Sample records for deep hess observations

  1. Pb-isotopic Features of Primitive Rocks from Hess Deep: Distinguishing between EPR and Cocos-Nazca Mantle Source(s)

    NASA Astrophysics Data System (ADS)

    Jean, M. M.; Falloon, T.; Gillis, K. M.

    2014-12-01

    We have acquired high-precision Pb-isotopic signatures of primitive lithologies (basalts/gabbros) recovered from IODP Expedition 345.The Hess Deep Rift, located in the vicinity of the Galapagos triple junction (Cocos, Nazca, and Pacific), is viewed as one the best-studied tectonic windows into fast-spreading crust because a relatively young (<1.5 Ma) cross section of oceanic crust. This allows for (1) characterization of the mantle source(s) at Hess Deep, (2) insight into the extent of isotopic homogeneity or heterogeneity in the area, and (3) constrain the relative contributions from the intruding Cocos-Nazca spreading center. The observed Pb-isotopic variation at Hess Deep covers almost the entire range of EPR MORB (10°N to -5°S). Hess Deep samples range from 208Pb (37.3-38.25), 207Pb (15.47-15.58), 206Pb (17.69-18.91). These compositions suggest that this part of Hess Deep mantle is no more isotopically homogeneous than EPR mantle. Two distinct arrays are also observed: 208Pb-enriched (r2=0.985; n=30) and 208Pb-depleted (r2=0.988; n=6). The 208Pb/204Pb isotopes indicates that the Pb-source for some of the samples at Hess Deep had very low Th/U ratios, whereas other areas around the Galapagos microplate seem to have more "normal" ratios. These trends are less apparent when viewed with 207Pb-isotopes. Instead, the majority of basalts and gabbros follow the NHRL, however, at the depleted-end of this array a negative excursion to more enriched compositions is observed. This negative but linear trend could signify an alteration trend or mixing with an EMI-type mantle source, yet this mixing is not observed with 208Pb. This trend is also observed at Pito Deep, which has similar origins to Hess Deep (Barker et al., 2008; Pollack et al., 2009). The Galapagos region has been considered a testing ground for mixing of HIMU, Enriched Mantle, and Depleted Mantle reservoirs (e.g., Schilling et al., 2002). According to our data, however, an EPR-component must also be

  2. Deep H.E.S.S. observations of the supernova remnant RX J0852.0-4622

    NASA Astrophysics Data System (ADS)

    Sushch, Iurii; Paz Arribas, Manuel; Komin, Nukri; Schwanke, Ullrich

    2016-06-01

    The largest TeV source, RX J0852.0-4622 (Vela Jr.), is one of the few supernova remnants (SNRs) with well resolved shell-like morphology at very-high-energy (VHE; E>100 GeV) gamma-rays. Strong non-thermal emission across the electromagnetic spectrum from radio to VHE gamma-rays, young age and proximity of the remnant makes it one of the prime objects for the study of particle acceleration aiming to test the paradigm of SNRs being sources of Galactic cosmic rays. Here we present deep H.E.S.S. observations of RX J0852.0-4622 with roughly doubled exposure comparing to previously published results. Improved statistics together with new analysis techniques result in a firm determination of the cut-off in the gamma-ray spectrum and allow the spatially resolved spectroscopy studies. A smooth connection of the H.E.S.S. spectrum to the spectrum at GeV energies as reported by Fermi/LAT provides an exciting opportunity to recover the present-time parent particle population in both leptonic and hadronic scenarios directly from the gamma-ray data alone. These new observations provide us a deeper insight and better understanding of the physical processes in SNRs.

  3. Fast Spreading Mid Ocean Ridge Magma Chamber Processes: New Constraints from Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, J. C.; Howard, K. A.; Ildefonse, B.; Morris, A.; JC21 Scientific Party

    2011-12-01

    Hess Deep, on the northern edge of the Galapagos Microplate, is a rift valley located at the tip of the Cocos Nazca spreading centre. It is actively propagating westwards into young lithosphere formed at the East Pacific Rise (EPR). Previous studies have shown that the centre of Hess Deep, in the vicinity of a horst block termed the intra-rift ridge (IRR), is characterised by outcrops of gabbro and (minor) peridotite that form the most extensive and complete exposure yet known of lower crust and shallow mantle from a fast spreading mid-ocean ridge. In the absence of a total crustal penetration borehole, the tectonic window of Hess Deep provides our best opportunity to study fast-spreading magma chamber processes and lower crustal accretion by direct observation. Using the Isis ROV we collected high-resolution bathymetry and video data from an 11 sq km area of seafloor, from the nadir of Hess Deep (5400 mbsl) up to the IRR, and sampled outcrops from the region in detail. Of 145 samples in total 94 were gabbro (s.l.). Accounting as much as possible for the complex tectonic disruption of the region we have reassembled these gabbros into a stratigraphic section through an EPR lower crust that we estimate to have been originally about 4350 m thick. The upper half of this plutonic section, which includes a dyke to gabbro transition at the top, is more or less intact on the IRR; however the lower half has been tectonically thinned by active gravity driven faulting and is incomplete. Within this lower section we nevertheless believe we have representative samples from the entire interval. At its base, in addition to primitive olivine gabbro we also recovered dunite, troctolite and residual mantle harzburgite. We here present a synthesis of the petrography and whole rock and mineral compositions of the gabbros from the reconstructed lower crustal section, coupled with a quantitative (electron backscatter diffraction and magnetic) study of their petrofabrics. From this, in

  4. The Galactic Center observed with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Jouvin, Lea

    2017-08-01

    The Galactic Center region has been a prime target region for the H.E.S.S. Imaging Atmospheric Cherenkov Telescope Array observations since da ta taking started in 2003. H.E.S.S. has revealed the presence of a very high energy gamma-ray diffuse emission in the central 200 pc, in addition to the detection of a point like source coincident with the supermassive black hole SgrA*. With more than 250 hours of H.E.S.S. data and the continuous improvement of the analysis techniques, a detailed morphology and spectral analysis of the region is now possible. We will report on the new characterisation of the spectrum of the central source down to 100 GeV energies taking advantage of the H.E.S.S. II data, obtained after the inclusion of the large 28-meter CT5 telescope in the array centre. We will present the recent discovery of a powerful cosmic PeVatron accelerator at the center of our Galaxy as well as a new characterization of the diffuse gamma-ray emission in the central 200 pc of our Galaxy through a detailed morphology study. By analysing the nature of the various components of this emission, the existence of a strong cosmic-ray gradient and thus the presence of a strong cosmic-ray accelerator at the very centre of our Galaxy was found. We will also report on the discovery of an additional point-like source HESS J1746-285 in this region possibly associated with the pulsar wind nebula candidate G0.13-0.11.

  5. Rapidly-formed ferromanganese deposit from the eastern Pacific Hess Deep

    USGS Publications Warehouse

    Burnett, W.C.; Piper, D.Z.

    1977-01-01

    A thick ferromanganese deposit encrusting fresh basaltic glass has been dredged from the Hess Deep in the eastern Pacific. Contiguous layers within the Fe-Mn crust have been analysed for uranium-series isotopes and metal contents. The rate of accumulation of the deposit, based on the decline of uranium-unsupported 230Th, is calculated to be approximately 50 mm per 106 yr. Based on hydration-rind dating of the underlying glass and an 'exposure age' calculation, this rate is concluded to be too slow, and an accretion rate on the order of 1 mm per 103 yr is more consistent with our data. ?? 1977 Nature Publishing Group.

  6. HESS J1640-465 and HESS J1641-463: Two Intriguing TeV Sources in Light of New Fermi-LAT Observations

    NASA Astrophysics Data System (ADS)

    Lemoine-Goumard, M.; Grondin, M.-H.; Acero, F.; Ballet, J.; Laffon, H.; Reposeur, T.

    2014-10-01

    We report on γ-ray analysis of the region containing the bright TeV source HESS J1640-465 and the close-by TeV source HESS J1641-463 using 64 months of observations with the Fermi Large Area Telescope (LAT). Previously only one GeV source was reported in this region and was associated with HESS J1640-465. With an increased data set and the improved sensitivity afforded by the reprocessed data (P7REP) of the LAT, we now report the detection, morphological study, and spectral analysis of two distinct sources above 100 MeV. The softest emission in this region comes from the TeV source HESS J1641-463 which is well fitted with a power law of index Γ = 2.47 ± 0.05 ± 0.06 and presents no significant γ-ray signal above 10 GeV, which contrasts with its hard spectrum at TeV energies. The Fermi-LAT spectrum of the second TeV source, HESS J1640-465 is well described by a power-law shape of index Γ = 1.99 ± 0.04 ± 0.07 that links up naturally with the spectral data points obtained by the High Energy Stereoscopic System (H.E.S.S.). These new results provide new constraints concerning the identification of these two puzzling γ-ray sources.

  7. HESS J1640–465 AND HESS J1641–463: TWO INTRIGUING TeV SOURCES IN LIGHT OF NEW FERMI-LAT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemoine-Goumard, M.; Grondin, M.-H.; Laffon, H.

    2014-10-10

    We report on γ-ray analysis of the region containing the bright TeV source HESS J1640–465 and the close-by TeV source HESS J1641–463 using 64 months of observations with the Fermi Large Area Telescope (LAT). Previously only one GeV source was reported in this region and was associated with HESS J1640–465. With an increased data set and the improved sensitivity afforded by the reprocessed data (P7REP) of the LAT, we now report the detection, morphological study, and spectral analysis of two distinct sources above 100 MeV. The softest emission in this region comes from the TeV source HESS J1641–463 which ismore » well fitted with a power law of index Γ = 2.47 ± 0.05 ± 0.06 and presents no significant γ-ray signal above 10 GeV, which contrasts with its hard spectrum at TeV energies. The Fermi-LAT spectrum of the second TeV source, HESS J1640–465 is well described by a power-law shape of index Γ = 1.99 ± 0.04 ± 0.07 that links up naturally with the spectral data points obtained by the High Energy Stereoscopic System (H.E.S.S.). These new results provide new constraints concerning the identification of these two puzzling γ-ray sources.« less

  8. GeV Detection of HESS J0632+057

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian; Torres, Diego F.; Wilhelmi, Emma de Oña

    2017-09-10

    HESS J0632+057 is the only gamma-ray binary that has been detected at TeV energies, but not at GeV energies yet. Based on nearly nine years of Fermi Large Area Telescope (LAT) Pass 8 data, we report here on a deep search for the gamma-ray emission from HESS J0632+057 in the 0.1–300 GeV energy range. We find a previously unknown gamma-ray source, Fermi J0632.6+0548, spatially coincident with HESS J0632+057. The measured flux of Fermi J0632.6+0548 is consistent with the previous flux upper limit on HESS J0632+057 and shows variability that can be related to the HESS J0632+057 orbital phase. We proposemore » that Fermi J0632.6+0548 is the GeV counterpart of HESS J0632+057. Considering the Very High Energy spectrum of HESS J0632+057, a possible spectral turnover above 10 GeV may exist in Fermi J0632.6+0548, as appears to be common in other established gamma-ray binaries.« less

  9. Possible dark matter origin of the gamma ray emission from the Galactic Center observed by HESS

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Gammaldi, V.; Maroto, A. L.

    2012-11-01

    We show that the gamma ray spectrum observed with the HESS array of Cherenkov telescopes coming from the Galactic Center region and identified with the source HESS J1745-290 is well fitted by the secondary photons coming from dark matter (DM) annihilation over a diffuse power law background. The amount of photons and morphology of the signal localized within a region of few parsecs, require compressed DM profiles as those resulting from baryonic contraction, which offer ˜103 enhancements in the signal over DM alone simulations. The fitted background from HESS data is consistent with recent Fermi-LAT observations of the same region.

  10. Characterization of the in situ magnetic architecture of oceanic crust (Hess Deep) using near-source vector magnetic data

    NASA Astrophysics Data System (ADS)

    Tominaga, Masako; Tivey, Maurice A.; MacLeod, Christopher J.; Morris, Antony; Lissenberg, C. Johan; Shillington, Donna J.; Ferrini, Vicki

    2016-06-01

    Marine magnetic anomalies are a powerful tool for detecting geomagnetic polarity reversals, lithological boundaries, topographic contrasts, and alteration fronts in the oceanic lithosphere. Our aim here is to detect lithological contacts in fast-spreading lower crust and shallow mantle by characterizing magnetic anomalies and investigating their origins. We conducted a high-resolution, near-bottom, vector magnetic survey of crust exposed in the Hess Deep "tectonic window" using the remotely operated vehicle (ROV) Isis during RRS James Cook cruise JC21 in 2008. Hess Deep is located at the western tip of the propagating rift of the Cocos-Nazca plate boundary near the East Pacific Rise (EPR) (2°15'N, 101°30'W). ROV Isis collected high-resolution bathymetry and near-bottom magnetic data as well as seafloor samples to determine the in situ lithostratigraphy and internal structure of a section of EPR lower crust and mantle exposed on the steep (~20°dipping) south facing slope just north of the Hess Deep nadir. Ten magnetic profiles were collected up the slope using a three-axis fluxgate magnetometer mounted on ROV Isis. We develop and extend the vertical magnetic profile (VMP) approach of Tivey (1996) by incorporating, for the first time, a three-dimensional vector analysis, leading to what we here termed as "vector vertical magnetic profiling" approach. We calculate the source magnetization distribution, the deviation from two dimensionality, and the strike of magnetic boundaries using both the total field Fourier-transform inversion approach and a modified differential vector magnetic analysis. Overall, coherent, long-wavelength total field anomalies are present with a strong magnetization contrast between the upper and lower parts of the slope. The total field anomalies indicate a coherently magnetized source at depth. The upper part of the slope is weakly magnetized and magnetic structure follows the underlying slope morphology, including a "bench" and lobe

  11. Suzaku observations of the old pulsar wind nebula candidate HESS J1356-645

    NASA Astrophysics Data System (ADS)

    Izawa, Masaharu; Dotani, Tadayasu; Fujinaga, Takahisa; Bamba, Aya; Ozaki, Masanobu; Hiraga, Junko S.

    2015-06-01

    A largely extended X-ray emission was discovered around the pulsar PSR J1357-6429 with the Suzaku deep observations. The pulsar, whose characteristic age is 7.3 kyr, is located within the TeV γ-ray source HESS J1356-645. The extended emission is found to have a 1 σ X-ray size of ˜ 4', or ˜ 3 pc at 2.4 kpc, with a small offset from the pulsar. Its X-ray spectrum is well reproduced by a simple power-law model with a photon index of 1.70_{-0.06}^{+0.07}. No significant spatial variation was found for the X-ray photon index as a function of distance from the pulsar. We conclude that the extended emission is associated to the pulsar wind nebula (PWN) of PSR J1357-6429. This is a new sample of largely extended nebulae around middle-aged pulsars. We discuss the evolution of this PWN according to the relic PWN scenario.

  12. Probing the gamma-ray emission from HESS J1834-087 using H.E.S.S. and Fermi LAT observations

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-02-01

    Aims: Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E> 100 GeV) γ-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the γ-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods: The γ-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the γ-ray emission toward W41. Results: The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (σTeV = 0.17° ± 0.01°), both centered on SNR W41 and exhibiting spectra described by a power law with index ΓTeV ≃ 2.6. The GeV source detected with Fermi LAT is extended (σGeV = 0.15° ± 0.03°) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index ΓGeV = 2.15 ± 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the γ-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions: Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to γ-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected

  13. Chandra Observations of the Field Containing HESS J1616-508

    NASA Astrophysics Data System (ADS)

    Hare, Jeremy; Kargaltsev, Oleg; Pavlov, George G.; Rangelov, Blagoy; Volkov, Igor

    2017-06-01

    We report the results of three Chandra observations covering most of the extent of the TeV γ-ray source HESS J1616-508 and a search for a lower-energy counterpart to this source. We detect 56 X-ray sources, 37 of which have counterparts at lower frequencies, including a young massive star cluster, but none of them appear to be a particularly promising counterpart to the TeV source. The brightest X-ray source, CXOU J161423.4-505738, with a flux F 0.5-7 keV ≈ 5 × 10-13 erg cm-2 s-1, has a hard spectrum that is well fit by a power-law model with a photon index Γ = 0.2 ± 0.3 and is a likely intermediate polar CV candidate. No counterparts of this source were detected at other wavelengths. CVs are not known to produce extended TeV emission, and the source is also largely offset (19‧) from HESS J1616-508, making them unlikely to be associated. We have also set an upper limit on the X-ray flux of PSR J1614-5048 in the 0.5-8 keV band (F 0.5-8 keV < 5 × 10-15 erg cm-2 s-1 at a 90% confidence level). This makes PSR J1614-5048 one of the least X-ray-efficient pulsars known, with an X-ray efficiency {η }0.5{--8{keV}}={L}0.5{--8{keV}}/\\dot{E}< 2× {10}-5. We find no evidence supporting the association between the pulsar and the TeV source. We rule out a number of X-ray sources as possible counterparts to the TeV emission and do not find a plausible counterpart among the other sources. Lastly, we discuss the possible relation of PSR J1617-5055 to HESS J1616-508 in light of the new observations.

  14. Probing the gamma-ray emission from HESS J1834–087 using H.E.S.S. and FermiLAT observations

    DOE PAGES

    Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; ...

    2015-01-20

    Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E> 100 GeV) γ-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the γ-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. For this research, the γ-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of themore » TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the γ-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (σ TeV = 0.17° ± 0.01°), both centered on SNR W41 and exhibiting spectra described by a power law with index Γ TeV ≃ 2.6. The GeV source detected with Fermi LAT is extended (σ GeV = 0.15° ± 0.03°) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index Γ GeV = 2.15 ± 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the γ-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to γ-rays is reproduced by a one-zone leptonic model only if an excess of low

  15. HESS J1640–465 AND HESS J1641–463: TWO INTRIGUING TeV SOURCES IN LIGHT OF NEW FERMI -LAT OBSERVATIONS

    DOE PAGES

    Lemoine-Goumard, M.; Grondin, M. -H.; Acero, F.; ...

    2014-09-30

    We report on γ-ray analysis of the region containing the bright TeV source HESS J1640-465 and the closeby TeV source HESS J1641-463 using 64 months of observationswith the Fermi Large Area Telescope (LAT). Previously only one GeV source was reported in this region and was associated with HESS J1640-465. With an increased dataset and the improved sensitivity afforded by the reprocessed data (P7REP) of the LAT, we now report the detection, morphological study and spectral analysis of two distinct sources above 100 MeV. The softest emission in this region comes from the TeV source HESS J1641-463 which is well fittedmore » with a power law of index Γ = 2.47 ± 0.05 ± 0.06 and presents no significant γ-ray signal above 10 GeV, which contrasts with its hard spectrum at TeV energies. The Fermi-LAT spectrum of the second TeV source, HESS J1640-465 is well described by a power-law shape of index Γ = 1.99 ± 0.04 ± 0.07 that links up naturally with the spectral data points obtained by the High Energy Stereoscopic System (H.E.S.S.). These new results provide new constraints concerning the identification of these two puzzling γ-ray sources.« less

  16. Unveiling the origin of HESS J1809-193

    NASA Astrophysics Data System (ADS)

    Castelletti, G.; Giacani, E.; Petriella, A.

    2016-03-01

    Aims: The main goal of this paper is to provide new insights on the origin of the observable flux of γ rays from HESS J1809-193 using new high-quality observations in the radio domain. Methods: We used the Expanded Very Large Array (now known as the Karl G. Jansky Very large Array, JVLA) to produce a deep full-synthesis imaging at 1.4 GHz of the vicinity of PSR J1809-1917. These data were used in conjunction with 12CO observations from the James Clerk Maxwell Telescope in the transition line J = 3-2 and atomic hydrogen data from the Southern Galactic Plane Survey to investigate the properties of the interstellar medium in the direction of the source HESS J1809-193. Results: The new radio continuum image, obtained with a synthesized beam of 8'' × 4'' and a sensitivity of 0.17 mJy beam-1, reveals with unprecedented detail all the intensity structures in the field. No radio counterpart to the observed X-ray emission supposed to be a pulsar wind nebula powered by PSR J1809-1917 is seen in the new JVLA image. We discovered a system of molecular clouds on the edge of the supernova remnant (SNR) G11.0-0.0 shock front, which is positionally coincident with the brightest part of the TeV source HESS J1809-193. We determine, on the basis of kinematic and morphological evidences, a physical link of the SNR with the clouds for which we estimated a total (molecular plus atomic) mass of ~3 × 103M⊙ and a total proton density in the range 2-3 × 103 cm-3. Conclusions: We propose as the most likely origin of the very high-energy γ-ray radiation from HESS J1809-193 a hadronic mechanism through collisions of ions accelerated at the SNR G11.0-0.0 shock with the molecular matter in the vicinity of the remnant. The new JVLA image (in FITS format) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A71

  17. X-ray observations of Galactic H.E.S.S. sources: an update

    NASA Astrophysics Data System (ADS)

    Puehlhofer, G.; Eger, P.; Sasaki, M.; Gottschall, D.; Capasso, M.; H. E. S. S. Collaboration

    2016-06-01

    X-ray diagnostics of TeV sources continues to be an important tool to identify the nature of newly detected sources as well as to pinpoint the physics processes that are at work in these highly energetic objects. The contribution aims at giving a review of recent studies that we have performed on TeV sources with H.E.S.S. and XMM-Newton and also other X-ray facilities. Here, we will mainly focus on Galactic objects such as gamma-ray binaries, pulsar wind nebulae, and supernova remnants (SNRs). Particular emphasis will be given to SNR studies, including recently identified SNRs such as HESS J1731-347 and HESS J1534-571 as well as a revisit of RX J1713.7-3946.

  18. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools

    NASA Astrophysics Data System (ADS)

    Kurtz, N.; Marks, N.; Cooper, S. K.

    2014-12-01

    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  19. A Dual-Porosity, In Situ Crystallisation Model For Fast-Spreading Mid-Ocean Ridge Magma Chambers Based Upon Direct Observation From Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, C. J.

    2014-12-01

    We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity

  20. GeV Emission in the Region of HESS J1809‑193 and HESS J1813‑178: Is HESS J1809‑193 a Proton Pevatron?

    NASA Astrophysics Data System (ADS)

    Araya, Miguel

    2018-05-01

    HESS J1809‑193 is an unidentified TeV source discovered by the High Energy Stereoscopic System and originally classified as a pulsar wind nebula (PWN) candidate associated with the pulsar PSR J1809‑1917. However, a recent study of deep radio observations and the interstellar medium near the source has found evidence for a hadronic scenario for the gamma-rays. Here, a detailed study of the GeV emission in the region using data from the Fermi-LAT is presented. The GeV emission has an extended morphology in the region of the TeV emission and the overall spectrum can be accounted for by a cosmic-ray population having a simple power-law spectrum with energies extending up to 1 PeV. However, the spectrum at tens of TeV should be observed more deeply in the future to confirm its hadronic nature, and other scenarios involving combinations of leptonic and hadronic emission from several of the known supernova remnants in the region cannot be ruled out. The nearby TeV source HESS J1813‑178, thought to be a PWN, is also studied in detail at GeV energies and we find a region of significant emission that is much more extended than the TeV emission and whose spectrum is softer than expected from a PWN but similar to those seen in several star-forming regions that are believed to accelerate protons. There is marginal evidence for a GeV point source at the location of the X-ray PWN, beside the extended emission.

  1. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; O'C. Drury, L.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Zywucka, N.; H. E. S. S. Collaboration

    2017-12-01

    We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between 270 {GeV} to 8.55 {TeV}. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.

  2. Nature of the Unidentified TeV Source HESS J1614-518 Revealed by Suzaku and XMM-Newton Observations

    NASA Astrophysics Data System (ADS)

    Sakai, M.; Yajima, Y.; Matsumoto, H.

    2013-03-01

    We report new results concerning HESS J1614-518, which exhibits two regions with intense γ-ray emission. The south and center regions of HESS J1614-518 were observed with Suzaku in 2008, while the north region with the 1st brightest peak was observed in 2006. No X-ray counterpart is found at the 2nd brightest peak; the upper limit of the X-ray flux is estimated as 1.6 × 10-13 erg cm-2 s-1 in the 2-10 keV band. A previously-known soft X-ray source, Suzaku J1614-5152, is detected at the center of HESS J1614-518. Analyzing the XMM-Newton archival data, we reveal that Suzaku J1614-5152 consists of multiple point sources. The X-ray spectrum of the brightest point source, XMMU J161406.0-515225, could be described by a power-law model with the photon index Γ = 5.2+0.6-0.5 or a blackbody model with the temperature kT = 0.38+0.04-0.04 {keV}. In the blackbody model, the estimated column density N H = 1.1+0.3-0.2 × 1022 {cm}-2 is almost the same as that of the hard extended X-ray emission in Suzaku J1614-5141, spatially coincident with the 1st peak position. In this case, XMMU J161406.0-515225 may be physically related to Suzaku J1614-5141 and HESS J1614-518.

  3. Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations

    NASA Astrophysics Data System (ADS)

    Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.

    2018-02-01

    The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.

  4. Discovery of VHE emission towards the Carina arm region with the H.E.S.S. telescope array: HESS J1018-589

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöh, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khélifi, B.; Klochkov, D.; Klużniak, D.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-05-01

    The Carina arm region, containing the supernova remnant SNR G284.3-1.8, the high-energy (HE; E > 100 MeV) binary 1FGL J1018.6-5856 and the energetic pulsar PSR J1016-5857 and its nebula, has been observed with the H.E.S.S. telescope array. The observational coverage of the region in very-high-energy (VHE; E > 0.1 TeV) γ-rays benefits from deep exposure (40 h) of the neighboring open cluster Westerlund 2. The observations have revealed a new extended region of VHE γ-ray emission. The new VHE source HESS J1018-589 shows a bright, point-like emission region positionally coincident with SNR G284.3-1.8 and 1FGL J1018.6-5856 and a diffuse extension towards the direction of PSR J1016-5857. A soft (Γ = 2.7 ± 0.5stat)photon index, with a differential flux at 1 TeV of N0 = (4.2 ± 1.1) × 10-13 TeV-1 cm-2 s-1 is found for the point-like source, whereas the total emission region including the diffuse emission region is well fit by a power-law function with spectral index Γ = 2.9 ± 0.4stat and differential flux at 1 TeV of N0 = (6.8 ± 1.6) × 10-13 TeV-1 cm-2 s-1. This H.E.S.S. detection motivated follow-up X-ray observations with the XMM-Newton satellite to investigate the origin of the VHE emission. The analysis of the XMM-Newton data resulted in the discovery of a bright, non-thermal point-like source (XMMU J101855.4-58564) with a photon index of Γ = 1.65 ± 0.08 in the center of SNR G284.3-1.8, and a thermal, extended emission region coincident with its bright northern filament. The characteristics of this thermal emission are used to estimate the plasma density in the region as n ≈ 0.5 cm-3 (2.9 kpc/d)2. The position of XMMU J101855.4-58564 is compatible with the position reported by the Fermi-LAT collaboration for the binary system 1FGL J1018.6-5856 and the variable Swift XRT source identified with it. The new X-ray data are used alongside archival multi-wavelength data to investigate the relationship between the VHE γ-ray emission from HESS J1018-589 and the

  5. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2017-11-22

    Here, we search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges betweenmore » $$270\\,\\mathrm{GeV}$$ to $$8.55\\,\\mathrm{TeV}$$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.« less

  6. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    Here, we search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges betweenmore » $$270\\,\\mathrm{GeV}$$ to $$8.55\\,\\mathrm{TeV}$$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.« less

  7. PKS 2005-489 at VHE: four years of monitoring with HESS and simultaneous multi-wavelength observations

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Costamante, L.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fiasson, A.; Förster, A.; Fontaine, G.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Keogh, D.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Marandon, V.; Martineau-Huynh, O.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Renaud, M.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Superina, G.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.

    2010-02-01

    Aims: Our aim is to study the very high energy (VHE; E>100 GeV) γ-ray emission from BL Lac objects and the evolution in time of their broad-band spectral energy distribution (SED). Methods: VHE observations of the high-frequency peaked BL Lac object PKS 2005-489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newton and RXTE satellites. Results: A strong VHE signal, ~17σ total, from PKS 2005-489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is ~3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from ~300 GeV to ~5 TeV is characterized by a power law with a photon index, Γ = 3.20± 0.16_stat± 0.10_syst. At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum (ΔΓX ≈ 0.7) are also observed, which appear to be mirrored in the VHE band. Conclusions: The SED of PKS 2005-489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005. Supported by CAPES Foundation, Ministry of Education of Brazil.Now at Harvard-Smithsonian Center for Astrophysics, Cambridge, USA.Now at W.W. Hansen Experimental Physics Laboratory & Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA.

  8. HESS J1943+213: A Non-classical High-frequency-peaked BL Lac Object

    NASA Astrophysics Data System (ADS)

    Straal, S. M.; Gabányi, K. É.; van Leeuwen, J.; Clarke, T. E.; Dubner, G.; Frey, S.; Giacani, E.; Paragi, Z.

    2016-05-01

    HESS J1943+213 is an unidentified TeV source that is likely a high-frequency-peaked BL Lac (HBL) object, but that is also compatible with a pulsar wind nebula (PWN) nature. Each of these enormously different astronomical interpretations is supported by some of the observed unusual characteristics. In order to finally classify and understand this object, we took a three-pronged approach, through time-domain, high angular resolution, and multi-frequency radio studies. First, our deep time-domain observations with the Arecibo telescope failed to uncover the putative pulsar powering the proposed PWN. We conclude with ˜70% certainty that HESS J1943+213 does not host a pulsar. Second, long-baseline interferometry of the source with e-MERLIN at 1.5 and 5 GHz shows only a core, that is, a point source at ˜ 1-100 mas resolution. Its 2013 flux density is about one-third lower than that detected in the 2011 observations with similar resolution. This radio variability of the core strengthens the HBL object hypothesis. Third, additional evidence against the PWN scenario comes from the radio spectrum we compiled. The extended structure follows a power-law behavior with spectral index α \\=\\-0.54+/- 0.04 while the core component displays a flat spectrum (α \\=\\-0.03+/- 0.03). In contrast, the radio synchrotron emission of PWNe predicts a single power-law distribution. Overall, we rule out the PWN hypothesis and conclude that the source is a BL Lac object. The consistently high fraction (70%) of the flux density from the extended structure then leads us to conclude that HESS J1943+213 must be a non-classical HBL object.

  9. PKS 2155-304 in July 2006: H.E.S.S. results and simultaneous multi-wavelength observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenain, Jean-Philippe; Boisson, Catherine; Sol, Helne

    2008-12-24

    The high-frequency-peaked BL Lac PKS 2155-304 is one of the brightest and best-studied VHE {gamma}-ray sources in the southern hemisphere. The High Energy Stereoscopic System (H.E.S.S.) has monitored PKS 2155-304 in 2006 and a multi-wavelength campaign involving X-ray, optical and radio observatories was triggered by the detection of an active state in July 2006, followed by the detection of two extraordinary flares on July, 28th and 30th, with peak fluxes {approx}100 times the usual values. We present results from the spectral and flux variability analysis of the VHE and simultaneous X-ray observations with Chandra during the second flare, as wellmore » as the detailed evolution of the VHE flux of PKS 2155-304 observed by H.E.S.S. in 2006. A study of flux correlations in the different frequency ranges during the second flare and the adjacent nights is discussed. We also present an interpretation of the active state of PKS 2155-304 in the framework of synchrotron self-Compton emission.« less

  10. Extreme Blazars Studied with Fermi-LAT and Suzaku: 1ES 0347-121 and Blazar Candidate HESS J1943+213

    NASA Astrophysics Data System (ADS)

    Tanaka, Y. T.; Stawarz, Ł.; Finke, J.; Cheung, C. C.; Dermer, C. D.; Kataoka, J.; Bamba, A.; Dubus, G.; De Naurois, M.; Wagner, S. J.; Fukazawa, Y.; Thompson, D. J.

    2014-06-01

    We report on our study of high-energy properties of two peculiar TeV emitters: the "extreme blazar" 1ES 0347-121 and the "extreme blazar candidate" HESS J1943+213 located near the Galactic plane. Both objects are characterized by quiescent synchrotron emission with flat spectra extending up to the hard X-ray range, and both were reported to be missing GeV counterparts in the Fermi Large Area Telescope (LAT) two-year Source Catalog. We analyze a 4.5 yr accumulation of the Fermi-LAT data, resulting in the detection of 1ES 0347-121 in the GeV band, as well as in improved upper limits for HESS J1943+213. We also present the analysis results of newly acquired Suzaku data for HESS J1943+213. The X-ray spectrum is well represented by a single power law extending up to 25 keV with photon index 2.00 ± 0.02 and a moderate absorption in excess of the Galactic value, which is in agreement with previous X-ray observations. No short-term X-ray variability was found over the 80 ks duration of the Suzaku exposure. Under the blazar hypothesis, we modeled the spectral energy distributions of 1ES 0347-121 and HESS J1943+213, and we derived constraints on the intergalactic magnetic field strength and source energetics. We conclude that although the classification of HESS J1943+213 has not yet been determined, the blazar hypothesis remains the most plausible option since, in particular, the broadband spectra of the two analyzed sources along with the source model parameters closely resemble each other, and the newly available Wide-field Infrared Survey Explorer and UKIRT Infrared Deep Sky Survey data for HESS J1943+213 are consistent with the presence of an elliptical host at the distance of approximately ~600 Mpc.

  11. HESS observations of the galactic center region and their possible dark matter interpretation.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Bühler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Komin, Nu; Konopelko, A; Kosack, K; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schwanke, U; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2006-12-01

    The detection of gamma rays from the source HESS J1745-290 in the Galactic Center (GC) region with the High Energy Spectroscopic System (HESS) array of Cherenkov telescopes in 2004 is presented. After subtraction of the diffuse gamma-ray emission from the GC ridge, the source is compatible with a point source with spatial extent less than 1.2;{'}(stat) (95% C.L.). The measured energy spectrum above 160 GeV is compatible with a power law with photon index of 2.25+/-0.04(stat)+/-0.10(syst) and no significant flux variation is detected. It is finally found that the bulk of the very high energy emission must have non-dark-matter origin.

  12. New constraints on the structure of Hess Deep from regional- and micro-bathymetry data acquired during RRS James Cook in Jan-Feb 2008 (JC021)

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Ferrini, V. L.; MacLeod, C. J.; Teagle, D. A.; Gillis, K. M.; Cazenave, P. W.; Hurst, S. D.; Scientific Party, J.

    2008-12-01

    In January-February 2008, new geophysical and geological data were acquired in Hess Deep using the RRS James Cook and the British ROV Isis. Hess Deep provides a tectonic window into oceanic crust emplaced by fast seafloor spreading at the East Pacific Rise, thereby offering the opportunity to test competing hypotheses for oceanic crustal accretion. The goal of this cruise was to collect datasets that can constrain the structure and composition of the lower crustal section exposed in the south-facing slope of the Intrarift Ridge just north of the Deep, and thus provide insights into the emplacement of gabbroic lower crust at fast spreading rates. Additionally, the acquired datasets provide site survey data for IODP Proposal 551-Full. The following datasets were acquired during JC021: 1) regional multibeam bathymetry survey complemented with sub-bottom profiler (SBP) data (in selected areas), 2) two micro-bathymetry surveys, and 3) seafloor rock samples acquired with an ROV. Here we present grids of regional multibeam and microbathymetry data following post-cruise processing. Regional multibeam bathymetry were acquired using the hull-mounted Kongsberg Simrad EM120 system (12 kHz). These data provide new coverage of the northern flank of the rift as far east as 100°W, which show that it comprises of a series of 50- to 100-km-long en echelon segments. Both E-W and NE-SW striking features are observed in the immediate vicinity of the Deep, including in a newly covered region to the SW of the rift tip. Such features might arise due to the rotation of the Galapagos microplate(s), as proposed by other authors. The ROV Isis acquired micro-bathymetry data in two areas using a Simrad SM2000 (200 kHz) multibeam sonar. Data were acquired at a nominal altitude of ~100 m and speed of 0.3 kts to facilitate high-resolution mapping of seabed features and also permit coverage of two relatively large areas. Swath widths were ~200- 350 m depending on noise and seabed characteristics

  13. Wide-Range Multiwavelength Observations of Northern TeV Blazars With MAGIC / HESS, Suzaku And KVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashida, M.; /Munich, Max Planck Inst.; Rugamer, S.

    2007-11-14

    We have conducted multiwavelength observations of several northern TeV blazars employing the ground-based {gamma}-ray observatories MAGIC and HESS, the optical KVA telescope, and the Suzaku X-ray satellite. The data taken in 2006 establish measurements of the contemporaneous spectral energy distributions of the rapidly variable blazar emission over a wide range of frequencies. Results allow us to test leptonic and hadronic emission and particle acceleration models which predict different correlations between the optical, X-ray, and very high energy {gamma}-ray emissions. In this presentation, we report on the highlights of the results of these observations.

  14. VizieR Online Data Catalog: Vela Junior (RX J0852.0-4622) HESS image (HESS+, 2018)

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Anguener, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernloehr, K.; Blackwell, R.; Boettcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Buechele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chretien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Atai, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Foerster, A.; Funk, S.; Fuessling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzynski, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khelifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluzniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krueger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lopez-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Mora, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec J.; Oakes, L.; O'Brien, P.; Odaka, H.; Oettl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schuessler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der, Walt D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Voelk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Woernlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zywucka, N.

    2018-03-01

    skymap.fit: H.E.S.S. excess skymap in FITS format of the region comprising Vela Junior and its surroundings. The excess map has been corrected for the gradient of exposure and smoothed with a Gaussian function of width 0.08° to match the analysis point spread function, matching the procedure applied to derive the maps in Fig. 1. sp_stat.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent statistical uncertainties at 1 sigma confidence level. The covariance matrix of the fit is also included in the format: c11 c12 c_13 c21 c22 c_23 c31 c32 c_33 where the subindices represent the following parameters of the power-law with exponential cut-off (ECPL) formula in Tab. 2: 1: flux normalization (Phi0) 2: spectral index (Gamma) 3: inverse of the cutoff energy (lambda=1/Ecut) The units for the covariance matrix are the same as for the fit parameters. Notice that, while the fit parameters section of the file shows E_cut as parameter, the fit was done in lambda=1/Ecut; hence the covariance matrix shows the values for lambda in TeV-1. sp_syst.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent systematic uncertainties at 1 sigma confidence level. The integral fluxes for several energy ranges are also included. (4 data files).

  15. HESS J1741-302: a hidden accelerator in the Galactic plane

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Armand, C.; Arrieta, M.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; Drury, L. O.'c.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; De Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; De Los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.; NANTEN Collaboration; Enokiya, R.; Fukui, Y.; Hayakawa, T.; Okuda, T.; Torii, K.; Yamamoto, H.

    2018-04-01

    The H.E.S.S. Collaboration has discovered a new very high energy (VHE, E > 0.1 TeV) γ-ray source, HESS J1741-302, located in the Galactic plane. Despite several attempts to constrain its nature, no plausible counterpart has been found so far at X-ray and MeV/GeV γ-ray energies, and the source remains unidentified. An analysis of 145-h of observations of HESS J1741-302 at VHEs has revealed a steady and relatively weak TeV source ( 1% of the Crab Nebula flux), with a spectral index of Γ = 2.3 ± 0.2stat ± 0.2sys, extending to energies up to 10 TeV without any clear signature of a cut-off. In a hadronic scenario, such a spectrum implies an object with particle acceleration up to energies of several hundred TeV. Contrary to most H.E.S.S. unidentified sources, the angular size of HESS J1741-302 is compatible with the H.E.S.S. point spread function at VHEs, with an extension constrained to be below 0.068° at a 99% confidence level. The γ-ray emission detected by H.E.S.S. can be explained both within a hadronic scenario, due to collisions of protons with energies of hundreds of TeV with dense molecular clouds, and in a leptonic scenario, as a relic pulsar wind nebula, possibly powered by the middle-aged (20 kyr) pulsar PSR B1737-30. A binary scenario, related to the compact radio source 1LC 358.266+0.038 found to be spatially coincident with the best fit position of HESS J1741-302, is also envisaged.

  16. HESS J1741-302: a hidden accelerator in the Galactic plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    The H.E.S.S. Collaboration has discovered a new very high energy (VHE, E > 0.1 TeV) γ-ray source, HESS J1741-302, located in the Galactic plane. Despite several attempts to constrain its nature, no plausible counterpart has been found so far at X-ray and MeV/GeV γ-ray energies, and the source remains unidentified. An analysis of 145-h of observations of HESS J1741-302 at VHEs has revealed a steady and relatively weak TeV source (~1% of the Crab Nebula flux), with a spectral index of Γ = 2.3 ± 0.2stat ± 0.2sys, extending to energies up to 10 TeV without any clear signature ofmore » a cut-off. In a hadronic scenario, such a spectrum implies an object with particle acceleration up to energies of several hundred TeV. Contrary to most H.E.S.S. unidentified sources, the angular size of HESS J1741-302 is compatible with the H.E.S.S. point spread function at VHEs, with an extension constrained to be below 0.068° at a 99% confidence level. The γ-ray emission detected by H.E.S.S. can be explained both within a hadronic scenario, due to collisions of protons with energies of hundreds of TeV with dense molecular clouds, and in a leptonic scenario, as a relic pulsar wind nebula, possibly powered by the middle-aged (20 kyr) pulsar PSR B1737-30. A binary scenario, related to the compact radio source 1LC 358.266+0.038 found to be spatially coincident with the best fit position of HESS J1741-302, is also envisaged.« less

  17. HESS J1741-302: a hidden accelerator in the Galactic plane

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2018-04-01

    The H.E.S.S. Collaboration has discovered a new very high energy (VHE, E > 0.1 TeV) γ-ray source, HESS J1741-302, located in the Galactic plane. Despite several attempts to constrain its nature, no plausible counterpart has been found so far at X-ray and MeV/GeV γ-ray energies, and the source remains unidentified. An analysis of 145-h of observations of HESS J1741-302 at VHEs has revealed a steady and relatively weak TeV source (~1% of the Crab Nebula flux), with a spectral index of Γ = 2.3 ± 0.2stat ± 0.2sys, extending to energies up to 10 TeV without any clear signature ofmore » a cut-off. In a hadronic scenario, such a spectrum implies an object with particle acceleration up to energies of several hundred TeV. Contrary to most H.E.S.S. unidentified sources, the angular size of HESS J1741-302 is compatible with the H.E.S.S. point spread function at VHEs, with an extension constrained to be below 0.068° at a 99% confidence level. The γ-ray emission detected by H.E.S.S. can be explained both within a hadronic scenario, due to collisions of protons with energies of hundreds of TeV with dense molecular clouds, and in a leptonic scenario, as a relic pulsar wind nebula, possibly powered by the middle-aged (20 kyr) pulsar PSR B1737-30. A binary scenario, related to the compact radio source 1LC 358.266+0.038 found to be spatially coincident with the best fit position of HESS J1741-302, is also envisaged.« less

  18. Chandra follow up analysis on HESS J1841-055

    NASA Astrophysics Data System (ADS)

    Wilbert, Sven

    2012-07-01

    State of the art Imaging Atmospheric Cherenkow Telescopes (IACTs) like the Very Energetic Radiation Imaging Telescope Array System (VERITAS) and the High Energy Stereoscopic System (H.E.S.S) made surveys of the sky in order to discover new sources. The first and most famous is the H.E.S.S survey of the inner Galactic plane. So far more than 50 Galactic TeV Gamma-ray sources have been detected, a large number of which remain unidentified. HESS J1841-055 is one of the largest and most complex among these unidentified sources with an extension of approximately 1°. Follow up observations of the HESS J1841-055 region with Chandra, which is due to its high resolution good suited for searching for X-Ray counterparts and add-on analysis have revealed several X-ray sources spatially coincident with the multiple TeV emission peaks. The search for counterparts brought out the fact that not a single source itself but a bunch of sources of different nature, could be indeed the creators of this complex diffuse emission region; among them the SNR Kes 73, the pulsar within Kes 73, 1E 1841-45 and also the High Mass X-Ray Binary AX 184100.4-0536 and others.

  19. HESS J1640-465 - an exceptionally luminous TeV γ-ray supernova remnant

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; Wilhelmi, E. de Oña; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. de los; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-04-01

    The results of follow-up observations of the TeV γ-ray source HESS J1640-465 from 2004 to 2011 with the High Energy Stereoscopic System (HESS) are reported in this work. The spectrum is well described by an exponential cut-off power law with photon index Γ = 2.11 ± 0.09stat ± 0.10sys, and a cut-off energy of E_c = 6.0^{+2.0}_{-1.2} TeV. The TeV emission is significantly extended and overlaps with the northwestern part of the shell of the SNR G338.3-0.0. The new HESS results, a re-analysis of archival XMM-Newton data and multiwavelength observations suggest that a significant part of the γ-ray emission from HESS J1640-465 originates in the supernova remnant shell. In a hadronic scenario, as suggested by the smooth connection of the GeV and TeV spectra, the product of total proton energy and mean target density could be as high as WpnH ˜ 4 × 1052(d/10kpc)2 erg cm-3.

  20. O'Hara Receives 2007 Harry H. Hess Medal

    NASA Astrophysics Data System (ADS)

    Niu, Yaoling; O'Hara, Michael John

    2008-01-01

    Michael John O'Hara was awarded the 2007 Harry H. Hess Medal at the AGU Fall Meeting Honors Ceremony, held on 12 December 2007 in San Francisco, Calif. The Harry H. Hess Medal recognizes ``outstanding achievements in research in the constitution and evolution of Earth and other planets.'' It is thus most appropriate that Mike O'Hara receive the 2007 Hess Medal of the American Geophysical Union.

  1. A SELF-CONSISTENT EXPLANATION OF TeV EMISSIONS FROM HESS J1640-465 AND HESS J1641-463

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yunyong; Yang, Chuyuan; Wang, Jiancheng

    2015-10-10

    The bright TeV source HESS J1640-465 is positionally coincident with the young supernova remnant (SNR) G338.3-0.0, and the nearby HESS J1641-463 with TeV gamma-ray emission seems to be closely associated with it. Based on the nonlinear diffusion shock acceleration model, we explore the emission from these two TeV sources, the particle diffusion is assumed to be different inside and outside the absorbing boundary of the particles accelerated in the SNR shock. The results indicate that (1) the GeV–TeV emission from the region of the HESS J1640-465 is produced as a result of the particle acceleration inside the SNR G338.3-0.0 andmore » (2) the runaway cosmic-ray particles outside the SNR are interacting with the nearby dense molecular cloud (MC) at the region of the HESS J1641-463, corresponding π{sup 0} decay gamma-ray in proton–proton collision contribute to the TeV emission from the HESS J1641-463. Also, we investigate the possible X-ray emission in MC from the synchrotron procedure by secondary e{sup ±} produced through escaped protons interaction with the MC.« less

  2. Discovery of the VHE gamma-ray source HESS J1832-093 in the vicinity of SNR G22.7-0.2

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Clapson, A.-C.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-01-01

    The region around the supernova remnant (SNR) W41 contains several TeV sources and has prompted the HESS Collaboration to perform deep observations of this field of view. This resulted in the discovery of the new very high energy (VHE) source HESS J1832-093, at the position {RA=18^h 32^m 50^s ± 3^s_{stat} ± 2^s_{syst}}, {Dec=-9*deg;22'36" ± 32"}_{stat} ± 20^' '}_{syst} (J2000)}, spatially coincident with a part of the radio shell of the neighbouring remnant G22.7-0.2. The photon spectrum is well described by a power law of index Γ = 2.6 ± 0.3stat ± 0.1syst and a normalization at 1 TeV of Φ _0=(4.8 ± 0.8_stat± 1.0_syst) × 10^{-13} cm ^{-2} s^{-1} TeV^{-1}. The location of the gamma-ray emission on the edge of the SNR rim first suggested a signature of escaping cosmic rays illuminating a nearby molecular cloud. Then a dedicated XMM-Newton observation led to the discovery of a new X-ray point source spatially coincident with the TeV excess. Two other scenarios were hence proposed to identify the nature of HESS J1832-093. Gamma-rays from inverse Compton radiation in the framework of a pulsar wind nebula scenario or the possibility of gamma-ray production within a binary system are therefore also considered. Deeper multiwavelength observations will help to shed new light on this intriguing VHE source.

  3. H.E.S.S. observations of the binary system PSR B1259-63/LS 2883 around the 2010/2011 periastron passage

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chaves, R. C. G.; Cheesebrough, A.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Grudzińska, M.; Häer, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Lan, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Willmann, P.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2013-03-01

    Aims: We present very high energy (VHE; E > 100 GeV) data from the γ-ray binary system PSR B1259-63/LS 2883 taken around its periastron passage on 15th of December 2010 with the High Energy Stereoscopic System (H.E.S.S.) of Cherenkov Telescopes. We aim to search for a possible TeV counterpart of the GeV flare detected by the Fermi LAT. In addition, we aim to study the current periastron passage in the context of previous observations taken at similar orbital phases, testing the repetitive behaviour of the source. Methods: Observations at VHEs were conducted with H.E.S.S. from 9th to 16th of January 2011. The total dataset amounts to ~6 h of observing time. The data taken around the 2004 periastron passage were also re-analysed with the current analysis techniques in order to extend the energy spectrum above 3 TeV to fully compare observation results from 2004 and 2011. Results: The source is detected in the 2011 data at a significance level of 11.5σ revealing an averaged integral flux above 1 TeV of (1.01 ± 0.18stat ± 0.20sys) × 10-12 cm-2 s-1. The differential energy spectrum follows a power-law shape with a spectral index Γ = 2.92 ± 0.30stat ± 0.20sys and a flux normalisation at 1 TeV of N0 = (1.95 ± 0.32stat ± 0.39sys) × 10-12 TeV-1 cm-2 s-1. The measured light curve does not show any evidence for variability of the source on the daily scale. The re-analysis of the 2004 data yields results compatible with the published ones. The differential energy spectrum measured up to ~10 TeV is consistent with a power law with a spectral index Γ = 2.81 ± 0.10stat ± 0.20sys and a flux normalisation at 1 TeV of N0 = (1.29 ± 0.08stat ± 0.26sys) × 10-12 TeV-1 cm-2 s-1. Conclusions: The measured integral flux and the spectral shape of the 2011 data are compatible with the results obtained around previous periastron passages. The absence of variability in the H.E.S.S. data indicates that the GeV flare observed by Fermi LAT in the time period covered also by H.E.S.S

  4. Fermi Large Area Telescope observations of the supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; Zhang, Xiao; Yuan, Qiang; Liu, Siming

    2014-07-01

    Context. HESS J1731-347 has been identified as one of the few TeV-bright shell-type supernova remnants (SNRs). These remnants are dominated by nonthermal emission, and the nature of TeV emission has been continuously debated for nearly a decade. Aims: We carry out the detailed modeling of the radio to γ-ray spectrum of HESS J1731-347 to constrain the magnetic field and energetic particles sources, which we compare with those of the other TeV-bright shell-type SNRs explored before. Methods: Four years of data from Fermi Large Area Telescope (LAT) observations for regions around this remnant are analyzed, leading to no detection correlated with the source discovered in the TeV band. The Markov chain Monte Carlo method is used to constrain parameters of one-zone models for the overall emission spectrum. Results: Based on the 99.9% upper limits of fluxes in the GeV range, one-zone hadronic models with an energetic proton spectral slope greater than 1.8 can be ruled out, which favors a leptonic origin for the γ-ray emission, making this remnant a sibling of the brightest TeV SNR RX J1713.7-3946, the Vela Junior SNR RX J0852.0-4622, and RCW 86. The best-fit leptonic model has an electron spectral slope of 1.8 and a magnetic field of ~30 μG, which is at least a factor of 2 higher than those of RX J1713.7-3946 and RX J0852.0-4622, posing a challenge to the distance estimate and/or the energy equipartition between energetic electrons and the magnetic field of this source. A measurement of the shock speed will address this challenge and has implications on the magnetic field evolution and electron acceleration driven by shocks of SNRs.

  5. Volcanic rocks cored on hess rise, Western Pacific Ocean

    USGS Publications Warehouse

    Vallier, T.L.; Windom, K.E.; Seifert, K.E.; Thiede, Jorn

    1980-01-01

    Large aseismic rises and plateaus in the western Pacific include the Ontong-Java Plateau, Magellan Rise, Shatsky Rise, Mid-Pacific Mountains, and Hess Rise. These are relatively old features that rise above surrounding sea floors as bathymetric highs. Thick sequences of carbonate sediments overlie, what are believed to be, Upper Jurassic and Lower Cretaceous volcanic pedestals. We discuss here petrological and tectonic implications of data from volcanic rocks cored on Hess Rise. The data suggest that Hess Rise originated at a spreading centre in the late early Cretaceous (Aptian-Albian stages). Subsequent off-ridge volcanism in the late Albian-early Cenomanian stages built a large archipelago of oceanic islands and seamounts composed, at least in part, of alkalic rocks. The volcanic platform subsided during its northward passage through the mid-Cretaceousequatorial zone. Faulting and uplift, and possibly volcanism, occurred in the latest Cretaceous (Campanian-Maastrichtian stages). Since then, Hess Rise continued its northward movement and subsidence. Volcanic rocks from holes drilled on Hess Rise during IPOD Leg 62 (Fig. 1) are briefly described here and we relate the petrological data to the origin and evolution of that rise. These are the first volcanic rocks reported from Hess Rise. ?? 1980 Nature Publishing Group.

  6. The upgrade of the H.E.S.S. cameras

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; Naurois, Mathieu de; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-12-01

    The High Energy Stereoscopic System (HESS) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas highland in Namibia. It was built to detect Very High Energy (VHE > 100 GeV) cosmic gamma rays. Since 2003, HESS has discovered the majority of the known astrophysical VHE gamma-ray sources, opening a new observational window on the extreme non-thermal processes at work in our universe. HESS consists of four 12-m diameter Cherenkov telescopes (CT1-4), which started data taking in 2002, and a larger 28-m telescope (CT5), built in 2012, which lowers the energy threshold of the array to 30 GeV . The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Only the PMTs and their HV supplies have been kept from the original cameras. Novel technical solutions have been introduced, which will find their way into some of the Cherenkov cameras foreseen for the next-generation Cherenkov Telescope Array (CTA) observatory. In particular, the camera readout system is the first large-scale system based on the analog memory chip NECTAr, which was designed for CTA cameras. The camera control subsystems and the control software framework also pursue an innovative design, exploiting cutting-edge hardware and software solutions which excel in performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 have been upgraded in fall 2016. Together they will assure continuous operation of HESS at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded HESS

  7. Suzaku Observations of the Non-thermal Supernova Remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Bamba, Aya; Pühlhofer, Gerd; Acero, Fabio; Klochkov, Dmitry; Tian, Wenwu; Yamazaki, Ryo; Li, Zhiyuan; Horns, Dieter; Kosack, Karl; Komin, Nukri

    2012-09-01

    A detailed analysis of the non-thermal X-ray emission from the northwestern and southern parts of the supernova remnant (SNR) HESS J1731-347 with Suzaku is presented. The shell portions covered by the observations emit hard and lineless X-rays. The spectrum can be reproduced by a simple absorbed power-law model with a photon index Γ of 1.8-2.7 and an absorption column density N H of (1.0-2.1) × 1022 cm-2. These quantities change significantly from region to region; the northwestern part of the SNR has the hardest and most absorbed spectrum. The western part of the X-ray shell has a smaller curvature than the northwestern and southern shell segments. A comparison of the X-ray morphology to the very high energy gamma-ray and radio images was performed. The efficiency of the electron acceleration and the emission mechanism in each portion of the shell are discussed. Thermal X-ray emission from the SNR was searched for but could not be detected at a significant level.

  8. An X-Ray Counterpart of HESS J1427-608 Discovered with Suzaku

    NASA Astrophysics Data System (ADS)

    Fujinaga, Takahisa; Mori, Koji; Bamba, Aya; Kimura, Shoichi; Dotani, Tadayasu; Ozaki, Masanobu; Matsuta, Keiko; Pülhofer, Gerd; Uchiyama, Hideki; Hiraga, Junko S.; Matsumoto, Hironori; Terada, Yukikatsu

    2013-06-01

    We report on the discovery of an X-ray counterpart of the unidentified very high-energy gamma-ray source HESS J1427-608. In the sky field coincident with HESS J1427-608, an extended source was found in the 2-8 keV band, and was designated as Suzaku J1427-6051. Its X-ray radial profile has an extension of σ = 0.'9 ± 0.'1 if approximated by a Gaussian. The spectrum was well fitted by an absorbed power-law with NH = (1.1 ± 0.3) × 1023 cm-2, Γ = 3.1+0.6-0.5, and the unabsorbed flux FX = (9+4-2) × 10-13 erg s-1 cm-2 in the 2-10 keV band. Using XMM-Newton archive data, we found seven point sources in the Suzaku source region. However, because their total flux and absorbing column densities are more than an order of magnitude lower than those of Suzaku J1427-6051, we consider that they are unrelated to the Suzaku source. Thus, Suzaku J1427-6051 is considered to be a truly diffuse source and an X-ray counterpart of HESS J1427-608. The possible nature of HESS J1427-608 is discussed based on the observational properties.

  9. Aspects of Hess' Acquisition of American Oil & Gas

    EIA Publications

    2010-01-01

    On July 27, 2010, Hess Corporation announced that it had agreed to acquire American Oil & Gas, Inc. in a stock-only transaction worth as much as $488 million (based on Hess' closing price of $53.30/share, anticipated number of newly issued shares, and $30 million credit facility extended to American Oil & Gas prior to closing).

  10. Discovery of new TeV supernova remnant shells in the Galactic plane with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Gottschall, D.; Capasso, M.; Deil, C.; Djannati-Atai, A.; Donath, A.; Eger, P.; Marandon, V.; Maxted, N.; Pühlhofer, G.; Renaud, M.; Sasaki, M.; Terrier, R.; Vink, J.; H.E.S.S. Collaboration

    2017-01-01

    Supernova remnants (SNRs) are prime candidates for efficient particle acceleration up to the knee in the cosmic ray particle spectrum. In this work we present a new method for a systematic search for new TeV-emitting SNR shells in 2864 hours of H.E.S.S. phase I data used for the H.E.S.S. Galactic Plane Survey. This new method, which correctly identifies the known shell morphologies of the TeV SNRs covered by the survey, HESS J1731-347, RX 1713.7-3946, RCW 86, and Vela Junior, reveals also the existence of three new SNR candidates. All three candidates were extensively studied regarding their morphological, spectral, and multi-wavelength (MWL) properties. HESS J1534-571 was associated with the radio SNR candidate G323.7-1.0, and thus is classified as an SNR. HESS J1912+101 and HESS J1614-518, on the other hand, do not have radio or X-ray counterparts that would permit to identify them firmly as SNRs, and therefore they remain SNR candidates, discovered first at TeV energies as such. Further MWL follow up observations are needed to confirm that these newly discovered SNR candidates are indeed SNRs.

  11. Petrology and geochemistry of primitive lower oceanic crust from Pito Deep: Implications for the accretion of the lower crust at the Southern East Pacific Rise

    USGS Publications Warehouse

    Perk, N.W.; Coogan, L.A.; Karson, J.A.; Klein, E.M.; Hanna, H.D.

    2007-01-01

    A suite of samples collected from the uppermost part of the plutonic section of the oceanic crust formed at the southern East Pacific Rise and exposed at the Pito Deep has been examined. These rocks were sampled in situ by ROV and lie beneath a complete upper crustal section providing geological context. This is only the second area (after the Hess Deep) in which a substantial depth into the plutonic complex formed at the East Pacific Rise has been sampled in situ and reveals significant spatial heterogeneity in the plutonic complex. In contrast to the uppermost plutonic rocks at Hess Deep, the rocks studied here are generally primitive with olivine forsterite contents mainly between 85 and 88 and including many troctolites. The melt that the majority of the samples crystallized from was aggregated normal mid-ocean ridge basalt (MORB). Despite this high Mg# clinopyroxene is common despite model predictions that clinopyroxene should not reach the liquidus early during low-pressure crystallization of MORB. Stochastic modeling of melt crystallisation at various levels in the crust suggests that it is unlikely that a significant melt mass crystallized in the deeper crust (for example in sills) because this would lead to more evolved shallow level plutonic rocks. Similar to the upper plutonic section at Hess Deep, and in the Oman ophiolite, many samples show a steeply dipping, axis-parallel, magmatic fabric. This suggests that vertical magmatic flow is an important process in the upper part of the seismic low velocity zone beneath fast-spreading ridges. We suggest that both temporal and spatial (along-axis) variability in the magmatic and hydrothermal systems can explain the differences observed between the Hess Deep and Pito Deep plutonics. ?? Springer-Verlag 2007.

  12. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832-093

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.; Hord, Ben J.; de Oña Wilhelmi, Emma; Rahoui, Farid; Tomsick, John A.; Zhang, Shuo; Hong, Jaesub; Garvin, Amani M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-10-01

    We present a hard X-ray observation of the TeV gamma-ray binary candidate HESS J1832-093, which is coincident with the supernova remnant G22.7-0.2, using the Nuclear Spectroscopic Telescope Array. Non-thermal X-ray emission from XMMU J183245-0921539, the X-ray source associated with HESS J1832-093, is detected up to ˜30 keV and is well-described by an absorbed power-law model with a best-fit photon index {{Γ }}=1.5+/- 0.1. A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245-0921539 is {50}-20+40 % (90% C.L.), much less than previously reported. A search for a pulsar spin period or binary orbit modulation yields no significant signal to a pulse fraction limit of {f}p< 19 % in the range 4 ms < P< 40 ks. No red noise is detected in the FFT power spectrum to suggest active accretion from a binary system. While further evidence is required, we argue that the X-ray and gamma-ray properties of XMMU J183245-0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission from a fast-moving supernova fragment interacting with a dense molecular cloud.

  13. HESS J1640-465 - an exceptionally luminous TeV gamma-ray SNR

    NASA Astrophysics Data System (ADS)

    Eger, Peter; Ohm, Stefan

    HESS J1640-465 is among the brightest Galactic TeV gamma-ray sources ever discovered by the High Energy Stereoscopic System (H.E.S.S.). Its likely association with the shell-type supernova remnant (SNR) G338.3-0.0 at a distance of ˜10 kpc makes it the most luminous Galactic source in the TeV regime. Our recent analysis of follow-up observations with H.E.S.S. reveal a significantly extended TeV morphology with a substantial overlap with the northern part of the SNR shell. Furthermore, the source features a seamless powerlaw spectrum over four orders of magnitude from GeV to TeV energies, with a spectral index of Gamma = 2.15± 0.10_mathrm{stat}± 0.10_mathrm{sys} and a cut-off energy of E_c = 7.3(+2.5}_{-1.8) TeV. These new spectral and morphological results suggest that a significant fraction of the TeV emission is likely of hadronic origin where the product of total proton energy and mean target density could be as high as W_p n_H ˜ 4 × 10(52}(d/10mathrm{kpc) )(2) erg cm(-3) . This would make HESS J1640-465 one of the most extreme and efficient Galactic particle accelerators.

  14. Stevenson receives Hess Medal

    NASA Astrophysics Data System (ADS)

    Kaula, William M.; Stevenson, David J.

    David J. Stevenson was awarded the Harry H. Hess Medal at the AGU Spring Meeting Honors Ceremony, which was held on May 27, 1998, in Boston, Massachusetts. The Harry H. Hess Medal recognizes outstanding achievements in the research of the constitution and evolution of Earth and its sister planets.A meaningful understanding of the Earth and planets requires explaining their differences. This explanation of planetary processes is difficult partly because it entails a wide range of scales—from microscale, operating at the atomic level, to macroscale, determined by boundaries thousands of kilometers apart. David Stevenson's graduate study was mainly in theoretical condensedmatter physics, but he is remarkable in his grasp of large-scale planetary processes such as mantle convection and the dynamos. He is also remarkable in his ‘instinct to attack the jugular,’ that is to go for the most important problems and for the versatility of his approaches thereto.

  15. Solomon Receives 2005 Harry H. Hess Medal

    NASA Astrophysics Data System (ADS)

    Purdy, G. Michael; Solomon, Sean C.

    2006-02-01

    Sean C. Solomon received the Harry H. Hess Medal at the 2005 Fall Meeting Honors Ceremony, which was held on 7 December in San Francisco, Calif. The medal is given for outstanding achievements in research on the constitution and evolution of the Earth and other planets. It is a privilege to present Sean C. Solomon as the American Geophysical Union's Harry H. Hess Medal recipient. During more than 30 years of accomplished research he has established himself as one of the remarkable leadersin geophysical research today.

  16. Measuring the Local Diffusion Coefficient with H.E.S.S. Observations of Very High-Energy Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    2017-11-20

    The HAWC Collaboration has recently reported the detection of bright and spatially extended multi-TeV gamma-ray emission from Geminga, Monogem, and a handful of other nearby, middle-aged pulsars. The angular profile of the emission observed from these pulsars is surprising, in that it implies that cosmic-ray diffusion is significantly inhibited within ~25 pc of these objects, compared to the expectations of standard Galactic diffusion models. This raises the important question of whether the diffusion coefficient in the local interstellar medium is also low, or whether it is instead better fit by the mean Galactic value. Here, we utilize recent observations ofmore » the cosmic-ray electron spectrum (extending up to ~20 TeV) by the H.E.S.S. Collaboration to show that the local diffusion coefficient cannot be as low as it is in the regions surrounding Geminga and Monogem. Instead, we conclude that cosmic rays efficiently diffuse through the bulk of the local interstellar medium. Among other implications, this further supports the conclusion that pulsars significantly contribute to the observed positron excess.« less

  17. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdallah, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Lui, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Ohm, S.; Öttl, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spieß, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration

    2016-09-01

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ -ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ -ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σ v ⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σ v ⟩ values of 6 ×10-26 cm3 s-1 in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 ×10-26 cm3 s-1 in the τ+τ- channel for a 1 TeV mass. For the first time, ground-based γ -ray observations have reached sufficient sensitivity to probe ⟨σ v ⟩ values expected from the thermal relic density for TeV DM particles.

  18. MAGIC reveals a complex morphology within the unidentified gamma-ray source HESS J1857+026

    NASA Astrophysics Data System (ADS)

    MAGIC Collaboration; Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Carreto Fidalgo, D.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; Delgado Mendez, C.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Farina, E.; Ferenc, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hayashida, M.; Herrera, J.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Klepser, S.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Nowak, N.; de Oña Wilhelmi, E.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Partini, S.; Persic, M.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saggion, A.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Strzys, M.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zandanel, F.; Zanin, R.

    2014-11-01

    Aims: HESS J1857+026 is an extended TeV gamma-ray source that was discovered by H.E.S.S. as part of its Galactic plane survey. Given its broadband spectral energy distribution and its spatial coincidence with the young energetic pulsar PSR J1856+0245, the source has been put forward as a pulsar wind nebula (PWN) candidate. MAGIC has performed follow-up observations aimed at mapping the source down to energies approaching 100 GeV in order to better understand its complex morphology. Methods: HESS J1857+026 was observed by MAGIC in 2010, yielding 29 h of good quality stereoscopic data that allowed us to map the source region in two separate ranges of energy. Results: We detected very-high-energy gamma-ray emission from HESS J1857+026 with a significance of 12σ above 150 GeV. The differential energy spectrum between 100 GeV and 13 TeV is described well by a power law function dN/dE = N0(E/1TeV)-Γ with N0 = (5.37 ± 0.44stat ± 1.5sys) × 10-12 (TeV-1 cm-2 s-1) and Γ = 2.16 ± 0.07stat ± 0.15sys, which bridges the gap between the GeV emission measured by Fermi-LAT and the multi-TeV emission measured by H.E.S.S.. In addition, we present a detailed analysis of the energy-dependent morphology of this region. We couple these results with archival multiwavelength data and outline evidence in favor of a two-source scenario, whereby one source is associated with a PWN, while the other could be linked with a molecular cloud complex containing an Hii region and a possible gas cavity.

  19. Deeper H.E.S.S. observations of Vela Junior (RX J0852.0-4622): Morphology studies and resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Aims: We study γ-ray emission from the shell-type supernova remnant (SNR) RX J0852.0-4622 to better characterize its spectral properties and its distribution over the SNR. Methods: The analysis of an extended High Energy Spectroscopic System (H.E.S.S.) data set at very high energies (E > 100 GeV) permits detailed studies, as well as spatially resolved spectroscopy, of the morphology and spectrum of the whole RX J0852.0-4622 region. The H.E.S.S. data are combined with archival data from other wavebands and interpreted in the framework of leptonic and hadronic models. The joint Fermi-LAT-H.E.S.S. spectrum allows the direct determination of the spectral characteristics of the parent particle population in leptonic and hadronic scenarios using only GeV-TeV data. Results: An updated analysis of the H.E.S.S. data shows that the spectrum of the entire SNR connects smoothly to the high-energy spectrum measured by Fermi-LAT. The increased data set makes it possible to demonstrate that the H.E.S.S. spectrum deviates significantly from a power law and is well described by both a curved power law and a power law with an exponential cutoff at an energy of Ecut = (6.7 ± 1.2stat ± 1.2syst) TeV. The joint Fermi-LAT-H.E.S.S. spectrum allows the unambiguous identification of the spectral shape as a power law with an exponential cutoff. No significant evidence is found for a variation of the spectral parameters across the SNR, suggesting similar conditions of particle acceleration across the remnant. A simple modeling using one particle population to model the SNR emission demonstrates that both leptonic and hadronic emission scenarios remain plausible. It is also shown that at least a part of the shell emission is likely due to the presence of a pulsar wind nebula around PSR J0855-4644. A FITS image of the region of interest and two text files describing the H.E.S.S. spectrum of RX J0852.0-4622 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http

  20. Fermi Large Area Telescope Observations of the Dark Accelerator HESS J1745-303

    NASA Astrophysics Data System (ADS)

    Yeung, Paul

    2016-12-01

    Reviewing the two MeV-GeV investigations in the field of the HESS J1745-303 performed using Fermi Large Area Telescope data, we confirmed that the emission peak comfortably coincides with ‘Region A’ in the TeV regime, which is the brightest part of this feature. The MeV-TeV spectrum can be precisely described by a single power-law. Also, recent investigation has shown that the MeV-GeV feature is elongated from ‘Region A’ toward the north-west, which is similar to the case of large- scale atomic/molecular gas distribution.

  1. The missing GeV γ-ray binary: Searching for HESS J0632+057 with Fermi-LAT

    DOE PAGES

    Caliandro, G. A.; Hill, A. B.; Torres, D. F.; ...

    2013-09-25

    The very high energy (VHE; >100 GeV) source HESS J0632+057 has been recently confirmed as a γ-ray binary, a subclass of the high-mass X-ray binary population, through the detection of an orbital period of 321 d. We performed a deep search for the emission of HESS J0632+057 in the GeV energy range using data from the Fermi Large Area Telescope (LAT). The analysis was challenging due to the source being located in close proximity to the bright γ-ray pulsar PSR J0633+0632 and lying in a crowded region of the Galactic plane where there is prominent diffuse emission. We formulated amore » Bayesian block algorithm adapted to work with weighted photon counts, in order to define the off-pulse phases of PSR J0633+0632. A detailed spectral-spatial model of a 5° circular region centred on the known location of HESS J0632+057 was generated to accurately model the LAT data. No significant emission from the location of HESS J0632+057 was detected in the 0.1–100 GeV energy range integrating over ~3.5 yr of data, with a 95 per cent flux upper limit of F0.1-100 GeV < 3 × 10 –8 ph cm –2 s –1. A search for emission over different phases of the orbit also yielded no significant detection. A search for source emission on shorter time-scales (days–months) did not yield any significant detections. We also report the results of a search for radio pulsations using the 100-m Green Bank Telescope. No periodic signals or individual dispersed bursts of a likely astronomical origin were detected. We estimated the flux density limit of < 90/40 μJy at 2/9 GHz. Furthermore, the LAT flux upper limits combined with the detection of HESS J0632+057 in the 136–400 TeV energy band by the MAGIC collaboration imply that the VHE spectrum must turn over at energies <136 GeV placing constraints on any theoretical models invoked to explain the γ-ray emission.« less

  2. Wortschatzliste und Synonyme: Hermann Hesse, "Siddhartha" (Vocabulary List and Synonyms for Hermann Hesse's "Siddhartha").

    ERIC Educational Resources Information Center

    Schwartzburg, John A.

    This vocabulary and synonym list for Hermann Hesse's "Siddhartha" (presently on the German Advanced Placement Program required reading list) is keyed to the Dunham and Wensinger edition published by the Macmillan Company. Selected German vocabulary found on each page of the text is briefly translated into English or clarified through the…

  3. A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous H.E.S.S. and RXTE observations

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Microquasars are potential γ-ray emitters. Indications of transient episodes of γ-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional γ-ray-emitting microquasars is required to better understand how γ-ray emission can be produced in these systems. Aim. Theoretical models have predicted very high-energy (VHE) γ-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the γ-ray and X-ray bands. Methods: Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE γ-ray upper limits from contemporaneous H.E.S.S. observations were derived. Results: No significant γ-ray signal has been detected in any of the three systems. The integral γ-ray photon flux at the observational epochs is constrained to be I(>560 GeV) < 7.3 × 10-13 cm-2 s-1, I(>560 GeV ) < 1.2 × 10-12 cm-2 s-1, and I(>240 GeV) < 4.5 × 10-12 cm-2 s-1 for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively. Conclusions: The γ-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping γ-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE γ-ray emission from microquasars is commonplace, then it is likely to be highly transient.

  4. The TeV supernova remnant shell HESS J1731-347 and its surroundings

    NASA Astrophysics Data System (ADS)

    Capasso, M.; Condon, B.; Coffaro, M.; Cui, Y.; Gottschall, D.; Klochkov, D.; Marandon, V.; Maxted, N.; Pühlhofer, G.; Rowell, G.; H.E.S.S. Collaboration

    2017-01-01

    HESS J1731-347 is a shell-type supernova remnant emitting both TeV gamma rays and non-thermal X-ray photons, spatially coincident with the radio SNR G353.6-0.7. Hadronic and leptonic scenarios (or a blend of both) are discussed in the literature to explain the TeV emission from the object. In 2011, a γ-ray excess was also found in the neighborhood of the source (HESS J1729-345). Here we present results of an updated analysis obtained with the meanwhile available additional H.E.S.S. data. Beyond HESS J1731-347, the analysis reveals the morphology of the emission of the adjacent TeV source HESS J1729-345 and the emission in between the two sources in greater detail. The results permit us to correlate the TeV emission outside of the SNR with molecular gas tracers, and to confront the data with scenarios in which the TeV emission outside the SNR is produced by escaping cosmic rays.

  5. XMM-Newton observations of the non-thermal supernova remnant HESS J1731-347 (G353.6-0.7)

    NASA Astrophysics Data System (ADS)

    Doroshenko, V.; Pühlhofer, G.; Bamba, A.; Acero, F.; Tian, W. W.; Klochkov, D.; Santangelo, A.

    2017-12-01

    We report on the analysis of XMM-Newton observations of the non-thermal shell-type supernova remnant HESS J1731-347 (G353.6-0.7). For the first time the complete remnant shell has been covered in X-rays, which allowed direct comparison with radio and TeV observations. We carried out a spatially resolved spectral analysis of XMM-Newton data and confirmed the previously reported non-thermal power-law X-ray spectrum of the source with negligible variations of spectral index across the shell. On the other hand, the X-ray absorption column is strongly variable and correlates with the CO emission thus confirming that the absorbing material must be in the foreground and reinforcing the previously suggested lower limit on distance. Finally, we find that the X-ray emission of the remnant is suppressed towards the Galactic plane, which points to lower shock velocities in this region, likely due to the interaction of the shock with the nearby molecular cloud.

  6. The Paradox of the Axial Melt Lens: Petrology and Geochemistry of the Upper Plutonics at Hess Deep

    NASA Astrophysics Data System (ADS)

    Lissenberg, C. J.; Loocke, M. P.; MacLeod, C. J.

    2014-12-01

    The axial melt lens (AML) is a steady-state magma-rich body located at the dyke-gabbro transition at intermediate- and fast-spreading ridges. It is widely believed to be the reservoir from which mid-ocean ridge basalt (MORB) is erupted. The paradox of the axial melt lens is that the plutonic rocks that occur at this level are far too evolved to be in equilibrium with MORB, which is basaltic by definition; hence, the plutonic and volcanic records do not match. We explore this paradox by study of the first comprehensive sample suite of the uppermost plutonics of a fast-spreading ridge, taken by remotely-operated vehicle from the Hess Deep rift during cruise JC21. 23 samples (8 dolerites, 14 gabbronorites, and 1 gabbro) were collected from a section containing the transition from the uppermost gabbroic section into sheeted dykes. We present the results of a detailed petrographic and microanalytical investigation of these samples. They are dominated by evolved, varitextured (both in hand sample and thin section) oxide gabbronorites; olivine occurs in only one sample. A preponderance of the samples have positive Eu/Eu* and Sr/Sr*, indicating a cumulate origin. However, the minerals have evolved compositions, and are in equilibrium with melts significantly more evolved than East Pacific Rise MORB. Furthermore, the trace element contents of clinopyroxene differ significantly from clinopyroxene in equilibrium with MORB, being more enriched in incompatible elements. To account for both the evidence of derivation of MORB from the AML and the evolved nature of its rock record, we posit that the AML must be fed by melts on two different timescales: continual low-volume feeding by evolved interstitial melt from the cumulus pile below is augmented episodically by delivery of high volumes of more primitive melt. The latter episodes may trigger eruptions; hence the primitive melts are held in the magma chamber for only short periods, and erupt on the seafloor before significant

  7. MULTI-WAVELENGTH STUDY OF HESS J1741–302

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hare, Jeremy; Rangelov, Blagoy; Sonbas, Eda

    2016-01-10

    We present the results of two Chandra X-ray Observatory (CXO) observations of TeV γ-ray source HESS J1741–302. We investigate whether there is any connection between HESS J1741−302 and the sources seen at lower energies. One of the brightest X-ray sources in the HESS J1741–302 field, CXOU J174112.1−302908, appears to be associated with a low-mass star (possibly representing a quiescent low-mass X-ray binary or cataclysmic variable (CV)), hence, it is unlikely to be a source of TeV γ-rays. In the same field we have potentially detected X-rays from WR 98a, which is likely to be a colliding wind binary with massive stars. Nomore » TeV emission has been reported so far from such systems although predictions have been made. Finally, we found that the previously reported Suzaku source, Suzaku J1740.5–3014 (which is not covered by the CXO observations), appears to be a hard X-ray source detected by INTERGAL ISGRI, which supports the magnetized CV classification but makes its association with the TeV emission unlikely. The young pulsar PSR B1737–30, so far undetected in X-rays and projected on the sky near the CV, may be the contributor of relativistic particles responsible for the TeV emission.« less

  8. VHE gamma-ray Emitting Pulsar Wind Nebulae Discovered by H.E.S.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallant, Y.A.; /Montpellier U.; Carrigan, S.

    2008-06-05

    Recent advances in very-high-energy (VHE) gamma-ray astronomy have opened a new observational window on the physics of pulsars. The high sensitivity of current imaging atmospheric Cherenkov telescopes, and in particular of the H.E.S.S. array, has already led to the discovery of about a dozen VHE-emitting pulsar wind nebulae (PWNe) and PWN candidates. These include the plerions in the composite supernova remnants MSH 15-52, G21.5-0.9, Kes 75, and Vela, two sources in the Kookaburra, and the nebula of PSR B1823-13. This VHE emission is generally interpreted as inverse Compton emission from the relativistic electrons and positrons accelerated by the pulsar andmore » its wind; as such, it can yield a more direct spatial and spectral view of the accelerated particles than can be inferred from observations of their synchrotron emission. The VHE-emitting PWNe detected by the H.E.S.S. telescopes are reviewed and the implications for pulsar physics discussed.« less

  9. Li Isotopes as Tracers of Fluid-Rock Interactions in Oceanic Hydrothermal Systems: Evidence From the Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    Brant, C. O.; Coogan, L. A.; Gillis, K. M.

    2004-12-01

    Li isotopes have the potential to be powerful tracers of fluid-rock interactions at mid-ocean ridge hydrothermal systems due to the large isotopic difference between seawater (δ7Li = 31‰) and fresh MORB (δ7Li = 1.5 to 5.6 ‰). Sampling programs along tectonic escarpments at Hess Deep provide an ideal suite to examine the spatial variability of Li mobility and Li isotopic content within young (1 Ma) lavas and sheeted dikes formed at the fast-spreading East Pacific Rise towards the end of a segment. Previous work has shown that the lavas are relatively fresh, with minor alteration to clay minerals and Fe oxyhydroxides. Sheeted dikes are variably altered to amphibole-dominated assemblages, with localized zones where chlorite dominates. Sr and O isotope data correlate with these regional patterns. Preliminary data, collected by Thermo X-series quadrupole ICP-MS, show that the lavas have similar Li concentrations to fresh MORB (5 to 6 ppm) and are slightly enriched in δ7Li (4.1 to 7.7 ‰). There is a positive correlation between Li content and δ7Li within the lavas, however, the trend is not a simple mixing line between seawater and fresh MORB, being offset to lower δ7Li in the altered component. Similar to previous studies, these relationships support the prediction that 6Li is preferentially retained in low temperature clay minerals. Sheeted dykes are depleted in Li (0.8-4.63 ppm) and most samples are enriched in δ7Li (6.7-15.4 ‰) relative to fresh MORB. These samples show an inverse relationship between decreasing concentration and increasing isotopic enrichment. This implies that 6Li is not simply preferentially retained in the replacement mineral assemblages. The degree of isotopic enrichment appears to increase with increasing clinopyroxene alteration, and is greatest for amphibolite dominated assemblages. A broad positive correlation between Li concentration and δ18O is observed in the dikes. Thus Li isotopes are sensitive indicators of the nature

  10. Li Isotopes as Tracers of Fluid-Rock Interactions in Oceanic Hydrothermal Systems: Evidence From the Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    Brant, C. O.; Coogan, L. A.; Gillis, K. M.

    2007-12-01

    Li isotopes have the potential to be powerful tracers of fluid-rock interactions at mid-ocean ridge hydrothermal systems due to the large isotopic difference between seawater (δ7Li = 31‰) and fresh MORB (δ7Li = 1.5 to 5.6 ‰). Sampling programs along tectonic escarpments at Hess Deep provide an ideal suite to examine the spatial variability of Li mobility and Li isotopic content within young (1 Ma) lavas and sheeted dikes formed at the fast-spreading East Pacific Rise towards the end of a segment. Previous work has shown that the lavas are relatively fresh, with minor alteration to clay minerals and Fe oxyhydroxides. Sheeted dikes are variably altered to amphibole-dominated assemblages, with localized zones where chlorite dominates. Sr and O isotope data correlate with these regional patterns. Preliminary data, collected by Thermo X-series quadrupole ICP-MS, show that the lavas have similar Li concentrations to fresh MORB (5 to 6 ppm) and are slightly enriched in δ7Li (4.1 to 7.7 ‰). There is a positive correlation between Li content and δ7Li within the lavas, however, the trend is not a simple mixing line between seawater and fresh MORB, being offset to lower δ7Li in the altered component. Similar to previous studies, these relationships support the prediction that 6Li is preferentially retained in low temperature clay minerals. Sheeted dykes are depleted in Li (0.8-4.63 ppm) and most samples are enriched in δ7Li (6.7-15.4 ‰) relative to fresh MORB. These samples show an inverse relationship between decreasing concentration and increasing isotopic enrichment. This implies that 6Li is not simply preferentially retained in the replacement mineral assemblages. The degree of isotopic enrichment appears to increase with increasing clinopyroxene alteration, and is greatest for amphibolite dominated assemblages. A broad positive correlation between Li concentration and δ18O is observed in the dikes. Thus Li isotopes are sensitive indicators of the nature

  11. Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; O'Brien, P. T.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tam, P. H. T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-05-01

    The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z ~ 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the H.E.S.S. instrument. The analysis of the H.E.S.S. data shows no indication of emission and yields an integral flux upper limit above ~380 GeV of 4.2 × 10-12 cm-2 s-1 (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the H.E.S.S. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.

  12. Kohlstedt Receives 2003 Harry H. Hess Medal

    NASA Astrophysics Data System (ADS)

    Cooper, Reid F.

    2004-02-01

    David L. Kohlstedt was awarded the Hess Medal at the AGU Fall Meeting Honors Ceremony, which was held on 10 December 2003, in San Francisco, California. The medal honors ``outstanding achievements in research in the constitution and evolution of Earth and sister planets''.

  13. Bernard J. Wood Receives 2013 Harry H. Hess Medal: Citation

    NASA Astrophysics Data System (ADS)

    Hofmann, Albrecht W.

    2014-01-01

    As Harry Hess recognized over 50 years ago, mantle melting is the fundamental motor for planetary evolution and differentiation. Melting generates the major divisions of crust mantle and core. The distribution of chemical elements between solids, melts, and gaseous phases is fundamental to understanding these differentiation processes. Bernie Wood, together with Jon Blundy, has combined experimental petrology and physicochemical theory to revolutionize the understanding of the distribution of trace elements between melts and solids in the Earth. Knowledge of these distribution laws allows the reconstruction of the source compositions of the melts (deep in Earth's interior) from their abundances in volcanic rocks. Bernie's theoretical treatment relates the elastic strain of the lattice caused by the substitution of a trace element in a crystal to the ionic radius and charge of this element. This theory, and its experimental calibrations, brought order to a literature of badly scattered, rather chaotic experimental data that allowed no satisfactory quantitative modeling of melting processes in the mantle.

  14. Towards Solving the Conundrum of Fast-Spread Ocean Crust Formation: Insights from Textural Analysis of Gabbroic Rocks from Pito Deep and Hess Deep, East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Brown, T. C.; Cheadle, M. J.; John, B. E.; Coogan, L. A.; Gee, J. S.; Karson, J. A.; Meyer, R.; Ceuleneer, G.; Swapp, S.

    2014-12-01

    Few examples of in situ fast-spread lower ocean crust exist for sampling. Here we present detailed textural analyses of two sample sets that formed at the East Pacific Rise, collected from tectonic windows at Pito (PD) and Hess (HD) deeps. PD samples (collected by ROV) span the upper ~900 m of lower crust. HD samples (collected by seafloor drilling during IODP Exp. 345) come from >1500 m below the sheeted dike gabbro transition (mbsd). PD gabbroic rock textures are consistent with a gabbro glacier flow model generating the uppermost plutonic crust. Shallow samples (41-72 mbsd) likely formed at the distal edge of the magma lens, analogous to similar rocks from Oman. These gabbros are relatively evolved (cpx Mg#75-77, An53-61 and 1-4% Fe-Ti oxides), and have elongate plagioclase grains (aspect ratios up to 1:2:10) exhibiting a strong shape preferred orientation (SPO) with <40% of grains showing dislocation creep textures. Deeper samples (177-876 mbsd) likely began crystallizing in the magma lens then subsided and 'flowed' through the underlying mush zone. These gabbros are more primitive below 386 mbsd (Fo83-88, cpx Mg# 85-89 and An70-82), and plagioclase grains have more equilibrated morphologies (aspect ratios < 1:2:6) that define ~vertical SPOs which increase in strength with depth. Plagioclase exhibits magmatic crystal-lattice preferred orientations (CPOs) which are also vertical. Significantly, the proportion of grains showing dislocation creep textures increases with depth, and plagioclase grain size distributions show a smaller range of sizes at depth; observations that perhaps reflect the effect of increasing strain with depth. IODP Hole U1415I at HD recovered gabbros and troctolitic gabbros from the mid lower crust that show distinctive cm-dm scale modal layering. Strong plagioclase SPOs parallel layering and magmatic CPOs vary dramatically in strength over just 4.5 m of core. Plagioclase grains are relatively equant (aspect ratios < 1:2:4), wrap around

  15. The host galaxy and Fermi-LAT counterpart of HESS J1943+213

    NASA Astrophysics Data System (ADS)

    Peter, D.; Domainko, W.; Sanchez, D. A.; van der Wel, A.; Gässler, W.

    2014-11-01

    Context. The very-high energy (VHE, E> 100 GeV) gamma-ray sky shows diverse Galactic and extragalactic source populations. For some sources the astrophysical object class could not be identified so far. Aims: The nature (Galactic or extragalactic) of the VHE gamma-ray source HESS J1943+213 is explored. We specifically investigate the proposed near-infrared counterpart 2MASS J19435624+2118233 of HESS J1943+213 and investigate the implications of a physical association. Methods: We present K-band imaging from the 3.5 m CAHA telescope of 2MASS J19435624+2118233. Furthermore, 5 years of Fermi-LAT data were analyzed to search for a high-energy (HE, 100 MeV observations revealed that the near-infrared counterpart is extended with an intrinsic half light radius of 2''-2.5''. These observations also show a smooth, centrally concentrated light profile that is typical of a galaxy, and thus point toward an extragalactic scenario for the VHE gamma-ray source, assuming that the near-infrared source is the counterpart of HESS J1943+213. A high-Sérsic index profile provides a better fit than an exponential profile, indicating that the surface brightness profile of 2MASS J19435624+2118233 follows that of a typical, massive elliptical galaxy more closely than that of a disk galaxy. With Fermi-LAT a HE counterpart is found with a power-law spectrum above 1 GeV, with a normalization of (3.0 ± 0.8stat ± 0.6sys) × 10-15 cm-2 s-1 MeV-1 at the decorrelation energy Edec = 15.1 GeV and a spectral index of Γ = 1.59 ± 0.19stat ± 0.13sys. This gamma-ray spectrum shows a rather sharp break between the HE and VHE regimes of ΔΓ = 1.47 ± 0.36. Conclusions: The infrared and HE data strongly favor an extragalactic origin of HESS J1943+213, where the infrared counterpart traces the host galaxy of an extreme blazar and where the rather sharp spectral break between the HE and VHE regime indicates attenuation on extragalactic background light. The

  16. Melosh Receives 2008 Harry H. Hess Medal

    NASA Astrophysics Data System (ADS)

    Drake, Michael J.; Melosh, H. Jay

    2009-01-01

    H. Jay Melosh was awarded the 2008 Harry H. Hess Medal at the AGU Fall Meeting Honors Ceremony, held 17 December 2008 in San Francisco, Calif. The medal is for ``outstanding achievements in research in the constitution and evolution of Earth and sister planets.''

  17. Extreme Blazars Studied With Fermi -Lat And Suzaku : 1es 0347–121 And Blazar Candidate Hess J1943+213

    DOE PAGES

    Tanaka, Y. T.; Stawarz, Ł.; Finke, J.; ...

    2014-05-14

    We report on our study of high-energy properties of two peculiar TeV emitters: the “extreme blazar" 1ES 0347-121 and the “extreme blazar candidate" HESS J1943+213 located near the Galactic Plane. Both objects are characterized by quiescent synchrotron emission with flat spectra extending up to the hard X-ray range, and both were reported to be missing GeV counterparts in the Fermi-LAT 2–year Source Catalog. We analyze a 4.5 year accumulation of the Fermi-LAT data, resulting in the detection of 1ES 0347-121 in the GeV band, as well as in improved upper limits for HESS J1943+213. We also present the analysis resultsmore » of newly acquired Suzaku data for HESS J1943+213. The X-ray spectrum is well represented by a single power law extending up to 25 keV with photon index 2.00±0.02 and a moderate absorption in excess of the Galactic value, in agreementwith previous X-ray observations. No short-term X-ray variability was found over the 80 ks duration of the Suzaku exposure. Under the blazar hypothesis, we modeled the spectral energy distributions of 1ES 0347-121 and HESS J1943+213, and derived constraints on the intergalactic magnetic field strength and source energetics. We conclude that although the classification of HESS J1943+213 has not yet been determined, the blazar hypothesis remains the most plausible option, since in particular the broad-band spectra of the two analyzed sources along with the source model parameters closely resemble each other, and the newly available WISE and UKIDSS data for HESS J1943+213 are consistent with the presence of an elliptical host at the distance of approximatel ~ 600Mpc.« less

  18. The upgrade of the H.E.S.S. cameras

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-01-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes (IACT) located in Namibia. In order to assure the continuous operation of H.E.S.S. at its full sensitivity until and possibly beyond the advent of CTA, the older cameras, installed in 2003, are currently undergoing an extensive upgrade. Its goals are reducing the system failure rate, reducing the dead time and improving the overall performance of the array. All camera components have been upgraded, except the mechanical structure and the photo-multiplier tubes (PMTs). Novel technical solutions have been introduced: the upgraded readout electronics is based on the NECTAr analog memory chip; the control of the hardware is carried out by an FPGA coupled to an embedded ARM computer; the control software was re-written from scratch and it is based on modern C++ open source libraries. These hardware and software solutions offer very good performance, robustness and flexibility. The first camera was fielded in July 2015 and has been successfully commissioned; the rest is scheduled to be upgraded in September 2016. The present contribution describes the design, the testing and the performance of the new H.E.S.S. camera and its components.

  19. A search for new supernova remnant shells in the Galactic plane with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Bamba, A.; Fukui, Y.; Sano, H.; Yoshiike, S.

    2018-04-01

    A search for new supernova remnants (SNRs) has been conducted using TeV γ-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912+101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.

  20. H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center

    NASA Astrophysics Data System (ADS)

    Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Liu, R.; Lohse, T.; Lorentz, M.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Öttl, S.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration

    2016-10-01

    A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l =-1.5 ° , b =0 ° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. results. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

  1. Deep Space Earth Observations from DSCOVR

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Herman, J.

    2018-02-01

    The Deep Space Climate Observatory (DSCOVR) at Sun-Earth L1 orbit observes the full sunlit disk of Earth. There are two Earth science instruments on board DSCOVR — EPIC and NISTAR. We discuss if EPIC and NISAR-like instruments can be used in Deep Space Gateway.

  2. Technology, Utopia and Scholarly Life: Ideals and Realities in the Work of Hermann Hesse

    ERIC Educational Resources Information Center

    Roberts, Peter

    2009-01-01

    This article considers the relationship between technology, utopia and scholarly life in Hermann Hesse's novel, "The Glass Bead Game." In the first part of Hesse's book, the Glass Bead Game and the society of which it is a part, Castalia, are portrayed in idealistic terms. The second part of the novel chronicles the educational life of Joseph…

  3. A Response to Frederick Hess: An Ongoing Conversation

    ERIC Educational Resources Information Center

    Bacchetti, Ray

    2004-01-01

    In this article, the author comments on the article "An Ongoing Conversation", by Frederick Hess. The author points out that the increasing polarization of the public's views on public education serves us poorly and we need to revive the skill and will to engage in more thoughtful dialogue.

  4. Rudolph Hess, A Strategic Move or Ethical Dilemma?

    DTIC Science & Technology

    1990-03-09

    seek help from uncrthodox healers. His mystic beliefs were manifested in his strange behavior. Some examples are: Per Felix Kersten , Himmler’s...the Rus- sians refused to consider Hess’s release. They were adamant that he remain incarcerated to the point that their former leader Leonid Brezhnev

  5. Nicolas Receives 2004 Harry H. Hess Medal

    NASA Astrophysics Data System (ADS)

    Allègre, Claude J.

    2005-02-01

    Adolphe Nicolas received the Hess Medal at the 2004 Fall Meeting Honors Ceremony on 15 December, in San Francisco, California. The medal is given for outstanding achievements in research in the constitution and evolution of Earth and other planets. Citation. Adolphe Nicolas is a pioneer in Earth sciences. He has almost created a new field that we can name: the textural geodynamics.

  6. 75 FR 32210 - United States v. Idaho Orthopaedic Society, Timothy Doerr, Jeffrey Hessing, Idaho Sports Medicine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ..., Jeffrey Hessing, Idaho Sports Medicine Institute, John Kloss, David Lamey, and Troy Watkins; Proposed... Sports Medicine Institute, John Kloss, David Lamey, and Troy Watkins, Civil Case No. 10-268. On May 28..., Jeffrey Hessing, Idaho Sports Medicine Institute, John Kloss, David Lamey, and Troy Watkins, Defendants...

  7. Hess Tower field study: sonic measurements at a former building-integrated wind farm site

    NASA Astrophysics Data System (ADS)

    Araya, Daniel

    2017-11-01

    Built in 2010, Hess Tower is a 29-story office building located in the heart of downtown Houston, TX. Unique to the building is a roof structure that was specifically engineered to house ten vertical-axis wind turbines (VAWTs) to partially offset the energy demands of the building. Despite extensive atmospheric boundary layer (ABL) wind tunnel tests to predict the flow conditions on the roof before the building was constructed, the Hess VAWTs were eventually removed after allegedly one of the turbines failed and fell to the ground. This talk presents in-situ sonic anemometry measurements taken on the roof of Hess Tower at the former turbine locations. We compare this wind field characterization to the ABL wind tunnel data to draw conclusions about building-integrated wind farm performance and prediction capability.

  8. HESS and Fermi-LAT discovery of γ-rays from the blazar 1ES 1312-423

    DOE PAGES

    Abramowski, A.; Acero, F.; Aharonian, F.; ...

    2013-08-01

    In this study, a deep observation campaign carried out by the High Energy Stereoscopic System (HESS) on Centaurus A enabled the discovery of γ-rays from the blazar 1ES 1312-423, 2° away from the radio galaxy. With a differential flux at 1 TeV of (Φ1 TeV) = (1.9 ± 0.6stat ± 0.4sys) × 10 -13 cm -2 s -1 TeV -1 corresponding to 0.5 percent of the Crab nebula differential flux and a spectral index Γ = 2.9 ± 0.5stat ± 0.2sys, 1ES 1312-423 is one of the faintest sources ever detected in the very high energy (E > 100 GeV)more » extragalactic sky. A careful analysis using three and a half years of Fermi Large Area Telescope (Fermi-LAT) data allows the discovery at high energies (E > 100 MeV) of a hard spectrum (Γ = 1.4 ± 0.4stat ± 0.2sys) source coincident with 1ES 1312-423. Radio, optical, UV and X-ray observations complete the spectral energy distribution of this blazar, now covering 16 decades in energy. Lastly, the emission is successfully fitted with a synchrotron self-Compton model for the non-thermal component, combined with a blackbody spectrum for the optical emission from the host galaxy.« less

  9. H.E.S.S. discovery of VHE γ-rays from the quasar PKS 1510-089

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Behera, B.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chaves, R. C. G.; Cheesebrough, A.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H. S.

    2013-06-01

    The quasar PKS 1510-089 (z = 0.361) was observed with the H.E.S.S. array of imaging atmospheric Cherenkov telescopes during high states in the optical and GeV bands, to search for very high energy (VHE, defined as E ≥ 0.1 TeV) emission. VHE γ-rays were detected with a statistical significance of 9.2 standard deviations in 15.8 h of H.E.S.S. data taken during March and April 2009. A VHE integral flux of I(0.15 TeV < E < 1.0 TeV)= (1.0 ± 0.2stat ± 0.2sys) × 10-11 cm-2 s-1 is measured. The best-fit power law to the VHE data has a photon index of Γ = 5.4 ± 0.7stat ± 0.3sys. The GeV and optical light curves show pronounced variability during the period of H.E.S.S. observations. However, there is insufficient evidence to claim statistically significant variability in the VHE data. Because of its relatively high redshift, the VHE flux from PKS 1510-089 should suffer considerable attenuation in the intergalactic space due to the extragalactic background light (EBL). Hence, the measured γ-ray spectrum is used to derive upper limits on the opacity due to EBL, which are found to be comparable with the previously derived limits from relatively-nearby BL Lac objects. Unlike typical VHE-detected blazars where the broadband spectrum is dominated by nonthermal radiation at all wavelengths, the quasar PKS 1510-089 has a bright thermal component in the optical to UV frequency band. Among all VHE detected blazars, PKS 1510-089 has the most luminous broad line region. The detection of VHE emission from this quasar indicates a low level of γ - γ absorption on the internal optical to UV photon field.

  10. HESS J1844-030: A New Gamma-Ray Binary?

    NASA Astrophysics Data System (ADS)

    McCall, Hannah; Errando, Manel

    2018-01-01

    Gamma-ray binaries are comprised of a massive, main-sequence star orbiting a neutron star or black hole that generates bright gamma-ray emission. Only six of these systems have been discovered. Here we report on a candidate stellar-binary system associated with the unidentified gamma-ray source HESS J1844-030, whose detection was revealed in the H.E.S.S. galactic plane survey. Analysis of 60 ks of archival Chandra data and over 100 ks of XMM-Newton data reveal a spatially associated X-ray counterpart to this TeV-emitting source (E>1012 eV), CXO J1845-031. The X-ray spectra derived from these exposures yields column density absorption in the range nH = (0.4 - 0.7) x 1022 cm-2, which is below the total galactic value for that part of the sky, indicating that the source is galactic. The flux from CXO J1845-031 increases with a factor of up to 2.5 in a 60 day timescale, providing solid evidence for flux variability at a confidence level exceeding 7 standard deviations. The point-like nature of the source, the flux variability of the nearby X-ray counterpart, and the low column density absorption are all indicative of a binary system. Once confirmed, HESS J1844-030 would represent only the seventh known gamma-ray binary, providing valuable data to advance our understanding of the physics of pulsars and stellar winds and testing high-energy astrophysical processes at timescales not present in other classes of objects.

  11. 325 and 610 MHz radio counterparts of SNR G353.6-0.7 also known as HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Nayana, A. J.; Chandra, Poonam; Roy, Subhashis; Green, David A.; Acero, Fabio; Lemoine-Goumard, Marianne; Marcowith, Alexandre; Ray, Alak K.; Renaud, Matthieu

    2017-05-01

    HESS J1731-347 also known as SNR G353.6-0.7 is one of the five known shell-type supernova remnants (SNRs) emitting in the very high energy (VHE, energy > 0.1 TeV) γ-ray domain. We observed this TeV SNR with the Giant Metrewave Radio Telescope (GMRT) in 1390, 610 and 325 MHz bands. In this paper, we report the discovery of 325 and 610 MHz radio counterparts of the SNR HESS J1731-347 with the GMRT. Various filaments of the SNR are clearly seen in the 325 and 610 MHz bands. However, the faintest feature in the radio bands corresponds to the peak in VHE emission. We explain this anti-correlation in terms of a possible leptonic origin of the observed VHE γ-ray emission. We determine the spectral indices of the bright individual filaments, which were detected in both the 610 and the 325 MHz bands. Our values range from -1.11 to -0.15, consistent with the non-thermal radio emission. We also report a possible radio counterpart of a nearby TeV source HESS J1729-345 from the 843 MHz Molonglo Galactic Plane Survey and the 1.4 GHz Southern Galactic Plane Survey maps. The positive radio spectral index of this possible counterpart suggests a thermal origin of the radio emission of this nearby TeV source.

  12. H.E.S.S. observations of RX J1713.7-3946 with improved angular and spectral resolution: Evidence for gamma-ray emission extending beyond the X-ray emitting shell

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Fukuyama, T.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Naurois, M. de; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; los Reyes, R. de; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; Eldik, C. van; Rensburg, C. van; Soelen, B. van; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Volpe, F.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Supernova remnants exhibit shock fronts (shells) that can accelerate charged particles up to very high energies. In the past decade, measurements of a handful of shell-type supernova remnants in very high-energy gamma rays have provided unique insights into the acceleration process. Among those objects, RX J1713.7-3946 (also known as G347.3-0.5) has the largest surface brightness, allowing us in the past to perform the most comprehensive study of morphology and spatially resolved spectra of any such very high-energy gamma-ray source. Here we present extensive new H.E.S.S. measurements of RX J1713.7-3946, almost doubling the observation time compared to our previous publication. Combined with new improved analysis tools, the previous sensitivity is more than doubled. The H.E.S.S. angular resolution of 0.048° (0.036° above 2 TeV) is unprecedented in gamma-ray astronomy and probes physical scales of 0.8 (0.6) parsec at the remnant's location. The new H.E.S.S. image of RX J1713.7-3946 allows us to reveal clear morphological differences between X-rays and gamma rays. In particular, for the outer edge of the brightest shell region, we find the first ever indication for particles in the process of leaving the acceleration shock region. By studying the broadband energy spectrum, we furthermore extract properties of the parent particle populations, providing new input to the discussion of the leptonic or hadronic nature of the gamma-ray emission mechanism. All images (FITS files) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A6

  13. H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center.

    PubMed

    Abdalla, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Andersson, T; Angüner, E O; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; Devin, J; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M-H; Grudzińska, M; Hadasch, D; Hahn, J; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Liu, R; Lohse, T; Lorentz, M; Lypova, I; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Ohm, S; Ostrowski, M; Öttl, S; Oya, I; Padovani, M; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tluczykont, M; Trichard, C; Tuffs, R; van der Walt, J; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N

    2016-10-07

    A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l=-1.5°, b=0° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

  14. Detection of GeV Gamma-Rays from HESS J1534-571 and Multiwavelength Implications for the Origin of the Nonthermal Emission

    NASA Astrophysics Data System (ADS)

    Araya, Miguel

    2017-07-01

    HESS J1534-571 is a very high-energy gamma-ray source that was discovered by the H.E.S.S. observatory and reported as one of several new sources with a shell-like morphology at TeV energies, matching in size and location with the supernova remnant (SNR) G323.7-1.0 discovered in radio observations by the Molonglo Galactic Plane Survey. Many known TeV shells also show X-ray emission however, no X-ray counterpart has been seen for HESS J1534-571. The detection of a new GeV source using data from the Fermi satellite that is compatible in extension with the radio SNR and shows a very hard power-law spectrum ≤ft(\\tfrac{{dN}}{{dE}}\\propto {E}-1.35\\right) is presented here, together with the first broadband modeling of the nonthermal emission from this source. It is shown that leptonic emission is compatible with the known multiwavelength data and a corresponding set of physical source parameters is given. The required total energy budget in leptons is reasonable, ˜1.5 × 1048 erg for a distance to the object of 5 kpc. The new GeV observations imply that a hadronic scenario, on the other hand, requires a cosmic-ray spectrum that deviates considerably from theoretical expectations of particle acceleration.

  15. Hazardous Waste Cleanup: Hess Corporation in Port Reading, New Jersey

    EPA Pesticide Factsheets

    The Hess Corporation Port Reading Refinery occupies approximately 210 acres on Cliff Road in an industrial waterfront area of Port Reading, New Jersey. The Conrail Port Reading Rail Yard is located to the north, the Arthur Kill shipping channel to the

  16. Detection of GeV Gamma-Ray Emission in the Direction of HESS J1731-347 with Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Lei; Xin, Yu-Liang; Liao, Neng-Hui; Yuan, Qiang; Gao, Wei-Hong; Fan, Yi-Zhong

    2018-01-01

    We report the detection of GeV γ-ray emission from supernova remnant HESS J1731-347 using 9 yr of Fermi Large Area Telescope data. We find a slightly extended GeV source in the direction of HESS J1731-347. The spectrum above 1 GeV can be fitted by a power law with an index of Γ = 1.77 ± 0.14, and the GeV spectrum connects smoothly with the TeV spectrum of HESS J1731-347. Either a hadronic–leptonic or a pure leptonic model can fit the multiwavelength spectral energy distribution of the source. However, the hard GeV γ-ray spectrum is more naturally produced in a leptonic (inverse Compton scattering) scenario, under the framework of diffusive shock acceleration. We also searched for the GeV γ-ray emission from the nearby TeV source HESS J1729-345. No significant GeV γ-ray emission is found, and upper limits are derived.

  17. ISM gas studies towards the TeV PWN HESS J1825-137 and northern region

    NASA Astrophysics Data System (ADS)

    Voisin, F.; Rowell, G.; Burton, M. G.; Walsh, A.; Fukui, Y.; Aharonian, F.

    2016-05-01

    HESS J1825-137 is a pulsar wind nebula (PWN) whose TeV emission extends across ˜1 . Its large asymmetric shape indicates that its progenitor supernova interacted with a molecular cloud located in the north of the PWN as detected by previous CO Galactic survey (e.g. Lemiere, Terrier & Djannati-Ataï). Here, we provide a detailed picture of the interstellar medium (ISM) towards the region north of HESS J1825-137, with the analysis of the dense molecular gas from our 7 and 12 mm Mopra survey and the more diffuse molecular gas from the Nanten CO(1-0) and GRS 13CO(1-0) surveys. Our focus is the possible association between HESS J1825-137 and the unidentified TeV source to the north, HESS J1826-130. We report several dense molecular regions whose kinematic distance matched the dispersion measured distance of the pulsar. Among them, the dense molecular gas located at (RA, Dec.) = (18h421h,-13.282°) shows enhanced turbulence and we suggest that the velocity structure in this region may be explained by a cloud-cloud collision scenario. Furthermore, the presence of a H α rim may be the first evidence of the progenitor supernova remnant (SNR) of the pulsar PSR J1826-1334 as the distance between the H α rim and the TeV source matched with the predicted SNR radius RSNR ˜ 120 pc. From our ISM study, we identify a few plausible origins of the HESS J1826-130 emission, including the progenitor SNR of PSR J1826-1334 and the PWN G018.5-0.4 powered by PSR J1826-1256. A deeper TeV study however, is required to fully identify the origin of this mysterious TeV source.

  18. Probing the extent of the non-thermal emission from the Vela X region at TeV energies with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O.' C.; Dubois, F.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-12-01

    Context. Vela X is a region of extended radio emission in the western part of the Vela constellation: one of the nearest pulsar wind nebulae, and associated with the energetic Vela pulsar (PSR B0833-45). Extended very-high-energy (VHE) γ-ray emission (HESS J0835-455) was discovered using the H.E.S.S. experiment in 2004. The VHE γ-ray emission was found to be coincident with a region of X-ray emission discovered with ROSAT above 1.5 keV (the so-called Vela X cocoon): a filamentary structure extending southwest from the pulsar to the centre of Vela X. Aims: A deeper observation of the entire Vela X nebula region, also including larger offsets from the cocoon, has been performed with H.E.S.S. This re-observation was carried out in order to probe the extent of the non-thermal emission from the Vela X region at TeV energies and to investigate its spectral properties. Methods: To increase the sensitivity to the faint γ-ray emission from the very extended Vela X region, a multivariate analysis method combining three complementary reconstruction techniques of Cherenkov-shower images is applied for the selection of γ-ray events. The analysis is performed with the On/Off background method, which estimates the background from separate observations pointing away from Vela X; towards regions free of γ-ray sources but with comparable observation conditions. Results: The γ-ray surface brightness over the large Vela X region reveals that the detection of non-thermal VHE γ-ray emission from the PWN HESS J0835-455 is statistically significant over a region of radius 1.2° around the position α = 08h35m00s, δ = -45°36'00'' (J2000). The Vela X region exhibits almost uniform γ-ray spectra over its full extent: the differential energy spectrum can be described by a power-law function with a hard spectral index Γ = 1.32 ± 0.06stat ± 0.12sys and an exponential cutoff at an energy of (14.0 ± 1.6stat ± 2.6sys) TeV. Compared to the previous H.E.S.S. observations of Vela X the

  19. HESS J1818-154, a new composite supernova remnant discovered in TeV gamma rays and X-rays

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-02-01

    Composite supernova remnants (SNRs) constitute a small subclass of the remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray, and γ-ray regimes allow the study of the co-evolution of both these energetic phenomena. In this article, we report results from observations of the shell-type SNR G 15.4+0.1 performed with the High Energy Stereoscopic System (H.E.S.S.) and XMM-Newton. A compact TeV γ-ray source, HESS J1818-154, located in the center and contained within the shell of G 15.4+0.1 is detected by H.E.S.S. and featurs a spectrum best represented by a power-law model with a spectral index of -2.3 ± 0.3stat ± 0.2sys and an integral flux of F(> 0.42 TeV) = (0.9 ± 0.3stat ± 0.2sys) × 10-12 cm-2 s-1. Furthermore, a recent observation with XMM-Newton reveals extended X-ray emission strongly peaked in the center of G 15.4+0.1. The X-ray source shows indications of an energy-dependent morphology featuring a compact core at energies above 4 keV and more extended emission that fills the entire region within the SNR at lower energies. Together, the X-ray and VHE γ-ray emission provide strong evidence of a PWN located inside the shell of G 15.4+0.1 and this SNR can therefore be classified as a composite based on these observations. The radio, X-ray, and γ-ray emission from the PWN is compatible with a one-zone leptonic model that requires a low average magnetic field inside the emission region. An unambiguous counterpart to the putative pulsar, which is thought to power the PWN, has been detected neither in radio nor in X-ray observations of G 15.4+0.1.

  20. Weaving Colors into a White Landscape: Unpacking the Silences in Karen Hesse's Children's Novel "Out of the Dust"

    ERIC Educational Resources Information Center

    Simon, Lisa

    2008-01-01

    The children's novel "Out of the Dust" (Hesse, 1997) is an evocative portrayal of the drought and dust storms that devastated Midwestern farms in the 1930s. Through the voice of her 13-year-old narrator, Karen Hesse intertwines history and free verse poetry to create what many readers find to be a moving depiction of the Oklahoma…

  1. Exploring the nature of the unidentified very-high-energy gamma-ray source HESS J1507-622

    NASA Astrophysics Data System (ADS)

    Domainko, W.; Ohm, S.

    2012-09-01

    Context. Several extended sources of very-high-energy (VHE; E > 100 GeV) gamma rays have been found that lack counterparts belonging to an established class of VHE gamma-ray emitters. Aims: The nature of the first unidentified VHE gamma-ray source with significant angular offset from the Galactic plane of 3.5°, HESS J1507-622, is explored. Methods.Fermi-LAT data in the high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray range collected over 34 month are used to describe the spectral energy distribution (SED) of the source. Additionally, implications of the off-plane location of the source for a leptonic and hadronic gamma-ray emission model are investigated. Results: HESS J1507-622 is detected in the Fermi energy range and its spectrum is best described by a power law in energy with Γ = 1.7 ± 0.1stat ± 0.2sys and integral flux between (0.3-300) GeV of F = (2.0 ± 0.5stat ± 1.0sys) × 10-9 cm-2 s-1. The SED constructed from the Fermi and H.E.S.S. data for this source does not support a smooth power-law continuation from the VHE to the HE gamma-ray range. With the available data it is not possible to discriminate between a hadronic and a leptonic scenario for HESS J1507-622. The location and compactness of the source indicate a considerable physical offset from the Galactic plane for this object. In case of a multiple-kpc distance, this challenges a pulsar wind nebula (PWN) origin for HESS J1507-622 since the time of travel for a pulsar born in the Galactic disk to reach such a location would exceed the inverse Compton (IC) cooling time of electrons that are energetic enough to produce VHE gamma-rays. However, an origin of this gamma-ray source connected to a pulsar that was born off the Galactic plane in the explosion of a hypervelocity star cannot be excluded. Conclusions: The nature of HESS J1507-622 is still unknown to date, and a PWN scenario cannot be ruled out in general. On the contrary HESS J1507-622 could be the first discovered representative of a

  2. AKARI Deep Observations of the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Burgarella, D.; Buat, V.; Takeuchi, T. T.; Wada, T.; Pearson, C.

    2009-12-01

    The Chandra Deep Field South is one of the deep fields that has been observed over almost all the electromagnetic spectrum. It contains a wealth of data very useful to study and better understand distant galaxies and their evolution. However, one piece of information was missing in the Mid Infrared and that is why we have obtained 15 μm observations with AKARI/IRC infrared space telescope. From these observations, we have defined a sample of mid infrared-selected galaxies at 15 μm and 15 μm flux densities for a sample of Lyman Break Galaxies at z ˜ 1 already observed at 24 μm with Spitzer/MIPS and identified in the ultraviolet with GALEX. Of the two above samples at z ˜ 1 we have tested the validity of the conversions from luminosities νfν at 8 μm to total dust luminosities by comparing with luminosities estimated from 12 μm data used as a reference. Some calibrations seem better when compared to Ldust evaluated from longer wavelength luminosities. We also have found that the rest-frame 8 μm luminosities provide good estimates of Ldust. By comparing our data to several libraries of spectral energy distributions, we have found that models can explain the diversity of the observed f24 / f15 ratio quite reasonably. Finally, we have revisited the evolution of Ldust / LUV ratio with the redshift z by re-calibrating previous Ldust at z ˜ 2 based on our results and added new data points at higher redshifts. The decreasing trend is amplified as compared to the previous estimate.

  3. H.E.S.S. and ATOM detection of renewed activity of the FSRQ 3C 279

    NASA Astrophysics Data System (ADS)

    De Naurois, Mathieu

    2018-06-01

    H.E.S.S. observations at very-high energies (E > 100 GeV) of the flat spectrum radio quasar 3C 279 (reshift z=0.536, R.A.: 12h56m11.1665s, Dec: -05d47m21.523s (J2000)) have been carried out over the last 3 nights on the basis of another strong flare in the high-energy gamma-ray band (E > 100 MeV) detected with Fermi-LAT.

  4. Where Are Our Greenfields?: A Conversation with Frederick M. Hess

    ERIC Educational Resources Information Center

    Perkins-Gough, Deborah

    2010-01-01

    In an interview with Educational Leadership, Frederick M. Hess talks about greenfield schooling--a policy approach that attempts to knock down the formal and informal barriers that stand in the way of innovation in education. Greenfield schooling, he explains, "doesn't imagine that we should go around razing districts or schools or taking…

  5. A Major Upgrade of the H.E.S.S. Cherenkov Cameras

    NASA Astrophysics Data System (ADS)

    Lypova, Iryna; Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-03-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in Namibia. It was built to detect Very High Energy (VHE, >100 GeV) cosmic gamma rays, and consists of four 12 m diameter Cherenkov telescopes (CT1-4), built in 2003, and a larger 28 m telescope (CT5), built in 2012. The larger mirror surface of CT5 permits to lower the energy threshold of the array down to 30 GeV. The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Technical solutions forseen for the next-generation Cherenkov Telescope Array (CTA) observatory have been introduced, most notably the readout is based on the NECTAr analog memory chip. The camera control subsystems and the control software framework also pursue an innovative design, increasing the camera performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 will upgraded in Fall 2016. Together they will assure continuous operation of H.E.S.S at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded H.E.S.S. camera.

  6. The H.E.S.S. Galactic plane survey

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carrigan, S.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Malyshev, D.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schandri, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-04-01

    We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2-100 TeV). We constructed a catalog of VHE γ-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible

  7. Measurement of the EBL spectral energy distribution using the VHE γ-ray spectra of H.E.S.S. blazars

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; de Wilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-10-01

    Very high-energy γ rays (VHE, E ≳ 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE γ rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5σ, and the intensity of the EBL obtained in different spectral bands is presented together with the associated γ-ray horizon.

  8. Bi-telescopic, deep, simultaneous meteor observations

    NASA Technical Reports Server (NTRS)

    Taff, L. G.

    1986-01-01

    A statistical summary is presented of 10 hours of observing sporadic meteors and two meteor showers using the Experimental Test System of the Lincoln Laboratory. The observatory is briefly described along with the real-time and post-processing hardware, the analysis, and the data reduction. The principal observational results are given for the sporadic meteor zenithal hourly rates. The unique properties of the observatory include twin telescopes to allow the discrimination of meteors by parallax, deep limiting magnitude, good time resolution, and sophisticated real-time and post-observing video processing.

  9. H.E.S.S. detection of a strong VHE activity from the blazar 3C 279

    NASA Astrophysics Data System (ADS)

    Naurois, Mathieu

    2018-01-01

    H.E.S.S. observations of the flat spectrum radio quasar 3C 279 (redshift z=0.536, R.A.: 12h56m11.1665s, Dec: -05d47m21.523s (J2000)) have been carried out during the past 2 weeks, on the basis of the detection of flaring activity in the gamma-ray band with Fermi-LAT (ATel #11189) and AGILE (ATel #11200), as well as in the optical band (ATels #11190, #11196, #11202, #11216).

  10. Probing the possibility of hotspots on the central neutron star in HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Suleimanov, V. F.; Klochkov, D.; Poutanen, J.; Werner, K.

    2017-04-01

    The X-ray spectra of the neutron stars located in the centers of supernova remnants Cas A and HESS J1731-347 are well fit with carbon atmosphere models. These fits yield plausible neutron star sizes for the known or estimated distances to these supernova remnants. The evidence in favor of the presence of a pure carbon envelope at the neutron star surface is rather indirect and is based on the assumption that the emission is generated uniformly by the entire stellar surface. Although this assumption is supported by the absence of pulsations, the observational upper limit on the pulsed fraction is not very stringent. In an attempt to quantify this evidence, we investigate the possibility that the observed spectrum of the neutron star in HESS J1731-347 is a combination of the spectra produced in a hydrogen atmosphere of the hotspots and of the cooler remaining part of the neutron star surface. The lack of pulsations in this case has to be explained either by a sufficiently small angle between the neutron star spin axis and the line of sight, or by a sufficiently small angular distance between the hotspots and the neutron star rotation poles. As the observed flux from a non-uniformly emitting neutron star depends on the angular distribution of the radiation emerging from the atmosphere, we have computed two new grids of pure carbon and pure hydrogen atmosphere model spectra accounting for Compton scattering. Using new hydrogen models, we have evaluated the probability of a geometry that leads to a pulsed fraction below the observed upper limit to be about 8.2%. Such a geometry thus seems to be rather improbable but cannot be excluded at this stage.

  11. The XMM-Newton view of the non-thermal supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Puehlhofer, G.; Doroshenko, V.; Acero, F.; Bamba, A.; Klochkov, D.; Tian, W.

    2017-10-01

    HESS J1731-347 belongs to a small group of supernova remnants that are characterized by a spatially-resolved shell-type TeV morphology and strong synchrotron X-ray emission. We report on XMM-Newton observations of the source that provide for the first time a complete X-ray view of the remnant. The data show an emissivity gradient across the source, which is not observed in the TeV gamma-ray and radio bands. While the broadband spectral analysis is compatible with a pure leptonic emission scenario up to TeV energies, the morphological analysis could be indicative of a blend of hadronic and leptonic TeV emission. We discuss the possibility of an interaction of the supernova remnant with nearby molecular clouds.

  12. The host galaxy and Fermi -LAT counterpart of HESS J1943+213

    DOE PAGES

    Peter, D.; Domainko, W.; Sanchez, D. A.; ...

    2014-11-06

    The very-high energy (VHE, E> 100 GeV) gamma-ray sky shows diverse Galactic and extragalactic source populations. For some sources the astrophysical object class could not be identified so far. The nature (Galactic or extragalactic) of the VHE gamma-ray source HESS J1943+213 is explored. We specifically investigate the proposed near-infrared counterpart 2MASS J19435624+2118233 of HESS J1943+213 and investigate the implications of a physical association. We present K-band imaging from the 3.5 m CAHA telescope of 2MASS J19435624+2118233. Furthermore, 5 years of Fermi-LAT data were analyzed to search for a high-energy (HE, 100 MeV stat ± 0.6 sys) × 10 -15 cmmore » -2 s -1 MeV -1 at the decorrelation energy Edec = 15.1 GeV and a spectral index of Γ = 1.59 ± 0.19stat ± 0.13sys. This gamma-ray spectrum shows a rather sharp break between the HE and VHE regimes of ΔΓ = 1.47 ± 0.36. In conclusion, the infrared and HE data strongly favor an extragalactic origin of HESS J1943+213, where the infrared counterpart traces the host galaxy of an extreme blazar and where the rather sharp spectral break between the HE and VHE regime indicates attenuation on extragalactic background light. The source is most likely located at a redshift between 0.03 and 0.45 according to extension and EBL attenuation arguments.« less

  13. Using Controversy as a Teaching Tool: An Interview with Diana Hess

    ERIC Educational Resources Information Center

    Richardson, Joan

    2018-01-01

    In a time of hyperpolarization and hyper partisanship, preparing students to deliberate about their differences becomes even more important. In this interview, Diana Hess, dean of the School of Education at the University of Wisconsin-Madison and co-author of The Political Classroom, describes the challenge of ensuring that students have access to…

  14. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  15. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.

    PubMed

    Reiher, Markus; Wolf, Alexander

    2004-12-08

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented. (c) 2004 American Institute of Physics.

  16. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiher, Markus; Wolf, Alexander

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exactmore » decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented.« less

  17. Fermi Detection Of The Pulsar Wind Nebula Hess J1640–465

    DOE PAGES

    Slane, P.; Castro, D.; Funk, S.; ...

    2010-08-09

    We present observations of HESS J1640–465 with the Fermi-Large Area Telescope. The source is detected with high confidence as an emitter of high-energy gamma-rays. The spectrum lacks any evidence for the characteristic cutoff associated with emission from pulsars, indicating that the emission arises primarily from the pulsar wind nebula (PWN). Broadband modeling implies an evolved nebula with a low magnetic field resulting in a high γ-ray to X-ray flux ratio. The Fermi emission exceeds predictions of the broadband model, and has a steeper spectrum, possibly resulting from a distinct excess of low energy electrons similar to what is inferred formore » both the Vela X and Crab PWNe.« less

  18. TeV γ-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; Wilhelmi, E. de Oña; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. de los; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-06-01

    The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E > 0.1 TeV) γ-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE γ-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H.E.S.S. (High Energy Stereoscopic System) Cherenkov Telescope Array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analysed in the context of the multiwavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant γ-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99 per cent confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index Γ = 2.5 were set at 5.6 × 10-13 cm-2 s-1 above 0.26 TeV and 3.2 × 10-12 cm-2 s-1 above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to BG1.9 ≳ 12 μG for G1.9+0.3 and to BG330 ≳ 8 μG for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.

  19. Disease Management Project Breast Cancer in Hesse - 5-Year Survival Data: Successful Model of Intersectoral Communication for Quality Assurance.

    PubMed

    Jackisch, C; Funk, A; König, K; Lubbe, D; Misselwitz, B; Wagner, U

    2014-03-01

    Introduction: The Disease Management Project Breast Cancer (DMP Breast Cancer) was first launched in Hesse in 2004. The project is supported by the health insurance companies in Hesse and the Professional Association of Gynaecologists in Hesse. The aim is to offer structured treatment programmes to all women diagnosed with breast cancer in Hesse by creating intersectoral cooperations between coordinating clinics, associated hospitals and gynaecologists in private practice who registered in the DMP programme. Method: Between 1 January 2005 and 30 June 2011, 13 973 women were enrolled in the DMP programme. Results: After data cleansing, survival rates were calculated for a total of 11 214 women. The 5-year overall survival (OS) rate was 86.3 %; survival rates according to tumour stage on presentation were 92.2 % (pT1) and 82.3 % (pT2), respectively. The impact of steroid hormone receptor status on survival (87.8 % for receptor-positive cancers vs. 78.9 % for receptor-negative cancers) and of age at first diagnosis on survival (≤ 35 years = 91 %) were calculated. Conclusion: The project showed that intersectoral cooperation led to significant improvements in the quality of treatment over time, as measured by quality indicators and outcomes after treatment.

  20. Comparison of a new digital KM screen test with conventional Hess and Lees screen tests in the mapping of ocular deviations.

    PubMed

    Thorisdottir, Rannveig Linda; Sundgren, Johanna; Sheikh, Rafi; Blohmé, Jonas; Hammar, Björn; Kjellström, Sten; Malmsjö, Malin

    2018-05-28

    To evaluate the digital KM screen computerized ocular motility test and to compare it with conventional nondigital techniques using the Hess and Lees screens. Patients with known ocular deviations and a visual acuity of at least 20/100 underwent testing using the digital KM screen and the Hess and Lees screen tests. The examination duration, the subjectively perceived difficulty, and the patient's method of choice were compared for the three tests. The accuracy of test results was compared using Bland-Altman plots between testing methods. A total of 19 patients were included. Examination with the digital KM screen test was less time-consuming than tests with the Hess and Lees screens (P < 0.001 and P = 0.003, resp., compared with the digital KM screen). Patients found the test with the digital KM screen easier to perform than the Lees screen test (P = 0.009) but of similar difficulty to the Hess screen test (P = 0.203). The majority of the patients (83%) preferred the digital KM screen test to both of the other screen methods (P = 0.008). Bland-Altman plots showed that the results obtained with all three tests were similar. The digital KM screen is accurate and time saving and provides similar results to Lees and Hess screen testing. It also has the advantage of a digital data analysis and registration. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  1. New constraints on the TeV SNR shells RX J1713.7-3946 and HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Puehlhofer, G.; Eger, P.; Doroshenko, V.; Cui, Y.; H. E. S. S. Collaboration

    2016-06-01

    Resolved TeV-emitting supernova remnants remain a small and precious class of sources to study cosmic ray acceleration in SNRs. We present new multi-wavelength results of the two prominent objects RX J1713.7-3946 and HESS J1731-347. For RX J1713.7-3946, extensive new H.E.S.S. data have permitted to study the nature of the TeV-emitting CR particles through improved broadband spectral studies, as well as through detailed investigations of morphological differences between TeV gamma-rays and X-rays. Concerning HESS J1731-347, the TeV morphology of the object and its surroundings has been studied using cosmic ray acceleration simulations of the object. The SNR also hosts a luminous X-ray emitting central compact object (CCO). Investigations of the CCO in X-rays and in the infrared have permitted to set interesting constraints on the SNR and its progenitor.

  2. HESS J1427-608: An Unusual Hard, Unbroken Gamma-Ray Spectrum in a Very Wide Energy Range

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Lei; Xin, Yu-Liang; Liao, Neng-Hui; Yuan, Qiang; Gao, Wei-Hong; He, Hao-Ning; Fan, Yi-Zhong; Liu, Si-Ming

    2017-01-01

    We report the detection of a GeV γ-ray source that spatially overlaps and is thus very likely associated with the unidentified very high energy (VHE) γ-ray source HESS J1427-608 with the Pass 8 data recorded by the Fermi Large Area Telescope. The photon spectrum of this source is best described by a power law with an index of 1.85 ± 0.17 in the energy range of 3-500 GeV, and the measured flux connects smoothly with that of HESS J1427-608 at a few hundred gigaelectronvolts. This source shows no significant extension and time variation. The broadband GeV to TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427-608 may be a PeV particle accelerator. We discuss the possible nature of HESS J1427-608 according to the multiwavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multiwavelength data from radio to VHE γ-rays. The inferred magnetic field strength is a few micro-Gauss, which is smaller than the typical values of supernova remnants (SNRs) and is consistent with some pulsar wind nebulae (PWNe). On the other hand, the flat γ-ray spectrum is slightly different from typical PWNe but is similar to that of some known SNRs.

  3. No X-Ray Excess from the HESS J1741-302 Region, except for a New Intermediate Polar Candidate

    NASA Astrophysics Data System (ADS)

    Uchiyama, Hideki; Koyama, Katsuji; Matsumoto, Hironori; Tibolla, Omar; Kaufmann, Sarah; Wagner, Stefan

    2011-11-01

    With the Suzaku satellite, we observed an unidentified TeV gamma-ray source, HESS J1741-302, and its surroundings. No diffuse or point-like X-ray sources have been detected from the bright southern emission peak of HESS J1741-302. From its neighborhood, we found a new intermediate polar candidate at the position of (α, δ)J2000.0 = (17h40m35.s6, -30°14m16s), which is designated as Suzaku J174035.6-301416. The spectrum of Suzaku J174035.6-301416 exhibits emission lines at energy of 6.4, 6.7, and 7.0 keV, which can be assigned as the Kα lines from neutral, He-like, and H-like iron, respectively. A coherent pulsation is found at a period of 432.1±0.1s. The pulse profile is quasi-sinusoidal in the hard X-ray band (4-8 keV), but is more complicated in the soft X-ray band (1-3 keV). The moderate period of pulsation, the energy flux, and the presence of the iron Kα lines indicate that Suzaku J174035.6-302 and PSR B1737-30.

  4. Spectra of Cosmic Ray Electrons and Diffuse Gamma Rays with the Constraints of AMS-02 and HESS Data

    NASA Astrophysics Data System (ADS)

    Chen, Ding; Huang, Jing; Jin, Hong-Bo

    2015-10-01

    Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injection indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746-2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.

  5. SPECTRA OF COSMIC RAY ELECTRONS AND DIFFUSE GAMMA RAYS WITH THE CONSTRAINTS OF AMS-02 AND HESS DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ding; Jin, Hong-Bo; Huang, Jing, E-mail: hbjin@bao.ac.cn

    2015-10-01

    Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injectionmore » indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746–2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.« less

  6. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  7. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) < 1.33 × 10-8 m-2 s-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  8. A Response to Frederick Hess: Some Questions for Advocates of Public Education

    ERIC Educational Resources Information Center

    Nathan, Joe

    2004-01-01

    At this point in his long and varied career in public education, Joe Nathan, the author of this article is beginning to doubt some of his previous stances about the principles under which public schools should operate. He remains, however, a staunch supporter of public charter schools. As he reads Frederick Hess' argument that we need to…

  9. HESS J1427−608: AN UNUSUAL HARD, UNBROKEN γ -RAY SPECTRUM IN A VERY WIDE ENERGY RANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiao-Lei; Gao, Wei-Hong; Xin, Yu-Liang

    2017-01-20

    We report the detection of a GeV γ -ray source that spatially overlaps and is thus very likely associated with the unidentified very high energy (VHE) γ -ray source HESS J1427−608 with the Pass 8 data recorded by the Fermi Large Area Telescope . The photon spectrum of this source is best described by a power law with an index of 1.85 ± 0.17 in the energy range of 3–500 GeV, and the measured flux connects smoothly with that of HESS J1427−608 at a few hundred gigaelectronvolts. This source shows no significant extension and time variation. The broadband GeV tomore » TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427−608 may be a PeV particle accelerator. We discuss the possible nature of HESS J1427−608 according to the multiwavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multiwavelength data from radio to VHE γ -rays. The inferred magnetic field strength is a few micro-Gauss, which is smaller than the typical values of supernova remnants (SNRs) and is consistent with some pulsar wind nebulae (PWNe). On the other hand, the flat γ -ray spectrum is slightly different from typical PWNe but is similar to that of some known SNRs.« less

  10. A hydrodynamics-informed, radiation model for HESS J0632+057 from radio to gamma rays

    NASA Astrophysics Data System (ADS)

    Barkov, Maxim V.; Bosch-Ramon, Valenti

    2018-06-01

    Relativistic hydrodynamical simulations of the eccentric gamma-ray binary HESS J0632+057 show that the energy of a putative pulsar wind should accumulate in the binary surroundings between periastron and apastron, being released by fast advection close to apastron. To assess whether this could lead to a maximum of the non-thermal emission before apastron, we derive simple prescriptions for the non-thermal energy content, the radiation efficiency, and the impact of energy losses on non-thermal particles, in the simulated hydrodynamical flow. These prescriptions are used to estimate the non-thermal emission in radio, X-rays, GeV, and TeV, from the shocked pulsar wind in a binary system simulated using a simplified 3-dimensional scheme for several orbital cycles. Lightcurves at different wavelengths are derived, together with synthetic radio images for different orbital phases. The dominant peak in the computed lightcurves is broad and appears close to, but before, apastron. This peak is followed by a quasi-plateau shape, and a minor peak only in gamma rays right after periastron. The radio maps show ejection of radio blobs before apastron in the periastron-apastron direction. The results show that a scenario with a highly eccentric high-mass binary hosting a young pulsar can explain the general phenomenology of HESS J0632+057: despite its simplicity, the adopted approach yields predictions that are robust at a semi-quantitative level and consistent with multiwavelength observations.

  11. H.E.S.S. and CTA, present and perspectives in ground-based gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Sol, H.

    2016-12-01

    Very high energy (VHE) gamma-ray astronomy emerged as a new branch of astronomy about ten years ago with the major discoveries achieved by the High Energy Stereocopic System (H.E.S.S.) operating in Namibia, quickly followed by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) in the Canary Islands and the Very Energetic Radiation Imaging Telescope Array System (VERITAS) in the USA. These experiments succeeded to start exploring the cosmos at TeV energies, with the present detection of 178 sources in this range, mostly pulsar wind nebulae, supernova remnants, binary systems, blazars, and a variety of other types of sources. Based on these promizing results, the scientific community soon defined a next generation global project with significantly improved performance, the Cherenkov Telescope Array (CTA), in order to implement an open observatory at extreme energies, allowing a deep analysis of the sky in the highest part of the electromagnetic spectrum, from 20 GeV to 300 TeV. The CTA preparation phase is now completed. Production of the first telescopes should start in 2017 for deployment in 2018, in the perspective of an array fully operational at the horizon 2022.

  12. Impact of aerosols and adverse atmospheric conditions on the data quality for spectral analysis of the H.E.S.S. telescopes

    NASA Astrophysics Data System (ADS)

    Hahn, J.; de los Reyes, R.; Bernlöhr, K.; Krüger, P.; Lo, Y. T. E.; Chadwick, P. M.; Daniel, M. K.; Deil, C.; Gast, H.; Kosack, K.; Marandon, V.

    2014-02-01

    The Earth's atmosphere is an integral part of the detector in ground-based imaging atmospheric Cherenkov telescope (IACT) experiments and has to be taken into account in the calibration. Atmospheric and hardware-related deviations from simulated conditions can result in the mis-reconstruction of primary particle energies and therefore of source spectra. During the eight years of observations with the High Energy Stereoscopic System (H.E.S.S.) in Namibia, the overall yield in Cherenkov photons has varied strongly with time due to gradual hardware aging, together with adjustments of the hardware components, and natural, as well as anthropogenic, variations of the atmospheric transparency. Here we present robust data selection criteria that minimize these effects over the full data set of the H.E.S.S. experiment and introduce the Cherenkov transparency coefficient as a new atmospheric monitoring quantity. The influence of atmospheric transparency, as quantified by this coefficient, on energy reconstruction and spectral parameters is examined and its correlation with the aerosol optical depth (AOD) of independent MISR satellite measurements and local measurements of atmospheric clarity is investigated.

  13. The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Naurois, M. de; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; los Reyes, R. de; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; Eldik, C. van; Rensburg, C. van; Soelen, B. van; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Fermi-LAT Collaboration; Katsuta, J.

    2018-04-01

    The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). Gamma-ray observations of SNR-MC associations are a powerful tool to constrain the origin of Galactic cosmic rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. We report the detection of a γ-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes together with a study of the source with five years of Fermi-LAT high-energy γ-ray (0.06-300 GeV) data. The smoothly connected, combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at 304 ± 20 MeV and 8.4-2.5+2.2 GeV; the latter is constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR-MC associations and are found to be indicative of γ-ray emission produced through neutral-pion decay. The H.E.S.S. gamma-ray excess map (see Fig. 1, in FITS format) of the W49 region is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A5

  14. Identification of HESS J1303-631 as a pulsar wind nebula through γ-ray, X-ray, and radio observations

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-12-01

    Aims: The previously unidentified very high-energy (VHE; E > 100 GeV) γ-ray source HESS J1303-631, discovered in 2004, is re-examined including new data from the H.E.S.S. Cherenkov telescope array in order to identify this object. Archival data from the XMM-Newton X-ray satellite and from the PMN radio survey are also examined. Methods: Detailed morphological and spectral studies of VHE γ-ray emission as well as of the XMM-Newton X-ray data are performed. Radio data from the PMN survey are used as well to construct a leptonic model of the source. The γ-ray and X-ray spectra and radio upper limit are used to construct a one zone leptonic model of the spectral energy distribution (SED). Results: Significant energy-dependent morphology of the γ-ray source is detected with high-energy emission (E > 10 TeV) positionally coincident with the pulsar PSR J1301-6305 and lower energy emission (E < 2 TeV) extending 0.4° to the southeast of the pulsar. The spectrum of the VHE source can be described with a power-law with an exponential cut-off N0 = (5.6 ± 0.5) × 10-12 TeV-1 cm-2 s-1, Γ = 1.5 ± 0.2) and Ecut = (7.7 ± 2.2) TeV. The pulsar wind nebula (PWN) is also detected in X-rays, extending 2-3' from the pulsar position towards the center of the γ-ray emission region. A potential radio counterpart from the PMN survey is also discussed, showing a hint for a counterpart at the edge of the X-ray PWN trail and is taken as an upper limit in the SED. The extended X-ray PWN has an unabsorbed flux of F_2{-10 keV ˜ 1.6+0.2-0.4× 10-13 erg cm-2 s-1} and is detected at a significance of 6.5σ. The SED is well described by a one zone leptonic scenario which, with its associated caveats, predicts a very low average magnetic field for this source. Conclusions: Significant energy-dependent morphology of this source, as well as the identification of an associated X-ray PWN from XMM-Newton observations enable identification of the VHE source as an evolved PWN associated to the

  15. Water in orthopyroxene from abyssal spinel peridotites of the East Pacific Rise (ODP Leg 147: Hess Deep)

    NASA Astrophysics Data System (ADS)

    Hesse, Kirsten T.; Gose, Jürgen; Stalder, Roland; Schmädicke, Esther

    2015-09-01

    Abyssal spinel peridotites from Hess Deep, East Pacific Rise (ODP Leg 147) were investigated concerning their major, minor, and trace element mineral chemistry and the incorporation of structural water in orthopyroxene. The rocks are partially serpentinized harzburgites containing primary minerals of olivine, orthopyroxene, clinopyroxene, and spinel. Orthopyroxene is enstatitic with Mg# (Mg/(Mg + Fe)) between 0.90 and 0.92 and Al2O3 from 0.5 to 2.9 wt.%. The residual harzburgite experienced high degrees of melt removal in the spinel peridotite stability field. The average degree of partial melting was calculated to be 17.5% (range: 16.4-17.8%). Trace element data of ortho- and clinopyroxenes reflect this strong depletion, characteristic for the restitic nature of abyssal peridotites. Mantle re-equilibration temperatures around 1000 °C indicate that, after melt extraction and before exhumation to the ocean floor, the rocks experienced significant cooling in the spinel peridotite facies. Water contents of orthopyroxene range from 86 to 233 wt. ppm H2O with an average concentration of 142 wt. ppm H2O. These results represent the first data on water contents in the sub-pacific mantle obtained by direct measurements of sub-oceanic peridotite. The water contents are not related to mineral chemistry, stratigraphy, melting degree, mantle equilibrium conditions or oxidation state. Calculated post-melt peridotite water contents vary between 40 and 100 wt. ppm H2O. Compared to Mid-Atlantic Ridge peridotites, the East Pacific Rise samples of Leg 147 contain somewhat lower water concentrations than samples from Leg 153 and considerably higher contents than those of Leg 209 (Gose et al., 2009; Schmädicke et al., 2011). In Leg 147, the strongest OH absorbtion band occurs at 3420 cm- 1, wheras orthopyroxene from MAR peridotite (Legs 153 and 209) has its strongest absorbtion band at 3566 and 3522 cm- 1. The mantle equilibrium temperature of Leg 147 peridotites is lower than that

  16. Integration of posture and movement: contributions of Sherrington, Hess, and Bernstein.

    PubMed

    Stuart, Douglas G

    2005-01-01

    Neural mechanisms that integrate posture with movement are widespread throughout the central nervous system (CNS), and they are recruited in patterns that are both task- and context-dependent. Scientists from several countries who were born in the 19th century provided essential groundwork for these modern-day concepts. Here, the focus is on three of this group with each selected for a somewhat different reason. Charles Sherrington (1857-1952) had innumerable contributions that were certainly needed in the subsequent study of posture and movement: inhibition as an active coordinative mechanism, the functional anatomy of spinal cord-muscle connectivity, and helping set the stage for modern work on the sensorimotor cortex and the corticospinal tract. Sadly, however, by not championing the work of his trainee and collaborator, Thomas Graham Brown (1882-1965), he delayed progress on two key motor control mechanisms: central programming and pattern generation. Walter Hess (1881-1973), a self-taught experimentalist, is now best known for his work on CNS coordination of autonomic (visceral) and emotional behavior. His contributions to posture and movement, however, were also far-reaching: the coordination of eye movements and integration of goal-directed and "framework" (anticipatory set) motor behavior. Nikolai Bernstein (1896-1966), the quintessence of an interdisciplinary, self-taught movement neuroscientist, made far-reaching contributions that were barely recognized by Western workers prior to the 1960s. Today, he is widely praised for showing that the CNS's hierarchy of control mechanisms for posture and movement is organized hand-in-hand with distributed and parallel processing, with all three subject to evolutionary pressures. He also made important observations, like those of several previous workers, on the goal focus of voluntary movements. The contributions of Sherrington, Hess, and Bernstein are enduring. They prompt thought on the philosophical axioms that

  17. Population study of Galactic supernova remnants at very high γ-ray energies with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-04-01

    Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 1015 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm-3 and electron-to-proton energy fractions above 10 TeV to ɛep ≤ 5 × 10-3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.

  18. Models of Deformation of Uppermost Oceanic Lithosphere: Comparison of Crustal Flexure in the Blönduós Area, Northern Iceland, and Structure of East Pacific Rise Crust at Hess Deep

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Karson, J. A.; Varga, R. J.; Gee, J. S.

    2007-12-01

    Models of the internal structure of oceanic crust have been constructed from studies of ophiolites and from more recent observations of tectonic windows into the upper crust. Spreading rate and/or magma supply are the central variables that control ridge processes and the ultimate architecture of ocean crust. In addition to ophiolites, Iceland also provides an important analog to study mid-ocean ridge processes and structure. Flexure zones in Iceland characterize the structure of Tertiary-Recent lava flows, and are areas wherein lavas dip regionally inward toward the axis of one of several ~N/S-trending rift zones. These rift zones are interpreted to represent fossil spreading centers which were abandoned during a series of eastward-directed ridge jumps. In the Hildará area, north-central Iceland, the eastern side of a regional flexure is characterized by westward-dipping lavas, approximately 6-8 Ma, which are cut by east-dipping normal faults and dikes. The upper-crustal structure within this flexure zone from slow spread (~20 mm/yr) crust exhibits remarkable similarities to the structure of the upper crust created at a fast-spreading (110 mm/yr) segment of the East Pacific Rise (EPR) observed at Hess Deep. In this modern ocean setting, ~1 Ma crust is characterized by west-dipping lavas above consistently east-dipping (away from the EPR) dikes and dike-subparallel fault zones. In both locations, paleomagnetic and structural data indicate that west-dipping lavas and east-dipping dikes result from tectonic rotations. In addition, cross-cutting dike relationships demonstrate that dike intrusion occurred both during and after normal fault- related tilting. These data indicate that fault-controlled tilting was initiated within the narrow neovolcanic zone of the ridge and is not associated with off-axis processes. Lavas at magmatically robust ridges commonly flow away from elevated ridge-crests. Measurement of anisotropy of magnetic susceptibility (AMS) of the lavas

  19. Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT γ-Ray Data.

    PubMed

    Gaggero, D; Grasso, D; Marinelli, A; Taoso, M; Urbano, A

    2017-07-21

    We present a novel interpretation of the γ-ray diffuse emission measured by Fermi-LAT and H.E.S.S. in the Galactic center (GC) region and the Galactic ridge (GR). In the first part we perform a data-driven analysis based on PASS8 Fermi-LAT data: We extend down to a few GeV the spectra measured by H.E.S.S. and infer the primary cosmic-ray (CR) radial distribution between 0.1 and 3 TeV. In the second part we adopt a CR transport model based on a position-dependent diffusion coefficient. Such behavior reproduces the radial dependence of the CR spectral index recently inferred from the Fermi-LAT observations. We find that the bulk of the GR emission can be naturally explained by the interaction of the diffuse steady-state Galactic CR sea with the gas present in the central molecular zone. Although we confirm the presence of a residual radial-dependent emission associated with a central source, the relevance of the large-scale diffuse component prevents to claim a solid evidence of GC pevatrons.

  20. Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Putman, William; Suarez, Max

    2010-01-01

    With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.

  1. Impact of Tropopause Structures on Deep Convective Transport Observed during MACPEX

    NASA Astrophysics Data System (ADS)

    Mullendore, G. L.; Bigelbach, B. C.; Christensen, L. E.; Maddox, E.; Pinkney, K.; Wagner, S.

    2016-12-01

    Deep convection is the most efficient method of transporting boundary layer mass to the upper troposphere and stratosphere (UTLS). The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) was conducted during April of 2011 over the central U.S. With a focus on cirrus clouds, the campaign flights often sampled large cirrus anvils downstream from deep convection and included an extensive observational suite of chemical measurements on a high altitude aircraft. As double-tropopause structures are a common feature in the central U.S. during the springtime, the MACPEX campaign provides a good opportunity to gather cases of deep convective transport in the context of both single and double tropopause structures. Sampling of chemical plumes well downstream from convection allows for sampling in relatively quiescent conditions and analysis of irreversible transport. The analysis presented includes multiple methods to assess air mass source and possible convective processing, including back trajectories and ratios of chemical concentrations. Although missions were flown downstream of deep convection, recent processing by convection does not seem likely in all cases that high altitude carbon monoxide plumes were observed. Additionally, the impact of single and double tropopause structures on deep convective transport is shown to be strongly dependent on high stability layers.

  2. Population study of Galactic supernova remnants at very high γ -ray energies with H.E.S.S.

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2018-04-01

    Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 10 15 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study inmore » VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm -3 and electron-to-proton energy fractions above 10 TeV to ϵ ep ≤ 5 × 10 -3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.« less

  3. Population study of Galactic supernova remnants at very high γ -ray energies with H.E.S.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 10 15 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study inmore » VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm -3 and electron-to-proton energy fractions above 10 TeV to ϵ ep ≤ 5 × 10 -3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.« less

  4. Characterising the VHE diffuse emission in the central 200 parsecs of our Galaxy with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    The diffuse very high-energy (VHE; >100 GeV) γ-ray emission observed in the central 200 pc of the Milky Way by H.E.S.S. was found to follow dense matter distribution in the central molecular zone (CMZ) up to a longitudinal distance of about 130 pc to the Galactic centre (GC), where the flux rapidly decreases. This was initially interpreted as the result of a burst-like injection of energetic particles 104 yr ago, but a recent more sensitive H.E.S.S. analysis revealed that the cosmic-ray (CR) density profile drops with the distance to the centre, making data compatible with a steady cosmic PeVatron at the GC. In this paper, we extend this analysis to obtain, for the first time, a detailed characterisation of the correlation with matter and to search for additional features and individual γ-ray sources in the inner 200 pc. Taking advantage of 250 h of H.E.S.S. data and improved analysis techniques, we perform a detailed morphology study of the diffuse VHE emission observed from the GC ridge and reconstruct its total spectrum. To test the various contributions to the total γ-ray emission, we used an iterative 2D maximum-likelihood approach that allows us to build a phenomenological model of the emission by summing a number of different spatial components. We show that the emission correlated with dense matter covers the full CMZ and that its flux is about half the total diffuse emission flux. We also detect some emission at higher latitude that is likely produced by hadronic collisions of CRs in less dense regions of the GC interstellar medium. We detect an additional emission component centred on the GC and extending over about 15 pc that is consistent with the existence of a strong CR density gradient and confirms the presence of a CR accelerator at the very centre of our Galaxy. We show that the spectrum of full ridge diffuse emission is compatible with that previously derived from the central regions, suggesting that a single population of particles fills the

  5. Fermi-LAT Constraints on the Pulsar Wind Nebula Nature of HESS J1857+026

    NASA Technical Reports Server (NTRS)

    Rousseau, R.; Grondin, M.-H.; VanEtten, A.; Lemoine-Goumard, M.; Bogdanov, S.; Hessels, J. W. T.; Kaspi, V. M.; Arzoumanian, Z.; Camilo, F.; Casandjian, J. M.; hide

    2012-01-01

    Since its launch, the Fermi satellite has firmly identified 5 pulsar wind nebulae plus a large number of candidates, all powered by young and energetic pulsars. HESS J1857+026 is a spatially extended gamma-ray source detected by H.E.S.S. and classified as a possible pulsar wind nebula candidate powered by PSR J1856+0245. Aims. We search for -ray pulsations from PSR J1856+0245 and explore the characteristics of its associated pulsar wind nebula. Methods. Using a rotational ephemeris obtained from the Lovell telescope at Jodrell Bank Observatory at 1.5 GHz, we phase.fold 36 months of gamma-ray data acquired by the Large Area Telescope (LAT) aboard Fermi. We also perform a complete gamma-ray spectral and morphological analysis. Results. No pulsation was detected from PSR J1856+0245. However, significant emission is detected at a position coincident with the TeV source HESS J1857+026. The gamma-ray spectrum is well described by a simple power law with a spectral index of Gamma = 1.53 +/- 0.11(sub stat) +/- 0.55(sub syst) and an energy flux of G(0.1 C100 GeV) = (2.71 +/- 0.52(sub stat) +/- 1.51(sub syst) X 10(exp -11) ergs/ sq cm/s. This implies a gamma.ray efficiency of approx 5 %, assuming a distance of 9 kpc, the gamma-ray luminosity of L(sub gamma) (sub PWN) (0.1 C100 GeV) = (2.5 +/- 0.5(sub stat) +/- 1.5(sub syst)) X 10(exp 35)(d/(9kpc))(exp 2) ergs/s and E-dot = 4.6 X 10(exp 36) erg /s, in the range expected for pulsar wind nebulae. Detailed multi-wavelength modeling provides new constraints on its pulsar wind nebula nature.

  6. Fermi-LAT constraints on the pulsar wind nebula nature of HESS J1857+026

    NASA Astrophysics Data System (ADS)

    Rousseau, R.; Grondin, M.-H.; Van Etten, A.; Lemoine-Goumard, M.; Bogdanov, S.; Hessels, J. W. T.; Kaspi, V. M.; Arzoumanian, Z.; Camilo, F.; Casandjian, J. M.; Espinoza, C. M.; Johnston, S.; Lyne, A. G.; Smith, D. A.; Stappers, B. W.; Caliandro, G. A.

    2012-08-01

    Context. Since its launch, the Fermi satellite has firmly identified 5 pulsar wind nebulae plus a large number of candidates, all powered by young and energetic pulsars. HESS J1857 + 026 is a spatially extended γ-ray source detected by H.E.S.S. and classified as a possible pulsar wind nebula candidate powered by PSR J1856 + 0245. Aims: We search for γ-ray pulsations from PSR J1856+0245 and explore the characteristics of its associated pulsar wind nebula. Methods: Using a rotational ephemeris obtained from the Lovell telescope at Jodrell Bank Observatory at 1.5 GHz, we phase-fold 36 months of γ-ray data acquired by the Large Area Telescope (LAT) aboard Fermi. We also perform a complete γ-ray spectral and morphological analysis. Results: No γ-ray pulsations were detected from PSR J1856+0245. However, significant emission is detected at a position coincident with the TeV source HESS J1857 + 026. The γ-ray spectrum is well described by a simple power-law with a spectral index of Γ = 1.53 ± 0.11stat ± 0.55syst and an energy flux of G(0.1-100 GeV) = (2.71 ± 0.52stat ± 1.51syst) × 10-11 erg cm-2 s-1. The γ-ray luminosity is LPWNγ (0.1-100 GeV)=(2.5 ± 0.5stat ± 1.5syst) × 1035 (d/9 kpc)2 erg s-1, assuming a distance of 9 kpc. This implies a γ-ray efficiency of ~5% for Ė = 4.6 × 1036 erg s-1, in the range expected for pulsar wind nebulae. Detailed multi-wavelength modeling provides new constraints on its pulsar wind nebula nature.

  7. Fermi -LAT constraints on the pulsar wind nebula nature of HESS J1857+026

    DOE PAGES

    Rousseau, R.; Grondin, M. -H.; Van Etten, A.; ...

    2012-07-17

    Since its launch, the Fermi satellite has firmly identified 5 pulsar wind nebulae plus a large number of candidates, all powered by young and energetic pulsars. HESS J1857 + 026 is a spatially extended γ-ray source detected by H.E.S.S. and classified as a possible pulsar wind nebula candidate powered by PSR J1856 + 0245. Here, we search for γ-ray pulsations from PSR J1856+0245 and explore the characteristics of its associated pulsar wind nebula. Using a rotational ephemeris obtained from the Lovell telescope at Jodrell Bank Observatory at 1.5 GHz, we phase-fold 36 months of γ-ray data acquired by the Large Area Telescope (LAT) aboard Fermi. We also perform a complete γ-ray spectral and morphological analysis. No γ-ray pulsations were detected from PSR J1856+0245. But, significant emission is detected at a position coincident with the TeV source HESS J1857 + 026. The γ-ray spectrum is well described by a simple power-law with a spectral index of Γ = 1.53 ± 0.11 stat ± 0.55 syst and an energy flux of G(0.1–100 GeV) = (2.71 ± 0.52 stat ± 1.51 syst) × 10 -11 erg cm -2 s -1. The γ-ray luminosity is L PWN γ (0.1–100 GeV)=(2.5 ± 0.5 stat ± 1.5 syst) × 10 35 (d/9 kpc) 2 erg s -1, assuming a distance of 9 kpc. This implies a γ-ray efficiency of ~5% formore » $$\\dot{E}$$ = 4.6 × 10 36 erg s -1, in the range expected for pulsar wind nebulae. This detailed multi-wavelength modeling provides new constraints on its pulsar wind nebula nature.« less

  8. Constraints on particle acceleration in SS433/W50 from MAGIC and H.E.S.S. observations

    NASA Astrophysics Data System (ADS)

    MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; de Oña Wilhelmi, E.; di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Oramas, A.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Munar-Adrover, P.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zywucka, N.

    2018-04-01

    Context. The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes above the sensitivity limits of current Cherenkov telescopes have been predicted for both the central X-ray binary system and the interaction regions of SS 433 jets with the surrounding W50 nebula. Non-thermal emission at lower energies has been previously reported, indicating that efficient particle acceleration is taking place in the system. Aim. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses (Porb 13.1 days) and precession of the circumstellar disk (Ppre 162 days) periodically covering the central binary system is expected to be at its minimum. The eastern and western SS 433/W50 interaction regions are also examined using the whole data set available. We aim to constrain some theoretical models previously developed for this system with our observations. Methods: We made use of dedicated observations from the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC) and High Energy Spectroscopic System (H.E.S.S.) of SS 433 taken from 2006 to 2011. These observation were combined for the first time and accounted for a total effective observation time of 16.5 h, which were scheduled considering the expected phases of minimum absorption of the putative VHE emission. Gamma-ray attenuation does not affect the jet/medium interaction regions. In this case, the analysis of a larger data set amounting to 40-80 h, depending on the region, was employed. Results: No evidence of VHE gamma-ray emission either from the central binary system or from the eastern/western interaction regions was found. Upper limits were computed for the combined data set. Differential fluxes from the central system are found to be ≲ 10-12-10-13 TeV-1 cm-2 s-1 in an energy interval ranging from few × 100 Ge

  9. Deep-sea macrourid fishes scavenge on plant material: Evidence from in situ observations

    NASA Astrophysics Data System (ADS)

    Jeffreys, Rachel M.; Lavaleye, Marc S. S.; Bergman, Magda J. N.; Duineveld, Gerard C. A.; Witbaard, Rob; Linley, Thom

    2010-04-01

    Deep-sea benthic communities primarily rely on an allochthonous food source. This may be in the form of phytodetritus or as food falls e.g. sinking carcasses of nekton or debris of marine macrophyte algae. Deep-sea macrourids are the most abundant demersal fish in the deep ocean. Macrourids are generally considered to be the apex predators/scavengers in deep-sea communities. Baited camera experiments and stable isotope analyses have demonstrated that animal carrion derived from the surface waters is an important component in the diets of macrourids; some macrourid stomachs also contained vegetable/plant material e.g. onion peels, oranges, algae. The latter observations led us to the question: is plant material an attractive food source for deep-sea scavenging fish? We simulated a plant food fall using in situ benthic lander systems equipped with a baited time-lapse camera. Abyssal macrourids and cusk-eels were attracted to the bait, both feeding vigorously on the bait, and the majority of the bait was consumed in <30 h. These observations indicate (1) plant material can produce an odour plume similar to that of animal carrion and attracts deep-sea fish, and (2) deep-sea fish readily eat plant material. This represents to our knowledge the first in situ documentation of deep-sea fish ingesting plant material and highlights the variability in the scavenging nature of deep-sea fishes. This may have implications for food webs in areas where macrophyte/seagrass detritus is abundant at the seafloor e.g. canyon systems and continental shelves close to seagrass meadows (Bahamas and Mediterranean).

  10. Adaptive fractional order sliding mode control for Boost converter in the Battery/Supercapacitor HESS

    PubMed Central

    Xu, Dan; Zhou, Huan; Zhou, Tao

    2018-01-01

    In this paper, an adaptive fractional order sliding mode control (AFSMC) scheme is designed for the current tracking control of the Boost-type converter in a Battery/Supercapacitor hybrid energy storage system (HESS). In order to stabilize the current, the adaptation rules based on state-observer and Lyapunov function are being designed. A fractional order sliding surface function is defined based on the tracking current error and adaptive rules. Furthermore, through fractional order analysis, the stability of the fractional order control system is proven, and the value of the fractional order (λ) is being investigated. In addition, the effectiveness of the proposed AFSMC strategy is being verified by numerical simulations. The advantages of good transient response and robustness to uncertainty are being indicated by this design, when compared with a conventional integer order sliding mode control system. PMID:29702696

  11. Adaptive fractional order sliding mode control for Boost converter in the Battery/Supercapacitor HESS.

    PubMed

    Wang, Jianlin; Xu, Dan; Zhou, Huan; Zhou, Tao

    2018-01-01

    In this paper, an adaptive fractional order sliding mode control (AFSMC) scheme is designed for the current tracking control of the Boost-type converter in a Battery/Supercapacitor hybrid energy storage system (HESS). In order to stabilize the current, the adaptation rules based on state-observer and Lyapunov function are being designed. A fractional order sliding surface function is defined based on the tracking current error and adaptive rules. Furthermore, through fractional order analysis, the stability of the fractional order control system is proven, and the value of the fractional order (λ) is being investigated. In addition, the effectiveness of the proposed AFSMC strategy is being verified by numerical simulations. The advantages of good transient response and robustness to uncertainty are being indicated by this design, when compared with a conventional integer order sliding mode control system.

  12. [Medical counseling of public health-insurances in questions of occupational diseases in regard to economical benefits--project of cooperation between AOK Hesse and the Medical Advisory and Expertising Service Hesse].

    PubMed

    Löffler, M; Glake, R; Hack, H P; Schaller, H

    2003-07-01

    Since September 1998 exists a project of cooperation and consultation between the AOK Hesse and the Medical Advisory and Expertising Service Hesse with the aim to identify occupational diseases and to survey decisions of the Employer's Liability Insurance Association. The procedure is based on a computer-added recognition-system, a profound preparation of the single cases by the employees of the health-insurance and a very intensively carried out deliberation by Medical Doctors of occupational medicine. In a period of four and a half year 8391 cases have been reviewed of which 4859 have already been determined. An approval as occupational disease by the Employer's Liability Insurance Association has been determined in 1954 cases, in 2905 cases the acknowledgement has not been determined. Regarding the determined cases a recourse of 10,078,922.27 EUR has been realized. In regard to the invested small resources of personnel the procedure has proved itself as highly effective to discover and to assert recourses. Beside the economical aspects for the public health-insurance, other results of the project were the assurance of the entitlement to benefits of people coming down with occupational diseases or their relatives. New insights about the actual development of occupational diseases in Germany als well as their prevention can be proceeded.

  13. Weather and atmosphere observation with the ATOM all-sky camera

    NASA Astrophysics Data System (ADS)

    Jankowsky, Felix; Wagner, Stefan

    2015-03-01

    The Automatic Telescope for Optical Monitoring (ATOM) for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.

  14. Science Observations of Deep Space One

    NASA Technical Reports Server (NTRS)

    Nelson, Robert M.; Baganal, Fran; Boice, Daniel C.; Britt, Daniel T.; Brown, Robert H.; Buratti, Bonnie J.; Creary, Frank; Ip, Wing-Huan; Meier, Roland; Oberst, Juergen

    1999-01-01

    During the Deep Space One (DS1) primary mission, the spacecraft will fly by asteroid 1992 KD and possibly comet Borrelly. There are two technologies being validated on DS1 that will provide science observations of these targets, the Miniature Integrated Camera Spectrometer (MICAS) and the Plasma Experiment for Planetary Exploration (PEPE). MICAS encompasses a camera, an ultraviolet imaging spectrometer and an infrared imaging spectrometer. PEPE combines an ion and electron analyzer designed to determine the three-dimensional distribution of plasma over its field of view. MICAS includes two visible wavelength imaging channels, an ultraviolet imaging spectrometer, and an infrared imaging spectrometer all of which share a single 10-cm diameter telescope. Two types of visible wavelength detectors, both operating between about 500 and 1000 nm are used: a CCD with 13-microrad pixels and an 18-microrad-per-pixel, metal-on-silicon active pixel sensor (APS). Unlike the CCD the APS includes the timing and control electronics on the chip along with the detector. The UV spectrometer spans 80 to 185 nm with 0.64-nm spectral resolution and 316-microrad pixels. The IR spectrometer covers the range from 1200 to 2400 nm with 6.6-nm resolution and 54-microrad pixels PEPE includes a very low-power, low-mass micro-calorimeter to help understand plasma-surface interactions and a plasma analyzer to identify de individual molecules and atoms in the immediate vicinity of the spacecraft that have been eroded off the surface of asteroid 1992 KD. It employs common apertures with separate electrostatic energy analyzers. It measures electron and ion energies spanning a range of 3 eV to 30 keV, with a resolution of five percent. and measures ion mass from one to 135 atomic mass units with 5 percent resolution. It electrostatically sweeps its field of view both in elevation and azimuth. Both MICAS and PEPE represent a new direction for the evolution of science instruments for interplanetary

  15. Interpretation of deep levels in Si-GaAs crystals observed by photo-induced current transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Hlinomaz, P.; Šmíd, V.; Krištofik, J.

    1993-05-01

    Deep levels measured by Photo-Induced Current Transient Spectroscopy (PICTS) are interpreted taking into account different bulk and surface properties of semi-insulating crystals, results of directly measured isothermal transients and types of observed deep levels determined from the measurements with different voltage polarity. The principal interest is focused on the temperature interval 250-450 K where peaks related to the deep levels causing semiinsulating properties are observed in the PICTS spectra. Majority of deep levels observed in various samples may be ascribed to the EL2, EL3, EL4, HL1 and HL9 levels. Maxima exhibiting inverse polarity in PICTS spectra are not related to EL2 or HL1.

  16. Evaluating Effectiveness of Modeling Motion System Feedback in the Enhanced Hess Structural Model of the Human Operator

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.

    2009-01-01

    In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.

  17. H.E.S.S. reveals a lack of TeV emission from the supernova remnant Puppis A

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-02-01

    Context. Puppis A is an interesting ~4 kyr-old supernova remnant (SNR) that shows strong evidence of interaction between the forward shock and a molecular cloud. It has been studied in detail from radio frequencies to high-energy (HE, 0.1-100 GeV) γ-rays. An analysis of the Fermi-LAT data has shown extended HE γ-ray emission with a 0.2-100 GeV spectrum exhibiting no significant deviation from a power law, unlike most of the GeV-emitting SNRs known to be interacting with molecular clouds. This makes it a promising target for imaging atmospheric Cherenkov telescopes (IACTs) to probe the γ-ray emission above 100 GeV. Aims: Very-high-energy (VHE, E ≥ 0.1 TeV) γ-ray emission from Puppis A has been, for the first time, searched for with the High Energy Stereoscopic System (H.E.S.S.). Methods: Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the direction and energy of the incident γ-rays in order to produce sky images and source spectra. The profile likelihood method is applied to find constraints on the existence of a potential break or cutoff in the photon spectrum. Results: The analysis of the H.E.S.S. data does not reveal any significant emission towards Puppis A. The derived upper limits on the differential photon flux imply that its broadband γ-ray spectrum must exhibit a spectral break or cutoff. By combining Fermi-LAT and H.E.S.S. measurements, the 99% confidence-level upper limits on such a cutoff are found to be 450 and 280 GeV, assuming a power law with a simple exponential and a sub-exponential cutoff, respectively. It is concluded that none of the standard limitations (age, size, radiative losses) on the particle acceleration mechanism, assumed to be continuing at present, can explain the lack of VHE signal. The scenario in which particle acceleration has ceased some time ago is considered as an alternative explanation. The HE/VHE spectrum of Puppis A could then exhibit a break of non-radiative origin (as

  18. NuSTAR Discovery Of A Young, Energetic Pulsar Associated with the Luminous Gamma-Ray Source HESS J1640-465

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Tomsick, J. A.; Halpern, J. P.; Gelfand, J. D.; Harrison, F. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, J. C.; Kaspi, V. M.; hide

    2014-01-01

    We report the discovery of a 206 ms pulsar associated with the TeV gamme-ray source HESS J1640-465 using the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray observatory. PSR J1640-4631 lies within the shelltype supernova remnant (SNR) G338.3-0.0, and coincides with an X-ray point source and putative pulsar wind nebula (PWN) previously identified in XMM-Newton and Chandra images. It is spinning down rapidly with period derivative P = 9.758(44) × 10(exp -13), yielding a spin-down luminosity E = 4.4 × 10(exp 36) erg s(exp -1), characteristic age tau(sub c) if and only if P/2 P = 3350 yr, and surface dipole magnetic field strength B(sub s) = 1.4×10(exp 13) G. For the measured distance of 12 kpc to G338.3-0.0, the 0.2-10 TeV luminosity of HESS J1640-465 is 6% of the pulsar's present E. The Fermi source 1FHL J1640.5-4634 is marginally coincident with PSR J1640-4631, but we find no gamma-ray pulsations in a search using five years of Fermi Large Area Telescope (LAT) data. The pulsar energetics support an evolutionary PWN model for the broadband spectrum of HESS J1640-465, provided that the pulsar's braking index is n approximately equal to 2, and that its initial spin period was P(sub 0) approximately 15 ms.

  19. Search for γ -Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdallah, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Liu, R.; Lohse, T.; Lorentz, M.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schandri, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.; H. E. S. S. Collaboration

    2018-05-01

    Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ -ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σ v ⟩ for monoenergetic DM lines at the level of 4 ×10-28 cm3 s-1 at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ -ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ -ray photons at the level expected from the thermal relic density for TeV DM particles.

  20. Search for γ-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    PubMed

    Abdallah, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Angüner, E O; Arakawa, M; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bonnefoy, S; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Büchele, M; Bulik, T; Capasso, M; Caroff, S; Carosi, A; Carr, J; Casanova, S; Cerruti, M; Chakraborty, N; Chaves, R C G; Chen, A; Chevalier, J; Colafrancesco, S; Condon, B; Conrad, J; Davids, I D; Decock, J; Deil, C; Devin, J; deWilt, P; Dirson, L; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dutson, K; Dyks, J; Edwards, T; Egberts, K; Eger, P; Emery, G; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gallant, Y A; Garrigoux, T; Gaté, F; Giavitto, G; Giebels, B; Glawion, D; Glicenstein, J F; Gottschall, D; Grondin, M-H; Hahn, J; Haupt, M; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Hoischen, C; Holch, T L; Holler, M; Horns, D; Ivascenko, A; Iwasaki, H; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katsuragawa, M; Katz, U; Kerszberg, D; Khangulyan, D; Khélifi, B; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Liu, R; Lohse, T; Lorentz, M; López-Coto, R; Lypova, I; Malyshev, D; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Mohrmann, L; Morå, K; Moulin, E; Murach, T; Nakashima, S; de Naurois, M; Ndiyavala, H; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Ohm, S; Ostrowski, M; Oya, I; Padovani, M; Panter, M; Parsons, R D; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P-O; Peyaud, B; Piel, Q; Pita, S; Poireau, V; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Rauth, R; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Rinchiuso, L; Romoli, C; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Saito, S; Sanchez, D A; Santangelo, A; Sasaki, M; Schandri, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Seglar-Arroyo, M; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Shiningayamwe, K; Simoni, R; Sol, H; Spanier, F; Spir-Jacob, M; Stawarz, Ł; Steenkamp, R; Stegmann, C; Steppa, C; Sushch, I; Takahashi, T; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tiziani, D; Tluczykont, M; Trichard, C; Tsirou, M; Tsuji, N; Tuffs, R; Uchiyama, Y; van der Walt, J; van Eldik, C; van Rensburg, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zaborov, D; Zacharias, M; Zanin, R; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Zorn, J; Żywucka, N

    2018-05-18

    Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ-ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σv⟩ for monoenergetic DM lines at the level of 4×10^{-28}  cm^{3} s^{-1} at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ-ray photons at the level expected from the thermal relic density for TeV DM particles.

  1. Spectral study of the HESS J1745-290 gamma-ray source as dark matter signal

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Gammaldi, V.; Maroto, A. L.

    2013-04-01

    We study the main spectral features of the gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source during the years 2004, 2005 and 2006. In particular, we show that these data are well fitted as the secondary gamma-rays photons generated from dark matter annihilating into Standard Model particles in combination with a simple power law background. We present explicit analyses for annihilation in a single standard model particle-antiparticle pair. In this case, the best fits are obtained for the uū and dbar d quark channels and for the W+W- and ZZ gauge bosons, with background spectral index compatible with the Fermi-Large Area Telescope (LAT) data from the same region. The fits return a heavy WIMP, with a mass above ~ 10 TeV, but well below the unitarity limit for thermal relic annihilation.

  2. Paleomagnetic constraints on deformation of superfast-spread oceanic crust exposed at Pito Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2011-12-01

    The uppermost oceanic crust produced at the superfast spreading (˜142 km Ma-1, full-spreading rate) southern East Pacific Rise (EPR) during the Gauss Chron is exposed in a tectonic window along the northeastern wall of the Pito Deep Rift. Paleomagnetic analysis of fully oriented dike (62) and gabbro (5) samples from two adjacent study areas yield bootstrapped mean remanence directions of 38.9° ± 8.1°, -16.7° ± 15.6°, n = 23 (Area A) and 30.4° ± 8.0°, -25.1° ± 12.9°, n = 44 (Area B), both are significantly distinct from the Geocentric Axial Dipole expected direction at 23° S. Regional tectonics and outcrop-scale structural data combined with bootstrapped remanence directions constrain models that involve a sequence of three rotations that result in dikes restored to subvertical orientations related to (1) inward-tilting of crustal blocks during spreading (Area A = 11°, Area B = 22°), (2) clockwise, vertical-axis rotation of the Easter Microplate (A = 46°, B = 44°), and (3) block tilting at Pito Deep Rift (A = 21°, B = 10°). These data support a structural model for accretion at the southern EPR in which outcrop-scale faulting and block rotation accommodates spreading-related subaxial subsidence that is generally less than that observed in crust generated at a fast spreading rate exposed at Hess Deep Rift. These data also support previous estimates for the clockwise rotation of crust adjacent to the Easter Microplate. Dike sample natural remanent magnetization (NRM) has an arithmetic mean of 5.96 A/m ± 3.76, which suggests that they significantly contribute to observed magnetic anomalies from fast- to superfast-spread crust.

  3. The First Deep WSRT 150~MHz Full Polarization Observations

    NASA Astrophysics Data System (ADS)

    de Bruyn, A. G.; Bernardi, G.; Lofar Eor-Team

    2009-09-01

    We present the first deep total intensity and full polarization observations with the WSRT at frequencies from 116-162 MHz. Under stable ionospheric conditions we can image regions as large as 20°diameter with a single direction independent selfcalibration without detectable non-isoplanaticity effects. Deep imaging at low frequencies, however, requires removal of the brightest northern hemisphere radio sources (the A-team). A noise level of about 3 mJy, limited by classical confusion, can be achieved in Stokes I with the WSRT within a single 12 h synthesis in this frequency band. Thermal noise levels of 0.5 mJy have been reached in 6×12 h syntheses. These images have dynamic range in excess of about 20,000:1. In one such deep synthesis of the FAN region we have detected strong linear polarization over a range of Faraday depths from -6 to +2 rad m-2. The properties of a 3°diameter ring-like structure, first studied in detail by \\citeauthor{hav2003} (\\citeyear{hav2003}), suggest that we are dealing with a spherical `Faraday bubble', a region with strongly enhanced Faraday rotation. We have also detected, for the first time, structure on a scale of about 10 arcmin in the diffuse Galactic synchrotron foreground.

  4. Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS 2155$-$304 and PG 1553+113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    In this paper, the addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment’s sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument’s energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≥0.5. The high-frequency peaked BL Lac objects PKS 2155–304 (z = 0.116) and PG 1553+113 (0.43 < z < 0.58) are among the brightestmore » objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Furthermore, the aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155–304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Multiple observational campaigns of PKS 2155–304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1–5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. As a result, using the data from CT5, the energy spectra of PKS 2155–304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155–304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0σ statistical preference for non-zero curvature for PKS 2155–304 and 4.5σ for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data

  5. Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS 2155-304 and PG 1553+113

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; LAT Collaboration; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Bellazzini, R.; Blandford, R. D.; Bonino, R.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desiante, R.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Donaggio, B.; Favuzzi, C.; Focke, W. B.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Guillemot, L.; Guiriec, S.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kocevski, D.; Larsson, S.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Negro, M.; Nuss, E.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Principe, G.; Rainò, S.; Razzano, M.; Simone, D.; Siskind, E. J.; Spada, F.; Spinelli, P.; Thayer, J. B.; Torres, D. F.; Torresi, E.; Troja, E.; Vianello, G.; Wood, K. S.

    2017-04-01

    Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≥0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553+113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims: The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Methods: Multiple observational campaigns of PKS 2155-304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results: Using the data from CT5, the energy spectra of PKS 2155-304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155-304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0σ statistical preference for non-zero curvature for PKS 2155-304 and 4.5σ for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the

  6. Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS 2155$-$304 and PG 1553+113

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2017-04-05

    In this paper, the addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment’s sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument’s energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≥0.5. The high-frequency peaked BL Lac objects PKS 2155–304 (z = 0.116) and PG 1553+113 (0.43 < z < 0.58) are among the brightestmore » objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Furthermore, the aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155–304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Multiple observational campaigns of PKS 2155–304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1–5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. As a result, using the data from CT5, the energy spectra of PKS 2155–304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155–304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0σ statistical preference for non-zero curvature for PKS 2155–304 and 4.5σ for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data

  7. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Technical Reports Server (NTRS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; hide

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. < 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other

  8. Bernard J. Wood Receives 2013 Harry H. Hess Medal: Response

    NASA Astrophysics Data System (ADS)

    Wood, Bernard J.

    2014-01-01

    President Finn, friends, and colleagues, I am truly delighted to accept the Hess Medal for 2013. It is difficult to express one's feelings adequately on receipt of such a prestigious award, but a mixture of pride, humility, and thankfulness for a long and lucky career all occur. It did not start propitiously as my high school grades would only ensure undergraduate entry into the Northern Polytechnic, a second-tier institution in London. Nevertheless, I was enthused by several great teachers, including John Charalambous (inorganic chemistry) and Stephen Morel, a field geologist who had worked for many years in Malawi. They pushed me into trying for graduate school, and I was fortunate to find the eclectic Roger Strens my supervisor at Newcastle.

  9. Detection of Two TeV Shell-type Remnants at GeV Energies with FERMI LAT: HESS J1731-347 and SN 1006

    NASA Astrophysics Data System (ADS)

    Condon, B.; Lemoine-Goumard, M.; Acero, F.; Katagiri, H.

    2017-12-01

    We report the first high-significance GeV γ-ray detections of supernova remnants HESS J1731‑347 and SN 1006, both of which have been previously detected by imaging atmospheric Cherenkov Telescopes above 1 TeV. Using 8 years of Fermi-LAT Pass 8 data at energies between 1 GeV and 2 TeV, we detect emission at the position of HESS J1731‑347 with a significance of ∼ 5σ and a spectral index of {{Γ }}=1.66+/- {0.16}{stat}+/- {0.12}{syst}. The hardness of the index and the good connection with the TeV spectrum of HESS J1731‑347 support an association between the two sources. We also confirm the detection of SN 1006 at ∼ 6σ with a spectral index of {{Γ }}=1.79+/- {0.17}{stat}+/- {0.27}{syst}. The northeast (NE) and southwest (SW) limbs of SN 1006 were also fit separately, resulting in the detection of the NE region ({{Γ }}=1.47+/- {0.26}{stat}) and the non-detection of the SW region. The significance of different spectral components for the two limbs is 3.6σ , providing first indications of an asymmetry in the GeV γ-ray emission.

  10. Deep Chandra observations of Pictor A

    NASA Astrophysics Data System (ADS)

    Hardcastle, M. J.; Lenc, E.; Birkinshaw, M.; Croston, J. H.; Goodger, J. L.; Marshall, H. L.; Perlman, E. S.; Siemiginowska, A.; Stawarz, Ł.; Worrall, D. M.

    2016-02-01

    We report on deep Chandra observations of the nearby broad-line radio galaxy Pictor A, which we combine with new Australia Telescope Compact Array (ATCA) observations. The new X-ray data have a factor of 4 more exposure than observations previously presented and span a 15 yr time baseline, allowing a detailed study of the spatial, temporal and spectral properties of the AGN, jet, hotspot and lobes. We present evidence for further time variation of the jet, though the flare that we reported in previous work remains the most significantly detected time-varying feature. We also confirm previous tentative evidence for a faint counterjet. Based on the radio through X-ray spectrum of the jet and its detailed spatial structure, and on the properties of the counterjet, we argue that inverse-Compton models can be conclusively rejected, and propose that the X-ray emission from the jet is synchrotron emission from particles accelerated in the boundary layer of a relativistic jet. For the first time, we find evidence that the bright western hotspot is also time-varying in X-rays, and we connect this to the small-scale structure in the hotspot seen in high-resolution radio observations. The new data allow us to confirm that the spectrum of the lobes is in good agreement with the predictions of an inverse-Compton model and we show that the data favour models in which the filaments seen in the radio images are predominantly the result of spatial variation of magnetic fields in the presence of a relatively uniform electron distribution.

  11. Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007-2013 Period

    NASA Astrophysics Data System (ADS)

    Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; D'Ortenzio, F.; Bouin, M. N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; Coppola, L.; Mortier, L.; Raimbault, P.

    2016-11-01

    We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier "vintage" of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10-3/yr) and potential temperature (3.2 ± 0.5 × 10-3 C/yr) observed from 2009 to 2013 for the 600-2300 m layer. For the first time, the overlapping of the three "phases" of deep convection can be observed, with secondary vertical mixing events (2-4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event.

  12. Interpreting the strongest deep earthquake ever observed

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-12-01

    Massive earthquakes that strike deep within the Earth may be more efficient at dissipating pent-up energy than similar quakes near the surface, according to new research by Wei et al. The authors analyzed the rupture of the most powerful deep earthquake ever recorded.

  13. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    NASA Astrophysics Data System (ADS)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range

  14. Low frequency radio counterparts of HESS J1731-347 a.k.a SNR G353.6-0.7

    NASA Astrophysics Data System (ADS)

    Nayana, A. J.; Chandra, Poonam

    2017-02-01

    HESS J1731-347 a.k.a. SNR G353.6-0.7 is one of the five known very high energy (VHE, Energy > 0.1 TeV) shell-type supernova remnants. We carried out Giant Metrewave Radio Telescope (GMRT) observations of this TeV SNR in 1390, 610 and 325 MHz bands. We detected the 325 and 610 MHz radio counterparts of the SNR G353.6-0.7 (Nayana et al. 2017). We also determined the spectral indices of individual filaments and our values are consistent with the non-thermal radio emission. We compared the radio morphology with that of VHE emission. The peak in radio emission corresponds to the faintest feature in the VHE emission. We explain this anti-correlated emission in a possible leptonic origin of the VHE γ-rays.

  15. Remote observing with NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.

    2012-09-01

    The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.

  16. An observational study of entrainment rate in deep convection

    DOE PAGES

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; ...

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less

  17. An observational study of entrainment rate in deep convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less

  18. Constraining parameters of the neutron star in the supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Puehlhofer, G.; Werner, K.; Santangelo, A.

    2014-07-01

    The Central Compact Object (CCO) in HESS J1731-347, presumably a neutron star, is one of the brightest sources in this class. Like other CCOs, it potentially provides an "undisturbed" view of thermal radiation generated at the neutron star surface. The shape and normalization of the corresponding X-ray spectrum depends on the emitting area, surface redshift, and gravity acceleration. Thus, its modeling under certain assumptions allows the mass and radius of the neutron star to be constrained. In our analysis, we model the spectrum of the CCO accumulated with XMM-Newton over ˜100 ksec exposure time in three observations. The exposure time has increased by a factor of five since our previous analysis of the source. For the spectral fitting, we use our hydrogen and carbon atmosphere models calculated assuming hydrostatic and radiative equilibria and taking into account pressure ionization and the presence of spectral lines (in case of carbon). We present the resulting constraints on the mass, radius, distance, and temperature of the neutron star.

  19. A-Train Observations of Deep Convective Storm Tops

    NASA Technical Reports Server (NTRS)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  20. Ground-Based Observations of 9P/Tempel 1 - The Deep Impact Mission

    NASA Astrophysics Data System (ADS)

    Meech, K. J.; Bauer, J. M.; A'Hearn, M. F.

    1999-09-01

    The Deep Impact mission, one of the two recently approved Discovery missions, will deliver a 500 kg copper projectile to the comet 9P/Tempel 1 on July 4, 2005, to excavate a crater. The goal will be to watch the cratering event, measure the change in activity level caused by the impact, and will be the first experiment to sample deeply below the surface of a comet. In preparation for a successful mission, we will begin a vigorous ground-based observing campaign to characterize the nucleus of 9P/Tempel 1. The ground-based observations will characterize the pre-impact activity levels for comparison after the impact, characterize the nucleus in terms of a rotational light curve and pole position, get an estimate of the nucleus size and albedo, model the dust production rates, and search for the appearance of gaseous species as the comet approaches perihelion. The observing campaign as already begun with some intensive observations of the comet during the following observing runs: UT Date & Nts & Telescope & r[AU] & No. & Exp 12/97 & 1 &Keck II & 4.48 & 2 & 240 1/98 & 1 &UH 2.2m & 4.44 & 7 & 4200 2/98 & 1 &CTIO1.5m & 4.36 & 3 & 1800 4/98 & 2 &UH 2.2m & 4.26 & 8 & 4800 1/99 & 6 &UH 2.2m & 3.14 &133 &17220 3/99 & 4 &UH 2.2m & 2.88 &181 &54000 5/99 & 2 &UH 2.2m & 2.47 & 9 & 810 7 /99 & 2 &UH 2.2m & 2.19 & 9 & 1620 The 1999 January and March observations were made to search for the rotation period of the comet, as well as to obtain deep images to model the coma. The results of the rotational light curve observations will be presented, as well as a compilation of the heliocentric light curve from the data from earlier epochs. In addition, a detailed, comprehensive multi-wavelength ground-based observing plan will be presented to characterize the nucleus before the 2005 July 4 Deep Impact encounter with the comet. This project has been funded through the NASA Planetary Astronomy Program to date, NAG 4494.

  1. Deep pelagic food web structure as revealed by in situ feeding observations.

    PubMed

    Choy, C Anela; Haddock, Steven H D; Robison, Bruce H

    2017-12-06

    Food web linkages, or the feeding relationships between species inhabiting a shared ecosystem, are an ecological lens through which ecosystem structure and function can be assessed, and thus are fundamental to informing sustainable resource management. Empirical feeding datasets have traditionally been painstakingly generated from stomach content analysis, direct observations and from biochemical trophic markers (stable isotopes, fatty acids, molecular tools). Each approach carries inherent biases and limitations, as well as advantages. Here, using 27 years (1991-2016) of in situ feeding observations collected by remotely operated vehicles (ROVs), we quantitatively characterize the deep pelagic food web of central California within the California Current, complementing existing studies of diet and trophic interactions with a unique perspective. Seven hundred and forty-three independent feeding events were observed with ROVs from near-surface waters down to depths approaching 4000 m, involving an assemblage of 84 different predators and 82 different prey types, for a total of 242 unique feeding relationships. The greatest diversity of prey was consumed by narcomedusae, followed by physonect siphonophores, ctenophores and cephalopods. We highlight key interactions within the poorly understood 'jelly web', showing the importance of medusae, ctenophores and siphonophores as key predators, whose ecological significance is comparable to large fish and squid species within the central California deep pelagic food web. Gelatinous predators are often thought to comprise relatively inefficient trophic pathways within marine communities, but we build upon previous findings to document their substantial and integral roles in deep pelagic food webs. © 2017 The Authors.

  2. Deep pelagic food web structure as revealed by in situ feeding observations

    PubMed Central

    Haddock, Steven H. D.; Robison, Bruce H.

    2017-01-01

    Food web linkages, or the feeding relationships between species inhabiting a shared ecosystem, are an ecological lens through which ecosystem structure and function can be assessed, and thus are fundamental to informing sustainable resource management. Empirical feeding datasets have traditionally been painstakingly generated from stomach content analysis, direct observations and from biochemical trophic markers (stable isotopes, fatty acids, molecular tools). Each approach carries inherent biases and limitations, as well as advantages. Here, using 27 years (1991–2016) of in situ feeding observations collected by remotely operated vehicles (ROVs), we quantitatively characterize the deep pelagic food web of central California within the California Current, complementing existing studies of diet and trophic interactions with a unique perspective. Seven hundred and forty-three independent feeding events were observed with ROVs from near-surface waters down to depths approaching 4000 m, involving an assemblage of 84 different predators and 82 different prey types, for a total of 242 unique feeding relationships. The greatest diversity of prey was consumed by narcomedusae, followed by physonect siphonophores, ctenophores and cephalopods. We highlight key interactions within the poorly understood ‘jelly web’, showing the importance of medusae, ctenophores and siphonophores as key predators, whose ecological significance is comparable to large fish and squid species within the central California deep pelagic food web. Gelatinous predators are often thought to comprise relatively inefficient trophic pathways within marine communities, but we build upon previous findings to document their substantial and integral roles in deep pelagic food webs. PMID:29212727

  3. A Deep Chandra Observation of the Distant Galaxy Cluster MS 1137.5+6625

    NASA Astrophysics Data System (ADS)

    Grego, Laura; Vrtilek, J. M.; Van Speybroeck, Leon; David, Laurence P.; Forman, William; Carlstrom, John E.; Reese, Erik D.; Joy, Marshall K.

    2004-06-01

    We present results from a deep Chandra observation of MS 1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests that the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.

  4. A non-pulsating neutron star in the supernova remnant HESS J1731-347/G353.6-0.7 with a carbon atmosphere

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Pühlhofer, G.; Suleimanov, V.; Simon, S.; Werner, K.; Santangelo, A.

    2013-08-01

    Context. The central compact object (CCO) candidate in the center of the supernova remnant shell HESS J1731-347/G353.6-0.7 shows no pulsations and exhibits a blackbody-like X-ray spectrum. If the absence of pulsations is interpreted as evidence for the emitting surface area being the entire neutron star surface, the assumption of the measured flux being due to a blackbody emission translates into a source distance that is inconsistent with current estimates of the remnant's distance. Aims: With the best available observational data, we extended the pulse period search down to a sub-millisecond time scale and used a carbon atmosphere model to describe the X-ray spectrum of the CCO and to estimate geometrical parameters of the neutron star. Methods: To search for pulsations we used data of an observation of the source with XMM-Newton performed in timing mode. For the spectral analysis, we used earlier XMM-Newton observations performed in imaging mode, which permits a more accurate treatment of the background. The carbon atmosphere models used to fit the CCO spectrum are computed assuming hydrostatic and radiative equilibria and take into account pressure ionization and the presence of spectral lines. Results: Our timing analysis did not reveal any pulsations with a pulsed fraction above ~8% down to 0.2 ms. This finding further supports the hypothesis that the emitting surface area is the entire neutron star surface. The carbon atmosphere model provides a good fit to the CCO spectrum and leads to a normalization consistent with the available distance estimates of the remnant. The derived constraints on the mass and radius of the source are consistent with reasonable values of the neutron star mass and radius. After the CCO in Cas A, the CCO in HESS J1731-347/G353.6-0.7 is the second object of this class for which a carbon atmosphere model provides a consistent description of X-ray emission.

  5. Observation of two-jet production in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Repond, S.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Lin, Q.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Dabbous, H.; Desch, K.; Diekmann, B.; Doeker, T.; Geerts, M.; Geitz, G.; Gutjahr, B.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Kramarczyk, S.; Kückes, M.; Mass, A.; Mengel, S.; Mollen, J.; Monaldi, D.; Müsch, H.; Paul, E.; Schattevoy, R.; Schneider, J.-L.; Wedemeyer, R.; Cassidy, A.; Cussans, D. G.; Dyce, N.; Fawcett, H. F.; Foster, B.; Gilmore, R.; Heath, G. P.; Lancaster, M.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Wilson, S. S.; Rau, R. R.; Arneodo, M.; Barillari, T.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Chwastowski, J.; Dwuraźny, A.; Eskreys, A.; Jakubowski, Z.; Niziom̵, B.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Bednarek, B.; Borzemski, P.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Coldewey, C.; Dannemann, A.; Drews, G.; Erhard, P.; Flasiński, M.; Fleck, I.; Gläser, R.; Göttlicher, P.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Hultschig, H.; Jahnen, G.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Manczak, O.; Momayezi, M.; Ng, J. S. T.; Nickel, S.; Notz, D.; Park, I. H.; Pösnecker, K.-U.; Rohde, M.; Roldán, J.; Ros, E.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Tscheslog, E.; Tsurugai, T.; Turkot, F.; Vogel, W.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Francescato, A.; Nuti, M.; Pelfer, P.; Anzivino, G.; Casaccia, R.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Brückmann, H.; Gloth, G.; Holm, U.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Wick, K.; Fürtjes, A.; Kröger, W.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Seidman, A.; Schott, W.; Terron, J.; Wiik, B. H.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Markou, C.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Prinias, A.; Vorvolakos, A.; Bienz, T.; Kreutzmann, H.; Mallik, U.; McCliment, E.; Roco, M.; Wang, M. Z.; Cloth, P.; Filges, D.; Chen, L.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Barreiro, F.; Cases, G.; Hervás, L.; Labarga, L.; del Peso, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Gilkinson, D. J.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Meijer Drees, R.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Ullmann, R.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kuzmin, V. A.; Kuznetsov, E. N.; Savin, A. A.; Voronin, A. G.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; van der Lugt, H.; O'Dell, V.; Tenner, A.; Tiecke, H.; Uijterwaal, H.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Yoshida, R.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, S. K.; Romanowski, T. A.; Seidlein, R.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Gingrich, D. M.; Hallam-Baker, P. M.; Harnew, N.; Khatri, T.; Long, K. R.; Luffman, P.; McArthur, I.; Morawitz, P.; Nash, J.; Smith, S. J. P.; Roocroft, N. C.; Wilson, F. F.; Abbiendi, G.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Butterworth, J. M.; Bulmahn, J.; Field, G.; Oh, B. Y.; Whitmore, J.; Contino, U.; D'Agostini, G.; Guida, M.; Iori, M.; Mari, S. M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Heusch, C.; Hubbard, B.; Leslie, J.; Lockman, W.; O'Shaughnessy, K.; Sadrozinski, H. F.; Seiden, A.; Badura, E.; Biltzinger, J.; Chaves, H.; Rost, M.; Seifert, R. J.; Walenta, A. H.; Weihs, W.; Zech, G.; Dagan, S.; Levy, A.; Zer-Zion, D.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kasai, S.; Kuze, M.; Nagasawa, Y.; Nakao, M.; Okuno, H.; Tokushuku, K.; Watanabe, T.; Yamada, S.; Chiba, M.; Hamatsu, R.; Hirose, T.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Bhadra, S.; Brkic, M.; Burow, B. D.; Chlebana, F. S.; Crombie, M. B.; Hartner, G. F.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Prentice, J. D.; Sampson, C. R.; Stairs, G. G.; Teuscher, R. J.; Yoon, T.-S.; Bullock, F. W.; Catterall, C. D.; Giddings, J. C.; Jones, T. W.; Khan, A. M.; Lane, J. B.; Makkar, P. L.; Shaw, D.; Shulman, J.; Blankenship, K.; Gibaut, D. B.; Kochocki, J.; Lu, B.; Mo, L. W.; Charchum̵a, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Stopczyński, A.; Tymieniecka, T.; Walczak, R.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Abramowicz, H.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Revel, D.; Shapira, A.; Foudas, C.; Fordham, C.; Loveless, R. J.; Goussiou, A.; Ali, I.; Behrens, B.; Dasu, S.; Reeder, D. D.; Smith, W. H.; Silverstein, S.; Frisken, W. R.; Furutani, K. M.; Iga, Y.; ZEUS Collaboration

    1993-05-01

    A sample of events with two distinct jets, in addition to the proton remnant, has been identified in deep inelastic, neutral current ep interactions recorded at HERA by the ZEUS experiment. For these events, the mass of the hadronic system ranges from 40 to 260 GeV. The salient features of the observed jet production agree with the predictions of higher order QCD.

  6. Epidemiological investigations into multiple sclerosis in southern Hesse. II. The distribution of cases in relation to exogenous features.

    PubMed

    Lauer, K; Firnhaber, W

    1984-10-01

    In order to discover possible exogenous variables associated with a higher multiple sclerosis risk, the distribution of cases with definite and probable multiple sclerosis ascertained in the course of a micro-epidemiologic study in Southern Hesse was evaluated and compared with some environmental factors. The prevalence in 1980, the prevalence of cases with disease-onset within the region according to locality of onset and the rate of native Southern Hesse patients according to childhood residence all showed a similar geographical distribution, with the highest values in the south-eastern, mountainous part of the region. This district has a lower annual mean temperature, more annual snow-days and a higher annual precipitation compared to the remaining area. A statistical comparison revealed no association with industrial or agricultural activities, with a particular type of land use, with cattle, pig- or horse-breeding, or with sanitary or housing standards. On the other hand, a slight association with the soil type could be demonstrated, with higher rates on loam and clay subsoils when compared to predominantly sandy regions. Whether this finding has any significance or not remains to be clarified.

  7. High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

    NASA Astrophysics Data System (ADS)

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.

    2012-08-01

    Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source

  8. H.E.S.S. discovery of very high energy γ-ray emission from PKS 0625-354

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-05-01

    PKS 0625-354 (z = 0.055) was observed with the four High Energy Stereoscopic System (H.E.S.S.) telescopes in 2012 during 5.5 h. The source was detected above an energy threshold of 200 GeV at a significance level of 6.1σ. No significant variability is found in these observations. The source is well described with a power-law spectrum with photon index Γ = 2.84 ± 0.50stat ± 0.10syst and normalization (at E0 = 1.0 TeV) N0(E0) = (0.58 ± 0.22stat ± 0.12syst) × 10-12 TeV-1 cm-2 s-1. Multiwavelength data collected with Fermi-LAT, Swift-XRT, Swift-UVOT, ATOM and WISE are also analysed. Significant variability is observed only in the Fermi-LAT γ-ray and Swift-XRT X-ray energy bands. Having a good multiwavelength coverage from radio to very high energy, we performed a broad-band modelling from two types of emission scenarios. The results from a one zone lepto-hadronic and a multizone leptonic models are compared and discussed. On the grounds of energetics, our analysis favours a leptonic multizone model. Models associated to the X-ray variability constraint support previous results, suggesting a BL Lac nature of PKS 0625-354 with, however, a large-scale jet structure typical of a radio galaxy.

  9. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Titz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Poitrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; Ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10 -4 < xBJ < 6 · 10 -3 and 10 < Q2 < 100 GeV 2.

  10. Repeating Earthquake and Nonvolcanic Tremor Observations of Aseismic Deep Fault Transients in Central California.

    NASA Astrophysics Data System (ADS)

    Nadeau, R. M.; Traer, M.; Guilhem, A.

    2005-12-01

    Seismic indicators of fault zone deformation can complement geodetic measurements by providing information on aseismic transient deformation: 1) from deep within the fault zone, 2) on a regional scale, 3) with intermediate temporal resolution (weeks to months) and 4) that spans over 2 decades (1984 to early 2005), including pre- GPS and INSAR coverage. Along the San Andreas Fault (SAF) in central California, two types of seismic indicators are proving to be particularly useful for providing information on deep fault zone deformation. The first, characteristically repeating microearthquakes, provide long-term coverage (decades) on the evolution of aseismic fault slip rates at seismogenic depths along a large (~175 km) stretch of the SAF between the rupture zones of the ~M8 1906 San Francisco and 1857 Fort Tejon earthquakes. In Cascadia and Japan the second type of seismic indicator, nonvolcanic tremors, have shown a remarkable correlation between their activity rates and GPS and tiltmeter measurements of transient deformation in the deep (sub-seismogenic) fault zone. This correlation suggests that tremor rate changes and deep transient deformation are intimately related and that deformation associated with the tremor activity may be stressing the seismogenic zone in both areas. Along the SAF, nonvolcanic tremors have only recently been discovered (i.e., in the Parkfield-Cholame area), and knowledge of their full spatial extent is still relatively limited. Nonetheless the observed temporal correlation between earthquake and tremor activity in this area is consistent with a model in which sub-seismogenic deformation and seismogenic zone stress changes are closely related. We present observations of deep aseismic transient deformation associated with the 28 September 2004, M6 Parkfield earthquake from both repeating earthquake and nonvolcanic tremor data. Also presented are updated deep fault slip rate estimates from prepeating quakes in the San Juan Bautista area with

  11. An Empirical Determination of the Intergalactic Background Light from UV to FIR Wavelengths Using FIR Deep Galaxy Surveys and the Gamma-Ray Opacity of the Universe

    NASA Astrophysics Data System (ADS)

    Stecker, Floyd W.; Scully, Sean T.; Malkan, Matthew A.

    2016-08-01

    We have previously calculated the intergalactic background light (IBL) as a function of redshift from the Lyman limit in the far-ultraviolet to a wavelength of 5 μm in the near-infrared range, based purely on data from deep galaxy surveys. Here, we use similar methods to determine the mid- and far-infrared IBL from 5 to 850 μm. Our approach enables us to constrain the range of photon densities by determining the uncertainties in observationally determined luminosity densities and spectral gradients. By also including the effect of the 2.7 K cosmic background photons, we determine upper and lower limits on the opacity of the universe to γ-rays up to PeV energies within a 68% confidence band. Our direct results on the IBL are consistent with those from complimentary γ-ray analyses using observations from the Fermi γ-ray space telescope and the H.E.S.S. air Čerenkov telescope. Thus, we find no evidence of previously suggested processes for the modification of γ-ray spectra other than that of absorption by pair production alone.

  12. Thermodynamic Controls on Deep Convection in the Tropics: Observations and Applications to Modeling

    NASA Astrophysics Data System (ADS)

    Schiro, Kathleen Anne

    Constraining precipitation processes in climate models with observations is crucial to accurately simulating current climate and reducing uncertainties in future projections. This work presents robust relationships between tropical deep convection, column-integrated water vapor (CWV), and other thermodynamic quantities analyzed with data from the DOE Atmospheric Radiation Measurement (ARM) Mobile Facility in Manacapuru, Brazil as part of the GOAmazon campaign and are directly compared to such relationships at DOE ARM sites in the tropical western Pacific. A robust relationship between CWV and precipitation, as explained by variability in lower tropospheric humidity, exists just as strongly in a tropical continental region as it does in a tropical oceanic region. Given sufficient mixing in the lower troposphere, higher CWV generally results in greater plume buoyancies through a deep convective layer. Although sensitivity of convection to other controls is suggested, such as microphysical processes and dynamical lifting mechanisms, the increase in buoyancy with CWV is consistent with the sharp increase in precipitation observed. Entraining plume buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the environment, yet differences in convective onset as a function of CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due to variability in the contribution of lower tropospheric humidity to the total column moisture. Over land, the relationship between deep convection and lower free tropospheric moisture is robust across all seasons and times of day, whereas the relation to boundary layer moisture is robust for the daytime only. Using S-Band radar, these transition statistics are examined separately for unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of occurrence with increasing moisture throughout the column, particularly in the lower free

  13. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.

    2010-01-01

    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  14. Study of observed microearthquakes at Masada Deep Borehole

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Malin, P. E.

    2017-12-01

    Seismological measurements, conducted at great depths of several hundred of meters or even a few km, can provide useful information that one cannot get while conducting the measurements on the surface. We take advantage of Masada Deep borehole (MDBI), an abandoned oil well, for the installation of a seismometer at a large depth of 1,256 m (1,516 bsl). The station is located in the near vicinity of the East Masada fault, part of the Western Boundary Fault of the Dead Sea basin. We present seismic observations of microearthquakes which occurred along the Dead Sea fault (DSF). Many of them were not recorded by the Israel Seismic Network (ISN). The quiet site of the station has an obvious advantage in detection and identification of earthquakes and explosions. For example, the station detects about 30% more quarry explosions as compared to observations of the ISN. We demonstrate that borehole seismograms are clearer than the on-surface observations of nearby seismometer. We lowered the magnitude scale of observed events down to about M≈-3. Many of the earthquakes, sometimes clusters, occurred underneath the MDBI at depths of 10-25 km, having special signature. Using the cross-correlation technique we present several series of seismic activity either underneath the station or along the DSF. Frequency-magnitude relationship, known also as Gutenberg-Richter relationship, is somewhat higher than the determined value for the whole Dead Sea Fault.

  15. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys.

    PubMed

    Quattrini, Andrea M; Demopoulos, Amanda W J

    2016-12-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013-2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494-4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our

  16. Statistical Features of Deep-ocean Tsunamis Based on 30 Years of Bottom Pressure Observations in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Fine, I.; Thomson, R.; Chadwick, W. W., Jr.; Davis, E. E.; Fox, C. G.

    2016-12-01

    We have used a set of high-resolution bottom pressure recorder (BPR) time series collected at Axial Seamount on the Juan de Fuca Ridge beginning in 1986 to examine tsunami waves of seismological origin in the northeast Pacific. These data are a combination of autonomous, internally-recording battery-powered instruments and cabled instruments on the OOI Cabled Array. Of the total of 120 tsunami events catalogued for the coasts of Japan, Alaska, western North America and Hawaii, we found evidence for 38 events in the Axial Seamount BPR records. Many of these tsunamis were not observed along the adjacent west coast of the USA and Canada because of the much higher noise level of coastal locations and the lack of digital tide gauge data prior to 2000. We have also identified several tsunamis of apparent seismological origin that were observed at coastal stations but not at the deep ocean site. Careful analysis of these observations suggests that they were likely of meteorological origin. Analysis of the pressure measurements from Axial Seamount, along with BPR measurements from a nearby ODP CORK (Ocean Drilling Program Circulation Obviation Retrofit Kit) borehole and DART (Deep-ocean Assessment and Reporting of Tsunamis) locations, reveals features of deep-ocean tsunamis that are markedly different from features observed at coastal locations. Results also show that the energy of deep-ocean tsunamis can differ significantly among the three sets of stations despite their close spatial spacing and that this difference is strongly dependent on the direction of the incoming tsunami waves. These deep-ocean observations provide the most comprehensive statistics possible for tsunamis in the Pacific Ocean over the past 30 years. New insight into the distribution of tsunami amplitudes and wave energy derived from the deep-ocean sites should prove useful for long-term tsunami prediction and mitigation for coastal communities along the west coast of the USA and Canada.

  17. Deep millimeter spectroscopy observations toward NGC 1068

    NASA Astrophysics Data System (ADS)

    Qiu, Jianjie; Wang, Junzhi; Shi, Yong; Zhang, Jiangshui; Fang, Min; Li, Fei

    2018-05-01

    Aims: We aim for a better understanding of gas properties in the circum-nuclear disk (CND) region of the nearby gas-rich Seyfert 2 galaxy NGC 1068. We focus on line identification and the basic physical parameters estimation of molecular gas in the CND region. Methods: We used the IRAM 30 m telescope to conduct deep millimeter spectroscopy observations toward the center of NGC 1068. Results: Thirty-two lines were detected in this galaxy, 15 lines of wich were detected for the first time. With a sensitivity better by about a factor of 4 than observations in the literature for this source at 3 mm band, we detected several weak lines for the first time in this source, such as lines from CH3CCH, CH3OCH3, and HC18O+. Column densities of these molecules were estimated based on line emissions. Some marginal detections in the literature, such as HN13C (1-0), were confirmed. CH3OCH3 was detected for the first time in external galaxies. Lines from several carbon chain molecules and shock-related molecules were also detected in this source. The reduced spectrum (FITS file) is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A3

  18. Heliophysics Radio Observations Enabled by the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.

    2018-02-01

    This presentation reviews the scientific potential of low frequency radio imaging from space, the SunRISE radio interferometer, and the scientific value of larger future arrays in deep space and how they would benefit from the Deep Space Gateway.

  19. Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor

    USGS Publications Warehouse

    Shelly, David R.

    2009-01-01

    Earthquake predictability depends, in part, on the degree to which sudden slip is preceded by slow aseismic slip. Recently, observations of deep tremor have enabled inferences of deep slow slip even when detection by other means is not possible, but these data are limited to certain areas and mostly the last decade. The region near Parkfield, California, provides a unique convergence of several years of high-quality tremor data bracketing a moderate earthquake, the 2004 magnitude 6.0 event. Here, I present detailed observations of tectonic tremor from mid-2001 through 2008 that indicate deep fault slip both before and after the Parkfield earthquake that cannot be detected with surface geodetic instruments. While there is no obvious short-term precursor, I find unidirectional tremor migration accompanied by elevated tremor rates in the 3 months prior to the earthquake, which suggests accelerated creep on the fault ∼16 km beneath the eventual earthquake hypocenter.

  20. On the Anomalously Large Extension of the Pulsar Wind Nebula HESS J1825-137

    NASA Astrophysics Data System (ADS)

    Khangulyan, Dmitry; Koldoba, Alexander V.; Ustyugova, Galina V.; Bogovalov, Sergey V.; Aharonian, Felix

    2018-06-01

    The very high energy gamma-ray emission reported from a number of pulsar wind nebulae (PWNe) is naturally explained by the inverse Compton scattering of multi-TeV electrons. However, the physical dimensions of some gamma-ray-emitting PWNe significantly exceed the scales anticipated by the standard hydrodynamical paradigm of PWN formation. The most “disturbing” case in this regard is HESS J1825-137, which extends to distances of r ≈ 70 pc from the central pulsar PSR J1826‑1334. If the gamma-ray emission is indeed produced inside the PWN, but not by electrons that escaped the nebula and diffuse in the interstellar medium (ISM), the formation of such an anomalously extended plerion could be realized, in a diluted environment with the hydrogen number density {n}{{ISM}}≤slant {10}-2 {cm}}-3. In this paper, we explore an alternative scenario assuming that the pulsar responsible for the formation of the nebula initially had a very short rotation period. In this case, the sizes of both the PWN and the surrounding supernova remnant depend on the initial pulsar period, the braking index, and the ISM density. To check the feasibility of this scenario, we study the parameter space that would reproduce the size of HESS J1825-137. We show that this demand can be achieved if the braking index is small, n≤slant 2, and the pulsar birth period is short, {P}{{b}}≃ 1 {ms}. This scenario can reproduce the wind termination position, which is expected at {R}{{TS}}≃ 0.03 {pc}, only in a dense environment with {n}{{ISM}}≥slant 1 {cm}}-3. The requirement of the dense surrounding gas is supported by the presence of molecular clouds found in the source vicinity.

  1. The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). Gamma-ray observations of SNR-MC associations are a powerful tool to constrain the origin of Galactic cosmic rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. Here, we report the detection of a γ-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes together with amore » study of the source with five years of Fermi-LAT high-energy γ-ray (0.06–300 GeV) data. The smoothly connected, combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at 304 ± 20 MeV and 8.4 -2.5 +2.2 GeV; the latter is constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR-MC associations and are found to be indicative of γ-ray emission produced through neutral-pion decay.« less

  2. The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2018-04-01

    The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). Gamma-ray observations of SNR-MC associations are a powerful tool to constrain the origin of Galactic cosmic rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. Here, we report the detection of a γ-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes together with amore » study of the source with five years of Fermi-LAT high-energy γ-ray (0.06–300 GeV) data. The smoothly connected, combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at 304 ± 20 MeV and 8.4 -2.5 +2.2 GeV; the latter is constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR-MC associations and are found to be indicative of γ-ray emission produced through neutral-pion decay.« less

  3. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys

    USGS Publications Warehouse

    Quattrini, Andrea; Demopoulos, Amanda W.J.

    2016-01-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013–2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494–4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities

  4. Deep Orographic Gravity Wave Dynamics over Subantarctic Islands as Observed and Modeled during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

    NASA Astrophysics Data System (ADS)

    Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.

    2016-12-01

    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high

  5. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    PubMed Central

    van Lier-Walqui, Marcus; Fridlind, Ann M.; Ackerman, Andrew S.; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R.; North, Kirk; Kollias, Pavlos; Posselt, Derek J.

    2017-01-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase (KDP) observed above the melting level are associated with deep convection updraft cells, so-called “KDP columns” are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR KDP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity (ZDR). Results indicate strong correlations of KDP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of KDP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of ZDR to KDP shows commonalities in information content of each, as well as potential problems with ZDR associated with observational artifacts. PMID:29503466

  6. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns aremore » analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.« less

  7. Gamma ray sources observation with the ARGO-YBJ detector

    NASA Astrophysics Data System (ADS)

    Vernetto, S.; ARGO-YBJ Collaboration

    2011-02-01

    In this paper we report on the observations of TeV gamma ray sources performed by the air shower detector ARGO-YBJ. The objects studied in this work are the blazar Markarian 421 and the extended galactic source MGROJ1908+06, monitored during ~2 years of operation. Mrk421 has been detected by ARGO-YBJ with a statistical significance of ~11 standard deviations. The observed TeV emission was highly variable, showing large enhancements of the flux during active periods. The study of the spectral behaviour during flares revealed a positive correlation of the hardness with the flux, as already reported in the past by the Whipple telescope, suggesting that this is a long term property of the source. ARGO-YBJ observed a strong correlation between TeV gamma rays and the X-ray flux measured by RXTM/ASM and SWIFT/BAT during the whole period, with a time lag compatible with zero, supporting the one-zone SSC model to describe the emission mechanism. MGROJ1908+06 has been detected by ARGO-YBJ with ~5 standard deviation of significance. From our data the source appears extended and the measured extension is σext = 0.48° --> σext = 0.48° -0.28+0.26 --> -0.28+0.26, in agreement with a previous HESS observation. The average flux is in marginal agreement with that reported by MILAGRO, but significantly higher than that obtained by HESS, suggesting a possible flux variability.

  8. Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser.

    PubMed

    Zhang, Mingjun; Chen, Genyu; Zhou, Yu; Li, Shichun

    2013-08-26

    Keyhole formation is a prerequisite for deep penetration laser welding. Understanding of the keyhole dynamics is essential to improve the stability of the keyhole. Direct observation of the keyhole during deep penetration laser welding of a modified "sandwich" specimen with a 10 kW fiber laser is presented. A distinct keyhole wall and liquid motion along the wall are observed directly for the first time. The moving liquid "shelf" on the front keyhole wall and the accompanying hydrodynamic and vapor phenomena are observed simultaneously. Micro-droplets torn off the keyhole wall and the resultant bursts of vapor are also visualized. The hydrodynamics on the keyhole wall has a dominant effect on the weld defects. The emission spectrum inside the keyhole is captured accurately using a spectrometer to calculate the characteristics of the keyhole plasma plume.

  9. Atomic approximation to the projection on electronic states in the Douglas-Kroll-Hess approach to the relativistic Kohn-Sham method.

    PubMed

    Matveev, Alexei V; Rösch, Notker

    2008-06-28

    We suggest an approximate relativistic model for economical all-electron calculations on molecular systems that exploits an atomic ansatz for the relativistic projection transformation. With such a choice, the projection transformation matrix is by definition both transferable and independent of the geometry. The formulation is flexible with regard to the level at which the projection transformation is approximated; we employ the free-particle Foldy-Wouthuysen and the second-order Douglas-Kroll-Hess variants. The (atomic) infinite-order decoupling scheme shows little effect on structural parameters in scalar-relativistic calculations; also, the use of a screened nuclear potential in the definition of the projection transformation shows hardly any effect in the context of the present work. Applications to structural and energetic parameters of various systems (diatomics AuH, AuCl, and Au(2), two structural isomers of Ir(4), and uranyl dication UO(2) (2+) solvated by 3-6 water ligands) show that the atomic approximation to the conventional second-order Douglas-Kroll-Hess projection (ADKH) transformation yields highly accurate results at substantial computational savings, in particular, when calculating energy derivatives of larger systems. The size-dependence of the intrinsic error of the ADKH method in extended systems of heavy elements is analyzed for the atomization energies of Pd(n) clusters (n

  10. Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method

    NASA Astrophysics Data System (ADS)

    Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi

    2017-07-01

    This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.

  11. AN EMPIRICAL DETERMINATION OF THE INTERGALACTIC BACKGROUND LIGHT FROM UV TO FIR WAVELENGTHS USING FIR DEEP GALAXY SURVEYS AND THE GAMMA-RAY OPACITY OF THE UNIVERSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stecker, Floyd W.; Scully, Sean T.; Malkan, Matthew A., E-mail: Floyd.W.Stecker@nasa.gov, E-mail: scullyst@jmu.edu, E-mail: malkan@astro.ucla.edu

    We have previously calculated the intergalactic background light (IBL) as a function of redshift from the Lyman limit in the far-ultraviolet to a wavelength of 5 μ m in the near-infrared range, based purely on data from deep galaxy surveys. Here, we use similar methods to determine the mid- and far-infrared IBL from 5 to 850 μ m. Our approach enables us to constrain the range of photon densities by determining the uncertainties in observationally determined luminosity densities and spectral gradients. By also including the effect of the 2.7 K cosmic background photons, we determine upper and lower limits onmore » the opacity of the universe to γ -rays up to PeV energies within a 68% confidence band. Our direct results on the IBL are consistent with those from complimentary γ -ray analyses using observations from the Fermi γ -ray space telescope and the H.E.S.S. air Čerenkov telescope. Thus, we find no evidence of previously suggested processes for the modification of γ -ray spectra other than that of absorption by pair production alone.« less

  12. Argo float observations of basin-scale deep convection in the Irminger Sea during winter 2011-2012

    NASA Astrophysics Data System (ADS)

    Thierry, V.; Piron, A.; Mercier, H.; Caniaux, G.

    2016-02-01

    An analysis of Argo data during the 2011-2012 winter revealed the presence of an exceptionally large number of profiles over the Irminger Basin with mixed layer depths (MLD) exceeding 700 m, which was deep enough to reach the pool of the intermediate Labrador Sea Water located in the Irminger Sea. Among them, 4 profiles exhibited an MLD of 1000 m, which was the maximum value observed this winter. Owing to the exceptional Argo sampling in the Irminger Sea during that winter the different phases of the mixed layer deepening down to 1000 m and their spatial extents were observed for the first time in the Irminger Sea. Two intense convective periods occurred in late January south of Cape Farewell and in late February-early March east of Greenland. A final deepening period was observed in mid-March during which the deepest mixed layers were observed. This long deepening period occurred in large regional areas and was followed by a rapid restratification phase. A mixed layer heat budget along the trajectories of the 4 floats that sampled the deepest mixed layers showed that heat loss at the air-sea interface was mainly responsible for heat content variations in the mixed layer. Greenland Tip Jets were of primary importance for the development of deep convection in the Irminger Sea in the 2011-2012 winter. They enhanced the winter heat loss and two long (more than 24 hours), intense and close in time late events boosted the mixed layer deepening down to 1000m. Net air-sea fluxes, the number of Greenland Tip Jets, the stratification of the water column, the NAO index and Ekman-induced heat flux are pertinent indicators to assess the favorable conditions for the development of deep convection in the Irminger Sea. When considering each of those indicators, we concluded that the 2011-2012 event was not significantly different compared to the three other documented occurrences of deep convection in the Irminger Sea.This work is a contribution to the NAOS project.

  13. Deep Fracturing of the Hard Rock Surrounding a Large Underground Cavern Subjected to High Geostress: In Situ Observation and Mechanism Analysis

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Pei, Shu-Feng; Jiang, Quan; Zhou, Yang-Yi; Li, Shao-Jun; Yao, Zhi-Bin

    2017-08-01

    Rocks that are far removed from caverns or tunnels peripheries and subjected to high geostress may undergo `deep fracturing'. Deep fracturing of hard rock can cause serious hazards that cause delays and increase the cost of construction of underground caverns with high sidewalls and large spans (especially when subjected to high geostress). To extensively investigate the mechanism responsible for deep fracturing, and the relationship between fracturing and the excavation & support of caverns, this paper presents a basic procedure for making in situ observations on the deep fracturing process in hard rock. The basic procedure involves predicting the stress concentration zones in the surrounding rocks of caverns induced by excavation using geomechanical techniques. Boreholes are then drilled through these stress concentration zones from pre-existing tunnels (such as auxiliary galleries) toward the caverns before its excavation. Continuous observations of the fracturing of the surrounding rocks are performed during excavation using a borehole camera in the boreholes in order to analyze the evolution of the fracturing process. The deep fracturing observed in a large underground cavern (high sidewalls and large span) in southwest China excavated in basalt under high geostress is also discussed. By continuously observing the hard rock surrounding the arch on the upstream side of the cavern during the excavation of the first three layers, it was observed that the fracturing developed into the surrounding rocks with downward excavation of the cavern. Fracturing was found at distances up to 8-9 m from the cavern periphery during the excavation of Layer III. Also, the cracks propagated along pre-existing joints or at the interfaces between quartz porphyry and the rock matrix. The relationship between deep fracturing of the surrounding rocks and the advance of the cavern working faces was analyzed during excavation of Layer Ib. The results indicate that the extent of the

  14. Deep magma accumulation at Nyamulagira volcano in 2011 detected by GNSS observations

    NASA Astrophysics Data System (ADS)

    Ji, Kang Hyeun; Stamps, D. Sarah; Geirsson, Halldor; Mashagiro, Niche; Syauswa, Muhindo; Kafudu, Benjamin; Subira, Josué; d'Oreye, Nicolas

    2017-10-01

    People in the area of the Virunga Mountains, along the borders of the Democratic Republic of Congo, Rwanda, and Uganda, are at very high natural risk due to active volcanism. A Global Navigation Satellite System (GNSS) network, KivuGNet (Kivu Geodetic Network), has operated since 2009 for monitoring and research of the deformation of Nyamulagira and Nyiragongo volcanoes as well as tectonic deformation in the region. We detected an inflationary signal from the position time-series observed in the network using our detection method, which is a combination of Kalman filtering and principal component analysis. The inflation event began in October 2010 and lasted for about 6 months prior to the 2011-2012 eruption at Nyamulagira volcano. The pre-eruptive inflationary signal is much weaker than the co-eruptive signal, but our method successfully detected the signal. The maximum horizontal and vertical displacements observed are ∼9 mm and ∼5 mm, respectively. A Mogi point source at a depth >10 km can explain the displacement field. This suggests that a relatively deep source for the magma chamber generated the inflationary signal. The deep reservoir that is the focus of this study may feed a shallower magma chamber, which is the likely source of the 2011-2012 eruption. Continuous monitoring of the volcanic activity is essential for understanding the eruption cycle and assessing potential volcanic hazards.

  15. Impacts of a Fire Smoke Plume on Deep Convective Clouds Observed during DC3

    NASA Astrophysics Data System (ADS)

    Takeishi, A.; Storelvmo, T.; Zagar, M.

    2014-12-01

    While the ability of aerosols to act as cloud condensation nuclei (CCN) and ice nuclei (IN) is well recognized, the effects of changing aerosol number concentrations on convective clouds have only been studied extensively in recent years. As deep convective clouds can produce heavy precipitation and may sometimes bring severe damages, especially in the tropics, we need to understand the changes in the convective systems that could stem from aerosol perturbations. By perturbing convective clouds, it has also been proposed that aerosols can affect large-scale climate. According to the convective invigoration mechanism, an increase in the aerosol concentration could lead to a larger amount of rainfall and higher vertical velocities in convective clouds, due to an increase in the latent heat release aloft. With some of the satellite observations supporting this mechanism, it is necessary to understand how sensitive the model simulations actually are to aerosol perturbations. This study uses the Weather Research and Forecasting (WRF) model as a cloud-resolving model to reproduce deep convective clouds observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. The convective cloud of our interest was observed in northeastern Colorado on June 22nd in 2012, with a plume of forest fire smoke flowing into its core. Compared to other convective cells observed in the same area on different days, our aircraft data analysis shows that the convective cloud in question included more organic aerosols and more CCN. These indicate the influence of the biomass burning. We compare the results from simulations with different microphysics schemes and different cloud or ice number concentrations. These sensitivity tests tell us how different the amount and the pattern of precipitation would have been if the aerosol concentration had been higher or lower on that day. Both the sensitivity to aerosol perturbation and the reproducibility of the storm are shown to highly

  16. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E.

    PubMed

    van Lier-Walqui, Marcus; Fridlind, Ann M; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase ( K DP ) observed above the melting level are associated with deep convection updraft cells, so-called " K DP columns" are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR K DP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity ( Z DR ). Results indicate strong correlations of K DP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of K DP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of Z DR to K DP shows commonalities in information content of each, as well as potential problems with Z DR associated with observational artifacts.

  17. Overflow Water Pathways in the Subpolar North Atlantic Observed with Deep Floats

    NASA Astrophysics Data System (ADS)

    Bower, Amy; Furey, Heather; Lozier, Susan

    2017-04-01

    As part of the Overturning in the Subpolar North Atlantic Program (OSNAP), a total of 135 acoustically tracked RAFOS floats have been deployed in the deep boundary currents of the Iceland, Irminger and Labrador Basins, and in the Charlie-Gibbs Fracture Zone, to investigate the pathways of Iceland-Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW). Floats were released annually in 2014, 2015 and 2016 at depths between 1800 and 2800 m for two-year missions. The array of sound sources used for tracking was expanded from 10 to 13 moorings in 2016 when it was discovered that wintertime surface roughness was negatively impacting acoustic ranges. The floats from the first setting reveal several examples of persistent , deep coherent eddy motion, including a cyclonic eddy spinning off the tip of Eirik Ridge (southwest of Cape Farewell), a cyclonic eddy in the northeastern Labrador Basin near where anticyclonic Irminger Rings are formed, and an anticyclonic eddy under the North Atlantic Current (NAC) in the central Iceland Basin. A consistent region of boundary-interior exchange was observed near Hamilton Bank on the western boundary of the Labrador Sea. Deep cyclonic recirculation gyres are revealed in all three basins. Floats released in the southward-flowing deep boundary current over the eastern flank of the Reykjanes Ridge show that shallower layers of ISOW peel off to the west and cross the Ridge into the Irminger Basin through various gaps south of 60°N, including the Bight Fracture Zone. These floats tend to turn northward and continue along the slope in the Irminger Basin. Interestingly, floats released at the ISOW level in the CGFZ did not turn into the Irminger Basin as often depicted in deep circulation schematics, but rather drifted west-northwestward toward the Labrador Sea, or eddied around west of the CGFZ and (in some cases) turned southward. This result is consistent with some previous hydrographic and high-resolution model results

  18. Shallow-to-Deep Convection Transition over Land: Atmospheric and surface controls inferred from long-term ground-based observations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Klein, S. A.

    2016-12-01

    Warm-season decade-long observations are used to investigate mechanisms controlling the transition from shallow to deep convection over land. The data are from the DOE Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. The study focuses on two questions: 1) what environmental parameters differ between the two convective regimes: fair-weather shallow cumulus versus late-afternoon deep convection, especially in the late morning a few hours before deep convection begins? And 2) Do convective regimes such as fair-weather shallow cumulus and late-afternoon deep convection have any preferences over soil moisture conditions (dry or wet) and soil moisture heterogeneities? It is found that a more humid environment immediately above the boundary layer is present before the start of late afternoon heavy precipitation events. Greater boundary layer inhomogeneity in moist static energy, temperature, moisture, and horizontal wind before precipitation begins is correlated to larger rain rates at the initial stage of precipitation. Late-afternoon deep convection tends to prefer drier soil conditions with larger surface heterogeneity. This observational study helps our understanding of convective responses to different environmental factors especially surface versus atmospheric controls. This work leads to the establishment of composite cases of different continental convective regimes for large-eddy simulations and single-column tests of climate model parameterizations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698972

  19. Radio and X-ray properties of the source G29.37+0.1 linked to HESS J1844-030

    NASA Astrophysics Data System (ADS)

    Castelletti, G.; Supan, L.; Petriella, A.; Giacani, E.; Joshi, B. C.

    2017-06-01

    Aims: We report on the first detailed multiwavelength study of the radio source G29.37+0.1, which is an as-yet-unclassified object linked to the very-high-energy γ-emitting source HESS J1844-030. The origin of the multiwavelength emission toward G29.37+0.1 has not been clarified so far, leaving open the question about the physical relationship between these sources. Methods: Using observations carried out with the Giant Metrewave Radio Telescope (GMRT), we performed high-quality full-synthesis imaging at 610 MHz of the field containing G29.37+0.1. The obtained data, combined with observations at 1400 MHz from The Multi-Array Galactic Plane Imaging Survey (MAGPIS) were used to investigate in detail the properties of its radio emission. Additionally, we reprocessed archival data obtained with the XMM-Newton and Chandra observatories in order to get a multiwavelength view of this unusual source. Results: The radio source G29.37+0.1 mainly consists of a bright twisted structure, named the S-shaped feature. The high sensitivity of the new GMRT observations allowed the identification of potential lobes, jets, and a nuclear central region in the S-shaped morphology of G29.37+0.1. We also highlight the detection of diffuse and low surface brightness emission enveloping the brightest emitting regions. The brightest emission in G29.37+0.1 has a radio synchrotron spectral index α = 0.59 ± 0.09. Variations in the spectral behaviour are observed across the whole radio source with the flattest spectral features in the central nuclear and jets components (α 0.3). These results lead us to conclude that the brightest radio emission from G29.37+0.1 likely represents a newly recognized radio galaxy. The identification of optical and infrared counterparts to the emission arising from the core of G29.37+0.1 strengthens our interpretation of an extragalactic origin of the radio emission. We performed several tests to explain the physical mechanism responsible for the observed X

  20. Interstellar Protons in the TeV γ-Ray SNR HESS J1731-347: Possible Evidence for the Coexistence of Hadronic and Leptonic γ-Rays

    NASA Astrophysics Data System (ADS)

    Fukuda, T.; Yoshiike, S.; Sano, H.; Torii, K.; Yamamoto, H.; Acero, F.; Fukui, Y.

    2014-06-01

    HESS J1731-347 (G353.6-0.7) is one of the TeV γ-ray supernova remnants (SNRs) that shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the 12CO(J = 1-0) and H I data sets. The results indicate that the TeV γ-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from -90 km s-1 to -75 km s-1. The total mass of the interstellar medium (ISM) protons is estimated to be 6.4 × 104 M ⊙, 25% of which is atomic gas, and the distance corresponding to the velocity range is ~5.2 kpc, a factor of 2 larger than the previous figure, 3 kpc. We have identified the cold H I gas observed as self-absorption which shows significant correspondence with the northeastern γ-ray peak. While the good correspondence between the ISM protons and TeV γ-rays in the north of the SNR lends support to the hadronic scenario for the TeV γ-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of the SNR shell shows a significant decrease of the interstellar protons by a factor of two. We argue that this discrepancy can be explained due to leptonic γ-rays because this region coincides well with the bright shell that emits non-thermal radio continuum emission and non-thermal X-rays, suggesting that the γ-rays of HESS J1713-347 consist of both the hadronic and leptonic components. The leptonic contribution corresponds to ~20% of the total γ-rays.

  1. Interstellar protons in the TeV γ-ray SNR HESS J1731-347: Possible evidence for the coexistence of hadronic and leptonic γ-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, T.; Yoshiike, S.; Sano, H.

    2014-06-10

    HESS J1731-347 (G353.6-0.7) is one of the TeV γ-ray supernova remnants (SNRs) that shows the shell-like morphology. We have made a new analysis of the interstellar protons toward the SNR by using both the {sup 12}CO(J = 1-0) and H I data sets. The results indicate that the TeV γ-ray shell shows significant spatial correlation with the interstellar protons at a velocity range from –90 km s{sup –1} to –75 km s{sup –1}. The total mass of the interstellar medium (ISM) protons is estimated to be 6.4 × 10{sup 4} M {sub ☉}, 25% of which is atomic gas, andmore » the distance corresponding to the velocity range is ∼5.2 kpc, a factor of 2 larger than the previous figure, 3 kpc. We have identified the cold H I gas observed as self-absorption which shows significant correspondence with the northeastern γ-ray peak. While the good correspondence between the ISM protons and TeV γ-rays in the north of the SNR lends support to the hadronic scenario for the TeV γ-rays, the southern part of the shell shows a break in the correspondence; in particular, the southwestern rim of the SNR shell shows a significant decrease of the interstellar protons by a factor of two. We argue that this discrepancy can be explained due to leptonic γ-rays because this region coincides well with the bright shell that emits non-thermal radio continuum emission and non-thermal X-rays, suggesting that the γ-rays of HESS J1713-347 consist of both the hadronic and leptonic components. The leptonic contribution corresponds to ∼20% of the total γ-rays.« less

  2. Asymmetric oceanic response to a hurricane: Deep water observations during Hurricane Isaac

    NASA Astrophysics Data System (ADS)

    Spencer, Laura J.; DiMarco, Steven F.; Wang, Zhankun; Kuehl, Joseph J.; Brooks, David A.

    2016-10-01

    The eye of Hurricane Isaac passed through the center of an array of six deep water water-column current meter moorings deployed in the northern Gulf of Mexico. The trajectory of the hurricane provided for a unique opportunity to quantify differences in the full water-column oceanic response to a hurricane to the left and right of the hurricane trajectory. Prior to the storm passage, relative vorticity on the right side of the hurricane was strongly negative, while on the left, relative vorticity was positive. This resulted in an asymmetry in the near-inertial frequencies oceanic response at depth and horizontally. A shift in the response to a slightly larger inertial frequencies ˜1.11f was observed and verified by theory. Additionally, the storm passage coincided with an asymmetric change in relative vorticity in the upper 1000 m, which persisted for ˜15 inertial periods. Vertical propagation of inertial energy was estimated at 29 m/d, while horizontal propagation at this frequency was approximately 5.7 km/d. Wavelet analysis showed two distinct subinertial responses, one with a period of 2-5 days and another with a period of 5-12 days. Analysis of the subinertial bands reveals that the spatial and temporal scales are shorter and less persistent than the near-inertial variance. As the array is geographically located near the site of the Deep Water Horizon oil spill, the spatial and temporal scales of response have significant implications for the fate, transport, and distribution of hydrocarbons following a deep water spill event.

  3. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems

    NASA Astrophysics Data System (ADS)

    Vdovin, V. F.; Grachev, V. G.; Dryagin, S. Yu.; Eliseev, A. I.; Kamaletdinov, R. K.; Korotaev, D. V.; Lesnov, I. V.; Mansfeld, M. A.; Pevzner, E. L.; Perminov, V. G.; Pilipenko, A. M.; Sapozhnikov, B. D.; Saurin, V. P.

    2016-01-01

    We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including "Radioastron" observatory, which moves in a highly elliptical orbit.

  4. Multiscale Observations of Deep Convection in the Northwestern Mediterranean Sea During Winter 2012-2013 Using Multiple Platforms

    NASA Astrophysics Data System (ADS)

    Testor, Pierre; Bosse, Anthony; Houpert, Loïc.; Margirier, Félix; Mortier, Laurent; Legoff, Hervé; Dausse, Denis; Labaste, Matthieu; Karstensen, Johannes; Hayes, Daniel; Olita, Antonio; Ribotti, Alberto; Schroeder, Katrin; Chiggiato, Jacopo; Onken, Reiner; Heslop, Emma; Mourre, Baptiste; D'ortenzio, Fabrizio; Mayot, Nicolas; Lavigne, Héloise; de Fommervault, Orens; Coppola, Laurent; Prieur, Louis; Taillandier, Vincent; Durrieu de Madron, Xavier; Bourrin, Francois; Many, Gael; Damien, Pierre; Estournel, Claude; Marsaleix, Patrick; Taupier-Letage, Isabelle; Raimbault, Patrick; Waldman, Robin; Bouin, Marie-Noelle; Giordani, Hervé; Caniaux, Guy; Somot, Samuel; Ducrocq, Véronique; Conan, Pascal

    2018-03-01

    During winter 2012-2013, open-ocean deep convection which is a major driver for the thermohaline circulation and ventilation of the ocean, occurred in the Gulf of Lions (Northwestern Mediterranean Sea) and has been thoroughly documented thanks in particular to the deployment of several gliders, Argo profiling floats, several dedicated ship cruises, and a mooring array during a period of about a year. Thanks to these intense observational efforts, we show that deep convection reached the bottom in winter early in February 2013 in a area of maximum 28 ± 3 109m2. We present new quantitative results with estimates of heat and salt content at the subbasin scale at different time scales (on the seasonal scale to a 10 days basis) through optimal interpolation techniques, and robust estimates of the deep water formation rate of 2.0±0.2 Sv. We provide an overview of the spatiotemporal coverage that has been reached throughout the seasons this year and we highlight some results based on data analysis and numerical modeling that are presented in this special issue. They concern key circulation features for the deep convection and the subsequent bloom such as Submesoscale Coherent Vortices (SCVs), the plumes, and symmetric instability at the edge of the deep convection area.

  5. In-situ Observations of Mid-latitude Forest Fire Plumes Deep in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Jost, Hans-Juerg; Drdla, Katja; Stohl, Andreas; Pfister, Leonhard; Loewenstein, Max; Lopez, Jimena P.; Hudson, Paula K.; Murphy, Daniel M.; Cziczo, Daniel J.; Fromm, Michael

    2004-01-01

    We observed a plume of air highly enriched in carbon monoxide and particles in the stratosphere at altitudes up to 15.8 km. It can be unambiguously attributed to North American forest fires. This plume demonstrates an extratropical direct transport path from the planetary boundary layer several kilometers deep into the stratosphere, which is not fully captured by large-scale atmospheric transport models. This process indicates that the stratospheric ozone layer could be sensitive to changes in forest burning associated with climatic warming.

  6. Interannual variability (1979-2013) of the North-Western Mediterranean deep water mass formation: past observation reanalysis and coupled ocean-atmosphere high-resolution modelling

    NASA Astrophysics Data System (ADS)

    Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe

    2015-04-01

    The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective

  7. The Deep Western Boundary Current in the Labrador Sea From Observations and a High-Resolution Model

    NASA Astrophysics Data System (ADS)

    Handmann, Patricia; Fischer, Jürgen; Visbeck, Martin; Karstensen, Johannes; Biastoch, Arne; Böning, Claus; Patara, Lavinia

    2018-04-01

    Long-term observations from a 17 year long mooring array at the exit of the Labrador Sea at 53°N are compared to the output of a high-resolution model (VIKING20). Both are analyzed to define robust integral properties on basin and regional scale, which can be determined and evaluated equally well. While both, the observations and the model, show a narrow DWBC cyclonically engulfing the Labrador Sea, the model's boundary current system is more barotropic than in the observations and spectral analysis indicates stronger monthly to interannual transport variability. Compared to the model, the observations show a stronger density gradient, hence a stronger baroclinicity, from center to boundary. Despite this, the observed temporal evolution of the temperature in the central Labrador Sea is reproduced. The model results yield a mean export of North Atlantic Deep Water (NADW) (33.0 ± 5.7 Sv), which is comparable to the observed transport (31.2 ± 5.5 Sv) at 53°N. The results also include a comparable spatial pattern and March mixed layer depth in the central Labrador Sea (maximum depth ˜2,000 m). During periods containing enhanced deep convection (1990s) our analyses show increased correlation between LSW and LNADW model transport at 53°N. Our results indicate that the transport variability in LSW and LNADW at 53°N is a result of a complex modulation of wind stress and buoyancy forcing on regional and basin wide scale.

  8. Deep-sea in situ observations of gonatid squid and their prey reveal high occurrence of cannibalism

    NASA Astrophysics Data System (ADS)

    Hoving, H. J. T.; Robison, B. H.

    2016-10-01

    In situ observations are rarely applied in food web studies of deep-sea organisms. Using deep-sea observations obtained by remotely operated vehicles in the Monterey Submarine Canyon, we examined the prey choices of more than 100 individual squids of the genus Gonatus. Off the California coast, these squids are abundant, semelparous (one reproductive cycle) oceanic predators but their diet has remained virtually unknown. Gonatus onyx and Gonatus berryi were observed to feed on mesopelagic fishes (in particular the myctophid Stenobrachius leucopsarus) as often as on squids but inter-specific differences in feeding were apparent. Gonatids were the most common squid prey and while cannibalism occurred in both species it was particularly high in Gonatus onyx (42% of all prey items). Typically, the size of prey was similar to the size of the predator but the squids were also seen to take much larger prey. Postjuvenile gonatids are opportunistic predators that consume nektonic members of the meso-and bathypelagic communities, including their own species. Such voracious feeding is likely necessary to support the high energetic demands associated with the single reproductive event; and for females the long brooding period during which they must depend on stored resources.

  9. Discovery of VHE γ-ray emission and multi-wavelength observations of the BL Lacertae object 1RXS J101015.9-311909

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-06-01

    1RXS J101015.9-311909 is a galaxy located at a redshift of z=0.14 hosting an active nucleus (called AGN) belonging to the class of bright BL Lac objects. Observations at high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide insights into the origin of very energetic particles present in such sources and the radiation processes at work. We report on results from VHE observations performed between 2006 and 2010 with the H.E.S.S. instrument, an array of four imaging atmospheric Cherenkov telescopes. H.E.S.S. data have been analysed with enhanced analysis methods, making the detection of faint sources more significant. VHE emission at a position coincident with 1RXS J101015.9-311909 is detected with H.E.S.S. for the first time. In a total good-quality livetime of about 49 h, we measure 263 excess counts, corresponding to a significance of 7.1 standard deviations. The photon spectrum above 0.2 TeV can be described by a power-law with a photon index of Γ = 3.08 ± 0.42stat ± 0.20sys. The integral flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no significant variability over the time reported. In addition, public Fermi/LAT data are analysed to search for high energy emission from the source. The Fermi/LAT HE emission in the 100 MeV to 200 GeV energy range is significant at 8.3 standard deviations in the chosen 25-month dataset. UV and X-ray contemporaneous observations with the Swift satellite in May 2007 are also reported, together with optical observations performed with the atom telescope located at the H.E.S.S. site. Swift observations reveal an absorbed X-ray flux of F(0.3-7) keV = 1.04+0.04-0.05 × 10-11 erg cm-2 s-1 in the 0.3-7 keV range. Finally, all the available data are used to study the multi-wavelength properties of the source. The spectral energy distribution (SED) can be reproduced using a simple one-zone Synchrotron Self Compton (SSC) model with emission from a region with a Doppler factor of 30 and a

  10. Joint US-Japan Observations with the Infrared Space Observatory (ISO): Deep Surveys and Observations of High-Z Objects

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    1997-01-01

    Several important milestones were passed during the past year of our ISO observing program: (1) Our first ISO data were successfully obtained. ISOCAM data were taken for our primary deep field target in the 'Lockman Hole'. Thirteen hours of integration (taken over 4 contiguous orbits) were obtained in the LW2 filter of a 3 ft x 3 ft region centered on the position of minimum HI column density in the Lockman Hole. The data were obtained in microscanning mode. This is the deepest integration attempted to date (by almost a factor of 4 in time) with ISOCAM. (2) The deep survey data obtained for the Lockman Hole were received by the Japanese P.I. (Yoshi Taniguchi) in early December, 1996 (following release of the improved pipeline formatted data from Vilspa), and a copy was forwarded to Hawaii shortly thereafter. These data were processed independently by the Japan and Hawaii groups during the latter part of December 1996, and early January, 1997. The Hawaii group made use of the U.S. ISO data center at IPAC/Caltech in Pasadena to carry out their data reduction, while the Japanese group used a copy of the ISOCAM data analysis package made available to them through an agreement with the head of the ISOCAM team, Catherine Cesarsky. (3) Results of our LW2 Deep Survey in the Lockman Hole were first reported at the ISO Workshop "Taking ISO to the Limits: Exploring the Faintest Sources in the Infrared" held at the ISO Science Operations Center in Villafranca, Spain (VILSPA) on 3-4 February, 1997. Yoshi Taniguchi gave an invited presentation summarizing the results of the U.S.-Japan team, and Dave Sanders gave an invited talk summarizing the results of the Workshop at the conclusion of the two day meeting. The text of the talks by Taniguchi and Sanders are included in the printed Workshop Proceedings, and are published in full on the Web. By several independent accounts, the U.S.-Japan Deep Survey results were one of the highlights of the Workshop; these data showed

  11. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  12. A deep reef in deep trouble

    USGS Publications Warehouse

    Menza, Charles; Kendall, M.; Rogers, C.; Miller, J.

    2007-01-01

    The well-documented degradation of shallower reefs which are often closer to land and more vulnerable to pollution, sewage and other human-related stressors has led to the suggestion that deeper, more remote offshore reefs could possibly serve as sources of coral and fish larvae to replenish the shallower reefs. Yet, the distribution, status, and ecological roles of deep (>30 m) Caribbean reefs are not well known. In this report, an observation of a deep reef which has undergone a recent extensive loss of coral cover is presented. In stark contrast to the typical pattern of coral loss in shallow reefs, the deeper corals were most affected. This report is the first description of such a pattern of coral loss on a deep reef.

  13. Simulating deep surveys of the Galactic Plane with the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Funk, Stefan; Digel, Seth

    2009-05-01

    The pioneering survey of the Galactic plane by H.E.S.S., together with the northern complement now underway with VERITAS, has shown the inner Milky Way to be rich in TeV-emitting sources; new source classes have been found among the H.E.S.S. detections and unidentified sources remain. In order to explore optimizations of the design of an Advanced Gamma-ray Imaging System (AGIS)-like instrument for survey science, we constructed a model of the flux and size distributions of Galactic TeV sources, normalized to the H.E.S.S. sources but extrapolated to lower flux levels. We investigated potential outcomes from a survey with the order of magnitude improvement in sensitivity and attendant improvement in angular resolution planned for AGIS. Studies of individual sources and populations found with such a sensitivity survey will advance understanding of astrophysical particle acceleration, source populations, and even high-energy cosmic rays via detection of the low-level TeV diffuse emission in regions of high cosmic-ray densitiy.

  14. Unveiling an X-ray counterpart to the Unid. TeV source HESS J1852-000

    NASA Astrophysics Data System (ADS)

    Kosack, Karl

    2011-10-01

    We propose to use XMM-Newton to attempt to identify the hard-spectrum very-high- energy (VHE) gamma-ray source HESS J1852-000, which has currently no clear counterpart in lower-energy wavebands. The VHE source lies near the shell-type supernova remnant Kes 78, which may be associated with part of the VHE emission, e.g. through the illumination of nearby molecular clouds by escaping hadrons, via direct shock interaction, or via an as-yet-undetected nearby pulsar wind nebula. We present an analysis of archival XMM data from the region near Kes 78 that shows evidence for X-ray emission from part of the shell, and we propose a pointing that would complement the existing data while covering the peaks of the VHE gamma-ray emission as well as several weak X-ray and radio hotspots.

  15. Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Hui, C. Y.; Yeung, P. K. H.; Ng, C. W.; Lin, L. C. C.; Tam, P. H. T.; Cheng, K. S.; Kong, A. K. H.; Chernyshov, D. O.; Dogiel, V. A.

    2016-04-01

    We report the results from a detailed γ-ray investigation in the field of two `dark accelerators', HESS J1745-303 and HESS J1741-302, with 6.9 yr of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we found that its MeV-GeV emission is mainly originated from the `Region A' of the TeV feature. Its γ-ray spectrum can be modelled with a single power law with a photon index of Γ ˜ 2.5 from few hundreds MeV-TeV. Moreover, an elongated feature, which extends from `Region A' towards north-west for ˜1.3°, is discovered for the first time. The orientation of this feature is similar to that of a large-scale atomic/molecular gas distribution. For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved which resembles that of a γ-ray pulsar. This makes it possibly associated with PSR B1737-20 or PSR J1739-3023.

  16. Characteristics of Moderately Deep Tropical Convection Observed by Dual-Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Powell, Scott

    2017-04-01

    Moderately deep cumulonimbus clouds (often erroneously called congestus) over the tropical warm pool play an important role in large-scale dynamics by moistening the free troposphere, thus allowing for the upscale growth of convection into mesoscale convective systems. Direct observational analysis of such convection has been limited despite a wealth of radar data collected during several field experiments in the tropics. In this study, the structure of isolated cumulonimbus clouds, particularly those in the moderately deep mode with heights of up to 8 km, as observed by RHI scans obtained with the S-PolKa radar during DYNAMO is explored. Such elements are first identified following the algorithm of Powell et al (2016); small contiguous regions of echo are considered isolated convection. Within isolated echo objects, echoes are further subdivided into core echoes, which feature vertical profiles reflectivity and differential reflectivity that is similar to convection embedded in larger cloud complexes, and fringe echoes, which contain vertical profiles of differential reflectivity that are more similar to stratiform regions. Between the surface and 4 km, reflectivities of 30-40 (10-20) dBZ are most commonly observed in isolated convective core (fringe) echoes. Convective cores in echo objects too wide to be considered isolated have a ZDR profile that peaks near the surface (with values of 0.5-1 dB common), and decays linearly to about 0.3 dB at and above an altitude of 6 km. Stratiform echoes have a minimum ZDR below of 0-0.5 dB below the bright band and a constant distribution centered on 0.5 dB above the bright band. The isolated convective core and fringe respectively possess composite vertical profiles of ZDR that resemble convective and stratiform echoes. The mode of the distribution of aspect ratios of isolated convection is approximately 2.3, but the long axis of isolated echo objects demonstrates no preferred orientation. An early attempt at illustrating

  17. In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan

    2018-03-01

    This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.

  18. Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source

    NASA Astrophysics Data System (ADS)

    Xu, Shaosui; Mitchell, David; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew; Lillis, Robert; McFadden, James; Mazelle, Christian; Connerney, Jack; Jakosky, Bruce

    2016-09-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission samples the Mars ionosphere down to altitudes of ˜150 km over a wide range of local times and solar zenith angles. On 5 January 2015 (Orbit 520) when the spacecraft was in darkness at high northern latitudes (solar zenith angle, SZA >120° latitude >60°), the Solar Wind Electron Analyzer (SWEA) instrument observed photoelectrons at altitudes below 200 km. Such observations imply the presence of closed crustal magnetic field loops that cross the terminator and extend thousands of kilometers to the deep nightside. This occurs over the weak northern crustal magnetic source regions, where the magnetic field has been thought to be dominated by draped interplanetary magnetic fields (IMF). Such a day-night magnetic connectivity also provides a source of plasma and energy to the deep nightside. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron fluxes measured by SWEA precipitating onto the nightside atmosphere provide a source of ionization that can account for the O2+ density measured by the Suprathermal and Thermal Ion Composition (STATIC) instrument below 200 km. This finding indicates another channel for Martian energy redistribution to the deep nightside and consequently localized ionosphere patches and potentially aurora.

  19. Radial transport of high-energy oxygen ions into the deep inner magnetosphere observed by Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.

    2017-12-01

    It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.

  20. An Algorithm to Generate Deep-Layer Temperatures from Microwave Satellite Observations for the Purpose of Monitoring Climate Change. Revised

    NASA Technical Reports Server (NTRS)

    Goldberg, Mitchell D.; Fleming, Henry E.

    1994-01-01

    An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996.

  1. Observing the Birth and evolution of Galaxies - the ATCA-AKARI-ASTE/AzTEC deep South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    White, Glenn; Kohno, Kotaro; Matsuhara, Hideo; Matsuura, Shuji; Hanami, Hitoshi; Lee, Hyung Mok; Pearson, Chris; Takagi, Toshi; Serjeant, Stephen; Jeong, Woongseob; Oyabu, Shinki; Shirahata, Mai; Nakanishi, Kouichiro; Figueredo, Elysandra; Etxaluze, Mireya

    2007-04-01

    We propose deep 20 cm observations supporting the AKARI (3-160 micron)/ASTE/AzTEC (1.1 mm) SEP ultra deep ('Oyabu Field') survey of an extremely low cirrus region at the South Ecliptic Pole. Our combined IR/mm/Radio survey addresses the questions: How do protogalaxies and protospheroids form and evolve? How do AGN link with ULIRGs in their birth and evolution? What is the nature of the mm/submm extragalactic source population? We will address these by sampling the star formation history in the early universe to at least z~2. Compared to other Deep Surveys, a) AKARI multi-band IR measurements allow precision photo-z estimates of optically obscured objects, b) our multi-waveband contiguous area will mitigate effects of cosmic variance, c) the low cirrus noise at the SEP (< 0.08 MJy/sr) rivals that of the Lockman Hole "Astronomy's other ultra-deep 'cosmological window'", and d) our coverage of four FIR bands will characterise the far-IR dust emission hump of our starburst galaxies better than SPITZER's two MIPS bands allow. The ATCA data are crucial to galaxy identification, and determining the star formation rates and intrinsic luminosities through this unique Southern cosmological window.

  2. Constraints on an annihilation signal from a core of constant dark matter density around the milky way center with H.E.S.S.

    PubMed

    Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M-H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H-S

    2015-02-27

    An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9  h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300  GeV to ∼10  TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24}  cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4  TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.

  3. The importance of deep, basinwide measurements in optimized Atlantic Meridional Overturning Circulation observing arrays

    NASA Astrophysics Data System (ADS)

    McCarthy, G. D.; Menary, M. B.; Mecking, J. V.; Moat, B. I.; Johns, W. E.; Andrews, M. B.; Rayner, D.; Smeed, D. A.

    2017-03-01

    The Atlantic Meridional Overturning Circulation (AMOC) is a key process in the global redistribution of heat. The AMOC is defined as the maximum of the overturning stream function, which typically occurs near 30°N in the North Atlantic. The RAPID mooring array has provided full-depth, basinwide, continuous estimates of this quantity since 2004. Motivated by both the need to deliver near real-time data and optimization of the array to reduce costs, we consider alternative configurations of the mooring array. Results suggest that the variability observed since 2004 could be reproduced by a single tall mooring on the western boundary and a mooring to 1500 m on the eastern boundary. We consider the potential future evolution of the AMOC in two generations of the Hadley Centre climate models and a suite of additional CMIP5 models. The modeling studies show that deep, basinwide measurements are essential to capture correctly the future decline of the AMOC. We conclude that, while a reduced array could be useful for estimates of the AMOC on subseasonal to decadal time scales as part of a near real-time data delivery system, extreme caution must be applied to avoid the potential misinterpretation or absence of a climate time scale AMOC decline that is a key motivation for the maintenance of these observations.Plain Language SummaryThe Atlantic Overturning Circulation is a system of ocean currents that carries heat northwards in the Atlantic. This heat is crucial to maintaining the mild climate of northwest Europe. The Overturning Circulation is predicted to slow in future in response to man-made climate change. The RAPID program is designed to measure the Overturning Circulation using a number of fixed point <span class="hlt">observations</span> spanning the Atlantic between the Canary Islands and the Bahamas. We look at whether we could reduce the number of these fixed point <span class="hlt">observations</span> to continue to get accurate estimates of the overturning</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6325C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6325C"><span><span class="hlt">Observation</span> of oxygen ventilation into <span class="hlt">deep</span> waters through targeted deployment of multiple Argo-O2 floats in the north-western Mediterranean Sea in 2013</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coppola, L.; Prieur, L.; Taupier-Letage, I.; Estournel, C.; Testor, P.; Lefevre, D.; Belamari, S.; LeReste, S.; Taillandier, V.</p> <p>2017-08-01</p> <p>During the winter 2013, an intense <span class="hlt">observation</span> and monitoring was performed in the north-western Mediterranean Sea to study <span class="hlt">deep</span> water formation process that drives thermohaline circulation and biogeochemical processes (HYMEX SOP2 and DEWEX projects). To <span class="hlt">observe</span> intensively and continuously the impact of <span class="hlt">deep</span> convection on oxygen (O2) ventilation, an <span class="hlt">observation</span> strategy was based on the enhancement of the Argo-O2 floats to monitor the offshore dense water formation area (DWF) in the Gulf of Lion prior to and at the end of the convective period (December 2012 to April 2013). The intense O2 measurements performed through shipborne CTD casts and Argo-O2 floats deployment revealed an O2 inventory rapidly impacted by mixed layer (ML) deepening on the month scale. The open-sea convection in winter 2013 ventilated the <span class="hlt">deep</span> waters from mid-February to the end of May 2013. The newly ventilated dense water volume, based on an Apparent Oxygen Utilization (AOU) threshold, was estimated to be about 1.5 × 1013 m3 during the DWF episode, increasing the <span class="hlt">deep</span> O2 concentrations from 196 to 205 µmol kg-1 in the north-western basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21054942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21054942"><span>Initial <span class="hlt">observations</span> of cell-mediated drug delivery to the <span class="hlt">deep</span> lung.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Arun; Glaum, Mark; El-Badri, Nagwa; Mohapatra, Shyam; Haller, Edward; Park, Seungjoo; Patrick, Leslie; Nattkemper, Leigh; Vo, Dawn; Cameron, Don F</p> <p>2011-01-01</p> <p>Using current methodologies, drug delivery to small airways, terminal bronchioles, and alveoli (<span class="hlt">deep</span> lung) is inefficient, especially to the lower lungs. Urgent lung pathologies such as acute respiratory distress syndrome (ARDS) and post-lung transplantation complications are difficult to treat, in part due to the methodological limitations in targeting the <span class="hlt">deep</span> lung with high efficiency drug distribution to the site of pathology. To overcome drug delivery limitations inhibiting the optimization of <span class="hlt">deep</span> lung therapy, isolated rat Sertoli cells preloaded with chitosan nanoparticles were use to obtain a high-density distribution and concentration (92%) of the nanoparticles in the lungs of mice by way of the peripheral venous vasculature rather than the more commonly used pulmonary route. Additionally, Sertoli cells were preloaded with chitosan nanoparticles coupled with the anti-inflammatory compound curcumin and then injected intravenously into control or experimental mice with <span class="hlt">deep</span> lung inflammation. By 24 h postinjection, most of the curcumin load (∼90%) delivered in the injected Sertoli cells was present and distributed throughout the lungs, including the perialveloar sac area in the lower lungs. This was based on the high-density, positive quantification of both nanoparticles and curcumin in the lungs. There was a marked positive therapeutic effect achieved 24 h following curcumin treatment delivered by this Sertoli cell nanoparticle protocol (SNAP). Results identify a novel and efficient protocol for targeted delivery of drugs to the <span class="hlt">deep</span> lung mediated by extratesticular Sertoli cells. Utilization of SNAP delivery may optimize drug therapy for conditions such as ARDS, status asthmaticus, pulmonary hypertension, lung cancer, and complications following lung transplantation where the use of high concentrations of anti-inflammatory drugs is desirable, but often limited by risks of systemic drug toxicity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhDT.........2R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhDT.........2R"><span>Nonlinear Inference in Partially <span class="hlt">Observed</span> Physical Systems and <span class="hlt">Deep</span> Neural Networks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rozdeba, Paul J.</p> <p></p> <p>The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially <span class="hlt">observed</span>, meaning that data is only available for a subset of the degrees of freedom required to fully model the <span class="hlt">observed</span> system's behaviors and, ultimately, predict future <span class="hlt">observations</span>. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy <span class="hlt">observation</span>; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding <span class="hlt">deep</span> neural network training in machine learning by exploiting similarities between the two problems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.7488T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.7488T"><span>Moored <span class="hlt">observations</span> of the <span class="hlt">Deep</span> Western Boundary Current in the NW Atlantic: 2004-2014</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toole, John M.; Andres, Magdalena; Le Bras, Isabela A.; Joyce, Terrence M.; McCartney, Michael S.</p> <p>2017-09-01</p> <p>A moored array spanning the continental slope southeast of Cape Cod sampled the equatorward-flowing <span class="hlt">Deep</span> Western Boundary Current (DWBC) for a 10 year period: May 2004 to May 2014. Daily profiles of subinertial velocity, temperature, salinity, and neutral density are constructed for each mooring site and cross-line DWBC transport time series are derived for specified water mass layers. Time-averaged transports based on daily estimates of the flow and density fields in Stream coordinates are contrasted with those derived from the Eulerian-mean flow field, modes of DWBC transport variability are investigated through compositing, and comparisons are made to transport estimates for other latitudes. Integrating the daily velocity estimates over the neutral density range of 27.8-28.125 kg/m3 (encompassing Labrador Sea and Overflow Water layers), a mean equatorward DWBC transport of 22.8 × 106 ± 1.9 × 106 m3/s is obtained. Notably, a statistically significant trend of decreasing equatorward transport is <span class="hlt">observed</span> in several of the DWBC components as well as the current as a whole. The largest linear change (a 4% decrease per year) is seen in the layer of Labrador Sea Water that was renewed by <span class="hlt">deep</span> convection in the early 1990s whose transport fell from 9.0 × 106 m3/s at the beginning of the field program to 5.8 × 106 m3/s at its end. The corresponding linear fit to the combined Labrador Sea and Overflow Water DWBC transport decreases from 26.4 × 106 to 19.1 × 106 m3/s. In contrast, no long-term trend is <span class="hlt">observed</span> in upper ocean Slope Water transport. These trends are discussed in the context of decadal <span class="hlt">observations</span> of the North Atlantic circulation, and subpolar air-sea interaction/water mass transformation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1333701','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1333701"><span><span class="hlt">Deep</span> Borehole Field Test Laboratory and Borehole Testing Strategy</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, Robert J.</p> <p>2016-09-19</p> <p><span class="hlt">Deep</span> Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (<span class="hlt">Hess</span> et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuelmore » and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a <span class="hlt">Deep</span> Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN11B1622T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN11B1622T"><span>A <span class="hlt">Deep</span> Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tan, H.; Chandra, C. V.; Chen, H.</p> <p>2016-12-01</p> <p>Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar <span class="hlt">observations</span> and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the <span class="hlt">deep</span> learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the <span class="hlt">deep</span> learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel <span class="hlt">deep</span> neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the <span class="hlt">deep</span> neural network based rainfall products will also be presented, which is based on an independent rain gauge</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20886786','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20886786"><span>[<span class="hlt">Observation</span> on therapeutic effect of electroacupuncture at Tianshu (ST 25) with <span class="hlt">deep</span> needling technique on functional constipation].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Cheng-Wei; He, Hong-Bo; Li, Ning; Wen, Qian; Liu, Zhi-Shun</p> <p>2010-09-01</p> <p>To probe into a better therapeutic method for functional constipation. Ninety-five cases of functional constipation were randomly divided into <span class="hlt">deep</span> puncture at ST 25 group (48 cases), shallow puncture at ST 25 group (24 cases) and medication group (23 cases). In <span class="hlt">deep</span> puncture at ST 25 group, Tianshu (ST 25) was punctured deeply to the peritoneum, with electric stimulation. In shallow puncture at ST 25 group, Tianshu (ST 25) was punctured shallowly, 5 mm beneath the skin, with electric stimulation. In medication group, Duphalac was administered orally. These cases were treated continuously for 4 weeks in 3 groups and followed up for 6 months. It was to <span class="hlt">observe</span> the numbers of person who had defecation 4 times a week, difference in weekly defecation frequency and the difference in the Cleveland Clinic Score (CCS). In <span class="hlt">deep</span> puncture at ST 25 group, the frequency of weekly defecation and the numbers of person who had defecation 4 times a week increased and CCS decreased, which were similar to the efficacy in shallow puncture at ST 25 group (all P > 0.05). But the efficacy of both ST 25 groups was superior to that in medication group (both P < 0.05). In comparison, the <span class="hlt">deep</span> puncture at ST 25 group acted more quickly than either shallow puncture at ST 25 group or medication group and its efficacy remained much longer. The <span class="hlt">deep</span> puncture at ST 25 with electric stimulation presents similar efficacy on functional constipation as shallow puncture at ST 25, but it acts more quickly than shallow puncture at ST 25, both of them are more advantageous than medication and the long-term efficacy is better.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29746842','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29746842"><span>Does the <span class="hlt">Deep</span> Layer of the <span class="hlt">Deep</span> Temporalis Fascia Really Exist?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Hui; Li, Kaide; Jia, Wenhao; Han, Chaoying; Chen, Jinlong; Liu, Lei</p> <p>2018-04-14</p> <p>It has been widely accepted that a split of the <span class="hlt">deep</span> temporal fascia occurs approximately 2 to 3 cm above the zygomatic arch and extends into the superficial and <span class="hlt">deep</span> layers. The <span class="hlt">deep</span> layer of the <span class="hlt">deep</span> temporal fascia is between the superficial temporal fat pad and the temporal muscle. However, during procedures, the authors noted the absence of the <span class="hlt">deep</span> layer of the <span class="hlt">deep</span> temporal fascia between the superficial temporal fat pad and the temporal muscle. This prospective study was conducted to clarify the presence or absence of a <span class="hlt">deep</span> layer of the <span class="hlt">deep</span> temporal fascia. Anatomic layers of the soft tissues of the temporal region, with reference to the <span class="hlt">deep</span> temporal fascia, were investigated in 130 cases operated on for zygomaticofacial fractures using the supratemporal approach from June 2013 to June 2017. Of 130 surgeries, the authors found the absence of a thick, obviously identifiable, fascial layer between the superficial temporal fat pad and the temporal muscle. In fact, the authors found nothing above the temporal muscle in most cases. In a few cases, the authors <span class="hlt">observed</span> only a small amount of scattered loose connective tissue between the superficial temporal fat pad and the temporal muscle. This clinical study showed the absence of a thick, obviously identifiable, fascial layer between the superficial temporal fat pad and the temporal muscle, which suggests that a "<span class="hlt">deep</span> layer of the <span class="hlt">deep</span> temporal fascia" might not exist. Copyright © 2018. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120015903&hterms=taxonomy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dtaxonomy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120015903&hterms=taxonomy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dtaxonomy"><span><span class="hlt">Observing</span> Campaign for Potential <span class="hlt">Deep</span> Impact Flyby Target 163249 (2002 GT)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pittichova, Jana; Chesley, S. R.; Abell, P. A.; Benner, L. A. M.</p> <p>2012-01-01</p> <p>The <span class="hlt">Deep</span> Impact spacecraft is currently on course for a Jan. 4, 2020 flyby of the sub-kilometer near-Earth asteroid 163249 (2002 GT). The re-targeting will be complete with a final small maneuver scheduled for Oct. 4, 2012. 2002 GT, which is also designated as a Potentially Hazardous Asteroid (PHA), has a well-determined orbit and is approx 800 m in diameter (H=18.3). Little more is known about the nature of this object, but in mid-2013 it will pass near the Earth, affording an exceptional opportunity for ground-based characterization. At this apparition 2002 GT will be in range of Arecibo. In addition to Doppler measurements, radar delay <span class="hlt">observations</span> with precisions of a few microseconds are expected and have a good chance of revealing whether the system is binary or not. The asteroid will be brighter than 16th mag., which will facilitate a host of <span class="hlt">observations</span> at a variety of wavelengths. Light curve measurements across a wide range of viewing perspectives will reveal the rotation rate and ultimately lead to strong constraints on the shape and pole orientation. Visible and infrared spectra will constrain the mineralogy, taxonomy, albedo and size. Along with the radar <span class="hlt">observations</span>, optical astrometry will further constrain the orbit, both to facilitate terminal guidance operations and to potentially reveal nongravitational forces acting on the asteroid. Coordinating all of these <span class="hlt">observations</span> will be a significant task and we encourage interested <span class="hlt">observers</span> to collaborate in this effort. The 2013 apparition of 2002 GT represents a unique opportunity to characterize a potential flyby target, which will aid interpretation of the high-resolution flyby imagery and aid planning and development of the flyby imaging sequence. The knowledge gained from this flyby will be highly relevant to the human exploration program at NASA, which desires more information on the physical characteristics of sub-kilometer near-Earth asteroids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...592A.109C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...592A.109C"><span>X-ray <span class="hlt">observations</span> of dust obscured galaxies in the Chandra <span class="hlt">deep</span> field south</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corral, A.; Georgantopoulos, I.; Comastri, A.; Ranalli, P.; Akylas, A.; Salvato, M.; Lanzuisi, G.; Vignali, C.; Koutoulidis, L.</p> <p>2016-08-01</p> <p>We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra <span class="hlt">deep</span> field south. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. This type of galaxy is characterized by a very high infrared (IR) to optical flux ratio (f24 μm/fR > 1000), which in the case of CT AGN could be due to the suppression of AGN emission by absorption and its subsequent re-emission in the IR. The most reliable way of confirming the CT nature of an AGN is by X-ray spectroscopy. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray <span class="hlt">observations</span> available at that time, the 2Ms <span class="hlt">observations</span> of the Chandra <span class="hlt">deep</span> fields, the Chandra <span class="hlt">deep</span> field north (CDF-N), and the Chandra <span class="hlt">deep</span> field south (CDF-S). In that work, we only found a moderate percentage (<50%) of CT AGN among the DOGs sample. However, we pointed out that the limited photon statistics for most of the sources in the sample did not allow us to strongly constrain this number. In this paper, we further explore the properties of the sample of DOGs in the CDF-S presented in that work by using not only a deeper 6Ms Chandra survey of the CDF-S, but also by combining these data with the 3Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (NH > 1023 cm-2), whereas 2 look unabsorbed, and the other 3 are only moderately absorbed. Among the highly absorbed AGN, we find that only three could be considered CT AGN. In only one of these three cases, we detect a strong Fe Kα emission line; the source is already classified as a CT AGN with Chandra data in a previous work. Here we confirm its CT nature by combining Chandra and XMM-Newton data. For the other two CT</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1966b0016V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1966b0016V"><span><span class="hlt">Observation</span> of extraordinary transmission in <span class="hlt">deep</span> UV region from aluminum film coated two dimensional photonic crystals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venkatesh, A.; Piragash Kumar, R. M.; Moorthy, V. H. S.</p> <p>2018-05-01</p> <p>We report the first <span class="hlt">observation</span> of extraordinary transmission of <span class="hlt">deep</span>-UV light (λ = 289nm) through 20nm aluminum film coated two-dimensional photonic crystals. The two-dimensional photonic crystals are made of self-assembled hexagonally arranged monolayer of 200 nm polystyrene spheres fabricated using drop casting method. The high quality photonic crystal exhibits a well-defined photonic band gap of 4.59 eV (λ = 270nm) and the aluminum coated two-dimensional photonic crystal displays extraordinary transmission in the <span class="hlt">deep</span>-UV region at λ = 289 nm. The fabricated aluminum nanostructure produces a sensitivity of 42nm/RIU and 57nm/RIU when the refractive index of the surrounding medium is changed from 1 (= air) to 1.36 (= ethanol) and 1.49 (=toluene), respectively. Therefore, the aluminum film coated two-dimensional photonic crystals could be utilized to fabricate cost-effective and ultrasensitive chemical sensors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3741475','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3741475"><span>How to study <span class="hlt">deep</span> roots—and why it matters</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Maeght, Jean-Luc; Rewald, Boris; Pierret, Alain</p> <p>2013-01-01</p> <p>The drivers underlying the development of <span class="hlt">deep</span> root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that <span class="hlt">deep</span> rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of “<span class="hlt">deep</span> roots” is missing to date, <span class="hlt">deep</span> roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the <span class="hlt">deep</span> rhizosphere and <span class="hlt">deep</span> roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of <span class="hlt">deep</span> roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why <span class="hlt">deep</span> roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ <span class="hlt">observation</span> of <span class="hlt">deep</span> roots. Thus, basic techniques such as destructive sampling or <span class="hlt">observations</span> at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to <span class="hlt">observe</span> roots near the soil surface, must be adapted to the specific requirements of <span class="hlt">deep</span> root <span class="hlt">observation</span>. In this review, we successively address major physical, biogeochemical and ecological functions of <span class="hlt">deep</span> roots to emphasize the significance of <span class="hlt">deep</span> roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to <span class="hlt">observe</span> and measure <span class="hlt">deep</span> roots, providing researchers interested in the field of <span class="hlt">deep</span> root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques. PMID</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22370597-deep-chandra-observations-hcg-active-nuclei-star-formation-galactic-winds','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22370597-deep-chandra-observations-hcg-active-nuclei-star-formation-galactic-winds"><span><span class="hlt">Deep</span> Chandra <span class="hlt">observations</span> of HCG 16. I. Active nuclei, star formation, and galactic winds</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.</p> <p>2014-10-01</p> <p>We present new, <span class="hlt">deep</span> Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz <span class="hlt">observations</span> of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The <span class="hlt">deep</span> Chandra <span class="hlt">observations</span> allow us to detect formore » the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ∼400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ∼0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...793...73O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...793...73O"><span><span class="hlt">Deep</span> Chandra <span class="hlt">Observations</span> of HCG 16. I. Active Nuclei, Star Formation, and Galactic Winds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Sullivan, E.; Zezas, A.; Vrtilek, J. M.; Giacintucci, S.; Trevisan, M.; David, L. P.; Ponman, T. J.; Mamon, G. A.; Raychaudhury, S.</p> <p>2014-10-01</p> <p>We present new, <span class="hlt">deep</span> Chandra X-ray and Giant Metrewave Radio Telescope 610 MHz <span class="hlt">observations</span> of the spiral-galaxy-rich compact group HCG 16, which we use to examine nuclear activity, star formation, and high-luminosity X-ray binary populations in the major galaxies. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized nuclear source in NGC 838. All three nuclei are variable on timescales of months to years, and for NGC 833 and NGC 835 this is most likely caused by changes in accretion rate. The <span class="hlt">deep</span> Chandra <span class="hlt">observations</span> allow us to detect for the first time an Fe Kα emission line in the spectrum of the Seyfert 2 nucleus of NGC 835. We find that NGC 838 and NGC 839 are both starburst-dominated systems, with only weak nuclear activity, in agreement with previous optical studies. We estimate the star formation rates in the two galaxies from their X-ray and radio emission, and compare these results with estimates from the infrared and ultraviolet bands to confirm that star formation in both galaxies is probably declining after galaxy-wide starbursts were triggered ~400-500 Myr ago. We examine the physical properties of their galactic superwinds, and find that both have temperatures of ~0.8 keV. We also examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in the group, and show that it is dominated by emission from its starburst.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28550374','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28550374"><span>Performance of an Artificial Multi-<span class="hlt">observer</span> <span class="hlt">Deep</span> Neural Network for Fully Automated Segmentation of Polycystic Kidneys.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kline, Timothy L; Korfiatis, Panagiotis; Edwards, Marie E; Blais, Jaime D; Czerwiec, Frank S; Harris, Peter C; King, Bernard F; Torres, Vicente E; Erickson, Bradley J</p> <p>2017-08-01</p> <p><span class="hlt">Deep</span> learning techniques are being rapidly applied to medical imaging tasks-from organ and lesion segmentation to tissue and tumor classification. These techniques are becoming the leading algorithmic approaches to solve inherently difficult image processing tasks. Currently, the most critical requirement for successful implementation lies in the need for relatively large datasets that can be used for training the <span class="hlt">deep</span> learning networks. Based on our initial studies of MR imaging examinations of the kidneys of patients affected by polycystic kidney disease (PKD), we have generated a unique database of imaging data and corresponding reference standard segmentations of polycystic kidneys. In the study of PKD, segmentation of the kidneys is needed in order to measure total kidney volume (TKV). Automated methods to segment the kidneys and measure TKV are needed to increase measurement throughput and alleviate the inherent variability of human-derived measurements. We hypothesize that <span class="hlt">deep</span> learning techniques can be leveraged to perform fast, accurate, reproducible, and fully automated segmentation of polycystic kidneys. Here, we describe a fully automated approach for segmenting PKD kidneys within MR images that simulates a multi-<span class="hlt">observer</span> approach in order to create an accurate and robust method for the task of segmentation and computation of TKV for PKD patients. A total of 2000 cases were used for training and validation, and 400 cases were used for testing. The multi-<span class="hlt">observer</span> ensemble method had mean ± SD percent volume difference of 0.68 ± 2.2% compared with the reference standard segmentations. The complete framework performs fully automated segmentation at a level comparable with interobserver variability and could be considered as a replacement for the task of segmentation of PKD kidneys by a human.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AAS...22334806B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AAS...22334806B"><span>Gravitational Microlensing <span class="hlt">Observations</span> of Two New Exoplanets Using the <span class="hlt">Deep</span> Impact High Resolution Instrument</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barry, Richard K.; Bennett, D. P.; Klaasen, K.; Becker, A. C.; Christiansen, J.; Albrow, M.</p> <p>2014-01-01</p> <p>We have worked to characterize two exoplanets newly detected from the ground: OGLE-2012-BLG-0406 and OGLE-2012-BLG-0838, using microlensing <span class="hlt">observations</span> of the Galactic Bulge recently obtained by NASA’s <span class="hlt">Deep</span> Impact (DI) spacecraft, in combination with ground data. These <span class="hlt">observations</span> of the crowded Bulge fields from Earth and from an observatory at a distance of ~1 AU have permitted the extraction of a microlensing parallax signature - critical for breaking exoplanet model degeneracies. For this effort, we used DI’s High Resolution Instrument, launched with a permanent defocus aberration due to an error in cryogenic testing. We show how the effects of a very large, chromatic PSF can be reduced in differencing photometry. We also compare two approaches to differencing photometry - one of which employs the Bramich algorithm and another using the Fruchter & Hook drizzle algorithm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014QSRv...90...80Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014QSRv...90...80Y"><span><span class="hlt">Deep</span> South Atlantic carbonate chemistry and increased interocean <span class="hlt">deep</span> water exchange during last deglaciation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Menviel, Laurie; Zhang, Fei; Ryerson, Fredrick J.; Rohling, Eelco J.</p> <p>2014-04-01</p> <p>Carbon release from the <span class="hlt">deep</span> ocean at glacial terminations is a critical component of past climate change, but the underlying mechanisms remain poorly understood. We present a 28,000-year high-resolution record of carbonate ion concentration, a key parameter of the global carbon cycle, at 5-km water depth in the South Atlantic. We <span class="hlt">observe</span> similar carbonate ion concentrations between the Last Glacial Maximum and the late Holocene, despite elevated concentrations in the glacial surface ocean. This strongly supports the importance of respiratory carbon accumulation in a stratified <span class="hlt">deep</span> ocean for atmospheric CO2 reduction during the last ice age. After ˜9 μmol/kg decline during Heinrich Stadial 1, <span class="hlt">deep</span> South Atlantic carbonate ion concentration rose by ˜24 μmol/kg from the onset of Bølling to Pre-boreal, likely caused by strengthening North Atlantic <span class="hlt">Deep</span> Water formation (Bølling) or increased ventilation in the Southern Ocean (Younger Drays) or both (Pre-boreal). The ˜15 μmol/kg decline in <span class="hlt">deep</span> water carbonate ion since ˜10 ka is consistent with extraction of alkalinity from seawater by <span class="hlt">deep</span>-sea CaCO3 compensation and coral reef growth on continental shelves during the Holocene. Between 16,600 and 15,000 years ago, <span class="hlt">deep</span> South Atlantic carbonate ion values converged with those at 3.4-km water depth in the western equatorial Pacific, as did carbon isotope and radiocarbon values. These <span class="hlt">observations</span> suggest a period of enhanced lateral exchange of carbon between the <span class="hlt">deep</span> South Atlantic and Pacific Oceans, probably due to an increased transfer of momentum from southern westerlies to the Southern Ocean. By spreading carbon-rich <span class="hlt">deep</span> Pacific waters around Antarctica for upwelling, invigorated interocean <span class="hlt">deep</span> water exchange would lead to more efficient CO2 degassing from the Southern Ocean, and thus to an atmospheric CO2 rise, during the early deglaciation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6493B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6493B"><span>Microphysical variability of Amazonian <span class="hlt">deep</span> convective cores <span class="hlt">observed</span> by CloudSat and simulated by a multi-scale modeling framework</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brant Dodson, J.; Taylor, Patrick C.; Branson, Mark</p> <p>2018-05-01</p> <p>Recently launched cloud <span class="hlt">observing</span> satellites provide information about the vertical structure of <span class="hlt">deep</span> convection and its microphysical characteristics. In this study, CloudSat reflectivity data is stratified by cloud type, and the contoured frequency by altitude diagrams reveal a double-arc structure in <span class="hlt">deep</span> convective cores (DCCs) above 8 km. This suggests two distinct hydrometeor modes (snow versus hail/graupel) controlling variability in reflectivity profiles. The day-night contrast in the double arcs is about four times larger than the wet-dry season contrast. Using QuickBeam, the vertical reflectivity structure of DCCs is analyzed in two versions of the Superparameterized Community Atmospheric Model (SP-CAM) with single-moment (no graupel) and double-moment (with graupel) microphysics. Double-moment microphysics shows better agreement with <span class="hlt">observed</span> reflectivity profiles; however, neither model variant captures the double-arc structure. Ultimately, the results show that simulating realistic DCC vertical structure and its variability requires accurate representation of ice microphysics, in particular the hail/graupel modes, though this alone is insufficient.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPSC...10..505H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPSC...10..505H"><span>Two radars for AIM mission: A direct <span class="hlt">observation</span> of the asteroid's structure from <span class="hlt">deep</span> interior to regolith</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herique, A.; Ciarletti, V.</p> <p>2015-10-01</p> <p>Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing <span class="hlt">observations</span> of the surface, and theoretical modeling. What are the bulk properties of the regolith and <span class="hlt">deep</span> interior? And what are the physical processes that shape their internal structures? Direct measurements are needed to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) for the benefit of science as well as for planetary defense or exploration. Radar tomography is the only technique to characterize internal structure from decimetric scale to global scale. This paper reviews the benefits of direct measurement of the asteroid interior. Then the radar concepts for both <span class="hlt">deep</span> interior and shallow subsurface are presented and the radar payload proposed for the AIDA/AIM mission is outlined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApJ...756...39P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApJ...756...39P"><span>CHEERS Results on Mrk 573: A Study of <span class="hlt">Deep</span> Chandra <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paggi, Alessandro; Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita</p> <p>2012-09-01</p> <p>We present results on Mrk 573 obtained as part of the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS). Previous studies showed that this source features a biconical emission in the soft X-ray band closely related to the narrow-line region as mapped by the [O III] emission line and the radio emission, though on a smaller scale; we investigate the properties of soft X-ray emission from this source with new <span class="hlt">deep</span> Chandra <span class="hlt">observations</span>. Making use of the subpixel resolution of the Chandra/ACIS image and point-spread function deconvolution, we resolve and study substructures in each ionizing cone. The two cone spectra are fitted with a photoionization model, showing a mildly photoionized phase diffused over the bicone. Thermal collisional gas at about ~1.1 keV and ~0.8 keV appears to be located between the nucleus and the "knots" resolved in radio <span class="hlt">observations</span>, and between the "arcs" resolved in the optical images, respectively; this can be interpreted in terms of shock interaction with the host galactic plane. The nucleus shows a significant flux decrease across the <span class="hlt">observations</span> indicating variability of the active galactic nucleus (AGN), with the nuclear region featuring a higher ionization parameter with respect to the bicone region. The long exposure allows us to find extended emission up to ~7 kpc from the nucleus along the bicone axis. Significant emission is also detected in the direction perpendicular to the ionizing cones, disagreeing with the fully obscuring torus prescribed in the AGN unified model and suggesting instead the presence of a clumpy structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA520901','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA520901"><span>Shocks and Bubbles in a <span class="hlt">Deep</span> Chandra <span class="hlt">Observation</span> of the Cooling Flow Cluster Abell 2052</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-01-01</p> <p>the bubble rims related to radio source outbursts have been found in a few clusters including M87/ Virgo (Forman et al. 2005), Hydra A (Nulsen et al...Printed in the U.S.A. SHOCKS AND BUBBLES IN A <span class="hlt">DEEP</span> CHANDRA <span class="hlt">OBSERVATION</span> OF THE COOLING FLOW CLUSTER ABELL 2052 E. L. Blanton1, S. W. Randall2, E. M...Douglass1, C. L. Sarazin3, T. E. Clarke4,5, and B. R. McNamara2,6,7 1 Institute for Astrophysical Research , Boston University, 725 Commonwealth Avenue</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2256378Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2256378Y"><span>The <span class="hlt">DEEP</span>-South: Scheduling and Data Reduction Software System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yim, Hong-Suh; Kim, Myung-Jin; Bae, Youngho; Moon, Hong-Kyu; Choi, Young-Jun; Roh, Dong-Goo; the DEEP-South Team</p> <p>2015-08-01</p> <p>The <span class="hlt">DEep</span> Ecliptic Patrol of the Southern sky (<span class="hlt">DEEP</span>-South), started in October 2012, is currently in test runs with the first Korea Microlensing Telescope Network (KMTNet) 1.6 m wide-field telescope located at CTIO in Chile. While the primary objective for the <span class="hlt">DEEP</span>-South is physical characterization of small bodies in the Solar System, it is expected to discover a large number of such bodies, many of them previously unknown.An automatic <span class="hlt">observation</span> planning and data reduction software subsystem called "The <span class="hlt">DEEP</span>-South Scheduling and Data reduction System" (the <span class="hlt">DEEP</span>-South SDS) is currently being designed and implemented for <span class="hlt">observation</span> planning, data reduction and analysis of huge amount of data with minimum human interaction. The <span class="hlt">DEEP</span>-South SDS consists of three software subsystems: the <span class="hlt">DEEP</span>-South Scheduling System (DSS), the Local Data Reduction System (LDR), and the Main Data Reduction System (MDR). The DSS manages <span class="hlt">observation</span> targets, makes decision on target priority and <span class="hlt">observation</span> methods, schedules nightly <span class="hlt">observations</span>, and archive data using the Database Management System (DBMS). The LDR is designed to detect moving objects from CCD images, while the MDR conducts photometry and reconstructs lightcurves. Based on analysis made at the LDR and the MDR, the DSS schedules follow-up <span class="hlt">observation</span> to be conducted at other KMTNet stations. In the end of 2015, we expect the <span class="hlt">DEEP</span>-South SDS to achieve a stable operation. We also have a plan to improve the SDS to accomplish finely tuned <span class="hlt">observation</span> strategy and more efficient data reduction in 2016.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.128...96B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.128...96B"><span><span class="hlt">Observations</span> of near-bottom currents in Bornholm Basin, Slupsk Furrow and Gdansk <span class="hlt">Deep</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bulczak, A. I.; Rak, D.; Schmidt, B.; Beldowski, J.</p> <p>2016-06-01</p> <p>Dense bottom currents are responsible for transport of the salty inflow waters from the North Sea driving ventilation and renewal of Baltic <span class="hlt">deep</span> waters. This study characterises dense currents in three <span class="hlt">deep</span> locations of the Baltic Proper: Bornholm Basin (BB), Gdansk Basin (GB) and Slupsk Furrow (SF). These locations are of fundamental importance for the transport and pollution associated with chemical munitions deposited in BB and GB after 2nd World War. Of further importance the sub-basins are situated along the pathway of dense inflowing water.Current velocities were measured in the majority of the water column during regular cruises of r/v Oceania and r/v Baltica in 2001-2012 (38 cruises) by 307 kHz vessel mounted (VM), downlooking ADCP. Additionally, the high-resolution CTD and oxygen profiles were collected. Three moorings measured current velocity profiles in SF and GB over the summer 2012. In addition, temperature, salinity, oxygen and turbidity were measured at about 1 m above the bottom in GB. The results showed that mean current speed across the Baltic Proper was around 12 cm s-1 and the stronger flow was characteristic to the regions located above the sills, in the Bornholm and Slupsk Channels, reaching on average about 20 cm s-1. The results suggest that these regions are important for the inflow of saline waters into the eastern Baltic and are the areas of intense vertical mixing. The VM ADCP <span class="hlt">observations</span> indicate that the average near-bottom flow across the basin can reach 35±6 cm s-1. The mooring <span class="hlt">observations</span> also showed similar near-bottom flow velocities. However, they showed that the increased speed of the near-bottom layer occurred frequently in SF and GB during short time periods lasting for about few to several days or 10-20% of time. The <span class="hlt">observations</span> showed that the bottom mixed layer occupies at least 10% of the water column and the turbulent mixing induced by near-bottom currents is likely to produce sediment resuspension and transport</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/839898','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/839898"><span>A <span class="hlt">Deep</span> Chandra <span class="hlt">Observation</span> of the Centaurus Cluster:Bubbles, Filaments and Edges</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fabian, A.C.</p> <p>2005-03-14</p> <p>X-ray images and gas temperatures taken from a <span class="hlt">deep</span> {approx}200 ks Chandra <span class="hlt">observation</span> of the Centaurus cluster are presented. Multiple inner bubbles and outer semicircular edges are revealed, together with wispy filaments of soft X-ray emitting gas. The frothy central structure and eastern edge are likely due to the central radio source blowing bubbles in the intracluster gas. The semicircular edges to the surface brightness maps 32 kpc to the east and 17.5 kpc to the west are marked by sharp temperature increases and abundance drops. The edges could be due to sloshing motions of the central potential, or aremore » possibly enhanced by earlier radio activity. The high abundance of the innermost gas (about 2.5 times Solar) limits the amount of diffusion and mixing taking place.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679769-stripped-elliptical-galaxies-probes-icm-physics-iii-deep-chandra-observations-ngc-measuring-viscosity-intracluster-medium','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679769-stripped-elliptical-galaxies-probes-icm-physics-iii-deep-chandra-observations-ngc-measuring-viscosity-intracluster-medium"><span>Stripped Elliptical Galaxies as Probes of ICM Physics. III. <span class="hlt">Deep</span> Chandra <span class="hlt">Observations</span> of NGC 4552: Measuring the Viscosity of the Intracluster Medium</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kraft, R. P.; Roediger, E.; Machacek, M.</p> <p></p> <p>We present results from a <span class="hlt">deep</span> (200 ks) Chandra <span class="hlt">observation</span> of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray <span class="hlt">observations</span> of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the <span class="hlt">deep</span> Chandra data with archival XMM-Newton <span class="hlt">observations</span> to put a strong upper limit on the diffusemore » emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our <span class="hlt">deep</span> data with our specifically tailored simulations and conclude that the <span class="hlt">observed</span> morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing <span class="hlt">observed</span> in the stripped tail on macroscopic scales.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...848...27K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...848...27K"><span>Stripped Elliptical Galaxies as Probes of ICM Physics. III. <span class="hlt">Deep</span> Chandra <span class="hlt">Observations</span> of NGC 4552: Measuring the Viscosity of the Intracluster Medium</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Churazov, E.; Randall, S.; Su, Y.; Sheardown, A.</p> <p>2017-10-01</p> <p>We present results from a <span class="hlt">deep</span> (200 ks) Chandra <span class="hlt">observation</span> of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray <span class="hlt">observations</span> of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the <span class="hlt">deep</span> Chandra data with archival XMM-Newton <span class="hlt">observations</span> to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our <span class="hlt">deep</span> data with our specifically tailored simulations and conclude that the <span class="hlt">observed</span> morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing <span class="hlt">observed</span> in the stripped tail on macroscopic scales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PEPI..276..215A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PEPI..276..215A"><span>Effect of <span class="hlt">observed</span> micropolar motions on wave propagation in <span class="hlt">deep</span> Earth minerals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abreu, Rafael; Thomas, Christine; Durand, Stephanie</p> <p>2018-03-01</p> <p>We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps <span class="hlt">observed</span> in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr , which has been <span class="hlt">observed</span> in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency <span class="hlt">observed</span> in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions <span class="hlt">observed</span> in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth's mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on <span class="hlt">deep</span> Earth's mantle material by providing Cosserat couple modulus that were not available before.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100020935','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100020935"><span><span class="hlt">Deep</span> Galex <span class="hlt">Observations</span> of the Coma Cluster: Source Catalog and Galaxy Counts</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hammer, D.; Hornschemeier, A. E.; Mobasher, B.; Miller, N.; Smith, R.; Arnouts, S.; Milliard, B.; Jenkins, L.</p> <p>2010-01-01</p> <p>We present a source catalog from <span class="hlt">deep</span> 26 ks GALEX <span class="hlt">observations</span> of the Coma cluster in the far-UV (FUV; 1530 Angstroms) and near-UV (NUV; 2310 Angstroms) wavebands. The <span class="hlt">observed</span> field is centered 0.9 deg. (1.6 Mpc) south-west of the Coma core, and has full optical photometric coverage by SDSS and spectroscopic coverage to r-21. The catalog consists of 9700 galaxies with GALEX and SDSS photometry, including 242 spectroscopically-confirmed Coma member galaxies that range from giant spirals and elliptical galaxies to dwarf irregular and early-type galaxies. The full multi-wavelength catalog (cluster plus background galaxies) is 80% complete to NUV=23 and FUV=23.5, and has a limiting depth at NUV=24.5 and FUV=25.0 which corresponds to a star formation rate of 10(exp -3) solar mass yr(sup -1) at the distance of Coma. The GALEX images presented here are very <span class="hlt">deep</span> and include detections of many resolved cluster members superposed on a dense field of unresolved background galaxies. This required a two-fold approach to generating a source catalog: we used a Bayesian deblending algorithm to measure faint and compact sources (using SDSS coordinates as a position prior), and used the GALEX pipeline catalog for bright and/or extended objects. We performed simulations to assess the importance of systematic effects (e.g. object blends, source confusion, Eddington Bias) that influence source detection and photometry when using both methods. The Bayesian deblending method roughly doubles the number of source detections and provides reliable photometry to a few magnitudes deeper than the GALEX pipeline catalog. This method is also free from source confusion over the UV magnitude range studied here: conversely, we estimate that the GALEX pipeline catalogs are confusion limited at NUV approximately 23 and FUV approximately 24. We have measured the total UV galaxy counts using our catalog and report a 50% excess of counts across FUV=22-23.5 and NUV=21.5-23 relative to previous GALEX</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21301646-deep-band-imaging-goods-south-observations-data-reduction-first-results','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21301646-deep-band-imaging-goods-south-observations-data-reduction-first-results"><span><span class="hlt">DEEP</span> U BAND AND R IMAGING OF GOODS-SOUTH: <span class="hlt">OBSERVATIONS</span>, DATA REDUCTION AND FIRST RESULTS ,</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nonino, M.; Cristiani, S.; Vanzella, E.</p> <p>2009-08-01</p> <p>We present <span class="hlt">deep</span> imaging in the U band covering an area of 630 arcmin{sup 2} centered on the southern field of the Great Observatories Origins <span class="hlt">Deep</span> Survey (GOODS). The data were obtained with the VIMOS instrument at the European Southern Observatory (ESO) Very Large Telescope. The final images reach a magnitude limit U {sub lim} {approx} 29.8 (AB, 1{sigma}, in a 1'' radius aperture), and have good image quality, with full width at half-maximum {approx}0.''8. They are significantly deeper than previous U-band images available for the GOODS fields, and better match the sensitivity of other multiwavelength GOODS photometry. The deepermore » U-band data yield significantly improved photometric redshifts, especially in key redshift ranges such as 2 < z < 4, and deeper color-selected galaxy samples, e.g., Lyman break galaxies at z {approx} 3. We also present the co-addition of archival ESO VIMOS R-band data, with R {sub lim} {approx} 29 (AB, 1{sigma}, 1'' radius aperture), and image quality {approx}0.''75. We discuss the strategies for the <span class="hlt">observations</span> and data reduction, and present the first results from the analysis of the co-added images.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.128..131G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.128..131G"><span>Halomonhystera disjuncta - a young-carrying nematode first <span class="hlt">observed</span> for the Baltic Sea in <span class="hlt">deep</span> basins within chemical munitions disposal sites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grzelak, Katarzyna; Kotwicki, Lech</p> <p>2016-06-01</p> <p>Three <span class="hlt">deep</span> basins in the Baltic Sea were investigated within the framework of the CHEMSEA project (Chemical Munitions Search & Assessment), which aims to evaluate the ecological impact of chemical warfare agents dumped after World War II. Nematode communities, which comprise the most numerous and diverse organisms in the surveyed areas, were investigated as a key group of benthic fauna. One of the most successful nematode species was morphologically identified as Halomonhystera disjuncta (Bastian, 1865). The presence of this species, which is an active coloniser that is highly resistant to disturbed environments, may indicate that the sediments of these disposal sites are characterised by toxic conditions that are unfavourable for other metazoans. Moreover, ovoviviparous reproductive behaviour in which parents carry their brood internally, which is an important adaptation to harsh environmental conditions, was <span class="hlt">observed</span> for specimens from Gdansk <span class="hlt">Deep</span> and Gotland <span class="hlt">Deep</span>. This reproductive strategy, which is uncommon for marine nematodes, has not previously been reported for nematodes from the Baltic Sea sediment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MNRAS.440.1458D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MNRAS.440.1458D"><span>Identification of old tidal dwarfs near early-type galaxies from <span class="hlt">deep</span> imaging and H I <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duc, Pierre-Alain; Paudel, Sanjaya; McDermid, Richard M.; Cuillandre, Jean-Charles; Serra, Paolo; Bournaud, Frédéric; Cappellari, Michele; Emsellem, Eric</p> <p>2014-05-01</p> <p>It has recently been proposed that the dwarf spheroidal galaxies located in the Local Group discs of satellites (DoSs) may be tidal dwarf galaxies (TDGs) born in a major merger at least 5 Gyr ago. Whether TDGs can live that long is still poorly constrained by <span class="hlt">observations</span>. As part of <span class="hlt">deep</span> optical and H I surveys with the Canada-France-Hawaii Telescope (CFHT) MegaCam camera and Westerbork Synthesis Radio Telescope made within the ATLAS3D project, and follow-up spectroscopic <span class="hlt">observations</span> with the Gemini-North telescope, we have discovered old TDG candidates around several early-type galaxies. At least one of them has an oxygen abundance close to solar, as expected for a tidal origin. This confirmed pre-enriched object is located within the gigantic, but very low surface brightness, tidal tail that emanates from the elliptical galaxy, NGC 5557. An age of 4 Gyr estimated from its SED fitting makes it the oldest securely identified TDG ever found so far. We investigated the structural and gaseous properties of the TDG and of a companion located in the same collisional debris, and thus most likely of tidal origin as well. Despite several Gyr of evolution close to their parent galaxies, they kept a large gas reservoir. Their central surface brightness is low and their effective radius much larger than that of typical dwarf galaxies of the same mass. This possibly provides us with criteria to identify tidal objects which can be more easily checked than the traditional ones requiring <span class="hlt">deep</span> spectroscopic <span class="hlt">observations</span>. In view of the above, we discuss the survival time of TDGs and question the tidal origin of the DoSs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.A41C0111Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.A41C0111Y"><span>Interactions between <span class="hlt">deep</span> convective clouds and aerosols as <span class="hlt">observed</span> by satellites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, T.; Li, Z. I.; Remer, L.; Martins, V.</p> <p>2008-12-01</p> <p>Major uncertainties regarding interactions between <span class="hlt">deep</span> convective clouds (DCC) exist due partly to <span class="hlt">observational</span> difficulty and partly to the entanglement among remotely sensed properties of aerosols and clouds and entanglement between meteorology and possible aerosol signals. In this study we adopt a novel, physically sound relationship between cloud crystal effective radius(CER) and brightness temperature (BT) and utilize ample sampling opportunity provided by MODIS instrument. We reveal aerosol impacts on DCCs by analyzing an ensemble data. Through a conceptual model we demonstrate how aerosol may affect DCC properties. We outline a few scenarios where aerosol signals are best separated and pronounced. Based on our results, anthropogenic pollutions and smokes are shown to effectively decrease CER and to elevate glaciation level of DCCs. On the other hand, dust particles from local sources have the opposite effects, namely, increasing cloud ice particle size and enhancing glaciation by acting possibly as giant CCN or IN. Implications of these effects for aerosols are discussed along with feedbacks of these effects to dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989ApJ...339...12H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989ApJ...339...12H"><span>A very <span class="hlt">deep</span> IRAS survey. III - VLA <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hacking, Perry; Condon, J. J.; Houck, J. R.; Beichman, C. A.</p> <p>1989-04-01</p> <p>The 60-micron fluxes and positions of sources (primarily starburst galaxies) found in a <span class="hlt">deep</span> IRAS survey by Hacking and Houck (1987) are compared with 1.49 HGz maps made by the Very Large Array. The radio results are consistent with radio measurements of brighter IRAS galaxies and provide evidence that infrared cirrus does not contaminate the 60-micron sample. The flux-independent ratio of infrared to radio flux densities implies that the 1.4 GHz luminosity function for spiral galaxies is evolving at less than (1 + z) to the power of 4 relative to the 60-micron luminosity function.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830009308','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830009308"><span>The <span class="hlt">Deep</span> Space Network. An instrument for radio navigation of <span class="hlt">deep</span> space probes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Renzetti, N. A.; Jordan, J. F.; Berman, A. L.; Wackley, J. A.; Yunck, T. P.</p> <p>1982-01-01</p> <p>The <span class="hlt">Deep</span> Space Network (DSN) network configurations used to generate the navigation <span class="hlt">observables</span> and the basic process of <span class="hlt">deep</span> space spacecraft navigation, from data generation through flight path determination and correction are described. Special emphasis is placed on the DSN Systems which generate the navigation data: the DSN Tracking and VLBI Systems. In addition, auxiliary navigational support functions are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18002527','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18002527"><span>Magnetic resonance elastography to <span class="hlt">observe</span> <span class="hlt">deep</span> areas: comparison of external vibration systems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suga, Mikio; Obata, Takayuki; Hirano, Masaya; Tanaka, Takashi; Ikehira, Hiroo</p> <p>2007-01-01</p> <p>MRE methods deform the sample using an external vibration system. We have been using a transverse driver, which generates shear waves at the object surface. One of the problems is that shear waves rapidly attenuate at the surface of tissue and do not propagate into the body. In this study, we compared the shear waves generated by transverse and longitudinal drivers. The longitudinal driver was found to induce shear waves <span class="hlt">deep</span> inside a porcine liver phantom. These results suggest that the longitudinal driver will allow measurement of the shear modulus <span class="hlt">deep</span> inside the body.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...831..112S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...831..112S"><span><span class="hlt">Deep</span> Optical <span class="hlt">Observations</span> of Unusual Neutron Star Calvera with the GTC</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shibanov, Yury; Danilenko, Andrey; Zharikov, Sergey; Shternin, Peter; Zyuzin, Dima</p> <p>2016-11-01</p> <p>Calvera is an unusual, isolated neutron star with a pure thermal X-ray spectrum typical of central compact objects in supernova remnants. On the other hand, its rotation period and spin-down rate are typical of ordinary rotation-powered pulsars. It was discovered and studied through X-rays, and has not yet been detected in other spectral domains. We present <span class="hlt">deep</span> optical imaging of the Calvera field, obtained with the Gran Telescopio Canarias, in the g\\prime and I\\prime bands. Within the vicinity of ≈ 1\\prime\\prime of Calvera, we detected two point-like objects that were invisible at previous shallow <span class="hlt">observations</span>. However, accurate astrometry showed that neither of them can be identified with the pulsar. We put new upper limits of g\\prime \\gt 27.87 and I\\prime \\gt 26.84 on its optical brightness. We also reanalyzed all available archival X-ray data on Calvera. Comparison of the Calvera thermal emission parameters and upper limits on optical and non-thermal X-ray emission with respective data on rotation-powered pulsars shows that Calvera might belong to the class of ordinary middle-aged pulsars, if we assume that its distance is in the range of 1.5-5 kpc. Based on <span class="hlt">observations</span> made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, on the island of La Palma, program GTC1-14AMEX.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1357544-fermi-lat-observations-supernova-remnant-w28-g6','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1357544-fermi-lat-observations-supernova-remnant-w28-g6"><span>Fermi LAT <span class="hlt">Observations</span> of the Supernova Remnant W28 (G6.4-0.1)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Abdo, A. A.; Ackermann, M.; Ajello, M.; ...</p> <p>2010-06-30</p> <p>Here, we present detailed analysis of two gamma-ray sources, 1FGL J1801.3–2322c and 1FGL J1800.5–2359c, that have been found toward the supernova remnant (SNR) W28 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. 1FGL J1801.3–2322c is found to be an extended source within the boundary of SNR W28, and to extensively overlap with the TeV gamma-ray source <span class="hlt">HESS</span> J1801–233, which is associated with a dense molecular cloud interacting with the SNR. The gamma-ray spectrum measured with the LAT from 0.2 to 100 GeV can be described by a broken power-law function with a break at ~1more » GeV and photon indices of 2.09 ± 0.08 (stat) ± 0.28 (sys) below the break and 2.74 ± 0.06 (stat) ± 0.09 (sys) above the break. Given the clear association between <span class="hlt">HESS</span> J1801–233 and the shocked molecular cloud and a smoothly connected spectrum in the GeV-TeV band, we consider the origin of the gamma-ray emission in both GeV and TeV ranges to be the interaction between particles accelerated in the SNR and the molecular cloud. The decay of neutral pions produced in interactions between accelerated hadrons and dense molecular gas provides a reasonable explanation for the broadband gamma-ray spectrum. 1FGL J1800.5–2359c, located outside the southern boundary of SNR W28, cannot be resolved. An upper limit on the size of the gamma-ray emission was estimated to be ~16' using events above ~2 GeV under the assumption of a circular shape with uniform surface brightness. It appears to coincide with the TeV source <span class="hlt">HESS</span> J1800–240B, which is considered to be associated with a dense molecular cloud that contains the ultra compact H II region W28A2 (G5.89–0.39). In conclusion, we found no significant gamma-ray emission in the LAT energy band at the positions of TeV sources <span class="hlt">HESS</span> J1800–230A and <span class="hlt">HESS</span> J1800–230C. The LAT data for <span class="hlt">HESS</span> J1800–230A combined with the TeV data points indicate a spectral break between 10 GeV and 100 GeV.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003553&hterms=six&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsix','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003553&hterms=six&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsix"><span><span class="hlt">Deep</span> View of the Large Magellanic Cloud with Six Years of Fermi-LAT <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003553'); toggleEditAbsImage('author_20170003553_show'); toggleEditAbsImage('author_20170003553_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003553_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003553_hide"></p> <p>2016-01-01</p> <p>Context. The nearby Large Magellanic Cloud (LMC) provides a rare opportunity of a spatially resolved view of an external star-forming galaxy in gamma-rays. The LMC was detected at 0.1-100 GeV as an extended source with CGRO/EGRET and using early <span class="hlt">observations</span> with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Aims. Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions by revealing whether and how the gamma-ray emission is connected to specific objects, populations of objects, and structures in the galaxy. Methods. We revisited the gamma-ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2-100 GeV range. We developed a complete spatial and spectral model of the LMC emission, for which we tested several approaches: a simple geometrical description, template-fitting, and a physically driven model for CR-induced interstellar emission. Results. In addition to identifying PSR J0540-6919 through its pulsations, we find two hard sources positionally coincident with plerion N 157B and supernova remnant N 132D, which were also detected at TeV energies with <span class="hlt">H.E.S.S</span>. We detect an additional soft source that is currently unidentified. Extended emission dominates the total flux from the LMC. It consists of an extended component of about the size of the galaxy and additional emission from three to four regions with degree-scale sizes. If it is interpreted as CRs interacting with interstellar gas, the large-scale emission implies a large-scale population of approximately 1-100 GeV CRs with a density of approximately 30% of the local Galactic value. On top of that, the three to four small-scale emission regions would correspond to enhancements of the CR density by factors 2 to 6 or higher, possibly more</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1355679-deep-view-large-magellanic-cloud-six-years-fermi-lat-observations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1355679-deep-view-large-magellanic-cloud-six-years-fermi-lat-observations"><span><span class="hlt">Deep</span> view of the Large Magellanic Cloud with six years of Fermi -LAT <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ackermann, M.</p> <p>2016-01-27</p> <p>Context. The nearby Large Magellanic Cloud (LMC) provides a rare opportunity of a spatially resolved view of an external star-forming galaxy in -rays. The LMC was detected at 0.1–100 GeV as an extended source with CGRO/EGRET and using early <span class="hlt">observations</span> with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Aims. Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions by revealing whether andmore » how the -ray emission is connected to specific objects, populations of objects, and structures in the galaxy. Methods. We revisited the -ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2–100 GeV range. We developed a complete spatial and spectral model of the LMC emission, for which we tested several approaches: a simple geometrical description, template-fitting, and a physically driven model for CR-induced interstellar emission. Results. In addition to identifying PSR J0540-6919 through its pulsations, we find two hard sources positionally coincident with plerion N 157B and supernova remnant N 132D, which were also detected at TeV energies with <span class="hlt">H.E.S.S</span>. We detect an additional soft source that is currently unidentified. Extended emission dominates the total flux from the LMC. It consists of an extended component of about the size of the galaxy and additional emission from three to four regions with degree-scale sizes. If it is interpreted as CRs interacting with interstellar gas, the large-scale emission implies a large-scale population of ~1–100GeV CRs with a density of ~30% of the local Galactic value. On top of that, the three to four small-scale emission regions would correspond to enhancements of the CR density by factors 2 to 6 or higher, possibly more energetic and younger</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22253224-analytical-energy-gradient-based-spin-free-infinite-order-douglas-kroll-hess-method-local-unitary-transformation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22253224-analytical-energy-gradient-based-spin-free-infinite-order-douglas-kroll-hess-method-local-unitary-transformation"><span>Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-<span class="hlt">Hess</span> method with local unitary transformation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nakajima, Yuya; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp</p> <p></p> <p>In this study, the analytical energy gradient for the spin-free infinite-order Douglas-Kroll-<span class="hlt">Hess</span> (IODKH) method at the levels of the Hartree-Fock (HF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) is developed. Furthermore, adopting the local unitary transformation (LUT) scheme for the IODKH method improves the efficiency in computation of the analytical energy gradient. Numerical assessments of the present gradient method are performed at the HF, DFT, and MP2 levels for the IODKH with and without the LUT scheme. The accuracies are examined for diatomic molecules such as hydrogen halides, halogen dimers, coinage metal (Cu, Ag, and Au) halides,more » and coinage metal dimers, and 20 metal complexes, including the fourth–sixth row transition metals. In addition, the efficiencies are investigated for one-, two-, and three-dimensional silver clusters. The numerical results confirm the accuracy and efficiency of the present method.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993PhLB..299..385A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993PhLB..299..385A"><span><span class="hlt">Observation</span> of <span class="hlt">deep</span> inelastic scattering at low x</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Bushhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurça, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; Landon, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Áçek, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.</p> <p>1993-01-01</p> <p>Measurements of the scattered electron energy spectrum and the differential cross sections dσ/d log(x) and dσ/dQ2 for inclusive neutral current <span class="hlt">deep</span> inelastic electron-proton scattering are presented. The data were obtained with the H1 detector at HERA during its first running period in which 26.7 GeV electrons collided with 820 GeV protons. The data correspond to an integrated luminosity of 1.3 nb-1 and allow the first studies of the structure of the proton at values of x down to 10-4 for Q2 > 5 GeV2. Supported by the Swedish Natural Science Research Council.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2063.3181K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2063.3181K"><span>Earth <span class="hlt">Observation</span> and Science: Monitoring Vegetation Dynamics from <span class="hlt">Deep</span> Space Gateway</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knyazikhin, Y.; Park, T.; Hu, B.</p> <p>2018-02-01</p> <p>Retrieving diurnal courses of sunlit (SLAI) and shaded (ShLAI) leaf area indices, fraction of photosynthetically active radiation (PAR) absorbed by vegetation (FPAR), and Normalized Difference Vegetation Index (NDVI) from <span class="hlt">Deep</span> Space Gateway data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B22D..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B22D..01C"><span><span class="hlt">Observation</span> to Theory in <span class="hlt">Deep</span> Subsurface Microbiology Research: Can We Piece It Together?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colwell, F. S.; Thurber, A. R.</p> <p>2016-12-01</p> <p>Three decades of <span class="hlt">observations</span> of microbes in <span class="hlt">deep</span> environments have led to startling discoveries of life in the subsurface. Now, a few theoretical frameworks exist that help to define Stygian life. Temperature, redox gradients, productivity (e.g., in the overlying ocean), and microbial power requirements are thought to determine the distribution of microbes in the subsurface. Still, we struggle to comprehend the spatial and temporal spectra of Earth processes that define how <span class="hlt">deep</span> microbe communities survive. Stommel diagrams, originally used to guide oceanographic sampling, may be useful in depicting the subsurface where microbial communities are impacted by co-occurring spatial and temporal phenomena that range across exponential scales. Spatially, the geological settings that influence the activity and distribution of microbes range from individual molecules or minerals all the way up to the planetary-scale where geological formations, occupying up to 105 km3, dictate the bio- and functional geography of microbial communities. Temporally, life in the subsurface may respond in time units familiar to humans (e.g., seconds to days) or to events that unfold over hundred millennial time periods. While surface community dynamics are underpinned by solar and lunar cycles, these cycles only fractionally dictate survival underground where phenomena like tectonic activity, isostatic rebound, and radioactive decay are plausible drivers of microbial life. Geological or planetary processes that occur on thousand or million year cycles could be uniquely important to microbial viability in the subsurface. Such an approach aims at a holistic comprehension of the interaction of Earth system dynamics with microbial ecology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2063.3101H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2063.3101H"><span>Lunar Volatile System Dynamics: <span class="hlt">Observations</span> Enabled by the <span class="hlt">Deep</span> Space Gateway</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Honniball, C. I.; Lucey, P. G.; Petro, N.; Hurley, D.; Farrell, W.</p> <p>2018-02-01</p> <p>A UV spectrometer-imager and IR spectrometer are proposed to solve questions regarding the lunar volatile system. The instrument takes advantage of highly elliptical orbits and the thermal management system of the <span class="hlt">Deep</span> Space Gateway.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014A%26A...564A..81K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014A%26A...564A..81K"><span><span class="hlt">Deep</span> optical <span class="hlt">observations</span> of the γ-ray pulsar J0357+3205</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirichenko, A.; Danilenko, A.; Shibanov, Yu.; Shternin, P.; Zharikov, S.; Zyuzin, D.</p> <p>2014-04-01</p> <p>Context. A middle-aged radio-quiet pulsar J0357+3205 was discovered in gamma rays with Fermi and later in X-rays with Chandra and XMM-Newton observatories. It produces an unusual thermally emitting pulsar wind nebula that is <span class="hlt">observed</span> in X-rays. Aims: <span class="hlt">Deep</span> optical <span class="hlt">observations</span> were obtained to search for the pulsar optical counterpart and its nebula using the Gran Telescopio Canarias (GTC). Methods: The direct imaging mode in the Sloan g' band was used. Archival X-ray data were reanalysed and compared with the optical data. Results: No pulsar optical counterpart was detected down to g'≥slant 28.1m. No pulsar nebula was identified in the optical either. We confirm early results that the X-ray spectrum of the pulsar consists of a nonthermal power-law component of the pulsar magnetospheric origin dominating at high energies and a soft thermal component from the neutron star surface. Using magnetised, partially ionised hydrogen atmosphere models in X-ray spectral fits, we found that the thermal component can come from the entire surface of the cooling neutron star with a temperature of 36+8-6 eV, making it one of the coldest among cooling neutron stars known. The surface temperature agrees with the standard neutron star cooling scenario. The optical upper limit does not put any additional constraints on the thermal component, however it does imply a strong spectral break for the nonthermal component between the optical and X-rays as is <span class="hlt">observed</span> in other middle-aged pulsars. Conclusions: The thermal emission from the entire surface of the neutron star very likely dominates the nonthermal emission in the UV range. <span class="hlt">Observations</span> of PSR J0357+3205 in this range are promising to put more stringent constraints on its thermal properties. Based on <span class="hlt">observations</span> made with the Gran Telescopio Canarias (GTC), instaled in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma under Programme GTC3-12BMEX</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913494S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913494S"><span>Crop response to <span class="hlt">deep</span> tillage - a meta-analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, Florian; Don, Axel; Hennings, Inga; Schmittmann, Oliver; Seidel, Sabine J.</p> <p>2017-04-01</p> <p>Subsoil, i.e. the soil layer below the topsoil, stores tremendous stocks of nutrients and can keep water even under drought conditions. <span class="hlt">Deep</span> tillage may be a method to enhance the plant-availability of subsoil resources. However, in field trials, <span class="hlt">deep</span> tillage effects on crop yields were inconsistent. Therefore, we conducted a meta-analysis of crop yield response to subsoiling, <span class="hlt">deep</span> ploughing and <span class="hlt">deep</span> mixing of soil profiles. Our search resulted in 1530 yield comparisons following <span class="hlt">deep</span> and conventional control tillage on 67 experimental cropping sites. The vast majority of the data derived from temperate latitudes, from trials conducted in the USA (679 <span class="hlt">observations</span>) and Germany (630 <span class="hlt">observations</span>). On average, crop yield response to <span class="hlt">deep</span> tillage was slightly positive (6% increase). However, individual <span class="hlt">deep</span> tillage effects were highly scattered including about 40% yield depressions after <span class="hlt">deep</span> tillage. <span class="hlt">Deep</span> tillage on soils with root restrictive layers increased crop yields about 20%, while soils containing >70% silt increased the risk of yield depressions following <span class="hlt">deep</span> tillage. Generally, <span class="hlt">deep</span> tillage effects increased with drought intensity indicating <span class="hlt">deep</span> tillage as climate adaptation measure at certain sites. Our results suggest that <span class="hlt">deep</span> tillage can facilitate the plant-availability of subsoil nutrients, which increases crop yields if (i) nutrients in the topsoil are growth limiting, and (ii) <span class="hlt">deep</span> tillage does not come at the cost of impairing topsoil fertility. On sites with root restrictive soil layers, <span class="hlt">deep</span> tillage can be an effective measure to mitigate drought stress and improve the resilience of crops. However, <span class="hlt">deep</span> tillage should only be performed on soils with a stable structure, i.e. <70% silt content. We will discuss the contribution of <span class="hlt">deep</span> tillage options to enhance the sustainability of agricultural production by facilitating the uptake of nutrients and water from the subsoil.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S43A2033S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S43A2033S"><span>Anomalies of rupture velocity in <span class="hlt">deep</span> earthquakes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, M.; Yagi, Y.</p> <p>2010-12-01</p> <p>Explaining <span class="hlt">deep</span> seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and <span class="hlt">observing</span> the stress field in the mantle transition zone (410-660 km), the seismic source processes of <span class="hlt">deep</span> earthquakes are the most important information for understanding the distribution of <span class="hlt">deep</span> seismicity. However, in a compilation of seismic source models of <span class="hlt">deep</span> earthquakes, the source parameters for individual <span class="hlt">deep</span> earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for <span class="hlt">deep</span> earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of <span class="hlt">deep</span> earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network <span class="hlt">observations</span> [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the <span class="hlt">observed</span> data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, <span class="hlt">deep</span> earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of <span class="hlt">deep</span> earthquakes. By imaging the seismic rupture process for a set of recent <span class="hlt">deep</span> earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912791P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912791P"><span><span class="hlt">Deep</span>-convection events foster carbonate ion reduction in <span class="hlt">deep</span> coral reefs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perez, Fiz F.; Fontela, Marcos; Garcia-Ibañez, Maribel I.; Lherminier, Pascale; Zunino, Patricia; de la Paz, Mercedes; Padín, Xose A.; Alonso-Pérez, Fernando; Velo, Anton; Guallart, Elisa F.; Mercier, Herle</p> <p>2017-04-01</p> <p>Since millennial times, water mass circulation and <span class="hlt">deep</span>-convection events have been transforming warm upper waters at high latitudes into cold and well-oxygenated <span class="hlt">deep</span> waters. These processes have filled the <span class="hlt">deep</span> North Atlantic Ocean with waters moderately saturated in calcium carbonate, thus promoting the growth of stony corals, which are hotspots of biodiversity. During the Anthropocene, the meridional circulation has been conveying cumulative amounts of more acidified waters with lower calcium carbonate saturation levels due to the incorporation of anthropogenic carbon dioxide, with very harsh conditions for <span class="hlt">deep</span> cold-water corals projected by 2100. We evaluate the diminution of calcium carbonate saturation levels (aragonite form) due to the increase in anthropogenic carbon dioxide during the last two decades (2002-2016). We <span class="hlt">observe</span> a strong decrease in the aragonite saturation levels concomitant with the reduction in the volume transport of aragonite-saturated waters. We estimate a 30-35% reduction in the transport of ion carbonate excess over the saturation levels with respect to the natural carbon cycle for the period 2002-2016. This reduction is associated with an increase in the downward transport of hydrogen ions. We also <span class="hlt">observe</span> a heaving of the aragonite saturation horizons during the last 25 years, which is estimated at 6 m year-1 for the <span class="hlt">deep</span> waters and 12-14 m year-1 for the intermediated waters. The harsh winters of 2015 and 2016 have fostered the fast addition of more acidified water into the lower layers of the North Atlantic through <span class="hlt">deep</span>-convection events. In the future scenario of 2oC warming, the anthropogenic carbon dioxide in the water column would be double than today and the associated transport of hydrogen ions towards the bottom water would reduce the aragonite saturation levels to 60-80% with respect to preindustrial levels. This reduction in the aragonite saturation levels would suppose a strong diminution of the North Atlantic habitats</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20630531-intrinsic-spectrum-pks-from-data','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20630531-intrinsic-spectrum-pks-from-data"><span>On the intrinsic spectrum of PKS 2155-304 from <span class="hlt">H.E.S.S</span>. 2003 data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Costamante, L.; Benbow, W.; Horns, D.</p> <p>2005-02-21</p> <p>In 2003, PKS 2155-304 has been significantly detected by <span class="hlt">H.E.S.S</span>. at Very High Energies (VHE), with an average spectrum of {gamma} = 3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and locate the Inverse Compton (IC) peak of the Spectral Energy Distribution (SED), we used three EBL models (representatives of three different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum ismore » steeper than {gamma} = 2 (thus locating the IC peak < 200 GeV) for fluxes below. With bulk Lorentz factors {delta} = 20 - 30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thompson regime, and in agreement with the commonly fitted source parameters (e.g. [17]). The constraint on {delta} given by transparency to 2 TeV photons is {delta} > 19 (for historical SED fluxes and 2 hours variability timescale)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AIPC..745..449C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AIPC..745..449C"><span>On the intrinsic spectrum of PKS 2155-304 from <span class="hlt">H.E.S.S</span>. 2003 data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costamante, L.; Benbow, W.; Horns, D.; Reimer, A.; H.E.S.S. Collaboration</p> <p>2005-02-01</p> <p>In 2003, PKS 2155-304 has been significantly detected by <span class="hlt">H.E.S.S</span>. at Very High Energies (VHE), with an average spectrum of Γ = 3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and locate the Inverse Compton (IC) peak of the Spectral Energy Distribution (SED), we used three EBL models (representatives of three different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum is steeper than Γ = 2 (thus locating the IC peak < 200 GeV) for fluxes below. With bulk Lorentz factors δ = 20 - 30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thompson regime, and in agreement with the commonly fitted source parameters (e.g. [17]). The constraint on δ given by transparency to 2 TeV photons is δ > 19 (for historical SED fluxes and 2 hours variability timescale).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...612A...2H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...612A...2H"><span>The population of TeV pulsar wind nebulae in the <span class="hlt">H.E.S.S</span>. Galactic Plane Survey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; de Oña Wilhelmi, E.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Valerius, K.; van der Walt, D. J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.</p> <p>2018-04-01</p> <p>The nine-year <span class="hlt">H.E.S.S</span>. Galactic Plane Survey (HGPS) has yielded the most uniform <span class="hlt">observation</span> scan of the inner Milky Way in the TeV gamma-ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of TeV pulsar wind nebulae found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spin-down power Ė. This seems to be caused both by an increase of extension with decreasing Ė, and hence with time, compatible with a power law RPWN(Ė) Ė-0.65±0.20, and by a mild decrease of TeV gamma-ray luminosity with decreasing Ė, compatible with L1-10 TeV Ė0.59±0.21. We also find that the offsets of pulsars with respect to the wind nebula centre with ages around 10 kyr are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar offset is correlated with a high apparent TeV efficiency L1-10 TeV/Ė. In addition to 14 HGPS sources considered firmly identified pulsar wind nebulae and 5 additional pulsar wind nebulae taken from literature, we find 10 HGPS sources that are likely TeV pulsar wind nebula candidates. Using a model that subsumes the present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the TeV <span class="hlt">observables</span> and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..854S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..854S"><span>Hot and sour in the <span class="hlt">deep</span> ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabine, Christopher L.</p> <p>2017-12-01</p> <p>Stable layering in the ocean limits the rate that human-derived carbon dioxide can acidify the <span class="hlt">deep</span> ocean. Now <span class="hlt">observations</span> show that ocean warming, however, can enhance <span class="hlt">deep</span>-ocean acidification through increased organic matter decomposition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.458..223L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.458..223L"><span>The transfer of bomb radiocarbon and anthropogenic lead to the <span class="hlt">deep</span> North Atlantic Ocean <span class="hlt">observed</span> from a <span class="hlt">deep</span> sea coral</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Jong-Mi; Eltgroth, Selene F.; Boyle, Edward A.; Adkins, Jess F.</p> <p>2017-01-01</p> <p><span class="hlt">Deep</span>-ocean, Δ14C, Pb concentrations, and Pb isotopes were reconstructed from a <span class="hlt">deep</span>-sea coral Enallopsammia rostrata from 1410 m depth off of Bermuda. Our high-resolution time series is created from closely spaced radial cross sections, with samples taken from the center of concentric coral growth bands that we show to be the oldest portion of the section. Prebomb radiocarbon ages from the coral demonstrate that the vertical growth rate of the coral is linear, and the age of the coral is estimated to be 560-630 yr old based on the growth rate. Using this age model to reconstruct Δ14C in <span class="hlt">deep</span> seawater, we first detect bomb radiocarbon at the coral growth site around 1980, and show that Δ14C increased from - 80 ± 1 ‰ (average 1930-1979) to a plateau at - 39 ± 3 ‰ (1999-2001). Pb/Ca of the coral ranges between 1.1-4.5 nmol/mol during the 16th and 17th centuries, and Pb isotope ratios (206Pb/207Pb = 1.21, 208Pb/207Pb = 2.495) in this period agree with pre-anthropogenic values found in the pelagic sediments of the North Atlantic Ocean basin. Coral Pb/Ca is slightly elevated to 6.2 ± 0.9 nmol /mol between the 1740s and the 1850s and then increases to 25.1 ± 0.2 nmol /mol in the 1990s. The increase in coral Pb/Ca is accompanied by a decrease in coral 206Pb/207Pb and 208Pb/207Pb, indicating that the increase was caused by the infiltration of anthropogenic Pb to the coral growth site. Comparing our data to the surface coral Δ14C and Pb records from Bermuda reveals a time scale of tracer transport from the surface ocean to the coral growth site. Some characteristic features, e.g., the bomb-derived Δ14C increase, appear in the <span class="hlt">deep</span> ocean approximately 25 yr later than the surface, but the overall increase of Δ14C and Pb in the <span class="hlt">deep</span> ocean is smaller and slower than the surface, showing the importance of mixing during the transport of these tracers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...856..104G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...856..104G"><span>Modeling the <span class="hlt">Deep</span> Impact Near-nucleus <span class="hlt">Observations</span> of H2O and CO2 in Comet 9P/Tempel 1 Using Asymmetric Spherical Coupled Escape Probability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gersch, Alan M.; A’Hearn, Michael F.; Feaga, Lori M.</p> <p>2018-04-01</p> <p>We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus <span class="hlt">observations</span> from the <span class="hlt">Deep</span> Impact mission have been modeled, including <span class="hlt">observed</span> coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the <span class="hlt">Deep</span> Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the <span class="hlt">Deep</span> Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.1508T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.1508T"><span>Drivers of <span class="hlt">deep</span>-water renewal events <span class="hlt">observed</span> over 13 years in the South Basin of Lake Baikal</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsimitri, Chrysanthi; Rockel, Burkhardt; Wüest, Alfred; Budnev, Nikolay M.; Sturm, Michael; Schmid, Martin</p> <p>2015-03-01</p> <p>Lake Baikal, with a depth of 1637 m, is characterized by <span class="hlt">deep</span>-water intrusions that bridge the near-surface layer to the hypolimnion. These episodic events transfer heat and oxygen over large vertical scales and maintain the permanent temperature stratified <span class="hlt">deep</span>-water status of the lake. Here we evaluate a series of intrusion events that reached the bottom of the lake in terms of the stratification and the wind conditions under which they occurred and provide a new insight into the triggering mechanisms. We make use of long-term temperature and current meter data (2000-2013) recorded in the South Basin of the lake combined with wind data produced with a regional downscaling of the global NCEP-RA1 reanalysis product. A total of 13 events were <span class="hlt">observed</span> during which near-surface cold water reached the bottom of the South Basin at 1350 m depth. We found that the triggering mechanism of the events is related to the time of the year that they take place. We categorized the events in three groups: (1) winter events, <span class="hlt">observed</span> shortly before the complete ice cover of the lake that are triggered by Ekman coastal downwelling, (2) under-ice events, and (3) spring events, that show no correlation to the wind conditions and are possibly connected to the increased spring outflow of the Selenga River. This article was corrected on 18 MAR 2015. See the end of the full text for details.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PEPI..183....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PEPI..183....1S"><span>Preface: <span class="hlt">Deep</span> Slab and Mantle Dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.</p> <p>2010-11-01</p> <p>We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "<span class="hlt">Deep</span> Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "<span class="hlt">Deep</span> Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the <span class="hlt">deep</span> mantle and its role in slab-related dynamics; <span class="hlt">observational</span> and experimental constraints on <span class="hlt">deep</span> slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with <span class="hlt">observational</span> and experimental data; <span class="hlt">observational</span>, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of <span class="hlt">deep</span> slabs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...586A..71A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...586A..71A"><span><span class="hlt">Deep</span> view of the Large Magellanic Cloud with six years of Fermi-LAT <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Drell, P. S.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hill, A. B.; Horan, D.; Jóhannesson, G.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Maldera, S.; Martin, P.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Romani, R. W.; Sánchez-Conde, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, M.; Zimmer, S.</p> <p>2016-02-01</p> <p>Context. The nearby Large Magellanic Cloud (LMC) provides a rare opportunity of a spatially resolved view of an external star-forming galaxy in γ-rays. The LMC was detected at 0.1-100 GeV as an extended source with CGRO/EGRET and using early <span class="hlt">observations</span> with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Aims: Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions by revealing whether and how the γ-ray emission is connected to specific objects, populations of objects, and structures in the galaxy. Methods: We revisited the γ-ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2-100 GeV range. We developed a complete spatial and spectral model of the LMC emission, for which we tested several approaches: a simple geometrical description, template-fitting, and a physically driven model for CR-induced interstellar emission. Results: In addition to identifying PSR J0540-6919 through its pulsations, we find two hard sources positionally coincident with plerion N 157B and supernova remnant N 132D, which were also detected at TeV energies with <span class="hlt">H.E.S.S</span>. We detect an additional soft source that is currently unidentified. Extended emission dominates the total flux from the LMC. It consists of an extended component of about the size of the galaxy and additional emission from three to four regions with degree-scale sizes. If it is interpreted as CRs interacting with interstellar gas, the large-scale emission implies a large-scale population of ~1-100 GeV CRs with a density of ~30% of the local Galactic value. On top of that, the three to four small-scale emission regions would correspond to enhancements of the CR density by factors 2 to 6 or higher, possibly more energetic and younger populations</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Sci...350..766L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Sci...350..766L"><span>The <span class="hlt">deep</span> ocean under climate change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levin, Lisa A.; Le Bris, Nadine</p> <p>2015-11-01</p> <p>The <span class="hlt">deep</span> ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of <span class="hlt">deep</span>-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand <span class="hlt">deep</span>-ocean research and <span class="hlt">observation</span> and to protect the integrity and functions of <span class="hlt">deep</span>-ocean ecosystems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ARA%26A..43..827B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ARA%26A..43..827B"><span><span class="hlt">Deep</span> Extragalactic X-Ray Surveys</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandt, W. N.; Hasinger, G.</p> <p>2005-09-01</p> <p><span class="hlt">Deep</span> surveys of the cosmic X-ray background are reviewed in the context of <span class="hlt">observational</span> progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by <span class="hlt">deep</span> surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from <span class="hlt">deep</span> surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for <span class="hlt">deep</span> extragalactic X-ray surveys.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16410625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16410625"><span><span class="hlt">Deep</span> dysgraphia in Turkish.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raman, Ilhan; Weekes, Brendan Stuart</p> <p>2005-01-01</p> <p><span class="hlt">Deep</span> dysgraphic patients make semantic errors when writing to dictation and they cannot write nonwords. Extant reports of <span class="hlt">deep</span> dysgraphia come from languages with relatively opaque orthographies. Turkish is a transparent orthography because the bidirectional mappings between phonology and orthography are completely predictable. We report BRB, a biscriptal Turkish-English speaker who has acquired dysgraphia characterised by semantic errors as well as effects of grammatical class and imageability on writing in Turkish. Nonword spelling is abolished. A similar pattern of errors is <span class="hlt">observed</span> in English. BRB is the first report of acquired dysgraphia in a truly transparent writing system. We argue that <span class="hlt">deep</span> dysgraphia results from damage to the mappings that are common to both languages between word meanings and orthographic representations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS21A1675V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS21A1675V"><span>The <span class="hlt">deep</span> Canary poleward undercurrent</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velez-Belchi, P. J.; Hernandez-Guerra, A.; González-Pola, C.; Fraile, E.; Collins, C. A.; Machín, F.</p> <p>2012-12-01</p> <p>Poleward undercurrents are well known features in Eastern Boundary systems. In the California upwelling system (CalCEBS), the <span class="hlt">deep</span> poleward flow has been <span class="hlt">observed</span> along the entire outer continental shelf and upper-slope, using indirect methods based on geostrophic estimates and also using direct current measurements. The importance of the poleward undercurrents in the CalCEBS, among others, is to maintain its high productivity by means of the transport of equatorial Pacific waters all the way northward to Vancouver Island and the subpolar gyre but there is also concern about the low oxygen concentration of these waters. However, in the case of the Canary Current Eastern Boundary upwelling system (CanCEBS), there are very few <span class="hlt">observations</span> of the poleward undercurrent. Most of these <span class="hlt">observations</span> are short-term mooring records, or drifter trajectories of the upper-slope flow. Hence, the importance of the subsurface poleward flow in the CanCEBS has been only hypothesized. Moreover, due to the large differences between the shape of the coastline and topography between the California and the Canary Current system, the results obtained for the CalCEBS are not completely applicable to the CanCEBS. In this study we report the first direct <span class="hlt">observations</span> of the continuity of the <span class="hlt">deep</span> poleward flow of the Canary <span class="hlt">Deep</span> Poleward undercurrent (CdPU) in the North-Africa sector of the CanCEBS, and one of the few direct <span class="hlt">observations</span> in the North-Africa sector of the Canary Current eastern boundary. The results indicate that the Canary Island archipelago disrupts the <span class="hlt">deep</span> poleward undercurrent even at depths where the flow is not blocked by the bathymetry. The <span class="hlt">deep</span> poleward undercurrent flows west around the eastern-most islands and north east of the Conception Bank to rejoin the intermittent branch that follows the African slope in the Lanzarote Passage. This hypothesis is consistent with the AAIW found west of Lanzarote, as far as 17 W. But also, this hypothesis would be coherent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9413E..37R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9413E..37R"><span>Accurate CT-MR image registration for <span class="hlt">deep</span> brain stimulation: a multi-<span class="hlt">observer</span> evaluation study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans</p> <p>2015-03-01</p> <p>Since the first clinical interventions in the late 1980s, <span class="hlt">Deep</span> Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area <span class="hlt">deep</span> inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-<span class="hlt">observer</span> variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HEAD...1610517F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HEAD...1610517F"><span>Anatomy of a Merger: A <span class="hlt">Deep</span> Chandra <span class="hlt">Observation</span> of Abell 115</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forman, William R.</p> <p>2017-08-01</p> <p>A <span class="hlt">deep</span> Chandra <span class="hlt">observation</span> of Abell 115 provides a unique probe of the anatomy of cluster mergers. The X-ray image shows two prominent subclusters, A115N (north) and A115S (south) with a projected separation of almost 1 Mpc. The X-ray subclusters each have ram-pressure stripped tails that unambiguously indicate the directions of motion. The central BCG of A115N hosts the radio source 3C28 which shows a pair of jets, almost perpendicular to the direction of the sucluster's motion. The jets terminate in lobes each of which has a "tail" pointing IN the direction of motion of the subcluster. The Chandra analysis provides details of the merger including the velocities of the subclusters both through analysis of the cold front and a weak shock. The motion of A115N through the cluster generates counter-rotating vortices in the subcluster gas that form the two radio tails. Hydrodynamic modeling yields circulation velocities within the A115N sub cluster. Thus, the radio emitting plasma acts as a dye tracing the motions of the X-ray emitting plasma. A115S shows two "cores", one coincident with the BCG and a second appears as a ram pressure stripped tail.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3768303','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3768303"><span>First in situ <span class="hlt">observations</span> of the <span class="hlt">deep</span>-sea squid Grimalditeuthis bonplandi reveal unique use of tentacles</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hoving, Hendrik J. T.; Zeidberg, Louis D.; Benfield, Mark C.; Bush, Stephanie L.; Robison, Bruce H.; Vecchione, Michael</p> <p>2013-01-01</p> <p>The <span class="hlt">deep</span>-sea squid Grimalditeuthis bonplandi has tentacles unique among known squids. The elastic stalk is extremely thin and fragile, whereas the clubs bear no suckers, hooks or photophores. It is unknown whether and how these tentacles are used in prey capture and handling. We present, to our knowledge, the first in situ <span class="hlt">observations</span> of this species obtained by remotely operated vehicles (ROVs) in the Atlantic and North Pacific. Unexpectedly, G. bonplandi is unable to rapidly extend and retract the tentacle stalk as do other squids, but instead manoeuvres the tentacles by undulation and flapping of the clubs’ trabecular protective membranes. These tentacle club movements superficially resemble the movements of small marine organisms and suggest the possibility that G. bonplandi uses aggressive mimicry by the tentacle clubs to lure prey, which we find to consist of crustaceans and cephalopods. In the darkness of the meso- and bathypelagic zones the flapping and undulatory movements of the tentacle may: (i) stimulate bioluminescence in the surrounding water, (ii) create low-frequency vibrations and/or (iii) produce a hydrodynamic wake. Potential prey of G. bonplandi may be attracted to one or more of these as signals. This singular use of the tentacle adds to the diverse foraging and feeding strategies known in <span class="hlt">deep</span>-sea cephalopods. PMID:23986106</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020067736&hterms=cosmic+microwave+background&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcosmic%2Bmicrowave%2Bbackground','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020067736&hterms=cosmic+microwave+background&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcosmic%2Bmicrowave%2Bbackground"><span>The Anisotropy of the Microwave Background to l = 3500: <span class="hlt">Deep</span> Field <span class="hlt">Observations</span> with the Cosmic Background Imager</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20020067736'); toggleEditAbsImage('author_20020067736_show'); toggleEditAbsImage('author_20020067736_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20020067736_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20020067736_hide"></p> <p>2002-01-01</p> <p>We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on <span class="hlt">deep</span> <span class="hlt">observations</span> of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the <span class="hlt">observations</span> of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further <span class="hlt">observations</span> are necessary to confirm the level of this excess and, if confirmed, determine its origin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...598A..39H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...598A..39H"><span>Characterizing the γ-ray long-term variability of PKS 2155-304 with <span class="hlt">H.E.S.S</span>. and Fermi-LAT</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.</p> <p>2017-02-01</p> <p>Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV < E < 300 GeV) and very high energy (VHE, E > 200 GeV) γ-ray domain. Over the course of 9 yr of <span class="hlt">H.E.S.S</span>. <span class="hlt">observations</span> the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index ) on timescales larger than one day. An analysis of 5.5 yr of HE Fermi-LAT data gives consistent results (, on timescales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior (β 2) seen on shorter timescales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26564845','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26564845"><span>The <span class="hlt">deep</span> ocean under climate change.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Levin, Lisa A; Le Bris, Nadine</p> <p>2015-11-13</p> <p>The <span class="hlt">deep</span> ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of <span class="hlt">deep</span>-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand <span class="hlt">deep</span>-ocean research and <span class="hlt">observation</span> and to protect the integrity and functions of <span class="hlt">deep</span>-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFD.H6001E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFD.H6001E"><span>Development of a modified <span class="hlt">Hess</span>-Murray law for non-Newtonian fluids in bifurcating micro-channels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emerson, David; Barber, Robert</p> <p>2012-11-01</p> <p>Microfluidic manifolds frequently require the use of bifurcating channels and these can be used to create precise concentration gradients for chemical applications. More recently, novel devices have been attempting to replicate vasculatures or bronchial structures occurring in nature with the goal of creating artificial bifurcations that mimic the basic principles of designs found in nature. In previous work, we have used the biological principles behind the <span class="hlt">Hess</span>-Murray Law, where bifurcating structures exhibit a constant stress profile and follow a third-power rule, to enable rectangular or trapezoidal micro-channels to be fabricated using conventional lithographic or wet-etching techniques. Using biological principles to design man made devices is generally referred to as biomimetics and this approach has found success in a range of new and emerging topics. However, our previous work was limited to Newtonian flows. More recently, we have used the Rabinovitsch-Mooney equation to be able to extend our analysis to non-Newtonian fluids. This has allowed us to develop a new rule that can provide a design criterion to predict channel dimensions for non-Newtonian flows obeying a constant stress biological principle. The Engineering and Physical Sciences Research Council for support of CCP12 and Programme Grant award (grant number EP/I011927/1).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...574A.120J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...574A.120J"><span>High-contrast imaging with Spitzer: <span class="hlt">deep</span> <span class="hlt">observations</span> of Vega, Fomalhaut, and ɛ Eridani</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janson, Markus; Quanz, Sascha P.; Carson, Joseph C.; Thalmann, Christian; Lafrenière, David; Amara, Adam</p> <p>2015-02-01</p> <p>Stars with debris disks are intriguing targets for direct-imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems, and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present <span class="hlt">observations</span> of three of the most nearby young stars, which are also known to host massive debris disks: Vega, Fomalhaut, and ɛ Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a <span class="hlt">deep</span> contrast through angular differential imaging combined with high-contrast algorithms. The <span class="hlt">observations</span> provide the opportunity to probe substantially colder bound planets (120-330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 μm image remain to be tested for common proper motion. The images are sensitive to ~2 Mjup companions at 150 AU in this system. The <span class="hlt">observations</span> presented here represent the first search for planets around Vega using Spitzer. The upper 4.5 μm flux limit on Fomalhaut b could be further constrained relative to previous data. In the case of ɛ Eri, planets below both the effective temperature and the mass of Jupiter could be probed from 80 AU and outward, although no such planets were found. The data sensitively probe the regions around the edges of the debris rings in the systems where planets can be expected to reside. These <span class="hlt">observations</span> validate previous results showing that more than an order of magnitude improvement in performance in the contrast-limited regime can be acquired with respect to conventional methods by applying sophisticated high-contrast techniques to space-based telescopes, thanks to the high degree of PSF stability provided in this environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411985L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411985L"><span>Estimating Ground-Level PM2.5 by Fusing Satellite and Station <span class="hlt">Observations</span>: A Geo-Intelligent <span class="hlt">Deep</span> Learning Approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Tongwen; Shen, Huanfeng; Yuan, Qiangqiang; Zhang, Xuechen; Zhang, Liangpei</p> <p>2017-12-01</p> <p>Fusing satellite <span class="hlt">observations</span> and station measurements to estimate ground-level PM2.5 is promising for monitoring PM2.5 pollution. A geo-intelligent approach, which incorporates geographical correlation into an intelligent <span class="hlt">deep</span> learning architecture, is developed to estimate PM2.5. Specifically, it considers geographical distance and spatiotemporally correlated PM2.5 in a <span class="hlt">deep</span> belief network (denoted as Geoi-DBN). Geoi-DBN can capture the essential features associated with PM2.5 from latent factors. It was trained and tested with data from China in 2015. The results show that Geoi-DBN performs significantly better than the traditional neural network. The out-of-sample cross-validation R2 increases from 0.42 to 0.88, and RMSE decreases from 29.96 to 13.03 μg/m3. On the basis of the derived PM2.5 distribution, it is predicted that over 80% of the Chinese population live in areas with an annual mean PM2.5 of greater than 35 μg/m3. This study provides a new perspective for air pollution monitoring in large geographic regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521442-frontier-fields-clusters-deep-chandra-observations-complex-merger-macsj1149','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521442-frontier-fields-clusters-deep-chandra-observations-complex-merger-macsj1149"><span>FRONTIER FIELDS CLUSTERS: <span class="hlt">DEEP</span> CHANDRA <span class="hlt">OBSERVATIONS</span> OF THE COMPLEX MERGER MACS J1149.6+2223</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ogrean, G. A.; Weeren, R. J. van; Jones, C.</p> <p>2016-03-10</p> <p>The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from <span class="hlt">deep</span> (365 ks) Chandra <span class="hlt">observations</span> of the cluster, which reveal the most distant cold front (z  =  0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight.more » The inclination of the mergers with respect to the plane of the sky poses significant <span class="hlt">observational</span> challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1430981-frontier-fields-clusters-deep-chandra-observations-complex-merger-macs-j1149','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1430981-frontier-fields-clusters-deep-chandra-observations-complex-merger-macs-j1149"><span>Frontier Fields Clusters: <span class="hlt">Deep</span> Chandra <span class="hlt">Observations</span> of the Complex Merger MACS J1149.6+2223</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ogrean, G. A.; Weeren, R. J. van; Jones, C.; ...</p> <p>2016-03-04</p> <p>The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. Here, we present results from <span class="hlt">deep</span> (365 ks) Chandra <span class="hlt">observations</span> of the cluster, which reveal the most distant cold front (z = 0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the linemore » of sight. The inclination of the mergers with respect to the plane of the sky poses significant <span class="hlt">observational</span> challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. Lastly, if the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990DSRA...37.1385C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990DSRA...37.1385C"><span>The formation of Greenland Sea <span class="hlt">Deep</span> Water: double diffusion or <span class="hlt">deep</span> convection?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clarke, R. Allyn; Swift, James H.; Reid, Joseph L.; Koltermann, K. Peter</p> <p>1990-09-01</p> <p>An examination of the extensive hydrographic data sets collected by C.S.S. Hudson and F.S. Meteor in the Norwegian and Greenland Seas during February-June 1982 reveals property distributions and circulation patterns broadly similar to those seen in earlier data sets. These data sets, however, reveal the even stronger role played by topography, with evidence of separate circulation patterns and separate water masses in each of the <span class="hlt">deep</span> basins. The high precision temperature, salinity and oxygen data obtained reveals significant differences in the <span class="hlt">deep</span> and bottom waters found in the various basins of the Norwegian and Greenland Seas. A comparison of the 1982 data set with earlier sets shows that the renewal of Greenland Sea <span class="hlt">Deep</span> Water must have taken place sometime over the last decade; however there is no evidence that <span class="hlt">deep</span> convective renewal of any of the <span class="hlt">deep</span> and bottom waters in this region was taking place at the time of the <span class="hlt">observations</span>. The large-scale density fields, however, do suggest that <span class="hlt">deep</span> convection to the bottom is most likely to occure in the Greenland Basin due to its <span class="hlt">deep</span> cyclonic circulation. The hypothesis that Greenland Sea <span class="hlt">Deep</span> Water (GSDW) is formed through dipycnal mixing processes acting on the warm salty core of Atlantic Water entering the Greenland Sea is examined. θ-S correlations and oxygen concentrations suggest that the salinity maxima in the Greenland Sea are the product of at least two separate mixing processes, not the hypothesized single mixing process leading to GSDW. A simple one-dimensional mixed layer model with ice growth and decay demonstrates that convective renewal of GSDW would have occurred within the Greenland Sea had the winter been a little more severe. The new GSDW produced would have only 0.003 less salt and less than 0.04 ml 1 -1 greater oxygen concentration than that already in the basin. Consequently, detection of whether new <span class="hlt">deep</span> water has been produced following a winter cooling season could be difficult even</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp...11H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp...11H"><span>S-to-P Conversions from Mid-mantle Slow Scatterers in Slab Regions: <span class="hlt">Observations</span> of <span class="hlt">Deep</span>/Stagnated Oceanic Crust?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Xiaobo; Zheng, Yixian</p> <p>2018-02-01</p> <p>The fate of a subducted slab is a key ingredient in the context of plate tectonics, yet it remains enigmatic especially in terms of its crustal component. In this study, our efforts are devoted to resolve slab-related structures in the mid-mantle below eastern Indonesia, the Izu-Bonin region, and the Peru area by employing seismic array analysing techniques on high-frequency waveform data from F-net in Japan and the Alaska regional network and the USArray in North America. A pronounced arrival after the direct P wave is <span class="hlt">observed</span> in the recordings of four <span class="hlt">deep</span> earthquakes (depths greater than 400 km) from three subduction systems including the Philippines, the Izu-Bonin, and the Peru. This later arrival displays a slightly lower slowness compared to the direct P wave and its back-azimuth deviates somewhat from the great-circle direction. We explain it as an S-to-P conversion at a <span class="hlt">deep</span> scatterer below the sources in the source region. In total, five scatterers are seen at depths ranging from 930 to 1500 km. Those scatterers appear to be characterised by an 7 km-thick low-velocity layer compared to the ambient mantle. Combined evidence from published mineral physical analysis suggests that past subducted oceanic crust, possibly fragmented, is most likely responsible for these thin-layer compositional heterogeneities trapped in the mid-mantle beneath the study regions. Our <span class="hlt">observations</span> give a clue to the potential fate of subducted oceanic crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1421811-deep-full-sky-coadds-from-three-years-wise-neowise-observations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1421811-deep-full-sky-coadds-from-three-years-wise-neowise-observations"><span><span class="hlt">Deep</span> Full-sky Coadds from Three Years of WISE and NEOWISE <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Meisner, A. M.; Lang, D.; Schlegel, D. J.</p> <p>2017-09-26</p> <p>Here, we have reprocessed over 100 terabytes of single-exposure Wide-field Infrared Survey Explorer (WISE)/NEOWISE images to create the deepest ever full-sky maps at 3-5 microns. We include all publicly available W1 and W2 imaging - a total of ~8 million exposures in each band - from ~37 months of <span class="hlt">observations</span> spanning 2010 January to 2015 December. Our coadds preserve the native WISE resolution and typically incorporate ~3× more input frames than those of the AllWISE Atlas stacks. Our coadds are designed to enable <span class="hlt">deep</span> forced photometry, in particular for the Dark Energy Camera Legacy Survey (DECaLS) and Mayall z-Band Legacymore » Survey (MzLS), both of which are being used to select targets for the Dark Energy Spectroscopic Instrument. We describe newly introduced processing steps aimed at leveraging added redundancy to remove artifacts, with the intent of facilitating uniform target selection and searches for rare/exotic objects (e.g., high-redshift quasars and distant galaxy clusters). Forced photometry depths achieved with these coadds extend 0.56 (0.46) magnitudes deeper in W1 (W2) than is possible with only pre-hibernation WISE imaging.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AJ....154..161M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AJ....154..161M"><span><span class="hlt">Deep</span> Full-sky Coadds from Three Years of WISE and NEOWISE <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meisner, A. M.; Lang, D.; Schlegel, D. J.</p> <p>2017-10-01</p> <p>We have reprocessed over 100 terabytes of single-exposure Wide-field Infrared Survey Explorer (WISE)/NEOWISE images to create the deepest ever full-sky maps at 3-5 microns. We include all publicly available W1 and W2 imaging—a total of ˜8 million exposures in each band—from ˜37 months of <span class="hlt">observations</span> spanning 2010 January to 2015 December. Our coadds preserve the native WISE resolution and typically incorporate ˜3× more input frames than those of the AllWISE Atlas stacks. Our coadds are designed to enable <span class="hlt">deep</span> forced photometry, in particular for the Dark Energy Camera Legacy Survey (DECaLS) and Mayall z-Band Legacy Survey (MzLS), both of which are being used to select targets for the Dark Energy Spectroscopic Instrument. We describe newly introduced processing steps aimed at leveraging added redundancy to remove artifacts, with the intent of facilitating uniform target selection and searches for rare/exotic objects (e.g., high-redshift quasars and distant galaxy clusters). Forced photometry depths achieved with these coadds extend 0.56 (0.46) magnitudes deeper in W1 (W2) than is possible with only pre-hibernation WISE imaging.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1421811-deep-full-sky-coadds-from-three-years-wise-neowise-observations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1421811-deep-full-sky-coadds-from-three-years-wise-neowise-observations"><span><span class="hlt">Deep</span> Full-sky Coadds from Three Years of WISE and NEOWISE <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meisner, A. M.; Lang, D.; Schlegel, D. J.</p> <p></p> <p>Here, we have reprocessed over 100 terabytes of single-exposure Wide-field Infrared Survey Explorer (WISE)/NEOWISE images to create the deepest ever full-sky maps at 3-5 microns. We include all publicly available W1 and W2 imaging - a total of ~8 million exposures in each band - from ~37 months of <span class="hlt">observations</span> spanning 2010 January to 2015 December. Our coadds preserve the native WISE resolution and typically incorporate ~3× more input frames than those of the AllWISE Atlas stacks. Our coadds are designed to enable <span class="hlt">deep</span> forced photometry, in particular for the Dark Energy Camera Legacy Survey (DECaLS) and Mayall z-Band Legacymore » Survey (MzLS), both of which are being used to select targets for the Dark Energy Spectroscopic Instrument. We describe newly introduced processing steps aimed at leveraging added redundancy to remove artifacts, with the intent of facilitating uniform target selection and searches for rare/exotic objects (e.g., high-redshift quasars and distant galaxy clusters). Forced photometry depths achieved with these coadds extend 0.56 (0.46) magnitudes deeper in W1 (W2) than is possible with only pre-hibernation WISE imaging.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024056','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024056"><span><span class="hlt">Deep</span> sea mega-geomorphology: Progress and problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bryan, W. B.</p> <p>1985-01-01</p> <p>Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the <span class="hlt">observational</span> remote sensing tools available until very recently. In fact, studies of <span class="hlt">deep</span> sea morphology have suffered from a serious gap in <span class="hlt">observational</span> scale. Traditional wide-beam echo sounding gave images on a scale of miles, while <span class="hlt">deep</span> sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution <span class="hlt">deep</span>-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to <span class="hlt">observe</span> phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TePhL..44..260P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TePhL..44..260P"><span>Increasing Saturated Electron-Drift Velocity in Donor-Acceptor Doped pHEMT Heterostructures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Protasov, D. Yu.; Gulyaev, D. V.; Bakarov, A. K.; Toropov, A. I.; Erofeev, E. V.; Zhuravlev, K. S.</p> <p>2018-03-01</p> <p>Field dependences of the electron-drift velocity in typical pseudomorphic high-electron-mobility transistor (pHEMT) heteroepitaxial structures (<span class="hlt">HESs</span>) and in those with donor-acceptor doped (DApHEMT) heterostructures with quantum-well (QW) depth increased by 0.8-0.9 eV with the aid of acceptor layers have been studied by a pulsed technique. It is established that the saturated electron-drift velocity in DA-pHEMT-<span class="hlt">HESs</span> is 1.2-1.3 times greater than that in the usual pHEMT-<span class="hlt">HESs</span>. The electroluminescence (EL) spectra of DA-pHEMT-<span class="hlt">HESs</span> do not contain emission bands related to the recombination in widebandgap layers (QW barriers). The EL intensity in these <span class="hlt">HESs</span> is not saturated with increasing electric field. This is indicative of a suppressed real-space transfer of hot electrons from QW to barrier layers, which accounts for the <span class="hlt">observed</span> increase in the saturated electron-drift velocity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21895060','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21895060"><span><span class="hlt">Observationally</span> constrained modeling of sound in curved ocean internal waves: examination of <span class="hlt">deep</span> ducting and surface ducting at short range.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin</p> <p>2011-09-01</p> <p>A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field <span class="hlt">observations</span>. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was <span class="hlt">observed</span> during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in <span class="hlt">deep</span> ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (<span class="hlt">deep</span> thermocline zones). © 2011 Acoustical Society of America</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28272810','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28272810"><span><span class="hlt">Deep</span> learning for computational chemistry.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goh, Garrett B; Hodas, Nathan O; Vishnu, Abhinav</p> <p>2017-06-15</p> <p>The rise and fall of artificial neural networks is well documented in the scientific literature of both computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in <span class="hlt">deep</span> learning, a machine learning algorithm based on multilayer neural networks. Within the last few years, we have seen the transformative impact of <span class="hlt">deep</span> learning in many domains, particularly in speech recognition and computer vision, to the extent that the majority of expert practitioners in those field are now regularly eschewing prior established models in favor of <span class="hlt">deep</span> learning models. In this review, we provide an introductory overview into the theory of <span class="hlt">deep</span> neural networks and their unique properties that distinguish them from traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of <span class="hlt">deep</span> neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including quantitative structure activity relationship, virtual screening, protein structure prediction, quantum chemistry, materials design, and property prediction. In reviewing the performance of <span class="hlt">deep</span> neural networks, we <span class="hlt">observed</span> a consistent outperformance against non-neural networks state-of-the-art models across disparate research topics, and <span class="hlt">deep</span> neural network-based models often exceeded the "glass ceiling" expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training <span class="hlt">deep</span> neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that <span class="hlt">deep</span> learning algorithms will be a valuable tool for computational chemistry. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1406688-deep-learning-computational-chemistry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1406688-deep-learning-computational-chemistry"><span><span class="hlt">Deep</span> learning for computational chemistry</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Goh, Garrett B.; Hodas, Nathan O.; Vishnu, Abhinav</p> <p></p> <p>The rise and fall of artificial neural networks is well documented in the scientific literature of both the fields of computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in <span class="hlt">deep</span> learning, a machine learning algorithm based on “deep” neural networks. Within the last few years, we have seen the transformative impact of <span class="hlt">deep</span> learning the computer science domain, notably in speech recognition and computer vision, to the extent that the majority of practitioners in those field are now regularly eschewing prior established models in favor of <span class="hlt">deep</span> learning models. Inmore » this review, we provide an introductory overview into the theory of <span class="hlt">deep</span> neural networks and their unique properties as compared to traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of <span class="hlt">deep</span> neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including QSAR, virtual screening, protein structure modeling, QM calculations, materials synthesis and property prediction. In reviewing the performance of <span class="hlt">deep</span> neural networks, we <span class="hlt">observed</span> a consistent outperformance against non neural networks state-of-the-art models across disparate research topics, and <span class="hlt">deep</span> neural network based models often exceeded the “glass ceiling” expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training <span class="hlt">deep</span> neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that <span class="hlt">deep</span> learning algorithms will be a useful tool and may grow into a pivotal role for various challenges in the computational chemistry field.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994Tectp.229..123D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994Tectp.229..123D"><span><span class="hlt">Deep</span> crustal earthquakes associated with continental rifts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doser, Diane I.; Yarwood, Dennis R.</p> <p>1994-01-01</p> <p><span class="hlt">Deep</span> (> 20 km) crustal earthquakes have occurred within or along the margins of at least four continental rift zones. The largest of these <span class="hlt">deep</span> crustal earthquakes ( M ⩾ 5.0) have strike-slip or oblique-slip mechanisms with T-axes oriented similarly to those associated with shallow normal faulting within the rift zones. The majority of <span class="hlt">deep</span> crustal earthquakes occur along the rift margins in regions that have cooler, thicker crust. Several <span class="hlt">deep</span> crustal events, however, occur in regions of high heat flow. These regions also appear to be regions of high strain, a factor that could account for the <span class="hlt">observed</span> depths. We believe the <span class="hlt">deep</span> crustal earthquakes represent either the relative motion of rift zones with respect to adjacent stable regions or the propagation of rifting into stable regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO54A3231A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO54A3231A"><span>From SYNOP to AMOC: Stirring by <span class="hlt">deep</span> cyclones and the evolution of Denmark Strait Overflow Water <span class="hlt">observed</span> at Line W</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M., Jr.; Joyce, T. M.; Curry, R. G.</p> <p>2016-02-01</p> <p>Shipboard velocity and property data from 18 transects across the North Atlantic <span class="hlt">Deep</span> Western Boundary Current (DWBC) near 40˚N are analyzed to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and its mixing with the interior. The transects were made between 1994 and 2014 and lie along Line W, which reaches from the continental shelf south of New England to Bermuda. Measurements comprise velocity from lowered acoustic Doppler current profilers (LADCPs), CTD profiles, and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths at 26 regular stations or a subset of these stations. In each transect, DSOW exhibits a distinct CFC concentration maximum in the abyssal ocean (> 3000 m depth) along the sloped western boundary. Sea surface height (SSH) maps from satellite altimetry indicate that quasi-stationary meander troughs of the Gulf Stream path in the upper ocean were present at Line W during 5 of the 18 sections. For these 5 sections, the LADCP velocity sections suggest the upper ocean trough is accompanied by a large cyclone in the <span class="hlt">deep</span> ocean in the DSOW density layer. The occurrence of <span class="hlt">deep</span> cyclones in conjunction with Gulf Stream troughs as inferred from the LADCP sections along Line W is consistent with previous <span class="hlt">observations</span> (from 1988 to 1990) in the region from a moored array in the Synoptic Ocean Prediction (SYNOP) experiment. The SYNOP array suggested <span class="hlt">deep</span> cyclones are present here about 35% of the time. The composite velocity section produced from the 5 Line W transects sampling through a Gulf Stream trough suggests that a typical cyclone reaches swirl speeds of greater than 30 cm/s at 3400 m depth and has a radius (distance between the center and the maximum velocity) of 75 km. The tracer data suggest that these cyclones affect not only the <span class="hlt">deep</span> velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC and the interior.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1478D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1478D"><span><span class="hlt">Deep</span> Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.</p> <p>2018-06-01</p> <p>The <span class="hlt">Deep</span> Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied <span class="hlt">deep</span> extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra <span class="hlt">Deep</span> Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope <span class="hlt">deep</span>-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from <span class="hlt">deep</span> Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA <span class="hlt">Deep</span> Extragalactic <span class="hlt">Observations</span>, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our <span class="hlt">observing</span> efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's <span class="hlt">observations</span>. We also present an overview of the initial spectroscopic <span class="hlt">observations</span> undertaken in late 2017 and early 2018.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910066F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910066F"><span><span class="hlt">Observability</span> of global rivers with future SWOT <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, Colby; Pan, Ming; Wood, Eric</p> <p>2017-04-01</p> <p> availability of SWOT <span class="hlt">observations</span> in this manner, hydrologic data assimilation approaches like ISR can be optimized to provide useful discharge estimates in sparsely gauged regions where spatially and temporally consistent discharge records are most valuable. Pan, M; Wood, E F 2013 Inverse streamflow routing, <span class="hlt">HESS</span> 17(11):4577-4588</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2063.3017L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2063.3017L"><span>The <span class="hlt">Deep</span> Space Gateway Lightning Mapper (DLM) — Monitoring Global Change and Thunderstorm Processes through <span class="hlt">Observations</span> of Earth's High-Latitude Lightning from Cis-Lunar Orbit</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.</p> <p>2018-02-01</p> <p>We propose the <span class="hlt">Deep</span> Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not <span class="hlt">observed</span> by current and planned spaceborne lightning mappers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1327086-wet-scavenging-soluble-gases-dc3-deep-convective-storms-using-wrf-chem-simulations-aircraft-observations-deep-convective-wet-scavenging-gases','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1327086-wet-scavenging-soluble-gases-dc3-deep-convective-storms-using-wrf-chem-simulations-aircraft-observations-deep-convective-wet-scavenging-gases"><span>Wet scavenging of soluble gases in DC3 <span class="hlt">deep</span> convective storms using WRF-Chem simulations and aircraft <span class="hlt">observations</span>: <span class="hlt">DEEP</span> CONVECTIVE WET SCAVENGING OF GASES</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bela, Megan M.; Barth, Mary C.; Toon, Owen B.</p> <p></p> <p>We examine wet scavenging of soluble trace gases in storms <span class="hlt">observed</span> during the <span class="hlt">Deep</span> Convective Clouds and Chemistry (DC3) field campaign. We conduct high-resolution simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem) of a severe storm in Oklahoma. The model represents well the storm location, size, and structure as compared with Next Generation Weather Radar reflectivity, and simulated CO transport is consistent with aircraft <span class="hlt">observations</span>. Scavenging efficiencies (SEs) between inflow and outflow of soluble species are calculated from aircraft measurements and model simulations. Using a simple wet scavenging scheme, we simulate the SE of each soluble speciesmore » within the error bars of the <span class="hlt">observations</span>. The simulated SEs of all species except nitric acid (HNO3) are highly sensitive to the values specified for the fractions retained in ice when cloud water freezes. To reproduce the <span class="hlt">observations</span>, we must assume zero ice retention for formaldehyde (CH2O) and hydrogen peroxide (H2O2) and complete retention for methyl hydrogen peroxide (CH3OOH) and sulfur dioxide (SO2), likely to compensate for the lack of aqueous chemistry in the model. We then compare scavenging efficiencies among storms that formed in Alabama and northeast Colorado and the Oklahoma storm. Significant differences in SEs are seen among storms and species. More scavenging of HNO3 and less removal of CH3OOH are seen in storms with higher maximum flash rates, an indication of more graupel mass. Graupel is associated with mixed-phase scavenging and lightning production of nitrogen oxides (NOx ), processes that may explain the <span class="hlt">observed</span> differences in HNO3 and CH3OOH scavenging.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20848898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20848898"><span>[<span class="hlt">Observation</span> on changes of oxygen partial pressure in the <span class="hlt">deep</span> tissues along the large intestine meridian during acupuncture in healthy subjects].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Ming; Hu, Xiang-long; Wu, Zu-xing</p> <p>2010-06-01</p> <p>To <span class="hlt">observe</span> changes of the partial oxygen pressure in the <span class="hlt">deep</span> tissues along the Large Intestine Meridian (LIM) during acupuncture stimulation, so as to reveal the characteristics of energy metabolism in the tissues along the LIM. Thirty-one healthy volunteer subjects were enlisted in the present study. Partial oxygen pressure (POP) in the tissues (at a depth of about 1.5 cm) of acupoints Binao (LI 14), Shouwuli (LI 13), Shousanli (LI 10), 2 non-acupoints [the midpoints between Quchi (LI 11) and LI 14, and between Yangxi (LI 5) and LI 11) of the LIM, and 10 non-meridian points, 1.5-2.0 cm lateral and medial to each of the tested points of the LIM was detected before, during and after electroacupuncture (EA) stimulation of Hegu (LI 4) by using a tissue oxygen tension needle-like sensor. In normal condition, the POP values in the <span class="hlt">deep</span> tissues along the LIM were significantly higher than those of the non-meridian control points on its bilateral sides. During and after EA of Hegu (LI 4), the POP levels decreased significantly in the <span class="hlt">deep</span> tissues along the LIM in comparison with pre-EA (P < 0.01), and had no apparent changes in the non-meridian control points (P > 0.05). POP is significantly higher in the <span class="hlt">deep</span> tissues along the LIM of healthy subjects under normal conditions, which can be downregulated by EA of Hegu (LI 4), suggesting an increase of both the utilization rate of oxygen and energy metabolism after EA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011MNRAS.416..509H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011MNRAS.416..509H"><span><span class="hlt">Deep</span> Fabry-Perot Hα <span class="hlt">observations</span> of two Sculptor group galaxies, NGC 247 and 300</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.</p> <p>2011-09-01</p> <p>It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a <span class="hlt">deep</span> Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of <span class="hlt">observations</span> for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the <span class="hlt">deep</span> data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004HEAD....8.3804C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004HEAD....8.3804C"><span>On the intrinsic spectrum of PKS 2155-304 from the <span class="hlt">H.E.S.S</span>. 2003 data.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costamante, L.; Aharonian, F.; Benbow, W.; Horns, D.; Reimer, A.; Reimer, O.; Rowell, G.; H.E.S.S. Collaboration</p> <p>2004-08-01</p> <p>In 2003, PKS 2155-304 (z=0.116) has been significantly detected by <span class="hlt">H.E.S.S</span>. ( 44sigma) at TeV energies, with an average spectrum of Γ =3.3. Due to absorption by the Extragalactic Background Light (EBL), the intrinsic spectrum is heavily modified both in shape and intensity. To correct for this effect, and see where could be the Inverse Compton (IC) peak of the SED, we used 3 EBL models (representatives of 3 different flux levels for the stellar peak component). The resulting TeV spectrum has a peak around 1 TeV for stellar peak fluxes above the Primack (2001) calculation, while the spectrum is steeper than 2 (thus locating the IC peak <200 GeV) for fluxes below. With bulk Lorentz factors δ =20-30 (typically used for this object), in the first case the IC peak is in the Klein-Nishina transition region, while in the other case it is in the Thomson regime, and in agreement with the commonly fitted source parameters (e.g. Tavecchio et al. 1998). The constraint on δ given by transparency to 1-2 TeV photons is δ >19 (for historical SED fluxes and 2 hrs variability timescale).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5513387','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5513387"><span>Progress to a Gallium-Arsenide <span class="hlt">Deep</span>-Center Laser</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pan, Janet L.</p> <p>2009-01-01</p> <p>Although photoluminescence from gallium-arsenide (GaAs) <span class="hlt">deep</span>-centers was first <span class="hlt">observed</span> in the 1960s, semiconductor lasers have always utilized conduction-to-valence-band transitions. Here we review recent materials studies leading to the first GaAs <span class="hlt">deep</span>-center laser. First, we summarize well-known properties: nature of <span class="hlt">deep</span>-center complexes, Franck-Condon effect, photoluminescence. Second, we describe our recent work: insensitivity of photoluminescence with heating, striking differences between electroluminescence and photoluminescence, correlation between transitions to <span class="hlt">deep</span>-states and absence of bandgap-emission. Room-temperature stimulated-emission from GaAs <span class="hlt">deep</span>-centers was <span class="hlt">observed</span> at low electrical injection, and could be tuned from the bandgap to half-the-bandgap (900–1,600 nm) by changing the electrical injection. The first GaAs <span class="hlt">deep</span>-center laser was demonstrated with electrical injection, and exhibited a threshold of less than 27 mA/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This small injection for laser action was explained by fast depopulation of the lower state of the optical transition (fast capture of free holes onto <span class="hlt">deep</span>-centers), which maintains the population inversion. The evidence for laser action included: superlinear L-I curve, quasi-Fermi level separations satisfying Bernard-Duraffourg’s criterion, optical gains larger than known significant losses, clamping of the optical-emission from lossy modes unable to reach laser action, pinning of the population distribution during laser action.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V43I..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V43I..04H"><span>Evidence of Tectonic Rotations and Magmatic Flow Within the Sheeted Dike Complex of Super-Fast Spread Crust Exposed at the Pito <span class="hlt">Deep</span> Rift</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.</p> <p>2008-12-01</p> <p>Escarpments bounding the Pito <span class="hlt">Deep</span> Rift expose cross-sections into ~3 Ma oceanic crust accreted at a super-fast spreading (>140 mm/yr) segment of the East Pacific Rise (EPR). Dikes within the sheeted dike complex persistently strike NE, parallel to local abyssal hill lineaments and magnetic anomaly stripes, and dip SE, outward and away from the EPR. During the Pito <span class="hlt">Deep</span> 2005 Cruise, both ALVIN and JASON II used the Geocompass to fully orient a total of 69 samples [63 basaltic dikes, 6 massive gabbros] collected in situ. Paleomagnetic analyses of these oriented samples provide a quantitative constraint of kinematics of structural rotations of dikes. Magnetic remanence of dike samples indicates a dominant normal polarity with almost all directions rotated clockwise from the expected direction. The most geologically plausible model to account for these dispersions using these data coupled with the general orientation of the dikes incorporates two different structural rotations: 1) A horizontal-axis rotation that occurred near the EPR axis, related to sub-axial subsidence, and 2) A clockwise vertical-axis rotation, associated with the rotation of the Easter microplate consistent with current models. Additionally, the anisotropy of magnetic susceptibility (AMS) of dike samples indicates rock fabric and magmatic flow direction within dikes. In most samples, two of three AMS eigenvectors lie near the dike plane orientations. Generally, Kmin lies perpendicular to dike planes, while Kmax is often shallow within the dike planes, indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions that suggest either primary flow or gravitational back-flow during waning stages of dike intrusion. These results provide the first direct evidence for primarily horizontal magma flow in sheeted dikes of super-fast spread oceanic crust. Results for Pito <span class="hlt">Deep</span> Rift and previous results for <span class="hlt">Hess</span> <span class="hlt">Deep</span> Rift reveal outward dipping dikes that are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663138-deep-full-sky-coadds-from-three-years-wise-neowise-observations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663138-deep-full-sky-coadds-from-three-years-wise-neowise-observations"><span><span class="hlt">Deep</span> Full-sky Coadds from Three Years of WISE and NEOWISE <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meisner, A. M.; Lang, D.; Schlegel, D. J., E-mail: ameisner@lbl.gov</p> <p></p> <p>We have reprocessed over 100 terabytes of single-exposure Wide-field Infrared Survey Explorer ( WISE )/NEOWISE images to create the deepest ever full-sky maps at 3–5 microns. We include all publicly available W1 and W2 imaging—a total of ∼8 million exposures in each band—from ∼37 months of <span class="hlt">observations</span> spanning 2010 January to 2015 December. Our coadds preserve the native WISE resolution and typically incorporate ∼3× more input frames than those of the AllWISE Atlas stacks. Our coadds are designed to enable <span class="hlt">deep</span> forced photometry, in particular for the Dark Energy Camera Legacy Survey (DECaLS) and Mayall z-Band Legacy Survey (MzLS), bothmore » of which are being used to select targets for the Dark Energy Spectroscopic Instrument. We describe newly introduced processing steps aimed at leveraging added redundancy to remove artifacts, with the intent of facilitating uniform target selection and searches for rare/exotic objects (e.g., high-redshift quasars and distant galaxy clusters). Forced photometry depths achieved with these coadds extend 0.56 (0.46) magnitudes deeper in W1 (W2) than is possible with only pre-hibernation WISE imaging.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10577E..0QA','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10577E..0QA"><span>A <span class="hlt">deep</span> learning model <span class="hlt">observer</span> for use in alterative forced choice virtual clinical trials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alnowami, M.; Mills, G.; Awis, M.; Elangovanr, P.; Patel, M.; Halling-Brown, M.; Young, K. C.; Dance, D. R.; Wells, K.</p> <p>2018-03-01</p> <p>Virtual clinical trials (VCTs) represent an alternative assessment paradigm that overcomes issues of dose, high cost and delay encountered in conventional clinical trials for breast cancer screening. However, to fully utilize the potential benefits of VCTs requires a machine-based <span class="hlt">observer</span> that can rapidly and realistically process large numbers of experimental conditions. To address this, a <span class="hlt">Deep</span> Learning Model <span class="hlt">Observer</span> (DLMO) was developed and trained to identify lesion targets from normal tissue in small (200 x 200 pixel) image segments, as used in Alternative Forced Choice (AFC) studies. The proposed network consists of 5 convolutional layers with 2x2 kernels and ReLU (Rectified Linear Unit) activations, followed by max pooling with size equal to the size of the final feature maps and three dense layers. The class outputs weights from the final fully connected dense layer are used to consider sets of n images in an n-AFC paradigm to determine the image most likely to contain a target. To examine the DLMO performance on clinical data, a training set of 2814 normal and 2814 biopsy-confirmed malignant mass targets were used. This produced a sensitivity of 0.90 and a specificity of 0.92 when presented with a test data set of 800 previously unseen clinical images. To examine the DLMOs minimum detectable contrast, a second dataset of 630 simulated backgrounds and 630 images with simulated lesion and spherical targets (4mm and 6mm diameter), produced contrast thresholds equivalent to/better than human <span class="hlt">observer</span> performance for spherical targets, and comparable (12 % difference) for lesion targets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS31B..06W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS31B..06W"><span>Oscillation Responses to an Extreme Weather Event from a <span class="hlt">Deep</span> Moored <span class="hlt">Observing</span> System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Z.; Dimarco, S. F.; Stoessel, M. M.; Zhang, X.; Ingle, S.</p> <p>2011-12-01</p> <p>In June 2007 tropical Cyclone Gonu passed directly over an ocean <span class="hlt">observing</span> system consisting of four, <span class="hlt">deep</span> autonomous mooring stations along the 3000 m isobath in the northern Arabian Sea. Gonu was the largest cyclone known to have occurred in the Arabian Sea or to strike the Arabian Peninsula. The mooring system was designed by Lighthouse R & D Enterprises, Inc. and installed in cooperation with the Oman Ministry of Agriculture and Fisheries Wealth. The instruments on the moorings continuously recorded water velocities, temperature, conductivity, pressure, dissolved oxygen and turbidity at multiple depths and at hourly intervals during the storm. Near-inertial oscillations at all moorings from thermocline to seafloor are coincident with the arrival of Gonu. Sub-inertial oscillations with periods of 2-10 days are recorded at the post-storm relaxation stage of Gonu, primarily in the thermocline. These oscillations consist of warm, saline water masses, likely originating from the Persian Gulf. Prominent 12.7-day sub-inertial waves, measured at a station ~300 km offshore, are bottom-intensified and have characteristics of baroclinic, topographically-trapped waves. Theoretical results from a topographically-trapped wave model are in a good agreement with the <span class="hlt">observed</span> 12.7-day waves. The wavelength of the 12.7-day waves is about 590 km calculated from the dispersion relationship. Further analysis suggests that a resonant standing wave is responsible for trapping the 12.7-day wave energy inside the Sea of Oman basin. The <span class="hlt">observational</span> results reported here are the first measurements of deepwater responses to a tropical cyclone in the Sea of Oman/Arabian Sea. Our study demonstrates the utility of sustained monitoring for studying the impact of extreme weather events on the ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24116525','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24116525"><span><span class="hlt">Deep</span> seafloor arrivals in long range ocean acoustic propagation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stephen, Ralph A; Bolmer, S Thompson; Udovydchenkov, Ilya A; Worcester, Peter F; Dzieciuch, Matthew A; Andrew, Rex K; Mercer, James A; Colosi, John A; Howe, Bruce M</p> <p>2013-10-01</p> <p>Ocean bottom seismometer <span class="hlt">observations</span> at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "<span class="hlt">deep</span> seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 <span class="hlt">observed</span>) <span class="hlt">deep</span> seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is <span class="hlt">observed</span> on the <span class="hlt">deep</span> vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the <span class="hlt">deep</span> seafloor.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......477S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......477S"><span>Aerosol impacts on <span class="hlt">deep</span> convective storms in the tropics: A combination of modeling and <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Storer, Rachel Lynn</p> <p></p> <p>It is widely accepted that increasing the number of aerosols available to act as cloud condensation nuclei (CCN) will have significant effects on cloud properties, both microphysical and dynamical. This work focuses on the impacts of aerosols on <span class="hlt">deep</span> convective clouds (DCCs), which experience more complicated responses than warm clouds due to their strong dynamical forcing and the presence of ice processes. Several previous studies have seen that DCCs may be invigorated by increasing aerosols, though this is not the case in all scenarios. The precipitation response to increased aerosol concentrations is also mixed. Often precipitation is thought to decrease due to a less efficient warm rain process in polluted clouds, yet convective invigoration would lead to an overall increase in surface precipitation. In this work, modeling and <span class="hlt">observations</span> are both used in order to enhance our understanding regarding the effects of aerosols on DCCs. Specifically, the area investigated is the tropical East Atlantic, where dust from the coast of Africa frequently is available to interact with convective storms over the ocean. The first study investigates the effects of aerosols on tropical DCCs through the use of numerical modeling. A series of large-scale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act as CCN. Polluted simulations contained more <span class="hlt">deep</span> convective clouds, wider storms, higher cloud tops and more convective precipitation across the entire domain. Differences in the warm cloud microphysical processes were largely consistent with aerosol indirect theory, and the average precipitation produced in each DCC column decreased with increasing aerosol concentration. A detailed microphysical budget analysis showed that the reduction in collision and coalescence largely dominated the trend in surface precipitation; however the production of rain through the melting of ice, though it also</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2073A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2073A"><span>Ubiquitous healthy diatoms in the <span class="hlt">deep</span> sea confirms <span class="hlt">deep</span> carbon injection by the biological pump</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agustí, Susana; González-Gordillo, Jose I.; Vaqué, Dolors; Estrada, Marta; Cerezo, Maria I.; Salazar, Guillem; Gasol, Josep M.; Duarte, Carlos M.</p> <p>2016-04-01</p> <p>The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the <span class="hlt">deep</span> bathypelagic sea and whether this mechanism is prevalent across the ocean awaits confirmation. Photosynthetic plankton, directly responsible for trapping CO2 in organic form in the surface layer, are a key constituent of the flux of sinking particles and are assumed to die and become detritus upon leaving the photic layer. Research in the 1960-70's reported the occasional presence of well-preserved phytoplankton cells in the <span class="hlt">deep</span> ocean, but these <span class="hlt">observations</span>, which could signal at rapid sinking rates, were considered anecdotal. Using new developments we tested the presence of healthy phytoplankton cells in the <span class="hlt">deep</span> sea (2000 to 4000 m depth) along the Malaspina 2010 Circumnavigation Expedition, a global expedition sampling the bathypelagic zone of the Atlantic, Indian and Pacific Oceans. In particular, we used a new microplankton sampling device, the Bottle-Net, 16S rDNA sequences, flow cytometric counts, vital stains and experiments to explore the abundance and health status of photosynthetic plankton cells between 2,000 and 4,000 m depth along the Circumnavigation track. We described the community of microplankton (> 20μm) found at the <span class="hlt">deep</span> ocean (2000-4000 m depth), surprisingly dominated by phytoplankton, and within this, by diatoms. Moreover, we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the <span class="hlt">deep</span> dark sea. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells <span class="hlt">observed</span>, on average, in the dark ocean, requires transport times from few days to few weeks, corresponding to sinking rates of 124 to 732 m d-1, comparable to those of fast sinking aggregates and faecal pellets. These results confirm the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007944','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007944"><span>HST/ACS <span class="hlt">Observations</span> of RR Lyrae Stars in Six Ultra-<span class="hlt">Deep</span> Fields of M31</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.</p> <p>2010-01-01</p> <p>We present HST/ACS <span class="hlt">observations</span> of RR Lyrae variable stars in six ultra <span class="hlt">deep</span> fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra <span class="hlt">deep</span> fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013sptz.prop10055J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013sptz.prop10055J"><span><span class="hlt">Deep</span> Spitzer/IRAC Imaging of the Subaru <span class="hlt">Deep</span> Field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Linhua; Egami, Eiichi; Cohen, Seth; Fan, Xiaohui; Ly, Chun; Mechtley, Matthew; Windhorst, Rogier</p> <p>2013-10-01</p> <p>The last decade saw great progress in our understanding of the distant Universe as a number of objects at z > 6 were discovered. The Subaru <span class="hlt">Deep</span> Field (SDF) project has played an important role on study of high-z galaxies. The SDF is unique: it covers a large area of 850 sq arcmin; it has extremely <span class="hlt">deep</span> optical images in a series of broad and narrow bands; it has the largest sample of spectroscopically-confirmed galaxies known at z >= 6, including ~100 Lyman alpha emitters (LAEs) and ~50 Lyman break galaxies (LBGs). Here we propose to carry out <span class="hlt">deep</span> IRAC imaging <span class="hlt">observations</span> of the central 75% of the SDF. The proposed <span class="hlt">observations</span> together with those from our previous Spitzer programs will reach a depth of ~10 hours, and enable the first complete census of physical properties and stellar populations of spectroscopically-confirmed galaxies at the end of cosmic reionization. IRAC data is the key to measure stellar masses and constrain stellar populations in high-z galaxies. From SED modeling with secure redshifts, we will characterize the physical properties of these galaxies, and trace their mass assembly and star formation history. In particular, it allows us, for the first time, to study stellar populations in a large sample of z >=6 LAEs. We will also address some critical questions, such as whether LAEs and LBGs represent physically different galaxy populations. All these will help us to understand the earliest galaxy formation and evolution, and better constrain the galaxy contribution to reionization. The IRAC data will also cover 10,000 emission-line selected galaxies at z < 1.5, 50,000 UV and mass selected LBGs at 1.5 < z < 3, and more than 5,000 LBGs at 3 < z < 6. It will have a legacy value for SDF-related programs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23125201R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23125201R"><span><span class="hlt">Deep</span> Chandra <span class="hlt">Observations</span> of Abell 586: A Remarkably Relaxed Non-Cool-Core Cluster</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richstein, Hannah; Su, Yuanyuan</p> <p>2018-01-01</p> <p>The dichotomy between cool-core and non-cool-core clusters has been a lasting perplexity in extragalactic astronomy. Nascent cores in non-cool-core clusters may have been disrupted by major mergers, yet the dichotomy cannot be reproduced in cosmology simulations. We present <span class="hlt">deep</span> Chandra <span class="hlt">observations</span> of the massive galaxy cluster Abell 586, which resides at z=0.17, thus allowing its gas properties to be measured out to its virial radius. Abell 586 appears remarkably relaxed with a nearly spherical X-ray surface brightness distribution and without any offset between its X-ray and optical centroids. We measure that its temperature profile does not decrease towards the cluster center and its central entropy stays above 100 keV cm2. A non-cool-core emerges in Abell 586 in the absence of any disruptions on the large scale. Our study demonstrates that non-cool-core clusters can be formed without major mergers. The origins of some non-cool-core clusters may be related to conduction, AGN feedback, or preheating.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080039275&hterms=blue&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dblue','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080039275&hterms=blue&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dblue"><span>SMART-COMMIT <span class="hlt">Observations</span> and <span class="hlt">Deep</span>-Blue Retrievals of Saharan Dust Properties during NAMMA</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsay, Si-Chee; Hsu, N. Christina; Ji, Qiang; Jeong, Myeong-Jae</p> <p>2007-01-01</p> <p>Monsoon rainfalls sustain the livelihood of more than half of the world's population. The interaction between natural/anthropogenic aerosols, clouds, and precipitation is a critical mechanism that drives the water cycle and fresh water distribution. Analyses of the longterm trend of July-August precipitation anomaly for the last 50 years in the 20" century depict that the largest regional precipitation deficit occurs over the Sahel, where the monsoon water cycle plays an important role. Thus, it is of paramount importance to study how dust aerosols, as well as air pollution and smoke, influence monsoon variability. The NASA African Monsoon Multidisciplinary Activities (NAMMA) was conducted during the international AMMA Special <span class="hlt">Observation</span> Period (SOP-3) of September 2006 to better comprehend the key attributes of the Saharan Air Layer (SAL) and how they evolve from the source regions to the Atlantic Ocean. The SAL occurs during the late spring through early fall and originates as a result of low-level convergence induced by heat lows over the Sahara that lifts hot, dry, dust laden air aloft into a well mixed layer that extends up to 500mb. This is crucial for understanding the impact of SAL on the key atmospheric processes that determine precipitation over West Africa and tropical cyclogenesis. Results obtained from the synergy of satellite (<span class="hlt">Deep</span>- Blue) and surface (SMART-COMMIT) <span class="hlt">observations</span> will be presented and discussed how the physical, optical and radiative properties of the dust in the SAL evolve from the continental to the marine environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR24A..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR24A..06C"><span>Combining mineral physics with seismic <span class="hlt">observations</span>: What can we deduce about the thermochemical structure of the Earth's <span class="hlt">deep</span> interior?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cobden, L. J.</p> <p>2017-12-01</p> <p>Mineral physics provides the essential link between seismic <span class="hlt">observations</span> of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the <span class="hlt">deep</span> mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic <span class="hlt">observations</span>. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002323&hterms=cluster&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcluster','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002323&hterms=cluster&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcluster"><span><span class="hlt">Deep</span> Chandra <span class="hlt">Observation</span> and Numerical Studies of the Nearest Cluster Cold Front in the Sky</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170002323'); toggleEditAbsImage('author_20170002323_show'); toggleEditAbsImage('author_20170002323_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170002323_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170002323_hide"></p> <p>2015-01-01</p> <p>We present the results of a very <span class="hlt">deep</span> (500 ks) Chandra <span class="hlt">observation</span>, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the <span class="hlt">observed</span> sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is <span class="hlt">observed</span> to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we <span class="hlt">observe</span> quasi-linear features that are approximately 10 per cent brighter than the surrounding gas and are separated by approximately 15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the <span class="hlt">observed</span> phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches approximately 5-10 per cent of the thermal pressure, reducing the gas density between the bright features.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P31D2855H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P31D2855H"><span>The Composition and Chemistry of the <span class="hlt">Deep</span> Tropospheres of Saturn and Uranus from Ground-Based Radio <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofstadter, M. D.; Adumitroaie, V.; Atreya, S. K.; Butler, B.</p> <p>2017-12-01</p> <p>Ground-based radio <span class="hlt">observations</span> of the giant planets at wavelengths from 1 millimeter to 1 meter have long been the primary means to study the <span class="hlt">deep</span> tropospheres of both gas- and ice-giant planets (e.g. de Pater and Massie 1985, Icarus 62; Hofstadter and Butler 2003, Icarus 165). Most recently, radiometers aboard the Cassini and Juno spacecraft at Saturn and Jupiter, respectively, have demonstrated the ability of spaceborne systems to study composition and weather beneath the visible cloud tops with high spatial resolution (Janssen et al. 2013, Icarus 226; Bolton et al. 2016, this meeting). Ground-based <span class="hlt">observations</span> remain, however, an excellent way to study the tropospheres of the ice giants, particularly the temporal and spatial distribution of condensible species, and to study the <span class="hlt">deep</span> troposphere of Saturn in the region of the water cloud. This presentation focuses on two ground-based data sets, one for Uranus and one for Saturn. The Uranus data were all collected near the 2007 equinox, and span wavelengths from 0.1 to 20 cm. These data provide a snapshot of atmospheric composition at a single season. The Saturn <span class="hlt">observations</span> were recently made with the EVLA observatory at wavelengths from 3 to 90 cm, augmented by published <span class="hlt">observations</span> at shorter and longer wavelengths. It is expected that these data will allow us to constrain conditions in the water cloud region on Saturn. At the time of this writing, both data sets are being analyzed using an optimal estimation retrieval algorithm fed with the latest published information on the chemical and electrical properties of relevant atmospheric species (primarily H2O, NH3, H2S, PH3, and free electrons). At Uranus, we find that—consistent with previously published work—ammonia in the 1 to 50-bar range is strongly depleted from solar values. The relative volume mixing ratios of the above species satisfy PH3 < NH3 < H2S < H2O, which is interesting because based on cosmic abundances one would expect H2S < NH3. At the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996SeScT..11..489B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996SeScT..11..489B"><span>Electron paramagnetic resonance of <span class="hlt">deep</span> boron in silicon carbide</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baranov, P. G.; Mokhov, E. N.</p> <p>1996-04-01</p> <p>In this article we report the first EPR <span class="hlt">observation</span> of <span class="hlt">deep</span> boron centres in silicon carbide. A direct identification of the boron atom involved in the defect centre, considered as <span class="hlt">deep</span> boron, has been established by the presence of a hyperfine interaction with 0268-1242/11/4/005/img1 and 0268-1242/11/4/005/img2 nuclei in isotope-enriched 6H-SiC:B crystals. <span class="hlt">Deep</span> boron centres were shown from EPR spectra to have axial symmetry along the hexagonal axis. A correspondence between the EPR spectra and the luminescence, ODMR and DLTS spectra of <span class="hlt">deep</span> boron centres has been indicated. The structural model for a <span class="hlt">deep</span> boron centre as a boron - vacancy pair is presented and the evidence for bistable behaviour of <span class="hlt">deep</span> boron centres is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GGG.....9.6010B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GGG.....9.6010B"><span>Strontium isotope constraints on fluid flow in the sheeted dike complex of fast spreading crust: Pervasive fluid flow at Pito <span class="hlt">Deep</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barker, A. K.; Coogan, L. A.; Gillis, K. M.; Weis, D.</p> <p>2008-06-01</p> <p>Fluid flow through the axial hydrothermal system at fast spreading ridges is investigated using the Sr-isotopic composition of upper crustal samples recovered from a tectonic window at Pito <span class="hlt">Deep</span> (NE Easter microplate). Samples from the sheeted dike complex collected away from macroscopic evidence of channelized fluid flow, such as faults and centimeter-scale hydrothermal veins, show a range of 87Sr/86Sr from 0.7025 to 0.7030 averaging 0.70276 relative to a protolith with 87Sr/86Sr of ˜0.7024. There is no systematic variation in 87Sr/86Sr with depth in the sheeted dike complex. Comparison of these new data with the two other localities that similar data sets exist for (ODP Hole 504B and the <span class="hlt">Hess</span> <span class="hlt">Deep</span> tectonic window) reveals that the extent of Sr-isotope exchange is similar in all of these locations. Models that assume that fluid-rock reaction occurs during one-dimensional (recharge) flow lead to significant decreases in the predicted extent of isotopic modification of the rock with depth in the crust. These model results show systematic misfits when compared with the data that can only be avoided if the fluid flow is assumed to be focused in isolated channels with very slow fluid-rock exchange. In this scenario the fluid at the base of the crust is little modified in 87Sr/86Sr from seawater and thus unlike vent fluids. Additionally, this model predicts that some rocks should show no change from the fresh-rock 87Sr/86Sr, but this is not <span class="hlt">observed</span>. Alternatively, models in which fluid-rock reaction occurs during upflow (discharge) as well as downflow, or in which fluids are recirculated within the hydrothermal system, can reproduce the <span class="hlt">observed</span> lack of variation in 87Sr/86Sr with depth in the crust. Minimum time-integrated fluid fluxes, calculated from mass balance, are between 1.5 and 2.6 × 106 kg m-2 for all areas studied to date. However, new evidence from both the rocks and a compilation of vent fluid compositions demonstrates that some Sr is leached from the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.7366Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.7366Z"><span>Possible seasonality in large <span class="hlt">deep</span>-focus earthquakes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhan, Zhongwen; Shearer, Peter M.</p> <p>2015-09-01</p> <p>Large <span class="hlt">deep</span>-focus earthquakes (magnitude > 7.0, depth > 500 km) have exhibited strong seasonality in their occurrence times since the beginning of global earthquake catalogs. Of 60 such events from 1900 to the present, 42 have occurred in the middle half of each year. The seasonality appears strongest in the northwest Pacific subduction zones and weakest in the Tonga region. Taken at face value, the surplus of northern hemisphere summer events is statistically significant, but due to the ex post facto hypothesis testing, the absence of seasonality in smaller <span class="hlt">deep</span> earthquakes, and the lack of a known physical triggering mechanism, we cannot rule out that the <span class="hlt">observed</span> seasonality is just random chance. However, we can make a testable prediction of seasonality in future large <span class="hlt">deep</span>-focus earthquakes, which, given likely earthquake occurrence rates, should be verified or falsified within a few decades. If confirmed, <span class="hlt">deep</span> earthquake seasonality would challenge our current understanding of <span class="hlt">deep</span> earthquakes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PrOce..50..407G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PrOce..50..407G"><span>Organic matter assimilation and selective feeding by holothurians in the <span class="hlt">deep</span> sea: some <span class="hlt">observations</span> and comments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ginger, Michael L.; Billett, David S. M.; Mackenzie, Karen L.; Konstandinos Kiriakoulakis; Neto, Renato R.; K. Boardman, Daniel; Santos, Vera L. C. S.; Horsfall, Ian M.; A. Wolff, George</p> <p></p> <p>The selective feeding behaviour and assimilation efficiencies of <span class="hlt">deep</span>-sea holothurians were investigated in order to assess their impact on carbon and nitrogen remineralisation on the Porcupine Abyssal Plain (PAP; ˜ 49°N 16°W, ˜ 4850 m water depth). Unfortunately, reliable determination of organic matter in the gut contents of the organisms proved to be difficult, because of the lysis of cells associated with the death of the animals on recovery. This was expressed in high levels of free fatty acids in the gut contents of Oneirophanta mutabilis, which we ascribe to unregulated lipolysis of phospholipids and triacylglycerides. It was not possible to estimate accurately the contribution that such material made to the gut contents, but based on the distributions of sterols in the gut sediments, it is likely to have been substantial. Therefore, all assimilation efficiencies calculated for holothurians in the <span class="hlt">deep</span> sea should be treated with caution. Fortuitously, a bloom of holothurians that feed on the sediment surface (namely Amperima rosea and Ellipinion molle) during the period of study provided an opportunity indirectly to assess the impact of megafauna on organic matter cycling at the PAP. <span class="hlt">Observations</span> suggest that the depletion of phytosterols from the surficial sediments between July and October 1997 resulted from the selective uptake of fresh phytodetritus by the blooming species. <span class="hlt">Deep</span>-sea holothurians do not biosynthesise sterols de novo and an estimate of the sterol required by the increased population of A. rosea and E. molle is equivalent to the sterol flux to the seafloor during the spring/summer of 1997. The implications are dramatic. Firstly, these and other megafauna apparently turned over and selectively removed phytosterols from the freshly arrived phytodetritus and the surficial sediment (0-5 mm) at the PAP in less than four months. Secondly, their action impacted the food resource available to other organisms. Finally, as phytosterols are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PASJ..tmp...68M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PASJ..tmp...68M"><span>Orbital solution leading to an acceptable interpretation for the enigmatic gamma-ray binary <span class="hlt">HESS</span> J0632+057</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moritani, Yuki; Kawano, Takafumi; Chimasu, Sho; Kawachi, Akiko; Takahashi, Hiromitsu; Takata, Jumpei; Carciofi, Alex C.</p> <p>2018-05-01</p> <p>High-dispersion spectroscopic monitoring of <span class="hlt">HESS</span> J0632+057 has been carried out over four orbital cycles in order to search for orbital modulation, covering the entire orbital phase. We have measured the radial velocity of the Hα emission line with the method introduced by Shafter, Szkody, and Thorstensen (1986, ApJ, 308, 765), which has been successfully applied to some Be stars. The velocity is seen to increase much earlier than expected for the orbital period of 315 d, and much more steeply than expected at around "apastron." The period of the Hα modulation is found to be 308^{+26}_{-23} d. We have also analyzed Swift/XRT data from 2009 to 2015 to study the orbital modulation, selecting the data with good statistics (≥30 counts). With additional two-year data to the previous works, the orbital period has been updated to 313^{+11}_{-8} d, which is consistent with the previous X-ray periods and the spectroscopic one. Previous XMM-Newton and Chandra <span class="hlt">observations</span> prefer a period of 313 d. With the new period, assuming that Hα velocities accurately trace the motion of the Be star, we have derived a new set of orbital parameters. In the new orbit, which is less eccentric (e ≃ 0.6), two outbursts occur: after apastron and just after periastron. Also, the column density in bright phase (4.7^{+0.9}_{-08}× 10^{21} cm^{-2}) is higher than in faint phase (2.2 ± 0.5 × 1021 cm-2). These facts suggest that outbursts occur when the compact object passes nearby/through the Be disk. The mass function implies that the mass of the compact object is less than 2.5 M⊙, assuming that the mass of the Be star is 13.2-18.2 M⊙ (Aragona et al. 2010, ApJ, 724, 306), unless the inclination is extremely small. The photon index indicates that the spectra become softer when the system is bright. These suggest that the compact object is a pulsar.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.142....7R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.142....7R"><span>The Congolobe project, a multidisciplinary study of Congo <span class="hlt">deep</span>-sea fan lobe complex: Overview of methods, strategies, <span class="hlt">observations</span> and sampling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabouille, C.; Olu, K.; Baudin, F.; Khripounoff, A.; Dennielou, B.; Arnaud-Haond, S.; Babonneau, N.; Bayle, C.; Beckler, J.; Bessette, S.; Bombled, B.; Bourgeois, S.; Brandily, C.; Caprais, J. C.; Cathalot, C.; Charlier, K.; Corvaisier, R.; Croguennec, C.; Cruaud, P.; Decker, C.; Droz, L.; Gayet, N.; Godfroy, A.; Hourdez, S.; Le Bruchec, J.; Saout, J.; Le Saout, M.; Lesongeur, F.; Martinez, P.; Mejanelle, L.; Michalopoulos, P.; Mouchel, O.; Noel, P.; Pastor, L.; Picot, M.; Pignet, P.; Pozzato, L.; Pruski, A. M.; Rabiller, M.; Raimonet, M.; Ragueneau, O.; Reyss, J. L.; Rodier, P.; Ruesch, B.; Ruffine, L.; Savignac, F.; Senyarich, C.; Schnyder, J.; Sen, A.; Stetten, E.; Sun, Ming Yi; Taillefert, M.; Teixeira, S.; Tisnerat-Laborde, N.; Toffin, L.; Tourolle, J.; Toussaint, F.; Vétion, G.; Jouanneau, J. M.; Bez, M.; Congolobe Group:</p> <p>2017-08-01</p> <p>The presently active region of the Congo <span class="hlt">deep</span>-sea fan (around 330,000 km2), called the terminal lobes or lobe complex, covers an area of 2500 km2 at 4700-5100 m water depth and 750-800 km offshore. It is a unique sedimentary area in the world ocean fed by a submarine canyon and a channel-levee system which presently deliver large amounts of organic carbon originating from the Congo River by turbidity currents. This particularity is due to the <span class="hlt">deep</span> incision of the shelf by the Congo canyon, up to 30 km into the estuary, which funnels the Congo River sediments into the <span class="hlt">deep</span>-sea. The connection between the river and the canyon is unique for major world rivers. In 2011, two cruises (WACS leg 2 and Congolobe) were conducted to simultaneously investigate the geology, organic and inorganic geochemistry, and micro- and macro-biology of the terminal lobes of the Congo <span class="hlt">deep</span>-sea fan. Using this multidisciplinary approach, the morpho-sedimentary features of the lobes were characterized along with the origin and reactivity of organic matter, the recycling and burial of biogenic compounds, the diversity and function of bacterial and archaeal communities within the sediment, and the biodiversity and functioning of the faunal assemblages on the seafloor. Six different sites were selected for this study: Four distributed along the active channel from the lobe complex entrance to the outer rim of the sediment deposition zone, and two positioned cross-axis and at increasing distance from the active channel, thus providing a gradient in turbidite particle delivery and sediment age. This paper aims to provide the general context of this multidisciplinary study. It describes the general features of the site and the overall sampling strategy and provides the initial habitat <span class="hlt">observations</span> to guide the other in-depth investigations presented in this special issue. Detailed bathymetry of each sampling site using 0.1-1 m resolution multibeam obtained with a remotely operated vehicle (ROV</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...834...74S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...834...74S"><span><span class="hlt">Deep</span> Chandra <span class="hlt">Observations</span> of NGC 1404: Cluster Plasma Physics Revealed by an Infalling Early-type Galaxy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.</p> <p>2017-01-01</p> <p>The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray <span class="hlt">observations</span> of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very <span class="hlt">deep</span> (670 ks) exposure. At the leading edge, we <span class="hlt">observe</span> sub-kiloparsec-scale eddies generated by Kelvin-Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also <span class="hlt">observe</span> mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1355172-flare-pg-seen-fermi-lat','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1355172-flare-pg-seen-fermi-lat"><span>The 2012 flare of PG 1553+113 seen with <span class="hlt">H.E.S.S</span>. and Fermi-LAT</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; ...</p> <p>2015-03-24</p> <p>Very high energy (VHE, E > 100 GeV) γ-ray flaring activity of the high-frequency peaked BL Lac object PG 1553+113 has been detected by the <span class="hlt">H.E.S.S</span>. telescopes. Also, the flux of the source increased by a factor of 3 during the nights of 2012 April 26 and 27 with respect to the archival measurements with a hint of intra-night variability. No counterpart of this event has been detected in the Fermi-Large Area Telescope data. This pattern is consistent with VHE γ-ray flaring being caused by the injection of ultrarelativistic particles, emitting γ-rays at the highest energies. The dataset offers amore » unique opportunity to constrain the redshift of this source at z = 0.49 ± 0.04 using a novel method based on Bayesian statistics. In addition, the indication of intra-night variability is used to introduce a novel method to probe for a possible Lorentz invariance violation (LIV), and to set limits on the energy scale at which Quantum Gravity (QG) effects causing LIV may arise. For the subluminal case, the derived limits are E QG,1 > 4.10 × 10 17 GeV and E QG,2 > 2.10 × 10 10 GeV for linear and quadratic LIV effects, respectively.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1357202-detection-pulsar-wind-nebula-hess-j1825-fermi-large-area-telescope','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1357202-detection-pulsar-wind-nebula-hess-j1825-fermi-large-area-telescope"><span>Detection of the pulsar wind nebula <span class="hlt">HESS</span> J1825-137 with the Fermi Large Area Telescope</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Grondin, M. -H.; Funk, S.; Lemoine-Goumard, M.; ...</p> <p>2011-08-10</p> <p>Here, we announce the discovery of 1-100 GeV gamma-ray emission from the archetypal TeV pulsar wind nebula (PWN) <span class="hlt">HESS</span> J1825–137 using 20 months of survey data from the Fermi-Large Area Telescope (LAT). The gamma-ray emission detected by the LAT is significantly spatially extended, with a best-fit rms extension of σ = 0°.56 ± 0°.07 for an assumed Gaussian model. The 1-100 GeV LAT spectrum of this source is well described by a power law with a spectral index of 1.38 ± 0.12 ± 0.16 and an integral flux above 1 GeV of (6.50 ± 0.21 ± 3.90) × 10 –9more » cm –2 s –1. The first errors represent the statistical errors on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses bring new constraints on the energetics and magnetic field of the PWN system. As a result, the spatial extent and hard spectrum of the GeV emission are consistent with the picture of an inverse Compton origin of the GeV-TeV emission in a cooling-limited nebula powered by the pulsar PSR J1826–1334.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002771&hterms=target&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtarget','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002771&hterms=target&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtarget"><span>Assimilation of MODIS Dark Target and <span class="hlt">Deep</span> Blue <span class="hlt">Observations</span> in the Dust Aerosol Component of NMMB-MONARCH version 1.0</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Perez Garcia-Pando, Carlos</p> <p>2017-01-01</p> <p>A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the <span class="hlt">Deep</span> Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with <span class="hlt">observations</span>) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of <span class="hlt">Deep</span> Blue retrievals over areas not easily covered by other <span class="hlt">observational</span> datasets.The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.1107D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.1107D"><span>Assimilation of MODIS Dark Target and <span class="hlt">Deep</span> Blue <span class="hlt">observations</span> in the dust aerosol component of NMMB-MONARCH version 1.0</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos</p> <p>2017-03-01</p> <p>A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the <span class="hlt">Deep</span> Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with <span class="hlt">observations</span>) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of <span class="hlt">Deep</span> Blue retrievals over areas not easily covered by other <span class="hlt">observational</span> datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080014857','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080014857"><span>The Effect of Environmental Conditions on Tropical <span class="hlt">Deep</span> Convective Systems <span class="hlt">Observed</span> from the TRMM Satellite</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, Bing; Wielicki, Bruce A.; Minnis, Patrick; Chambers, Lin H.; Xu, Kuan-Man; Hu, Yongxiang; Fan, Tai-Fang</p> <p>2005-01-01</p> <p>This study uses measurements of radiation and cloud properties taken between January and August 1998 by three Tropical Rainfall Measuring Mission (TRMM) instruments, the Clouds and the Earth's Radiant Energy System (CERES) scanner, the TRMM Microwave Imager (TMI), and the Visible and InfraRed Scanner (VIRS), to evaluate the variations of tropical <span class="hlt">deep</span> convective systems (DCS) with sea surface temperature (SST) and precipitation. This study finds that DCS precipitation efficiency increases with SST at a rate of approx. 2%/K. Despite increasing rainfall efficiency, the cloud areal coverage rises with SST at a rate of about 7%/K in the warm tropical seas. There, the boundary layer moisture supply for <span class="hlt">deep</span> convection and the moisture transported to the upper troposphere for cirrus-anvil cloud formation increase by approx. 6.3%/K and approx. 4.0%/K, respectively. The changes in cloud formation efficiency, along with the increased transport of moisture available for cloud formation, likely contribute to the large rate of increasing DCS areal coverage. Although no direct <span class="hlt">observations</span> are available, the increase of cloud formation efficiency with rising SST is deduced indirectly from measurements of changes in the ratio of DCS ice water path and boundary layer water vapor amount with SST. Besides the cloud areal coverage, DCS cluster effective sizes also increase with precipitation. Furthermore, other cloud properties, such as cloud total water and ice water paths, increase with SST. These changes in DCS properties will produce a negative radiative feedback for the earth's climate system due to strong reflection of shortwave radiation by the DCS. These results significantly differ from some previous hypothesized dehydration scenarios for warmer climates, and have great potential in testing current cloud-system resolving models and convective parameterizations of general circulation models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.475.2853G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.475.2853G"><span>MUSE spectroscopy and <span class="hlt">deep</span> <span class="hlt">observations</span> of a unique compact JWST target, lensing cluster CLIO</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.</p> <p>2018-04-01</p> <p>We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up <span class="hlt">observations</span> due to its almost unique combination of high-mass and dark matter halo concentration, as well as having <span class="hlt">observed</span> lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-<span class="hlt">Deep</span> Field' (WMDF) GTO program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521676-deep-near-ir-observations-globular-cluster-m4-hunting-brown-dwarfs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521676-deep-near-ir-observations-globular-cluster-m4-hunting-brown-dwarfs"><span><span class="hlt">DEEP</span> NEAR-IR <span class="hlt">OBSERVATIONS</span> OF THE GLOBULAR CLUSTER M4: HUNTING FOR BROWN DWARFS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dieball, A.; Bedin, L. R.; Knigge, C.</p> <p>2016-01-20</p> <p>We present an analysis of <span class="hlt">deep</span> Hubble Space Telescope (HST)/Wide Field Camera 3 near-IR (NIR) imaging data of the globular cluster (GC) M4. The best-photometry NIR color–magnitude diagram (CMD) clearly shows the main sequence extending toward the expected end of the hydrogen-burning limit and going beyond this point toward fainter sources. The white dwarf (WD) sequence can be identified. As such, this is the deepest NIR CMD of a GC to date. Archival HST optical data were used for proper-motion cleaning of the CMD and for distinguishing the WDs from brown dwarf (BD) candidates. Detection limits in the NIR aremore » around F110W ≈ 26.5 mag and F160W ≈ 27 mag, and in the optical around F775W ≈ 28 mag. Comparing our <span class="hlt">observed</span> CMDs with theoretical models, we conclude that we have reached beyond the H-burning limit in our NIR CMD and are probably just above or around this limit in our optical–NIR CMDs. Thus, any faint NIR sources that have no optical counterpart are potential BD candidates, since the optical data are not <span class="hlt">deep</span> enough to detect them. We visually inspected the positions of NIR sources that are fainter than the H-burning limit in F110W and for which the optical photometry did not return a counterpart. We found in total five sources for which we did not get an optical measurement. For four of these five sources, a faint optical counterpart could be visually identified, and an upper optical magnitude was estimated. Based on these upper optical magnitude limits, we conclude that one source is likely a WD, one source could be either a WD or BD candidate, and the remaining two sources agree with being BD candidates. No optical counterpart could be detected for just one source, which makes this source a good BD candidate. We conclude that we found in total four good BD candidates.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..149a2025P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..149a2025P"><span>Formability analysis of aluminum alloys through <span class="hlt">deep</span> drawing process</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pranavi, U.; Janaki Ramulu, Perumalla; Chandramouli, Ch; Govardhan, Dasari; Prasad, PVS. Ram</p> <p>2016-09-01</p> <p><span class="hlt">Deep</span> drawing process is a significant metal forming process used in the sheet metal forming operations. From this process complex shapes can be manufactured with fewer defects. <span class="hlt">Deep</span> drawing process has different effectible process parameters from which an optimum level of parameters should be identified so that an efficient final product with required mechanical properties will be obtained. The present work is to evaluate the formability of Aluminum alloy sheets using <span class="hlt">deep</span> drawing process. In which effects of punch radius, lubricating conditions, die radius, and blank holding forces on <span class="hlt">deep</span> drawing process <span class="hlt">observed</span> for AA 6061 aluminum alloy sheet of 2 mm thickness. The numerical simulations are performed for <span class="hlt">deep</span> drawing of square cups using three levels of aforesaid parameters like lubricating conditions and blank holding forces and two levels of punch radii and die radii. For numerical simulation a commercial FEM code is used in which Hollomon's power law and Hill's 1948 yield criterions are implemented. The <span class="hlt">deep</span> drawing setup used in the FEM code is modeled using a CAD tool by considering the modeling requirements from the literature. Two different strain paths (150x150mm and 200x200mm) are simulated. Punch forces, thickness distributions and dome heights are evaluated for all the conditions. In addition failure initiation and propagation is also <span class="hlt">observed</span>. From the results, by increasing the coefficient of friction and blank holding force, punch force, thickness distribution and dome height variations are <span class="hlt">observed</span>. The comparison has done and the optimistic parameters were suggested from the results. From this work one can predict the formability for different strain paths without experimentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013415','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013415"><span>Accumulation of organic matter in Cretaceous oxygen-deficient depositional environments in the central Pacific Ocean</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dean, W.E.; Claypool, G.E.; Thide, J.</p> <p>1984-01-01</p> <p> and intercepts of C-S regression lines however, are different for each site and all are different from regression lines for samples from modern anoxic marine sediments and from Black Sea cores. The organic-carbon-rich limestones on <span class="hlt">Hess</span> Rise, the Mid-Pacific Mountains, and other plateaus and seamounts in the Pacific Ocean are not synchronous but do occur within the same general middle Cretaceous time period as organic-carbon-rich lithofacies elsewhere in the world ocean, particularly in the Atlantic Ocean. Strata of equivalent age in the <span class="hlt">deep</span> basins of the Pacific Ocean are not rich in organic carbon, and were deposited in oxygenated environments. This <span class="hlt">observation</span>, together with the evidence that the plateau sites were considerably shallower and closse to the equator during the middle Creataceous suggests that local tectonic and hydrographic conditions may have resulted in high surface-water productivity and the preservation of organic matter in an oxygen-deficient environment where an expanded mid-water oxygen minimum developed and impinged on elevated platforms and seamounts. ?? 1984.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...599A..45M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...599A..45M"><span>XMM-Newton <span class="hlt">observation</span> of the supernova remnant Kes 78 (G32.8-0.1): Evidence of shock-cloud interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miceli, M.; Bamba, A.; Orlando, S.; Zhou, P.; Safi-Harb, S.; Chen, Y.; Bocchino, F.</p> <p>2017-03-01</p> <p>Context. The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended <span class="hlt">HESS</span> γ-ray source <span class="hlt">HESS</span> J1852-000. The X-ray emission from the remnant has recently been revealed by Suzaku <span class="hlt">observations</span>, which have shown indications for a hard X-ray component in the spectra that might be associated with synchrotron radiation. Aims: We describe the spatial distribution of the physical properties of the X-ray emitting plasma and reveal the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also investigate the origin of the γ-ray emission, which may be inverse-Compton radiation associated with X-ray synchrotron-emitting electrons or hadronic emission originating from the impact of high-energy protons on the nearby clouds. Methods: We analyzed an XMM-Newton EPIC <span class="hlt">observation</span> of Kes 78 by performing image analysis and spatially resolved spectral analysis on a set of three regions. We tested our findings against the <span class="hlt">observations</span> of the 12CO and 13CO emission in the environment of the remnant. Results: We reveal the complex X-ray morphology of Kes 78 and find variations in the spectral properties of the plasma, with significantly denser and cooler material at the eastern edge of the remnant, which we interpret as a signature of interaction with a molecular cloud. We also exclude that narrow filaments emit the X-ray synchrotron radiation. Conclusions: Assuming that the very high energy γ-ray emission is associated with Kes 78, the lack of synchrotron emission rules out a leptonic origin. A hadronic origin is further supported by evidence of interaction of the remnant with a dense molecular cloud in its eastern limb.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AAS...212.5501D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AAS...212.5501D"><span>The Great Observatories Origins <span class="hlt">Deep</span> Survey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dickinson, Mark</p> <p>2008-05-01</p> <p><span class="hlt">Observing</span> the formation and evolution of ordinary galaxies at early cosmic times requires data at many wavelengths in order to recognize, separate and analyze the many physical processes which shape galaxies' history, including the growth of large scale structure, gravitational interactions, star formation, and active nuclei. Extremely <span class="hlt">deep</span> data, covering an adequately large volume, are needed to detect ordinary galaxies in sufficient numbers at such great distances. The Great Observatories Origins <span class="hlt">Deep</span> Survey (GOODS) was designed for this purpose as an anthology of <span class="hlt">deep</span> field <span class="hlt">observing</span> programs that span the electromagnetic spectrum. GOODS targets two fields, one in each hemisphere. Some of the deepest and most extensive imaging and spectroscopic surveys have been carried out in the GOODS fields, using nearly every major space- and ground-based observatory. Many of these data have been taken as part of large, public surveys (including several Hubble Treasury, Spitzer Legacy, and ESO Large Programs), which have produced large data sets that are widely used by the astronomical community. I will review the history of the GOODS program, highlighting results on the formation and early growth of galaxies and their active nuclei. I will also describe new and upcoming <span class="hlt">observations</span>, such as the GOODS Herschel Key Program, which will continue to fill out our portrait of galaxies in the young universe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS13C1234H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS13C1234H"><span>Biodiversity of the <span class="hlt">Deep</span>-Sea Benthic Fauna in the Sangihe-Talaud Region, Indonesia: <span class="hlt">Observations</span> from the INDEX-SATAL 2010 Expedition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrera, S.; Munro, C.; Nganro, N.; Tunnicliffe, V.; Wirasantosa, S.; Sibert, E.; Hammond, S. R.; Bors, E.; Butterfield, D.; Holden, J. F.; Baker, E. T.; Sherrin, J.; Makarim, S.; Troa, R.; Shank, T. M.</p> <p>2010-12-01</p> <p>The benthic ecosystems found in the <span class="hlt">deep</span>-sea promontories of Sangihe Talaud region were explored, between June and August 2010, using the ROV Little Hercules aboard the NOAA ship Okeanos Explorer. The Sangihe-Talaud region is part of the Coral Triangle (CT) an area known for harboring the most biodiverse shallow-water coral reefs in the world. Notwithstanding the significant research efforts that have been undertaken to catalog and protect the biodiversity of the CT prior this expedition, virtually nothing was known about the life inhabiting the <span class="hlt">deep</span> sea. The high-resolution imagery obtained from the 27 ROV dives revealed remarkably high abundances and diversity of animal species, many of which appear to be novel. On hard bottom substrates, cold-water corals were the dominant sessile macrofauna, in terms of biomass, followed by glass sponges (Hexactinellida) and sea lilies (Crinoidea). The coral taxa <span class="hlt">observed</span> in this area represent six large orders of cnidarians: antipatharians (black corals), scleractinians (stony corals), zoanthideans (gold corals), alcyonaceans (octocorals), pennatulaceans (sea pens), and anthoathecates (hydrocorals). Most sessile species, independently of their size class or taxonomic affiliation, harbor a wide variety of associated fauna. Brittle stars (Ophiuroidea), squat lobsters (Galatheoidea), shrimp (Caridea), amphipods (Amphipoda), anemones (Actinaria), zanthideans, barnacles (Cirripedia), hydroids (Hydrozoa) and worms (Polychaeta) are the animal groups most commonly found forming these associations. In contrast, soft bottom habitats were dominated by stalked sponges, sea pens, sea cucumbers (Holothuroidea) and brittle stars. Other conspicuous fauna include fish, hermit crabs (Paguridae), urchins (Echinoidea) and octopuses (Cephalopoda). The abundance of habitats generated by the high number of geological and biological features and depth ranges present in the <span class="hlt">deep</span> coral triangle (e.g., ridges, seamounts, island margins, plains, and rock</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.128...14S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.128...14S"><span>Munitions integrity and corrosion features <span class="hlt">observed</span> during the HUMMA <span class="hlt">deep</span>-sea munitions disposal site investigations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, Jeff A. K.; Chock, Taylor</p> <p>2016-06-01</p> <p>An evaluation of the current condition of sea-disposed military munitions <span class="hlt">observed</span> during the 2009 Hawaii Undersea Military Munitions Assessment Project investigation is presented. The 69 km2 study area is located south of Pearl Harbor, Oahu, Hawaii, and is positioned within a former <span class="hlt">deep</span>-sea disposal area designated as Hawaii-05 or HI-05 by the United States Department of Defense. HI-05 is known to contain both conventional and chemical munitions that were sea-disposed between 1920 and 1951. Digital images and video reconnaissance logs collected during six remotely operated vehicle and 16 human-occupied vehicle surveys were used to classify the integrity and state of corrosion of the 1842 discarded military munitions (DMM) objects encountered. Of these, 5% (or 90 individual DMM objects) were found to exhibit a mild-moderate degree of corrosion. The majority (66% or 1222 DMM objects) were <span class="hlt">observed</span> to be significantly corroded, but visually intact on the seafloor. The remaining 29% of DMM encountered were found to be severely corroded and breached, with their contents exposed. Chemical munitions were not identified during the 2009 investigation. In general, identified munitions known to have been constructed with thicker casings were better preserved. Unusual corrosion features were also <span class="hlt">observed</span>, including what are termed here as 'corrosion skirts' that resembled the flow and cementation of corrosion products at and away from the base of many munitions, and 'corrosion pedestal' features resembling a combination of cemented corrosion products and seafloor sediments that were <span class="hlt">observed</span> to be supporting munitions above the surface of the seafloor. The origin of these corrosion features could not be determined due to the lack of physical samples collected. However, a microbial-mediated formation hypothesis is presented, based on visual analysis, which can serve as a testable model for future field programs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050209918&hterms=splash&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsplash','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050209918&hterms=splash&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsplash"><span>Will <span class="hlt">Deep</span> Impact Make a Splash?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sheldon, Robert B.; Hoover, Richard B.</p> <p>2005-01-01</p> <p>Recent cometary <span class="hlt">observations</span> from spacecraft flybys support the hypothesis that short-period comets have been substantially modified by the presence of liquid water. Such a model can resolve many outstanding questions of cometary dynamics, as well as the differences between the flyby <span class="hlt">observations</span> and the dirty snowball paradigm. The model also predicts that the <span class="hlt">Deep</span> Impact mission, slated for a July 4, 2005 collision with Comet Temple-1, will encounter a layered, heterogenous nucleus with subsurface liquid water capped by dense crust. Collision ejecta will include not only vaporized material, but liquid water and large pieces of crust. Since the water will immediately boil, we predict that the water vapor signature of <span class="hlt">Deep</span> Impact may be an order of magnitude larger than that expected from collisional vaporization alone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...605A..25E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...605A..25E"><span><span class="hlt">Deep</span> Chandra <span class="hlt">observations</span> of the stripped galaxy group falling into Abell 2142</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eckert, D.; Gaspari, M.; Owers, M. S.; Roediger, E.; Molendi, S.; Gastaldello, F.; Paltani, S.; Ettori, S.; Venturi, T.; Rossetti, M.; Rudnick, L.</p> <p>2017-09-01</p> <p>In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a <span class="hlt">deep</span> (200 ks) <span class="hlt">observation</span> of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k-2.3), which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D 0.1 - 0.25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880011140','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880011140"><span>The <span class="hlt">Deep</span> Space Network</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1988-01-01</p> <p>The <span class="hlt">Deep</span> Space Network (DSN) is the largest and most sensitive scientific telecommunications and radio navigation network in the world. Its principal responsibilities are to support unmanned interplanetary spacecraft missions and to support radio and radar astronomy <span class="hlt">observations</span> in the exploration of the solar system and the universe. The DSN facilities and capabilities as of January 1988 are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSOD21A..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSOD21A..08B"><span>Autonomous Gliders <span class="hlt">Observed</span> Physical and Biogeochemical Interplay at Submesoscale during <span class="hlt">Deep</span> Convection in the Gulf of Lions (NW Mediterranean)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosse, A.; Testor, P.; Damien, P.; D'Ortenzio, F.; Prieur, L. M.; Estournel, C.; Marsaleix, P.; Mortier, L.</p> <p>2016-02-01</p> <p>Since 2010, sustained <span class="hlt">observations</span> of the circulation and water properties of the NW Mediterranean Sea have been carried out by gliders in the framework of the MOOSE observatory (Mediterranean Ocean Observatory System for the Environment: http://www.moose-network.fr/). They regularly sampled the wintertime Northern Current (NC), the <span class="hlt">deep</span> convection zone as well as the North Balearic Front (NBF) collecting a great amount of physical and biogeochemical measurements.During periods of <span class="hlt">deep</span> convection, the offshore mixed layer can reach great depths (>2300 m) in the Gulf of Lions. Baroclinic fronts then become very intense and reveal a lot of variability at submesoscale in the upper 500 m or so. In terms of process, symmetric instability has been evidenced to occurr during strong wind events by gliders measurements. Complementary analysis performed with the help of a high-resolution regional model (dx,dy=1 km) highlight the prominent role of downfront winds in triggering this instability. Important vertical exchanges of oceanic tracers at the front approximately aligned with isopycnals of magnitude O(100m/day) occur in response to this strong atmospheric forcing. Finally, gliders measurements of Chl-a fluorescence show how this frontal instability seems to stimulate phytoplankton growth in frontal regions during harsh wintertime conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.137..463G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.137..463G"><span><span class="hlt">Deep</span>-sea <span class="hlt">observations</span> at hydrocarbon drilling locations: Contributions from the SERPENT Project after 120 field visits</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gates, Andrew R.; Benfield, Mark C.; Booth, David J.; Fowler, Ashley M.; Skropeta, Danielle; Jones, Daniel O. B.</p> <p>2017-03-01</p> <p>The SERPENT Project has been running for over ten years. In this time scientists from universities and research institutions have made more than 120 visits to oil rigs, drill ships and survey vessels operated by 16 oil companies, in order to work with the industry's Remotely Operated Vehicles (ROV). Visits have taken place in Europe, North and South America, Africa and Australasia at water depths from 100 m to nearly 3000 m. The project has directly produced >40 peer reviewed publications and data from the project's >2600 entry online image and video archive have been used in many others. The aim of this paper is to highlight examples of how valuable data can be obtained through collaboration with hydrocarbon exploration and production companies to use existing industry infrastructure to increase scientific discovery in unexplored areas and augment environmental monitoring of industrial activity. The large number of industry ROVs operating globally increases chance encounters with large, enigmatic marine organisms. SERPENT video <span class="hlt">observations</span> include the deepest known records of species previously considered epipelagic such as scalloped hammerhead (Sphyrna lewini) and southern sunfish (Mola ramsayi) and the first in situ <span class="hlt">observations</span> of pelagic species such as oarfish (Regalecus glesne). Such <span class="hlt">observations</span> enable improvements to distribution records and description of behaviour of poorly understood species. Specimen collection has been used for taxonomic descriptions, functional studies and natural products chemistry research. Anthropogenic effects been assessed at the local scale using in situ <span class="hlt">observations</span> and sample collection at the time of drilling operations and subsequent visits have enabled study of recovery from drilling. Future challenges to be addressed using the SERPENT approach include ensuring unique faunal <span class="hlt">observations</span> by industry ROV operators are reported, further study of recovery from <span class="hlt">deep</span>-water drilling activity and to carry out in situ studies to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661427-deep-chandra-observations-ngc-cluster-plasma-physics-revealed-infalling-early-type-galaxy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661427-deep-chandra-observations-ngc-cluster-plasma-physics-revealed-infalling-early-type-galaxy"><span><span class="hlt">DEEP</span> CHANDRA <span class="hlt">OBSERVATIONS</span> OF NGC 1404: CLUSTER PLASMA PHYSICS REVEALED BY AN INFALLING EARLY-TYPE GALAXY</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul</p> <p></p> <p>The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray <span class="hlt">observations</span> of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc)more » due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra , and the very <span class="hlt">deep</span> (670 ks) exposure. At the leading edge, we <span class="hlt">observe</span> sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also <span class="hlt">observe</span> mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μ G to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28888711','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28888711"><span>Fluorescence characteristics in the <span class="hlt">deep</span> waters of South Gulf of México.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schifter, I; Sánchez-Reyna, G; González-Macías, C; Salazar-Coria, L; González-Lozano, C</p> <p>2017-10-15</p> <p>Vertical profiles of <span class="hlt">deep</span>-water fluorescence determined by the chlorophyll sensor, polycyclic aromatic hydrocarbons, biomarkers, and other miscellaneous parameters measured in the southern Gulf of Mexico are reported. In the course of the survey, unexpected <span class="hlt">deep</span> fluorescences were recorded (>1100m depth) in half of the 40 stations studied, a novel finding in this area of the Gulf. Currently, the <span class="hlt">deep</span>-water fluorescence phenomenon is not completely understood, however we <span class="hlt">observe</span> linear correlation between the fluorescence intensity and chlorophyll-α concentrations and coincidence of higher number of hydrocarbonoclastic bacteria in samples collected precisely in the <span class="hlt">deep</span>-water fluorescence. This information is particularly interesting in relation to the Deepwater Horizon oil spill in 2010, in view that the aftermaths of the spill can be <span class="hlt">observed</span> till today as oil plumes trapped in <span class="hlt">deep</span> water layers that may disturb the natural water ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4510647','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4510647"><span>Ubiquitous healthy diatoms in the <span class="hlt">deep</span> sea confirm <span class="hlt">deep</span> carbon injection by the biological pump</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Agusti, S.; González-Gordillo, J. I.; Vaqué, D.; Estrada, M.; Cerezo, M. I.; Salazar, G.; Gasol, J. M.; Duarte, C. M.</p> <p>2015-01-01</p> <p>The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the <span class="hlt">deep</span> bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the <span class="hlt">deep</span> dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells <span class="hlt">observed</span>, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the <span class="hlt">deep</span> sea and that this is a prevalent process operating across the global oligotrophic ocean. PMID:26158221</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/990539-frequency-morphology-tropical-tropopause-layer-cirrus-from-calipso-observations-isolated-cirrus-different-from-those-connected-deep-convection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/990539-frequency-morphology-tropical-tropopause-layer-cirrus-from-calipso-observations-isolated-cirrus-different-from-those-connected-deep-convection"><span>Frequency and morphology of tropical tropopause layer cirrus from CALIPSO <span class="hlt">observations</span>: Are isolated cirrus different from those connected to <span class="hlt">deep</span> convection?</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Riihimaki, Laura D.; McFarlane, Sally A.</p> <p>2010-09-16</p> <p>Tropical Tropopause Layer cirrus (TTLC) profiles identified from CALIPSO LIDAR measurements are grouped into cloud objects and classified according to whether or not they are connected to <span class="hlt">deep</span> convection. TTLC objects connected to <span class="hlt">deep</span> convection are optically and physically thicker than isolated objects, consistent with what would be expected if connected objects were formed from convective detrainment and isolated objects formed in situ. In the tropics (±20 Latitude), 36% of TTLC profiles are classified as connected to <span class="hlt">deep</span> convection, 43% as isolated, and the remaining 21% are part of lower, thicker cirrus clouds. Regions with higher occurence of <span class="hlt">deep</span> convectionmore » also have higher occurrence of TTLC, and a greater percentage of those TTLC are connected to <span class="hlt">deep</span> convection. Cloud top heights of both isolated and connected clouds are distributed similarly with respect to the height of the cold point tropopause. No difference in thickness or optical depth was found between TTLC above <span class="hlt">deep</span> convection or above clear sky, though both cloud base and top heights are higher over <span class="hlt">deep</span> convection than over clear sky.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29800766','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29800766"><span>Emotional arousal and memory after <span class="hlt">deep</span> encoding.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica</p> <p>2018-05-22</p> <p>Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been <span class="hlt">observed</span>: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and <span class="hlt">deep</span>-encoding on memory across three studies. In Study 1, adult participants completed a writing task (<span class="hlt">deep</span>-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was <span class="hlt">observed</span> for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for <span class="hlt">deep</span> vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that <span class="hlt">deep</span> encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P43B2109H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P43B2109H"><span>a Direct <span class="hlt">Observation</span> of the Asteroid's Structure from <span class="hlt">Deep</span> Interior to Regolith: Two Radars on the Aim Mission</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herique, A.; Ciarletti, V.; Plettemeier, D.; Grygorczuk, J.</p> <p>2016-12-01</p> <p>Our knowledge of the internal structure of asteroids entirely relies on inferences from remote sensing <span class="hlt">observations</span> of the surface and theoretical modeling. Is the body a monolithic piece of rock or a rubble-pile, how high is the porosity? What is the typical size of the constituent blocs? Are these blocs homogeneous or heterogeneous? The body is covered by a regolith whose properties remain largely unknown in term of depth, size distribution and spatial variability. Is it resulting from fine particles re-accretion or from thermal fracturing? After several asteroid orbiting missions, theses crucial and yet basic questions remain open. Direct measurements of asteroid <span class="hlt">deep</span> interior and regolith structure are needed to better understand the asteroid accretion and dynamical evolution and to provide answers that will directly improve our ability to understand the formation and evolution of the Near Earth Asteroids (NEA), that will allow us to model the mechanisms driving NEA deflection and other risk mitigation techniques. Radars operating at distance from a spacecraft are the only instruments capable of achieving this science objective of characterizing the internal structure and heterogeneity from submetric to global scale for the benefit of science as well as for planetary defense or exploration. The AIM mission will have two complementary radars on-board, operating at different frequencies in order to meet the objectives requirements. The <span class="hlt">deep</span> interior structure tomography requires a low-frequency radar (LFR) in order to propagate throughout the complete body and characterize the <span class="hlt">deep</span> interior: this LFR will be a direct heritage of the CONSERT radar designed for the Rosetta mission. Ihe characterization of the first ten meters of the subsurface with a metric resolution to identify layering and to reconnect surface measurements to internal structure will be achieved with a higher frequency radar (HFR). The design of HFR is based on the WISDOM radar developed for the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...832...48S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...832...48S"><span>Ultra-<span class="hlt">deep</span> GEMINI Near-infrared <span class="hlt">Observations</span> of the Bulge Globular Cluster NGC 6624.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Geisler, D.; Mauro, F.; Lanzoni, B.; Origlia, L.; Miocchi, P.; Cohen, R. E.; Villanova, S.; Moni Bidin, C.</p> <p>2016-11-01</p> <p>We used ultra-<span class="hlt">deep</span> J and K s images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a (K s , J - K s ) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K s ˜ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K s ˜ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 (t age = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ˜ 0.45 M⊙, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution. Based on <span class="hlt">observations</span> obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on <span class="hlt">observations</span> gathered with ESO-VISTA telescope (program ID 179.B-2002).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020560','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020560"><span><span class="hlt">Deep</span> earthquakes beneath the Fiji Basin, SW Pacific: Earth's most intense <span class="hlt">deep</span> seismicity in stagnant slabs</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Okal, E.A.; Kirby, S.H.</p> <p>1998-01-01</p> <p>Previous work has suggested that many of the <span class="hlt">deep</span> earthquakes beneath the Fiji Basin occur in slab material that has been detached and foundered to the bottom of the transition zone or has been laid down by trench migration in a similar recumbent position. Since nowhere else in the Earth do so many earthquakes occur in slabs stagnated in the transition zone, these earthquakes merit closer study. Accordingly, we have assembled from historical and modern data a comprehensive catalogue of the relocated hypocenters and focal mechanisms of well-located <span class="hlt">deep</span> events in the geographic area between the bottoms of the main Vanuatu and Tonga Wadati-Benioff zones. Two regions of <span class="hlt">deep</span> seismogenesis are recognized there: (i) 163 <span class="hlt">deep</span> shocks have occurred north of 15??S in the Vityaz Group from 1949 to 1996. These seismological <span class="hlt">observations</span> and the absence of other features characteristic of active subduction suggest that the Vityaz group represents <span class="hlt">deep</span> failure in a detached slab that has foundered to a horizontal orientation near the bottom of the transition zone. (ii) Another group of nearly 50 'outboard' <span class="hlt">deep</span> shocks occur between about 450 and 660 km depth, west of the complexly buckled and offset western edge of the Tonga Wadati-Benioff zone. Their geometry is in the form of two or possibly three small-circle arcs that roughly parallel the inferred motion of Tonga trench migration. Earthquakes in the southernmost of these arcs occur in a recumbent high-seismic-wavespeed slab anomaly that connects both to the main inclined Tonga anomaly to the east and a lower mantle anomaly to the west [Van der Hilst, R., 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, Vol. 374, pp. 154-157.]. Both groups show complexity in their focal mechanisms. The major question raised by these <span class="hlt">observations</span> is the cause of this apparent temporary arrest in the descent of the Tonga slab into the lower mantle. We approach these questions by considering the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004A%26A...417..839L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004A%26A...417..839L"><span>The VIRMOS <span class="hlt">deep</span> imaging survey. I. Overview, survey strategy, and CFH12K <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Fèvre, O.; Mellier, Y.; McCracken, H. J.; Foucaud, S.; Gwyn, S.; Radovich, M.; Dantel-Fort, M.; Bertin, E.; Moreau, C.; Cuillandre, J.-C.; Pierre, M.; Le Brun, V.; Mazure, A.; Tresse, L.</p> <p>2004-04-01</p> <p>This paper describes the CFH12K-VIRMOS survey: a <span class="hlt">deep</span> BVRI imaging survey in four fields totalling more than 17 deg2, conducted with the 40×30 arcmin2 field CFH-12K camera. The survey is intended to be a multi-purpose survey used for a variety of science goals, including surveys of very high redshift galaxies and weak lensing studies. Four high galactic latitude fields, each 2×2 deg2, have been selected along the celestial equator: 0226-04, 1003+01, 1400+05, and 2217+00. The 16 deg2 of the ``wide'' survey are covered with exposure times of 2 hr, 1.5 hr, 1 hr, 1 hr, respectively while the 1.3×1 deg2 area of the ``<span class="hlt">deep</span>'' survey at the center of the 0226-04 field is covered with exposure times of 7 h, 4.5 h, 3 h, 3 h, in BVRI respectively. An additional area ˜2 deg2 has been imaged in the 0226-04 field corresponding to the area surveyed by the XMM-LSS program \\citep{pierre03}. The data is pipeline processed at the Terapix facility at the Institut d'Astrophysique de Paris to produce large mosaic images. The catalogs produced contain the positions, shapes, total and aperture magnitudes for 2.175 million objects measured in the four areas. The limiting magnitudes, measured as a 5σ measurement in a 3 arcsec diameter aperture is IAB=24.8 in the ``Wide'' areas, and IAB=25.3 in the <span class="hlt">deep</span> area. Careful quality control has been applied on the data to ensure internal consistency and assess the photometric and astrometric accuracy as described in a joint paper \\citep{mccracken03}. These catalogs are used to select targets for the VIRMOS-VLT <span class="hlt">Deep</span> Survey, a large spectroscopic survey of the distant universe (Le Fèvre et al. 2003). First results from the CFH12K-VIRMOS survey have been published on weak lensing (e.g. van Waerbeke & Mellier 2003). Catalogs and images are available through the VIRMOS database environment under Oracle (http://www.oamp.fr/cencos). They are open for general use since July 1st, 2003. Appendix A is only available in electronic form at http://www.edpsciences.org</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971052','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971052"><span>Challenging Oil Bioremediation at <span class="hlt">Deep</span>-Sea Hydrostatic Pressure</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Scoma, Alberto; Yakimov, Michail M.; Boon, Nico</p> <p>2016-01-01</p> <p>The Deepwater Horizon accident has brought oil contamination of <span class="hlt">deep</span>-sea environments to worldwide attention. The risk for new <span class="hlt">deep</span>-sea spills is not expected to decrease in the future, as political pressure mounts to access <span class="hlt">deep</span>-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat <span class="hlt">deep</span>-sea spills. Many questions about the fate of petroleum-hydrocarbons within <span class="hlt">deep</span>-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation <span class="hlt">observed</span> for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at <span class="hlt">deep</span>-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for <span class="hlt">deep</span>-sea oil bioremediation. PMID:27536290</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApJ...750..162K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApJ...750..162K"><span>X-Ray Investigation of the Diffuse Emission around Plausible γ-Ray Emitting Pulsar Wind Nebulae in Kookaburra Region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki</p> <p>2012-05-01</p> <p>We report on the results from Suzaku X-ray <span class="hlt">observations</span> of the radio complex region called Kookaburra, which includes two adjacent TeV γ-ray sources <span class="hlt">HESS</span> J1418-609 and <span class="hlt">HESS</span> J1420-607. The Suzaku <span class="hlt">observation</span> revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of σX = 1farcm66 and σX = 1farcm49, respectively. The peaks of the diffuse X-ray emission are located within the γ-ray excess maps obtained by <span class="hlt">H.E.S.S</span>. and the offsets from the γ-ray peaks are 2farcm8 for PSR J1420-6048 and 4farcm5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with Γ = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of <span class="hlt">HESS</span> J1420-607 and <span class="hlt">HESS</span> J1418-609 can be estimated as 3 μG and 2.5 μG, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJ...812...76M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJ...812...76M"><span>CSO and CARMA <span class="hlt">Observations</span> of L1157. I. A <span class="hlt">Deep</span> Search for Hydroxylamine (NH2OH)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGuire, Brett A.; Carroll, P. Brandon; Dollhopf, Niklaus M.; Crockett, Nathan R.; Corby, Joanna F.; Loomis, Ryan A.; Burkhardt, Andrew M.; Shingledecker, Christopher; Blake, Geoffrey A.; Remijan, Anthony J.</p> <p>2015-10-01</p> <p>A <span class="hlt">deep</span> search for the potential glycine precursor hydroxylamine (NH2OH) using the Caltech Submillimeter Observatory (CSO) at λ = 1.3 mm and the Combined Array for Research in Millimeter-wave Astronomy at λ = 3 mm is presented toward the molecular outflow L1157, targeting the B1 and B2 shocked regions. We report non-detections of NH2OH in both sources. We perform a non-LTE analysis of CH3OH <span class="hlt">observed</span> in our CSO spectra to derive the kinetic temperatures and densities in the shocked regions. Using these parameters, we derive upper limit column densities of NH2OH of ≤1.4 × 1013 cm-2 and ≤1.5 × 1013 cm-2 toward the B1 and B2 shocks, respectively, and upper limit relative abundances of {N}{{NH}2{OH}}/{N}{{{H}}2}≤slant 1.4× {10}-8 and ≤1.5 × 10-8, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23874425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23874425"><span><span class="hlt">Deep</span>-sea bioluminescence blooms after dense water formation at the ocean surface.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan</p> <p>2013-01-01</p> <p>The <span class="hlt">deep</span> ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by <span class="hlt">deep</span>-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the <span class="hlt">deep</span> NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of <span class="hlt">deep</span>-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of <span class="hlt">deep</span> waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the <span class="hlt">deep</span> water of the study area and conveys fresh organic matter that fuels the <span class="hlt">deep</span> ecosystems. Luminous bacteria most likely are the main contributors to the <span class="hlt">observed</span> <span class="hlt">deep</span>-sea bioluminescence blooms. Our <span class="hlt">observations</span> demonstrate a consistent and rapid connection between <span class="hlt">deep</span> open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of <span class="hlt">deep</span>-sea ecosystem shifts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3707865','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3707865"><span><span class="hlt">Deep</span>-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L.; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C.; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q.; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J.; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Motz, Holger; Neff, Max; Nezri, Emma nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E.; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G.; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J. M.; Stolarczyk, Thierry; Taiuti, Mauro G. F.; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan</p> <p>2013-01-01</p> <p>The <span class="hlt">deep</span> ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by <span class="hlt">deep</span>-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the <span class="hlt">deep</span> NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of <span class="hlt">deep</span>-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of <span class="hlt">deep</span> waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the <span class="hlt">deep</span> water of the study area and conveys fresh organic matter that fuels the <span class="hlt">deep</span> ecosystems. Luminous bacteria most likely are the main contributors to the <span class="hlt">observed</span> <span class="hlt">deep</span>-sea bioluminescence blooms. Our <span class="hlt">observations</span> demonstrate a consistent and rapid connection between <span class="hlt">deep</span> open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of <span class="hlt">deep</span>-sea ecosystem shifts. PMID:23874425</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16663523','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16663523"><span>Xylem development in prunus flower buds and the relationship to <span class="hlt">deep</span> supercooling.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ashworth, E N</p> <p>1984-04-01</p> <p>Xylem development in eight Prunus species was examined and the relationship to <span class="hlt">deep</span> supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii <span class="hlt">deep</span> supercooled. Xylem vessel elements were not <span class="hlt">observed</span> within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were <span class="hlt">observed</span>. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to <span class="hlt">deep</span> supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which <span class="hlt">deep</span> supercool.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5095284','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5095284"><span>Irminger Sea <span class="hlt">deep</span> convection injects oxygen and anthropogenic carbon to the ocean interior</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fröb, F.; Olsen, A.; Våge, K.; Moore, G. W. K.; Yashayaev, I.; Jeansson, E.; Rajasakaren, B.</p> <p>2016-01-01</p> <p><span class="hlt">Deep</span> convection in the subpolar North Atlantic ventilates the ocean for atmospheric gases through the formation of <span class="hlt">deep</span> water masses. Variability in the intensity of <span class="hlt">deep</span> convection is believed to have caused large variations in North Atlantic anthropogenic carbon storage over the past decades, but <span class="hlt">observations</span> of the properties during active convection are missing. Here we document the origin, extent and chemical properties of the deepest winter mixed layers directly <span class="hlt">observed</span> in the Irminger Sea. As a result of the <span class="hlt">deep</span> convection in winter 2014–2015, driven by large oceanic heat loss, mid-depth oxygen concentrations were replenished and anthropogenic carbon storage rates almost tripled compared with Irminger Sea hydrographic section data in 1997 and 2003. Our <span class="hlt">observations</span> provide unequivocal evidence that ocean ventilation and anthropogenic carbon uptake take place in the Irminger Sea and that their efficiency can be directly linked to atmospheric forcing. PMID:27786263</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...591A..68C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...591A..68C"><span>A young supernova remnant illuminating nearby molecular clouds with cosmic rays</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Y.; Pühlhofer, G.; Santangelo, A.</p> <p>2016-06-01</p> <p>The supernova remnant (SNR) <span class="hlt">HESS</span> J1731-347 displays strong nonthermal TeV γ-ray and X-ray emission, thus the object is presently accelerating particles to very high energies. A distinctive feature of this young SNR is the nearby (~30 pc in projection) extended source <span class="hlt">HESS</span> J1729-345, which is currently unidentified but is in spatial projection coinciding with known molecular clouds (MC). We model the SNR evolution to explore whether the TeV emission from <span class="hlt">HESS</span> J1729-345 can be explained as emission from runaway hadronic cosmic rays (CRs) that are illuminating these MCs. The <span class="hlt">observational</span> data of <span class="hlt">HESS</span> J1729-345 and <span class="hlt">HESS</span> J1731-347 can be reproduced using core-collapse SN models for <span class="hlt">HESS</span> J1731-347. Starting with different progenitor stars and their presupernova environment, we model potential SNR evolution histories along with the CR acceleration in the SNR and the diffusion of the CRs. A simplified three-dimensional structure of the MCs is introduced based on data of that region, adopting a distance of 3.2 kpc to the source. A Monte Carlo based diffusion model for the escaping CRs is developed to deal with the inhomogeneous environment. The fast SNR forward shock speed, as implied from the X-ray data, can easily be explained when employing scenarios with progenitor star masses between 20 M⊙ and 25 M⊙, where the SNR shock is still expanding inside the main-sequence (MS) bubble at present time. The TeV spectrum of <span class="hlt">HESS</span> J1729-345 is satisfactorily fitted by the emission from the highest energy CRs that have escaped the SNR, using a standard Galactic CR diffusion coefficient in the interclump medium. The TeV image of <span class="hlt">HESS</span> J1729-345 can be explained with a reasonable three-dimensional structure of MCs. The TeV emission from the SNR itself is dominated by leptonic emission in this model. We also explore scenarios where the shock is starting to encounter the dense MS progenitor wind bubble shell. The escaping hadronic CR hypothesis for the γ-ray emission of <span class="hlt">HESS</span> J1729</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988Natur.331..518G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988Natur.331..518G"><span>A <span class="hlt">deep</span>-sea sediment transport storm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gross, Thomas F.; Williams, A. J.; Newell, A. R. M.</p> <p>1988-02-01</p> <p>Photographs taken of the sea bottom since the 1960s suggest that sediments at great depth may be actively resuspended and redistributed1. Further, it has been suspected that active resus-pension/transport may be required to maintain elevated concentrations of particles in <span class="hlt">deep</span>-sea nepheloid layers. But currents with sufficient energy to erode the bottom, and to maintain the particles in suspension, have not been <span class="hlt">observed</span> concurrently with large concentrations of particles in the <span class="hlt">deep</span> nepheloid layer2-4. The high-energy benthic boundary-layer experiment (HEBBLE) was designed to test the hypothesis that bed modifications can result from local erosion and deposition as modelled by simple one-dimensional local forcing mechanics5. We <span class="hlt">observed</span> several 'storms' of high kinetic energy and near-bed flow associated with large concentrations of suspended sediment during the year-long deployments of moored instruments at the HEBBLE study site. These <span class="hlt">observations</span>, at 4,880 m off the Nova Scotian Rise in the north-west Atlantic, indicate that large episodic events may suspend bottom sediments in areas well removed from coastal and shelf sources.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JIEIA..99..341K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JIEIA..99..341K"><span>Shear Strengthening of RC <span class="hlt">Deep</span> Beam Using Externally Bonded GFRP Fabrics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumari, A.; Patel, S. S.; Nayak, A. N.</p> <p>2018-06-01</p> <p>This work presents the experimental investigation of RC <span class="hlt">deep</span> beams wrapped with externally bonded Glass Fibre Reinforced Polymer (GFRP) fabrics in order to study the Load versus deflection behavior, cracking pattern, failure modes and ultimate shear strength. A total number of five <span class="hlt">deep</span> beams have been casted, which is designed with conventional steel reinforcement as per IS: 456 (Indian standard plain and reinforced concrete—code for practice, Bureau of Indian Standards, New Delhi, 2000). The spans to depth ratio for all RC <span class="hlt">deep</span> beams have been kept less than 2 as per the above specification. Out of five RC <span class="hlt">deep</span> beams, one without retrofitting serves as a reference beam and the rest four have been wrapped with GFRP fabrics in multiple layers and tested with two point loading condition. The first cracking load, ultimate load and the shear contribution of GFRP to the <span class="hlt">deep</span> beams have been <span class="hlt">observed</span>. A critical discussion is made with respect to the enhancement of the strength, behaviour and performance of retrofitted <span class="hlt">deep</span> beams in comparison to the <span class="hlt">deep</span> beam without GFRP in order to explore the potential use of GFRP for strengthening the RC <span class="hlt">deep</span> beams. Test results have demonstrated that the <span class="hlt">deep</span> beams retrofitted with GFRP shows a slower development of the diagonal cracks and improves shear carrying capacity of the RC <span class="hlt">deep</span> beam. A comparative study of the experimental results with the theoretical ones predicted by various researchers available in the literatures has also been presented. It is <span class="hlt">observed</span> that the ultimate load of the beams retrofitted with GFRP fabrics increases with increase of number of GFRP layers up to a specific number of layers, i.e. 3 layers, beyond which it decreases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JIEIA.tmp...10K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JIEIA.tmp...10K"><span>Shear Strengthening of RC <span class="hlt">Deep</span> Beam Using Externally Bonded GFRP Fabrics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumari, A.; Patel, S. S.; Nayak, A. N.</p> <p>2018-02-01</p> <p>This work presents the experimental investigation of RC <span class="hlt">deep</span> beams wrapped with externally bonded Glass Fibre Reinforced Polymer (GFRP) fabrics in order to study the Load versus deflection behavior, cracking pattern, failure modes and ultimate shear strength. A total number of five <span class="hlt">deep</span> beams have been casted, which is designed with conventional steel reinforcement as per IS: 456 (Indian standard plain and reinforced concrete—code for practice, Bureau of Indian Standards, New Delhi, 2000). The spans to depth ratio for all RC <span class="hlt">deep</span> beams have been kept less than 2 as per the above specification. Out of five RC <span class="hlt">deep</span> beams, one without retrofitting serves as a reference beam and the rest four have been wrapped with GFRP fabrics in multiple layers and tested with two point loading condition. The first cracking load, ultimate load and the shear contribution of GFRP to the <span class="hlt">deep</span> beams have been <span class="hlt">observed</span>. A critical discussion is made with respect to the enhancement of the strength, behaviour and performance of retrofitted <span class="hlt">deep</span> beams in comparison to the <span class="hlt">deep</span> beam without GFRP in order to explore the potential use of GFRP for strengthening the RC <span class="hlt">deep</span> beams. Test results have demonstrated that the <span class="hlt">deep</span> beams retrofitted with GFRP shows a slower development of the diagonal cracks and improves shear carrying capacity of the RC <span class="hlt">deep</span> beam. A comparative study of the experimental results with the theoretical ones predicted by various researchers available in the literatures has also been presented. It is <span class="hlt">observed</span> that the ultimate load of the beams retrofitted with GFRP fabrics increases with increase of number of GFRP layers up to a specific number of layers, i.e. 3 layers, beyond which it decreases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1357256-hess-nbsp-j1943+213-candidate-extreme-bl-lacertae-object','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1357256-hess-nbsp-j1943+213-candidate-extreme-bl-lacertae-object"><span>HESS J1943+213: A candidate extreme BL Lacertae object</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Abramowski, A.; Acero, F.; Aharonian, F.; ...</p> <p>2011-03-30</p> <p>In this paper, we report on a newly detected point-like source, <span class="hlt">HESS</span> J1943+213. This source coincides with an unidentified hard X-ray source IGR J19443+2117, which was proposed to have radio and infrared counterparts. Here, we combine new <span class="hlt">H.E.S.S</span>., Fermi/LAT and Nançay Radio Telescope <span class="hlt">observations</span> with pre-existing non-simultaneous multi-wavelength <span class="hlt">observations</span> of IGR J19443+2117 and discuss the likely source associations as well as the interpretation as an active galactic nucleus, a gamma-ray binary or a pulsar wind nebula.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663094-tev-gamma-ray-observations-galactic-center-ridge-veritas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663094-tev-gamma-ray-observations-galactic-center-ridge-veritas"><span>TEV GAMMA-RAY <span class="hlt">OBSERVATIONS</span> OF THE GALACTIC CENTER RIDGE BY VERITAS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Archer, A.; Buckley, J. H.; Bugaev, V.</p> <p>2016-04-20</p> <p>The Galactic Center ridge has been <span class="hlt">observed</span> extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray <span class="hlt">observations</span> with the <span class="hlt">H.E.S.S</span>. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on <span class="hlt">observations</span> of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these <span class="hlt">observations</span> we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OSJ...tmp...10C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OSJ...tmp...10C"><span>An OSSE Study for <span class="hlt">Deep</span> Argo Array using the GFDL Ensemble Coupled Data Assimilation System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong</p> <p>2018-03-01</p> <p>An <span class="hlt">observing</span> system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of <span class="hlt">deep</span> ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo <span class="hlt">observational</span> array and an artificial extension to full depth, "<span class="hlt">observations</span>" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing <span class="hlt">deep</span> ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the <span class="hlt">deep</span> Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the <span class="hlt">deep</span> ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the <span class="hlt">deep</span> Argo profiles with medium spatial and temporal resolution may explain why the <span class="hlt">deep</span> Argo profiles did not improve the <span class="hlt">deep</span> ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the <span class="hlt">deep</span> Argo array are necessary in order to more thoroughly understand the impact of the <span class="hlt">deep</span> Argo array on the assimilation system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JSMME...1..796B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JSMME...1..796B"><span>Inverse Analysis to Formability Design in a <span class="hlt">Deep</span> Drawing Process</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buranathiti, Thaweepat; Cao, Jian</p> <p></p> <p><span class="hlt">Deep</span> drawing process is an important process adding values to flat sheet metals in many industries. An important concern in the design of a <span class="hlt">deep</span> drawing process generally is formability. This paper aims to present the connection between formability and inverse analysis (IA), which is a systematical means for determining an optimal blank configuration for a <span class="hlt">deep</span> drawing process. In this paper, IA is presented and explored by using a commercial finite element software package. A number of numerical studies on the effect of blank configurations to the quality of a part produced by a <span class="hlt">deep</span> drawing process were conducted and analyzed. The quality of the drawing processes is numerically analyzed by using an explicit incremental nonlinear finite element code. The minimum distance between elemental principal strains and the strain-based forming limit curve (FLC) is defined as tearing margin to be the key performance index (KPI) implying the quality of the part. The initial blank configuration has shown that it plays a highly important role in the quality of the product via the <span class="hlt">deep</span> drawing process. In addition, it is <span class="hlt">observed</span> that if a blank configuration is not greatly deviated from the one obtained from IA, the blank can still result a good product. The strain history around the bottom fillet of the part is also <span class="hlt">observed</span>. The paper concludes that IA is an important part of the design methodology for <span class="hlt">deep</span> drawing processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23022643','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23022643"><span>Which clinical variable influences health-related quality of life the most after spontaneous subarachnoid hemorrhage? Hunt and <span class="hlt">Hess</span> scale, Fisher score, World Federation of Neurosurgeons score, Brussels coma score, and Glasgow coma score compared.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kapapa, Thomas; Tjahjadi, Martin; König, Ralph; Wirtz, Christian Rainer; Woischneck, Dieter</p> <p>2013-12-01</p> <p>To determine the strength of the correlation between the Hunt and <span class="hlt">Hess</span> scale, Fisher score, Brussels coma score, World Federation of Neurosurgeons score, and Glasgow coma score and health-related quality of life. Evaluable questionnaires from 236 patients (5.6 years [± standard deviation, 2.854 years] on average after hemorrhage) were included in the analysis. Quality of life was documented using the MOS-36 item short form health survey. Because of the ordinal nature of the variables, Kendall tau was used for calculation. Significance was established as P ≤ 0.05. Weak and very weak correlations were found in general (r ≤ 0.28). The strongest correlations were found between the Glasgow coma score and quality of life (r = 0.236, P = 0.0001). In particular, the "best verbal response" achieved the strongest correlations in the comparison, at r = 0.28/P = 0.0001. The Fisher score showed very weak correlations (r = -0.148/P = 0.012). The Brussels coma score (r = -0.216/P = 0.0001), Hunt and <span class="hlt">Hess</span> scale (r = -0.197/P = 0.0001), and the World Federation of Neurosurgeons score (r = -0.185/P = 0.0001) revealed stronger correlations, especially in terms of the physical aspects of quality of life. The Glasgow coma scale revealed the strongest, and the Fisher score showed the weakest correlations. Thus the Fisher score, as an indicator of the severity of a hemorrhage, has little significance in terms of health-related quality of life. Copyright © 2013 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22370355-faint-submillimeter-galaxies-revealed-multifield-deep-alma-observations-number-counts-spatial-clustering-dark-submillimeter-line-emitter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22370355-faint-submillimeter-galaxies-revealed-multifield-deep-alma-observations-number-counts-spatial-clustering-dark-submillimeter-line-emitter"><span>Faint submillimeter galaxies revealed by multifield <span class="hlt">deep</span> ALMA <span class="hlt">observations</span>: number counts, spatial clustering, and a dark submillimeter line emitter</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ono, Yoshiaki; Ouchi, Masami; Momose, Rieko</p> <p>2014-11-01</p> <p>We present the statistics of faint submillimeter/millimeter galaxies (SMGs) and serendipitous detections of a submillimeter/millimeter line emitter (SLE) with no multi-wavelength continuum counterpart revealed by the <span class="hlt">deep</span> ALMA <span class="hlt">observations</span>. We identify faint SMGs with flux densities of 0.1-1.0 mJy in the <span class="hlt">deep</span> Band-6 and Band-7 maps of 10 independent fields that reduce cosmic variance effects. The differential number counts at 1.2 mm are found to increase with decreasing flux density down to 0.1 mJy. Our number counts indicate that the faint (0.1-1.0 mJy, or SFR{sub IR} ∼ 30-300 M {sub ☉} yr{sup –1}) SMGs contribute nearly a half of themore » extragalactic background light (EBL), while the remaining half of the EBL is mostly contributed by very faint sources with flux densities of <0.1 mJy (SFR{sub IR} ≲ 30 M {sub ☉} yr{sup –1}). We conduct counts-in-cells analysis with multifield ALMA data for the faint SMGs, and obtain a coarse estimate of galaxy bias, b {sub g} < 4. The galaxy bias suggests that the dark halo masses of the faint SMGs are ≲ 7 × 10{sup 12} M {sub ☉}, which is smaller than those of bright (>1 mJy) SMGs, but consistent with abundant high-z star-forming populations, such as sBzKs, LBGs, and LAEs. Finally, we report the serendipitous detection of SLE-1, which has no continuum counterparts in our 1.2 mm-band or multi-wavelength images, including ultra <span class="hlt">deep</span> HST/WFC3 and Spitzer data. The SLE has a significant line at 249.9 GHz with a signal-to-noise ratio of 7.1. If the SLE is not a spurious source made by the unknown systematic noise of ALMA, the strong upper limits of our multi-wavelength data suggest that the SLE would be a faint galaxy at z ≳ 6.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6843788-computed-tomography-deep-fat-masses-multiple-symmetrical-lipomatosis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6843788-computed-tomography-deep-fat-masses-multiple-symmetrical-lipomatosis"><span>Computed tomography of <span class="hlt">deep</span> fat masses in multiple symmetrical lipomatosis</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Enzi, G.; Biondetti, P.R.; Fiore, D.</p> <p>1982-07-01</p> <p><span class="hlt">Deep</span> fat masses were evaluated by computed tomography (CT) in 15 patients with multiple symmetrical lipomatosis. In 4 patients, peritracheal accumulations of fat were <span class="hlt">observed</span>. In 3 of them, tracheal compression by lipomatous tissue was demonstrated: 2 were asymptomatic and the third severe respiratory insufficiency secondary to blockage of the air was by the vocal cords as the result of recurrent nerve palsy. In 6 patients, lipomatous tissue occupied the potential space between the spina scapulae and the trapezius, supraspinatus, and infraspinatus muscles. In 2, calcification of lipomatous masses was <span class="hlt">observed</span>. There was no relationship between extension of subcutaneous fatmore » and accumulation at <span class="hlt">deep</span> sites. CT facilitates early detection of peritracheal lipomatous tissue and is helpful in follow-up when <span class="hlt">deep</span> fat accumulation is responsible for space-occupying lesions requiring surgery.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015FML.....840003Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015FML.....840003Y"><span>Material and physical model for evaluation of <span class="hlt">deep</span> brain activity contribution to EEG recordings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen</p> <p>2015-12-01</p> <p><span class="hlt">Deep</span> brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that <span class="hlt">deep</span> brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether <span class="hlt">deep</span> brain activity could be <span class="hlt">observed</span> from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of <span class="hlt">deep</span> brain structures, is clearly <span class="hlt">observed</span> from surface potential recordings. Therefore, it is highly possible that <span class="hlt">deep</span> brain activity could be <span class="hlt">observed</span> from EEG recordings and <span class="hlt">deep</span> brain activity could be measured using the noninvasive scalp EEG technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011A%26A...531A..38A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011A%26A...531A..38A"><span>Polarization and photometric <span class="hlt">observations</span> of the gamma-ray blazar PG 1553+113</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andruchow, I.; Combi, J. A.; Muñoz-Arjonilla, A. J.; Romero, G. E.; Cellone, S. A.; Martí, J.</p> <p>2011-07-01</p> <p>We present the results of an <span class="hlt">observational</span> photo-polarimetry campaign of the blazar PG 1553+113 at optical wavelengths. The blazar was recently detected at very high energies (>100 GeV) by the <span class="hlt">HESS</span> and MAGIC γ-ray Cherenkov telescopes. Our high-temporal resolution data show significant variations in the linear polarization percentage and position angle at inter-night time-scales, while at shorter (intra-night) time-scales both parameters varied less significantly, if at all. Changes in the polarization angle seem to be common in γ-ray emitting blazars. Simultaneous differential photometry (through the B and R bands) shows no significant variability in the total optical flux. We provide B and R magnitudes, along with a finding chart, for a set of field stars suitable for differential photometry. Based on <span class="hlt">observations</span> collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5925774','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5925774"><span><span class="hlt">Deep</span>Synergy: predicting anti-cancer drug synergy with <span class="hlt">Deep</span> Learning</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Preuer, Kristina; Lewis, Richard P I; Hochreiter, Sepp; Bender, Andreas; Bulusu, Krishna C; Klambauer, Günter</p> <p>2018-01-01</p> <p>Abstract Motivation While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, <span class="hlt">Deep</span> Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, <span class="hlt">Deep</span> Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed <span class="hlt">Deep</span>Synergy. <span class="hlt">Deep</span>Synergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies. Results <span class="hlt">Deep</span>Synergy was compared to other machine learning methods such as Gradient Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest publicly available synergy dataset with respect to mean squared error. <span class="hlt">Deep</span>Synergy significantly outperformed the other methods with an improvement of 7.2% over the second best method at the prediction of novel drug combinations within the space of explored drugs and cell lines. At this task, the mean Pearson correlation coefficient between the measured and the predicted values of <span class="hlt">Deep</span>Synergy was 0.73. Applying <span class="hlt">Deep</span>Synergy for classification of these novel drug combinations resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found that all compared methods exhibit low predictive performance when extrapolating to unexplored drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset. We envision that <span class="hlt">Deep</span>Synergy could be a valuable tool for selecting novel synergistic drug combinations. Availability and implementation <span class="hlt">Deep</span>Synergy is available via www.bioinf.jku.at/software/<span class="hlt">Deep</span>Synergy. Contact klambauer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29605871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29605871"><span>Movement of pulsed resource subsidies from kelp forests to <span class="hlt">deep</span> fjords.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Filbee-Dexter, Karen; Wernberg, Thomas; Norderhaug, Kjell Magnus; Ramirez-Llodra, Eva; Pedersen, Morten Foldager</p> <p>2018-05-01</p> <p>Resource subsidies in the form of allochthonous primary production drive secondary production in many ecosystems, often sustaining diversity and overall productivity. Despite their importance in structuring marine communities, there is little understanding of how subsidies move through juxtaposed habitats and into recipient communities. We investigated the transport of detritus from kelp forests to a <span class="hlt">deep</span> Arctic fjord (northern Norway). We quantified the seasonal abundance and size structure of kelp detritus in shallow subtidal (0‒12 m), <span class="hlt">deep</span> subtidal (12‒85 m), and <span class="hlt">deep</span> fjord (400‒450 m) habitats using a combination of camera surveys, dive <span class="hlt">observations</span>, and detritus collections over 1 year. Detritus formed dense accumulations in habitats adjacent to kelp forests, and the timing of depositions coincided with the discrete loss of whole kelp blades during spring. We tracked these blades through the <span class="hlt">deep</span> subtidal and into the <span class="hlt">deep</span> fjord, and showed they act as a short-term resource pulse transported over several weeks. In <span class="hlt">deep</span> subtidal regions, detritus consisted mostly of fragments and its depth distribution was similar across seasons (50% of total <span class="hlt">observations</span>). Tagged pieces of detritus moved slowly out of kelp forests (displaced 4‒50 m (mean 11.8 m ± 8.5 SD) in 11‒17 days, based on minimum estimates from recovered pieces), and most (75%) variability in the rate of export was related to wave exposure and substrate. Tight resource coupling between kelp forests and <span class="hlt">deep</span> fjords indicate that changes in kelp abundance would propagate through to <span class="hlt">deep</span> fjord ecosystems, with likely consequences for the ecosystem functioning and services they provide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1066782','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1066782"><span>Xylem Development in Prunus Flower Buds and the Relationship to <span class="hlt">Deep</span> Supercooling</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ashworth, Edward N.</p> <p>1984-01-01</p> <p>Xylem development in eight Prunus species was examined and the relationship to <span class="hlt">deep</span> supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii <span class="hlt">deep</span> supercooled. Xylem vessel elements were not <span class="hlt">observed</span> within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were <span class="hlt">observed</span>. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to <span class="hlt">deep</span> supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which <span class="hlt">deep</span> supercool. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:16663523</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhRvB..79l5436H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhRvB..79l5436H"><span>Mechanisms of ultrafast laser-induced <span class="hlt">deep</span>-subwavelength gratings on graphite and diamond</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Ningsheg; Xu, Zhizhan</p> <p>2009-03-01</p> <p><span class="hlt">Deep</span>-subwavelength gratings with periodicities of 170, 120, and 70 nm can be <span class="hlt">observed</span> on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also <span class="hlt">observed</span> on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the <span class="hlt">deep</span>-subwavelength gratings. The numerical simulations of the graphite <span class="hlt">deep</span>-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in <span class="hlt">deep</span>-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the <span class="hlt">deep</span>-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed <span class="hlt">deep</span>-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27845678','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27845678"><span><span class="hlt">Deep</span> Logic Networks: Inserting and Extracting Knowledge From <span class="hlt">Deep</span> Belief Networks.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tran, Son N; d'Avila Garcez, Artur S</p> <p>2018-02-01</p> <p>Developments in <span class="hlt">deep</span> learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a <span class="hlt">deep</span> network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into <span class="hlt">deep</span> networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained <span class="hlt">deep</span> networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in <span class="hlt">deep</span> networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of <span class="hlt">deep</span> belief networks. Furthermore, the proposed symbolic characterization of <span class="hlt">deep</span> networks provides a novel method for the insertion of prior knowledge and training of <span class="hlt">deep</span> networks. With the use of this method, a <span class="hlt">deep</span> neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900046752&hterms=f-22&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Df-22','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900046752&hterms=f-22&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Df-22"><span>VLA <span class="hlt">observations</span> of unidentified Leiden-Berkeley <span class="hlt">Deep</span>-Survey sources - Luminosity and redshift dependence of spectral properties</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kapahi, Vijay K.; Kulkarni, Vasant K.</p> <p>1990-01-01</p> <p>VLA <span class="hlt">observations</span> of a complete subset of the Leiden-Berkeley <span class="hlt">Deep</span> Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at high redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.7168S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.7168S"><span><span class="hlt">Deep</span> focus earthquakes in the laboratory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schubnel, Alexandre; Brunet, Fabrice; Hilairet, Nadège; Gasc, Julien; Wang, Yanbin; Green, Harry W., II</p> <p>2014-05-01</p> <p>While the existence of <span class="hlt">deep</span> earthquakes have been known since the 1920's, the essential mechanical process responsible for them is still poorly understood and remained one of the outstanding unsolved problems of geophysics and rock mechanics. Indeed, <span class="hlt">deep</span> focus earthquake occur in an environment fundamentally different from that of shallow (<100 km) earthquakes. As pressure and temperature increase with depth however, intra-crystalline plasticity starts to dominate the deformation regime so that rocks yield by plastic flow rather than by brittle fracturing. Olivine phase transitions have provided an attractive alternative mechanism for <span class="hlt">deep</span> focus earthquakes. Indeed, the Earth mantle transition zone (410-700km) is the locus of the two successive polymorphic transitions of olivine. Such scenario, however, runs into the conceptual barrier of initiating failure in a pressure (P) and temperature (T) regime where deviatoric stress relaxation is expected to be achieved through plastic flow. Here, we performed laboratory deformation experiments on Germanium olivine (Mg2GeO4) under differential stress at high pressure (P=2-5GPa) and within a narrow temperature range (T=1000-1250K). We find that fractures nucleate at the onset of the olivine to spinel transition. These fractures propagate dynamically (i.e. at a non-negligible fraction of the shear wave velocity) so that intense acoustic emissions are generated. Similar to <span class="hlt">deep</span>-focus earthquakes, these acoustic emissions arise from pure shear sources, and obey the Gutenberg-Richter law without following Omori's law. Microstructural <span class="hlt">observations</span> prove that dynamic weakening likely involves superplasticity of the nanocrystalline spinel reaction product at seismic strain rates. Although in our experiments the absolute stress value remains high compared to stresses expected within the cold core of subducted slabs, the <span class="hlt">observed</span> stress drops are broadly consistent with those calculated for <span class="hlt">deep</span> earthquakes. Constant differential</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22365557-gismo-two-millimeter-deep-field-goods','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22365557-gismo-two-millimeter-deep-field-goods"><span>The GISMO two-millimeter <span class="hlt">deep</span> field in GOODS-N</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Staguhn, Johannes G.; Kovács, Attila; Arendt, Richard G.</p> <p>2014-07-20</p> <p>We present <span class="hlt">deep</span> continuum <span class="hlt">observations</span> using the GISMO camera at a wavelength of 2 mm centered on the Hubble <span class="hlt">Deep</span> Field in the GOODS-N field. These are the first <span class="hlt">deep</span> field <span class="hlt">observations</span> ever obtained at this wavelength. The 1σ sensitivity in the innermost ∼4' of the 7' diameter map is ∼135 μJy beam{sup –1}, a factor of three higher in flux/beam sensitivity than the deepest available SCUBA 850 μm <span class="hlt">observations</span>, and almost a factor of four higher in flux/beam sensitivity than the combined MAMBO/AzTEC 1.2 mm <span class="hlt">observations</span> of this region. Our source extraction algorithm identifies 12 sources directly, and anothermore » 3 through correlation with known sources at 1.2 mm and 850 μm. Five of the directly detected GISMO sources have counterparts in the MAMBO/AzTEC catalog, and four of those also have SCUBA counterparts. HDF850.1, one of the first blank-field detected submillimeter galaxies, is now detected at 2 mm. The median redshift of all sources with counterparts of known redshifts is z-tilde =2.91±0.94. Statistically, the detections are most likely real for five of the seven 2 mm sources without shorter wavelength counterparts, while the probability for none of them being real is negligible.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024681','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024681"><span><span class="hlt">Observations</span> of comet 19P/Borrelly by the miniature integrated camera and spectrometer aboard <span class="hlt">deep</span> space 1</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Soderblom, L.A.; Becker, T.L.; Bennett, G.; Boice, D.C.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Isbell, C.; Giese, B.; Hare, T.; Hicks, M.D.; Howington-Kraus, E.; Kirk, R.L.; Lee, M.; Nelson, R.M.; Oberst, J.; Owen, T.C.; Rayman, M.D.; Sandel, B.R.; Stern, S.A.; Thomas, N.; Yelle, R.V.</p> <p>2002-01-01</p> <p>The nucleus of the Jupiter-family comet 19P/Borrelly was closely <span class="hlt">observed</span> by the Miniature Integrated Camera and Spectrometer aboard the <span class="hlt">Deep</span> Space 1 spacecraft on 22 September 2001. The 8-kilometer-long body is highly variegated on a scale of 200 meters, exhibiting large albedo variations (0.01 to 0.03) and complex geologic relationships. Short-wavelength infrared spectra (1.3 to 2.6 micrometers) show a slope toward the red and a hot, dry surface (???345 kelvin, with no trace of water ice or hydrated minerals), consistent with ???10% or less of the surface actively sublimating. Borrelly's coma exhibits two types of dust features: fans and highly collimated jets. At encounter, the near-nucleus coma was dominated by a prominent dust jet that resolved into at least three smaller jets emanating from a broad basin in the middle of the nucleus. Because the major dust jet remained fixed in orientation, it is evidently aligned near the rotation axis of the nucleus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://medlineplus.gov/deepveinthrombosis.html','NIH-MEDLINEPLUS'); return false;" href="https://medlineplus.gov/deepveinthrombosis.html"><span><span class="hlt">Deep</span> Vein Thrombosis</span></a></p> <p><a target="_blank" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p><span class="hlt">Deep</span> vein thrombosis, or DVT, is a blood clot that forms in a vein <span class="hlt">deep</span> in the body. Most ... vein swells, the condition is called thrombophlebitis. A <span class="hlt">deep</span> vein thrombosis can break loose and cause a serious problem ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...793...74O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...793...74O"><span><span class="hlt">Deep</span> Chandra <span class="hlt">Observations</span> of HCG 16. II. The Development of the Intra-group Medium in a Spiral-rich Group</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Sullivan, E.; Vrtilek, J. M.; David, L. P.; Giacintucci, S.; Zezas, A.; Ponman, T. J.; Mamon, G. A.; Nulsen, P.; Raychaudhury, S.</p> <p>2014-10-01</p> <p>We use a combination of <span class="hlt">deep</span> Chandra X-ray <span class="hlt">observations</span> and radio continuum imaging to investigate the origin and current state of the intra-group medium (IGM) in the spiral-rich compact group HCG 16. We confirm the presence of a faint (L X, bolo = 1.87+1.03-0.66×1041 erg s-1), low-temperature (0.30+0.07-0.05 keV) IGM extending throughout the ACIS-S3 field of view, with a ridge linking the four original group members and extending to the southeast, as suggested by previous ROSAT and XMM-Newton <span class="hlt">observations</span>. This ridge contains 6.6+3.9-3.3× 109 M ⊙ of hot gas and is at least partly coincident with a large-scale {H} {I} tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We present evidence that the group is not yet virialized, and show that gas has probably been transported from the starburst winds of NGC 838 and NGC 839 into the surrounding IGM. Considering the possible origin of the IGM, we argue that material ejected by galactic winds may have played a significant role, contributing 20%-40% of the <span class="hlt">observed</span> hot gas in the system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120x8301L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120x8301L"><span>Exploring the Function Space of <span class="hlt">Deep</span>-Learning Machines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Bo; Saad, David</p> <p>2018-06-01</p> <p>The function space of <span class="hlt">deep</span>-learning machines is investigated by studying growth in the entropy of functions of a given error with respect to a reference function, realized by a <span class="hlt">deep</span>-learning machine. Using physics-inspired methods we study both sparsely and densely connected architectures to discover a layerwise convergence of candidate functions, marked by a corresponding reduction in entropy when approaching the reference function, gain insight into the importance of having a large number of layers, and <span class="hlt">observe</span> phase transitions as the error increases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160013302','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160013302"><span>The "<span class="hlt">Deep</span> Blue" Aerosol Project at NASA GSFC</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sayer, Andrew; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Carletta, N.; Chen, S.; Esmaili, R.</p> <p>2016-01-01</p> <p>Atmospheric aerosols such as mineral dust, wildfire smoke, sea spray, and volcanic ash are of interest for a variety of reasons including public health, climate change, hazard avoidance, and more. <span class="hlt">Deep</span> Blue is a project which uses satellite <span class="hlt">observations</span> of the Earth from sensors such as SeaWiFS, MODIS, and VIIRS to monitor the global aerosol burden. This talk will cover some basics about aerosols and the principles of aerosol remote sensing, as well as discussing specific results and future directions for the <span class="hlt">Deep</span> Blue project.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16807099','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16807099"><span>Auditory processing during <span class="hlt">deep</span> propofol sedation and recovery from unconsciousness.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koelsch, Stefan; Heinke, Wolfgang; Sammler, Daniela; Olthoff, Derk</p> <p>2006-08-01</p> <p>Using evoked potentials, this study investigated effects of <span class="hlt">deep</span> propofol sedation, and effects of recovery from unconsciousness, on the processing of auditory information with stimuli suited to elicit a physical MMN, and a (music-syntactic) ERAN. Levels of sedation were assessed using the Bispectral Index (BIS) and the Modified <span class="hlt">Observer</span>'s Assessment of Alertness and Sedation Scale (MOAAS). EEG-measurements were performed during wakefulness, <span class="hlt">deep</span> propofol sedation (MOAAS 2-3, mean BIS=68), and a recovery period. Between <span class="hlt">deep</span> sedation and recovery period, the infusion rate of propofol was increased to achieve unconsciousness (MOAAS 0-1, mean BIS=35); EEG measurements of recovery period were performed after subjects regained consciousness. During <span class="hlt">deep</span> sedation, the physical MMN was markedly reduced, but still significant. No ERAN was <span class="hlt">observed</span> in this level. A clear P3a was elicited during <span class="hlt">deep</span> sedation by those deviants, which were task-relevant during the awake state. As soon as subjects regained consciousness during the recovery period, a normal MMN was elicited. By contrast, the P3a was absent in the recovery period, and the P3b was markedly reduced. Results indicate that the auditory sensory memory (as indexed by the physical MMN) is still active, although strongly reduced, during <span class="hlt">deep</span> sedation (MOAAS 2-3). The presence of the P3a indicates that attention-related processes are still operating during this level. Processes of syntactic analysis appear to be abolished during <span class="hlt">deep</span> sedation. After propofol-induced anesthesia, the auditory sensory memory appears to operate normal as soon as subjects regain consciousness, whereas the attention-related processes indexed by P3a and P3b are markedly impaired. Results inform about effects of sedative drugs on auditory and attention-related mechanisms. The findings are important because these mechanisms are prerequisites for auditory awareness, auditory learning and memory, as well as language perception during anesthesia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A44A2677S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A44A2677S"><span>Oxygen uptake and vertical transport during <span class="hlt">deep</span> convection events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, D.; Ito, T.; Bracco, A.</p> <p>2016-02-01</p> <p>Dissolved oxygen (O2) is essential for the chemistry and living organisms of the oceans. O2 is consumed in the interior ocean due to the respiration of organic matter, and must be replenished by physical ventilation with the O2-rich surface waters. The O2 supply to the <span class="hlt">deep</span> waters happens only through the subduction and <span class="hlt">deep</span> convection during cold seasons at high latitude oceans. The Labrador Sea is one of the few regions where <span class="hlt">deep</span> ventilation occurs. According to <span class="hlt">observational</span> and modeling studies, the intensity, duration and timing of <span class="hlt">deep</span> convection events have varied significantly on the interannual and decadal timescales. In this study we develop a theoretical framework to understand the air-sea transfer of O2 during open-ocean <span class="hlt">deep</span> convection events. The theory is tested against a suite of numerical integrations using MITgcm in non-hydrostatic configuration including the parameterization of diffusive and bubble mediated gas transfer. Forced with realistic air-sea buoyancy fluxes, the model can reproduce the evolution of temperature, salinity and dissolved O2 <span class="hlt">observed</span> by ARGO floats in the Labrador Sea. Idealized sensitivity experiments are performed changing the intensity and duration of the buoyancy forcing as well as the wind speed for the gas exchange parameterizations. The downward transport of O2 results from the combination of vertical homogenization of existing O2 and the uptake from the air-sea flux. The intensity of the buoyancy forcing controls the vertical extent of convective mixing which brings O2 to the <span class="hlt">deep</span> ocean. Integrated O2 uptake increases with the duration of convection even when the total buoyancy loss is held constant. The air-sea fluxes are highly sensitive to the wind speed especially for the bubble injection flux, which is a major addition to the diffusive flux under strong winds. However, the bubble injection flux can be partially compensated by the diffusive outgassing in response to the elevated saturation state. Under strong</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97c2119M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97c2119M"><span><span class="hlt">Deep</span> neural networks for direct, featureless learning through <span class="hlt">observation</span>: The case of two-dimensional spin models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mills, Kyle; Tamblyn, Isaac</p> <p>2018-03-01</p> <p>We demonstrate the capability of a convolutional <span class="hlt">deep</span> neural network in predicting the nearest-neighbor energy of the 4 ×4 Ising model. Using its success at this task, we motivate the study of the larger 8 ×8 Ising model, showing that the <span class="hlt">deep</span> neural network can learn the nearest-neighbor Ising Hamiltonian after only seeing a vanishingly small fraction of configuration space. Additionally, we show that the neural network has learned both the energy and magnetization operators with sufficient accuracy to replicate the low-temperature Ising phase transition. We then demonstrate the ability of the neural network to learn other spin models, teaching the convolutional <span class="hlt">deep</span> neural network to accurately predict the long-range interaction of a screened Coulomb Hamiltonian, a sinusoidally attenuated screened Coulomb Hamiltonian, and a modified Potts model Hamiltonian. In the case of the long-range interaction, we demonstrate the ability of the neural network to recover the phase transition with equivalent accuracy to the numerically exact method. Furthermore, in the case of the long-range interaction, the benefits of the neural network become apparent; it is able to make predictions with a high degree of accuracy, and do so 1600 times faster than a CUDA-optimized exact calculation. Additionally, we demonstrate how the neural network succeeds at these tasks by looking at the weights learned in a simplified demonstration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26921616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26921616"><span>Tractography patterns of subthalamic nucleus <span class="hlt">deep</span> brain stimulation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin</p> <p>2016-04-01</p> <p><span class="hlt">Deep</span> brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of <span class="hlt">deep</span> brain stimulation are grey matter structures, axonal modulation is known to play an important role in <span class="hlt">deep</span> brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of <span class="hlt">deep</span> brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after <span class="hlt">deep</span> brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral <span class="hlt">deep</span> brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after <span class="hlt">deep</span> brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of <span class="hlt">deep</span> brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns <span class="hlt">observed</span> in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004HEAD....8.0801S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004HEAD....8.0801S"><span>Probing <span class="hlt">Deep</span> into a Young PWN: Chandra <span class="hlt">Observations</span> of 3C 58</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Slane, P.; Helfand, D. J.; van der Swaluw, E.; Murray, S. S.</p> <p>2004-08-01</p> <p>Believed to have formed in a supernova explosion in 1181 CE, the pulsar wind nebula (PWN) 3C 58 is the Medieval sibling of the Crab Nebula. Yet its size, spectrum, and luminosity all differ dramatically from those of the Crab, raising the question of just how similar these and related systems really are. Here we present an investigation of the spectral and spatial structure of the X-ray emission from 3C 58 based on a 350 ks <span class="hlt">observation</span> with the Chandra X-ray Observatory. This <span class="hlt">deep</span> image, obtained as part of the Chandra Large Project program, reveals new information on nearly all spatial scales in the PWN. On the smallest scales we derive an improved limit for the surface temperature of the central neutron star (NS), confirming the need for rapid, nonstandard cooling in the stellar interior. We further provide evidence consistent with detection of emission from a light element atmosphere with a slightly lower temperature. Surrounding the NS, a toroidal structure with a jet is resolved, consistent with earlier measurements and indicative of an east-west orientation for the projected rotation axis of the pulsar. A complex of loop-like X-ray filaments fills the nebula interior. Their origin is unknown, but we suggest that they may be related to kink instabilities in the inner toroidal magnetic field of the PWN. The emission from the interior of the PWN, including the pulsar, jet, and filaments, is primarily nonthermal in nature. The power law index steepens with radius, but appears to also show small azimuthal variations. The outermost regions of the nebula require a thermal emission component, confirming the presence of an ejecta-rich swept-up shell. This work was supported in part by NASA Contract NAS8-39073 and Grant GO0-1117A.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880065161&hterms=hacking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhacking','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880065161&hterms=hacking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhacking"><span>A very <span class="hlt">deep</span> IRAS survey at the north ecliptic pole</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Houck, J. R.; Hacking, P. B.; Condon, J. J.</p> <p>1987-01-01</p> <p>The data from approximately 20 hours <span class="hlt">observation</span> of the 4- to 6-square degree field surrounding the north ecliptic pole have been combined to produce a very <span class="hlt">deep</span> IR survey at the four IRAS bands. Scans from both pointed and survey <span class="hlt">observations</span> were included in the data analysis. At 12 and 25 microns the <span class="hlt">deep</span> survey is limited by detector noise and is approximately 50 times deeper than the IRAS Point Source Catalog (PSC). At 60 microns the problems of source confusion and Galactic cirrus combine to limit the <span class="hlt">deep</span> survey to approximately 12 times deeper than the PSC. These problems are so severe at 100 microns that flux values are only given for locations corresponding to sources selected at 60 microns. In all, 47 sources were detected at 12 microns, 37 at 25 microns, and 99 at 60 microns. The data-analysis procedures and the significance of the 12- and 60-micron source-count results are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51C2081R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51C2081R"><span>Kelvin Wave Influence on the Shallow-to-<span class="hlt">Deep</span> Transition Over the Amazon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rowe, A.; Serra, Y. L.</p> <p>2017-12-01</p> <p>The suite of <span class="hlt">observations</span> from GOAmazon and CHUVA offers a unique opportunity to examine land-based convective processes in the tropics, including the poorly represented shallow-to-<span class="hlt">deep</span> transition. This study uses these data to investigate impacts of Kelvin waves on the the shallow-to-<span class="hlt">deep</span> transition over the Central Amazon. The Kelvin waves that propagate over the region often originate over the tropical central and east Pacific, with local generation over the Andes also <span class="hlt">observed</span>. The <span class="hlt">observed</span> 15 m s-1 phase speed and 4500 km wave length during the two-year campaign are in agreement with previously published studies of these waves across the tropics. Also in agreement with previous studies, we find the waves are most active during the wet season (November-May) for this region. Using four separate convective event classes (clear-sky, nonprecipitating cumulus congestus, afternoon <span class="hlt">deep</span> convection, and mesoscale convective systems), we examine how the convection preferentially develops for different phases of the Kelvin waves seen during GOAmazon. We additionally examine surface meteorological variables, the vertical thermodynamic and dynamic structure of the troposphere, vertical moist static stability, integrated column water vapor and liquid water, and surface energy fluxes within the context of these convective classes to identify the important environmental factors contributing to <span class="hlt">observed</span> periods of enhanced <span class="hlt">deep</span> convection related to the waves. Results suggest that the waves significantly modify the local environment, such as creating a <span class="hlt">deep</span> layer of moisture throughout the troposphere, favoring more organized convection in the active than in the suppressed phase of the wave. The significance of wave-related environmental modifications are assessed by comparing local rainfall accumulations during Kelvin wave activity to that when the waves are not present. Future work will further explore the shallow-to-<span class="hlt">deep</span> transition and its modulation by Kelvin wave activity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...573A..53K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...573A..53K"><span>The neutron star in <span class="hlt">HESS</span> J1731-347: Central compact objects as laboratories to study the equation of state of superdense matter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.</p> <p>2015-01-01</p> <p>Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in <span class="hlt">HESS</span> J1731-347 is one of the brightest objects in this class. Starting from 2007, it was <span class="hlt">observed</span> several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton <span class="hlt">observations</span> of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A41C0061T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A41C0061T"><span>Level of Neutral Buoyancy, <span class="hlt">Deep</span> Convective Outflow, and Hot Tower: New Perspectives Based on the A-Train <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, H.; Luo, J.; Stephens, G. L.</p> <p>2016-12-01</p> <p><span class="hlt">Deep</span> convective cores, or "hot towers (HTs)", play a significant role in controlling the energy budgets and hydrological cycles. The vertical convective transport by HTs is like an express elevator transporting the near-surface air directly into the upper troposphere or lower stratosphere (e.g., Riehl and Malkus, 1958; Sun and Lindzen, 1993; Soden and Fu, 1995). The vertical convective transport will eventually make a transition to horizontal outflows where widespread cirrus anvils develop, which also play an important role in radiative-convective feedbacks (e.g., Stephens et al. 2008). In this study, we introduce two proxies to evaluate the strength of vertical and horizontal convective mass transport by hot towers. Result shows that HTs tend to have wider horizontal mass transport over land than ocean. In addition, an important aspect of the <span class="hlt">deep</span> convection-to-outflow transition is the altitude where the outflow occurs, which can be conveniently summarized into a single parameter called level of neutral buoyancy (LNB). LNB is a critical parameter for understanding convection because it sets the potential vertical extent for convective development. This study develops a deeper and more comprehensive understanding of the relationship between LNB and <span class="hlt">deep</span> convective outflow, including regional variations. To this end, a useful proxy to estimate convective dilution is introduced. Results show that active convective dilution can be seen over the Warm Pool throughout the year, while <span class="hlt">deep</span> convection over tropical Africa and Amazonia tends to be less diluted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A42A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A42A..03M"><span><span class="hlt">Deep</span> Space Detection of Oriented Ice Crystals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshak, A.; Varnai, T.; Kostinski, A. B.</p> <p>2017-12-01</p> <p>The <span class="hlt">deep</span> space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly <span class="hlt">observations</span> of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such <span class="hlt">deep</span> space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...577A.131H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...577A.131H"><span>Discovery of variable VHE γ-ray emission from the binary system 1FGL J1018.6-5856</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.</p> <p>2015-05-01</p> <p>Re-<span class="hlt">observations</span> with the <span class="hlt">HESS</span> telescope array of the very high-energy (VHE) source <span class="hlt">HESS</span> J1018-589 A that is coincident with the Fermi-LAT γ-ray binary 1FGL J1018.6-5856 have resulted in a source detection significance of more than 9σ and the detection of variability (χ2/ν of 238.3/155) in the emitted γ-ray flux. This variability confirms the association of <span class="hlt">HESS</span> J1018-589 A with the high-energy γ-ray binary detected by Fermi-LAT and also confirms the point-like source as a new VHE binary system. The spectrum of <span class="hlt">HESS</span> J1018-589 A is best fit with a power-law function with photon index Γ = 2.20 ± 0.14stat ± 0.2sys. Emission is detected up to ~20 TeV. The mean differential flux level is (2.9 ± 0.4) × 10-13 TeV-1 cm-2 s-1 at 1 TeV, equivalent to ~1% of the flux from the Crab Nebula at the same energy. Variability is clearly detected in the night-by-night light curve. When folded on the orbital period of 16.58 days, the rebinned light curve peaks in phase with the <span class="hlt">observed</span> X-ray and high-energy phaseograms. The fit of the <span class="hlt">HESS</span> phaseogram to a constant flux provides evidence of periodicity at the level of Nσ> 3σ. The shape of the VHE phaseogram and measured spectrum suggest a low-inclination, low-eccentricity system with amodest impact from VHE γ-ray absorption due to pair production (τ ≲ 1 at 300 GeV).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title15-vol3/pdf/CFR-2012-title15-vol3-sec971-1005.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title15-vol3/pdf/CFR-2012-title15-vol3-sec971-1005.pdf"><span>15 CFR 971.1005 - <span class="hlt">Observers</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE <span class="hlt">DEEP</span> SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Enforcement § 971.1005 <span class="hlt">Observers</span>.... The Administrator shall require the placement of an <span class="hlt">observer</span> on each permittee's mining vessel(s) at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title15-vol3/pdf/CFR-2013-title15-vol3-sec971-1005.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title15-vol3/pdf/CFR-2013-title15-vol3-sec971-1005.pdf"><span>15 CFR 971.1005 - <span class="hlt">Observers</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE <span class="hlt">DEEP</span> SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Enforcement § 971.1005 <span class="hlt">Observers</span>.... The Administrator shall require the placement of an <span class="hlt">observer</span> on each permittee's mining vessel(s) at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title15-vol3/pdf/CFR-2014-title15-vol3-sec971-1005.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title15-vol3/pdf/CFR-2014-title15-vol3-sec971-1005.pdf"><span>15 CFR 971.1005 - <span class="hlt">Observers</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE <span class="hlt">DEEP</span> SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Enforcement § 971.1005 <span class="hlt">Observers</span>.... The Administrator shall require the placement of an <span class="hlt">observer</span> on each permittee's mining vessel(s) at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title15-vol3/pdf/CFR-2011-title15-vol3-sec971-1005.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title15-vol3/pdf/CFR-2011-title15-vol3-sec971-1005.pdf"><span>15 CFR 971.1005 - <span class="hlt">Observers</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE <span class="hlt">DEEP</span> SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Enforcement § 971.1005 <span class="hlt">Observers</span>.... The Administrator shall require the placement of an <span class="hlt">observer</span> on each permittee's mining vessel(s) at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title15-vol3/pdf/CFR-2010-title15-vol3-sec971-1005.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title15-vol3/pdf/CFR-2010-title15-vol3-sec971-1005.pdf"><span>15 CFR 971.1005 - <span class="hlt">Observers</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE <span class="hlt">DEEP</span> SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Enforcement § 971.1005 <span class="hlt">Observers</span>.... The Administrator shall require the placement of an <span class="hlt">observer</span> on each permittee's mining vessel(s) at...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AAS...22121509F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AAS...22121509F"><span>The First Pan-Starrs Medium <span class="hlt">Deep</span> Field Variable Star Catalog</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flewelling, Heather</p> <p>2013-01-01</p> <p>We present the first Pan-Starrs 1 Medium <span class="hlt">Deep</span> Field Variable Star Catalog (PS1-MDF-VSC). The Pan-Starrs 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, and is located in Haleakala, Hawaii. The Medium <span class="hlt">Deep</span> survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is <span class="hlt">observed</span> each night, in 2-3 filters per field, with 8 exposures per filter. We have located and classified several hundred periodic variable stars within the Medium <span class="hlt">Deep</span> fields, and we present the first catalog listing the properties of these variable stars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000058135','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000058135"><span><span class="hlt">Deep</span> Space Telecommunications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kuiper, T. B. H.; Resch, G. M.</p> <p>2000-01-01</p> <p>The increasing load on NASA's <span class="hlt">deep</span> Space Network, the new capabilities for <span class="hlt">deep</span> space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and <span class="hlt">deep</span> space telecommunications in developing advanced radio telescope concepts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25810207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25810207"><span>Increases in tropical rainfall driven by changes in frequency of organized <span class="hlt">deep</span> convection.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Jackson; Jakob, Christian; Rossow, William B; Tselioudis, George</p> <p>2015-03-26</p> <p>Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. <span class="hlt">Observations</span> and models have found that changes in rainfall show patterns characterized as 'wet-gets-wetter' and 'warmer-gets-wetter'. These changes in precipitation are largely located in the tropics and hence are probably associated with convection. However, the underlying physical processes for the <span class="hlt">observed</span> changes are not entirely clear. Here we show from <span class="hlt">observations</span> that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized <span class="hlt">deep</span> convection. By assessing the contributions of various convective regimes to precipitation, we find that the spatial patterns of change in the frequency of organized <span class="hlt">deep</span> convection are strongly correlated with <span class="hlt">observed</span> change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of <span class="hlt">deep</span> convection or changes in precipitation within organized <span class="hlt">deep</span> convection contribute less to changes in precipitation. Our results identify organized <span class="hlt">deep</span> convection as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of convection in climate models, our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP43B2268B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP43B2268B"><span>Holocene <span class="hlt">Deep</span> Ocean Variability Detected with Individual Benthic Foraminifera</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bova, S. C.; Herbert, T.; Fox-Kemper, B.</p> <p>2015-12-01</p> <p>Historical <span class="hlt">observations</span> of <span class="hlt">deep</span> ocean temperatures (>700 m water depth) show apparently unprecedented rates of warming over the past half century that parallel <span class="hlt">observed</span> surface warming, on the order of 0.1°C/decade (Purkey and Johnson 2010). Most water masses below 700 m depth, however, have not been at the sea surface where they exchange heat and carbon with the atmosphere since well before industrialization (Gebbie and Huybers 2012). How then has the heat content of isolated <span class="hlt">deep</span> water masses responded to climate change over the last century? In models, wave mechanisms propagate thermocline anomalies quickly (Masuda et al. 2010), but these dynamics are not fully understood. We therefore turn to the sedimentary record to constrain the bounds of earlier variability from Holocene anomalies. The oxygen isotopic composition (δ18O) of individual benthic foraminifera provide approximately month-long snapshots of the temperature and salinity of ambient <span class="hlt">deep</span> water during calcification. We exploit the short lifespan of these organisms to reconstruct variability in δ18Oshell, and thus the variability in <span class="hlt">deep</span> water temperature and salinity, during five 200-yr Holocene intervals at 1000 m water depth in the Eastern Equatorial Pacific (EEP). Modern variability in benthic foraminifer δ18O was too weak to detect but variability at 1000 m water depth in the EEP exceeded our detection limit during two Holocene intervals at high confidence (p<0.01), with δ18O anomalies up to ~0.6 ± 0.15‰ that persist for a month or longer. Although the source of these anomalies remains speculative, rapid communication between the surface and <span class="hlt">deep</span> ocean that operates on human timescales, faster than previously recognized, or intrinsic variability that has not been active during the history of ocean <span class="hlt">observations</span> are potential explanations. Further work combining models and high-resolution proxy data is needed to identify the mechanism and global extent of this type of subsurface variability</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HEAD...1610629B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HEAD...1610629B"><span>A <span class="hlt">deep</span> NuSTAR <span class="hlt">observation</span> of M51: Investigating its Compton-thick nucleus, LINER companion and ULXs above 10 keV</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brightman, Murray; Annuar, Ady; Alexander, David M.; Earnshaw, Hannah; Gandhi, Poshak; Hornschemeier, Ann E.; Lehmer, Bret; Ptak, Andrew; Rangelov, Blagoy; Roberts, Tim P.; Stern, Daniel; Zezas, Andreas</p> <p>2017-08-01</p> <p>We present the results from a <span class="hlt">deep</span> 200ks <span class="hlt">observation</span> of M51 with NuSTAR. This <span class="hlt">observation</span> was taken simultaneously with Chandra to provide soft-X-ray-coverage as well as to resolve the different point sources. We detect the Compton-thick nucleus of M51a, the LINER nucleus of M51b and several ultraluminous X-ray sources located in the galaxies above 10 keV. From X-ray torus modeling, we find that the covering factor of the torus in the nucleus of M51a is ~40% and supports a decline in the obscured fration at low X-ray luminosities. We find that the X-ray spectrum of the intermediate mass black hole candidate, ULX-7, is consistent with a power-law up to high energies, supporting its IMBH status. We further resolve the nucleus of M51b into two X-ray sources with Chandra, and measure its X-ray luminosity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22370598-deep-chandra-observations-hcg-ii-development-intra-group-medium-spiral-rich-group','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22370598-deep-chandra-observations-hcg-ii-development-intra-group-medium-spiral-rich-group"><span><span class="hlt">Deep</span> Chandra <span class="hlt">observations</span> of HCG 16. II. The development of the intra-group medium in a spiral-rich group</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>O'Sullivan, E.; Vrtilek, J. M.; David, L. P.</p> <p>2014-10-01</p> <p>We use a combination of <span class="hlt">deep</span> Chandra X-ray <span class="hlt">observations</span> and radio continuum imaging to investigate the origin and current state of the intra-group medium (IGM) in the spiral-rich compact group HCG 16. We confirm the presence of a faint (L {sub X,} {sub bolo} = 1.87{sub −0.66}{sup +1.03}×10{sup 41} erg s{sup –1}), low-temperature (0.30{sub −0.05}{sup +0.07} keV) IGM extending throughout the ACIS-S3 field of view, with a ridge linking the four original group members and extending to the southeast, as suggested by previous ROSAT and XMM-Newton <span class="hlt">observations</span>. This ridge contains 6.6{sub −3.3}{sup +3.9}× 10{sup 9} M {sub ☉} of hotmore » gas and is at least partly coincident with a large-scale H I tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We present evidence that the group is not yet virialized, and show that gas has probably been transported from the starburst winds of NGC 838 and NGC 839 into the surrounding IGM. Considering the possible origin of the IGM, we argue that material ejected by galactic winds may have played a significant role, contributing 20%-40% of the <span class="hlt">observed</span> hot gas in the system.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/sciencecinema/biblio/1037330','SCIGOVIMAGE-SCICINEMA'); return false;" href="http://www.osti.gov/sciencecinema/biblio/1037330"><span><span class="hlt">Deep</span> Web video</span></a></p> <p><a target="_blank" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p>None Available</p> <p>2018-02-06</p> <p>To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a <span class="hlt">deep</span> web search capability. The <span class="hlt">deep</span> web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the <span class="hlt">deep</span> web search engine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Icar..199..119C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Icar..199..119C"><span>Placing the <span class="hlt">Deep</span> Impact Mission into context: Two decades of <span class="hlt">observations</span> of 9P/Tempel 1 from McDonald Observatory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cochran, A. L.; Barker, E. S.; Caballero, M. D.; Györgey-Ries, J.</p> <p>2009-01-01</p> <p>We report on low-spectral resolution <span class="hlt">observations</span> of Comet 9P/Tempel 1 from 1983, 1989, 1994 and 2005 using the 2.7 m Harlan J. Smith telescope of McDonald Observatory. This comet was the target of NASA's <span class="hlt">Deep</span> Impact mission and our <span class="hlt">observations</span> allowed us to characterize the comet prior to the impact. We found that the comet showed a decrease in gas production from 1983 to 2005, with the decrease being different factors for different species. OH decreased by a factor 2.7, NH by 1.7, CN by 1.6, C 3 by 1.8, CH by 1.4 and C 2 by 1.3. Despite the decrease in overall gas production and these slightly different decrease factors, we find that the gas production rates of OH, NH, C 3, CH and C 2 ratioed to that of CN were constant over all of the apparitions. We saw no change in the production rate ratios after the impact. We found that the peak gas production occurred about two months prior to perihelion. Comet Tempel 1 is a "normal" comet.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6710817-vla-observations-unidentified-leiden-berkeley-deep-survey-sources-luminosity-redshift-dependence-spectral-properties','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6710817-vla-observations-unidentified-leiden-berkeley-deep-survey-sources-luminosity-redshift-dependence-spectral-properties"><span>VLA <span class="hlt">observations</span> of unidentified Leiden-Berkeley <span class="hlt">Deep</span>-Survey sources - Luminosity and redshift dependence of spectral properties</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kapahi, V.K.; Kulkarni, V.K.</p> <p>1990-05-01</p> <p>VLA <span class="hlt">observations</span> of a complete subset of the Leiden-Berkeley <span class="hlt">Deep</span> Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at highmore » redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys. 54 refs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S34B..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S34B..05W"><span>A Transformation-Induced Shear Instability Model for <span class="hlt">Deep</span> Earthquakes Based on Laboratory Nanoseismological and Microstructural <span class="hlt">Observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Zhu, L.; Shi, F.; Schubnel, A.; Hilairet, N.; Yu, T.; Rivers, M. L.; Gasc, J.; Li, Z.; Brunet, F.</p> <p>2016-12-01</p> <p>Global earthquake hypocenters depth displays a bimodal distribution: a first peak at < 50 km and a second peak around 550 - 600 km, before ceasing abruptly near 700 km. How fractures initiate, nucleate, and propagate at depths >70 km remains one of the greatest puzzles in earth science, since increasing pressure inhibits fracture propagation. Here we report high-resolution acoustic emission (AE) analysis of fractures triggered by partial transformation from olivine to spinel in Mg2GeO4, an analog to (Mg,Fe)2SiO4, the dominant mineral in the upper mantle. State-of-the-art synchrotron techniques and seismological methodologies were used for fault imaging and for event location and waveform analysis. Our results reveal unprecedented details of rupture nucleation and propagation, in both space and time: AE event magnitudes follow the Gutenberg-Richter law, with b values generally consistent with seismological <span class="hlt">observations</span>, while the empirical relation between magnitude and rupture area is extended to millimeter-sized samples. A new rupture model for <span class="hlt">deep</span>-focus earthquakes is proposed based on the well-known strain localization theory for pressure sensitive (dilatant) materials. The results show that shear failure processes, even at great depths, are scale-invariant.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.3991M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.3991M"><span>Dust attenuation in 2 < z < 3 star-forming galaxies from <span class="hlt">deep</span> ALMA <span class="hlt">observations</span> of the Hubble Ultra <span class="hlt">Deep</span> Field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McLure, R. J.; Dunlop, J. S.; Cullen, F.; Bourne, N.; Best, P. N.; Khochfar, S.; Bowler, R. A. A.; Biggs, A. D.; Geach, J. E.; Scott, D.; Michałowski, M. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.</p> <p>2018-05-01</p> <p>We present the results of a new study of the relationship between infrared excess (IRX ≡ LIR/LUV), ultraviolet (UV) spectral slope (β) and stellar mass at redshifts 2 < z < 3, based on a <span class="hlt">deep</span> Atacama Large Millimeter Array (ALMA) 1.3-mm continuum mosaic of the Hubble Ultra <span class="hlt">Deep</span> Field. Excluding the most heavily obscured sources, we use a stacking analysis to show that z ≃ 2.5 star-forming galaxies in the mass range 9.25≤ log (M_{\\ast }/M_{⊙}) ≤ 10.75 are fully consistent with the IRX-β relation expected for a relatively grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass-complete sample of 2 ≤ z ≤ 3 star-forming galaxies drawn from multiple surveys, we proceed to derive a new empirical relationship between β and stellar mass, making it possible to predict UV attenuation (A1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z ≃ 2.5 star-forming galaxies follow A1600-M* and IRX-M* relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-β relation may have been biased towards low values of IRX at red values of β, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than β. Although the situation at lower stellar masses remains uncertain, we conclude that for 2 < z < 3 star-forming galaxies with log (M_{\\ast }/M_{⊙}) ≥ 9.75, both the IRX-β and IRX-M* relations are well described by a Calzetti-like attenuation law.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10135E..1KM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10135E..1KM"><span><span class="hlt">Deep</span>Infer: open-source <span class="hlt">deep</span> learning deployment toolkit for image-guided therapy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang</p> <p>2017-03-01</p> <p><span class="hlt">Deep</span> learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, <span class="hlt">deep</span> models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, <span class="hlt">deep</span> models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying <span class="hlt">deep</span> learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many <span class="hlt">deep</span> models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "<span class="hlt">Deep</span>Infer" - an open-source toolkit for developing and deploying <span class="hlt">deep</span> learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, <span class="hlt">Deep</span>Infer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of <span class="hlt">Deep</span>Infer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28615794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28615794"><span><span class="hlt">Deep</span>Infer: Open-Source <span class="hlt">Deep</span> Learning Deployment Toolkit for Image-Guided Therapy.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A; Kapur, Tina; Wells, William M; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang</p> <p>2017-02-11</p> <p><span class="hlt">Deep</span> learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, <span class="hlt">deep</span> models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, <span class="hlt">deep</span> models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying <span class="hlt">deep</span> learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many <span class="hlt">deep</span> models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "<span class="hlt">Deep</span>Infer" - an open-source toolkit for developing and deploying <span class="hlt">deep</span> learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, <span class="hlt">Deep</span>Infer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of <span class="hlt">Deep</span>Infer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5467894','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5467894"><span><span class="hlt">Deep</span>Infer: Open-Source <span class="hlt">Deep</span> Learning Deployment Toolkit for Image-Guided Therapy</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang</p> <p>2017-01-01</p> <p><span class="hlt">Deep</span> learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, <span class="hlt">deep</span> models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, <span class="hlt">deep</span> models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying <span class="hlt">deep</span> learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many <span class="hlt">deep</span> models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose “<span class="hlt">Deep</span>Infer” – an open-source toolkit for developing and deploying <span class="hlt">deep</span> learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, <span class="hlt">Deep</span>Infer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of <span class="hlt">Deep</span>Infer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections. PMID:28615794</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29876679','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29876679"><span><span class="hlt">Deep</span>Neuron: an open <span class="hlt">deep</span> learning toolbox for neuron tracing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui</p> <p>2018-06-06</p> <p>Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, <span class="hlt">deep</span> learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, <span class="hlt">Deep</span>Neuron, which uses <span class="hlt">deep</span> learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. <span class="hlt">Deep</span>Neuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested <span class="hlt">Deep</span>Neuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which <span class="hlt">Deep</span>Neuron demonstrates robustness and accuracy in neuron tracing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20972255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20972255"><span>Bioluminescent organs of two <span class="hlt">deep</span>-sea arrow worms, Eukrohnia fowleri and Caecosagitta macrocephala, with further <span class="hlt">observations</span> on Bioluminescence in chaetognaths.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thuesen, Erik V; Goetz, Freya E; Haddock, Steven H D</p> <p>2010-10-01</p> <p>Bioluminescence in the <span class="hlt">deep</span>-sea chaetognath Eukrohnia fowleri is reported for the first time, and behavioral, morphological, and chemical characteristics of bioluminescence in chaetognaths are examined. Until this study, the only known species of bioluminescent chaetognath was Caecosagitta macrocephala. The luminescent organ of that species is located on the ventral edge of each anterior lateral fin, whereas that of E. fowleri runs across the center of the tail fin on both dorsal and ventral sides. Scanning electron microscopy showed that the bioluminescent organs of both species consist of hexagonal chambers containing elongate ovoid particles-the organelles holding bioluminescent materials. No other luminous organism is known to use hexagonal packing to hold bioluminescent materials. Transmission electron microscopy of particles from C. macrocephala revealed a densely packed paracrystalline matrix punctuated by globular inclusions, which likely correspond to luciferin and luciferase, respectively. Both species use unique luciferases in conjunction with coelenterazine for light emission. Luciferase of C. macrocephala becomes inactive after 30 min, but luciferase of E. fowleri is highly stable. Although C. macrocephala has about 90 times fewer particles than E. fowleri, it has a similar bioluminescent capacity (total particle volume) due to its larger particle size. In situ <span class="hlt">observations</span> of C. macrocephala from a remotely operated vehicle revealed that the luminous particles are released to form a cloud. The discovery of bioluminescence in a second chaetognath phylogenetically distant from the first highlights the importance of bioluminescence among <span class="hlt">deep</span>-sea organisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990DSRA...37.1425H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990DSRA...37.1425H"><span>A tracer study of the <span class="hlt">deep</span> water renewal in the European polar seas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heinze, Ch.; Schlosser, P.; Koltermann, K. P.; Meincke, J.</p> <p>1990-09-01</p> <p>A study of the <span class="hlt">deep</span> water renewal in the European polar seas (Norwegian Sea, Greenland Sea and Eurasian Basin) based on the distribution of tritium ( 3H), 3He, chlorofluoromethane (F-11 = CCL 3F), salinity and potential temperature is presented. Four different versions of a kinematic box model calibrated with the tracer data yield production rates and turnover times due to <span class="hlt">deep</span> convection for Greenland Sea <span class="hlt">Deep</span> Water (0.47-0.59 Sv, 27-34 y) and Eurasian Basin <span class="hlt">Deep</span> Water (0.97-1.07 Sv, 83-92 y). Model calculations with different <span class="hlt">deep</span> advective flow patterns (exchange at equal rates between each of the <span class="hlt">deep</span> water masses or an internal circuit Eurasian Basin-Greenland Sea-Norwegian Sea-Eurasian Basin) give estimates of the <span class="hlt">deep</span> horizontal transports, resulting in a turnover time of 13-16 years for Norwegian Sea <span class="hlt">Deep</span> Water. The total turnover times (convection and <span class="hlt">deep</span> advection) of the Greenland Sea and the Eurasian Basin are estimated to about 10 and 50 years, respectively. Mean hydrographic characteristics of the source water for Greenland Sea <span class="hlt">Deep</span> Water and Eurasian Basin <span class="hlt">Deep</span> Water are estimated from minimization of the deviations between modelled and <span class="hlt">observed</span> hydrographic <span class="hlt">deep</span> water values. The fractions of surface waters and intermediate waters making up the <span class="hlt">deep</span> water of the Greenland Sea are estimated to about 80 and 20%, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001589','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001589"><span>The <span class="hlt">Deep</span> Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through <span class="hlt">Observations</span> of Earth's High-Latitude Lightning from Cis-Lunar Orbit</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20180001589'); toggleEditAbsImage('author_20180001589_show'); toggleEditAbsImage('author_20180001589_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20180001589_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20180001589_hide"></p> <p>2018-01-01</p> <p>Function: Monitor global change and thunderstorm processes through <span class="hlt">observations</span> of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term <span class="hlt">observations</span> of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (<span class="hlt">Deep</span> Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPA52A..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPA52A..06T"><span>Imagining <span class="hlt">Deep</span> Time (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talasek, J.</p> <p>2013-12-01</p> <p>Imagining <span class="hlt">Deep</span> Time '...the mind seemed to grow giddy by looking so far into the abyss of time.' John Playfair (1748 -1819), scientist and mathematician "Man cannot afford to conceive of nature and exclude himself." Emmit Gowin, photographer 'A person would have to take themselves out of the human context to begin to think in terms of geologic time. They would have to think like a rock.' Terry Falke, photographer The term <span class="hlt">Deep</span> Time refers to the vastness of the geological time scale. First conceived in the 18th century, the development of this perspective on time has been pieced together like a jigsaw puzzle of information and <span class="hlt">observations</span> drawn from the study of the earth's structure and discovered fossilized flora and fauna. <span class="hlt">Deep</span> time may possibly be the greatest contribution made by the discipline of geology forever impacting our perception of earth and our relationship to it. How do we grasp such vast concepts as <span class="hlt">deep</span> time which relates to the origins of the earth or cosmic time which relates to the origins of the universe - concepts that exist far beyond the realm of human experience? Further more how do we communicate this? The ability to visualize is a powerful tool of discovery and communication for the scientist and it is part and parcel of the work of visual artists. The scientific process provides evidence yet it is imagination on the part of the scientists and artists alike that is needed to interpret that information. This exhibition represents an area where both rational and intuitive thinking come together to explore this question of how we relate to the vastness of time. The answer suggested by the combination of art work assembled here suggests that we do so through a combination of visual metaphors (cycles, circles, arrows, trajectories) and visual evidence (rock formations, strata, fossils of fauna and flora) while being mediated through various technologies. One provides factual and empirical evidence while the other provides a way of grasping</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DSRI..134...55W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DSRI..134...55W"><span><span class="hlt">Deep</span> water characteristics and circulation in the South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin</p> <p>2018-04-01</p> <p>This study investigates the <span class="hlt">deep</span> circulation in the South China Sea (SCS) using oceanographic <span class="hlt">observations</span> combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of <span class="hlt">deep</span> water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the <span class="hlt">deep</span> SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the <span class="hlt">deep</span> water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the <span class="hlt">deep</span> basin. The main <span class="hlt">deep</span> circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central <span class="hlt">deep</span> SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, <span class="hlt">deep</span> western boundary current.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24A2915Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24A2915Y"><span>A Modeling Study of <span class="hlt">Deep</span> Water Renewal in the Red Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, F.; Hoteit, I.</p> <p>2016-02-01</p> <p><span class="hlt">Deep</span> water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The <span class="hlt">deep</span> water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the <span class="hlt">deep</span> water is renewed on time scales as short as 36 years. The renewal process is accomplished through a <span class="hlt">deep</span> overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the <span class="hlt">deep</span> water, including two <span class="hlt">deep</span> outflows from the Gulfs of Aqaba and Suez and winter <span class="hlt">deep</span> convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the <span class="hlt">deep</span> water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the <span class="hlt">deep</span> water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of <span class="hlt">deep</span> water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic <span class="hlt">observations</span>. During these renewal events, <span class="hlt">deep</span> convections reaching the bottom of the basin occurred, which further facilitated <span class="hlt">deep</span> sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed <span class="hlt">deep</span> water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJS..220...10N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJS..220...10N"><span>AEGIS-X: <span class="hlt">Deep</span> Chandra Imaging of the Central Groth Strip</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nandra, K.; Laird, E. S.; Aird, J. A.; Salvato, M.; Georgakakis, A.; Barro, G.; Perez-Gonzalez, P. G.; Barmby, P.; Chary, R.-R.; Coil, A.; Cooper, M. C.; Davis, M.; Dickinson, M.; Faber, S. M.; Fazio, G. G.; Guhathakurta, P.; Gwyn, S.; Hsu, L.-T.; Huang, J.-S.; Ivison, R. J.; Koo, D. C.; Newman, J. A.; Rangel, C.; Yamada, T.; Willmer, C.</p> <p>2015-09-01</p> <p>We present the results of <span class="hlt">deep</span> Chandra imaging of the central region of the Extended Groth Strip, the AEGIS-X <span class="hlt">Deep</span> (AEGIS-XD) survey. When combined with previous Chandra <span class="hlt">observations</span> of a wider area of the strip, AEGIS-X Wide (AEGIS-XW), these provide data to a nominal exposure depth of 800 ks in the three central ACIS-I fields, a region of approximately 0.29 deg2. This is currently the third deepest X-ray survey in existence; a factor ∼ 2-3 shallower than the Chandra <span class="hlt">Deep</span> Fields (CDFs), but over an area ∼3 times greater than each CDF. We present a catalog of 937 point sources detected in the <span class="hlt">deep</span> Chandra <span class="hlt">observations</span>, along with identifications of our X-ray sources from <span class="hlt">deep</span> ground-based, Spitzer, GALEX, and Hubble Space Telescope imaging. Using a likelihood ratio analysis, we associate multiband counterparts for 929/937 of our X-ray sources, with an estimated 95% reliability, making the identification completeness approximately 94% in a statistical sense. Reliable spectroscopic redshifts for 353 of our X-ray sources are available predominantly from Keck (<span class="hlt">DEEP</span>2/3) and MMT Hectospec, so the current spectroscopic completeness is ∼38%. For the remainder of the X-ray sources, we compute photometric redshifts based on multiband photometry in up to 35 bands from the UV to mid-IR. Particular attention is given to the fact that the vast majority the X-ray sources are active galactic nuclei and require hybrid templates. Our photometric redshifts have mean accuracy of σ =0.04 and an outlier fraction of approximately 5%, reaching σ =0.03 with less than 4% outliers in the area covered by CANDELS . The X-ray, multiwavelength photometry, and redshift catalogs are made publicly available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160014504','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160014504"><span>Jupiter's <span class="hlt">Deep</span> Cloud Structure Revealed Using Keck <span class="hlt">Observations</span> of Spectrally Resolved Line Shapes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.</p> <p>2015-01-01</p> <p>Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the <span class="hlt">deep</span> cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile <span class="hlt">observed</span> by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AJ....154..267C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AJ....154..267C"><span><span class="hlt">Deep</span> Subaru Hyper Suprime-Cam <span class="hlt">Observations</span> of Milky Way Satellites Columba I and Triangulum II</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlin, Jeffrey L.; Sand, David J.; Muñoz, Ricardo R.; Spekkens, Kristine; Willman, Beth; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay</p> <p>2017-12-01</p> <p>We present <span class="hlt">deep</span>, wide-field Subaru Hyper Suprime-Cam photometry of two recently discovered satellites of the Milky Way (MW): Columba I (Col I) and Triangulum II (Tri II). The color-magnitude diagrams of both objects point to exclusively old and metal-poor stellar populations. We re-derive structural parameters and luminosities of these satellites, and find {M}{{V},{Col}{{I}}}=-4.2+/- 0.2 for Col I and {M}{{V},{Tri}{II}}=-1.2+/- 0.4 for Tri II, with corresponding half-light radii of {r}{{h},{Col}{{I}}}=117+/- 17 pc and {r}{{h},{Tri}{II}}=21+/- 4 pc. The properties of both systems are consistent with <span class="hlt">observed</span> scaling relations for MW dwarf galaxies. Based on archival data, we derive upper limits on the neutral gas content of these dwarfs, and find that they lack H I, as do the majority of <span class="hlt">observed</span> satellites within the MW virial radius. Neither satellite shows evidence of tidal stripping in the form of extensions or distortions in matched-filter stellar density maps or surface-density profiles. However, the smaller Tri II system is relatively metal-rich for its luminosity (compared to other MW satellites), possibly because it has been tidally stripped. Through a suite of orbit simulations, we show that Tri II is approaching pericenter of its eccentric orbit, a stage at which tidal debris is unlikely to be seen. In addition, we find that Tri II may be on its first infall into the MW, which helps explain its unique properties among MW dwarfs. Further evidence that Tri II is likely an ultra-faint dwarf comes from its stellar mass function, which is similar to those of other MW dwarfs. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014sptz.prop11016C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014sptz.prop11016C"><span>SMUVS: Spitzer Matching survey of the UltraVISTA ultra-<span class="hlt">deep</span> Stripes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu</p> <p>2014-12-01</p> <p>We request 2026.5 hours to homogenize the matching ultra-<span class="hlt">deep</span> IRAC data of the UltraVISTA ultra-<span class="hlt">deep</span> stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-<span class="hlt">deep</span> stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-<span class="hlt">deep</span> stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-<span class="hlt">deep</span> mid-IR data are available. Our IRAC <span class="hlt">observations</span> will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-<span class="hlt">deep</span> stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our <span class="hlt">observations</span> will have an enormous legacy value which amply justifies this new <span class="hlt">observing</span>-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000AJ....120.2373S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000AJ....120.2373S"><span>A <span class="hlt">Deep</span> ROSAT HRI <span class="hlt">Observation</span> of NGC 1313</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlegel, Eric M.; Petre, Robert; Colbert, E. J. M.; Miller, Scott</p> <p>2000-11-01</p> <p>We describe a series of <span class="hlt">observations</span> of NGC 1313 using the ROSAT HRI with a combined exposure time of 183.5 ks. The <span class="hlt">observations</span> span an interval between 1992 and 1998; the purpose of <span class="hlt">observations</span> since 1994 was to monitor the X-ray flux of SN 1978K, one of several luminous sources in the galaxy. No diffuse emission is detected in the galaxy to a level of ~1-2×1037 ergs s-1 arcmin-2. A total of eight sources are detected in the summed image within the D25 diameter of the galaxy. The luminosities of five of the eight range from ~6×1037 to ~6×1038 ergs s-1 these sources are most likely accreting X-ray binaries, similar to sources <span class="hlt">observed</span> in M31 and M33. The remaining three sources all emit above 1039 ergs s-1. We present light curves of the five brightest sources. Variability is detected at the 99.9% level in four of these. We identify one of the sources as an NGC 1313 counterpart of a Galactic X-ray source. The light curve, though crudely sampled, most closely resembles that of a Galactic black hole candidate such as GX 339-4 but with considerably higher peak X-ray luminosity. An additional seven sources lie outside the D25 diameter and are either foreground stars or background active galactic nuclei.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29280997','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29280997"><span><span class="hlt">Deep</span>Sig: <span class="hlt">deep</span> learning improves signal peptide detection in proteins.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita</p> <p>2018-05-15</p> <p>The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Here, we present <span class="hlt">Deep</span>Sig, an improved approach for signal peptide detection and cleavage-site prediction based on <span class="hlt">deep</span> learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that <span class="hlt">Deep</span>Sig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. <span class="hlt">Deep</span>Sig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website. pierluigi.martelli@unibo.it. Supplementary data are available at Bioinformatics online.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001EP%26S...53..307R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001EP%26S...53..307R"><span>Stress on the seismogenic and <span class="hlt">deep</span> creep plate interface during the earthquake cycle in subduction zones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruff, Larry J.</p> <p>2001-04-01</p> <p>The <span class="hlt">deep</span> creep plate interface extends from the down-dip edge of the seismogenic zone down to the base of the overlying lithosphere in subduction zones. Seismogenic/<span class="hlt">deep</span> creep zone interaction during the earthquake cycle produces spatial and temporal variations in strains within the surrounding elastic material. Strain <span class="hlt">observations</span> in the Nankai subduction zone show distinct deformation styles in the co-seismic, post-seismic, and inter-seismic phases associated with the 1946 great earthquake. The most widely used kinematic model to match geodetic <span class="hlt">observations</span> has been a 2-D Savage-type model where a plate interface is placed in an elastic half-space and co-seismic slip occurs in the upper seismogenic portion of the interface, while inter-seismic deformation is modeled by a locked seismogenic zone and a constant slip velocity across the <span class="hlt">deep</span> creep interface. Here, I use the simplest possible 2-D mechanical model with just two blocks to study the stress interaction between the seismogenic and <span class="hlt">deep</span> creep zones. The seismogenic zone behaves as a stick-slip interface where co-seismic slip or stress drop constrain the model. A linear constitutive law for the <span class="hlt">deep</span> creep zone connects the shear stress (σ) to the slip velocity across the plate interface (s') with the material property of interface viscosity (ζ ) as: σ = ζ s'. The analytic solution for the steady-state two-block model produces simple formulas that connect some spatially-averaged geodetic <span class="hlt">observations</span> to model quantities. Aside from the basic subduction zone geometry, the key <span class="hlt">observed</span> parameter is τ, the characteristic time of the rapid post-seismic slip in the <span class="hlt">deep</span> creep interface. <span class="hlt">Observations</span> of τ range from about 5 years (Nankai and Alaska) to 15 years (Chile). The simple model uses these values for τ to produce estimates for ζ that range from 8.4 × 1013 Pa/m/s (in Nankai) to 6.5 × 1014 Pa/m/s (in Chile). Then, the model predicts that the shear stress acting on <span class="hlt">deep</span> creep interface averaged over</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016525','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016525"><span>From Radio with Love: An Overview of the Role of Radio <span class="hlt">Observations</span> in Understanding High-Energy Emission from Active Galaxies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ojha, Roopesh</p> <p>2012-01-01</p> <p>The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and <span class="hlt">HESS</span> have ushered in a new era in the <span class="hlt">observation</span> of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy <span class="hlt">observations</span>. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio <span class="hlt">observations</span> provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio <span class="hlt">observations</span> in unraveling the mysteries of the high energy Universe as presented here.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2255509B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2255509B"><span>Population and Star Formation Histories from the Outer Limits Survey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brondel, Brian Joseph; Saha, Abhijit; Olszewski, Edward</p> <p>2015-08-01</p> <p>The Outer Limits Survey (OLS) is a <span class="hlt">deep</span> survey of selected fields in the outlying areas of the Magellanic Clouds based on the MOSAIC-II instrument on the Blanco 4-meter Telescope at CTIO. OLS is designed to probe the outer disk and halo structures of Magellanic System. The survey comprises ~50 fields obtained in Landolt R, I and Washington C, M and DDO51 filters, extending to a depth of about 24th magnitude in I. While qualitative examination of the resulting data has yielded interesting published results, we report here on quantitative analysis through matching of <span class="hlt">Hess</span> diagrams to theoretical isochrones. We present analysis based on techniques developed by Dolphin (e.g., 2002, MNRAS, 332, 91) for fields <span class="hlt">observed</span> by OLS. Our results broadly match those found by qualitative examination of the CMDs, but interesting details emerge from isochrone fitting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1344573-dehydrogenation-goethite-earths-deep-lower-mantle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1344573-dehydrogenation-goethite-earths-deep-lower-mantle"><span>Dehydrogenation of goethite in Earth’s <span class="hlt">deep</span> lower mantle</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hu, Qingyang; Kim, Duck Young; Liu, Jin</p> <p>2017-01-31</p> <p>The cycling of hydrogen influences the structure, composition, and stratification of Earth’s interior. Our recent discovery of pyrite-structured iron peroxide (designated as the P phase) and the formation of the P phase from dehydrogenation of goethite FeO 2H implies the separation of the oxygen and hydrogen cycles in the <span class="hlt">deep</span> lower mantle beneath 1,800 km. Here we further characterize the residual hydrogen, x, in the P-phase FeO 2Hx. Using a combination of theoretical simulations and high-pressure–temperature experiments, we calibrated the x dependence of molar volume of the P phase. Within the current range of experimental conditions, we <span class="hlt">observed</span> a compositionalmore » range of P phase of 0.39 < x < 0.81, corresponding to 19–61% dehydrogenation. Increasing temperature and heating time will help release hydrogen and lower x, suggesting that dehydrogenation could be approaching completion at the high-temperature conditions of the lower mantle over extended geological time. Our <span class="hlt">observations</span> indicate a fundamental change in the mode of hydrogen release from dehydration in the upper mantle to dehydrogenation in the <span class="hlt">deep</span> lower mantle, thus differentiating the <span class="hlt">deep</span> hydrogen and hydrous cycles.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4548132','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4548132"><span><span class="hlt">Deep</span> water recycling through time</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen</p> <p>2014-01-01</p> <p>We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the <span class="hlt">deep</span> water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried <span class="hlt">deep</span> into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):. We generally <span class="hlt">observe</span> that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that <span class="hlt">deep</span> water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5–3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. Key Points <span class="hlt">Deep</span> water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux <span class="hlt">deep</span> into the mantle Subduction velocity has a a major control on the crustal dehydration pattern PMID:26321881</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26321881','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26321881"><span><span class="hlt">Deep</span> water recycling through time.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen</p> <p>2014-11-01</p> <p>We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the <span class="hlt">deep</span> water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity ( v s ), slab age ( a ) and mantle temperature (T m ). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried <span class="hlt">deep</span> into the mantle, W (×10 5 kg/m 2 ), as a function of v s (cm/yr), a (Myrs), and T m (°C):[Formula: see text]. We generally <span class="hlt">observe</span> that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×10 5 kg/m 2 of H 2 O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×10 8 Tg/Myr of H 2 O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that <span class="hlt">deep</span> water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 10 8 Tg/Myr of H 2 O could still be recycled in the mantle at 2.8 Ga. <span class="hlt">Deep</span> water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H 2 O flux <span class="hlt">deep</span> into the mantle Subduction velocity has a a major control on the crustal dehydration pattern.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDL31008Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDL31008Y"><span>Experimental <span class="hlt">observation</span> of steady inertial wave turbulence in <span class="hlt">deep</span> rotating flows</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yarom, Ehud; Sharon, Eran</p> <p>2015-11-01</p> <p>We present experimental evidence of inertial wave turbulence in <span class="hlt">deep</span> rotating fluid. Experiments were performed in a rotating cylindrical water tank, where previous work showed statistics similar to 2D turbulence (specifically an inverse energy cascade). Using Fourier analysis of high resolution data in both space (3D) and time we show that most of the energy of a steady state flow is contained around the inertial wave dispersion relation. The nonlinear interaction between the waves is manifested by the widening of the time spectrum around the dispersion relation. We show that as the Rossby number increases so does the spectrum width, with a strong dependence on wave number. Our results suggest that in some parameters range, rotating turbulence velocity field can be represented as a field of interacting waves (wave turbulence). Such formalism may provide a better understanding of the flow statistics. This work was supported by the Israel Science Foundation, Grant No. 81/12.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20689848','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20689848"><span><span class="hlt">Deep</span>-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios</p> <p>2010-08-02</p> <p><span class="hlt">Deep</span>-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of <span class="hlt">deep</span>-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different <span class="hlt">deep</span>-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, <span class="hlt">deep</span> basins, canyons, cold seeps, seamounts, <span class="hlt">deep</span>-water corals and <span class="hlt">deep</span>-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the <span class="hlt">deep</span>-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns <span class="hlt">observed</span> for faunal abundance, highest negative values of the slopes of the biodiversity patterns were <span class="hlt">observed</span> for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, <span class="hlt">deep</span> basins, canyons, and <span class="hlt">deep</span>-water corals showed that the <span class="hlt">deep</span> basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each <span class="hlt">deep</span>-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall <span class="hlt">deep</span>-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2914020','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2914020"><span><span class="hlt">Deep</span>-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J.; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios</p> <p>2010-01-01</p> <p><span class="hlt">Deep</span>-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of <span class="hlt">deep</span>-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different <span class="hlt">deep</span>-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, <span class="hlt">deep</span> basins, canyons, cold seeps, seamounts, <span class="hlt">deep</span>-water corals and <span class="hlt">deep</span>-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the <span class="hlt">deep</span>-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns <span class="hlt">observed</span> for faunal abundance, highest negative values of the slopes of the biodiversity patterns were <span class="hlt">observed</span> for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, <span class="hlt">deep</span> basins, canyons, and <span class="hlt">deep</span>-water corals showed that the <span class="hlt">deep</span> basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each <span class="hlt">deep</span>-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall <span class="hlt">deep</span>-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999A%26A...342..313A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999A%26A...342..313A"><span>ISOCAM <span class="hlt">observations</span> of the Hubble <span class="hlt">Deep</span> Field reduced with the PRETI method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aussel, H.; Cesarsky, C. J.; Elbaz, D.; Starck, J. L.</p> <p>1999-02-01</p> <p>We have developed a new ISOCAM data reduction technique based on wavelet analysis, especially designed for the detection of faint sources in mid-infrared surveys. This method, the Pattern REcognition Technique for Isocam data (PRETI) has been used to reduce the <span class="hlt">observations</span> of the Hubble <span class="hlt">Deep</span> Field (HDF) and flanking fields with ISOCAM at 6.75 (LW2) and 15 mu m (LW3) (Rowan-Robinson et al. \\cite{RowanRobinson}). Simulations of ISOCAM data allow us to test the photometric accuracy and completeness of the reduction. According to these simulations, the PRETI source list is 95% complete in the 15 mu m band at 200 mu Jy and in the 6.75 mu m band at 65 mu Jy, using detection thresholds which minimize the number of false detections. We detect 49 objects in the ISO-HDF at high confidence secure level, 42 in the LW3 filter, 3 in the LW2 filter, and 4 in both filters. An additional, less secure, list of 100 sources is presented, of which 89 are detected at 15 mu m only, 7 at 6.75 mu m only and 4 in both filters. All ISO-HDF objects detected in the HDF itself have optical or infrared counterparts, except for one from the additional list. All except one of the radio sources detected in the field by Fomalont et al. (\\cite{Fomalont}) are detected with ISOCAM. Using a precise correction for the field of view distortion of ISOCAM allows us to separate blended sources. This, together with the fact that PRETI allows to correct data on the tail of cosmic rays glitches, lead us to produce deeper source lists than previous authors. Our list of bright sources agree with those of Désert et al. (\\cite{IAS}) in both filters, and with those of Goldschmidt et al. (\\cite{Goldschmidt}) in the LW3 filter, with systematic difference in photometry. Number counts derived from our results show an excess by a factor of 10 with respect to the prediction of a no evolution model (Franceschini \\cite{Franceschini98}) in the LW3 band. On the contrary, the number of sources in the LW2 band is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMPP42A0860F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMPP42A0860F"><span>Depths and Ages of <span class="hlt">Deep</span>-Sea Corals From the Medusa Expedition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandez, D.; Adkins, J. F.; Robinson, L. F.; Scheirer, D.; Shank, T.</p> <p>2003-12-01</p> <p>From May-June 2003 we used the DSV Alvin and the RSV Atlantis to collect modern and fossil <span class="hlt">deep</span>-sea corals from the New England and Muir Seamounts. Our goal was to collect depth transects of corals from a variety of ages to measure paleo chemical profiles in the North Atlantic. Because <span class="hlt">deep</span>-sea corals can be dated with both U-series and radiocarbon methods, we are especially interested in measuring past D14C profiles to constrain the paleo overturning rate of the <span class="hlt">deep</span> ocean. We collected over 3,300 fossil Desmophyllum cristagalli individuals, 10s of kgs of Solenosmillia sp. and numerous Enallopsamia rostrata and Caryophilia sp. These samples spanned a depth range from 1,150-2,500 meters and refute the notion that <span class="hlt">deep</span>-sea corals are too sparsely distributed to be useful for paleoclimate reconstructions. Despite widespread evidence for mass wasting on the seamounts, fossil corals were almost always found in growth position. This <span class="hlt">observation</span> alleviates some of the concern associated with dredge samples where down-slope transport of samples can not be characterized. Fossil scleractinia were often found to have recruited onto other carbonate skeletons, including large branching gorgonians. The U-series age distribution of these recruitment patterns will constrain how much paleoclimatic time a particular "patch" can represent. In addition, U-series ages, combined with the <span class="hlt">observed</span> differences in species distribution, will begin to inform our understanding of <span class="hlt">deep</span>-sea coral biogeography. A lack of modern D. cristagalli on Muir seamount, but an abundance of fossil samples at this site, is the most striking example of changes in oceanic conditions playing a role in where <span class="hlt">deep</span>-sea corals grow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28410981','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28410981"><span>Predicting healthcare trajectories from medical records: A <span class="hlt">deep</span> learning approach.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pham, Trang; Tran, Truyen; Phung, Dinh; Venkatesh, Svetha</p> <p>2017-05-01</p> <p>Personalized predictive medicine necessitates the modeling of patient illness and care processes, which inherently have long-term temporal dependencies. Healthcare <span class="hlt">observations</span>, stored in electronic medical records are episodic and irregular in time. We introduce <span class="hlt">Deep</span>Care, an end-to-end <span class="hlt">deep</span> dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes. At the data level, <span class="hlt">Deep</span>Care represents care episodes as vectors and models patient health state trajectories by the memory of historical records. Built on Long Short-Term Memory (LSTM), <span class="hlt">Deep</span>Care introduces methods to handle irregularly timed events by moderating the forgetting and consolidation of memory. <span class="hlt">Deep</span>Care also explicitly models medical interventions that change the course of illness and shape future medical risk. Moving up to the health state level, historical and present health states are then aggregated through multiscale temporal pooling, before passing through a neural network that estimates future outcomes. We demonstrate the efficacy of <span class="hlt">Deep</span>Care for disease progression modeling, intervention recommendation, and future risk prediction. On two important cohorts with heavy social and economic burden - diabetes and mental health - the results show improved prediction accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22608093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22608093"><span><span class="hlt">Deep</span>-brain-stimulation does not impair deglutition in Parkinson's disease.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lengerer, Sabrina; Kipping, Judy; Rommel, Natalie; Weiss, Daniel; Breit, Sorin; Gasser, Thomas; Plewnia, Christian; Krüger, Rejko; Wächter, Tobias</p> <p>2012-08-01</p> <p>A large proportion of patients with Parkinson's disease develop dysphagia during the course of the disease. Dysphagia in Parkinson's disease affects different phases of deglutition, has a strong impact on quality of life and may cause severe complications, i.e., aspirational pneumonia. So far, little is known on how <span class="hlt">deep</span>-brain-stimulation of the subthalamic nucleus influences deglutition in PD. Videofluoroscopic swallowing studies on 18 patients with Parkinson's disease, which had been performed preoperatively, and postoperatively with <span class="hlt">deep</span>-brain-stimulation-on and <span class="hlt">deep</span>-brain-stimulation-off, were analyzed retrospectively. The patients were examined in each condition with three consistencies (viscous, fluid and solid). The 'New Zealand index for multidisciplinary evaluation of swallowing (NZIMES) Subscale One' for qualitative and 'Logemann-MBS-Parameters' for quantitative evaluation were assessed. Preoperatively, none of the patients presented with clinically relevant signs of dysphagia. While postoperatively, the mean daily levodopa equivalent dosage was reduced by 50% and <span class="hlt">deep</span>-brain-stimulation led to a 50% improvement in motor symptoms measured by the UPDRS III, no clinically relevant influence of <span class="hlt">deep</span>-brain-stimulation-on swallowing was <span class="hlt">observed</span> using qualitative parameters (NZIMES). However quantitative parameters (Logemann scale) found significant changes of pharyngeal parameters with <span class="hlt">deep</span>-brain-stimulation-on as compared to preoperative condition and <span class="hlt">deep</span>-brain-stimulation-off mostly with fluid consistency. In Parkinson patients without dysphagia <span class="hlt">deep</span>-brain-stimulation of the subthalamic nucleus modulates the pharyngeal deglutition phase but has no clinically relevant influence on deglutition. Further studies are needed to test if <span class="hlt">deep</span>-brain-stimulation is a therapeutic option for patients with swallowing disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014A%26A...562A.145H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014A%26A...562A.145H"><span>Search for extended γ-ray emission around AGN with <span class="hlt">H.E.S.S</span>. and Fermi-LAT</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Atäı, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemie`re, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Malyshev, D.</p> <p>2014-02-01</p> <p>Context. Very-high-energy (VHE; E > 100 GeV) γ-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these γ-rays with the extragalactic background light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair-halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 were searched for using VHE γ-ray data taken with the High Energy Stereoscopic System (<span class="hlt">H.E.S.S</span>.) and high-energy (HE; 100 MeV < E < 100 GeV) γ-ray data with the Fermi Large Area Telescope (LAT). Methods: By comparing the angular distributions of the reconstructed γ-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results: Upper limits on the extended emission around 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 are found to be at a level of a few per cent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong extra-Galactic magnetic field (EGMF) values, >10-12 G, this limits the production of pair haloes developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in MBCs, EGMF strengths in the range (0.3-3)× 10-15 G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16617448','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16617448"><span>Airway hyperresponsiveness and body mass index: the Child Health and Environment Cohort Study in <span class="hlt">Hesse</span>, Germany.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eneli, I U; Karmaus, W K; Davis, S; Kuehr, J</p> <p>2006-06-01</p> <p>Increased body mass index has been linked to wheezing, a diagnosis of asthma, and morbidity. We investigated the association between body mass index (BMI), breastfeeding, and airway hyperresponsiveness (AHR) in 536 German schoolchildren. We analyzed consecutive surveys in 1994-1995 and 1997, conducted as part of the Child Health and Environment Cohort Study in <span class="hlt">Hesse</span>, Germany. The questionnaire included questions adapted from the German version of the International Study of Asthma and Allergy in Childhood (ISAAC). A bronchial challenge test using 4.5% hypertonic saline was conducted during the 1997 survey. AHR was defined as a fall in forced expiratory volume in 1 sec (FEV(1)) of > or = 15%. Of 536 children who participated in the 1997 survey (median age, 10.3 years), 82 (15%) tested positive for AHR. In a multivariate analysis, there was no association between AHR determined at age 10 years and the highest quintile of BMI compared to the lowest quintile at age 4 years (odds ratio (OR), 1.4; 95% confidence interval (CI), 0.5-3.6), 7-8 years (OR, 0.6; 95% CI, 0.1-2.5), or 10 years (OR, 1.1; 95% CI, 0.2-4.3). Breastfeeding for 12 weeks or longer protected against AHR (OR, 0.4; 95% CI, 0.2-0.9). However, when children in the highest quintile of BMI at age 4 years had been breastfed for 8 weeks or less, the prevalence of AHR at age 10 years was significantly increased (27.7%, P = 0.01). In conclusion, our results demonstrate a protective effect of breastfeeding against AHR, and reinforce the need to encourage breastfeeding. Although there was no association between BMI and AHR, our finding of an interactive effect of high BMI and short breastfeeding on AHR suggests a complex etiological pathway that needs to be further explored. Copyright 2006 Wiley-Liss, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034770','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034770"><span>Constraints on <span class="hlt">deep</span> moonquake focal mechanisms through analyses of tidal stress</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Weber, R.C.; Bills, B.G.; Johnson, C.L.</p> <p>2009-01-01</p> <p>[1] A relationship between <span class="hlt">deep</span> moonquake occurrence and tidal forcing is suggested by the monthly periodicities <span class="hlt">observed</span> in the occurrence times of events recorded by the Apollo Passive Seismic Experiment. In addition, the typically large S wave to P wave arrival amplitude ratios <span class="hlt">observed</span> on <span class="hlt">deep</span> moonquake seismograms are indicative of shear failure. Tidal stress, induced in the lunar interior by the gravitational influence of the Earth, may influence moonquake activity. We investigate the relationship between tidal stress and <span class="hlt">deep</span> moonquake occurrence by searching for a linear combination of the normal and shear components of tidal stress that best approximates a constant value when evaluated at the times of moonquakes from 39 different moonquake clusters. We perform a grid search at each cluster location, computing the stresses resolved onto a suite of possible failure planes, to obtain the best fitting fault orientation at each location. We find that while linear combinations of stresses (and in some cases stress rates) can fit moonquake occurrence at many clusters quite well; for other clusters, the fit is not strongly dependent on plane orientation. This suggests that <span class="hlt">deep</span> moonquakes may occur in response to factors other than, or in addition to, tidal stress. Several of our inferences support the hypothesis that <span class="hlt">deep</span> moonquakes might be related to transformational faulting, in which shear failure is induced by mineral phase changes at depth. The occurrence of this process would have important implications for the lunar interior. Copyright 2009 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29455111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29455111"><span><span class="hlt">Deep</span>Mitosis: Mitosis detection via <span class="hlt">deep</span> detection, verification and segmentation networks.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Chao; Wang, Xinggang; Liu, Wenyu; Latecki, Longin Jan</p> <p>2018-04-01</p> <p>Mitotic count is a critical predictor of tumor aggressiveness in the breast cancer diagnosis. Nowadays mitosis counting is mainly performed by pathologists manually, which is extremely arduous and time-consuming. In this paper, we propose an accurate method for detecting the mitotic cells from histopathological slides using a novel multi-stage <span class="hlt">deep</span> learning framework. Our method consists of a <span class="hlt">deep</span> segmentation network for generating mitosis region when only a weak label is given (i.e., only the centroid pixel of mitosis is annotated), an elaborately designed <span class="hlt">deep</span> detection network for localizing mitosis by using contextual region information, and a <span class="hlt">deep</span> verification network for improving detection accuracy by removing false positives. We validate the proposed <span class="hlt">deep</span> learning method on two widely used Mitosis Detection in Breast Cancer Histological Images (MITOSIS) datasets. Experimental results show that we can achieve the highest F-score on the MITOSIS dataset from ICPR 2012 grand challenge merely using the <span class="hlt">deep</span> detection network. For the ICPR 2014 MITOSIS dataset that only provides the centroid location of mitosis, we employ the segmentation model to estimate the bounding box annotation for training the <span class="hlt">deep</span> detection network. We also apply the verification model to eliminate some false positives produced from the detection model. By fusing scores of the detection and verification models, we achieve the state-of-the-art results. Moreover, our method is very fast with GPU computing, which makes it feasible for clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999AAS...195.7005S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999AAS...195.7005S"><span>A <span class="hlt">Deep</span> ROSAT HRI <span class="hlt">Observation</span> of NGC 1313</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlegel, E. M.; Petre, R.; Colbert, E. J. M.; Miller, S.</p> <p>1999-12-01</p> <p>We describe a series of <span class="hlt">observations</span> of NGC 1313 using the ROSAT HRI with a combined exposure time of 183.5 ksec. The <span class="hlt">observations</span> span an interval between 1992 and 1998; the purpose of <span class="hlt">observations</span> since 1994 was to monitor the X-ray flux of SN1978K, one of several luminous sources in the galaxy. No diffuse emission is detected in the galaxy to a level of 7x1036 ergs s-1 arcmin-2. A total of eight sources are detected in the summed image within the D25 diameter of the galaxy and an additional seven outside of that region. We present light curves of the five brightest sources. Variability is detected at the 99.9% level from four of these. We identify one of the sources as an NGC 1313 counterpart of a Galactic X-ray source. The light curve, though crudely sampled, most closely resembles that of a Galactic black hole candidate such as GX339-4, but with considerably higher peak X-ray luminosity. We briefly discuss the large number of super-Eddington sources in this galaxy. The research was supported by NASA Grant NAG5-4015 to the Smithsonian Astrophysical Observatory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050071079','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050071079"><span>Chandra <span class="hlt">Deep</span> X-ray <span class="hlt">Observation</span> of a Typical Galactic Plane Region and Near-Infrared Identification</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ebisawa, K.; Tsujimoto, M.; Paizis, A.; Hamaguichi, K.; Bamba, A.; Cutri, R.; Kaneda, H.; Maeda, Y.; Sato, G.; Senda, A.</p> <p>2004-01-01</p> <p>Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a <span class="hlt">deep</span> hard X-ray <span class="hlt">observation</span> of the Galactic plane region at (l,b) approx. (28.5 deg,0.0 deg), where no discrete X-ray source has been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partidly overlapping ACIS-I fields (approx. 250 sq arcmin in total). The point source sensitivity was approx. 3 x 10(exp -15)ergs/s/sq cm in the hard X-ray band (2-10 keV and approx. 2 x 10(exp -16) ergs/s/sq cm in the soft band (0.5-2 keV). Sum of all the detected point source fluxes account for only approx. 10 % of the total X-ray fluxes in the field of view. In order to explain the total X-ray fluxes by a superposition of fainter point sources, an extremely rapid increase of the source population is required below our sensitivity limit, which is hardly reconciled with any source distribution in the Galactic plane. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than <span class="hlt">observed</span> at the high Galactic latitude regions, strongly suggesting that majority of the hard X-ray sources are active galaxies seen through the Galactic plane. Following the Chandra <span class="hlt">observation</span>, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT to identify these new X-ray sources. Since the Galactic plane is opaque in NIR, we did not see the background extragalactic sources in NIR. In fact, only 22 % of the hard sources had NIR counterparts which are most likely to be Galactic origin. Composite X-ray energy spectrum of those hard X-ray sources having NIR counterparts exhibits a narrow approx. 6.7 keV iron emission line, which</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24110698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24110698"><span>Analysis of evoked <span class="hlt">deep</span> brain connectivity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klimeš, Petr; Janeček, Jiři; Jurák, Pavel; Halámek, Josef; Chládek, Han; Brázdil, Milan</p> <p>2013-01-01</p> <p>Establishing dependencies and connectivity among different structures in the human brain is an extremely complex issue. Methods that are often used for connectivity analysis are based on correlation mechanisms. Correlation methods can analyze changes in signal shape or instantaneous power level. Although recent studies imply that <span class="hlt">observation</span> of results from both groups of methods together can disclose some of the basic functions and behavior of the human brain during mental activity and decision-making, there is no technique covering changes in the shape of signals along with changes in their power levels. We present a method using a time evaluation of the correlation along with a comparison of power levels in every available contact pair from intracranial electrodes placed in <span class="hlt">deep</span> brain structures. <span class="hlt">Observing</span> shape changes in signals after stimulation together with their power levels provides us with new information about signal character between different structures in the brain during task-related events - visual stimulation with motor response. The results for a subject with 95 intracerebral contacts used in this paper demonstrate a clear methodology capable of spatially analyzing connectivity among <span class="hlt">deep</span> brain structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1978/1020/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1978/1020/report.pdf"><span>Hot, <span class="hlt">deep</span> origin of petroleum: <span class="hlt">deep</span> basin evidence and application</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Price, Leigh C.</p> <p>1978-01-01</p> <p>Use of the model of a hot <span class="hlt">deep</span> origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the <span class="hlt">deep</span> basin is cut by or directly updip from faults dipping into the basin <span class="hlt">deep</span>. Generally the greater the fault throw the greater the reserves. Fault-block highs next to <span class="hlt">deep</span> sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to <span class="hlt">deep</span> sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the <span class="hlt">deep</span> basin associated with major faulting, production over the basin <span class="hlt">deep</span>, and regional stratigraphic trapping updip from established production along major fault zones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRI..122..113J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRI..122..113J"><span>Vertical distribution of living ostracods in <span class="hlt">deep</span>-sea sediments, North Atlantic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jöst, Anna B.; Yasuhara, Moriaki; Okahashi, Hisayo; Ostmann, Alexandra; Arbizu, Pedro Martínez; Brix, Saskia</p> <p>2017-04-01</p> <p>The depth distribution of living specimens of <span class="hlt">deep</span>-sea benthic ostracods (small crustaceans with calcareous shells that are preserved as microfossils) in sediments is poorly understood, despite the importance of this aspect of basic ostracod biology for paleoecologic and paleoceanographic interpretations. Here, we investigated living benthic ostracod specimens from <span class="hlt">deep</span>-sea multiple core samples, to reveal their depths distributions within sediment cores. The results showed shallow distribution and low population density of living <span class="hlt">deep</span>-sea benthic ostracods (which are mostly composed of Podocopa). The living specimens are concentrated in the top 1 cm of the sediment, hence <span class="hlt">deep</span>-sea benthic ostracods are either epifauna or shallow infauna. This <span class="hlt">observation</span> is consistent with the information from shallow-water species. We also confirmed shallow infaunal (0.5-2 cm) and very shallow infaunal (0-1 cm) habitats of the <span class="hlt">deep</span>-sea ostracod genera Krithe and Argilloecia, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24799436','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24799436"><span><span class="hlt">deep</span>Tools: a flexible platform for exploring <span class="hlt">deep</span>-sequencing data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ramírez, Fidel; Dündar, Friederike; Diehl, Sarah; Grüning, Björn A; Manke, Thomas</p> <p>2014-07-01</p> <p>We present a Galaxy based web server for processing and visualizing deeply sequenced data. The web server's core functionality consists of a suite of newly developed tools, called <span class="hlt">deep</span>Tools, that enable users with little bioinformatic background to explore the results of their sequencing experiments in a standardized setting. Users can upload pre-processed files with continuous data in standard formats and generate heatmaps and summary plots in a straight-forward, yet highly customizable manner. In addition, we offer several tools for the analysis of files containing aligned reads and enable efficient and reproducible generation of normalized coverage files. As a modular and open-source platform, <span class="hlt">deep</span>Tools can easily be expanded and customized to future demands and developments. The <span class="hlt">deep</span>Tools webserver is freely available at http://deeptools.ie-freiburg.mpg.de and is accompanied by extensive documentation and tutorials aimed at conveying the principles of <span class="hlt">deep</span>-sequencing data analysis. The web server can be used without registration. <span class="hlt">deep</span>Tools can be installed locally either stand-alone or as part of Galaxy. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Natur.521..436L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Natur.521..436L"><span><span class="hlt">Deep</span> learning</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lecun, Yann; Bengio, Yoshua; Hinton, Geoffrey</p> <p>2015-05-01</p> <p><span class="hlt">Deep</span> learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. <span class="hlt">Deep</span> learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. <span class="hlt">Deep</span> convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26017442','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26017442"><span><span class="hlt">Deep</span> learning.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey</p> <p>2015-05-28</p> <p><span class="hlt">Deep</span> learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. <span class="hlt">Deep</span> learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. <span class="hlt">Deep</span> convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=58687','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=58687"><span><span class="hlt">Deep</span>-Earth reactor: Nuclear fission, helium, and the geomagnetic field</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hollenbach, D. F.; Herndon, J. M.</p> <p>2001-01-01</p> <p>Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions <span class="hlt">deep</span> within the Earth. Moreover, <span class="hlt">deep</span>-Earth production of helium, having 3He/4He ratios within the range <span class="hlt">observed</span> from <span class="hlt">deep</span>-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11562483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11562483"><span><span class="hlt">Deep</span>-Earth reactor: nuclear fission, helium, and the geomagnetic field.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hollenbach, D F; Herndon, J M</p> <p>2001-09-25</p> <p>Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions <span class="hlt">deep</span> within the Earth. Moreover, <span class="hlt">deep</span>-Earth production of helium, having (3)He/(4)He ratios within the range <span class="hlt">observed</span> from <span class="hlt">deep</span>-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33H0284K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33H0284K"><span>Coastal Upwelling and <span class="hlt">Deep</span> Fog: 50-year Worldwide Climatology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koracin, D. R.</p> <p>2015-12-01</p> <p>An analysis is presented of the marine fog distribution based upon the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) ship <span class="hlt">observations</span> taken during 1950-2007. <span class="hlt">Deep</span> fog occurrence is reported in routine weather reports that are encoded in an ICOADS ship <span class="hlt">observation</span>. Occurrence is estimated by the number of <span class="hlt">deep</span> fog <span class="hlt">observations</span> divided by the total present weather <span class="hlt">observations</span> in a one-degree area centered on latitude and longitude grid point intersections. The mean fog occurrence for the summer (June-July-August) 1950-2007 was computed for each one degree point for the world. There are five major world locations with coastal SST minimums due to wind driven upwelling. Four of these are during the local summer on the eastern side of a semi-permanent anticyclone on eastern sides of northern and southern mid-latitudes of the Pacifica and the Atlantic. The fifth is during the SW monsoon in the Indian Ocean. For all five of these locations, the <span class="hlt">deep</span> fog occurrence is at maximum during the upwelling season, with the greatest occurrences concentrated along the coast and isolated over the SST minimum. For the five coastal fog maxima, the greatest and longest duration occurrence along coast occurrence is associated with the coldest sea surface temperature and longest along coast occurrence, which is along N. California- S. Oregon. In contrast, the lowest occurrence of fog and the least along coast occurrence is associated with the warmest sea surface temperatures and least along coast occurrence along the SE Arabian Peninsula. The remaining three zones, Peru-Chile, NW Africa, and SW Africa are between the two extremes in fog occurrence, along coast coverage and sea surface temperature. Peru-Chile is more complex than the others as the Peru upwelling and fog appears the more dominant although ship <span class="hlt">observations</span> are sparse along Chile.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MNRAS.445.3444W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MNRAS.445.3444W"><span>Exploring the origin of a large cavity in Abell 1795 using <span class="hlt">deep</span> Chandra <span class="hlt">observations</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, S. A.; Fabian, A. C.; Kosec, P.</p> <p>2014-12-01</p> <p>We examine <span class="hlt">deep</span> stacked Chandra <span class="hlt">observations</span> of the galaxy cluster Abell 1795 (over 700 ks) to study in depth a large (34 kpc radius) cavity in the X-ray emission. Curiously, despite the large energy required to form this cavity (4PV = 4 × 1060 erg), there is no obvious counterpart to the cavity on the opposite side of the cluster, which would be expected if it has formed due to jets from the central active galactic nucleus (AGN) inflating bubbles. There is also no radio emission associated with the cavity, and no metal enhancement or filaments between it and the brightest cluster galaxy, which are normally found for bubbles inflated by AGN which have risen from the core. One possibility is that this is an old ghost cavity, and that gas sloshing has dominated the distribution of metals around the core. Projection effects, particularly the long X-ray bright filament to the south-east, may prevent us from seeing the companion bubble on the opposite side of the cluster core. We calculate that such a companion bubble would easily have been able to uplift the gas in the southern filament from the core. Interestingly, it has recently been found that inside the cavity is a highly variable X-ray point source coincident with a small dwarf galaxy. Given the remarkable spatial correlation of this point source and the X-ray cavity, we explore the possibility that an outburst from this dwarf galaxy in the past could have led to the formation of the cavity, but find this to be an unlikely scenario.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27473064','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27473064"><span><span class="hlt">Deep</span> learning in bioinformatics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Min, Seonwoo; Lee, Byunghan; Yoon, Sungroh</p> <p>2017-09-01</p> <p>In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. <span class="hlt">Deep</span> learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of <span class="hlt">deep</span> learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review <span class="hlt">deep</span> learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and <span class="hlt">deep</span> learning architecture (i.e. <span class="hlt">deep</span> neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of <span class="hlt">deep</span> learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply <span class="hlt">deep</span> learning approaches in their bioinformatics studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29170015','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29170015"><span>[Detrusor sphincter disorders associated with <span class="hlt">deep</span> endometriosis: Systematic review of the literature].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grouin, A; Florian, A; Sans Mischel, A C; Toullalan, O</p> <p>2018-01-01</p> <p>Detrusor sphincter disorders impact quality of life in case of <span class="hlt">deep</span> endometriosis. Surgery, which is one of the main treatments, is responsible of detrusor sphincter disorders. Since then, it is essential to look for those disorders and find the right medical care. To specify the detrusor sphincter disorders, its links with anatomical localisation of <span class="hlt">deep</span> endometriosis and its prognosis after surgery. A literature review was carried out via PubMed ® with the followings keywords: "<span class="hlt">deep</span> endometriosis", "urinary disorders", "voiding dysfunction" and "urinary dysfunction". Prospective and retrospective studies as well as previous reviews were analyzed. Concerning bladder <span class="hlt">deep</span> endometriosis, detrusor sphincter disorders are <span class="hlt">observed</span> in more than 50%. Resection of the lesions allows a clear improvement or even a disappearance of the disorders. Concerning the <span class="hlt">deep</span> endometriosis of the posterior part of the pelvis, disorders are highlighted even if women do not complain of urinary trouble. Detrusor sphincter disorders are <span class="hlt">observed</span> in 2 to 50% and women with colorectal localisation have the highest rate. Resection of the lesions improves the symptoms described preoperatively but also provides de novo disorders of up to 47.5%. In terms of prevention, the nerve sparing surgery respects the pelvic nerve plexus, and reduces post-operative morbidity to less than 1%. Detrusor sphincter disorders associated with <span class="hlt">deep</span> endometriosis have a prognosis if their management is adapted. Well-conducted interviews and standardized questionnaires is necessary to diagnosis them. Urodynamic test may be discussed in case of bladder endometriosis, including for urinary asymptomatic patients. The management of the detrusor sphincter disorders requires a complete resection of the nodules of <span class="hlt">deep</span> endometriosis. In the case of posterior endometriosis, a dissection must be performed respecting the retroperitoneal vegetative nerves. Copyright © 2017 Elsevier Masson SAS. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040031476','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040031476"><span>Nonlinear Gulf Stream Interaction with the <span class="hlt">Deep</span> Western Boundary Current System: <span class="hlt">Observations</span> and a Numerical Simulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng</p> <p>2003-01-01</p> <p>Gulf Stream (GS) separation near its <span class="hlt">observed</span> Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/<span class="hlt">Deep</span> Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP53B1206D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP53B1206D"><span>The National <span class="hlt">Deep</span>-Sea Coral and Sponge Database: A Comprehensive Resource for United States <span class="hlt">Deep</span>-Sea Coral and Sponge Records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dornback, M.; Hourigan, T.; Etnoyer, P.; McGuinn, R.; Cross, S. L.</p> <p>2014-12-01</p> <p>Research on <span class="hlt">deep</span>-sea corals has expanded rapidly over the last two decades, as scientists began to realize their value as long-lived structural components of high biodiversity habitats and archives of environmental information. The NOAA <span class="hlt">Deep</span> Sea Coral Research and Technology Program's National Database for <span class="hlt">Deep</span>-Sea Corals and Sponges is a comprehensive resource for georeferenced data on these organisms in U.S. waters. The National Database currently includes more than 220,000 <span class="hlt">deep</span>-sea coral records representing approximately 880 unique species. Database records from museum archives, commercial and scientific bycatch, and from journal publications provide baseline information with relatively coarse spatial resolution dating back as far as 1842. These data are complemented by modern, in-situ submersible <span class="hlt">observations</span> with high spatial resolution, from surveys conducted by NOAA and NOAA partners. Management of high volumes of modern high-resolution <span class="hlt">observational</span> data can be challenging. NOAA is working with our data partners to incorporate this occurrence data into the National Database, along with images and associated information related to geoposition, time, biology, taxonomy, environment, provenance, and accuracy. NOAA is also working to link associated datasets collected by our program's research, to properly archive them to the NOAA National Data Centers, to build a robust metadata record, and to establish a standard protocol to simplify the process. Access to the National Database is provided through an online mapping portal. The map displays point based records from the database. Records can be refined by taxon, region, time, and depth. The queries and extent used to view the map can also be used to download subsets of the database. The database, map, and website is already in use by NOAA, regional fishery management councils, and regional ocean planning bodies, but we envision it as a model that can expand to accommodate data on a global scale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1356799-cosmic-rays-surroundings-snr-g35','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1356799-cosmic-rays-surroundings-snr-g35"><span>Cosmic rays in the surroundings of SNR G35.6–0.4</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Torres, Diego F.; Li, Hui; Chen, Yang; ...</p> <p>2011-11-02</p> <p><span class="hlt">HESS</span> J1858+020 is a TeV gamma-ray source that was reported to have no clearly catalogued counterpart at any wavelength. However, it has been recently proposed that this source is indirectly associated with the radio source, re-identified as a supernova remnant (SNR), G35.6–0.4. The latter has been found to be middle-aged (~30 kyr) and to have nearby molecular clouds (MCs). <span class="hlt">HESS</span> J1858+020 was proposed to be the result of the interaction of protons accelerated in the SNR shell with target ions residing in the clouds. The Fermi Large Area Telescope (LAT) First Source Catalog does not list any source coincident withmore » the position of <span class="hlt">HESS</span> J1858+020, but some lie close. Here, we analyse more than 2 years of data obtained with the Fermi-LAT for the region of interest, and consider whether it is indeed possible that the closest LAT source, 1FGL J1857.1+0212c, is related to <span class="hlt">HESS</span> J1858+020. We conclude it is not, and we impose upper limits on the GeV emission originating from <span class="hlt">HESS</span> J1858+020. Using a simplified 3D model for the cosmic ray propagation out from the shell of the SNR, we consider whether the interaction between SNR G35.6–0.4 and the MCs nearby could give rise to the TeV emission of <span class="hlt">HESS</span> J1858+020 without producing a GeV counterpart. If so, the pair of SNR/TeV source with no GeV detection would be reminiscent of other similarly aged SNRs, such as some of the TeV hotspots near W28, for which cosmic ray diffusion may be used to explain their multifrequency phenomenology. Furthermore, for <span class="hlt">HESS</span> J1858+020, we found that although the phase space in principle allows such a GeV–TeV non-correlation to appear, usual and/or <span class="hlt">observationally</span> constrained values of the parameters (e.g., diffusion coefficients and cloud–SNR likely distances) would disfavour it.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcSci..13..609H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcSci..13..609H"><span>North Atlantic <span class="hlt">deep</span> water formation and AMOC in CMIP5 models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heuzé, Céline</p> <p>2017-07-01</p> <p><span class="hlt">Deep</span> water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with <span class="hlt">observations</span> to assess the biases, causes and consequences of North Atlantic <span class="hlt">deep</span> convection in models. The majority of models convect too <span class="hlt">deep</span>, over too large an area, too often and too far south. <span class="hlt">Deep</span> convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and <span class="hlt">deep</span> convection. The models with the most intense <span class="hlt">deep</span> convection have the warmest <span class="hlt">deep</span> waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of <span class="hlt">deep</span> water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of <span class="hlt">deep</span> convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H54B..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H54B..02H"><span>Channel Extension in <span class="hlt">Deep</span>-Water Distributive Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoyal, D. C.; Sheets, B. A.</p> <p>2007-12-01</p> <p>The cyclic nature of channel and lobe formation in submarine fans is the result of the unstable and ephemeral nature of newly formed distributary channels. Avulsion cycles are initiated as unconfined sheet flow immediately following avulsion followed by stages of channel incision and extension, deposition of channel mouth deposits, and often channel backfilling. In contrast with those in alluvial and deltaic environments, avulsion cycles in submarine fans are relatively poorly understood due to the difficulty of <span class="hlt">observing</span> <span class="hlt">deep</span> ocean processes, either over short timescales needed to measure the hydrodynamics of active turbidity currents, or over longer timescales needed for the morphodynamic evolution of individual distributary channels and avulsion events. Here we report the results of over 80 experiments in a 5m x 3m x1m <span class="hlt">deep</span> tank using saline (NaCl) density flows carrying low-density plastic sediment (SG 1.5) flowing down an inclined ramp. These experiments were designed to investigate trends <span class="hlt">observed</span> in earlier self-organized experimental submarine fans with well-developed avulsion cycles, in which distributive lobes were <span class="hlt">observed</span> to form on relatively high slopes. In particular, we were interested in investigating the relationship between channel extension length (distance from the inlet to the point where the flow becomes de-channelized, transitioning into a mouth-bar/lobe) and slope. The results of the experiments are clear but counter-intuitive. Channels appear to extend in discrete segments and channel extension length is inversely related to slope over a wide range of slopes (5-17 degrees). In addition, channel extension seems largely independent of inlet flow density (salt concentration) over the experimental range (10-24 g/cc). Measurements of densimetric Froude number (Fr') indicate Fr' increases downstream to near critical conditions at the channel lobe transition. Our preliminary interpretation is that distributary channels become unstable due to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020046557&hterms=K2&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DK2','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020046557&hterms=K2&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DK2"><span>Lunar Love Numbers and the <span class="hlt">Deep</span> Lunar Interior</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.</p> <p>2002-01-01</p> <p><span class="hlt">Observationally</span> determined values of the Love number k2 are larger than existing models of the lunar interior predict. The region between the <span class="hlt">deep</span> moonquakes and core may be a low velocity zone from a partial melt. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=canto&id=EJ603941','ERIC'); return false;" href="https://eric.ed.gov/?q=canto&id=EJ603941"><span>Caretaking of Children's Souls. Teaching the <span class="hlt">Deep</span> Song.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Turner, Sandra B.</p> <p>2000-01-01</p> <p>Describes ways early childhood caregivers can facilitate children's spiritual development by <span class="hlt">observing</span> the "canto hondo," the <span class="hlt">deep</span> song. Discusses characteristics of the canto hondo as a metaphor for caring for the souls of children and their uniqueness, including safety, celebration, respect, acceptance, dreaming, and laughter. (KB)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002253','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002253"><span>Ion-neutral Coupling During <span class="hlt">Deep</span> Solar Minimum</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huang, Cheryl Y.; Roddy, Patrick A.; Sutton, Eric K.; Stoneback, Russell; Pfaff, Robert F.; Gentile, Louise C.; Delay, Susan H.</p> <p>2013-01-01</p> <p>The equatorial ionosphere under conditions of <span class="hlt">deep</span> solar minimum exhibits structuring due to tidal forces. Data from instruments carried by the Communication Navigation Outage Forecasting System (CNOFS) which was launched in April 2008 have been analyzed for the first 2 years following launch. The Planar Langmuir Probe (PLP), Ion Velocity Meter (IVM) and Vector Electric Field Investigation (VEFI) all detect periodic structures during the 20082010 period which appear to be tides. However when the tidal features detected by these instruments are compared, there are distinctive and significant differences between the <span class="hlt">observations</span>. Tides in neutral densities measured by the Gravity Recovery and Climate Experiment (GRACE) satellite were also <span class="hlt">observed</span> during June 2008. In addition, Broad Plasma Decreases (BPDs) appear as a <span class="hlt">deep</span> absolute minimum in the plasma and neutral density tidal pattern. These are co-located with regions of large downward-directed ion meridional velocities and minima in the zonal drifts, all on the nightside. The region in which BPDs occur coincides with a peak in occurrence rate of dawn depletions in plasma density <span class="hlt">observed</span> on the Defense Meterological Satellite Program (DMSP) spacecraft, as well as a minimum in radiance detected by UV imagers on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) and IMAGE satellites</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA584577','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA584577"><span>Dynamic Autoinoculation and the Microbial Ecology of a <span class="hlt">deep</span> Water Hydrocarbon Irruption</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-12-11</p> <p>gas hydrate) likely altered plume com- position near the source, leavrngintruswrscknimatedbythemost soluble compounds, such as gases (2-4, 9, 10, 12...well. These results may reconcile disparate <span class="hlt">observations</span> of the physical dynamics and microbial community structure of the <span class="hlt">deep</span> plume . Model...feeds bacterial metabolism and cellular growth. We focused entirely on the <span class="hlt">deep</span> plume horizon spanning 1,000-1,300 m water depth, applying</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ccds.book.....F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ccds.book.....F"><span>Concise Catalog of <span class="hlt">Deep</span>-Sky Objects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finlay, Warren H.</p> <p></p> <p>This book is intended to give a concise summary of some of the more interesting astrophysical facts that are known about objects commonly <span class="hlt">observed</span> by amateur astronomers. Pondering this information while viewing an object in the field has added a new level to the author's enjoyment of <span class="hlt">deep</span>-sky <span class="hlt">observing</span>, and it is hoped this information will be similarly enjoyed by other amateur astronomers. The book is not intended to be read cover to cover, but rather is designed so that each object entry can be read individually one at a time and in no particular order, perhaps while at the eyepiece.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>