", respectively. (1 data file).

  8. The deep space network

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The progress is reported of Deep Space Network (DSN) research in the following areas: (1) flight project support, (2) spacecraft/ground communications, (3) station control and operations technology, (4) network control and processing, and (5) deep space stations. A description of the DSN functions and facilities is included.

  9. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.

  10. Deep-diving dinosaurs

    NASA Astrophysics Data System (ADS)

    Hayman, John

    2012-08-01

    Dysbaric bone necrosis demonstrated in ichthyosaurs may be the result of prolonged deep diving rather than rapid ascent to escape predators. The bone lesions show structural and anatomical similarity to those that may occur in human divers and in the deep diving sperm whale, Physeter macrocephalus.

  11. Deep Impact Spots Quarry

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Sixty-nine days before it gets up-close-and-personal with a comet, NASA's Deep Impact spacecraft successfully photographed its quarry, comet Tempel 1, at a distance of 39.7 million miles. The image, taken on April 25, 2005, is the first of many comet portraits Deep Impact will take leading up to its historic comet encounter on July 4.

  12. [Deep neck infections].

    PubMed

    Nowak, Katarzyna; Szyfter, Witold

    2006-01-01

    Deep neck infection is relatively rare but potentially life threatening complication of common oropharyngeal infections. This retrospective study was aimed at analyzing the occurrence of complications, diagnostic methods and proper management of deep neck infection. A review was conducted in 32 cases who were diagnosed as having deep neck infection from 1995 to 2005. The causes of deep neck infections were tonsillitis (16 cases), tooth diseases (6 cases), paratonsillar abscess (4 cases), parotitis (1 case), pussy lymphonodes after tonsillectomy (2 cases), pussy congenital neck cyst (1 case), chronic otitis media (1 case), parotitis (1 case), foreign body of the esophagus (1 case). All the puss bacterial cultivation were positive. All the patients were treated by different ways of chirurgical drainage and use of large dosage of antibiotics. Deep neck infection should be suspected in patients with long lasting fever and painful swelling of the neck and treatment should begin quick as possible. PMID:17152800

  13. [Deep neck infections].

    PubMed

    Nowak, Katarzyna; Szyfter, Witold

    2006-01-01

    Deep neck infection is relatively rare but potentially life threatening complication of common oropharyngeal infections. This retrospective study was aimed at analyzing the occurrence of complications, diagnostic methods and proper management of deep neck infection. A review was conducted in 32 cases who were diagnosed as having deep neck infection from 1995 to 2005. The causes of deep neck infections were tonsillitis (16 cases), tooth diseases (6 cases), paratonsillar abscess (4 cases), parotitis (1 case), pussy lymphonodes after tonsillectomy (2 cases), pussy congenital neck cyst (1 case), chronic otitis media (1 case), parotitis (1 case), foreign body of the esophagus (1 case). All the puss bacterial cultivation were positive. All the patients were treated by different ways of chirurgical drainage and use of large dosage of antibiotics. Deep neck infection should be suspected in patients with long lasting fever and painful swelling of the neck and treatment should begin quick as possible.

  14. Polycyclic aromatic hydrocarbons in Danish leafy crops. Part I: PAH in kale and beets relate to point sources of PAH. Part II: a survey of PAH in commercial grown fresh and deep-frozen kale

    SciTech Connect

    Vahl, M.; Beck, J.; Stoebet, M.

    1982-01-01

    Part I discusses the investigation of Polycyclic Aromatic Hydrocarbons (PAH) has been to demonstrate the possible pollution of leafy vegetables from expected PAH-emmissions, and to compare with similar investigations in Scandinavia. Part II is a survey has been to establish levels of PAH to which consumers are normally exposed from intake of fruits and above ground parts of vegetables.

  15. Looking Deep with Infrared Eyes

    NASA Astrophysics Data System (ADS)

    2006-07-01

    Today, British astronomers are releasing the first data from the largest and most sensitive survey of the heavens in infrared light to the ESO user community. The UKIRT Infrared Deep Sky Survey (UKIDSS) has completed the first of seven years of data collection, studying objects that are too faint to see at visible wavelengths, such as very distant or very cool objects. New data on young galaxies is already challenging current thinking on galaxy formation, revealing galaxies that are massive at a much earlier stage of development than expected. These first science results already show how powerful the full survey will be at finding rare objects that hold vital clues to how stars and galaxies in our Universe formed. UKIDSS will make an atlas of large areas of the sky in the infrared. The data become available to the entire ESO user community immediately after they are entered into the archive [2]. Release to the world follows 18 months after each release to ESO. "Astronomers across Europe will jump on these exciting new data. We are moving into new territory - our survey is both wide and deep, so we are mapping huge volumes of space. That's how we will locate rare objects - the very nearest and smallest stars, and young galaxies at the edge of the universe," said Andy Lawrence from the University of Edinburgh, UKIDSS Principal Investigator. The UKIDSS data are collected by the United Kingdom Infrared Telescope [3] situated near the summit of Mauna Kea in Hawaii using the Wide Field Camera (WFCAM) built by the United Kingdom Astronomy Technology Centre (UKATC) in Edinburgh. WFCAM is the most powerful infrared imager in the world, generating enormous amounts of data - 150 gigabytes per night (equivalent to more than 200 CDs) - and approximately 10.5 Terabytes in total so far (or 15,000 CDs). Mark Casali, now at ESO, was the Project Scientist in charge of the WFCAM instrument construction at the UKATC. "WFCAM was a bold technological undertaking," said Mark Casali

  16. Deep Moonquakes: Remaining Problems

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.

    2004-01-01

    We have recently reexamined more than 9000 United States previously unidentified seismic events catalogued during the Apollo landing missions and positively identified for the first time about 30 deep moonquake nests on the far side of the Moon. Although only a few of them are currently locatable, the relative arrival times among stations for the rest and presence or absence of seismic signals at particular stations suggest that either (a) the region within about $40\\deg$ of the antipode is aseismic or (b) the deep interior of the Moon severely attenuates or deflects seismic waves. Aside from the obvious question of how to distinguish between such hypothetical models, this effort raised several more general questions concerning the use of deep moonquake signals to infer the structure and dynamics of the deep interior of the Moon. Among more important ones are: (1) How reliable are the seismic arrival picks from which to compute the seismic velocity variations in the Moon? (2) How do the possible lateral variations in seismic velocity affect the computed radial variation in seismic velocity at depth? (3) Can we tell more about the distribution and mechanism of deep moonquakes from the newly expanded database of identified deep moonquakes? Questions (1) and (2) are especially important because the inferred deep internal structure of the Moon depends critically on their answers. Answering these questions may demand additional data collected on future lunar missions, but some may be resolved with further examination of the existing data.

  17. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  18. Deep levels in semiconductors

    NASA Astrophysics Data System (ADS)

    Watkins, George D.

    1983-03-01

    The 3d transition element ion impurities in silicon are reviewed for the broad insight they provide in understanding deep levels in semiconductors. As interstitials, their interaction with the host tends to confine the d-levels to the forbidden gap, providing many deep states. The interaction at the substitutional site is best considered as an interaction with the lattice vacancy, into which the impurity is placed. This interaction tends to repel deep a1 and t2 levels from the gap. When the levels are present, they are mostly vacancy-like and the defect is likely to display the large lattice relaxations characteristic of the vacancy.

  19. AzTEC COSMOS Survey

    NASA Astrophysics Data System (ADS)

    Yun, Min Su; Ade, P. A.; Aretxaga, I.; Austermann, J.; Bock, J. J.; Hughes, D.; Kang, Y.; Kim, S.; Lowenthal, J.; Mauskopf, P.; Scott, K.; Wilson, G.

    2006-12-01

    The Cosmic Evolution Survey (COSMOS) is a 2 square degree HST/ACS survey specifically designed to probe galaxy evolution as a function of time and environment (PI: N. Scoville). In addition to the extensive HST data, the COSMOS team has acquired deep multi-wavelength data from radio to X-ray (VLA, Spitzer, NOAO, CFHT, Subaru, Galex, Chandra, XMM). Spectroscopic surveys are currently under way using Magellan, Kecks, and VLT, and an extensive photometric redshift database is also being assembled. Future surveys using major new instruments such as Herschel are also being planned. To take advantage of these rich complementary databases, we have undertaken a 1100 micron imaging survey of a 30' x 30' field centered just north of the earlier mm/submm surveys by the Bolocam on CSO and MAMBO on the 30-m telescope, with a small overlap. We will present some of the preliminary results from the survey.

  20. The deep Ionian Basin revisited

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Chamot-Rooke, Nicolas; Arsenikos, Stavros; Frizon de Lamotte, Dominique; Blanpied, Christian

    2016-04-01

    The deep Eastern Mediterranean Basins (Ionian and Herodotus) are characterized by thick sedimentary sequences overlying an extremely thinned basement evidenced from different geophysical methods. Yet, the nature of the crust (continental or oceanic) and the timing of the extreme crustal and lithosphere thinning in the different sub-basins remain highly controversial, casting doubts on the tectonic setting related to the formation of this segment of the North Gondwana paleo-margin. We focus on the Ionian Basin located at the western termination of the Eastern Mediterranean with the aim of identifying, characterizing and mapping the deepest sedimentary sequences. We present tentative age correlations relying on calibrations and observations from the surrounding margins and basins (Malta shelf and Escarpment, Cyrenaica margin, Sirte Basin, Apulian Platform). Two-ship deep refraction seismic data (Expanding Spread Profiles from the PASIPHAE cruise) combined with reprocessed reflection data (from the ARCHIMEDE survey) enabled us to present a homogeneous seismic stratigraphy across the basin and to investigate the velocity structure of its basement. Based on our results, and on a review of geological and geophysical observations, we suggest an Upper Triassic-Early Dogger age for the formation of the deep Ionian Basin. The nature of the underlying basement remains uncertain, both highly-thinned continental and slow-spreading type oceanic crust being compatible with the available constraints. The narrow size and relatively short-lived evolution of the Ionian Basin lead us to suggest that it is more likely the remnant of an immature oceanic basin than of a stable oceanic domain. Eventually, upscaling these results at the scale of the Eastern Mediterranean Basins highlights the complex interaction observed between two propagating oceans: The Central Atlantic and Neo-Tethys.

  1. Nurturing Deep Connections.

    ERIC Educational Resources Information Center

    Kessler, Rachael

    2002-01-01

    Argues that the missing ingredient in school reform is soul, that is, deep connections among students, teachers, and administrators. Discusses five principles of leadership with soul: Personalize, pacing, permission, protection, and paradox. (PKP)

  2. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The various systems and subsystems are discussed for the Deep Space Network (DSN). A description of the DSN is presented along with mission support, program planning, facility engineering, implementation and operations.

  3. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Deep Space Network progress report is presented dealing with in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  4. The deep space network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress is reported in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. The functions and facilities of the Deep Space Network are emphasized.

  5. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The facilities, programming system, and monitor and control system for the deep space network are described. Ongoing planetary and interplanetary flight projects are reviewed, along with tracking and ground-based navigation, communications, and network and facility engineering.

  6. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress on the Deep Space Network (DSN) supporting research and technology, advanced development, engineering and implementation, and DSN operations is presented. The functions and facilities of the DSN are described.

  7. The deep space network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A report is given of the Deep Space Networks progress in (1) flight project support, (2) tracking and data acquisition research and technology, (3) network engineering, (4) hardware and software implementation, and (5) operations.

  8. The deep space network

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The functions and facilities of the Deep Space Network are considered. Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported.

  9. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives, functions, and organization, of the Deep Space Network are summarized. Deep Space stations, ground communications, and network operations control capabilities are described. The network is designed for two-way communications with unmanned spacecraft traveling approximately 1600 km from earth to the farthest planets in the solar system. It has provided tracking and data acquisition support for the following projects: Ranger, Surveyor, Mariner, Pioneer, Apollo, Helios, Viking, and the Lunar Orbiter.

  10. Reading Knee-Deep

    ERIC Educational Resources Information Center

    Jewett, Pamela

    2007-01-01

    Freire told his audience at a seminar at the University of Massachusetts, "You need to read knee-deep in texts, for deeper than surface meanings, and you need to know the words to be able to do it" (quoted in Cleary, 2003). In a children's literature class, fifteen teachers and I traveled along a path that moved us toward reading knee-deep as we…

  11. The deep space network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  12. Exploration for deep coal

    SciTech Connect

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  13. Deep gas poses opportunities, challenges to U.S. operators

    SciTech Connect

    Reeves, S.R.; Kuuskraa, J.A.; Kuuskraa, V.A.

    1998-05-04

    The previous article in this series on emerging natural gas resources introduced deep gas--natural gas in deep onshore sedimentary basins (below 15,000 ft)--by presenting a 1996 US Geological Survey assessment for this resource. The USGS estimated that 114 tcf of technically recoverable conventional and nonconventional deep gas remains to be discovered in the Rocky Mountains (57 tcf), Gulf Coast (27 tcf), Alaska (18 tcf), West Texas/New Mexico (4 tcf), and Midcontinent (3 tcf), among others. This article, third in this series and the second on deep gas, takes a closer look at this large and challenging resource by addressing the following key questions: (1) Where are the locations and what are the differences among the major deep gas basins? (2) How successful and active have the deep gas plays been? (3) What obstacles and rewards are likely for developers of deep gas? This article concludes with reviews and case studies of three specific deep gas basins: the mature Anadarko basin, the emerging Green River basin, and the frontier Wind River basin. Reviews of these basins highlight the challenges in finding and producing deep gas, as well as the results and rewards.

  14. Deep vein thrombosis.

    PubMed

    Bandyopadhyay, Gargi; Roy, Subesha Basu; Haldar, Swaraj; Bhattacharya, Rabindra

    2010-12-01

    Occlusive clot formation in the veins causes venous thrombosis, the site most common in the deep veins of leg, called deep vein thrombosis. The clot can block blood flow and when it breaks off, called an embolism which in turn can damage the vital organs. Venous thrombosis occurs via three mechanisms ie, Virchow's triad. The mechanisms are decreased flow rate of blood, damage to the blood vessel wall and an increased tendency of the blood to clot. There are several factors which can increase a person's risk for deep vein thrombosis. The symptoms of deep vein thrombosis in the legs are pain, swelling and redness of the part. One variety of venous thrombosis is phlegmasia alba dolens where the leg becomes pale and cool. Investigations include Doppler ultrasound examination of the limb, D-dimer blood test, plethysmography of the legs, x-rays to show vein in the affected area (venography). Hospitalisation is necessary in some cases with some risk factors. The mainstream of treatment is with anticoagulants, mostly low molecular weight heparin for 6 months. Deep venous thrombosis is a rising problem. Early diagnosis and treatment is associated with a good prognosis.

  15. An Empirical Determination of the Intergalactic Background Light Using Near-Infrared Deep Galaxy Survey Data Out to 5 Micrometers and the Gamma-Ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Scully, Sean T.; Malkan, Matthew A.; Stecker, Floyd W.

    2014-01-01

    We extend our previous model-independent determination of the intergalactic background light, based purely on galaxy survey data, out to a wavelength of 5 micrometers. Our approach enables us to constrain the range of photon densities, based on the uncertainties from observationally determined luminosity densities and colors. We further determine a 68% confidence upper and lower limit on the opacity of the universe to gamma-rays up to energies of 1.6/(1 + z) terraelectron volts. A comparison of our lower limit redshift-dependent opacity curves to the opacity limits derived from the results of both ground-based air Cerenkov telescope and Fermi-LAT observations of PKS 1424+240 allows us to place a new upper limit on the redshift of this source, independent of IBL modeling.

  16. Fisheries: deep-sea fishes qualify as endangered.

    PubMed

    Devine, Jennifer A; Baker, Krista D; Haedrich, Richard L

    2006-01-01

    Criteria from the World Conservation Union (IUCN) have been used to classify marine fish species as endangered since 1996, but deep-sea fish have not so far been evaluated--despite their vulnerability to aggressive deepwater fishing as a result of certain life-history traits. Here we use research-survey data to show that five species of deep-sea fish have declined over a 17-year period in the Canadian waters of the northwest Atlantic to such an extent that they meet the IUCN criteria for being critically endangered. Our results indicate that urgent action is needed for the sustainable management of deep-sea fisheries.

  17. Deep ocean environmental biotechnology

    PubMed

    Deming

    1998-06-01

    Major recent advances in deep-sea biotechnology have come in the form of continuing discoveries of novel microorganisms, unexpected genetic diversity, and new natural products of potential relevance to human health or environmental bioremediation. Continuing explorations of submarine hydrothermal vent environments have yielded new hyperthermophiles (maximal growth at 90 degreesC or greater) and more evidence that elevated hydrostatic pressure stabilizes cells and enzymes at high temperature. Vent samples have also yielded new mesophiles (optimal growth near 30 degreesC) that produce heparin-like exopolysaccharides or express extraordinary tolerance (removal by precipitation) of heavy metals. From the cold deep sea have come new findings of unexpected microbial diversity and the promise of industrially useful enzymes or secondary metabolites. New classes of predictive models are emerging to guide future exploration of microbial diversity in the deep ocean.

  18. The deep penetrating nevus.

    PubMed

    Strazzula, Lauren; Senna, Maryanne Makredes; Yasuda, Mariko; Belazarian, Leah

    2014-12-01

    The deep penetrating nevus (DPN), also known as the plexiform spindle cell nevus, is a pigmented lesion that commonly arises on the head and neck in the first few decades of life. Histopathologically, the DPN is wedge-shaped and contains melanocytes that exhibit deep infiltration into the dermis. Given these features, DPN may clinically and histopathologically mimic malignant melanoma, sparking confusion about the appropriate evaluation and management of these lesions. The goal of this review is to summarize the clinical and histopathological features of DPN and to discuss diagnostic and treatment strategies for dermatologists.

  19. Deep space laser communications

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Kovalik, Joseph M.; Srinivasan, Meera; Shaw, Matthew; Piazzolla, Sabino; Wright, Malcolm W.; Farr, William H.

    2016-03-01

    A number of laser communication link demonstrations from near Earth distances extending out to lunar ranges have been remarkably successful, demonstrating the augmented channel capacity that is accessible with the use of lasers for communications. The next hurdle on the path to extending laser communication and its benefits throughout the solar system and beyond is to demonstrate deep-space laser communication links. In this paper, concepts and technology development being advanced at the Jet Propulsion Laboratory (JPL) in order to enable deep-space link demonstrations to ranges of approximately 3 AU in the next decade, will be discussed.

  20. The study of deep-sea cephalopods.

    PubMed

    Hoving, Henk-Jan T; Perez, Jose Angel A; Bolstad, Kathrin S R; Braid, Heather E; Evans, Aaron B; Fuchs, Dirk; Judkins, Heather; Kelly, Jesse T; Marian, José E A R; Nakajima, Ryuta; Piatkowski, Uwe; Reid, Amanda; Vecchione, Michael; Xavier, José C C

    2014-01-01

    "Deep-sea" cephalopods are here defined as cephalopods that spend a significant part of their life cycles outside the euphotic zone. In this chapter, the state of knowledge in several aspects of deep-sea cephalopod research are summarized, including information sources for these animals, diversity and general biogeography and life cycles, including reproduction. Recommendations are made for addressing some of the remaining knowledge deficiencies using a variety of traditional and more recently developed methods. The types of oceanic gear that are suitable for collecting cephalopod specimens and images are reviewed. Many groups of deep-sea cephalopods require taxonomic reviews, ideally based on both morphological and molecular characters. Museum collections play a vital role in these revisions, and novel (molecular) techniques may facilitate new use of old museum specimens. Fundamental life-cycle parameters remain unknown for many species; techniques developed for neritic species that could potentially be applied to deep-sea cephalopods are discussed. Reproductive tactics and strategies in deep-sea cephalopods are very diverse and call for comparative evolutionary and experimental studies, but even in the twenty-first century, mature individuals are still unknown for many species. New insights into diet and trophic position have begun to reveal a more diverse range of feeding strategies than the typically voracious predatory lifestyle known for many cephalopods. Regular standardized deep-sea cephalopod surveys are necessary to provide insight into temporal changes in oceanic cephalopod populations and to forecast, verify and monitor the impacts of global marine changes and human impacts on these populations.

  1. Science Archives: Facilitating Survey Science

    NASA Astrophysics Data System (ADS)

    Read, M.; Mann, B.; Blake, R.; Collins, R.; Cross, N.; Davenhall, C.; Holliman, M.; Sutorius, E.

    In this paper we discuss the role of science archives and data centres in supporting survey astronomy. We start by describing the work of the Wide Field Astronomy Unit (WFAU) at the Institute for Astronomy of the University of Edinburgh, which in recent years has built science archives for the current large area and deep infrared surveys (UKIDSS and VISTA). We then go on to briefly discuss, in more general terms, how archives should operate and service the current and ever increasing volume of digital survey data.

  2. Deep structure of the Urals region

    SciTech Connect

    Druzhinin, V.S.; Rybalka, V.M.; Khalevin, N.I.

    1986-01-01

    Five thousand kilometers of deep seismic-sounding profiles were run between 1962 and 1984 to investigate the structure of the Urals and neighboring areas on the margin of the East European and West Siberian platforms. The region examined is characterized by a variety of geological provinces, ancient and young platforms, and an intracontinental linear geosynclinal system, as well as a concentration of deposits of iron, copper, coal, asbestos, oil, gas, etc. Owing to the necessity of studying targets at differing depths the authors used two systems: refraction-reflection surveys with array lengths up to 100 km, and shot-point spacings of 10-20 km; and deep seismic sounding with shot-point spacings of 25-50 km and sometimes 100 km and arrays up to 450 km long. The specific nature of the deep-seated structure of the Urals region is described. The results of the studies enable them to establish a connection between the metallogeny and the crustal structure. The principal regional predictors of deposits of mineral resources are the basicity, the structure, the contrasting nature of the crustal structure, and the tectonic features associated with the location of the blocks and deep-seated fault zones. Locations of oil and gas deposits and ore and mineral deposits are described. 8 references, 4 figures.

  3. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Work accomplished on the Deep Space Network (DSN) was described, including the following topics: supporting research and technology, advanced development and engineering, system implementation, and DSN operations pertaining to mission-independent or multiple-mission development as well as to support of flight projects.

  4. Deep neck space infections.

    PubMed

    Beasley, D J; Amedee, R G

    1995-05-01

    The incidence of deep neck space infections has dramatically decreased since the advent of antibiotics, but with delayed treatment they carry the potential for significant morbidity and mortality. Odontogenic infections with involvement of the submandibular space are the most common source of deep neck space infections in adults, whereas in the pediatric population the most common cause is acute tonsillitis with involvement of the peritonsillar space. The newest group of patients at risk for deep neck space infections are intravenous drug abusers who inject the major vessels of the neck. Knowledge of neck spaces and fascial relationships is important in understanding the presentation, treatment, and complications of deep neck space infections. The spaces, which are created by various fasciae of the head and neck, are only potential spaces in that under normal conditions they cannot be examined clinically or radiographically. As the spaces are invaded by bacteria, a cellulitis or abscess occurs, and this infection may travel through paths of least resistance from one space to another.

  5. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Deep Space Network (DSN) is the largest and most sensitive scientific telecommunications and radio navigation network in the world. Its principal responsibilities are to support unmanned interplanetary spacecraft missions and to support radio and radar astronomy observations in the exploration of the solar system and the universe. The DSN facilities and capabilities as of January 1988 are described.

  6. [Deep vein thrombosis prophylaxis.

    PubMed

    Sandoval-Chagoya, Gloria Alejandra; Laniado-Laborín, Rafael

    2013-01-01

    Background: despite the proven effectiveness of preventive therapy for deep vein thrombosis, a significant proportion of patients at risk for thromboembolism do not receive prophylaxis during hospitalization. Our objective was to determine the adherence to thrombosis prophylaxis guidelines in a general hospital as a quality control strategy. Methods: a random audit of clinical charts was conducted at the Tijuana General Hospital, Baja California, Mexico, to determine the degree of adherence to deep vein thrombosis prophylaxis guidelines. The instrument used was the Caprini's checklist for thrombosis risk assessment in adult patients. Results: the sample included 300 patient charts; 182 (60.7 %) were surgical patients and 118 were medical patients. Forty six patients (15.3 %) received deep vein thrombosis pharmacologic prophylaxis; 27.1 % of medical patients received deep vein thrombosis prophylaxis versus 8.3 % of surgical patients (p < 0.0001). Conclusions: our results show that adherence to DVT prophylaxis at our hospital is extremely low. Only 15.3 % of our patients at risk received treatment, and even patients with very high risk received treatment in less than 25 % of the cases. We have implemented strategies to increase compliance with clinical guidelines.

  7. Teaching for Deep Learning

    ERIC Educational Resources Information Center

    Smith, Tracy Wilson; Colby, Susan A.

    2007-01-01

    The authors have been engaged in research focused on students' depth of learning as well as teachers' efforts to foster deep learning. Findings from a study examining the teaching practices and student learning outcomes of sixty-four teachers in seventeen different states (Smith et al. 2005) indicated that most of the learning in these classrooms…

  8. Communicating through deep space

    NASA Technical Reports Server (NTRS)

    Smith, J. G.

    1985-01-01

    NASA's Deep Space Network (DSN) consists of a worldwide set of communication stations and a central control facility in California, enabling communication with spacecraft thousands of millions of miles from earth. The stations have gone from 26 m diameter antennas operating at 960 MHz to 70 m diameter (by 1988) at 8400 MHz. The DSN provides exceptional performance in high gain steerable antennas, ultra-low noise receivers, high power transmitters, frequency and time standards, and precise radio metric data. Spacecraft missions envisaged in the 1990's for the continuing exploration of the Solar System include an array of increasingly complex visits to the inner planets, asteroids and comets and the outer planets. The Deep Space Network planned for the mid-1980s may not meet all the needs of these missions without substantial change. Deep space stations may require conversion to operation with beam waveguides, higher frequency and relative frequency stability of 10 to the -16th. A deep space relay station in earth orbit could permit operation at higher frequencies, with attendant higher performance. Long range planning to select the appropriate future network configurations and develop the technologies essential to their implementation is underway.

  9. Conrad Deep, Northern Red Sea: Development of an early stage ocean deep within the axial depression

    NASA Astrophysics Data System (ADS)

    Ehrhardt, A.; Hübscher, C.; Gajewski, D.

    2005-12-01

    The northern Red Sea represents a continental rift in its final stage and close to the following stage of seafloor spreading. Ocean deeps within the evaporites of the northern Red Sea seem to accompany this process and are thought to be surface expressions of first seafloor spreading cells. In 1999 during R/V Meteor cruise M44/3 a dense multichannel seismic and hydroacoustic survey was conducted in order to investigate the initial formation process of the Conrad Deep, a young northern Red Sea deep. Three seismic units were differentiated in the uppermost part of the Miocene evaporites and the Plio-Quaternary sediments. A weakness zone within the evaporites, oblique to the main extension direction of the Red Sea, led to a transtension process within the evaporites that opened the deep. Its formation is directly related to the emplacement of magmatic bodies in its vicinity and the focusing of the Red Sea extension to the axial depression. The Conrad Deep is an intra-evaporite basin that cannot be regarded as surficial expression of a basement structure as the low shear strength of the evaporites decouple the sediments from the basement. However, its position and shape in combination with the accompanying geophysical anomalies point to a strong correlation with the Red Sea rifting process.

  10. Deep gluteal syndrome

    PubMed Central

    Martin, Hal David; Reddy, Manoj; Gómez-Hoyos, Juan

    2015-01-01

    Deep gluteal syndrome describes the presence of pain in the buttock caused from non-discogenic and extrapelvic entrapment of the sciatic nerve. Several structures can be involved in sciatic nerve entrapment within the gluteal space. A comprehensive history and physical examination can orientate the specific site where the sciatic nerve is entrapped, as well as several radiological signs that support the suspected diagnosis. Failure to identify the cause of pain in a timely manner can increase pain perception, and affect mental control, patient hope and consequently quality of life. This review presents a comprehensive approach to the patient with deep gluteal syndrome in order to improve the understanding of posterior hip anatomy, nerve kinematics, clinical manifestations, imaging findings, differential diagnosis and treatment considerations. PMID:27011826

  11. Deep gluteal syndrome.

    PubMed

    Martin, Hal David; Reddy, Manoj; Gómez-Hoyos, Juan

    2015-07-01

    Deep gluteal syndrome describes the presence of pain in the buttock caused from non-discogenic and extrapelvic entrapment of the sciatic nerve. Several structures can be involved in sciatic nerve entrapment within the gluteal space. A comprehensive history and physical examination can orientate the specific site where the sciatic nerve is entrapped, as well as several radiological signs that support the suspected diagnosis. Failure to identify the cause of pain in a timely manner can increase pain perception, and affect mental control, patient hope and consequently quality of life. This review presents a comprehensive approach to the patient with deep gluteal syndrome in order to improve the understanding of posterior hip anatomy, nerve kinematics, clinical manifestations, imaging findings, differential diagnosis and treatment considerations.

  12. Deep-Sarsa

    NASA Astrophysics Data System (ADS)

    Andrecut, M.; Ali, M. K.

    In this paper we discuss the application of reinforcement learning algorithms to the problem of autonomous robot navigation. We show that the autonomous navigation using the standard delayed reinforcement learning algorithms is an ill posed problem and we present a more efficient algorithm for which the convergence speed is greatly improved. The proposed algorithm (Deep-Sarsa) is based on a combination between the Depth-First Search (a graph searching algorithm) and Sarsa (a delayed reinforcement learning algorithm).

  13. Understanding deep convolutional networks.

    PubMed

    Mallat, Stéphane

    2016-04-13

    Deep convolutional networks provide state-of-the-art classifications and regressions results over many high-dimensional problems. We review their architecture, which scatters data with a cascade of linear filter weights and nonlinearities. A mathematical framework is introduced to analyse their properties. Computations of invariants involve multiscale contractions with wavelets, the linearization of hierarchical symmetries and sparse separations. Applications are discussed. PMID:26953183

  14. Bilingual deep dysphasia.

    PubMed

    Weekes, Brendan S; Raman, Ilhan

    2008-05-01

    We report B.R.B., a bilingual Turkish-English speaker with deep dysphasia. B.R.B. shows the typical pattern of semantic errors in repetition with effects of lexicality and imageability on performance in both languages. The question we asked is whether language type (Turkish or English) or language status--that is, first acquired (L1) or second acquired (L2)--has a greater impact on performance. Results showed that repetition in L1 (Turkish) was better than that in L2 (English). We also observed effects of language status on oral reading, writing to dictation, and naming (spoken and written) with greater impairment to repetition than other tasks in both languages. An additional finding was that spoken-word translation in both directions was worse than written-word translation, and word class had an effect on translation from L1 to L2. We argue that interactive activation models of deep dysphasia could explain deep dysphasia in bilingual speakers and interactions between task and language, if the weighted connections that support language processing in L2 are assumed to be weaker, thus causing rapid phonological decay to have more impact on task performance in L2. Implications of the results for models of bilingual language processing are also considered.

  15. Survey Says

    ERIC Educational Resources Information Center

    McCarthy, Susan K.

    2005-01-01

    Survey Says is a lesson plan designed to teach college students how to access Internet resources for valid data related to the sexual health of young people. Discussion questions based on the most recent available data from two national surveys, the Youth Risk Behavior Surveillance-United States, 2003 (CDC, 2004) and the National Survey of…

  16. Fast rise times and the physical mechanism of deep earthquakes

    NASA Technical Reports Server (NTRS)

    Houston, H.; Williams, Q.

    1991-01-01

    A systematic global survey of the rise times and stress drops of deep and intermediate earthquakes is reported. When the rise times are scaled to the seismic moment release of the events, their average is nearly twice as fast for events deeper than about 450 km as for shallower events.

  17. Student Deep Learning in Bachelor English Programs within Pakistani Universities

    ERIC Educational Resources Information Center

    Tahir, Khazima

    2015-01-01

    The purpose of this study was to contrast undergraduate students' descriptions about transformational teaching practices, and student deep learning in bachelor English programs in selected universities within Pakistan. This study utilized a survey to gather responses from five hundred and twenty three students. A paired sample t test was utilized…

  18. The Experience of Deep Learning by Accounting Students

    ERIC Educational Resources Information Center

    Turner, Martin; Baskerville, Rachel

    2013-01-01

    This study examines how to support accounting students to experience deep learning. A sample of 81 students in a third-year undergraduate accounting course was studied employing a phenomenographic research approach, using ten assessed learning tasks for each student (as well as a focus group and student surveys) to measure their experience of how…

  19. Neural network based satellite tracking for deep space applications

    NASA Technical Reports Server (NTRS)

    Amoozegar, F.; Ruggier, C.

    2003-01-01

    The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.

  20. Imagining Deep Time (Invited)

    NASA Astrophysics Data System (ADS)

    Talasek, J.

    2013-12-01

    Imagining Deep Time '...the mind seemed to grow giddy by looking so far into the abyss of time.' John Playfair (1748 -1819), scientist and mathematician "Man cannot afford to conceive of nature and exclude himself." Emmit Gowin, photographer 'A person would have to take themselves out of the human context to begin to think in terms of geologic time. They would have to think like a rock.' Terry Falke, photographer The term Deep Time refers to the vastness of the geological time scale. First conceived in the 18th century, the development of this perspective on time has been pieced together like a jigsaw puzzle of information and observations drawn from the study of the earth's structure and discovered fossilized flora and fauna. Deep time may possibly be the greatest contribution made by the discipline of geology forever impacting our perception of earth and our relationship to it. How do we grasp such vast concepts as deep time which relates to the origins of the earth or cosmic time which relates to the origins of the universe - concepts that exist far beyond the realm of human experience? Further more how do we communicate this? The ability to visualize is a powerful tool of discovery and communication for the scientist and it is part and parcel of the work of visual artists. The scientific process provides evidence yet it is imagination on the part of the scientists and artists alike that is needed to interpret that information. This exhibition represents an area where both rational and intuitive thinking come together to explore this question of how we relate to the vastness of time. The answer suggested by the combination of art work assembled here suggests that we do so through a combination of visual metaphors (cycles, circles, arrows, trajectories) and visual evidence (rock formations, strata, fossils of fauna and flora) while being mediated through various technologies. One provides factual and empirical evidence while the other provides a way of grasping

  1. Neural-network-based satellite tracking for deep space applications

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid; Ruggier, Charles

    2003-09-01

    NASA has been considering the use of Ka-band for deep space missions primarily for downlink telemetry applications. At such high frequencies, although the link will be expected to improve by a factor of four, the current Deep Space Network (DSN) antennas and transmitters would become less efficient due to higher equipment noise figures and antenna surface errors. Furthermore, the weather effect at Ka-band frequencies will dominate the degradations in link performance and tracking accuracy. At the lower frequencies, such as X-band, conventional CONSCAN or Monopulse tracking techniques can be used without much complexity, however, when utilizing Ka-band frequencies, the tracking of a spacecraft in deep space presents additional challenges. The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions, and examine the trade-off between tracking accuracy and communication link performance.

  2. Theory Survey or Survey Theory?

    ERIC Educational Resources Information Center

    Dean, Jodi

    2010-01-01

    Matthew Moore's survey of political theorists in U.S. American colleges and universities is an impressive contribution to political science (Moore 2010). It is the first such survey of political theory as a subfield, the response rate is very high, and the answers to the survey questions provide new information about how political theorists look…

  3. Deep shadow occulter

    NASA Technical Reports Server (NTRS)

    Cash, Webster (Inventor)

    2010-01-01

    Methods and apparatus are disclosed for occulting light. The occulter shape suppresses diffraction at any given size or angle and is practical to build because it can be made binary to avoid scatter. Binary structures may be fully opaque or fully transmitting at specific points. The diffraction suppression is spectrally broad so that it may be used with incoherent white light. An occulter may also include substantially opaque inner portion and an at least partially transparent outer portion. Such occulters may be used on the ground to create a deep shadow in a short distance, or may be used in space to suppress starlight and reveal exoplanets.

  4. Deep Space Positioning System

    NASA Technical Reports Server (NTRS)

    Vaughan, Andrew T. (Inventor); Riedel, Joseph E. (Inventor)

    2016-01-01

    A single, compact, lower power deep space positioning system (DPS) configured to determine a location of a spacecraft anywhere in the solar system, and provide state information relative to Earth, Sun, or any remote object. For example, the DPS includes a first camera and, possibly, a second camera configured to capture a plurality of navigation images to determine a state of a spacecraft in a solar system. The second camera is located behind, or adjacent to, a secondary reflector of a first camera in a body of a telescope.

  5. Deep mantle subduction flux

    NASA Astrophysics Data System (ADS)

    Porter, Katherine A.; White, William M.

    2009-12-01

    We assess the flux of incompatible trace elements into the deep mantle in the Aleutian, Central America, Izu-Bonin, Kurile, Lesser Antilles, Mariana, Sunda, and Tonga subduction zones. We use a simple mass balance approach in which we assume that all of the material lost from the subducting crust and sediment (the "slab") is incorporated into the magmas erupted above the subduction zone, and we use these assumptions to calculate a residual slab composition. The calculated residual slabs are enriched in incompatible elements compared to mid-ocean ridge basalts and highly enriched compared to primitive or depleted mantle. Almost all of the subducted Nb, Ta, and intermediate and heavy rare earths survive into the deep mantle, as do most of the light rare earths. On average, 73% of Th and Pb, 74% of K, 79% of U, 80% of Rb, 80% of Sr, and 82% of Ba survive into the deep mantle. Pb/Ce ratios are systematically lower, and Nb/U ratios are systematically higher, in the deep mantle flux than they are in the flux of material into the trench. Nevertheless, most residual slabs have Pb/Ce and Nb/U ratios outside the typical mantle range. Changes to U/Pb and Th/U ratios tend to be small and are not systematic. Rb/Sr ratios significantly decrease in some subduction zones but increase in others. In contrast, Sm/Nd ratios increase by small but significant amounts in most arcs. Based on these results, we attempt to predict the Sr, Nd, and Pb composition of anciently recycled material now in the mantle. We find that such material would most resemble enriched mantle II-type oceanic island basalts (OIB). None of our calculated residual slabs would evolve to Sr-Nd-Pb isotopic compositions similar to either high 238U/204Pb or enriched mantle I. The range of Sr and Pb isotope ratios in anciently recycled material is similar to that seen in modern OIB, but Nd isotopic compositions do not range to ɛNd values as low as those in some modern OIB. Neither radiogenic nor unradiogenic Pb isotope

  6. Obscured accretion from AGN surveys

    NASA Astrophysics Data System (ADS)

    Vignali, Cristian

    2014-07-01

    Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback processes likely self-regulate the SMBH growth and quench the star-formation activity. AGN in this important evolutionary phase have been revealed in the last decade via surveys at different wavelengths. On the one hand, moderate-to-deep X-ray surveys have allowed a systematic search for heavily obscured AGN, up to very high redshifts (z~5). On the other hand, infrared/optical surveys have been invaluable in offering complementary methods to select obscured AGN also in cases where the nuclear X-ray emission below 10 keV is largely hidden to our view. In this review I will present my personal perspective of the field of obscured accretion from AGN surveys.

  7. 5. Historic American Buildings Survey, Edouard E. Exline, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey, Edouard E. Exline, Photographer September 22, 1935 DETAIL OF PESTLE AND MORTAR. - Pounding Mill, Pioneer Museum, Route 441 (moved from Deep Creek), Cherokee, Swain County, NC

  8. 4. Historic American Buildings Survey, Edouard E. Exline, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey, Edouard E. Exline, Photographer September 22, 1935 GENERAL VIEW PESTLE IN LOWERED POSITION. - Pounding Mill, Pioneer Museum, Route 441 (moved from Deep Creek), Cherokee, Swain County, NC

  9. 3. Historic American Buildings Survey, Edouard E. Exline, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, Edouard E. Exline, Photographer September 22, 1935 GENERAL VIEW, PESTLE IN RAISED POSITION. - Pounding Mill, Pioneer Museum, Route 441 (moved from Deep Creek), Cherokee, Swain County, NC

  10. 6. Historic American Buildings Survey, Edouard E. Exline, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Historic American Buildings Survey, Edouard E. Exline, Photographer September 22, 1935 DETAIL OF ROCKER. - Pounding Mill, Pioneer Museum, Route 441 (moved from Deep Creek), Cherokee, Swain County, NC

  11. 7. Historic American Buildings Survey, Edouard E. Exline, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey, Edouard E. Exline, Photographer September 22, 1935 DETAIL OF BUCKET. - Pounding Mill, Pioneer Museum, Route 441 (moved from Deep Creek), Cherokee, Swain County, NC

  12. 2. Historic American Buildings Survey, George W. Phillips, Photographer GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey, George W. Phillips, Photographer GENERAL VIEW, PESTLE IN LOWERED POSITION (PHOTOGRAPHED IN ITS ORIGINAL LOCATION ON THE CINDY BAUMGARTNER PLACE, DEEP CREEK, N.C. BEFORE BEING REMOVED TO ITS PRESENT LOCATION). - Pounding Mill, Pioneer Museum, Route 441 (moved from Deep Creek), Cherokee, Swain County, NC

  13. 1. Historic American Buildings Survey, George W. Phillips, Photographer GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey, George W. Phillips, Photographer GENERAL VIEW, PESTLE IN RAISED POSITION (PHOTOGRAPHED IN ITS ORIGINAL LOCATION ON THE CINDY BAUMGARTNER PLACE, DEEP CREEK, N.C. BEFORE BEING REMOVED TO ITS PRESENT LOCATION). - Pounding Mill, Pioneer Museum, Route 441 (moved from Deep Creek), Cherokee, Swain County, NC

  14. Deep drawing of uranium metal

    SciTech Connect

    Jackson, R J; Lundberg, M R

    1987-01-19

    A procedure was developed to fabricate uranium forming blanks with high ''draw-ability'' so that cup shapes could be easily and uniformly deep drawn. The overall procedure involved a posttreatment to develop optimum mechanical and structural properties in the deep-drawn cups. The fabrication sequence is casting high-purity logs, pucking cast logs, cross-rolling pucks to forming blanks, annealing and outgassing forming blanks, cold deep drawing to hemispherical shapes, and stress relieving, outgassing, and annealing deep-drawn parts to restore ductility and impart dimensional stability. The fabrication development and the resulting fabrication procedure are discussed in detail. The mechanical properties and microstructural properties are discussed.

  15. Deep learning for image classification

    NASA Astrophysics Data System (ADS)

    McCoppin, Ryan; Rizki, Mateen

    2014-06-01

    This paper provides an overview of deep learning and introduces the several subfields of deep learning including a specific tutorial of convolutional neural networks. Traditional methods for learning image features are compared to deep learning techniques. In addition, we present our preliminary classification results, our basic implementation of a convolutional restricted Boltzmann machine on the Mixed National Institute of Standards and Technology database (MNIST), and we explain how to use deep learning networks to assist in our development of a robust gender classification system.

  16. Neurological effects of deep diving.

    PubMed

    Grønning, Marit; Aarli, Johan A

    2011-05-15

    Deep diving is defined as diving to depths more than 50 m of seawater (msw), and is mainly used for occupational and military purposes. A deep dive is characterized by the compression phase, the bottom time and the decompression phase. Neurological and neurophysiologic effects are demonstrated in divers during the compression phase and the bottom time. Immediate and transient neurological effects after deep dives have been shown in some divers. However, the results from the epidemiological studies regarding long term neurological effects from deep diving are conflicting and still not conclusive. Prospective clinical studies with sufficient power and sensitivity are needed to solve this very important issue.

  17. Multicultural Survey.

    ERIC Educational Resources Information Center

    Renyi, Judith, Comp.

    In May of 1992, the Alliance for Curriculum Reform (ACR) surveyed member organizations and others who had participated in ACR activities concerning their printed policies on issues relating to multicultural education. The areas of interest for the survey were: printed policy(ies) on multicultural content/curriculum; printed policy(ies) on student…

  18. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  19. The X-UDS Chandra Legacy Survey

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale; Hasinger, Guenther

    2015-08-01

    The X-UDS Survey is a Chandra X-ray Visionary Project that will obtain deep+wide (1.25 Msec) observations of the Subaru-XMM Deep/UKIDSS Ultradeep Survey (SXDS/UDS) field. I will present an overview of the survey's scientific goals and provide an update on the status of the survey. Scheduled to being in August 2015, X-UDS will help shed light on SMBH growth in two key epochs: Cosmic Dawn at z>7 and Cosmic Noon at z~2. The survey has two main scientific goals: (1) It aims to extract information on the nature of the first luminous accreting BHs in the Universe by cross-correlating large-scale fluctuations in the X-ray and infrared backgrounds. This will provide a unique insight into populations of the early black hole seeds and galaxies that are inaccessible to current direct studies. (2) We will also use these deep observations to identify a sizable number of compton-thick AGN via their X-ray spectral signatures up to z~2-3 and determine their obscuration and host galaxy properties using existing deep Hubble, Spitzer and Herschel observations. The wealth of ancillary data in the UDS field will allow us to determine the morphologies, masses and star formation rates of AGN hosts as a function of obscuration in the redshift, luminosity and column-density range responsible for the bulk of SMBH growth in the Universe.

  20. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers. PMID:26072834

  1. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  2. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers.

  3. Neptune's deep atmosphere revealed

    SciTech Connect

    de Pater, I. ); Atreya, S.K. ); Romani, P.N.

    1989-08-01

    The brightness temperature of Uranus at 20 cm is 260 {plus minus} 10K, while for Neptune it is 318 {plus minus} 16K. Since NH{sub 3} is the dominant absorber at this wavelength the authors have modeled the microwave spectra of Neptune based upon an assumed deep gaseous mixing ratio of NH{sub 3} and subsequent loss into clouds. The difference between the two brightness temperatures implies that the NH{sub 3} mixing ratio below the level of cloud formation on Neptune compared to Uranus is lower by nearly 2 order of magnitude. An alternative explanation is that the 20 cm radiation from Neptune is a combination of thermal plus synchrotron emission as proposed by de Pater and Goertz (1989).

  4. Modeling ocean deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.

    The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they

  5. The NASA SETI sky survey - Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.; Gulkis, Samuel; Olsen, Edward T.; Renzetti, Nicholas A.

    1988-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complimentary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory have primary responsibility to develop and carry out the sky survey part of the Microwave Observing Project. The paper describes progress that has been made to develop the major elements of the survey including a two-million channel wideband spectrum analyzer system that is being developed and constructed by JPL for the Deep Space Network. The new system will be a multiuser instrument that will serve as a prototype for the SETI Sky Survey processor. This system will be used to test the signal detection and observational strategies on deep-space network antennas in the near future.

  6. Deep Ecology: Beyond Mere Environmentalism.

    ERIC Educational Resources Information Center

    Weber, Suzanne

    1994-01-01

    Outlines the principles of deep ecology, a movement that questions the societal values that have resulted in damage to the earth's life-supporting biosphere. In contrast to shallow reform, deep ecology encourages individuals to examine their values and relationship to nature to address the environmental crisis. (LP)

  7. Context and Deep Learning Design

    ERIC Educational Resources Information Center

    Boyle, Tom; Ravenscroft, Andrew

    2012-01-01

    Conceptual clarification is essential if we are to establish a stable and deep discipline of technology enhanced learning. The technology is alluring; this can distract from deep design in a surface rush to exploit the affordances of the new technology. We need a basis for design, and a conceptual unit of organization, that are applicable across…

  8. Deep space network energy program

    NASA Technical Reports Server (NTRS)

    Friesema, S. E.

    1980-01-01

    If the Deep Space Network is to exist in a cost effective and reliable manner in the next decade, the problems presented by international energy cost increases and energy availability must be addressed. The Deep Space Network Energy Program was established to implement solutions compatible with the ongoing development of the total network.

  9. Semi-automated Search For Lyman-alpha And Other Emission Lines In The DEEP2 And DEEP3 Databases

    NASA Astrophysics Data System (ADS)

    McCormick, Katherine; Alvarez-Buylla, A.; Dean, V.; Guhathakurta, P.; Lai, K.; Sawicki, M.; Lemaux, B.; Grishaw-Jones, C.; DEEP2; DEEP3

    2012-01-01

    The DEEP2 and DEEP3 redshift surveys have obtained spectra of approximately 75,000 distant galaxies. In an effort to obtain as much information as possible from these spectra, we have performed a semi-automated, systematic search for emission lines in the DEEP2 and DEEP3 databases. The process is a two-step one: first, we run the SExtractor software on sky-subtracted 2D DEIMOS spectra to find emission lines and we categorize these emission lines based on whether they are associated with the target galaxy, single emission lines, possible artifacts resulting from poorly subtracted night sky emission lines, etc. Next, we supplement the automated search with both a guided and an unguided visual search and compare our findings with the output of the program. During this visual inspection process, we check the program for completeness and contamination. By introducing an automated element to the search we have compiled a more objective and complete census of the emission lines in the DEEP2 and DEEP3 databases than a pure visual search would yield. Our program has detected some faint emission lines that had been missed by the human eye. In addition, through our semi-automated search, we have located several possible serendipitous high redshift Lyman-alpha emitting galaxies in the redshift range of 3 to 7. This research was funded by the NSF and the Science Internship Program (SIP) at UCSC.

  10. Deep sulfur cycle

    NASA Astrophysics Data System (ADS)

    Shimizu, N.; Mandeville, C. W.

    2009-12-01

    Geochemical cycle of sulfur in near-surface reservoirs has been a subject of intense studies for decades. It has been shown that sulfur isotopic compositions of sedimentary sulfides and sulfates record interactions of the atmosphere, hydrosphere, biosphere and lithosphere, with δ34S of sedimentary sulfides continuously decreasing from 0‰ toward present-day values of ~-30 to -40‰ over the Phanerozoic (e.g., Canfield, 2004). It has also been shown that microbial reduction of the present-day seawater sulfate (δ34S=+21‰) results in large shifts in isotopic compositions of secondary pyrites in altered oceanic crust (to δ34S=-70‰: Rouxel et al., 2009). How much of these near surface isotopic variations survive during deep geochemical cycle of sulfur interacting with the mantle infinite reservoir with δ34S=0‰? Could extent of their survival be used as a tracer of processes and dynamics involved in deep geochemical cycle? As a first step toward answering these questions, δ34S was determined in-situ using a Cameca IMS 1280 ion microprobe at Woods Hole Oceanographic Institution in materials representing various domains of deep geochemical cycle. They include pyrites in altered MORB as potential subducting materials and pyrites in UHP eclogites as samples that have experienced subduction zone processes, and mantle-derived melts are represented by olivine-hosted melt inclusions in MORB and those in IAB, and undegassed submarine OIB glasses. Salient features of the results include: (1) pyrites in altered MORB (with O. Rouxel; from ODP site 801 and ODP Hole 1301B) range from -70 to +19‰, (2) pyrites in UHP eclogites from the Western Gneiss Region, Norway (with B. Hacker and A. Kylander-Clark) show a limited overall range from -3.4 to + 2.8‰ among five samples, with one of them covering almost the entire range, indicating limited scale lengths of isotopic equilibration during subduction, (3) olivine-hosted melt inclusions in arc basalts from Galunggung (-2

  11. A Deep Look at the Fornax Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Traditionally, dense cluster centers are cannibalistic environments, with larger galaxies stripping stars from smaller interlopers in minor mergers and dynamical harassment. A recent survey of the Fornax cluster, one example of such an environment, reveals how this cluster may have been built.Clues in HalosContext for the southern constellation Fornax (the furnace). The Fornax cluster is marked with a red circle. [ESO, IAU and Sky Telescope]Deep surveys of dense cluster environments are necessary because the imprint of mass assembly is hidden in galactic halos, the faint outer regions of galaxies. Deep observations can reveal answers to questions about how the galaxies in these extreme environments formed and evolved for instance, did the majority of the galaxies stars form in situ, or were they accreted from interactions with other galaxies?The Fornax Deep Survey (FDS) is just such a campaign. FDS uses the European Southern Observatorys VLT Survey Telescope to obtain deep photometry of the entire 26 square degrees of the Fornax cluster, a spectacular galaxy cluster located 65 million light-years away.Central ObservationsThe FDS team plans to release the full results from the survey soon. For now, in an initial study led by Enrichetta Iodice (INAFs Astronomical Observatory of Capodimonte, Italy), the team presents their first findings from the two square degrees around NGC 1399, a supergiant elliptical galaxy in the cluster center.The two main results from this study are:The discovery of a faint stellar bridge between NGC 1399 and a nearby galaxy, NGC 1387.The characterization of NGC 1399s light profile, which shows that the galaxy consists of two main components separated by a strong break. The bright central galaxy is likely composed of stars that formed in situ, whereas the exponential outer component is a stellar halo composed of stars likely captured from accretion events.What do these points tell us about the history of the center of the Fornax cluster? These

  12. Deep Space Test Bed

    NASA Technical Reports Server (NTRS)

    Milton, Martha E.; Christl, Mark

    2004-01-01

    The DSTB Facility provides a new capability for the National Aeronautics and Space Administration s (NASA s) Space Radiation Shielding Project (SRSP). The objective of the DSTB is to provide a platform to conduct radiation shielding investigations in an environment more similar to deep space than most Low Earth orbits or is achievable at a particle accelerator. The DSTB provides a means to experimentally test radiation shielding effectiveness of various materials and to test the accuracy of radiation transport code predictions in the deep space cosmic ray environment more frequently and at a lower cost compared to space flight missions. New spectrometers, dosimeters and other techniques may be exercised and verified using the DSTB before space flight. The DSTB will be implemented through NASA s National Scientific Balloon Facility (NSBF) which provides polar balloon flights that lift science payloads to high altitude (120,000 A. (36.58km)) to escape much of the shielding effects of the Earth s atmosphere and magnetosphere. Polar flights are conducted through NSBF in coordination with the United States Polar Program. The DSTB will be launched on a Long Duration Balloon (LDB) from McMurdo, Antarctica (77.86 degrees south latitude) for circumpolar flights, nominally 20 days, traveling to the west and typically bounded between 73 to 82 degrees south latitude. Float altitudes for these balloons with payload are 115,000 to 130,000 feet (35.05 to 39.62km). The DSTB will be able to accommodate up to 20 investigations per flight. Annual flight opportunities are planned starting in December 2005. Balloon campaigns in Antarctica occur in December and January during the Austral summer. Since a key goal of the DSTB facility is to efficiently serve the varied needs of the radiation shielding community; it must be designed with a flexible architecture. By implementing the DSTB facility with NASA s balloon program, which operates under reduced formalities compared to space flight

  13. RESOLVE and ECO: Survey Design

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Moffett, Amanda J.; Norris, Mark A.; Eckert, Kathleen D.; Stark, David; Berlind, Andreas A.; Snyder, Elaine M.; Norman, Dara J.; Hoversten, Erik A.; RESOLVE Team

    2016-01-01

    The REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey is a volume-limited census of stellar, gas, and dynamical mass as well as star formation and galaxy interactions within >50,000 cubic Mpc of the nearby cosmic web, reaching down to dwarf galaxies of baryonic mass ~10^9 Msun and spanning multiple large-scale filaments, walls, and voids. RESOLVE is surrounded by the ~10x larger Environmental COntext (ECO) catalog, with matched custom photometry and environment metrics enabling analysis of cosmic variance with greater statistical power. For the ~1500 galaxies in its two equatorial footprints, RESOLVE goes beyond ECO in providing (i) deep 21cm data with adaptive sensitivity ensuring HI mass detections or upper limits <10% of the stellar mass and (ii) 3D optical spectroscopy including both high-resolution ionized gas or stellar kinematic data for each galaxy and broad 320-725nm spectroscopy spanning [OII] 3727, Halpha, and Hbeta. RESOLVE is designed to complement other radio and optical surveys in providing diverse, contiguous, and uniform local/global environment data as well as unusually high completeness extending into the gas-dominated dwarf galaxy regime. RESOLVE also offers superb reprocessed photometry including full, deep NUV coverage and synergy with other equatorial surveys as well as unique northern and southern facilities such as Arecibo, the GBT, and ALMA. The RESOLVE and ECO surveys have been supported by funding from NSF grants AST-0955368 and OCI-1156614.

  14. The Porcupine Survey: A Distributed Survey and WISE Followup

    NASA Astrophysics Data System (ADS)

    Wright, Edward L.; Eisenhardt, P. R. M.; Mainzer, A. K.; Kirkpatrick, J. D.; Cohen, M.

    2007-10-01

    Spitzer post-cryogen observations to perform a moderate depth survey distributed around the sky are proposed. Field centers are chosen to be WISE brown dwarf candidates, which will typically be 160 μJy at 4.7 μm and randomly distributed around the sky. The Spitzer observations will give much higher sensitivity, higher angular resolution, and a time baseline to measure both proper motions and possibly parallaxes. The distance and velocity data obtained on the WISE brown dwarf candidates will greatly improve our knowledge of the mass and age distribution of brown dwarfs. The outer parts of the Spitzer fields surrounding the WISE positions will provide a deep survey in many narrow fields of view distributed around the sky, and the volume of this survey will contain many more distant brown dwarfs, and many extragalactic objects.

  15. Surveying System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sunrise Geodetic Surveys are setting up their equipment for a town survey. Their equipment differs from conventional surveying systems that employ transit rod and chain to measure angles and distances. They are using ISTAC Inc.'s Model 2002 positioning system, which offers fast accurate surveying with exceptional signals from orbiting satellites. The special utility of the ISTAC Model 2002 is that it can provide positioning of the highest accuracy from Navstar PPS signals because it requires no knowledge of secret codes. It operates by comparing the frequency and time phase of a Navstar signal arriving at one ISTAC receiver with the reception of the same set of signals by another receiver. Data is computer processed and translated into three dimensional position data - latitude, longitude and elevation.

  16. Geosat survey

    NASA Astrophysics Data System (ADS)

    The Geosat Committee, a nonprofit, educational organization dedicated to improving satellite remote sensing for geological applications, is surveying the international geological community to determine the most important areas of the world for the exploration of nonrenewable resources. The results of this survey, whose sources will be kept confidential, will be given as recommendations for early satellite-scene selection to the the U.S. government (via the National Oceanic and Atmospheric Administration) and to other countries with satellites or ground receiving stations.

  17. Deep atomic force microscopy

    SciTech Connect

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K.

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  18. Deep inelastic phenomena

    SciTech Connect

    Prescott, C.Y.

    1980-10-01

    Nucleon structure as seen in the context of deep inelastic scattering is discussed. The lectures begin with consideration of the quark-parton model. The model forms the basis of understanding lepton-nucleon inelastic scattering. As improved data in lepton-nucleon scattering at high energies became available, the quark-parton model failed to explain some crucial features of these data. At approximately the same time a candidate theory of strong interactions based on a SU(3) gauge theory of color was being discussed in the literature, and new ideas on the explanation of inelastic scattering data became popular. A new theory of strong interactions, now called quantum chromodynamics provides a new framework for understanding the data, with a much stronger theoretical foundation, and seems to explain well the features of the data. The lectures conclude with a look at some recent experiments which provide new data at very high energies. These lectures are concerned primarily with charged lepton inelastic scattering and to a lesser extent with neutrino results. Furthermore, due to time and space limitations, topics such as final state hadron studies, and multi-muon production are omitted here. The lectures concentrate on the more central issues: the quark-parton model and concepts of scaling, scale breaking and the ideas of quantum chromodynamics, the Q/sup 2/ dependence of structure function, moments, and the important parameter R.

  19. DEEP-South: Network Construction, Test Runs and Early Results

    NASA Astrophysics Data System (ADS)

    Moon, Hong-Kyu; Kim, Myung-Jin; Yim, Hong-Suh; Choi, Young-Jun; Bae, Young-Ho; Roh, Dong-Goo; Park, Jintae; Moon, Bora

    2016-01-01

    Korea Microlensing Telescope Network (KMTNet) which consists of three identical 1.6 m wide-field telescopes with 18k × 18k CCDs, is the first optical survey system of its kind. The combination of fast optics and the mosaic CCD delivers seeing limited images over a 4 square degrees field of view. The main science goal of KMTNet is the discovery and characterization of exoplanets, yet it also offers various other science applications including DEep Ecliptic Patrol of SOUTHern sky (DEEP-South). The aim of DEEP-South is to discover and characterize asteroids and comets, including Near Earth Objects (NEOs). We started test runs last February after commissioning, and will return to normal operations in October 2015. A summary of early results from the test runs will be presented.

  20. Microbial ecology of deep-water mid-Atlantic canyons

    USGS Publications Warehouse

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  1. X-ray Properties of Deep Radio-Selected Quasars

    NASA Technical Reports Server (NTRS)

    Becker, Robert

    2002-01-01

    This report summarizes the research supported by the ADP grant entitled 'X-ray Properties of Deep Radio-Selected Quasars'. The primary effort consisted of correlating the ROSAT All-Sky Survey catalog with the April 1997 release of the FIRST (Faint Images of the Radio Sky at Twenty centimeters) radio catalog. We found that a matching radius of 60 sec excluded most false matches while retaining most of the true radio-X-ray sources. The correlation of the approx. 80,000 source RASS and approx. 268,000 FIRST catalogs matched 2,588 FIRST sources with 1,649 RASS sources out of a possible 5,520 RASS sources residing in the FIRST survey area. This number is much higher than expected from our previous experience of correlating the RASS with radio surveys and indicates we detected new classes of objects not seen in the correlations with less sensitive radio surveys.

  2. BLAST: THE REDSHIFT SURVEY

    SciTech Connect

    Eales, Stephen; Dye, Simon; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Raymond, Gwenifer; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Devlin, Mark J.; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.; Hughes, David H.; Netterfield, Calvin B.; Viero, Marco P.; Patanchon, Guillaume; Siana, Brian

    2009-12-20

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed approx =8.7 deg{sup 2} centered on Great Observatories Origins Deep Survey-South at 250, 350, and 500 mum. In Dye et al., we presented the catalog of sources detected at 5sigma in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 82 of these counterparts. The spectra show that the BLAST counterparts are mostly star-forming galaxies but not extreme ones when compared to those found in the Sloan Digital Sky Survey. Roughly one quarter of the BLAST counterparts contain an active nucleus. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies, showing that the standard methods work well even when a galaxy contains a large amount of dust. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST bands. We find strong evolution out to z = 1, in the sense that there is a large increase in the space density of the most luminous galaxies. We have also investigated the evolution of the dust-mass function, finding similar strong evolution in the space density of the galaxies with the largest dust masses, showing that the luminosity evolution seen in many wavebands is associated with an increase in the reservoir of interstellar matter in galaxies.

  3. Viral infections as controlling factors for the deep biosphere? (Invited)

    NASA Astrophysics Data System (ADS)

    Engelen, B.; Engelhardt, T.; Sahlberg, M.; Cypionka, H.

    2009-12-01

    The marine deep biosphere represents the largest biotope on Earth. Throughout the last years, we have obtained interesting insights into its microbial community composition. However, one component that was completely overlooked so far is the viral inventory of deep-subsurface sediments. While viral infections were identified to have a major impact on the benthic microflora of deep-sea surface sediments (Danavaro et al. 2008), no studies were performed on deep-biosphere samples, so far. As grazers probably play only a minor role in anoxic and highly compressed deep sediments, viruses might be the main “predators” for indigenous microorganisms. Furthermore, the release of cell components, called “the viral shunt”, could have a major impact on the deep biosphere in providing labile organic compounds to non-infected microorganisms in these generally nutrient depleted sediments. However, direct counting of viruses in sediments is highly challenging due to the small size of viruses and the high background of small particles. Even molecular surveys using “universal” PCR primers that target phage-specific genes fail due to the vast phage diversity. One solution for this problem is the lysogenic viral life cycle as many bacteriophages integrate their DNA into the host genome. It is estimated that up to 70% of cultivated bacteria contain prophages within their genome. Therefore, culture collections (Batzke et al. 2007) represent an archive of the viral composition within the respective habitat. These prophages can be induced to become free phage particles in stimulation experiments in which the host cells are set under certain stress situations such as a treatment with UV exposure or DNA-damaging antibiotics. The study of the viral component within the deep biosphere offers to answer the following questions: To which extent are deep-biosphere populations controlled by viral infections? What is the inter- and intra-specific diversity and the host-specific viral

  4. Microbial Life in the Deep Subsurface: Deep, Hot and Radioactive

    NASA Technical Reports Server (NTRS)

    DeStefano, Andrea L.; Ford, Jill C.; Winsor, Seana K.; Allen, Carlton C.; Miller, Judith; McNamara, Karen M.; Gibson, Everett K., Jr.

    2000-01-01

    Recent studies, motivated in part by the search for extraterrestrial life, continue to expand the recognized limits of Earth's biosphere. This work explored evidence for life a high-temperature, radioactive environment in the deep subsurface.

  5. Deep Learning in Drug Discovery.

    PubMed

    Gawehn, Erik; Hiss, Jan A; Schneider, Gisbert

    2016-01-01

    Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of "deep learning". Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer-assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks. PMID:27491648

  6. Deep Learning in Drug Discovery.

    PubMed

    Gawehn, Erik; Hiss, Jan A; Schneider, Gisbert

    2016-01-01

    Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of "deep learning". Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer-assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks.

  7. Jack Dymond's Deep Insights

    NASA Astrophysics Data System (ADS)

    Thomson, R. E.; Delaney, J. R.

    2004-12-01

    Most people do not know that Jack Dymond was a major influence on several aspects of current deep-sea research. Along with Margaret Leinen and Jack, we were part of the first Alvin dive program on the Endeavour hydrothermal field in 1984. Jack was working with Rick, on a sediment-trap study of the overall carbon fluxes in the vicinity of the Endeavour hydrothermal systems in an effort to address a question that Cindy Lee had posed about the overall carbon production from hydrothermal vents. At the time we were recognizing and naming many of the 20- to 40-meter-high sulfide structures in the Endeavour field (Hulk, Grotto, Dante, Dudley, Bastille), Jack commented that it was a shame that the world could not see these magnificent edifices or watch endlessly awesome black smokers. His feeling was that some vent sites should be converted to National Parks to preserve them from invasion by enthusiastic scientists, yet he clearly had the vision that the public should be given a sense of the grandeur involved locally, as well as the vastness of the 70,000-km ridge-crest system running through every ocean. Within a year we started talking about the RIDGE Program, and Jack was an early and enthusiastic participant in the design and development of RIDGE. Jack was among the first to encourage multi-disciplinary research at the hydrothermal vent sites. Recognizing that deep currents are important to vent processes, he urged physical oceanographers to work with the chemists, biologists, and geologists and was personally responsible for Rick becoming interested in studying vents. We, the co-authors of this abstract, became close friends as a result of having been introduced to each other by Jack. Several years ago, we co-authored the first paper ever written on the possible influence of hydrothermal activity on the circulation of the Europan Ocean, a paper that we here dedicate to the memory of Jack. Finally, it was in part because of Jack's conviction that the world should know

  8. Deep UV LEDs

    NASA Astrophysics Data System (ADS)

    Han, Jung; Amano, Hiroshi; Schowalter, Leo

    2014-06-01

    Deep ultraviolet (DUV) photons interact strongly with a broad range of chemical and biological molecules; compact DUV light sources could enable a wide range of applications in chemi/bio-sensing, sterilization, agriculture, and industrial curing. The much shorter wavelength also results in useful characteristics related to optical diffraction (for lithography) and scattering (non-line-of-sight communication). The family of III-N (AlGaInN) compound semiconductors offers a tunable energy gap from infrared to DUV. While InGaN-based blue light emitters have been the primary focus for the obvious application of solid state lighting, there is a growing interest in the development of efficient UV and DUV light-emitting devices. In the past few years we have witnessed an increasing investment from both government and industry sectors to further the state of DUV light-emitting devices. The contributions in Semiconductor Science and Technology 's special issue on DUV devices provide an up-to-date snapshot covering many relevant topics in this field. Given the expected importance of bulk AlN substrate in DUV technology, we are pleased to include a review article by Hartmann et al on the growth of AlN bulk crystal by physical vapour transport. The issue of polarization field within the deep ultraviolet LEDs is examined in the article by Braut et al. Several commercial companies provide useful updates in their development of DUV emitters, including Nichia (Fujioka et al ), Nitride Semiconductors (Muramoto et al ) and Sensor Electronic Technology (Shatalov et al ). We believe these articles will provide an excellent overview of the state of technology. The growth of AlGaN heterostructures by molecular beam epitaxy, in contrast to the common organo-metallic vapour phase epitaxy, is discussed by Ivanov et al. Since hexagonal boron nitride (BN) has received much attention as both a UV and a two-dimensional electronic material, we believe it serves readers well to include the

  9. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Proposed as a baseline configuration, this rotary drill apparatus is designed to produce 100-mm diameter holes in the lunar surface at depths up to 50 meters. The drill is intended to acquire samples for scientific analysis, mineral resource location, calibration of electronic exploration devices, and foundation analysis at construction sites. It is also intended to prepare holes for emplacement of scientific instruments, the setting of structural anchors, and explosive methods in excavation and mining activities. Defined as a deep drill because of the modular drill string, it incorporates an automatic rod changer. The apparatus is teleoperated from a remote location, such as earth, utilizing supervisory control techniques. It is thus suitable for unmanned and man-tended operation. Proven terrestrial drilling technology is used to the extent it is compatible with the lunar environment. Augers and drive tubes form holes in the regolith and may be used to acquire loose samples. An inertial cutting removal system operates intermittently while rock core drilling is in progress. The apparatus is carried to the work site by a three-legged mobile platform which also provides a 2-meter feed along the hole centerline, an off-hole movement of approximately .5 meters, an angular alignment of up to 20 deg. from gravity vertical, and other dexterity required in handling rods and samples. The technology can also be applied using other carriers which incorporate similar motion capabilities. The apparatus also includes storage racks for augers, rods, and ancillary devices such as the foot-plate that holds the down-hole tooling during rod changing operations.

  10. The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Definition and Goals

    NASA Astrophysics Data System (ADS)

    Mauduit, J.-C.; Lacy, M.; Farrah, D.; Surace, J. A.; Jarvis, M.; Oliver, S.; Maraston, C.; Vaccari, M.; Marchetti, L.; Zeimann, G.; Gonzáles-Solares, E. A.; Pforr, J.; Petric, A. O.; Henriques, B.; Thomas, P. A.; Afonso, J.; Rettura, A.; Wilson, G.; Falder, J. T.; Geach, J. E.; Huynh, M.; Norris, R. P.; Seymour, N.; Richards, G. T.; Stanford, S. A.; Alexander, D. M.; Becker, R. H.; Best, P. N.; Bizzocchi, L.; Bonfield, D.; Castro, N.; Cava, A.; Chapman, S.; Christopher, N.; Clements, D. L.; Covone, G.; Dubois, N.; Dunlop, J. S.; Dyke, E.; Edge, A.; Ferguson, H. C.; Foucaud, S.; Franceschini, A.; Gal, R. R.; Grant, J. K.; Grossi, M.; Hatziminaoglou, E.; Hickey, S.; Hodge, J. A.; Huang, J.-S.; Ivison, R. J.; Kim, M.; LeFevre, O.; Lehnert, M.; Lonsdale, C. J.; Lubin, L. M.; McLure, R. J.; Messias, H.; Martínez-Sansigre, A.; Mortier, A. M. J.; Nielsen, D. M.; Ouchi, M.; Parish, G.; Perez-Fournon, I.; Pierre, M.; Rawlings, S.; Readhead, A.; Ridgway, S. E.; Rigopoulou, D.; Romer, A. K.; Rosebloom, I. G.; Rottgering, H. J. A.; Rowan-Robinson, M.; Sajina, A.; Simpson, C. J.; Smail, I.; Squires, G. K.; Stevens, J. A.; Taylor, R.; Trichas, M.; Urrutia, T.; van Kampen, E.; Verma, A.; Xu, C. K.

    2012-07-01

    We present the Spitzer Extragalactic Representative Volume Survey (SERVS), an 18 deg2 medium-deep survey at 3.6 and 4.5 μm with the postcryogenic Spitzer Space Telescope to ≈2 μJy (AB = 23.1) depth of five highly observed astronomical fields (ELAIS-N1, ELAIS-S1, Lockman Hole, Chandra Deep Field South, and XMM-LSS). SERVS is designed to enable the study of galaxy evolution as a function of environment from z ~ 5 to the present day and is the first extragalactic survey that is both large enough and deep enough to put rare objects such as luminous quasars and galaxy clusters at z gsim 1 into their cosmological context. SERVS is designed to overlap with several key surveys at optical, near- through far-infrared, submillimeter, and radio wavelengths to provide an unprecedented view of the formation and evolution of massive galaxies. In this article, we discuss the SERVS survey design, the data processing flow from image reduction and mosaicking to catalogs, and coverage of ancillary data from other surveys in the SERVS fields. We also highlight a variety of early science results from the survey. Since this article was published online on 4 August 2012, corrections have been made. An erratum appears in the October 2012 issue of the journal. The current online version was corrected on 10 October 2012.

  11. The Deep Space Network, volume 17

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  12. Exploration of a deep carbonate hydrogeothermal aquifer

    NASA Astrophysics Data System (ADS)

    von Hartmann, H.; Thomas, R.; Schulz, R.

    2009-04-01

    Geothermal energy is an increasing part of the worldwide energy supply. Deep aquifers for hydrogeothermal use must have very high porosities to provide a sufficient flow rate. The exploration of these hydrogeothermal reservoirs have to include all information which helps to predict these areas of high porosity and high permeability: lithology, facies, and structural framework. Therefore exploration techniques known from hydrocarbon exploration are used: 2D and 3D seismic surveys, including log data. A constraint is the amount of exploration costs. By which geophysical means it is possible to build a geological model which predicts the petrophysical parameters with a sufficient high possibility? There are three geological provinces in Germany with hydrogeothermal potential: the North German Basin, the Upper Rhine Graben, and the Southern German Molasse Basin. Within the Southern German Molasse Basin the hydrogeothermal aquifer comprises carbonate rocks of the Upper Jurassic which were lowered to a depth of approximately 3500 m. The interpretation of a 3D seismic survey shows the distribution of carbonate facies, structural framework, and karst formation. All three aspects are related among each other: faults can facilitate karst formation especially where reefs had been formed. Seismic attributes were used to enhance the visualization of these geologic features. The result is an overall understanding of geologic processes which formed areas of high porosity. In this way the advantage of 3D seismic surveys is obvious. Mapping of these areas can be done also within 3D seismic surveys. The appropriate choice of the seismic method depends on the exploration stage and the extent of the reservoirs. Elongated reservoirs which may be formed by carbonate solution along faults may be explored by 2D seismic lines to lower the costs of a geothermal project.

  13. Deep Astrometric Standards and Galactic Structure

    NASA Astrophysics Data System (ADS)

    Platais, Imants; Wyse, Rosemary F. G.; Zacharias, Norbert

    2006-01-01

    The advent of next-generation imaging telescopes, such as the Large Synoptic Survey Telescope (LSST) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), has revitalized the need for deep and precise reference frames. The proposed weak-lensing observations with these facilities put the highest demands on image quality over wide angles on the sky. It is particularly difficult to achieve a subarcsecond point-spread function on stacked images, where precise astrometry plays a key role. Current astrometric standards are insufficient to achieve the science goals of these facilities. We thus propose the establishment of a few selected deep (V=25) astrometric standards (DAS). These will enable a reliable geometric calibration of solid-state mosaic detectors in the focal plane of large ground-based telescopes, and will make a substantial contribution to our understanding of stellar populations in the Milky Way. In this paper we examine the need for such standards and discuss the strategy for selecting them and their acquisition and reduction techniques. The feasibility of DAS is demonstrated by a pilot study around the open cluster NGC 188, using the Kitt Peak National Observatory 4 m CCD Mosaic camera, and by Subaru Suprime-Cam observations. The goal of reaching an accuracy of 5-10 mas in positions and obtaining absolute proper motions good to 2 mas yr-1 over a several square-degree area is challenging, but reachable with the NOAO 4 m telescopes and CCD mosaic imagers, or a similar setup. Our proposed DAS aims to establish four fields near the Galactic plane, at widely separated coordinates. In addition to their utilitarian purpose for DAS, the data we will obtain in these fields will enable fundamental Galactic science in their own right. The positions, proper motions, and VI photometry of faint stars will address outstanding questions of Galactic disk formation and evolution, stellar buildup, and mass assembly via merger events.

  14. Deep Space Telecommunications Systems Engineering

    NASA Technical Reports Server (NTRS)

    Yuen, J. H. (Editor)

    1982-01-01

    Descriptive and analytical information useful for the optimal design, specification, and performance evaluation of deep space telecommunications systems is presented. Telemetry, tracking, and command systems, receiver design, spacecraft antennas, frequency selection, interference, and modulation techniques are addressed.

  15. Deep Percolation in Devegetated Hillslopes

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.; Hinckley, E. S.

    2011-12-01

    Deep percolation has recently been recognized as a critical component in hillslope hydrology studies. In devegetated hillslopes where vegetation is killed and, in some cases, removed, deep percolation may be substantially enhanced beyond pre-disturbance magnitudes. We discuss two examples of devegetated hillslopes where water balance partitioning shifted to favor increased deep percolation fluxes for some hydrologic conditions. The first is the Coos Bay Experimental Catchment in Oregon, USA, where commercial forestry resulted in the complete removal of trees. An intensive field campaign in the 1990's resulted in a long term record of precipitation, discharge, piezometric response, and groundwater levels. Hydrologic response modeling confirms hypotheses from the field-data analysis and points to unresolved questions regarding feedbacks between deep percolation and near-surface hydrologic processes. The second example is the area burned by the Fourmile Canyon Fire in Colorado, USA, where a severe wildland fire removed all vegetation from a north-aspect hillslope in 2010. Precipitation, atmospheric conditions, soil-water content, matric potential, and runoff have been measured since the fire devegetated the site. Subsurface sampling of the vadose zone is accomplished using suction lysimeters to capture total nitrate, ammonium, and dissolved organic carbon concentrations. Darcian flux calculations of net infiltration from the shallow soil into fractured granodiorite bedrock are used to estimate solute fluxes to a deeper groundwater system. Virtual experiments using numerical models of unsaturated fluid flow and solute transport further elucidate the temporal dynamics of deep percolation and associated solute fluxes during spring snowmelt and frontal rainstorms, which are the major hydrologic drivers of deep percolation in this fire-impacted system. Together, these examples serve to illustrate the critical importance of deep percolation in disturbed landscapes. The

  16. Prospects bleak for deep gas

    SciTech Connect

    Schmidt, R.H.

    1982-10-01

    The incentive for producing unregulated deep gas has dropped along with oil prices. Until the oil glut ends and shallow gas is deregulated and allowed to reach market-clearing levels, producers will continue to slow production and delay new drilling ventures. Deep gas will not be competitive in most markets after deregulation is complete in 1985 even if there is another Middle East oil shock. New drilling for controlled shallow gas will also wait for deregulation. (DCK)

  17. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents

    USGS Publications Warehouse

    Reysenbach, A.-L.; Liu, Yajing; Banta, A.B.; Beveridge, T.J.; Kirshtein, J.D.; Schouten, S.; Tivey, M.K.; Von Damm, K. L.; Voytek, M.A.

    2006-01-01

    Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75??C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents. ?? 2006 Nature Publishing Group.

  18. Hot, deep origin of petroleum: deep basin evidence and application

    USGS Publications Warehouse

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  19. Complexity Survey.

    ERIC Educational Resources Information Center

    Gordon, Sandra L.; Anderson, Beth C.

    To determine whether consensus existed among teachers about the complexity of common classroom materials, a survey was administered to 66 pre-service and in-service kindergarten and prekindergarten teachers. Participants were asked to rate 14 common classroom materials as simple, complex, or super-complex. Simple materials have one obvious part,…

  20. FORT UNION DEEP

    SciTech Connect

    Lyle A. Johnson Jr.

    2002-09-01

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback

  1. FORT UNION DEEP

    SciTech Connect

    Lyle A. Johnson Jr.

    2002-03-01

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback

  2. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  3. 78 FR 11821 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... Seismic Survey by the U.S. Geological Survey in the Deepwater Gulf of Mexico, April-May 2013'' (EA). USGS... the U.S. Geological Survey in the Northwestern Gulf of Mexico, April-May 2013,'', prepared by LGL Ltd... conducting a low-energy marine seismic survey within the U.S. Exclusive Economic Zone in the deep water...

  4. Deep learning regularized Fisher mappings.

    PubMed

    Wong, W K; Sun, Mingming

    2011-10-01

    For classification tasks, it is always desirable to extract features that are most effective for preserving class separability. In this brief, we propose a new feature extraction method called regularized deep Fisher mapping (RDFM), which learns an explicit mapping from the sample space to the feature space using a deep neural network to enhance the separability of features according to the Fisher criterion. Compared to kernel methods, the deep neural network is a deep and nonlocal learning architecture, and therefore exhibits more powerful ability to learn the nature of highly variable datasets from fewer samples. To eliminate the side effects of overfitting brought about by the large capacity of powerful learners, regularizers are applied in the learning procedure of RDFM. RDFM is evaluated in various types of datasets, and the results reveal that it is necessary to apply unsupervised regularization in the fine-tuning phase of deep learning. Thus, for very flexible models, the optimal Fisher feature extractor may be a balance between discriminative ability and descriptive ability.

  5. [Respiratory changes in deep diving].

    PubMed

    Segadal, K; Gulsvik, A; Nicolaysen, G

    1989-01-30

    Deep diving refers to saturation diving to a depth of more than 180 m (1.9 MPa ambient pressure). In the 1990s diving to 400 m may be necessary on the Norwegian continental shelf. The safety margins are narrow and at such depths the respiratory system is subject to great strain. Respiratory resistance increases and the dynamic lung volumes are reduced as the pressure increases due to enhanced gas density. Helium is used together with oxygen as breathing gas and the lower density partly normalises the dynamic lung volumes. The respiratory system imposes clear limitations on the intensity and duration of physical work during deep diving. We lack systematic studies of lung mechanics, gas exchange and respiratory regulation in the different phases of deep dives. Demonstration of possible chronic occupational respiratory diseases connected to diving is dependent on follow-up over a long time.

  6. Respiratory changes with deep diving.

    PubMed

    Segadal, K; Gulsvik, A; Nicolaysen, G

    1990-01-01

    Deep diving refers to saturation diving to a depth of more than 180 m (1.9 MPa ambient pressure). In the 1990s diving to 400 m may be necessary on the Norwegian continental shelf. The safety margins are narrow and the respiratory system is subject to great strain at such depths. The respiratory resistance increases and the dynamic lung volumes are reduced as the pressure increases due to enhanced gas density. Helium is used together with oxygen as breathing gas and its lower density partly normalises the dynamic lung volumes. The respiratory system puts clear limitations on intensity and duration of physical work in deep diving. Systematic studies of lung mechanics, gas exchange and respiratory regulation in the different phases of deep dives are lacking. Detection of occupational respiratory disorder following diving are dependent on long-term follow-up.

  7. The Pan-STARRS Surveys

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.; Pan-STARRS Team

    2016-01-01

    The 4 year Pan-STARRS1 Science Mission has now completed and the final data processing and database ingest is underway. We expect to have the public release of the PS1 Survey data at approximately the time of the AAS Meeting. The full data set, including catalogs (150 Terabyte database), images (2 Petabytes), and metadata, will be available from the STScI MASTarchive. The Pan-STARRS1 Surveys include: (1) The 3pi Steradian Survey, (2) The Medium Deep survey of 10 PS1 footprints (7 sq deg each) spaced around the sky; (3) A solar system survey of the ecliptic optimized for the discovery of Near Earth Objects, (4) a Stellar Transit Survey in the galactic bulge; and (5) a time domain Survey of M31. The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Science results span most fields of astronomy from Near Earth Objects to cosmology. The 2nd mission, the Pan-STARRS NEO Survey, is currently underway on PS1 and it will be supplemented by PS2 observations as PS2 becomes fully operational. We will also report on the status of PS2 and the prospects for future wide field surveys in the Northern Hemisphere. The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate; the National

  8. The Pan-STARRS Surveys

    NASA Astrophysics Data System (ADS)

    Carter Chambers, Kenneth

    2015-08-01

    The 4 year Pan-STARRS1 Science Mission has now completed and the data will be publicly release by the time of the IAU Assembly. The full data set, including catalogs (100TB database), images (2PB), and metadata, will be available from the STScI MAST archive. The Pan-STARRS1 Surveys include: (1) The 3pi Steradian Survey, (2) The Medium Deep survey of 10 PS1 footprints (7 sq deg each) spaced around the sky; (3) A solar system survey of the ecliptic optimized for the discovery of Near Earth Objects, (4) a Stellar Transit Survey in the galactic bulge; and (5) a time domain Survey of M31.The characteristics of the Pan-STARRS Surveys will be presented, including image quality, depth, cadence, and coverage. Science results span most fields of astronomy from Near Earth Objects to cosmology.The 2nd mission, the Pan-STARRS NEO Survey, is currently underway on PS1 and it will be supplemented by PS2 as it becomes fully operational. PS2 is currently undergoing commissioning and is expected to begin full time science observations with an functional capability similar to PS1 by summer of 2015. The status of PS2 and commissioning data from PS2 will be presented along with a full description of the Pan-STARRS NEO Survey. The prospects for future (beyond 2017) wide field surveys in the Northern Hemisphere will also be discussed.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics

  9. Deep space infections of neck.

    PubMed

    Kaluskar, S; Bajaj, P; Bane, P

    2007-03-01

    A retrospective study was performed on fourteen cases of deep cervical space infections in the neck admitted for diagnosis and treatment to the ENT Department, during a period of seven years from 1989-1997. Of the fourteen, four patients had Ludwig's angina and of the fourteen, one had a very serious complication resulting in death. Early diagnosis and adequate treatment were of paramount importance. The role of tracheostomy and management of airway in deep cervical space infections of the neck is discussed to gether with bacteriology, antibiotic treatment and surgical management.

  10. The Chandra COSMOS Legacy Survey: first results

    NASA Astrophysics Data System (ADS)

    Marchesi, Stefano; Civano, Francesca M.; Elvis, Martin; Urry, C. Megan; Comastri, Andrea

    2014-08-01

    The COSMOS field is the only large (2 sq. deg.) field for which complete, deep, panchromatic data exist and which all large telescopes can observe due to its equatorial location. In 2013, the COSMOS survey was greatly extended, thanks to the Chandra COSMOS Legacy Survey, the second largest extragalactic Chandra project ever approved. This survey is aimed at studying the formation of the structures in the high redshift Universe and understanding the role active super massive black holes played in their evolution. With 56 overlapping ACIS-I pointings of 50-ksec depth each, the Chandra COSMOS-Legacy survey uniformly covers the 1.7 sq. deg. COSMOS/HST field to ~160 ksec depth, with a total of 2.8 Ms exposure time. This triples the area of the earlier deep C-COSMOS survey (limiting flux ~3e-16 ergs/cm2/s in the 0.5-2 keV band), and together these two projects cover a total area of 2.2 sq. deg., yielding a sample of ~4200 X-ray sources. We present the survey properties, the procedure adopted to obtain our final catalog and the first scientific highlights, focusing on the high redshift (z>3) sample.

  11. The "Perseus Arm" Multibeam pulsar survey

    NASA Astrophysics Data System (ADS)

    Lyne, Andrew; Possenti, Andrea; Manchester, Dick; Kramer, Michael; Hobbs, George; McLaughlin, Maura; Burgay, Marta; D'Amico, Nichi; Camilo, Fernando; Stairs, Ingrid; Keith, Michael; Lorimer, Duncan Ross

    2007-04-01

    Given the extremely fruitful results of the completed Parkes Multibeam Pulsar Survey, Parkes Multibeam High Latitude Pulsar Survey, and Parkes Multibeam Intermediate Latitude Swinburne Survey, we have undertaken a new deep search for pulsars, sampling the galactic plane in the direction of the Perseus Arm at galactic coordinates 200 deg deep low latitude survey of the galactic plane strip visible from Parkes, providing an invaluable basis to any statistical study of the pulsar population and in particular improving the knowledge of the poorly known radial distribution of the pulsars in the outer regions of the Galaxy disk. Given the survey parameters and the sky coverage, this search will lead to the discovery of few tens of sources, with a good discovery rate (twice higher than for the two most recent large-scale searches performed at Parkes) and with a favorable ratio of millisecond over longer period pulsars. The requested range of Sidereal Time is complementary to other pulsar projects. We propose to continue this project, concluding the survey observations during this APR07 semester and timing the discovered pulsars.

  12. The "Perseus Arm" Multibeam pulsar survey

    NASA Astrophysics Data System (ADS)

    Lyne, Andrew; Possenti, Andrea; Manchester, Dick; Kramer, Michael; Hobbs, George; McLaughlin, Maura; Burgay, Marta; D'Amico, Nichi; Camilo, Fernando; Stairs, Ingrid; Keith, Michael; Lorimer, Duncan Ross

    2007-10-01

    Given the extremely fruitful results of the completed Parkes Multibeam Pulsar Survey, Parkes Multibeam High Latitude Pulsar Survey, and Parkes Multibeam Intermediate Latitude Swinburne Survey, we have undertaken a new deep search for pulsars, sampling the galactic plane in the direction of the Perseus Arm at galactic coordinates 200 deg deep low latitude survey of the galactic plane strip visible from Parkes, providing an invaluable basis to any statistical study of the pulsar population and in particular improving the knowledge of the poorly known radial distribution of the pulsars in the outer regions of the Galaxy disk. Given the survey parameters and the sky coverage, this search will lead to the discovery of few tens of sources, with a good discovery rate (twice higher than for the two most recent large-scale searches performed at Parkes) and with a favorable ratio of millisecond over longer period pulsars. The requested range of Sidereal Time is complementary to other pulsar projects. We propose to continue this project, concluding the survey observations during this OCT07 semester and timing the discovered pulsars.

  13. Deep prospecting electromagnetic system and its application

    NASA Astrophysics Data System (ADS)

    Lin, J.; Liu, C.; Zhou, F.; Zhang, W.; Chen, J.; Xue, K.; Sun, C.; Xu, W.; Hu, R.

    2011-12-01

    Today mineral resource is becoming the impediment to the society development because less and less mineral resource can be available. People are trying all kinds of technological tools to find the mineral deposit concealed in deep lithosphere. Unfortunately, current technology can not meet the exploration requirement completely and it is still difficult to know whether a deep mineral deposit exists and how it is presented at a considered site. In order to meet the requirement of discovering the mineral deposit in the second mine prospecting space (500-2000m under earth surface), we developed a deep prospecting electromagnetic system (DPS-I). This system consists of an electromagnetic receiver array and a high-power transmitter. The receiver array consists of 24 sub-receivers and one controller and has up to 53 electromagnetic channels. The sub-receivers can be extended conveniently if the user would like and they communicate with the controller through a cable or wireless antenna. When the channel interval is set to typical value of 50 m, the system can cover 2500 m survey line at one arrangement with two magnetic records. Since the signals are collected at the same time some disturbances, such as time variable but space invariable noise, will be suppressed because they have almost the same effect to all channels. The transmitter is designed to be 45 KW of upper power limit so that strong signals will be detected. Series transmission technology is adopted to avoid unwieldiness of transmitter. In fact it is made of three portable transmission units and each one can work independently. The system can transmit several kinds of waves and records all samples of signals in time sequences. So it can work for different electromagnetic methods. The prior methods for our application are the combination of IP, CSAMT and MT. Utilizing joint inversion and model restriction, we can obtain more refined model at large depth than conventional exploration. We have applied this

  14. Stimulation Technologies for Deep Well Completions

    SciTech Connect

    2003-09-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

  15. ALHAMBRA survey: morphological classification

    NASA Astrophysics Data System (ADS)

    Pović, M.; Huertas-Company, M.; Márquez, I.; Masegosa, J.; Aguerri, J. A. López; Husillos, C.; Molino, A.; Cristóbal-Hornillos, D.

    2015-03-01

    The Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey is a photometric survey designed to study systematically cosmic evolution and cosmic variance (Moles et al. 2008). It employs 20 continuous medium-band filters (3500 - 9700 Å), plus JHK near-infrared (NIR) bands, which enable measurements of photometric redshifts with good accuracy. ALHAMBRA covers > 4 deg2 in eight discontinuous regions (~ 0.5 deg2 per region), of theseseven fields overlap with other extragalactic, multiwavelength surveys (DEEP2, SDSS, COSMOS, HDF-N, Groth, ELAIS-N1). We detect > 600.000 sources, reaching the depth of R(AB) ~ 25.0, and photometric accuracy of 2-4% (Husillos et al., in prep.). Photometric redshifts are measured using the Bayesian Photometric Redshift (BPZ) code (Benítez et al. 2000), reaching one of the best accuracies up to date of δz/z <= 1.2% (Molino et al., in prep.). To deal with the morphological classification of galaxies in the ALHAMBRA survey (Pović et al., in prep.), we used the galaxy Support Vector Machine code (galSVM; Huertas-Company 2008, 2009), one of the new non-parametric methods for morphological classification, specially useful when dealing with low resolution and high-redshift data. To test the accuracy of our morphological classification we used a sample of 3000 local, visually classified galaxies (Nair & Abraham 2010), moving them to conditions typical of our ALHAMBRA data (taking into account the background, redshift and magnitude distributions, etc.), and measuring their morphology using galSVM. Finally, we measured the morphology of ALHAMBRA galaxies, obtaining for each source seven morphological parameters (two concentration indexes, asymmetry, Gini, M20 moment of light, smoothness, and elongation), probability if the source belongs to early- or late-type, and its error. Comparing ALHAMBRA morph COSMOS/ACS morphology (obtained with the same method) we expect to have qualitative separation in two main morphological

  16. The Pan-STARRS1 Surveys

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.

    2014-01-01

    Pan-STARRS1 is approaching the completion of the PS1 Science Mission. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The Pan-STARRS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered the sky north of dec=-30 with more than 12 visits in five bands: g,r,i,z and y or over ~60 epochs per 0.25 arcsec resolution element on the sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the Pan-STARRS1 Surveys will be presented as well as progress in reprocessing of the data taken to date and the plans for the public release of all Pan-STARRS1 data products in the spring of 2015. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).

  17. The deep sea is a major sink for microplastic debris.

    PubMed

    Woodall, Lucy C; Sanchez-Vidal, Anna; Canals, Miquel; Paterson, Gordon L J; Coppock, Rachel; Sleight, Victoria; Calafat, Antonio; Rogers, Alex D; Narayanaswamy, Bhavani E; Thompson, Richard C

    2014-12-01

    Marine debris, mostly consisting of plastic, is a global problem, negatively impacting wildlife, tourism and shipping. However, despite the durability of plastic, and the exponential increase in its production, monitoring data show limited evidence of concomitant increasing concentrations in marine habitats. There appears to be a considerable proportion of the manufactured plastic that is unaccounted for in surveys tracking the fate of environmental plastics. Even the discovery of widespread accumulation of microscopic fragments (microplastics) in oceanic gyres and shallow water sediments is unable to explain the missing fraction. Here, we show that deep-sea sediments are a likely sink for microplastics. Microplastic, in the form of fibres, was up to four orders of magnitude more abundant (per unit volume) in deep-sea sediments from the Atlantic Ocean, Mediterranean Sea and Indian Ocean than in contaminated sea-surface waters. Our results show evidence for a large and hitherto unknown repository of microplastics. The dominance of microfibres points to a previously underreported and unsampled plastic fraction. Given the vastness of the deep sea and the prevalence of microplastics at all sites we investigated, the deep-sea floor appears to provide an answer to the question-where is all the plastic? PMID:26064573

  18. The deep sea is a major sink for microplastic debris.

    PubMed

    Woodall, Lucy C; Sanchez-Vidal, Anna; Canals, Miquel; Paterson, Gordon L J; Coppock, Rachel; Sleight, Victoria; Calafat, Antonio; Rogers, Alex D; Narayanaswamy, Bhavani E; Thompson, Richard C

    2014-12-01

    Marine debris, mostly consisting of plastic, is a global problem, negatively impacting wildlife, tourism and shipping. However, despite the durability of plastic, and the exponential increase in its production, monitoring data show limited evidence of concomitant increasing concentrations in marine habitats. There appears to be a considerable proportion of the manufactured plastic that is unaccounted for in surveys tracking the fate of environmental plastics. Even the discovery of widespread accumulation of microscopic fragments (microplastics) in oceanic gyres and shallow water sediments is unable to explain the missing fraction. Here, we show that deep-sea sediments are a likely sink for microplastics. Microplastic, in the form of fibres, was up to four orders of magnitude more abundant (per unit volume) in deep-sea sediments from the Atlantic Ocean, Mediterranean Sea and Indian Ocean than in contaminated sea-surface waters. Our results show evidence for a large and hitherto unknown repository of microplastics. The dominance of microfibres points to a previously underreported and unsampled plastic fraction. Given the vastness of the deep sea and the prevalence of microplastics at all sites we investigated, the deep-sea floor appears to provide an answer to the question-where is all the plastic?

  19. The deep sea is a major sink for microplastic debris

    PubMed Central

    Woodall, Lucy C.; Sanchez-Vidal, Anna; Canals, Miquel; Paterson, Gordon L.J.; Coppock, Rachel; Sleight, Victoria; Calafat, Antonio; Rogers, Alex D.; Narayanaswamy, Bhavani E.; Thompson, Richard C.

    2014-01-01

    Marine debris, mostly consisting of plastic, is a global problem, negatively impacting wildlife, tourism and shipping. However, despite the durability of plastic, and the exponential increase in its production, monitoring data show limited evidence of concomitant increasing concentrations in marine habitats. There appears to be a considerable proportion of the manufactured plastic that is unaccounted for in surveys tracking the fate of environmental plastics. Even the discovery of widespread accumulation of microscopic fragments (microplastics) in oceanic gyres and shallow water sediments is unable to explain the missing fraction. Here, we show that deep-sea sediments are a likely sink for microplastics. Microplastic, in the form of fibres, was up to four orders of magnitude more abundant (per unit volume) in deep-sea sediments from the Atlantic Ocean, Mediterranean Sea and Indian Ocean than in contaminated sea-surface waters. Our results show evidence for a large and hitherto unknown repository of microplastics. The dominance of microfibres points to a previously underreported and unsampled plastic fraction. Given the vastness of the deep sea and the prevalence of microplastics at all sites we investigated, the deep-sea floor appears to provide an answer to the question—where is all the plastic? PMID:26064573

  20. Ploughing the deep sea floor.

    PubMed

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land. PMID:22951970

  1. Electrochemical Machining Removes Deep Obstructions

    NASA Technical Reports Server (NTRS)

    Catania, Mark J.

    1987-01-01

    Electrochemical machining (ECM) is effective way of removing obstructing material between two deep holes supposed to intersect but do not because of misalignment of drilling tools. ECM makes it possible to rework costly castings otherwise scrapped. Method fast even for tough or hard alloys and complicated three-dimensional shapes.

  2. A Deep-Sea Simulation.

    ERIC Educational Resources Information Center

    Montes, Georgia E.

    1997-01-01

    Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)

  3. Creating food for deep space

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-07-01

    Explorers and scientists have to eat, whether they're on top of a mountain, deep in the sea, or in space. NASA scientists are working to develop a viable food program by 2030 that could feed six crew members for a 3-year mission to Mars.

  4. Digging Deeper: The Deep Web.

    ERIC Educational Resources Information Center

    Turner, Laura

    2001-01-01

    Focuses on the Deep Web, defined as Web content in searchable databases of the type that can be found only by direct query. Discusses the problems of indexing; inability to find information not indexed in the search engine's database; and metasearch engines. Describes 10 sites created to access online databases or directly search them. Lists ways…

  5. Lessons from Earth's Deep Time

    ERIC Educational Resources Information Center

    Soreghan, G. S.

    2005-01-01

    Earth is a repository of data on climatic changes from its deep-time history. Article discusses the collection and study of these data to predict future climatic changes, the need to create national study centers for the purpose, and the necessary cooperation between different branches of science in climatic research.

  6. Diagnosis of deep vein thrombosis.

    PubMed Central

    Douketis, J. D.; Ginsberg, J. S.

    1996-01-01

    Deep vein thrombosis (DVT), a common disease, can be difficult to diagnose because its clinical features are nonspecific. Venography is the standard test, but other less expensive, easily performed, noninvasive tests are available. At present, duplex ultrasonography is the noninvasive test of choice. PMID:8616289

  7. Ploughing the deep sea floor.

    PubMed

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land.

  8. Laser Surveying

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has produced a laser-aided system for surveying land boundaries in difficult terrain. It does the job more accurately than conventional methods, takes only one-third the time normally required, and is considerably less expensive. In surveying to mark property boundaries, the objective is to establish an accurate heading between two "corner" points. This is conventionally accomplished by erecting a "range pole" at one point and sighting it from the other point through an instrument called a theodolite. But how do you take a heading between two points which are not visible to each other, for instance, when tall trees, hills or other obstacles obstruct the line of sight? That was the problem confronting the U.S. Department of Agriculture's Forest Service. The Forest Service manages 187 million acres of land in 44 states and Puerto Rico. Unfortunately, National Forest System lands are not contiguous but intermingled in complex patterns with privately-owned land. In recent years much of the private land has been undergoing development for purposes ranging from timber harvesting to vacation resorts. There is a need for precise boundary definition so that both private owners and the Forest Service can manage their properties with confidence that they are not trespassing on the other's land.

  9. Farmland Survey

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A 1981 U.S. Department of Agriculture (USDA) study estimated that the nation is converting farmland to non-agricultural uses at the rate of 3 million acres a year. Seeking information on farmland loss in Florida, the state legislature, in 1984, directed establishment of a program for development of accurate data to enable intelligent legislation of state growth management. Thus was born Florida's massive Mapping and Monitoring of Agricultural Lands Project (MMALP). It employs data from the NASA-developed Landsat Earth resources survey satellite system as a quicker, less expensive alternative to ground surveying. The 3 year project involved inventory of Florida's 36 million acres classifying such as cropland, pastureland, citrus, woodlands, wetland, water and populated areas. Direction was assigned to Florida Department of Community Affairs (DCA) with assistance from the DOT. With the cooperation of the USDA, Soil Conservation Service, DCA decided that combining soil data with the Landsat land cover data would make available to land use planners a more comprehensive view of a county's land potential.

  10. Stimulation Technologies for Deep Well Completions

    SciTech Connect

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  11. Deep Crustal Structure Northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Christeson, Gail; Eddy, Drew; van Avendonk, Harm; Norton, Ian; Karner, Garry; Johnson, Chris; Kneller, Erik; Snedden, John

    2013-04-01

    The Gulf of Mexico is a small ocean basin between the US and Mexico that opened up soon after the breakup of Pangea. Although the area has been heavily surveyed with seismic reflection profiles, the deep structure of the region is poorly understood because of lack of penetration beneath the thick sediments and salt. We present the results of two wide-angle seismic refraction profiles in the northeastern Gulf of Mexico that constrain seismic velocities and thicknesses of the sediments and crust from the continental shelf to deep ocean basin. Profile GUMBO 3 extends 523 km from offshore Alabama south-southwest via the De Soto Canyon to the central Gulf of Mexico, while GUMBO 4 extends 507 km from the northwestern Florida peninsula across the Florida Escarpment to the central Gulf of Mexico. On both profiles, ocean bottom seismometers were positioned at 12-km spacing, and recorded air gun shots at offsets >100 km. We use a tomographic inversion of first-arrival and secondary travel time picks from these data to build a layered velocity model (water, sediments, crystalline crust, mantle) along each profile. On GUMBO 3 and GUMBO 4 the thickness of crystalline crust from the continental shelf to the deep basin decreases from ~25 km to ~7 km (GUMBO 4) or ~8 km (GUMBO 3) over a horizontal distance of ~150 km. Velocities of 7-7.5 km/s are observed at the base of the crust along most of GUMBO 3, while velocities of 6.5-7 km/s are observed at similar depths along GUMBO 4. We suggest that higher lower crustal velocities, and thicker oceanic crust, on GUMBO 3 compared to GUMBO 4 may be explained by elevated syn-rift mantle temperatures in the vicinity of the De Soto Canyon and South Georgia Rift during rifting and continental breakup. We have integrated seismic refraction, seismic reflection, and well data to interpret sequence stratigraphic units along GUMBO 3 and GUMBO 4. We have constructed a geologic history of the late-Jurassic/early-Cretaceous, beginning first with Louann

  12. A SUCCESSFUL BROADBAND SURVEY FOR GIANT Ly{alpha} NEBULAE. I. SURVEY DESIGN AND CANDIDATE SELECTION

    SciTech Connect

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T.

    2012-04-01

    Giant Ly{alpha} nebulae (or Ly{alpha} 'blobs') are likely sites of ongoing massive galaxy formation, but the rarity of these powerful sources has made it difficult to form a coherent picture of their properties, ionization mechanisms, and space density. Systematic narrowband Ly{alpha} nebula surveys are ongoing, but the small redshift range covered and the observational expense limit the comoving volume that can be probed by even the largest of these surveys and pose a significant problem when searching for such rare sources. We have developed a systematic search technique designed to find large Ly{alpha} nebulae at 2 {approx}< z {approx}< 3 within deep broadband imaging and have carried out a survey of the 9.4 deg{sup 2} NOAO Deep Wide-Field Survey Booetes field. With a total survey comoving volume of Almost-Equal-To 10{sup 8} h{sup -3}{sub 70} Mpc{sup 3}, this is the largest volume survey for Ly{alpha} nebulae ever undertaken. In this first paper in the series, we present the details of the survey design and a systematically selected sample of 79 candidates, which includes one previously discovered Ly{alpha} nebula.

  13. Defining Structure and Stress in Deep, High Temperature Geothermal Wells

    NASA Astrophysics Data System (ADS)

    Lawrence, M. J.; McNamara, D. D.; Massiot, C.; Bignall, G.

    2010-12-01

    Extreme T-P (temperature - pressure) environments associated with deep geothermal drilling in the Taupo Volcanic Zone (TVZ), New Zealand have limited the use of conventional geophysical borehole logging tools, and interpretation of fracture character and controls on permeability in the geothermal systems. Development of AFIT logging tools with high temperature capabilities has enabled detailed determination of structure (fractures and faults) and variations in the in-situ stress orientations in hot (up to 300 °C) and deep (to 3 km TVD) TVZ geothermal wells, as presented here. Recent surveys at Wairakei, Kawerau, Rotokawa and Ngatamariki have provided detailed information of fracture controlled permeability in these fields, and positively impacted production and injection well drilling strategies. Current application of high temperature tools by geothermal developers is a precursor to the detailed structural investigation that will be undertaken for a proposed deeper (to 5 km depth) science-exploration well, planned to be drilled in the TVZ in 2013-14.

  14. Deep Radio Observations of the Toothbrush Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Van Weeren, Reinout J.; Jones, C.; Forman, W. R.; Röttgering, H.; Brüggen, M.; Brunetti, G.; de Gasperin, F.; Bonafede, A.; Pizzo, R.; Ferrari, C.; Orrù, E.; Ogrean, G. A.; LOFAR Busyweek Team; surveys KSP, LOFAR

    2014-01-01

    We present LOFAR and JVLA radio observations of the Toothbrush galaxy cluster. The Toothbrush cluster hosts diffuse 2 Mpc extended radio emission in the form of a radio relic and halo. XMM-Newton X-ray observations show that the cluster is undergoing a major merger event. Both the radio relic and halo are likely related to this ongoing merger. Radio relics are proposed to be direct tracers of shock waves in the intracluster medium. The XMM observations indeed reveal a shock, but there is a puzzling 200 kpc spatial offset between the shock position and relic. Our deep LOFAR and JVLA observations allow a detailed spectral study to test the shock origin of the relic and underlying particle acceleration mechanisms. Finally, the LOFAR observations highlight the science that could be obtained from a deep low-frequency all-sky survey.

  15. Infrastructure Survey 2011

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2012

    2012-01-01

    In 2011, the Group of Eight (Go8) conducted a survey on the state of its buildings and infrastructure. The survey is the third Go8 Infrastructure survey, with previous surveys being conducted in 2007 and 2009. The current survey updated some of the information collected in the previous surveys. It also collated data related to aspects of the…

  16. Environmental projects. Volume 4: Asbestos survey

    NASA Technical Reports Server (NTRS)

    Kushner, L.

    1988-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), near Barstow, California, operates in support of six large parabolic dish antennas. Many of the buildings and structures at the GDSCC were erected before it became known that asbestos posed a hazard to human health. Thus, because of concern with asbestos, two field surveys were conducted at the GDSCC in October/November 1986 and in September 1987 to locate, classify, and quantify all asbestos-containing materials in buildings, structures, roofs and boilers. The report describes the results of the two surveys and describes methods for both asbestos management and asbestos abatement. The surveys found that GDSCC practices involving asbestos are conscientious and forward-thinking. A program, due to start in FY 1988 and to be completed in FY 1990, is planned to remove all friable (easily pulverized) asbestos-containing materials discovered during the two field surveys for asbestos at the GDSCC.

  17. The NASA SETI sky survey: Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Olsen, E. T.; Renzetti, N. A.

    1989-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future.

  18. Deep Space 1 in Cleanroom

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, DC. The California Institute of Technology in Pasadena manages JPL for NASA. Deep Space 1 used a unique ion drive propulsion system. Unlike the fireworks of most chemical rockets using solid or liquid fuels, the ion drive emits only an eerie blue glow as ionized (electrically charged) atoms of xenon are pushed out of the engine. Xenon is the same gas found in photo flash tubes and many lighthouse bulbs. The almost imperceptible thrust from the system is equivalent to the pressure exerted by a sheet of paper held in the palm of your hand. The ion engine is very slow to pick up speed, but over the long haul it can deliver 10 times as much thrust per pound of fuel as more traditional rockets. Previous ion propulsion systems, like those found on some communications satellites, were not used as the main engines, but only to keep the satellites on track. Deep Space 1 is the first spacecraft to use this important technology as its primary means of propulsion. The importance of ion propulsion is its great efficiency,' says Dr. Marc Rayman, project manager for Deep Space 1. 'It uses very little propellant, and that means it weighs less so it can use a less expensive launch vehicle and ultimately go much faster than other spacecraft. This opens the solar system to many future exciting missions which otherwise would have been unaffordable or even impossible,' added Dr. Rayman. The ion particles travel out at about 68,000 miles per hour. However, Deep Space 1 doesn't move that fast in the other direction, because it is much heavier than the ion particles. By the end of the mission, the ion engine will have changed the spacecraft's speed by about 6,800 mph (over 11,000 kph). The technology is so efficient that it only consumes about 3.5 ounces (100 g) of xenon per day, taking about four days to expend just one pound (0.4 kg

  19. Deep Brain Stimulation Tested for Early Alzheimer's

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_160137.html Deep Brain Stimulation Tested for Early Alzheimer's Although treatment seems ... 2016 THURSDAY, July 28, 2016 (HealthDay News) -- Deep brain stimulation appears safe for people with early Alzheimer's ...

  20. Deep Ecology and Outdoor Recreation--Incompatible?

    ERIC Educational Resources Information Center

    Henderson, Karla A.

    1990-01-01

    This article defines deep ecology and contrasts this philosophy for thinking and living with the views of traditional and liberal environmentalists. The article also explores areas of compatibility and incompatibility between deep ecology and outdoor recreation/education. (IAH)

  1. Eco-Philosophy and Deep Ecology.

    ERIC Educational Resources Information Center

    Skolimowski, Henryk

    1988-01-01

    Criticizes the Deep Ecology Movement as a new ecological world view. Discusses the limits of this philosophy including its views of destiny, evolution and cosmology. Concludes that although its intentions are admirable, Deep Ecology leaves too much unanswered. (CW)

  2. The Little Things Survey

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre Ann; LITTLE THINGS Team

    2012-01-01

    We have assembled a multi-wavelength dataset on 41 relatively normal, nearby (<10 Mpc) gas-rich dwarf irregular galaxies for the purpose of determining the drivers for star formation in these systems. This project is called LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey). Our data include GALEX UV images, ground-based UBV and Halpha images, some ground-based JHK images, Spitzer archival mid-IR images, and HI-line maps. The HI maps, obtained with the VLA, go deep (12/6/2 hrs in B/C/D arrays) and are characterized by high spectral resolution (

  3. The LITTLE THINGS Survey

    NASA Astrophysics Data System (ADS)

    Rupen, Michael P.; LITTLE THINGS Team

    2010-01-01

    The processes that lead to star formation on galactic scales are poorly understood even in the simplest systems in the universe, dwarf galaxies. At best we have incomplete knowledge of certain processes in certain environments. Here we present preliminary HI images of a small subset of galaxies from the LITTLE THINGS Survey: a complete dataset on a sample of 41 dIm galaxies chosen to span a range of luminosities. We are tracing their stellar populations, gas content, dynamics, and star formation indicators. We were granted over 300 hours of time with the VLA in B, C, and D array configurations to obtain deep HI-line maps of the sample with high angular and velocity resolution to combine with our optical, UV, and IR data to answer the following questions: 1) What regulates cloud/star formation in tiny galaxies? 2) How is star formation occurring in the outer parts of dwarf galaxies, where the gas is gravitationally stable? 3) What happens to the star formation process at breaks in the exponential stellar light profiles? 4) And, what is going on with Blue Compact Dwarfs? More information can be found at http://www.lowell.edu/users/dah/littlethings/. We gratefully acknowledge funding for this research from the National Science Foundation with grants to DAH (AST-0707563) and CES (AST-0707468). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  4. The "Perseus Arm" Multibeam pulsar survey

    NASA Astrophysics Data System (ADS)

    Lyne, Andrew; Possenti, Andrea; Manchester, Dick; Kramer, Michael; Hobbs, George; McLaughlin, Maura; Burgay, Marta; D'Amico, Nichi; Camilo, Fernando; Stairs, Ingrid; Lorimer, Duncan Ross

    2006-04-01

    Given the extremely fruitful results of the completed Parkes Multibeam Pulsar Survey, Parkes Multibeam High Latitude Pulsar Survey, and Parkes Multibeam Intermediate Latitude Swinburne Survey, we have undertaken a new deep search for pulsars, sampling the galactic plane in the direction of the Perseus Arm at galactic coordinates 200 deg deep low latitude survey of the galactic plane strip visible from Parkes, providing an invaluable basis to any statistical study of the pulsar population and in particular improving the knowledge of the poorly known radial distribution of the pulsars in the outer regions of the Galaxy disk. Given the survey parameters and the sky coverage, this search will lead to the discovery of few tens of sources, with a good discovery rate (twice higher than for the two most recent large-scale searches performed at Parkes) and with a favorable ratio of millisecond over longer period pulsars. The requested range of Sidereal Time is complementary to other pulsar projects. We propose to continue this project and start the timing observations of the discovered pulsars.

  5. The "Perseus Arm" Multibeam pulsar survey

    NASA Astrophysics Data System (ADS)

    Lyne, Andrew; Possenti, Andrea; Manchester, Dick; Kramer, Michael; Hobbs, George; McLaughlin, Maura; Burgay, Marta; D'Amico, Nichi; Camilo, Fernando; Stairs, Ingrid; Lorimer, Duncan Ross

    2006-10-01

    Given the extremely fruitful results of the completed Parkes Multibeam Pulsar Survey, Parkes Multibeam High Latitude Pulsar Survey, and Parkes Multibeam Intermediate Latitude Swinburne Survey, we have undertaken a new deep search for pulsars, sampling the galactic plane in the direction of the Perseus Arm at galactic coordinates 200 deg deep low latitude survey of the galactic plane strip visible from Parkes, providing an invaluable basis to any statistical study of the pulsar population and in particular improving the knowledge of the poorly known radial distribution of the pulsars in the outer regions of the Galaxy disk. Given the survey parameters and the sky coverage, this search will lead to the discovery of few tens of sources, with a good discovery rate (twice higher than for the two most recent large-scale searches performed at Parkes) and with a favorable ratio of millisecond over longer period pulsars. The requested range of Sidereal Time is complementary to other pulsar projects. We propose to continue this project and start the timing observations of the discovered pulsars.

  6. How Deep is Environmental Awareness?

    ERIC Educational Resources Information Center

    Allen, George H.

    1972-01-01

    Results of an environmental awareness survey are assessed. Local citizens were questioned by personal interview following an Earth Week and Earth Day Fair at Humboldt State College, Arcata, California. (BL)

  7. Create and Publish a Hierarchical Progressive Survey (HiPS)

    NASA Astrophysics Data System (ADS)

    Fernique, P.; Boch, T.; Pineau, F.; Oberto, A.

    2014-05-01

    Since 2009, the CDS promotes a method for visualizing based on the HEALPix sky tessellation. This method, called “Hierarchical Progressive Survey" or HiPS, allows one to display a survey progressively. It is particularly suited for all-sky surveys or deep fields. This visualization method is now integrated in several applications, notably Aladin, the SiTools/MIZAR CNES framework, and the recent HTML5 “Aladin Lite". Also, more than one hundred surveys are already available in this view mode. In this article, we will present the progress concerning this method and its recent adaptation to the astronomical catalogs such as the GAIA simulation.

  8. Weighing the deep continental biosphere.

    PubMed

    McMahon, Sean; Parnell, John

    2014-01-01

    There is abundant evidence for widespread microbial activity in deep continental fractures and aquifers, with important implications for biogeochemical cycling on Earth and the habitability of other planetary bodies. Whitman et al. (P Natl Acad Sci USA, 95, 1998, 6578) estimated a continental subsurface biomass on the order of 10(16) -10(17) g C. We reassess this value in the light of more recent data including over 100 microbial population density measurements from groundwater around the world. Making conservative assumptions about cell carbon content and the ratio of attached and free-living microorganisms, we find that the evidence continues to support a deep continental biomass estimate of 10(16) -10(17) g C, or 2-19% of Earth's total biomass.

  9. Deep learning for computational biology.

    PubMed

    Angermueller, Christof; Pärnamaa, Tanel; Parts, Leopold; Stegle, Oliver

    2016-01-01

    Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology. PMID:27474269

  10. Deep learning for computational biology.

    PubMed

    Angermueller, Christof; Pärnamaa, Tanel; Parts, Leopold; Stegle, Oliver

    2016-07-29

    Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology.

  11. Deep Space 1 Mission Overview

    NASA Astrophysics Data System (ADS)

    Lehman, D. H.

    1999-09-01

    Deep Space 1 (DS1), launched on October 24, 1998, is the first mission of NASA's New Millennium program. This program is chartered to flight validate high-risk, advanced technologies important for future space and Earth science programs. Twelve advanced technologies were chosen for validation on DS1. These include solar electric propulsion, high-power solar concentrator arrays, autonomous on-board optical navigation, two low-mass science instrument packages, and several telecommunications and microelectronics devices. The encounter of the DS1 spacecraft with the asteroid Braille on July 29,1999 represented the conclusion of the technology validation phase of the mission and the first encounter of the spacecraft with a deep space target. The validation of technologies has been completed. The presentation will describe the mission, science and technology objectives and results to date, and future plans for the project.

  12. The Deep Structure of the Paragraph.

    ERIC Educational Resources Information Center

    Woodson, Linda

    Paragraphs, as well as sentences, can be spoken of as having a deep and a surface structure. The amount of deep structure of the paragraph that is mapped onto the surface paragraph is related to the mode of discourse in which the paragraph is found: the deep structure in scientific paragraphs is relatively uncomplicated with few assumptions made;…

  13. Tropical deep convective cloud morphology

    NASA Astrophysics Data System (ADS)

    Igel, Matthew R.

    A cloud-object partitioning algorithm is developed. It takes contiguous CloudSat cloudy regions and identifies various length scales of deep convective clouds from a tropical, oceanic subset of data. The methodology identifies a level above which anvil characteristics become important by analyzing the cloud object shape. Below this level in what is termed the pedestal region, convective cores are identified based on reflectivity maxima. Identifying these regions allows for the assessment of length scales of the anvil and pedestal of the deep convective clouds. Cloud objects are also appended with certain environmental quantities from the ECMWF reanalysis. Simple geospatial and temporal assessments show that the cloud object technique agrees with standard observations of local frequency of deep-convective cloudiness. Additionally, the nature of cloud volume scale populations is investigated. Deep convection is seen to exhibit power-law scaling. It is suggested that this scaling has implications for the continuous, scale invariant, and random nature of the physics controlling tropical deep convection and therefore on the potentially unphysical nature of contemporary convective parameterizations. Deep-convective clouds over tropical oceans play important roles in Earth's climate system. The response of tropical, deep convective clouds to sea surface temperatures (SSTs) is investigated using this new data set. Several previously proposed feedbacks are examined: the FAT hypothesis, the Iris hypothesis, and the Thermostat hypothesis. When the data are analyzed per cloud object, each hypothesis is broadly found to correctly predict cloud behavior in nature, although it appears that the FAT hypothesis needs a slight modification to allow for cooling cloud top temperatures with increasing SSTs. A new response that shows that the base temperature of deep convective anvils remains approximately constant with increasing SSTs is introduced. These cloud-climate feedbacks are

  14. EHR Big Data Deep Phenotyping

    PubMed Central

    Lenert, L.; Lopez-Campos, G.

    2014-01-01

    Summary Objectives Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. Methods As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increases. The growth of genomic data and adoption of Electronic Health Records (EHR) in medicine provides a unique opportunity to integrate phenotype and genotype data into medical records. The method by which collections of clinical findings and other health related data are leveraged to form meaningful phenotypes is an active area of research. Longitudinal data stored in EHRs provide a wealth of information that can be used to construct phenotypes of patients. We focus on a practical problem around data integration for deep phenotype identification within EHR data. The use of big data approaches are described that enable scalable markup of EHR events that can be used for semantic and temporal similarity analysis to support the identification of phenotype and genotype relationships. Conclusions Stead and colleagues’ 2005 concept of using light standards to increase the productivity of software systems by riding on the wave of hardware/processing power is described as a harbinger for designing future healthcare systems. The big data solution, using flexible markup, provides a route to improved utilization of processing power for organizing patient records in genotype and phenotype research. PMID:25123744

  15. First results from the Chandra COSMOS Legacy survey

    NASA Astrophysics Data System (ADS)

    Civano, Francesca M.; the Chandra COSMOS Legacy Team

    2014-01-01

    The equatorial 2 deg2 COSMOS area is the only large field for which a complete, deep, pan-chromatic data set exists, from an outstanding survey effort, and that all large telescopes can observe. During 2013, this pioneering and ambitious COSMOS survey had a major extension, pushing its frontiers via the newly approved Chandra COSMOS Legacy Survey, the second largest Chandra proposal ever approved, plus new deep Spitzer, JVLA and NuSTAR surveys all aimed to study the formation of the structures in the high redshift Universe and the role of active super massive black holes. The Chandra COSMOS-Legacy survey uniformly covers the 1.7 deg2 COSMOS/HST field with 2.8 Ms of Chandra ACIS-I imaging at ~160 ksec depth. This project expands the deep C-COSMOS area by a factor of ~3 at ~3e-16 (1.45 vs 0.44 deg2). The survey consists of 56x50 ks tiles covering a total area of 2.2 deg2 yelding a sample of ~4000 X-ray sources. In this poster we present the first results on the survey and we concentrate on the high redshift z>3 sample.

  16. Going DEEP: Learning from Campuses that Share Responsibility for Student Success

    ERIC Educational Resources Information Center

    Kinzie; Jillian; Kuh, George D.

    2004-01-01

    Team members of Project DEEP (Documenting Effective Educational Practice) spent almost two years immersing themselves in the daily work of twenty campuses. The common denominator of these institutions is that they all have participated in the National Survey of Student Engagement (NSSE) and have scored better than predicted across some or all of…

  17. Among the Few at Deep Springs College: Assessing a Seven-Decade Experiment in Liberal Education.

    ERIC Educational Resources Information Center

    Newell, L. Jackson

    1982-01-01

    Describes the origins and characteristics of Deep Springs College (DSC), which since 1917 has teamed liberal arts instruction with the physical labor of running a cattle ranch. Uses alumni survey responses to assess the long-term effects of attending DSC. Examines paradoxes inherent in the school and its future prospects. (DMM)

  18. Case Histories of Four Extremely Intense Rockbursts in Deep Tunnels

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanqing; Feng, Xia-Ting; Zhou, Hui; Qiu, Shili; Wu, Wenping

    2012-05-01

    In the process of excavating seven parallel tunnels at the Jinping II Hydropower Station, several extremely intense rockbursts occurred, killing and injuring construction workers and damaging several sets of equipment. Based on the characteristics and mechanisms of these rockbursts, four typical events were selected and their temporal and spatial characteristics were here described in detail. The geological conditions revealed after the rockbursts were surveyed carefully. The responses of support elements were also analyzed. The details documented in each case provide not only an important reference for understanding the development mechanisms of rockbursts but also a basis for the selection and development of rockburst prevention measures in deep hard rock tunnels.

  19. The Wide Area VISTA Extra-Galactic Survey (WAVES)

    NASA Astrophysics Data System (ADS)

    Driver, S. P.; Davies, L. J.; Meyer, M.; Power, C.; Robotham, A. S. G.; Baldry, I. K.; Liske, J.; Norberg, P.

    The "Wide Area VISTA Extra-galactic Survey" (WAVES) is a 4MOST Consortium Design Reference Survey which will use the VISTA/4MOST facility to spectroscopically survey ˜ 2 million galaxies to r AB < 22 mag. WAVES consists of two interlocking galaxy surveys ("WAVES-Deep" and "WAVES-Wide"), providing the next two steps beyond the highly successful 1M galaxy Sloan Digital Sky Survey and the 250k Galaxy And Mass Assembly survey. WAVES will enable an unprecedented study of the distribution and evolution of mass, energy, and structures extending from 1-kpc dwarf galaxies in the local void to the morphologies of 200-Mpc filaments at z ˜ 1. A key aim of both surveys will be to compare comprehensive empirical observations of the spatial properties of galaxies, groups, and filaments, against state-of-the-art numerical simulations to distinguish between various Dark Matter models.

  20. The XMM-LSS survey. Survey design and first results

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite; Valtchanov, Ivan; Altieri, Bruno; Andreon, Stefano; Bolzonella, Micol; Bremer, Malcolm; Disseau, Ludovic; Dos Santos, Sergio; Gandhi, Poshak; Jean, Christophe; Pacaud, Florian; Read, Andrew; Refregier, Alexandre; Willis, Jon; Adami, Christophe; Alloin, Danielle; Birkinshaw, Mark; Chiappetti, Lucio; Cohen, Aaron; Detal, Alain; Duc, Pierre-Alain; Gosset, Eric; Hjorth, Jens; Jones, Laurence; Le Fèvre, Olivier; Lonsdale, Carol; Maccagni, Dario; Mazure, Alain; McBreen, Brian; McCracken, Henry; Mellier, Yannick; Ponman, Trevor; Quintana, Hernan; Rottgering, Huub; Smette, Alain; Surdej, Jean; Starck, Jean-Luc; Vigroux, Laurent; White, Simon

    2004-09-01

    The XMM Large Scale Structure survey (XMM-LSS) is a medium deep large area X-ray survey. Its goal is to extend large scale structure investigations attempted using ROSAT cluster samples to two redshift bins between 0survey design: the evolutionary study of the cluster cluster correlation function and of the cluster number density. The adopted observing configuration consists of an equatorial mosaic of 10 ks pointings, separated by 20^\\prime and covering 8° × 8°, giving a pointsource sensitivity of {\\sim } 5\\times 10^{-15}~{\\mathrm {erg~cm^{-2}~s^{-1}}} in the 0.5 2 keV band. This will yield more than 800 clusters of galaxies and a sample of X-ray AGN with a space density of about 300 deg-2. We present the expected cosmological implications of the survey in the context of LgrCDM models and cluster evolution. We give an overview of the first observational results. The XMM-LSS survey is associated with several other major surveys, ranging from the UV to the radio wavebands, which will provide the necessary resources for X-ray source identification and further statistical studies. In particular, the associated CFHTLS weak lensing and AMiBA Sunyaev Zel'dovich surveys over the entire XMM-LSS area will provide for the first time a comprehensive study of the mass distribution and of cluster physics in the universe on scales of a few hundred Mpc. We describe the main characteristics of our wavelet-based X-ray pipeline and source identification procedures, including the classification of the cluster candidates by means of a photometric redshift analysis. This permits the selection of suitable targets for spectroscopic follow-up. We present preliminary results from the first 25 XMM-LSS pointings: X-ray source properties, optical counterparts, and highlights from the first Magellan and VLT/FORS2 spectroscopic runs as well as preliminary results from the NIR search for z>1

  1. Deep water recycling through time

    PubMed Central

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-01-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5–3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. Key Points Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern PMID:26321881

  2. Vision in the deep sea.

    PubMed

    Warrant, Eric J; Locket, N Adam

    2004-08-01

    The deep sea is the largest habitat on earth. Its three great faunal environments--the twilight mesopelagic zone, the dark bathypelagic zone and the vast flat expanses of the benthic habitat--are home to a rich fauna of vertebrates and invertebrates. In the mesopelagic zone (150-1000 m), the down-welling daylight creates an extended scene that becomes increasingly dimmer and bluer with depth. The available daylight also originates increasingly from vertically above, and bioluminescent point-source flashes, well contrasted against the dim background daylight, become increasingly visible. In the bathypelagic zone below 1000 m no daylight remains, and the scene becomes entirely dominated by point-like bioluminescence. This changing nature of visual scenes with depth--from extended source to point source--has had a profound effect on the designs of deep-sea eyes, both optically and neurally, a fact that until recently was not fully appreciated. Recent measurements of the sensitivity and spatial resolution of deep-sea eyes--particularly from the camera eyes of fishes and cephalopods and the compound eyes of crustaceans--reveal that ocular designs are well matched to the nature of the visual scene at any given depth. This match between eye design and visual scene is the subject of this review. The greatest variation in eye design is found in the mesopelagic zone, where dim down-welling daylight and bio-luminescent point sources may be visible simultaneously. Some mesopelagic eyes rely on spatial and temporal summation to increase sensitivity to a dim extended scene, while others sacrifice this sensitivity to localise pinpoints of bright bioluminescence. Yet other eyes have retinal regions separately specialised for each type of light. In the bathypelagic zone, eyes generally get smaller and therefore less sensitive to point sources with increasing depth. In fishes, this insensitivity, combined with surprisingly high spatial resolution, is very well adapted to the

  3. Studying Dark Energy with Galaxy Cluster Surveys

    NASA Astrophysics Data System (ADS)

    Mohr, J.; Majumdar, S.

    2003-05-01

    Galaxy cluster surveys provide a powerful means of studying the amount and nature of the dark energy. Cluster surveys are complementary to studies using supernova distance estimates, because the cosmological parameter degeneracies are quite different. The redshift distribution of detected clusters in a deep, large solid angle survey is very sensitive to the dark energy equation of state, but robust constraints require mass--observable relations that connect cluster halo mass to observables such as the X-ray luminosity, Sunyaev-Zel'dovich effect distortion, galaxy light or weak lensing shear. Observed regularity in the cluster population and the application of multiple, independent mass estimators provide evidence that these scaling relations exist in the local and intermediate redshift universe. Large cluster surveys contain enough information to study the dark energy and solve for these scaling relations and their evolution with redshift. This self--calibrating nature of galaxy cluster surveys provides a level of robustness that is extremely attractive. Cosmological constraints from a survey can be improved by including more than just the redshift distribution. Limited followup of as few as 1% of the surveyed clusters to make detailed mass measurements improves the cosmological constraints. Including constraints on the mass function at each redshift provides additional power in solving for the evolution of the mass--observable relation. An analysis of the clustering of the surveyed clusters provides additional cosmological discriminating power. There are several planned or proposed cluster surveys that will take place over the next decade. Observational challenges include estimating cluster redshifts and understanding the survey completeness. These challenges vary with wavelength regime, suggesting that multiwavelength surveys provide the most promising avenue for precise galaxy cluster studies of the dark energy. This work is supported in part by the NASA Long

  4. Unifying principles of the deep terrestrial and deep marine biospheres

    NASA Astrophysics Data System (ADS)

    Colwell, Frederick S.; Smith, Richard P.

    Recent estimates of the amount of microbial biomass in the combined marine and terrestrial subsurface boost this portion of the biosphere to a level which needs to be considered when integrating where life exists on our planet. Additionally, the subsurface serves practical needs associated with groundwater, waste disposal, and resource recovery. Although our view of this isolated ecosystem is restricted by technologies used to access samples, we are learning more about places where life thrives in the subsurface and where life is severely repressed. Until studies of hyperthermophiles provide different information, a thermal boundary to life exists at the 120°C isotherm. Other locations in the subsurface are barren where they are impoverished by low fluid flux to supply electron donors and acceptors or by limited pore space in which microorganisms can reside. Examples of such locations include deep vadose zones and igneous rock masses with limited fractures. In contrast, subsurface locations that show evidence of gaseous or liquid flux are the most likely to yield higher numbers of microorganisms. Locations that have marine and terrestrial hydrothermal convection cells, active methane venting, solid-liquid-gas phase changes, as well as zones of salinity and porosity contrasts are all examples of demonstrated or potential subsurface oases. Our ability to conceptualize and quantify the subsurface biosphere will be accelerated by new sampling tools and molecular characterization methods for microbes. The merging of disparate disciplines such as microbiology, geophysics, and tectonic research will extend our ability to fully comprehend the deep biosphere.

  5. Multisensor Investigation of Deep Convection

    NASA Astrophysics Data System (ADS)

    Houze, R.; Yuan, J.; Barnes, H. C.; Brodzik, S. R.

    2012-12-01

    The array of sensors for studying cloud systems from space provides the opportunity to globally map the occurrence of various types of deep convective cloud systems more precisely than ever before. The revolutionary TRMM satellite has not only determined rainfall from space but also identified the structures of storms producing the rainfall and how the different types of convective structures relate to features of the global circulation. The multiple sensors of the A-Train constellation have added more capacity to globally map convective cloud system types. By simultaneously using Aqua's MODIS 11-micron brightness temperature sensor to map cloud-top size and coldness, Aqua's AMSR-E passive microwave to detect rainfall, and CloudSat's cloud radar observations to see the internal structure of the nonprecipitating anvil clouds extending laterally from the precipitating cores of mesoscale convective systems (MCSs), we have objectively identified and mapped different types of MCSs. This multisensor analysis has determined the degrees to which MCSs vary according to size, amount of anvil cloud, and whether or not they occur separately or in merged complexes. Using these multisensor-derived quantities, we have established the patterns in which tropical MCSs occur over land, ocean, or the maritime continent. Ongoing work is integrating more sensors and other innovative global datasets into the analysis of A-Train data to further knowledge of MCSs and their variability over the Earth. Global lightning data are being integrated with the A-Train data to better understand convective intensity in different types of MCSs. Environments of the MCSs identified by multisensor A-Train analysis are being further analyzed using AIRS temperature profiles and MODIS and CALIPSO aerosol fields to better document the influence of environmental properties on the different types of mesoscale system. The integration of aerosol loading into the global analysis of the patterns of occurrence of

  6. United States Geological Survey Yearbook, fiscal year 1986

    USGS Publications Warehouse

    ,

    1986-01-01

    This volume of the U.S. Geological Survey Yearbook is special, the first we have ever dedicated to an individual.  While we were preparing that repost, Vincent E. McKelvey, eminent scientist and former Director of the Geological Survey died.  Because of his deep devotion not only to his science but also to the agency and to the public that he served, we dedicate the 1986 Yearbook to Vince's memory.

  7. Deep, cross-equatorial eddies

    NASA Astrophysics Data System (ADS)

    Borisov, Sergey; Nof, Doron

    The question of how deep ocean eddies can cross the equator is addressed with the aid of analytical and numerical models. We focus on the possibility that deep ocean (lens-like) eddies can cross the equator via deep cross equatorial channels on the ocean floor. We first examine the behavior of solid balls (i.e., free particles) in a meridional parabolic channel on a plane. Such balls are subject to similar topographical forcing and inertial forces that a lens is subject to, except that pressure forces and friction are absent. We examine both single isolated balls and a "cloud" of (noninteractive) balls. In general, the balls' trajectories have a chaotic character; a fraction of the cloud crosses the equator and ends up in the northern hemisphere, and a fraction is left behind. More realistic numerical experiments (with a fully nonlinear reduced-gravity isopycnic model of the Bleck and Boudra type) show similar behavior. In all cases the equator acts as an "eddy smasher" in the sense that it breaks the lens into at least two parts, one crosses the equator and ends up in the northern hemisphere, and the other is left behind. Here, however, the system is not chaotic. Despite the obvious differences between clouds of balls and eddies, there is a remarkable similarity between the percentage of balls that penetrate into the opposite hemisphere and the percentage of eddies' mass that ends up in the other hemisphere. This suggests that the geometry of the channel and the presence of the equator determine how the fluid will be partitioned among the two hemispheres.

  8. Robotic Surveying

    SciTech Connect

    Suzy Cantor-McKinney; Michael Kruzic

    2007-03-01

    -actuated functions to be controlled by an onboard computer. The computer-controlled Speedrower was developed at Carnegie Mellon University to automate agricultural harvesting. Harvesting tasks require the vehicle to cover a field using minimally overlapping rows at slow speeds in a similar manner to geophysical data acquisition. The Speedrower had demonstrated its ability to perform as it had already logged hundreds of acres of autonomous harvesting. This project is the first use of autonomous robotic technology on a large-scale for geophysical surveying.

  9. Advanced deep sea diving equipment

    NASA Technical Reports Server (NTRS)

    Danesi, W. A.

    1972-01-01

    Design requirements are generated for a deep sea heavy duty diving system to equip salvage divers with equipment and tools that permit work of the same quality and in times approaching that done on the surface. The system consists of a helmet, a recirculator for removing carbon dioxide, and the diver's dress. The diver controls the inlet flow by the recirculatory control valve and is able to change closed cycle operation to open cycle if malfunction occurs. Proper function of the scrubber in the recirculator minimizes temperature and humidity effects as it filters the returning air.

  10. Science and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy

    2011-01-01

    Have you ever wondered about the science goals of various deep space missions? Or why scientists want such seemingly complicated spacecraft and operations scenarios? With a focus on outer planets) this talk will cover the scientific goals and results of several recent and future missions) how scientists approach a requirements flow down) and how the disparate needs of mission engineers and scientists can come together for mission success. It will also touch on several up and coming technologies and how they will change mission architectures in the future.

  11. The Mayall z-band Legacy Survey

    NASA Astrophysics Data System (ADS)

    Silva, David R.; Blum, Robert D.; Allen, Lori; Dey, Arjun; Schlegel, David J.; Lang, Dustin; Moustakas, John; Meisner, Aaron M.; Valdes, Francisco; Patej, Anna; Myers, Adam D.; Sprayberry, David; Saha, Abi; Olsen, Knut A.; Safonova, Sasha; Yang, Qian; Burleigh, Kaylan J.; MzLS Team

    2016-06-01

    The Mayall z-band Legacy Survey (MzLS) is conducting a deep z-band imaging survey covering 5000 square degrees in the north Galactic cap as part of the Legacy Survey, which is associated with the Dark Energy Spectroscopic Instrument (DESI) redshift survey. The Legacy Survey covers 14000 square degrees in the g, r, and z bands and is being executed on the Blanco 4-m, Mayall 4-m, and Bok 2.3-m telescopes. The MzLS footprint will be observed in the g and r bands using the Bok 2.3-m telescope also on Kitt Peak. The Beijing Arizona Sky Survey (BASS) is being conducted by a parallel team from Beijing and the University of Arizona. MzLS will cover the sky north of declination 30 degrees and reach a depth of z=23.0. The survey began in January 2016 and will run through June 2017 comprising approximately 230 nights on the Mayall telescope. The data are being obtained with an upgraded Mosaic camera that deploys with newred-sensitive CCDs from Lawrence Berkeley Lab (LBL) whose throughput is in excess of 80% at 8000 to approximately 9800 Angstrom. The upgrade project was a collaboration of Yale, LBL, and NOAO. MzLS images are public as soon as they are taken and delivered to the NOAO archive. Catalogs based on Tractor photometry for all available Legacy Survey images are released soon after they are constructed and MzLS sources will be included in next release planned for summer 2016. The Dark Energy Spectroscopic Instrument (DESI) will observe 30+ million galaxies and quasars in a 14,000 square degree extragalactic footprint. The targeting in that footprint will be provided by a combination of these MzLS data, DECam data from the DECam Legacy Survey, and data from the BASS survey.

  12. Alumni Perspectives Survey, 2010. Survey Report

    ERIC Educational Resources Information Center

    Sheikh, Sabeen

    2010-01-01

    During the months of April and September of 2009, the Graduate Management Admission Council[R] (GMAC[R]) conducted the Alumni Perspectives Survey, a longitudinal study of prior respondents to the Global Management Education Graduate Survey of management students nearing graduation. A total of 3,708 alumni responded to the April 2009 survey,…