Sample records for deep hole concept

  1. Experience in sealing water bearing strata during deep shaft sinking

    NASA Astrophysics Data System (ADS)

    Kipko, E. Ja.; Polozov, Ju. A.; Lagunov, V. A.; Lushnikova, O. Ju.

    1984-12-01

    The paper deals with major concepts of grouting through holes drilled from the surface. The results of grouting through a single borehole at the location of two 1090 m deep shafts in Donbass are presented.

  2. Deep Borehole Field Test Research Activities at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less

  3. Excess plutonium disposition: The deep borehole option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues relatedmore » to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.« less

  4. Does Stellar Feedback Create HI Holes? An HST/VLA Study of Holmberg II

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Skillman, E. D.; Cannon, J. M.; Dolphin, A. E.; Kennicutt, R. C., Jr.; Lee, J.; Walter, F.

    2010-01-01

    We use deep HST/ACS F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Holmberg II to study the hypothesis that the holes identified in the neutral ISM (HI) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in HI holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of HI column densities. The recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a time scale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and HI holes are statistically indistinguishable. However, because we are only sensitive to holes ˜ 100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside HI holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of HI holes, we propose a potential new model: a viable mechanism for creating the observed HI holes in Holmberg II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an HI hole is intrinsically ambiguous.

  5. Experimental study on deep hole drilling of 17-4PH material

    NASA Astrophysics Data System (ADS)

    Uzhanfeng, LI; Uquantai, LI

    2018-02-01

    This paper uses 17-4PH material as the research object, according to the material characteristics of 17-4PH, designed and carried out deep hole drilling test. The purpose of the experiment is to study and discuss the three major problems of tool wear, chip shape and axial deviation of the hole in the process of deep hole drilling of 17-4PH materials. Through the deep hole drilling test of 17-4PH material, the variation of the chip shape and the deflection of the hole axis was obtained under different wear conditions.

  6. Using geophysical data to assess scour development

    USGS Publications Warehouse

    Placzek, Gary; Haeni, Peter F.; Trent, Roy; ,

    1993-01-01

    The development of scour holes in the Connecticut River near the new Baldwin Bridge has been documented by comparing geophysical records collected before (1989), during (1990), and after (1992) bridge construction. Eight piers that support the 570-m (meter) span over the Connecticut River were protected by 12-m wide cofferdams during construction. The maximum flow during the study was equivalent to a 3-year recurrence-interval flood, indicating no significant floods. Fathometer data indicate that deep scour holes, 1.5 to 6.4 m deep, developed north of piers 6, 7, and 8. Scour holes, less than 1.3 m-deep, developed south of these piers. The deepest scour hole was north of pier 7, where data show a flat river bottom in 1989, a scour 3.3-m deep in 1990, and a scour hole 6.4-m deep in 1992. Continuous seismic-profiling (CSP) data show that a 1.5 -m deep scour hole north of pier 6 in 1990 was filled in with 1.5-m of material by 1992. No infilling was detected in the scour holes north of piers 7 and 8. Numerous subbottom reflectors from geologic layers, up to 7.6 -m deep were identified in the CSP records.

  7. Study on super-long deep-hole drilling of titanium alloy.

    PubMed

    Liu, Zhanfeng; Liu, Yanshu; Han, Xiaolan; Zheng, Wencui

    2018-01-01

    In this study, the super-long deep-hole drilling of a titanium alloy was investigated. According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy's machining were also evaluated. Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.

  8. USAR Robot Communication Using ZigBee Technology

    NASA Astrophysics Data System (ADS)

    Tsui, Charles; Carnegie, Dale; Pan, Qing Wei

    This paper reports the successful development of an automatic routing wireless network for USAR (urban search and rescue) robots in an artificial rubble environment. The wireless network was formed using ZigBee modules and each module was attached to a micro-controller in order to model a wireless USAR robot. Proof of concept experiments were carried out by deploying the networked robots into artificial rubble. The rubble was simulated by connecting holes and trenches that were dug in 50 cm deep soil. The simulated robots were placed in the bottom of the holes. The holes and trenches were then covered up by various building materials and soil to simulate a real rubble environment. Experiments demonstrated that a monitoring computer placed 10 meters outside the rubble can establish proper communication with all robots inside the artificial rubble environment.

  9. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Changhai; Tian, Ye; Li, Wentao

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside themore » overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.« less

  10. Smooth Horizonless Geometries Deep Inside the Black-Hole Regime.

    PubMed

    Bena, Iosif; Giusto, Stefano; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P

    2016-11-11

    We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.

  11. A Proposed Borehole Scientific Laboratory in Quay County, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis; Eckels, Marc; Mast, Peter; Zellman, Mark; Creed, Robert

    2017-04-01

    Our team has received funding from the US Department of Energy to initiate a Deep Borehole Field Test that will develop a subsurface test site to evaluate the drilling and scientific aspects of deep borehole disposal of nuclear waste in crystalline rock. Phase 1 of the project will focus on Public Outreach and land acquisition whereas Phase 2 will generate a drilling and testing plan and secure regulatory approvals. Phase 3 will complete the Drilling and Testing Plan and Phase 4 will include the drilling and testing. Phase 5 will be devoted to borehole science and experiments with emplacement technology. Although we are specifically considering issues associated with the disposal of waste, this project is a proof of concept, and no waste will be emplaced at our site. In brief, the concept envisions an 8-1/2 inch open-hole completion at a depth of 5000 m in crystalline rock. There will be an extensive program of sample collection (including core) and analysis as well as geophysical logging and borehole testing. Critical issues will be low permeability in the crystalline rock as well as the ability to manage borehole quality. Our team has proposed a site in Quay County, New Mexico that has an 850 meter thick Paleozoic section overlying homogeneous Precambrian granite. A subsequent phase of the project may drill a second hole with a 17-1/2 inch completion located about 200 m from the first. Our long-term plan is that this site will be managed as a deep scientific observatory that also provides a facility for scientific experiments and testing of borehole infrastructure and drilling equipment.

  12. Surface hole gas enabled transparent deep ultraviolet light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Gao, Ying; Zhou, Ling; Gil, Young-Un; Kim, Kyoung-Min

    2018-07-01

    The inherent deep-level nature of acceptors in wide-band-gap semiconductors makes p-ohmic contact formation and hole supply difficult, impeding progress for short-wavelength optoelectronics and high-power high-temperature bipolar electronics. We provide a general solution by demonstrating an ultrathin rather than a bulk wide-band-gap semiconductor to be a successful hole supplier and ohmic contact layer. Free holes in this ultrathin semiconductor are assisted to activate from deep acceptors and swept to surface to form hole gases by a large electric field, which can be provided by engineered spontaneous and piezoelectric polarizations. Experimentally, a 6 nm thick AlN layer with surface hole gas had formed p-ohmic contact to metals and provided sufficient hole injection to a 280 nm light-emitting diode, demonstrating a record electrical-optical conversion efficiency exceeding 8.5% at 20 mA (55 A cm‑2). Our approach of forming p-type wide-band-gap semiconductor ohmic contact is critical to realizing high-efficiency ultraviolet optoelectronic devices.

  13. Does Stellar Feedback Create H I Holes? A Hubble Space Telescope/Very Large Array Study of Holmberg II

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Skillman, Evan D.; Cannon, John M.; Dolphin, Andrew E.; Kennicutt, Robert C., Jr.; Lee, Janice; Walter, Fabian

    2009-10-01

    We use deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Ho II to study the hypothesis that the holes identified in the neutral interstellar medium (H I) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in H I holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of H I column densities. The CMDs reveal young (< 200 Myr) stellar populations inside all H I holes, which contain very few bright OB stars with ages less than 10 Myr, indicating they are not reliable tracers of H I hole locations while the recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a timescale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and H I holes are statistically indistinguishable. However, because we are only sensitive to holes ~100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside H I holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of H I holes, we propose a potential new model: a viable mechanism for creating the observed H I holes in Ho II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an H I hole is intrinsically ambiguous. For H I holes in the outer parts of Ho II, located beyond the HST/ACS coverage, we use Monte Carlo simulations of expected stellar populations to show that low level SF could provide the energy necessary to form these holes. Applying the same method to the SMC, we find that the holes that appear to be void of stars could have formed via stellar feedback from low level SF. We further find that Hα and 24 μm emission, tracers of the most recent star formation, do not correlate well with the positions of the H I holes. However, UV emission, which traces star formation over roughly the last 100 Myr, shows a much better correlation with the locations of the H I holes.

  14. Acoustic Characteristics of Various Treatment Panel Designs for HSCT Ejector Liner Acoustic Technology Development Program

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Kraft, R. E.; Syed, A. a.; Vu, D. D.; Mungur, P.; Langenbrunner, L. E.; Majjigi, R. K.

    2006-01-01

    The objectives of the initial effort (Phase I) of HSR Liner Technology Program, the selection of promising liner concepts, design and fabrication of these concepts for laboratory tests, testing these liners in the laboratory by using impedance tube and flow ducts, and developing empirical impedance/suppression correlation, are successfully completed. Acoustic and aerodynamic criteria for the liner design are established. Based on these criteria several liners are designed. The liner concepts designed and fabricated include Single-Degree-of-Freedom (SDOF), Two-Degree-of-Freedom (2DOF), and Bulk Absorber. Two types of SDOF treatment are fabricated, one with a perforated type face plate and the other with a wiremesh (woven) type faceplate. In addition, special configurations of these concepts are also included in the design. Several treatment panels are designed for parametric study. In these panels the facesheets of different porosity, hole diameter, and sheet thickness are utilized. Several deep panels (i.e., 1 in. deep) are designed and instrumented to measure DC flow resistance and insitu impedance in the presence of grazing flow. Basic components of these panels (i.e., facesheets, bulk materials, etc.) are also procured and tested. The results include DC flow resistance, normal impedance, and insertion loss.

  15. Outokumpu Deep Drill Hole: Window to the Precambrian bedrock

    NASA Astrophysics Data System (ADS)

    Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo

    2017-04-01

    Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.

  16. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes.

    PubMed

    Li, Luping; Zhang, Yonghui; Xu, Shu; Bi, Wengang; Zhang, Zi-Hui; Kuo, Hao-Chung

    2017-10-24

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs.

  17. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes

    PubMed Central

    Li, Luping; Zhang, Yonghui; Kuo, Hao-Chung

    2017-01-01

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs. PMID:29073738

  18. Eliminating dependence of hole depth on aspect ratio by forming ammonium bromide during plasma etching of deep holes in silicon nitride and silicon dioxide

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Yokogawa, Kenetsu; Mori, Masahito

    2018-06-01

    The reaction mechanism during etching to fabricate deep holes in SiN/SiO2 stacks by using a HBr/N2/fluorocarbon-based gas plasma was investigated. To etch SiN and SiO2 films simultaneously, HBr/fluorocarbon gas mixture ratio was controlled to achieve etching selectivity closest to one. Deep holes were formed in the SiN/SiO2 stacks by one-step etching at several temperatures. The surface composition of the cross section of the holes was analyzed by time-of-flight secondary-ion mass spectrometry. It was found that bromine ions (considered to be derived from NH4Br) were detected throughout the holes in the case of low-temperature etching. It was also found that the dependence of hole depth on aspect ratio decreases as temperature decreases, and it becomes significantly weaker at a substrate temperature of 20 °C. It is therefore concluded that the formation of NH4Br supplies the SiN/SiO2 etchant to the bottom of the holes. Such a finding will make it possible to alleviate the decrease in etching rate due to a high aspect ratio.

  19. CPT-hole closure

    USGS Publications Warehouse

    Noce, T.E.; Holzer, T.L.

    2003-01-01

    The long-term stability of deep holes 1.75 inches. (4.4 cm) in diameter by 98.4 feet (30 m) created by cone penetration testing (CPT) was monitored at a site in California underlain by Holocene and Pleistocene age alluvial fan deposits. Portions of the holes remained open both below and above the 28.6-foot (8.7 m)-deep water table for approximately three years, when the experiment was terminated. Hole closure appears to be a very slow process that may take decades in the stiff soils studied here. Other experience suggests holes in softer soils may also remain open. Thus, despite their small diameter, CPT holes may remain open for years and provide paths for rapid migration of contaminants. The observations confirm the need to grout holes created by CPT soundings as well as other direct-push techniques in areas where protection of shallow ground water is important.

  20. Five Hundred and Seventy Three Holes in the Bottom of the Sea-Some Results From Seven Years of Deep-Sea Drilling

    ERIC Educational Resources Information Center

    Davies, T. A.

    1976-01-01

    Described are the background, operation, and findings of the work of the deep sea drilling vessel Glomar Challenger, which has taken 8,638 core samples from 573 holes at 392 sites on the floor of the Earth's oceans. (SL)

  1. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, A. Y., E-mail: aypolyakov@gmail.com; Smirnov, N. B.; Govorkov, A. V.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versusmore » 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.« less

  2. A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2008-01-01

    A concept for mitigating the adverse effects of jet vorticity and liftoff at high blowing ratios for turbine film cooling flows has been developed and studied at NASA Glenn Research Center. This "anti-vortex" film cooling concept proposes the addition of two branched holes from each primary hole in order to produce a vorticity counter to the detrimental kidney vortices from the main jet. These vortices typically entrain hot freestream gas and are associated with jet separation from the turbine blade surface. The anti-vortex design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30deg angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A modification of the anti-vortex concept whereby the branched holes exit adjacent to the main hole has been studied computationally for blowing ratios of 1.0 and 2.0 and at density ratios of 1.0 and 2.0. This modified concept was selected because it has shown the most promise in recent experimental studies. The computational results show that the modified design improves the film cooling effectiveness relative to the round hole baseline and previous anti-vortex cases, in confirmation of the experimental studies.

  3. Correlation of Pliocene and Pleistocene tephra layers between the Turkana Basin of East Africa and the Gulf of Aden

    USGS Publications Warehouse

    Brown, F.H.; Sarna-Wojcicki, A. M.; Meyer, C.E.; Haileab, B.

    1992-01-01

    Electron-microprobe analyses of glass shards from volcanic ash in Pliocene and Pleistocene deep-sea sediments in the Gulf of Aden and the Somali Basin demonstrate that most of the tephra layers correlate with tephra layers known on land in the Turkana Basin of northern Kenya and southern Ethiopia. Previous correlations are reviewed, and new correlations proposed. Together these data provide correlations between the deep-sea cores, and to the land-based sections at eight levels ranging in age from about 4 to 0.7 Ma. Specifically, we correlate the Moiti Tuff (???4.1 Ma) with a tephra layer at 188.6 m depth in DSDP hole 231 and with a tephra layer at 150 m depth in DSDP hole 241, the Wargolo Tuff with a tephra layer at 179.7 m in DSDP Hole 231 and with a tephra layer at 155.3 m depth in DSDP Hole 232, the Lomogol Tuff (defined here) with a tephra layer at 165 m in DSDP Hole 232A, the Lokochot Tuff with a tephra layer at 140.1 m depth in DSDP Hole 232, the Tulu Bor Tuff with a tephra layer at 160.8 m depth in DSDP Hole 231, the Kokiselei Tuff with a tephra layer at 120 m depth in DSDP Hole 231 and with a tephra layer at 90.3 m depth in DSDP Hole 232, the Silbo Tuff (0.74 Ma) with a tephra layer at 35.5 m depth in DSDP Hole 231 and possibly with a tephra layer at 10.9 m depth in DSDP Hole 241. We also present analyses of other tephra from the deep sea cores for which correlative units on land are not yet known. The correlated tephra layers provide eight chronostratigraphic horizons that make it possible to temporally correlate paleoecological and paleoclimatic data between the terrestrial and deep-sea sites. Such correlations may make it possible to interpret faunal evolution in the Lake Turkana basin and other sites in East Africa within a broader regional or global paleoclimatic context. ?? 1992.

  4. Artist Concept: Active Black Hole Squashes Star Formation

    NASA Image and Video Library

    2012-05-09

    Herschel Space Observatory has shown that galaxies with the most powerful, active, supermassive black holes at their cores produce fewer stars than galaxies with less active black holes in this artist concept.

  5. Method for the fabrication of three-dimensional microstructures by deep X-ray lithography

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2005-04-05

    A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.

  6. Deepest X-Rays Ever Reveal universe Teeming With Black Holes

    NASA Astrophysics Data System (ADS)

    2001-03-01

    For the first time, astronomers believe they have proof black holes of all sizes once ruled the universe. NASA's Chandra X-ray Observatory provided the deepest X-ray images ever recorded, and those pictures deliver a novel look at the past 12 billion years of black holes. Two independent teams of astronomers today presented images that contain the faintest X-ray sources ever detected, which include an abundance of active super massive black holes. "The Chandra data show us that giant black holes were much more active in the past than at present," said Riccardo Giacconi, of Johns Hopkins University and Associated Universities, Inc., Washington, DC. The exposure is known as "Chandra Deep Field South" since it is located in the Southern Hemisphere constellation of Fornax. "In this million-second image, we also detect relatively faint X-ray emission from galaxies, groups, and clusters of galaxies". The images, known as Chandra Deep Fields, were obtained during many long exposures over the course of more than a year. Data from the Chandra Deep Field South will be placed in a public archive for scientists beginning today. "For the first time, we are able to use X-rays to look back to a time when normal galaxies were several billion years younger," said Ann Hornschemeier, Pennsylvania State University, University Park. The group’s 500,000-second exposure included the Hubble Deep Field North, allowing scientists the opportunity to combine the power of Chandra and the Hubble Space Telescope, two of NASA's Great Observatories. The Penn State team recently acquired an additional 500,000 seconds of data, creating another one-million-second Chandra Deep Field, located in the constellation of Ursa Major. Chandra Deep Field North/Hubble Deep Field North Press Image and Caption The images are called Chandra Deep Fields because they are comparable to the famous Hubble Deep Field in being able to see further and fainter objects than any image of the universe taken at X-ray wavelengths. Both Chandra Deep Fields are comparable in observation time to the Hubble Deep Fields, but cover a much larger area of the sky. "In essence, it is like seeing galaxies similar to our own Milky Way at much earlier times in their lives," Hornschemeier added. "These data will help scientists better understand star formation and how stellar-sized black holes evolve." Combining infrared and X-ray observations, the Penn State team also found veils of dust and gas are common around young black holes. Another discovery to emerge from the Chandra Deep Field South is the detection of an extremely distant X-ray quasar, shrouded in gas and dust. "The discovery of this object, some 12 billion light years away, is key to understanding how dense clouds of gas form galaxies, with massive black holes at their centers," said Colin Norman of Johns Hopkins University. The Chandra Deep Field South results were complemented by the extensive use of deep optical observations supplied by the Very Large Telescope of the European Southern Observatory in Garching, Germany. The Penn State team obtained optical spectroscopy and imaging using the Hobby-Eberly Telescope in Ft. Davis, TX, and the Keck Observatory atop Mauna Kea, HI. Chandra's Advanced CCD Imaging Spectrometer was developed for NASA by Penn State and Massachusetts Institute of Technology under the leadership of Penn State Professor Gordon Garmire. NASA's Marshall Space Flight Center, Huntsville, AL, manages the Chandra program for the Office of Space Science, Washington, DC. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. More information is available on the Internet at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  7. Flaring Black Hole Artist Concept

    NASA Image and Video Library

    2011-09-20

    This artist concept illustrates what the flaring black hole called GX 339-4 might look like. Infrared observations from NASA WISE reveal the best information yet on the chaotic and extreme environments of this black hole jets.

  8. Dopantless Diodes for Efficient Mid/deep UV LEDs and Lasers - Topic 4.2 Optoelectronics

    DTIC Science & Technology

    2017-09-12

    Week, Santa Barbara, CA, “Polarization hole engineering in deep- ultraviolet nanowire LEDs”, ATM Sarwar, Santino Carnevale, Thomas Kent, Brelon May...Electronic Materials Conference, Santa Barbara, California, “ Engineering the polarization hole doping of graded nanowire ultraviolet LEDs integrated on...Nanostructures for Optoelectronic and Magnetic Functionalities: Growth, Characterization and Engineering Publication Type: Thesis or Dissertation

  9. Two Models of Black Hole Spin Artist Concept

    NASA Image and Video Library

    2013-02-27

    Scientists measure the spin rates of supermassive black holes by spreading the X-ray light into different colors. The light comes from accretion disks that swirl around black holes, as shown in both of the artist concepts.

  10. Boring deep holes in southern pine

    Treesearch

    G. E. Woodson; C. W. McMillin

    1972-01-01

    When holes 10-1/2 inches deep and I inch in diameter were made with either a ship auger or a double-spur, double-twist machine bit, clogging occurred at a shallower depth (avg. 6.5 inches) when boring across the grain than when boring along the grain (avg. 10.1 inches). In both boring directions, thrust force and torque demand for unclogged bits were less for the ship...

  11. Analysis of the Laser Drilling Process for the Combination with a Single-Lip Deep Hole Drilling Process with Small Diameters

    NASA Astrophysics Data System (ADS)

    Biermann, Dirk; Heilmann, Markus

    Due to the tendency of downsizing of components, also the industrial relevance of bore holes with small diameters and high length-to-diameter ratios rises with the growing requirements on parts. In these applications, the combination of laser pre-drilling and single-lip deep hole drilling can shorten the process chain in machining components with non-planar surfaces, or can reduce tool wear in machining case-hardened materials. In this research, the combination of these processes was realized and investigated for the very first time.

  12. Deep bore hole instrumentation along San Francisco Bay Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakun, W.; Bowman, J.; Clymer, R.

    1998-10-01

    The Bay Bridges down hole network consists of sensors in bore holes that are drilled 100 ft. into bedrock around and in the San Francisco Bay. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty- one sensor packages at fifteen sites. Extensive financial support is being contributed by Caltrans, UCB, LBL, LLNL-LDRD, U.C. Campus/Laboratory Collaboration (CLC) program,more » and USGS. The down hole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 73 1 accelerometers, and is capable of recording a micro g from local M = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes.« less

  13. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    PubMed

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  14. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation

    PubMed Central

    Chirayath, V. A.; Callewaert, V.; Fairchild, A. J.; Chrysler, M. D.; Gladen, R. W.; Mcdonald, A. D.; Imam, S. K.; Shastry, K.; Koymen, A. R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A. H.

    2017-01-01

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition. PMID:28703225

  15. Compilation of Reprints Number 63.

    DTIC Science & Technology

    1986-03-01

    Michel Be6, Stephen H1. Johnson, and E.F. Chiburis PRELIMINARY SEISMIC REFRACTION RESULTS USING A BOREHOLE SEISMOMETER IN DEEP SEA DRILLING PROJECT HOLE...refraction data with wells drilled on land and offshore reflection profiles permits tentative identification of geologic sequences on the basis of...PERIOD CO’VEAEO PRELIMINARY SEISMIC REFRACTION RESULTS USING A Rern BOREHOLE SEISMOMETER IN DEEP SEA DRILLING ~ rn PROJECT HOLE 395A 6.PERFORMING ORG

  16. New Bottom Roughness Calculation from Multibeam Echo Sounders for Mine Warfare

    DTIC Science & Technology

    2012-09-01

    complex including craters, gullies, seaweed , rocks, sand ridges, tall obstructions, deep holes and sloping regions. Underwater mines can be hidden...and shadows for detecting objects lying on the seafloor. The seafloor is rather complex including craters, gullies, seaweed , rocks, sand ridges, tall...roughness as craters, gullies, seaweed , sand ridges, tall obstructions, deep holes, or steeply sloping regions. Slopes can make it possible for mines to

  17. Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.

    PubMed

    Kang, Byungkyun; Biswas, Koushik

    2017-10-18

    There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.

  18. Missing Black Holes Found!

    NASA Image and Video Library

    2007-10-25

    NASA Spitzer and Chandra space telescopes have uncovered a long-lost population of active supermassive black holes, or quasars located deep in the bellies of distant, massive galaxies circled in blue.

  19. Thermal quenching effect of an infrared deep level in Mg-doped p-type GaN films

    NASA Astrophysics Data System (ADS)

    Kim, Keunjoo; Chung, Sang Jo

    2002-03-01

    The thermal quenching of an infrared deep level of 1.2-1.5 eV has been investigated on Mg-doped p-type GaN films, using one- and two-step annealing processes and photocurrent measurements. The deep level appeared in the one-step annealing process at a relatively high temperature of 900 °C, but disappeared in the two-step annealing process with a low-temperature step and a subsequent high-temperature step. The persistent photocurrent was residual in the sample including the deep level, while it was terminated in the sample without the deep level. This indicates that the deep level is a neutral hole center located above a quasi-Fermi level, estimated with an energy of EpF=0.1-0.15 eV above the valence band at a hole carrier concentration of 2.0-2.5×1017/cm3.

  20. Hibernating black holes revealed by photometric mass functions

    NASA Astrophysics Data System (ADS)

    Casares, Jorge

    2018-02-01

    We present a novel strategy to uncover the Galactic population of quiescent black holes (BHs). This is based on a new concept, the photometric mass function (PMF), which opens up the possibility of an efficient identification of dynamical BHs in large fields-of-view. This exploits the width of the disc H α emission line, combined with orbital period information. We here show that H α widths can be recovered using a combination of customized H α filters. By setting a width cut-off at 2200 km s-1 we are able to cleanly remove other Galactic populations of H α emitters, including ∼99.9 per cent of cataclysmic variables (CVs). Only short-period (Porb <2.1 h) eclipsing CVs and AGNs will contaminate the sample but these can be easily flagged through photometric variability and, in the latter case, also mid-IR colours. We also describe the strategy of a deep (r = 22) Galactic plane survey based on the concept of PMFs: HAWKs, the HAlpha-Width Kilo-deg Survey. We estimate that ∼800 deg2 are required to unveil ∼50 new dynamical BHs, a three-fold improvement over the known population. For comparison, a century would be needed to produce an enlarged sample of 50 dynamical BHs from X-ray transients at the current discovery rate.

  1. Experimental Study on the Axis Line Deflection of Ti6A14V Titanium Alloy in Gun-Drilling Process

    NASA Astrophysics Data System (ADS)

    Li, Liang; Xue, Hu; Wu, Peng

    2018-01-01

    Titanium alloy is widely used in aerospace industry, but it is also a typical difficult-to-cut material. During Deep hole drilling of the shaft parts of a certain large aircraft, there are problems of bad surface roughness, chip control and axis deviation, so experiments on gun-drilling of Ti6A14V titanium alloy were carried out to measure the axis line deflection, diameter error and surface integrity, and the reasons of these errors were analyzed. Then, the optimized process parameter was obtained during gun-drilling of Ti6A14V titanium alloy with deep hole diameter of 17mm. Finally, we finished the deep hole drilling of 860mm while the comprehensive error is smaller than 0.2mm and the surface roughness is less than 1.6μm.

  2. Deep level study of Mg-doped GaN using deep level transient spectroscopy and minority carrier transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Duc, Tran Thien; Pozina, Galia; Amano, Hiroshi; Monemar, Bo; Janzén, Erik; Hemmingsson, Carl

    2016-07-01

    Deep levels in Mg-doped GaN grown by metal organic chemical vapor deposition (MOCVD), undoped GaN grown by MOCVD, and halide vapor phase epitaxy (HVPE)-grown GaN have been studied using deep level transient spectroscopy and minority charge carrier transient spectroscopy on Schottky diodes. One hole trap, labeled HT1, was detected in the Mg-doped sample. It is observed that the hole emission rate of the trap is enhanced by increasing electric field. By fitting four different theoretical models for field-assisted carrier emission processes, the three-dimensional Coulombic Poole-Frenkel (PF) effect, three-dimensional square well PF effect, phonon-assisted tunneling, and one-dimensional Coulombic PF effect including phonon-assisted tunneling, it is found that the one-dimensional Coulombic PF model, including phonon-assisted tunneling, is consistent with the experimental data. Since the trap exhibits the PF effect, we suggest it is acceptorlike. From the theoretical model, the zero field ionization energy of the trap and an estimate of the hole capture cross section have been determined. Depending on whether the charge state is -1 or -2 after hole emission, the zero field activation energy Ei 0 is 0.57 eV or 0.60 eV, respectively, and the hole capture cross section σp is 1.3 ×10-15c m2 or 1.6 ×10-16c m2 , respectively. Since the level was not observed in undoped GaN, it is suggested that the trap is associated with an Mg related defect.

  3. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1976-01-01

    The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.

  4. Exploring Radioactive Decay and Geochronology through Hydrostatic Principles

    NASA Astrophysics Data System (ADS)

    Claiborne, L. L.; Miller, C. F.

    2008-12-01

    One of the most essential tools to unraveling Earth's history and the processes involved in shaping our planet is an understanding of deep time and the timescales involved in geologic processes. The primary process that allows quantification of this history is radioactive decay of unstable isotopes within earth materials, and as one of the most essential tools in geology, this concept is taught at all levels of geoscience education. The concept of radioactive decay contains nuances that are often lost on students during lectures, and students often express low confidence in their comprehension of the concept. The goal of this laboratory activity is for students to understand radioactive decay including what controls it, how it proceeds and what information it provides, along with developing higher level scientific skills including making observations and predictions, and creating and interpreting quantitative graphical representations of data. The activity employs graduated beakers, shampoo, and stopwatches. Students pour shampoo put into an upper beaker (representing the parent isotope) with a hole in the base and allow it to flow into a lower beaker (representing the daughter isotope). Students measure changes in liquid depth with time, relating this to the amount of decay and its dependence on the amount of parent available (depth of liquid) and the decay constant (area of the hole in the beaker). Several beakers with varying sized holes illustrate variations specific to the different parent isotopes. They then explore graphical representations of their "decay" data, discovering for themselves which kinds of plots yield the equations and constants that control the decay process and the derived quantity of the "half-life", and are therefore the most useful. Making their own measurements, creating graphs, and then calculating these fundamental quantities is both enlightening and empowering. An advanced variation of this experiment involves students predicting the results and/or designing an experiment to address complex decay chains, where the daughter products are radioactive themselves. This permits them to investigate connections between 'activity' and equilibrium and to understand how disequilibrium can develop and be used for dating. In order to evaluate the success of the activity, each student participates in pre and post assessment including stating their confidence in their understanding of the concept.

  5. Quantum information versus black hole physics: deep firewalls from narrow assumptions

    NASA Astrophysics Data System (ADS)

    Braunstein, Samuel L.; Pirandola, Stefano

    2018-07-01

    The prevalent view that evaporating black holes should simply be smaller black holes has been challenged by the firewall paradox. In particular, this paradox suggests that something different occurs once a black hole has evaporated to one-half its original surface area. Here, we derive variations of the firewall paradox by tracking the thermodynamic entropy within a black hole across its entire lifetime and extend it even to anti-de Sitter space-times. Our approach sweeps away many unnecessary assumptions, allowing us to demonstrate a paradox exists even after its initial onset (when conventional assumptions render earlier analyses invalid). The most natural resolution may be to accept firewalls as a real phenomenon. Further, the vast entropy accumulated implies a deep firewall that goes `all the way down' in contrast with earlier work describing only a structure at the horizon. This article is part of a discussion meeting issue `Foundations of quantum mechanics and their impact on contemporary society'.

  6. Quantum information versus black hole physics: deep firewalls from narrow assumptions.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano

    2018-07-13

    The prevalent view that evaporating black holes should simply be smaller black holes has been challenged by the firewall paradox. In particular, this paradox suggests that something different occurs once a black hole has evaporated to one-half its original surface area. Here, we derive variations of the firewall paradox by tracking the thermodynamic entropy within a black hole across its entire lifetime and extend it even to anti-de Sitter space-times. Our approach sweeps away many unnecessary assumptions, allowing us to demonstrate a paradox exists even after its initial onset (when conventional assumptions render earlier analyses invalid). The most natural resolution may be to accept firewalls as a real phenomenon. Further, the vast entropy accumulated implies a deep firewall that goes 'all the way down' in contrast with earlier work describing only a structure at the horizon.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  7. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    DOEpatents

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  8. Big savings from small holes. [Liquid Droplet Radiator project for space vehicles

    NASA Technical Reports Server (NTRS)

    White, Alan

    1989-01-01

    The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.

  9. Galaxies of all Shapes Host Black Holes Artist Concept

    NASA Image and Video Library

    2008-01-10

    Observations from NASA Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores in this artist concept.

  10. Innovative design of composite structures: Design, manufacturing, and testing of plates utilizing curvilinear fiber trajectories

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rust, R. J.; Waters, W. A., Jr.

    1994-01-01

    As a means of improving structural design, the concept of fabricating flat plates containing holes by incorporating curvilinear fiber trajectories to transmit loads around the hole is studied. In the present discussion this concept is viewed from a structural level, where access holes, windows, doors, and other openings are of significant size. This is opposed to holes sized for mechanical fasteners. Instead of cutting the important load-bearing fibers at the hole edge, as a conventional straightline design does, the curvilinear design preserves the load-bearing fibers by orienting them in smooth trajectories around the holes, their loading not ending abruptly at the hole edge. Though the concept of curvilinear fiber trajectories has been studied before, attempts to manufacture and test such plates have been limited. This report describes a cooperative effort between Cincinnati Milacron Inc., NASA Langley Research Center, and Virginia Polytechnic Institute and State University to design, manufacture, and test plates using the curvilinear fiber trajectory concept. The paper discusses details of the plate design, details of the manufacturing, and a summary of results from testing the plates with inplane compressive buckling loads and tensile loads. Comparisons between the curvilinear and conventional straightline fiber designs based on measurements and observation are made. Failure modes, failure loads, strains, deflections, and other key responses are compared.

  11. 49 CFR 230.39 - Broken staybolts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... replaced, they shall be replaced with bolts that have telltale holes 3/16 inch to 7/32 inch in diameter and at least 11/4 inches deep at each end, or that have telltale holes 3/16 inch to 7/32 inch in diameter... inspected. (c) Assessment of broken staybolts. Telltale holes leaking, plugged, or missing shall be counted...

  12. 49 CFR 230.39 - Broken staybolts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... replaced, they shall be replaced with bolts that have telltale holes 3/16 inch to 7/32 inch in diameter and at least 11/4 inches deep at each end, or that have telltale holes 3/16 inch to 7/32 inch in diameter... inspected. (c) Assessment of broken staybolts. Telltale holes leaking, plugged, or missing shall be counted...

  13. 49 CFR 230.39 - Broken staybolts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... replaced, they shall be replaced with bolts that have telltale holes 3/16 inch to 7/32 inch in diameter and at least 11/4 inches deep at each end, or that have telltale holes 3/16 inch to 7/32 inch in diameter... inspected. (c) Assessment of broken staybolts. Telltale holes leaking, plugged, or missing shall be counted...

  14. 49 CFR 230.39 - Broken staybolts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... replaced, they shall be replaced with bolts that have telltale holes 3/16 inch to 7/32 inch in diameter and at least 11/4 inches deep at each end, or that have telltale holes 3/16 inch to 7/32 inch in diameter... inspected. (c) Assessment of broken staybolts. Telltale holes leaking, plugged, or missing shall be counted...

  15. Black Holes, Worm Holes, and Future Space Propulsion

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  16. Geologic and hydrologic considerations for various concepts of high-level radioactive waste disposal in conterminous United States

    USGS Publications Warehouse

    Ekren, E.B.; Dinwiddie, G.A.; Mytton, J.W.; Thordarson, William; Weir, J.E.; Hinrichs, E.N.; Schroder, L.J.

    1974-01-01

    The purpose of this investigation is to evaluate and identify which geohydrologic environments in conterminous United States are best suited for various concepts or methods of underground disposal of high-level radioactive wastes and to establish geologic and hydrologic criteria that are pertinent to high-level waste disposal. The unproven methods of disposal include (1) a very deep drill hole (30,000-50,000 ft or 9,140-15,240 m), (2) a matrix of (an array of multiple) drill holes (1,000-20,000 ft or 305-6,100 m), (3) a mined chamber (1,000-10,000 ft or 305-3,050 m), (4) a cavity with separate manmade structures (1,000-10,000 ft or 305-3,050 m), and (5) an exploded cavity (2,000-20,000 ft or 610-6,100 m) o The geohydrologic investigation is made on the presumption that the concepts or methods of disposal are technically feasible. Field and laboratory experiments in the future may demonstrate whether or not any of the methods are practical and safe. All the conclusions drawn are tentative pending experimental confirmation. The investigation focuses principally on the geohydrologic possibilities of several methods of disposal in rocks other than salt. Disposal in mined chambers in salt is currently under field investigation, and this disposal method has been intensely investigated and evaluated by various workers under the sponsorship of the Atomic Energy Commission. Of the various geohydrologic factors that must be considered in the selection of optimum waste-disposal sites, the most important is hydrologic isolation to assure that the wastes will be safely contained within a small radius of the emplacement zone. To achieve this degree of hydrologic isolation, the host rock for the wastes must have very low permeability and the site must be virtually free of faults. In addition, the locality should be in (1) an area of low seismic risk where the possibility of large earthquakes rupturing the emplacement zone is very low, (2) where the possibility- of flooding by rise is very low, (3) where a possible return of glacial or pluvial climate will not cause potentially hazardous changes in surface- or ground-water regimens, and (4) where danger of exhumation by erosion is nil. The geographic location for an optimum site is one that is far removed from major drainages, lakes, and oceans, where population density is low, and where the topographic relief is gentle in order to avoid steep surface-water drainage gradients that would allow rapid distribution of contaminants in case of accident. The most suitable medium for the unproven deep drill-hole, matrix-holes, and exploded-cavity methods appears to be crystalline rocks, either intrusive igneous or metamorphic because of their potentially low permeabilities and high mechanical strengths. Salt (either in thick beds or stable domes), tuff, and possibly shale appear to be suitable for mined chambers and cavities with separate manmade structures. Salt appears to be suitable because of its very low permeability, high thermal conductivity, and natural plasticity. Tuff and shale appear suitable because of their very low permeabilities and high ion-exchange capacities. Sedimentary rocks other than shale and volcanic rocks, exclusive of tuff, are considered to be generally unsuitable for waste emplacement because of their potentially high permeabilities. Areas that appear to satisfy most geohydrologic requirements for the deep drill hole and the matrix holes include principally (1) the stable continental interior where the sedimentary cover is thin or absent, (2) the shield area of the North-Central States, and (3) the metamorphic belt of Eastern United States--primarily the Piedmont. These areas are possibly suitable also for the exploded cavity and the mined chamber because the possibility of finding rock with very- permeability at depths from 1,000? feet (305? m) to 20,000 feet (6,100 m) appears to be high. The Basin and Range province of Western United States, particula

  17. Observation of Possible Lava Tube Skylights by SELENE cameras

    NASA Astrophysics Data System (ADS)

    Haruyama, Junichi; Hiesinger, Harald; van der Bogert, Carolyn

    We have discovered three deep hole-structures on the Moon in the Terrain Camera and Multi-band Imager on the SELENE. These holes are large depth to diameter ratios: Marius Hills Hole (MHH) is 65 m in diameter and 88-90 m in depth, Mare Tranquillitatis Hole (MTH) is 120 x 110 m in diameter and 180 m in depth, and Mare Ingenii Hole (MIH) is 140 x 110 m in diameter and deeper than 90 m. No volcanic material from the holes nor dike-relating pit craters is seen around the holes. They are possible lava tube skylights. These holes and possibly connected tubes have a lot of scientific interests and high potentialities as lunar bases.

  18. Cosmic Jets Coming at You Artist Concept

    NASA Image and Video Library

    2012-04-12

    This artist concept shows a feeding, or active, supermassive black hole with a jet streaming outward at nearly the speed of light. Such active black holes are often found at the hearts of elliptical galaxies.

  19. Deep levels in as-grown and Si-implanted In(0.2)Ga(0.8)As-GaAs strained-layer superlattice optical guiding structures

    NASA Technical Reports Server (NTRS)

    Dhar, S.; Das, U.; Bhattacharya, P. K.

    1986-01-01

    Trap levels in about 2-micron In(0.2)Ga(0.8)As(94 A)/GaAs(25 A) strained-layer superlattices, suitable for optical waveguides, have been identified and characterized by deep-level transient spectroscopy and optical deep-level transient spectroscopy measurements. Several dominant electron and hole traps with concentrations of approximately 10 to the 14th/cu cm, and thermal ionization energies Delta-E(T) varying from 0.20 to 0.75 eV have been detected. Except for a 0.20-eV electron trap, which might be present in the In(0.2)Ga(0.8)As well regions, all the other traps have characteristics similar to those identified in molecular-beam epitaxial GaAs. Of these, a 0.42-eV hole trap is believed to originate from Cu impurities, and the others are probably related to native defects. Upon Si implantation and halogen lamp annealing, new deep centers are created. These are electron traps with Delta-E(T) = 0.81 eV and hole traps with Delta-E(T) = 0.46 eV. Traps occurring at room temperature may present limitations for optical devices.

  20. Quantum vacuum noise in physics and cosmology.

    PubMed

    Davies, P. C. W.

    2001-09-01

    The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics.

  1. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  2. Laser processing of solar cells with anti-reflective coating

    DOEpatents

    Harley, Gabriel; Smith, David D.; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2016-02-16

    Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.

  3. An Unwelcome Place for New Stars artist concept

    NASA Image and Video Library

    2006-08-23

    This artist concept depicts a supermassive black hole at the center of a galaxy. NASA Galaxy Evolution Explorer found evidence that black holes once they grow to a critical size stifle the formation of new stars in elliptical galaxies.

  4. Black Hole vs. Star: A Tidal Disruption Event (Artist's Concept)

    NASA Image and Video Library

    2018-06-15

    An artist's concept of a tidal disruption event (TDE) that happens when a star passes fatally close to a supermassive black hole, which reacts by launching a relativistic jet. https://photojournal.jpl.nasa.gov/catalog/PIA22355

  5. Continuous monitoring of deep groundwater at the ice margin, Kangerlussuaq, West Greenland

    NASA Astrophysics Data System (ADS)

    Claesson Liljedahl, L.; Lehtinen, A. M.; Ruskeeniemi, T.; Engström, J.; Hansson, K.; Sundberg, J.; Henkemans, E.; Frape, S.; Johansson, S.; Acuna, J.

    2012-12-01

    The deep geologic repository (DGR) concept for the long-term management of used nuclear fuel involves the containment and isolation of used nuclear fuel at depths of approximately 500-1000 m below ground surface within a suitable geological formation for hundreds of thousands of years. A key objective of the used fuel DGR research programs of the Swedish, Finnish and Canadian nuclear waste management organizations (SKB, POSIVA and NWMO, respectively) is to further understanding of geosphere stability and long-term evolution. Future glaciation represents an intense external perturbation of a DGR situated in northern latitudes. To advance the understanding of processes associated with glaciation and their impact on the long-term performance of a DGR, the Greenland Analogue Project (GAP) was initiated by SKB, POSIVA and NWMO. The GAP was initiated in 2008 as a four-year field and modelling study utilizing the Greenland ice sheet and sub-surface conditions in West Greenland as an analogue for the conditions expected to prevail in Fennoscandia and Canada during future glacial cycles. One of the main aims of the GAP is to improve the understanding of how groundwater flow and water chemistry is influenced by an existing ice sheet and continuous permafrost. One way to study this is by monitoring deep drillholes. A 645 m deep drillhole (DH-GAP04) was drilled and instrumented in July 2011 at the ice-sheet margin in Kangerlussuaq, West Greenland to investigate the hydrogeochemical and hydrogeological conditions of a subglacial environment. Of particular interest is the recharge of glacial meltwater, and understanding to what depth it intrudes into the bedrock and whether it affects the chemistry and physico-chemical properties of the deep groundwater. DH-GAP04 is instrumented with a two-packer multi-sensor system, installed at a depth of 560 m, dividing the hole into three sections. The upper section extends from the base of permafrost (about 350 m) down to the upper packer and is 190 m. The mid section is straddled by the two packers and is 10 m long. The lower section extends from the lower packer to the bottom of the hole and is 80 m. DH-GAP04 enables; 1) sub-permafrost geochemical sampling and monitoring of pressure and EC in three sections; 2) temperature monitoring in the mid section and temperature profiling along the hole using multimode fiber-optic cables and the distributed temperature sensing technique (DTS), and; 3) estimation of rock mass hydraulic properties. DTS-data shows that permafrost extends to a depth of 350 m at the ice sheet margin. Results from the first year's monitoring and sampling of DH-GAP04 suggest that the upper and mid sections are hydraulically connected, but hydrogeochemically different. The upper and mid sections have similar transmissivities and fresh water heads, but the mid section with its small volume is believed to provide a good opportunity to observe possible interactions between deep groundwaters and subglacial meltwaters. The upper section is long, but flushing of drilling water contamination occurs at the same speed as for the mid section. The water in the upper section is isotopically lighter and more saline than the water in the mid section, while the lower section seems to be rather stagnant, but appears to contain an under pressurized fracture system discharging water from the hole.

  6. Laser process and corresponding structures for fabrication of solar cells with shunt prevention dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Gabriel; Smith, David D.; Dennis, Tim

    Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.

  7. Seismic vibration source

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.; Varsi, G.; Yang, L. C. (Inventor)

    1979-01-01

    A system for vibrating the earth in a location where seismic mapping is to take place is described. A relatively shallow hole formed in the earth, such as a hole 10 feet deep, placing a solid propellant in the hole, sealing a portion of the hole above the solid propellant with a device that can rapidly open and close to allow a repeatedly interrupted escape of gas. The propellant is ignited so that high pressure gas is created which escapes in pulses to vibrate the earth.

  8. Quasar Drenched in Water Vapor Artist Concept

    NASA Image and Video Library

    2012-08-31

    Artist concept illustrates a quasar, or feeding black hole, similar to APM 08279+5255, where astronomers discovered huge amounts of water vapor. Gas and dust likely form a torus around the central black hole, with clouds of charged gas above and below.

  9. Bursting with Stars and Black Holes Artist Concept

    NASA Image and Video Library

    2007-10-25

    A growing black hole, called a quasar, is seen at the center of a faraway galaxy in this artist concept. Astronomers using NASA Spitzer and Chandra space telescopes discovered swarms of similar quasars hiding in dusty galaxies in the distant universe.

  10. Alvin Overboard!

    ERIC Educational Resources Information Center

    Nelson, John A.

    1988-01-01

    Describes the experiences and involvement of a public school teacher with deep sea exploration involving the deep submersible submarine "Alvin" from the Woods Hole Oceanographic Institute. Details some of the teacher's responsibilities in the project. Discusses what he learned through this experience. (CW)

  11. Model-based correction for local stress-induced overlay errors

    NASA Astrophysics Data System (ADS)

    Stobert, Ian; Krishnamurthy, Subramanian; Shi, Hongbo; Stiffler, Scott

    2018-03-01

    Manufacturing embedded DRAM deep trench capacitors can involve etching very deep holes into silicon wafers1. Due to various design constraints, these holes may not be uniformly distributed across the wafer surface. Some wafer processing steps for these trenches results in stress effects which can distort the silicon wafer in a manner that creates localized alignment issues between the trenches and the structures built above them on the wafer. In this paper, we describe a method to model these localized silicon distortions for complex layouts involving billions of deep trench structures. We describe wafer metrology techniques and data which have been used to verify the stress distortion model accuracy. We also provide a description of how this kind of model can be used to manipulate the polygons in the mask tape out flow to compensate for predicted localized misalignments between design shapes from a deep trench mask and subsequent masks.

  12. Universal router concept

    NASA Technical Reports Server (NTRS)

    Pesch, W. A.

    1970-01-01

    Portable universal router can cut holes of large diameter and irregular shapes, machine recesses, and drill holes with certain edge-distance limitations. Rectangular and round holes may be cut without a template.

  13. Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2017-11-01

    Tidal disruption events (TDEs) of stars by single or binary supermassive black holes (SMBHs) brighten galactic nuclei and reveal a population of otherwise dormant black holes. Adopting event rates from the literature, we aim to establish general trends in the redshift evolution of the TDE number counts and their observable signals. We pay particular attention to (I) jetted TDEs whose luminosity is boosted by relativistic beaming and (II) TDEs around binary black holes. We show that the brightest (jetted) TDEs are expected to be produced by massive black hole binaries if the occupancy of intermediate mass black holes (IMBHs) in low-mass galaxies is high. The same binary population will also provide gravitational wave sources for the evolved Laser Interferometer Space Antenna. In addition, we find that the shape of the X-ray luminosity function of TDEs strongly depends on the occupancy of IMBHs and could be used to constrain scenarios of SMBH formation. Finally, we make predictions for the expected number of TDEs observed by future X-ray telescopes finding that a 50 times more sensitive instrument than the Burst Alert Telescope (BAT) on board the Swift satellite is expected to trigger ˜10 times more events than BAT, while 6-20 TDEs are expected in each deep field observed by a telescope 50 times more sensitive than the Chandra X-ray Observatory if the occupation fraction of IMBHs is high. Because of their long decay times, high-redshift TDEs can be mistaken for fixed point sources in deep field surveys and targeted observations of the same deep field with year-long intervals could reveal TDEs.

  14. Neogene and Quaternary geology of a stratigraphic test hole on Horn Island, Mississippi Sound

    USGS Publications Warehouse

    Gohn, Gregory S.; Brewster-Wingard, G. Lynn; Cronin, Thomas M.; Edwards, Lucy E.; Gibson, Thomas G.; Rubin, Meyer; Willard, Debra A.

    1996-01-01

    During April and May, 1991, the U.S. Geological Survey (USGS) drilled a 510-ft-deep, continuously cored, stratigraphic test hole on Horn Island, Mississippi Sound, as part of a field study of the Neogene and Quaternary geology of the Mississippi coastal area. The USGS drilled two new holes at the Horn Island site. The first hole was continuously cored to a depth of 510 ft; coring stopped at this depth due to mechanical problems. To facilitate geophysical logging, an unsampled second hole was drilled to a depth of 519 ft at the same location.

  15. Star-shaped feeding traces produced by echiuran worms on the deep-sea floor of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Ohta, Suguru

    1984-12-01

    Many star-shaped foraging traces were observed in bottom photographs of the deep-sea floor taken in the Bay of Bengal between the depths of 5025 and 2635 m. They were classified into 10 types according to their dimensions, aspect ratios (length/width) of their spokes, features of the central structure, and possible production mechanisms. The proboscis of a deep-sea bonellid echiuran worm was photographed at a depth of 2635 m in the act of producing one of the star-shaped foraging traces. On the basis of photographic observations and observations of shallow-water forms, several types of the feeding traces can be ascribed to the foraging of deep-sea echiuran worms on surface detritus. At least four types of the star-shaped trace are probably produced by deep-sea bonellid worms, and a linear correlation could be found between the aspect ratios of the spokes and maximum number of spokes around the central hole. A geometrical model experiment stimulating the feeding behavior of a bonellid worm suggested simple behavioral principles which afford maximum utilization of the surface area around a central hole with least expenditure of energy. The prediction of the maximum number of spokes for a given aspect of spokes by the model experiment agreed well with those observed, both utilizing about 76% of the fresh sediment surface within the span of the probiscis around a central hole. This efficient feeding pattern may have adaptive value in deep-sea environments such as the central part of the Bay of Bengal, where energy input is limited.

  16. SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS INTERNAL LIMITING MEMBRANE PEELING ALTERS DEEP RETINAL VASCULATURE.

    PubMed

    Michalewska, Zofia; Nawrocki, Jerzy

    2018-04-30

    To describe morphology of retinal and choroidal vessels in swept-source optical coherence tomography angiography before and after vitrectomy with the temporal inverted internal limiting membrane (ILM) flap technique for full-thickness macular holes. Prospective, observational study of 36 eyes of 33 patients with full-thickness macular holes swept-source optical coherence tomography angiography was performed in patients before and 1 month after vitrectomy. Vitrectomy with the temporal inverted ILM flap technique was performed. In this method, ILM is peeled only at one side of the fovea. An ILM flap is created to cover the macular hole. Comparison of retina vasculature in the areas of ILM peeling vs. no ILM peeling at 1 and 3 months after successful vitrectomy was performed. The study demonstrated lower density of vessels in the deep retinal plexus in the area where ILM was peeled as compared to the rest of the fovea. Visual acuity and central retinal thickness 1 month after surgery correlates with fovea avascular zone diameter in deep retinal layers at the same time point (P = 0.001). This study confirmed that ILM peeling might alter blood flow in deep retinal vessels below the peeling area in the early postoperative period. The area of the fovea avascular zone corresponds to functional results at the same time point.

  17. The Chandra Deep Wide-Field Survey: Completing the new generation of Chandra extragalactic surveys

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan

    2016-09-01

    Chandra X-ray surveys have revolutionized our view of the growth of black holes across cosmic time. Recently, fundamental questions have emerged about the connection of AGN to their host large scale structures that clearly demand a wide, deep survey over a large area, comparable to the recent extensive Chandra surveys in smaller fields. We propose the Chandra Deep Wide-Field Survey (CDWFS) covering the central 6 sq. deg in the Bootes field, totaling 1.025 Ms (building on 550 ks from the HRC GTO program). CDWFS will efficiently probe a large cosmic volume, allowing us to carry out accurate new investigations of the connections between black holes and their large-scale structures, and will complete the next generation surveys that comprise a key part of Chandra's legacy.

  18. An Unwelcome Place for New Stars (artist concept)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version Suppression of Star Formation from Supermassive Black Holes

    This artist's concept depicts a supermassive black hole at the center of a galaxy. NASA's Galaxy Evolution Explorer found evidence that black holes -- once they grow to a critical size -- stifle the formation of new stars in elliptical galaxies. Black holes are thought to do this by heating up and blasting away the gas that fuels star formation.

    The blue color here represents radiation pouring out from material very close to the black hole. The grayish structure surrounding the black hole, called a torus, is made up of gas and dust. Beyond the torus, only the old red-colored stars that make up the galaxy can be seen. There are no new stars in the galaxy.

  19. WINDIGO-THIELSEN ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Sherrod, David R.; Benham, John R.

    1984-01-01

    The results of a mineral survey indicate that the Windigo-Thielsen Roadless Area, in Oregon has little promise for the occurrence of metallic mineral or fossil fuel resources. Abundant cinder deposits occur in the area, but numerous other large volume deposits are available in the region, closer to markets. The geothermal potential of the High Cascades province cannot be realistically evaluated without data on the subsurface thermal and hydrologic regime that can only be provided by deep drill holes. Several deep holes could be drilled outside the roadless areas of the High Cascades from which extrapolations of the geothermal potential of the province could be made.

  20. MOUNT WASHINGTON WILDERNESS, OREGON.

    USGS Publications Warehouse

    Taylor, Edward M.; Causey, J. Douglas

    1984-01-01

    On the basis of a mineral survey, Mount Washington Wilderness, Oregon has little promise for the occurrence of metallic mineral or fossil fuel resources. Abundant cinder resources occur in the wilderness, but other large volume cinder deposits are available outside the wilderness and closer to markets. Analysis of the geothermal potential of the High Cascades province cannot be made without data on the subsurface thermal and hydrologic regimes which can only be provided by deep drill holes. Several deep holes could be drilled in areas outside the wildernesses of the High Cascades, from which extrapolations of the geothermal potential of the wildernesses could be made.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putilov, L.P., E-mail: lev.putilov@gmail.com; Tsidilkovski, V.I.

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding tomore » the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.« less

  2. Lateral capacity of rock sockets in limestone under cyclic and repeated loading : technical summary.

    DOT National Transportation Integrated Search

    2010-08-01

    Drilled shafts are a type of deep foundation that is capable of supporting very large vertical and lateral loads. Drilled shafts are constructed by drilling a hole from the ground surface to the target depth or formation and filling the hole with rei...

  3. Electrical characterisation of deep level defects in Be-doped AlGaAs grown on (100) and (311)A GaAs substrates by MBE

    PubMed Central

    2011-01-01

    The growth of high mobility two-dimensional hole gases (2DHGs) using GaAs-GaAlAs heterostructures has been the subject of many investigations. However, despite many efforts hole mobilities in Be-doped structures grown on (100) GaAs substrate remained considerably lower than those obtained by growing on (311)A oriented surface using silicon as p-type dopant. In this study we will report on the properties of hole traps in a set of p-type Be-doped Al0.29Ga0.71As samples grown by molecular beam epitaxy on (100) and (311)A GaAs substrates using deep level transient spectroscopy (DLTS) technique. In addition, the effect of the level of Be-doping concentration on the hole deep traps is investigated. It was observed that with increasing the Be-doping concentration from 1 × 1016 to 1 × 1017 cm-3 the number of detected electrically active defects decreases for samples grown on (311)A substrate, whereas, it increases for (100) orientated samples. The DLTS measurements also reveal that the activation energies of traps detected in (311)A are lower than those in (100). From these findings it is expected that mobilities of 2DHGs in Be-doped GaAs-GaAlAs devices grown on (311)A should be higher than those on (100). PMID:21711687

  4. Lateral Variability of the Lower Ocean Crust at Atlantis Bank, SW Indian Ridge, Results of IODP Expedition 360

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; MacLeod, C. J.; Blum, P.; Scientific Party, E.

    2016-12-01

    IODP Hole U1473A drilled 809.4 m into a 700-m depth wave-cut platform at Atlantis Bank on the SW Indian Ridge. It is an oceanic core complex where massive gabbro was emplaced into the footwall of a single detachment fault for ≥2.7 Myr, with total slip ≥39 km. It was then uplifted to its present position flanking the 6,100 m deep 199-km Atlantis II Transform. The gabbros are back-tilted 20°S, while a sub-horizontal 15 km long mantle peridotite-gabbro contact lies along the transform wall at 4200 m depth 11.5 km west of Hole U1473A. Hole U1473A is 1.4 km north of 158-m deep Hole 1105A and 2.2 km NNE of 1508-m deep Hole 735B. Thus we examine the lateral continuity of the lower ocean crust at ultraslow rates ( 15-16 mm/yr.), and compare it to 1400-m Hole U1309D in the Atlantis Massif MAR core complex (24 mm/yr.) flanking the 63-km Atlantis Transform. The three Atlantis Bank holes are very similar, consisting of a complex series of oxide-rich gabbros and olivine gabbros. Several dikes crosscutting the gabbro sections show that they passed through the dike-gabbro transition after crystallizing and cooling deeper in the crust. They all show extensive high-temperature crystal-plastic deformation predating dike intrusion. A small amount of troctolite was recovered only in Hole 735B. By contrast, gabbro, rather than olivine gabbro was the dominant lithology in Hole U1309D, with intercalations of troctolite and mantle peridotite, and subordinate oxide gabbro. Oxide gabbro is often associated with crystal-plastic deformation. While these are concentrated in the upper 1/3 of Hole 735B, they are more uniformly distributed in Hole U1309D. While one section cannot be traced directly to the other at Atlantis Bank, it appears that they can be correlated based on chemical and structural similarities, with the 1105A and 1473A sections lying some hundreds of meters deeper structurally than Hole 735B, consistent with erosion on the platform. All these sections represent sequential emplacement of small gabbro bodies, with upward compaction of late melt, often fault controlled. The primary differences in the sections are due to variations in the melt supply, which was significantly lower at Hole U1309D, resulting in incorporation of mantle peridotite screens into the section as additional gabbro intrusions were added to the base of the section.

  5. Black Hole With Jet (Artist's Concept)

    NASA Image and Video Library

    2017-11-02

    This artist's concept shows a black hole with an accretion disk -- a flat structure of material orbiting the black hole -- and a jet of hot gas, called plasma. Using NASA's NuSTAR space telescope and a fast camera called ULTRACAM on the William Herschel Observatory in La Palma, Spain, scientists have been able to measure the distance that particles in jets travel before they "turn on" and become bright sources of light. This distance is called the "acceleration zone." https://photojournal.jpl.nasa.gov/catalog/PIA22085

  6. Fractal density modeling of crustal heterogeneity from the KTB deep hole

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2017-03-01

    Fractal or multifractal concepts have significantly enlightened our understanding of crustal heterogeneity. Much attention has focused on 1/f scaling natures of physicochemical heterogeneity of Earth crust from fractal increment perspective. In this study, fractal density model from fractal clustering point of view is used to characterize the scaling behaviors of heterogeneous sources recorded at German Continental Deep Drilling Program (KTB) main hole, and of special contribution is the local and global multifractal analysis revisited by using Haar wavelet transform (HWT). Fractal density modeling of mass accumulation generalizes the unit of rock density from integer (e.g., g/cm3) to real numbers (e.g., g/cmα), so that crustal heterogeneities with respect to source accumulation are quantified by singularity strength of fractal density in α-dimensional space. From that perspective, we found that the bulk densities of metamorphic rocks exhibit fractal properties but have a weak multifractality, decreasing with the depth. The multiscaling natures of chemical logs also have been evidenced, and the observed distinct fractal laws for mineral contents are related to their different geochemical behaviors within complex lithological context. Accordingly, scaling distributions of mineral contents have been recognized as a main contributor to the multifractal natures of heterogeneous density for low-porosity crystalline rocks. This finally allows us to use de Wijs cascade process to explain the mechanism of fractal density. In practice, the proposed local singularity analysis based on HWT is suggested as an attractive high-pass filtering to amplify weak signatures of well logs as well as to delineate microlithological changes.

  7. Modeling early in situ wetting of a compacted bentonite buffer installed in low permeable crystalline bedrock

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Frampton, A.; Fransson, À.; Jarsjö, J.

    2016-08-01

    The repository concept for geological disposal of spent nuclear fuel in Sweden and Finland is planned to be constructed in sparsely fractured crystalline bedrock and with an engineered bentonite buffer to embed the waste canisters. An important stage in such a deep repository is the postclosure phase following the deposition and the backfilling operations when the initially unsaturated buffer material gets hydrated by the groundwater delivered by the natural bedrock. We use numerical simulations to interpret observations on buffer wetting gathered during an in situ campaign, the Bentonite Rock Interaction Experiment, in which unsaturated bentonite columns were introduced into deposition holes in the floor of a 417 m deep tunnel at the Äspö Hard Rock Laboratory in Sweden. Our objectives are to assess the performance of state-of-the-art flow models in reproducing the buffer wetting process and to investigate to which extent dependable predictions of buffer wetting times and saturation patterns can be made based on information collected prior to buffer insertion. This would be important for preventing insertion into unsuitable bedrock environments. Field data and modeling results indicate the development of a de-saturated zone in the rock and show that in most cases, the presence or absence of fractures and flow heterogeneity are more important factors for correct wetting predictions than the total inflow. For instance, for an equal open-hole inflow value, homogeneous inflow yields much more rapid buffer wetting than cases where fractures are represented explicitly thus creating heterogeneous inflow distributions.

  8. Destruction and recreation of black holes

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Even though the existence of the gravitationally collapsed concentrations of matter in space known as ‘black holes’ is accepted at all educational levels in our society, the basis for the black hole concept is really only the result of approximate calculations done over 40 years ago. The concept of the black hole is an esoteric subject, and recently the mathematical and physical frailties of the concept have come to light in an interesting round of theoretical shuffling. The recent activity in theorizing about black holes began about 10 years ago, when Cambridge University mathematican Stephen Hawking calculated that black holes could become unstable by losing mass and thus ‘evaporate.’ Hawking's results were surprisingly well received, considering the lack of theoretical understanding of the relations between quantum mechanics and relativity. (There is no quantized theory of gravitation, even today.) Nonetheless, his semiclassical calculations implied that the rate of ‘evaporation’ of a black hole would be slower than the rate of degradation of the universe. In fact, based on these and other calculations, the British regard Hawking as ‘the nearest thing we have to a new Einstein’ [New Scientist, Oct. 9, 1980]. Within the last few months, Frank Tipler, provocative mathematical physicist at the University of Texas, has reexamined Hawking's calculations [Physical Review Letters, 45, 941, 1980], concluding, in simple terms, (1) that because of possible vital difficulties in the assumptions, the very concept of black holes could be wrong; (2) that Hawkings' evaporation hypothesis is so efficient that a black hole once created must disappear in less than a second; or (3) that he, Tipler, may be wrong. The latter possibility has been the conclusion of physicist James Bardeen of the University of Washington, who calculated that black hole masses do evaporate but they do so according to Hawking's predicted rate and that Tipler's findings cause only a second-order effect on the rate process [Physical Review Letters, 46, 382, 1981].

  9. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    NASA Astrophysics Data System (ADS)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10-7-10-8 m/s and that of influx is about 10-4-10-1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  10. Physical-Property Measurements on Core samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada

    USGS Publications Warehouse

    Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant

    2009-01-01

    From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.

  11. A new concept in Bitter disk design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, B.J.; Schneider-Muntau, H.J.; Eyssa, Y.M.

    1996-07-01

    A new concept in cooling hole design in Bitter disks that allows for much higher power densities and results in considerably lower hoop stresses has been developed and successfully tested at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, FL. The new cooling hole shape allows for extreme power densities (up to 12 W.mm{sup 3}) at a moderate heat flux of only 5 W/mm{sup 2}. The new concept also reduces the hoop stress by about 30--50% by making a Bitter disk compliant in the radial direction through staggering small width and closely spaced elongated cooling holes. Finally, the designmore » is optimized for equal temperature.« less

  12. Deployment of the Oklahoma borehole seismic experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harben, P.E.; Rock, D.W.

    1989-01-20

    This paper discusses the Oklahoma borehole seismic experiment, currently in operation, set up by members of the Lawrence Livermore National Laboratory Treaty Verification Program and the Oklahoma Geophysical Observatory to determine deep-borehole seismic characteristics in geology typical of large regions in the Soviet Union. We evaluated and logged an existing 772-m deep borehole on the Observatory site by running caliper, cement bonding, casing inspection, and hole-deviation logs. Two Teledyne Geotech borehole-clamping seismometers were placed at various depths and spacings in the deep borehole. Currently, they are deployed at 727 and 730 m. A Teledyne Geotech shallow-borehole seismometer was mounted inmore » a 4.5-m hole, one meter from the deep borehole. The seismometers' system coherency were tested and found to be excellent to 35 Hz. We have recorded seismic noise, quarry blasts, regional earthquakes and teleseisms in the present configuration. We will begin a study of seismic noise and attenuation as a function of depth in the near future. 7 refs., 18 figs.« less

  13. Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    NASA Astrophysics Data System (ADS)

    Collins, Nathan A.; Hughes, Scott A.

    2004-06-01

    Astronomical observations have established that extremely compact, massive objects are common in the Universe. It is generally accepted that these objects are, in all likelihood, black holes. As observational technology has improved, it has become possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or future gravitational-wave measurements) and to test whether they have the characteristics of black hole orbits in general relativity. Past work has shown that, in principle, such measurements can be used to map the spacetime of a massive compact object, testing in particular whether the object’s multipolar structure satisfies the rather strict constraints imposed by the black hole hypothesis. Performing such a test in practice requires that we be able to compare against objects with the “wrong” multipole structure. In this paper, we present tools for constructing the spacetimes of bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. In this first analysis, we focus on objects with no angular momentum. Generalization to bumpy Kerr black holes should be straightforward, albeit labor intensive. Our construction has two particularly desirable properties. First, the spacetimes which we present are good deep into the strong field of the object—we do not use a “large r” expansion (except to make contact with weak field intuition). Second, our spacetimes reduce to the exact black hole spacetimes of general relativity in a natural way, by dialing the “bumpiness” of the black hole to zero. We propose that bumpy black holes can be used as the foundation for a null experiment: if black hole candidates are indeed the black holes of general relativity, their bumpiness should be zero. By comparing the properties of orbits in a bumpy spacetime with those measured from an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are in fact the black holes of general relativity.

  14. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  15. SMART-X: Square Meter, Arcsecond Resolution Telescope for X-rays

    NASA Astrophysics Data System (ADS)

    Vikhlinin, Alexey; SMART-X Collaboration

    2013-04-01

    SMART-X is a concept for a next-generation X-ray observatory with large-area, 0.5" angular resolution grazing incidence adjustable X-ray mirrors, high-throughput critical angle transmission gratings, and X-ray microcalorimeter and CMOS-based imager in the focal plane. High angular resolution is enabled by new technology based on controlling the shape of mirror segments using thin film piezo actuators deposited on the back surface. Science applications include observations of growth of supermassive black holes since redshifts of ~10, ultra-deep surveys over 10's of square degrees, galaxy assembly at z=2-3, as well as new opportunities in the high-resolution X-ray spectroscopy and time domains. We also review the progress in technology development, tests, and mission design over the past year.

  16. Black Hole Grabs Starry Snack

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.

    The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.

    The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  17. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  18. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of a marriage between stress freezing photoelasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometrics studied were: crack depth to thickness ratios of approximately 0.2, 0.5, and 0.75; crack depth to crack length ratios of approximately 1.0 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar with most of the growth occurring through the thickness under remote extension. Stress intensity plate surface K sub s factors were determined at the intersection of the flaw border with the plate surface K sub s and with the edge of the hole K sub h. Results showed that for the relatively shallow flaws K sub h approximately equal to 1.5 K sub s, for the moderately deep flaws K sub h approximately equal to K sub s, and for the deep flaws K sub h approximately equal to 0.5 K sub s, revealing a severe sensitivity of K to flaw geometry.

  19. Geology and paleontology of five cores from Screven and Burke counties, eastern Georgia

    USGS Publications Warehouse

    Edwards, Lucy E.

    2001-01-01

    Five deep stratigraphic test holes were drilled from 1991 to 1993 in support of multidisciplinary investigations to determine the stratigraphy of Upper Cretaceous and Tertiary sediments of the coastal plain in east-central Georgia. Cored sediment and geological logs from the Millhaven test hole in Screven County and the Girard and Millers Pond test holes in Burke County are the primary sources of lithologic and paleontologic information from this report. Lithologic and paleontologic information from the Thompson Oak and McBean test holes in Burke County supplements the discussion of stratigraphy and sedimentation in the updip part of the study area near the Millers Pond test hole.

  20. The Atlantis Bank Gabbro Massif, SW Indian Ridge: the Largest Know Exposure of the Lower Crust in the Oceans

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Kvassnes, A. J.; Kinoshita, H.; MacLeod, C. J.; Robinson, P. T.

    2017-12-01

    Until the discovery of oceanic core complexes little was known and much inferred about the lower ocean crust at slow-spreading ridges. Their study shows the ocean crust isn't simply a uniform layer-cake of pillow lavas, sheeted dikes and gabbros, but is highly variable in thickness, composition and architecture, and even absent over large regions. The 660 km2 Atlantis Bank Gabbro Massif in the rift-mountains of the SW Indian Ridge flanking the Atlantis II Transform is the magmatic end member for ocean core complexes, and best approximates `average' slow-spread crust. Thus it has been a focus for drilling since its discovery in 1986, leading to the current attempt to drill to Moho there (Project SloMo). There are 3 ODP and IODP drill holes on its crest: 1508-m deep Hole 735B, 158-m deep Hole 1105A, and 809.4-m deep Hole U1473. These provide a 200 Kyr view of lower crustal accretion at a slow-spread ocean ridge. Here we extend this view to 2.7 Myr. Mapping and sampling shows the gabbro massif extends nearly the length of a single 2nd order magmatic ridge segment. With numerous inliers of the dike-gabbro transition at numerous locations, and a crust-mantle boundary, traced for 30-km along the transform wall, it would appear to represent a full section of the lower crust. As Moho is at 5.5 ± 1 km mbsf near Hole 735B, and 4.5 km beneath the transform, it is likely a serpentinization front. The crust-mantle boundary was crossed by dives at 4 locations. In each case gabbros at the base of the crust crystallized from melt that had previously fractionated 50% or more from a likely parent. Thus the gabbro massif must be laterally zoned, and the parental mantle melts had to have been emplaced at the center of the paleo-ridge segment, before intruding laterally to the distal end of the complex. Gabbros on a lithospheric flow line down the center of the massif closely resemble those from the drill holes. This shows that while lateral variations in crustal composition and thickness exist at Atlantis Bank, we can extend the conclusions derived from drilling at Hole U1473 that there is a continuum of accretionary magmatic and tectonic processes for 2.7 Myr, and a centrally located deep hole through the lower crust and mantle there will likely be representative of the 660-km2 Atlantis Bank gabbro massif as a whole.

  1. Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagnelund, D.; Huang, Y. Q.; Buyanova, I. A.

    2015-01-07

    By employing photoluminescence (PL) spectroscopy under dual-wavelength optical excitation, we uncover the presence of deep-level hole traps in Ga(In)NP alloys grown by molecular beam epitaxy (MBE). The energy level positions of the traps are determined to be at 0.56 eV and 0.78 eV above the top of the valance band. We show that photo-excitation of the holes from the traps, by a secondary light source with a photon energy below the bandgap energy, can lead to a strong enhancement (up to 25%) of the PL emissions from the alloys under a primary optical excitation above the bandgap energy. We further demonstrate thatmore » the same hole traps can be found in various MBE-grown Ga(In)NP alloys, regardless of their growth temperatures, chemical compositions, and strain. The extent of the PL enhancement induced by the hole de-trapping is shown to vary between different alloys, however, likely reflecting their different trap concentrations. The absence of theses traps in the GaNP alloy grown by vapor phase epitaxy suggests that their incorporation could be associated with a contaminant accompanied by the N plasma source employed in the MBE growth, possibly a Cu impurity.« less

  2. Ground water for public water supply at Windigo, Isle Royale National Park, Michigan

    USGS Publications Warehouse

    Grannemann, N.G.; Twenter, F.R.

    1982-01-01

    Three test holes drilled at Windigo in Isle Royale National Park in 1981 indicate that the ophitic basaltic lava flows underlying the area contain little water and cannot be considered a source for public water supply. The holes were 135, 175, and 71 feet deep. One hole yielded about 1 gallon of water perminute; the other two yielded less. Glacial deposits seem to offer the best opportunity for developing a ground-water supply of 5 to 10 gallons per minute.

  3. Band Transport and Trapping in Didodecyl[1]benzothieno[3,2-b][1]benzothiophene Probed by Terahertz Spectroscopy.

    PubMed

    Arend, Thomas R; Wimmer, Andreas; Schweicher, Guillaume; Chattopadhyay, Basab; Geerts, Yves H; Kersting, Roland

    2017-11-02

    Terahertz electromodulation spectroscopy provides insight into the material-inherent transport properties of charge carriers in organic semiconductors. Experiments on didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C 12 -BTBT-C 12 ) devices yield for holes an intraband mobility of 9 cm 2 V -1 s -1 . The short duration of the THz pulses advances the understanding of the hole transport on the molecular scale. The efficient screening of Coulomb potentials leads to a collective response of the hole gas to external fields, which can be well described by the Drude model. Bias stress of the devices generates deep traps that capture mobile holes. Although the resulting polarization across the device hinders the injection of mobile holes, the hole mobilities are not affected.

  4. Petrology of deep drill hole, Kilauea Volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grose, L.T.; Keller, G.V.

    1976-12-01

    The first deep drill hole (1262 m TD) at the summit of an active volcano (1102 m elev) was drilled in 1973 at Kilauea volcano, Hawaii with support from NSF and USGS. The hole is located within southern margin of Kilauea caldera in northern part of a 15 km/sup 2/ triangular block bounded by east rift zone, Koae fault zone, and southwest rift zone-a summit area relatively free of faults, rifts, and extrusions. Nearest eruptions are from fissures 1.2 km away which are active in 1974 and which do not trend toward the drill hole. Core recovery totals 47 mmore » from 29 core runs at rather evenly spaced intervals to total depth. Megascopic, thin-section, and X-ray examination reveals: (1) Recovered core is essentially vesicular, intergranular, nonporphyritic to porphyritic olivine basalt with minor olivine diabase, picrite diabase, and basalt, (2) Hyaloclastite and pillow basalt are absent, (3) Below water table (614 m elev) with increasing depth, vesicularity decreases, and density, crystallinity, competence, vesicle fill, and alteration irregularly increase, (4) Alteration first occurs at water table where calcite and silica partially fill vesticles and olivine is partially serpentinized, (5) At about 570 m elev massive serpentinization of olivine and deposition of montmorillonite-nontronite occur; at about 210 m elev truscottite and tobermorite occur in vesicles; at about 35 m elev mordenite occurs in vesicles, (6) Bottom-hole cores have complete filling of vesicles with silica, minor silica replacement, and complete alteration of olivine, and (7) Plagioclase is unaltered. Chemical analyses of bottom-hole cores are similar to those of modern summit lavas. Alteration and low porosity in bottom-hole cores plus abrupt temperature increase suggest the drill hole penetrated a self-sealed ''cap rock'' to a hydrothermal convection cell and possibly a magma body.« less

  5. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles

    2015-12-20

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction ofmore » massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion.« less

  6. Site Report for USGS Test Holes Drilled at Cape Charles, Northampton County, Virginia, in 2004

    USGS Publications Warehouse

    Gohn, Gregory S.; Sanford, Ward E.; Powars, David S.; Horton, J. Wright; Edwards, Lucy E.; Morin, Roger H.; Self-Trail, Jean M.

    2007-01-01

    The U.S. Geological Survey drilled two test holes near Cape Charles, Virginia, during May and June 2004, as part of an investigation of the buried, late Eocene Chesapeake Bay impact structure. The first hole is designated as the USGS-Sustainable Technology Park test hole #1 (USGS-STP1). This test hole was abandoned at a depth of 300 ft; cuttings samples were collected, but no cores or geophysical logs were acquired. The second hole is designated as the USGS-Sustainable Technology Park test hole #2 (USGS-STP2). This test hole was drilled to a depth of 2,699 ft. Cores were collected between depths of 1,401.7 ft and 1,420.7 ft and between 2,440.0 ft and 2,699.0 ft. Cuttings samples were collected from the uncored intervals below 280-ft depth. Interim sets of geophysical logs were acquired during the drilling operation, and one final set was acquired at the end of drilling. Two wells were installed in the USGS-STP2 test hole. The deep well (designated 62G-24) was screened between 2,260 ft and 2,280 ft, and the shallow well (designated 62G-25) was screened between 1,360 ft and 1,380 ft. Ground-water salinities stabilized at 40 parts per thousand for the deep well and 20 parts per thousand for the shallow well. The geologic section encountered in the test holes consists of three main units: (1) Eocene, Oligocene, Miocene, Pliocene, and Pleistocene sands and clays are present between land surface and a depth of 1,163 ft; (2) sediment-clast breccias of the impact structure are present between depths of 1,163 ft and 2,150 ft; and (3) crystalline-clast breccias and cataclastic gneiss of the impact structure are present between depths of 2,150 ft and 2,699 ft.

  7. Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Price, Laura L.

    This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less

  8. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  9. Bursting with Stars and Black Holes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A growing black hole, called a quasar, can be seen at the center of a faraway galaxy in this artist's concept. Astronomers using NASA's Spitzer and Chandra space telescopes discovered swarms of similar quasars hiding in dusty galaxies in the distant universe.

    The quasar is the orange object at the center of the large, irregular-shaped galaxy. It consists of a dusty, doughnut-shaped cloud of gas and dust that feeds a central supermassive black hole. As the black hole feeds, the gas and dust heat up and spray out X-rays, as illustrated by the white rays. Beyond the quasar, stars can be seen forming in clumps throughout the galaxy. Other similar galaxies hosting quasars are visible in the background.

    The newfound quasars belong to a long-lost population that had been theorized to be buried inside dusty, distant galaxies, but were never actually seen. While some quasars are easy to detect because they are oriented in such a way that their X-rays point toward Earth, others are oriented with their surrounding doughnut-clouds blocking the X-rays from our point of view. In addition, dust and gas in the galaxy itself can block the X-rays.

    Astronomers had observed the most energetic of this dusty, or obscured, bunch before, but the 'masses,' or more typical members of the population, remained missing. Using data from Spitzer and Chandra, the scientists uncovered many of these lost quasars in the bellies of massive galaxies between 9 and 11 billion light-years away. Because the galaxies were also busy making stars, the scientists now believe most massive galaxies spent their adolescence building up their stars and black holes simultaneously.

    The Spitzer observations were made as part of the Great Observatories Origins Deep Survey program, which aims to image the faintest distant galaxies using a variety of wavelengths.

  10. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI 3

    DOE PAGES

    Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua

    2016-01-01

    Here we report that many metal halides that contain cations with the ns 2 electronic configuration have recently been discovered as high-performance optoelectronic materials. In particular, solar cells based on lead halide perovskites have shown great promise as evidenced by the rapid increase of the power conversion efficiency. In this paper, we show density functional theory calculations of electronic structure and dielectric and defect properties of CsGeI 3 (a lead-free halide perovskite material). The potential of CsGeI 3 as a solar cell material is assessed based on its intrinsic properties. We find anomalously large Born effective charges and a largemore » static dielectric constant dominated by lattice polarization, which should reduce carrier scattering, trapping, and recombination by screening charged defects and impurities. Defect calculations show that CsGeI 3 is a p-type semiconductor and its hole density can be modified by varying the chemical potentials of the constituent elements. Despite the reduction of long-range Coulomb attraction by strong screening, the iodine vacancy in CsGeI3 is found to be a deep electron trap due to the short-range potential, i.e., strong Ge–Ge covalent bonding, which should limit electron transport efficiency in p-type CsGeI 3. This is in contrast to the shallow iodine vacancies found in several Pb and Sn halide perovskites (e.g., CH 3NH 3PbI 3, CH 3NH 3SnI 3, and CsSnI 3). The low-hole-density CsGeI 3 may be a useful solar absorber material but the presence of the low-energy deep iodine vacancy may significantly reduce the open circuit voltage of the solar cell. Still, on the other hand, CsGeI 3 may be used as an efficient hole transport material in solar cells due to its small hole effective mass, the absence of low-energy deep hole traps, and the favorable band offset with solar absorber materials such as dye molecules and CH 3NH 3PbI 3.« less

  11. Black holes as critical point of quantum phase transition.

    PubMed

    Dvali, Gia; Gomez, Cesar

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  12. Door to 'Pilbara'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic of five images taken by the microscopic imager on the Mars Exploration Rover Opportunity on sol 87 shows the hole drilled by the rover's rock abrasion tool into the rock dubbed 'Pilbara.' A sliced 'blueberry,' or spherule, which is darker and harder than the rest of the rock, can be seen near the center of the hole. The rock abrasion process left a pile of rock powder around the side of the hole, and to a lesser degree, inside the hole. The grinding penetrated an area of rock about 7.2 millimeters (about 0.28 inches) deep and 4.5 centimeters (about 1.8 inches) in diameter.

  13. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    NASA Astrophysics Data System (ADS)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  14. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-01

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  15. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy.

    PubMed

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-06

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  16. Highly Efficient Solution-Processed Deep-Red Organic Light-Emitting Diodes Based on an Exciplex Host Composed of a Hole Transporter and a Bipolar Host.

    PubMed

    Huang, Manli; Jiang, Bei; Xie, Guohua; Yang, Chuluo

    2017-10-19

    With the aim to achieve highly efficient deep-red emission, we introduced an exciplex forming cohost, 4,4',4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA): 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) (1:1). Due to the efficient triplet up-conversion processes upon the exciplex forming cohost, excellent performances of the devices were achieved with deep-red emission. Using the heteroleptic iridium complexes as the guest dopants, the solution-processed deep-red phosphorescent organic light-emitting diodes (PhOLEDs) with the iridium(III) bis(6-(4-(tert-butyl)phenyl)phenanthridine)acetylacetonate [(TP-BQ) 2 Ir(acac)]-based phosphorescent emitter exhibited an electroluminescent peak at 656 nm and a maximum external quantum efficiency (EQE) of 11.9%, which is 6.6 times that of the device based on the guest emitter doped in the polymer-based cohost. The unique exciplex with a typical hole transporter and a bipolar material is ideal and universal for hosting the red PhOLEDs and tremendously improves the device performances.

  17. Electrically driven deep ultraviolet MgZnO lasers at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suja, Mohammad; Bashar, Sunayna Binte; Debnath, Bishwajit

    Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. Here, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM)more » random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29-33 A/cm 2 are achieved. Furthermore, numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.« less

  18. Electrically driven deep ultraviolet MgZnO lasers at room temperature

    DOE PAGES

    Suja, Mohammad; Bashar, Sunayna Binte; Debnath, Bishwajit; ...

    2017-06-01

    Semiconductor lasers in the deep ultraviolet (UV) range have numerous potential applications ranging from water purification and medical diagnosis to high-density data storage and flexible displays. Nevertheless, very little success was achieved in the realization of electrically driven deep UV semiconductor lasers to date. Here, we report the fabrication and characterization of deep UV MgZnO semiconductor lasers. These lasers are operated with continuous current mode at room temperature and the shortest wavelength reaches 284 nm. The wide bandgap MgZnO thin films with various Mg mole fractions were grown on c-sapphire substrate using radio-frequency plasma assisted molecular beam epitaxy. Metal-semiconductor-metal (MSM)more » random laser devices were fabricated using lithography and metallization processes. Besides the demonstration of scalable emission wavelength, very low threshold current densities of 29-33 A/cm 2 are achieved. Furthermore, numerical modeling reveals that impact ionization process is responsible for the generation of hole carriers in the MgZnO MSM devices. The interaction of electrons and holes leads to radiative excitonic recombination and subsequent coherent random lasing.« less

  19. Geothermal surveys in the oceanic volcanic island of Mauritius

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio

    2017-04-01

    Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked to occur in the hotspot area thus seems to yield no particular thermal signature.

  20. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-10-01

    The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.

  1. Curiosity Successfully Drills "Duluth"

    NASA Image and Video Library

    2018-05-23

    A close-up image of a 2-inch-deep hole produced using a new drilling technique for NASA's Curiosity rover. The hole is about 0.6 inches (1.6 centimeters) in diameter. This image was taken by Curiosity's Mast Camera (Mastcam) on Sol 2057. It has been white balanced and contrast-enhanced. Curiosity drilled this hole in a target called "Duluth" on May 20, 2018. It was the first rock sample captured by the drill since October 2016. A mechanical issue took the drill offline in December 2016. https://photojournal.jpl.nasa.gov/catalog/PIA22326

  2. Deep neural networks to enable real-time multimessenger astrophysics

    NASA Astrophysics Data System (ADS)

    George, Daniel; Huerta, E. A.

    2018-02-01

    Gravitational wave astronomy has set in motion a scientific revolution. To further enhance the science reach of this emergent field of research, there is a pressing need to increase the depth and speed of the algorithms used to enable these ground-breaking discoveries. We introduce Deep Filtering—a new scalable machine learning method for end-to-end time-series signal processing. Deep Filtering is based on deep learning with two deep convolutional neural networks, which are designed for classification and regression, to detect gravitational wave signals in highly noisy time-series data streams and also estimate the parameters of their sources in real time. Acknowledging that some of the most sensitive algorithms for the detection of gravitational waves are based on implementations of matched filtering, and that a matched filter is the optimal linear filter in Gaussian noise, the application of Deep Filtering using whitened signals in Gaussian noise is investigated in this foundational article. The results indicate that Deep Filtering outperforms conventional machine learning techniques, achieves similar performance compared to matched filtering, while being several orders of magnitude faster, allowing real-time signal processing with minimal resources. Furthermore, we demonstrate that Deep Filtering can detect and characterize waveform signals emitted from new classes of eccentric or spin-precessing binary black holes, even when trained with data sets of only quasicircular binary black hole waveforms. The results presented in this article, and the recent use of deep neural networks for the identification of optical transients in telescope data, suggests that deep learning can facilitate real-time searches of gravitational wave sources and their electromagnetic and astroparticle counterparts. In the subsequent article, the framework introduced herein is directly applied to identify and characterize gravitational wave events in real LIGO data.

  3. Use of surface-geophysical methods to assess riverbed scour at bridge piers

    USGS Publications Warehouse

    Gorin, S.R.; Haeni, F.P.

    1989-01-01

    A ground-penetrating-radar system, and three seismic systems--color fathometer, tuned transducer, and black-and-white fathometer--were used to evaluate river-bed scour at the Charter Oak, Founder 's and Bulkeley Bridges in Hartford, Connecticut. Cross-sections of the channel and some lateral sections were run at each bridge in June and July 1987, and significant scour at piers supporting each of these bridges was recorded. Each of the four geophysical systems proved to have advantages and limitations. The ground penetrating radar system used single and dual 80 megahertz antennae floating in the water to transmit and receive the signal. The method was successful in water less than 25 ft deep, and in resistive earth materials. The geometry of existing scour holes and the extent of post-scour sedimentation were clearly defined. The color fathometer, operating at a signal frequency of 20 kilohertz, delineated existing scour-hole geometry, detected infilling of scour holes, and provided qualitative information about the physical properties of sediments. The tuned transducer, operating at a signal frequency of 14 kilohertz, defined scour-hole geometry and the extent of post-scour sediment deposition. Both of these systems were effective in water greater than 5 ft deep. At a signal frequency of 200 kilohertz, the black-and-white fathometer could not penetrate post-scour deposits, but it was useful in defining existing scour-holed geometry in water of any depth. (USGS)

  4. Surface acceptor states in MBE-grown CdTe layers

    NASA Astrophysics Data System (ADS)

    Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2018-04-01

    A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.

  5. Bats and bell holes: The microclimatic impact of bat roosting, using a case study from Runaway Bay Caves, Jamaica

    NASA Astrophysics Data System (ADS)

    Lundberg, Joyce; McFarlane, Donald A.

    2009-05-01

    The microclimatic effect of bats roosting in bell holes (blind vertical cylindrical cavities in cave roofs) in Runaway Bay Caves, Jamaica, was measured and the potential impact of their metabolism on dissolution modelled. Rock temperature measurements showed that bell holes with bats get significantly hotter than those without bats during bat roosting periods (by an average of 1.1 °C). The relationship is clearest for bell holes with more than about 300 g aggregate bat body mass and for bell holes that are moderately wide and deep, of W:D ratio between 0.8 and 1.6. Measurement of temperature decay after abandonment showed that rock temperature returns to normal each day during bat foraging periods. Metabolic activity from a typical population of 400 g bat (10 individuals) yields 41 g of CO 2, 417.6 kJ of heat, and 35.6 g of H 2O in each 18 hour roost period, and could produce a water film of ~ 0.44 mm, that is saturated with CO 2 at ~ 5%. The resultant rock dissolution is estimated at ~ 0.005 cm 3 CaCO 3 per day. The metabolic heat ensures that the focus of dissolution remains vertical regardless of geological controls. A typical bell hole 1 m deep may be formed in some 50,000 years by this mechanism alone. Addition of other erosional mechanisms, such as direct bacterial bio-erosion, or the formation of exfoliative organo-rock complexes, would accelerate the rate of formation. The hypothesis is developed that bell holes are initiated and formed by bat-mediated condensation corrosion and are governed by geographic distribution of clustering bats and their roosting behaviour.

  6. Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components

    NASA Astrophysics Data System (ADS)

    Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard

    2014-09-01

    The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.

  7. Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey

    USGS Publications Warehouse

    Poppe, Lawrence J.; Poppe, Lawrence J.

    1981-01-01

    In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.

  8. Simulation of magnetic holes formation in the magnetosheath

    NASA Astrophysics Data System (ADS)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2017-12-01

    Magnetic holes have been frequently observed in the Earth's magnetosheath and are believed to be the consequence of the nonlinear evolution of the mirror instability. Mirror mode perturbations mainly form as magnetic holes in regions where the plasma is marginally mirror stable with respect to the linear instability criterion. We present an expanding box particle-in-cell simulation to mimic the changing conditions in the magnetosheath as the plasma is convected through it that produces mirror mode magnetic holes. We show that in the initial nonlinear evolution, where the plasma conditions are mirror unstable, the magnetic peaks are dominant, while later, as the plasma relaxes toward marginal stability, the fluctuations evolve into deep magnetic holes. While the averaged plasma parameters in the simulation remain close to the mirror instability threshold, the local plasma in the magnetic holes is highly unstable to mirror instability and locally mirror stable in the magnetic peaks.

  9. A Black Hole in Our Galactic Center

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2008-01-01

    An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…

  10. A Presentation of the Black Hole Stretching Effect

    ERIC Educational Resources Information Center

    Kontomaris, Stylianos Vasileios; Malamou, Anna

    2018-01-01

    Black holes and the physics behind them is a fascinating topic for students of all levels. The exotic conditions which prevail near a black hole should be discussed and presented to undergraduate students in order to increase their interest in studying physics and to provide useful insights into basic physics concepts, such as non-uniform…

  11. Geophysical investigations in deep horizontal holes drilled ahead of tunnelling

    USGS Publications Warehouse

    Carroll, R.D.; Cunningham, M.J.

    1980-01-01

    Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.

  12. Correlated electron-hole mechanism for molecular doping in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Jing; D'Avino, Gabriele; Pershin, Anton; Jacquemin, Denis; Duchemin, Ivan; Beljonne, David; Blase, Xavier

    2017-07-01

    The electronic and optical properties of the paradigmatic F4TCNQ-doped pentacene in the low-doping limit are investigated by a combination of state-of-the-art many-body ab initio methods accounting for environmental screening effects, and a carefully parametrized model Hamiltonian. We demonstrate that while the acceptor level lies very deep in the gap, the inclusion of electron-hole interactions strongly stabilizes dopant-semiconductor charge transfer states and, together with spin statistics and structural relaxation effects, rationalize the possibility for room-temperature dopant ionization. Our findings reconcile available experimental data, shedding light on the partial vs. full charge transfer scenario discussed in the literature, and question the relevance of the standard classification in shallow or deep impurity levels prevailing for inorganic semiconductors.

  13. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Zhang, Yu; Xu, Fujun; Ding, Gege; Liu, Yuhang

    2018-06-01

    Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with step-like and Al-composition graded quantum wells have been investigated. The simulation results show that compared to DUV-LEDs with the conventional AlGaN multiple quantum wells (MQWs) structure, the light output power (LOP) and efficiency droop of DUV-LEDs with the Al-composition graded wells were remarkably improved. The key factor accounting for the improved performance is ascribed to the better modulation of carrier distribution in the quantum wells to increase the overlap between electron and hole wavefunctions, which contributes to more efficient recombination of electrons and holes, and thereby a significant enhancement in the LOP.

  14. Intrinsic charge trapping in amorphous oxide films: status and challenges

    NASA Astrophysics Data System (ADS)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.

  15. Deep Time Framework: A Preliminary Study of U.K. Primary Teachers' Conceptions of Geological Time and Perceptions of Geoscience.

    ERIC Educational Resources Information Center

    Trend, Roger David

    2001-01-01

    Studies (n=51) inservice school teachers with regard to their orientations toward geoscience phenomena in general and deep time in particular. Aims to identify the nature of idiosyncratic conceptions of deep time and propose a curricular Deep Time Framework for teacher education. (Contains 29 references.) (Author/YDS)

  16. Children's and adults' knowledge and models of reasoning about the ozone layer and its depletion

    NASA Astrophysics Data System (ADS)

    Leighton, Jacqueline P.; Bisanz, Gay L.

    2003-01-01

    As environmental concepts, the ozone layer and ozone hole are important to understand because they can profoundly influence our health. In this paper, we examined: (a) children's and adults' knowledge of the ozone layer and its depletion, and whether this knowledge increases with age' and (b) how the 'ozone layer' and 'ozone hole' might be structured as scientific concepts. We generated a standardized set of questions and used it to interview 24 kindergarten students, 48 Grade 3 students, 24 Grade 5 students, and 24 adults in university, in Canada. An analysis of participants' responses revealed that adults have more knowledge than children about the ozone layer and ozone hole, but both adults and children exhibit little knowledge about protecting themselves from the ozone hole. Moreover, only some participants exhibited 'mental models' in their conceptual understanding of the ozone layer and ozone hole. The implications of these results for health professionals, educators, and scientists are discussed.

  17. Geothermal Exploration of Newberry Volcano, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waibel, Albert F.; Frone, Zachary S.; Blackwell, David D.

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three yearsmore » have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.« less

  18. Drilling at right angles in blind holes

    NASA Technical Reports Server (NTRS)

    Pessin, R.

    1981-01-01

    Tool drills small hole perpendicular to and at bottom of blind hole. It consists of carbide cutter brazed to flexible shaft, inside thin metal tube with 90 degree bend. Wood dowel holds tube while motor turns shaft and drives cutter. It was developed for clearing plugged fuel orifices. Concept is adaptable to other hard-to-reach drilling situations.

  19. NASA Observatory Confirms Black Hole Limits

    NASA Astrophysics Data System (ADS)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first time, the ones in between have been counted properly. Growth of the Biggest Black Holes Illustrated Growth of the Biggest Black Holes Illustrated "We need to have an accurate head count over time of all growing black holes if we ever hope to understand their habits, so to speak," co-author Richard Mushotzky of NASA's Goddard Space Flight Center in Greenbelt, Md. Supermassive black holes themselves are invisible, but heated gas around them -- some of which will eventually fall into the black hole - produces copious amounts of radiation in the centers of galaxies as the black holes grow. Growth of the Biggest Black Holes Illustrated Growth of Smaller Black Holes Illustrated This study relied on the deepest X-ray images ever obtained, the Chandra Deep Fields North and South, plus a key wider-area survey of an area called the "Lockman Hole". The distances to the X-ray sources were determined by optical spectroscopic follow-up at the Keck 10-meter telescope on Mauna Kea in Hawaii, and show the black holes range from less than a billion to 12 billion light years away. Since X-rays can penetrate the gas and dust that block optical and ultraviolet emission, the very long-exposure X-ray images are crucial to find black holes that otherwise would go unnoticed. Black Hole Animation Black Hole Animation Chandra found that many of the black holes smaller than about 100 million Suns are buried under large amounts of dust and gas, which prevents detection of the optical light from the heated material near the black hole. The X-rays are more energetic and are able to burrow through this dust and gas. However, the largest of the black holes show little sign of obscuration by dust or gas. In a form of weight self-control, powerful winds generated by the black hole's feeding frenzy may have cleared out the remaining dust and gas. Other aspects of black hole growth were uncovered. For example, the typical size of the galaxies undergoing supermassive black hole formation reduces with cosmic time. Such "cosmic downsizing" was previously observed for galaxies undergoing star formation. These results connect well with the observations of nearby galaxies, which find that the mass of a supermassive black hole is proportional to the mass of the central region of its host galaxy. The other co-authors on the paper in the February 2005 issue of The Astronomical Journal were Len Cowie, Wei-Hao Wang, and Peter Capak (Institute for Astronomy, Univ. of Hawaii), Yuxuan Yang (GSFC and the Univ. of Maryland, College Park), and Aaron Steffen (Univ. of Wisconsin, Madison). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Space Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  20. Exploring the Relationship between Students' Understanding of Conventional Time and Deep (Geologic) Time

    NASA Astrophysics Data System (ADS)

    Cheek, Kim A.

    2013-07-01

    Many geologic processes occur in the context of geologic or deep time. Students of all ages demonstrate difficulty grasping this fundamental concept which impacts their ability to acquire other geoscience concepts. A concept of deep time requires the ability to sequence events on an immense temporal scale (succession) and to judge the durations of geologic processes based on the rates at which they occur. The twin concepts of succession and duration are the same ideas that underlie a concept of conventional time. If deep time is an extension of conventional time and not qualitatively different from it, students should display similar reasoning patterns when dealing with analogous tasks over disparate temporal periods. Thirty-five US students aged 13-24 years participated in individual task-based interviews to ascertain how they thought about succession and duration in conventional and deep time. This is the first attempt to explore this relationship in the same study in over 30 years. Most students successfully completed temporal succession tasks, but there was greater variability in responses on duration tasks. Conventional time concepts appear to impact how students reason about deep time. The application of spatial reasoning to temporal tasks sometimes leads to correct responses but in other instances does not. Implications for future research and teaching strategies are discussed.

  1. Stress hysteresis as the cause of persistent holes in particulate suspensions

    NASA Astrophysics Data System (ADS)

    Deegan, Robert D.

    2010-03-01

    Concentrated particulate suspensions under vibrations can support stable, localized, vertically oriented free surfaces. The most robust of these structures are persistent holes: deep and stable depressions of the interface. Using a reduced model of the hydrodynamics we show that a rheology with hysteresis can lead to motion opposite to the time-averaged applied force. Moreover, we show experimentally that particulate suspensions of cornstarch in water exhibits hysteresis in the shear-rate response to an applied sinusoidal stress. The results of our model and our experiments suggest that hysteresis accounts for the outward force needed to support persistent holes.

  2. Blasting methods for heterogeneous rocks in hillside open-pit mines with high and steep slopes

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Chang, Z. G.; Chao, X. H.; Zhao, J. F.

    2017-06-01

    In the arid desert areas in Xinjiang, most limestone quarries are hillside open-pit mines (OPMs) where the limestone is hard, heterogeneous, and fractured, and can be easily broken into large blocks by blasting. This study tried to find effective technical methods for blasting heterogeneous rocks in such quarries based on an investigation into existing problems encountered in actual mining at Hongshun Limestone Quarry in Xinjiang. This study provided blasting schemes for hillside OPMs with different heights and slopes. These schemes involve the use of vertical deep holes, oblique shallow holes, and downslope hole-by-hole sublevel or simultaneous detonation techniques. In each bench, the detonations of holes in a detonation unit occur at intervals of 25-50 milliseconds. The research findings can offer technical guidance on how to blast heterogeneous rocks in hillside limestone quarries.

  3. Testing for Controlled Rapid Pressurization

    DOE Data Explorer

    Steven Knudsen

    2014-09-03

    Borehole W1 is a NQ core hole drilled at our test site in Socorro. The rock is rhyolite. Borehole W1 which was used to test gas-gas explosive mixtures is 55 feet deep with casing (pinkish in the drawing) set to 35 feet. The model is a representation of the borehole and the holes we cored around the central borehole after the test. The brown colored core holes showed dye when we filled W1 with water and slightly pressurized it. This indicates there was some path between W1 and the colored core hole. The core holes are shown to their TD in the drawing. The green plane is a fracture plane which we believe is the result of the explosions of the gas mixture in W1. Data resource is a 2D .pdf Solid Works Drawing of borehole w-1

  4. Hole 504B reclaimed for future drilling

    NASA Astrophysics Data System (ADS)

    Leg 137 Scientific Drilling Party

    Hole 504B, perhaps the most important in situ reference section for the structure and composition of the oceanic crust, has been reopened for future drilling and downhole measurements after remedial operations during Leg 137 of the Ocean Drilling Program. By far the deepest penetration into oceanic crust, Hole 504B had been feared lost when a large diamond bit and assorted hardware (“junk”) broke off in the bottom of the hole at the end of ODP Leg 111 in 1986. Since then ODP's drill ship, JOIDES Resolution, has circumnavigated the globe, with no opportunity to redress this situation. But the objective of deep penetration into the oceanic crust and the hole itself are considered so important by marine Earth scientists that remedial measures in Hole 504B were undertaken as soon as the drill ship returned to the eastern Pacific. These measures succeeded better than had been hoped. Hole 504B was reopened after less than a week of cleaning operations, which included grappling for the lost junk with tools to pull it from the hole (called “fishing”) and grinding or milling the junk away.

  5. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    PubMed Central

    Wu, Dung-Sheng

    2018-01-01

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time. PMID:29565303

  6. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    PubMed

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  7. Joint US-Japan Observations with the Infrared Space Observatory (ISO): Deep Surveys and Observations of High-Z Objects

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    1997-01-01

    Several important milestones were passed during the past year of our ISO observing program: (1) Our first ISO data were successfully obtained. ISOCAM data were taken for our primary deep field target in the 'Lockman Hole'. Thirteen hours of integration (taken over 4 contiguous orbits) were obtained in the LW2 filter of a 3 ft x 3 ft region centered on the position of minimum HI column density in the Lockman Hole. The data were obtained in microscanning mode. This is the deepest integration attempted to date (by almost a factor of 4 in time) with ISOCAM. (2) The deep survey data obtained for the Lockman Hole were received by the Japanese P.I. (Yoshi Taniguchi) in early December, 1996 (following release of the improved pipeline formatted data from Vilspa), and a copy was forwarded to Hawaii shortly thereafter. These data were processed independently by the Japan and Hawaii groups during the latter part of December 1996, and early January, 1997. The Hawaii group made use of the U.S. ISO data center at IPAC/Caltech in Pasadena to carry out their data reduction, while the Japanese group used a copy of the ISOCAM data analysis package made available to them through an agreement with the head of the ISOCAM team, Catherine Cesarsky. (3) Results of our LW2 Deep Survey in the Lockman Hole were first reported at the ISO Workshop "Taking ISO to the Limits: Exploring the Faintest Sources in the Infrared" held at the ISO Science Operations Center in Villafranca, Spain (VILSPA) on 3-4 February, 1997. Yoshi Taniguchi gave an invited presentation summarizing the results of the U.S.-Japan team, and Dave Sanders gave an invited talk summarizing the results of the Workshop at the conclusion of the two day meeting. The text of the talks by Taniguchi and Sanders are included in the printed Workshop Proceedings, and are published in full on the Web. By several independent accounts, the U.S.-Japan Deep Survey results were one of the highlights of the Workshop; these data showed conclusively that the ISOCAM S/N continues to decrease as the square root of time for periods as long as 13 hours.

  8. Progress of the LASL dry hot rock geothermal energy project

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  9. Horizons of description: Black holes and complementarity

    NASA Astrophysics Data System (ADS)

    Bokulich, Peter Joshua Martin

    Niels Bohr famously argued that a consistent understanding of quantum mechanics requires a new epistemic framework, which he named complementarity . This position asserts that even in the context of quantum theory, classical concepts must be used to understand and communicate measurement results. The apparent conflict between certain classical descriptions is avoided by recognizing that their application now crucially depends on the measurement context. Recently it has been argued that a new form of complementarity can provide a solution to the so-called information loss paradox. Stephen Hawking argues that the evolution of black holes cannot be described by standard unitary quantum evolution, because such evolution always preserves information, while the evaporation of a black hole will imply that any information that fell into it is irrevocably lost---hence a "paradox." Some researchers in quantum gravity have argued that this paradox can be resolved if one interprets certain seemingly incompatible descriptions of events around black holes as instead being complementary. In this dissertation I assess the extent to which this black hole complementarity can be undergirded by Bohr's account of the limitations of classical concepts. I begin by offering an interpretation of Bohr's complementarity and the role that it plays in his philosophy of quantum theory. After clarifying the nature of classical concepts, I offer an account of the limitations these concepts face, and argue that Bohr's appeal to disturbance is best understood as referring to these conceptual limits. Following preparatory chapters on issues in quantum field theory and black hole mechanics, I offer an analysis of the information loss paradox and various responses to it. I consider the three most prominent accounts of black hole complementarity and argue that they fail to offer sufficient justification for the proposed incompatibility between descriptions. The lesson that emerges from this dissertation is that we have as much to learn from the limitations facing our scientific descriptions as we do from the successes they enjoy. Because all of our scientific theories offer at best limited, effective accounts of the world, an important part of our interpretive efforts will be assessing the borders of these domains of description.

  10. Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data

    NASA Astrophysics Data System (ADS)

    George, Daniel; Huerta, E. A.

    2018-03-01

    The recent Nobel-prize-winning detections of gravitational waves from merging black holes and the subsequent detection of the collision of two neutron stars in coincidence with electromagnetic observations have inaugurated a new era of multimessenger astrophysics. To enhance the scope of this emergent field of science, we pioneered the use of deep learning with convolutional neural networks, that take time-series inputs, for rapid detection and characterization of gravitational wave signals. This approach, Deep Filtering, was initially demonstrated using simulated LIGO noise. In this article, we present the extension of Deep Filtering using real data from LIGO, for both detection and parameter estimation of gravitational waves from binary black hole mergers using continuous data streams from multiple LIGO detectors. We demonstrate for the first time that machine learning can detect and estimate the true parameters of real events observed by LIGO. Our results show that Deep Filtering achieves similar sensitivities and lower errors compared to matched-filtering while being far more computationally efficient and more resilient to glitches, allowing real-time processing of weak time-series signals in non-stationary non-Gaussian noise with minimal resources, and also enables the detection of new classes of gravitational wave sources that may go unnoticed with existing detection algorithms. This unified framework for data analysis is ideally suited to enable coincident detection campaigns of gravitational waves and their multimessenger counterparts in real-time.

  11. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  12. Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland

    PubMed Central

    Miettinen, Hanna; Kietäväinen, Riikka; Sohlberg, Elina; Numminen, Mikko; Ahonen, Lasse; Itävaara, Merja

    2015-01-01

    Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when compared to the cell counts detected (1.4 × 104 cells mL−1) in water. The water for nucleic acid analysis went through high decompression (60–130 bar) during sampling, whereas water samples for detection of cell counts by microscopy could be collected with slow decompression. No clear cells could be identified in water that went through high decompression. The high-pressure decompression may have damaged part of the cells and the nucleic acids escaped through the filter. The microbial diversity was analyzed from two drill holes by pyrosequencing amplicons of the bacterial and archaeal 16S rRNA genes and from the fungal ITS regions from both DNA and RNA fractions. The identified prokaryotic diversity was low, dominated by Firmicute, Beta- and Gammaproteobacteria species that are common in deep subsurface environments. The archaeal diversity consisted mainly of Methanobacteriales. Ascomycota dominated the fungal diversity and fungi were discovered to be active and to produce ribosomes in the deep oligotrophic biosphere. The deep fluids from the Pyhäsalmi mine shared several features with other deep Precambrian continental subsurface environments including saline, Ca-dominated water and stable isotope compositions positioning left from the meteoric water line. The dissolved gas phase was dominated by nitrogen but the gas composition clearly differed from that of atmospheric air. Despite carbon-poor conditions indicated by the lack of carbon-rich fracture fillings and only minor amounts of dissolved carbon detected in formation waters, some methane was found in the drill holes. No dramatic differences in gas compositions were observed between different gas sampling methods tested. For simple characterization of gas composition the most convenient way to collect samples is from free flowing fluid. However, compared to a pressurized method a relative decrease in the least soluble gases may appear. PMID:26579109

  13. A presentation of the black hole stretching effect

    NASA Astrophysics Data System (ADS)

    Vasileios Kontomaris, Stylianos; Malamou, Anna

    2018-01-01

    Black holes and the physics behind them is a fascinating topic for students of all levels. The exotic conditions which prevail near a black hole should be discussed and presented to undergraduate students in order to increase their interest in studying physics and to provide useful insights into basic physics concepts, such as non-uniform gravitational fields. For this purpose, a simplified presentation of the stretching effect which is experienced by an object near a black hole is presented in this paper.

  14. Surprises from the spins: astrophysics and relativity with detections of spinning black-hole mergers

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide

    2018-03-01

    Measurements of black-hole spins are of crucial importance to fulfill the promise of gravitational-wave astronomy. On the astrophysics side, spins are perhaps the cleanest indicator of black-hole evolutionary processes, thus providing a preferred way to discriminate how LIGO's black holes form. On the relativity side, spins are responsible for peculiar dynamical phenomena (from precessional modulations in the long inspiral to gravitational-wave recoils at merger) which encode precious information on the underlying astrophysical processes. I present some examples to explore this deep and fascinating interplay between spin dynamics (relativity) and environmental effects (astrophysics). Black-hole spins indeed hide remarkable surprises on both fronts: morphologies, resonances, constraints on supernova kicks, multiple merger generations and more... These findings were presented at 12th Edoardo Amaldi Conference on Gravitational Waves, held on July 9-14, 2017 in Pasadena, CA, USA.

  15. Deep-Hole Neutron States with the (polarized Proton, Proton-Neutron Reaction.

    NASA Astrophysics Data System (ADS)

    Pella, Peter J.

    The(' )(p,pn) reaction with a polarized proton beam of 148.9 MeV was used to investigate neutron deep -hole states at the Indiana University Cyclotron Facility. A coplanar geometry was used with the proton detector at 36(DEGREES) and the neutron detector at -36.7(DEGREES) with a flight path of 17.8 meters. Separation energies, triple differential cross sections and analyzing powers were measured for CD(,2), ('9)Be, BeO, ('28)Si, ('58)Ni, and ('90)Zr targets. An overall energy resolution of better than 1 MeV was achieved for the heavier targets where kinematic corrections are small. The energy resolution varied between 1 MeV and 3 MeV for the lighter targets. The analysis of the data was performed within the framework of the Distorted Wave Impulse Approximation (DWIA). The cross section shapes are consistent with DWIA calculations and extracted spectroscopic factors are reasonable for targets through Si. The DWIA interpretation begins to fail for larger separation energies and heavier targets. The analyzing powers showed an out -of-phase characteristic for different j-values of the oxygen p-states, but they did not agree with the DWIA predictions. Statistical uncertainties did not allow for detailed investigation of the analyzing power data for other targets. This experiment determined neutron deep-hole states up to approximately 70 MeV in separation energy for a representative set of targets with neutron number N between 1 and 50. The experiment determined spectroscopic factors for "valence" (loosely bound) neutrons where the DWIA calculations are expected to be valid and established the areas where the DWIA approach begins to fail. Also the experiment failed to demonstrate the usefulness of analyzing powers to distinguish between j = 1 + 1/2 and j = 1 - 1/2 states, but did determine the failure of DWIA calculations in this area. It should now be possible to study the reaction mechanism more closely by making longer runs on selected targets; in addition, it should be possible to study deep-hole states in heavier Z targets where comparable (p,2p) studies have run into difficulties because of Coulomb effects.

  16. Deep rock nuclear waste disposal test: design and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, Robert D.

    1974-09-01

    An electrically heated test of nuclear waste simulants in granitic rock was conducted to demonstrate the feasibility of the concept of deep rock nuclear waste disposal and to obtain design data. This report describes the deep rock disposal sytstems study and the design and operation of the first concept feasibility test.

  17. PIA22224

    NASA Image and Video Library

    2018-02-28

    NASA's Curiosity Mars rover used a new drill method to produce a hole on Feb. 26, 2018, in a target named Lake Orcadie. The hole marks the first operation of the rover's drill since a motor problem began acting up more than a year ago. An early test produced a hole about a half-inch (1-centimeter) deep at Lake Orcadie --- not enough for a full scientific sample, but enough to validate that the new method works mechanically. This was just the first in what will be a series of tests to determine how well the new drill method can collect samples. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22224

  18. Comment on ;Acceleration of particles to high energy via gravitational repulsion in the Schwarzschild field; [Astropart. Phys. 86 (2017) 18-20

    NASA Astrophysics Data System (ADS)

    Spallicci, Alessandro D. A. M.

    2017-09-01

    Comments are due on a recent paper by McGruder III (2017) in which the author deals with the concept of gravitational repulsion in the context of the Schwarzschild-Droste solution. Repulsion (deceleration) for ingoing particles into a black hole is a concept proposed several times starting from Droste himself in 1916. It is a coordinate effect appearing to an observer at a remote distance from the black hole and when coordinate time is employed. Repulsion has no bearing and relation to the local physics of the black hole, and moreover it cannot be held responsible for accelerating outgoing particles. Thereby, the energy boost of cosmic rays cannot be produced by repulsion.

  19. Mud Gas Logging In A Deep Borehole: IODP Site C0002, Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Toczko, S.; Hammerschmidt, S.; Maeda, L.

    2014-12-01

    Mud logging, a tool in riser drilling, makes use of the essentially "closed-circuit" drilling mud flow between the drilling platform downhole to the bit and then back to the platform for analyses of gas from the formation in the drilling mud, cuttings from downhole, and a range of safety and operational parameters to monitor downhole drilling conditions. Scientific riser drilling, with coincident control over drilling mud, downhole pressure, and returning drilling mud analyses, has now been in use aboard the scientific riser drilling vessel Chikyu since 2009. International Ocean Discovery Program (IODP) Expedition 348, as part of the goal of reaching the plate boundary fault system near ~5000 mbsf, has now extended the deep riser hole (Hole C0002 N & P) to 3058.5 mbsf. The mud gas data discussed here are from two approximately parallel boreholes, one a kick-off from the other; 860-2329 mbsf (Hole C0002N) and 2163-3058 mbsf (Hole C0002P). An approximate overlap of 166 m between the holes allows for some slight depth comparison between the two holes. An additional 55 m overlap at the top of Hole C0002P exists where a 10-5/8-inch hole was cored, and then opened to 12-1/4-inch with logging while drilling (LWD) tools (Fig. 1). There are several fault zones revealed by LWD data, confirmed in one instance by coring. One of the defining formation characteristics of Holes C0002 N/P are the strongly dipping bedding planes, typically exceeding 60º. These fault zones and bedding planes can influence the methane/ethane concentrations found in the returning drilling mud. A focused comparison of free gas in drilling mud between one interval in Hole C0002 P, drilled first with a 10 5/8-inch coring bit and again with an 12 ¼-inch logging while drilling (LWD) bit is shown. Hole C0002N above this was cased all the way from the sea floor to the kick-off section. A fault interval (in pink) was identified from the recovered core section and from LWD resistivity and gamma. The plot of methane and ethane free gas (C1 and C2; ppmv) shows that the yield of free gas (primarily methane) was greater when the LWD bit returned to open the cored hole to a greater diameter. One possible explanation for this is the time delay between coring and LWD operations; approximately 3 days passed between the end of coring and the beginning of LWD (25-28 December 2013).

  20. Lateral access to the holes of photonic crystal fibers selective filling and sensing applications

    NASA Astrophysics Data System (ADS)

    Cordeiro, Cristiano M. B.; Dos Santos, Eliane M.; Brito Cruz, C. H.; de Matos, Christiano J.; Ferreiira, Daniel S.

    2006-09-01

    A new, simple, technique is demonstrated to laterally access the cladding holes of solid-core photonic crystal fibers (PCFs) or the central hole of hollow-core PCFs by blowing a hole through the fiber wall (using a fusion splicer and the application of pressure). For both fiber types material was subsequently and successfully inserted into the holes. The proposed method compares favorably with other reported selective filling techniques in terms of simplicity and reproducibility. Also, since the holes are laterally filled, simultaneous optical access to the PCFs is possible, which can prove useful for practical sensing applications. As a proof-of-concept experiment, Rhodamine fluorescence measurements are shown.

  1. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  2. A. V. Peyve — the founder of the concept of deep faults

    NASA Astrophysics Data System (ADS)

    Sherman, S. I.

    2009-03-01

    The further development of Peyve’s concept of deep faults in the Earth’s crust and brittle part of the lithosphere is discussed. Three aspects are accentuated in this paper: (1) the modern definition of the term deep fault; (2) the parameters of deep faults as ruptures of the geological medium and three-dimensional, often boundary, geological bodies; and (3) reactivation of deep faults, including the development of this process in real time. Peyve’s idea of deep faults readily fitted into the concept of new global tectonics (plate tectonics). This was facilitated, first of all, by the extensive efforts made to elaborate Peyve’s ideas by a large group of researchers at the Geological Institute of the Russian Academy of Sciences (GIN RAS) and other scientists. At present, the term deep fault has been extended and transformed to cover three-dimensional geological bodies; the geological and geophysical properties and parameters of these bodies, as well as their reactivation (recurrent activation) in real time, have been studied.

  3. Soft X-Ray Temperature Tidal Disruption Events from Stars on Deep Plunging Orbits

    NASA Astrophysics Data System (ADS)

    Dai, Lixin; McKinney, Jonathan C.; Miller, M. Coleman

    2015-10-01

    One of the puzzles associated with tidal disruption event candidates (TDEs) is that there is a dichotomy between the color temperatures of a few × 104 K for TDEs discovered with optical and UV telescopes and the color temperatures of a few × 105-106 K for TDEs discovered with X-ray satellites. Here, we propose that high-temperature TDEs are produced when the tidal debris of a disrupted star self-intersects relatively close to the supermassive black hole, in contrast to the more distant self-intersection that leads to lower color temperatures. In particular, we note from simple ballistic considerations that greater apsidal precession in an orbit is the key to closer self-intersection. Thus, larger values of β, the ratio of the tidal radius to the pericenter distance of the initial orbit, are more likely to lead to higher temperatures of more compact disks that are super-Eddington and geometrically and optically thick. For a given star and β, apsidal precession also increases for larger black hole masses, but larger black hole masses imply a lower temperature at the Eddington luminosity. Thus, the expected dependence of the temperature on the mass of the black hole is non-monotonic. We find that in order to produce a soft X-ray temperature TDE, a deep plunging stellar orbit with β > 3 is needed and a black hole mass of ≲5 × 106M⊙ is favored. Although observations of TDEs are comparatively scarce and are likely dominated by selection effects, it is encouraging that both expectations are consistent with current data.

  4. Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, L.; Kasameyer, P.; Turpin, C.

    2000-03-01

    This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. Preliminary results on phasing across the Bay Bridge, up and down hole wave amplification at Yerba Buena Island, and sensor orientation analysis are presented. Events recorded and located during 1999 are presented. Also, a senior thesis on the deep structure of the San Francisco Bay beneath the Bay Bridge is presented as an addendum.« less

  5. Challenges of constructing salt cavern gas storage in China

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui

    2017-11-01

    After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.

  6. Reed-Solomon Codes and the Deep Hole Problem

    NASA Astrophysics Data System (ADS)

    Keti, Matt

    In many types of modern communication, a message is transmitted over a noisy medium. When this is done, there is a chance that the message will be corrupted. An error-correcting code adds redundant information to the message which allows the receiver to detect and correct errors accrued during the transmission. We will study the famous Reed-Solomon code (found in QR codes, compact discs, deep space probes,ldots) and investigate the limits of its error-correcting capacity. It can be shown that understanding this is related to understanding the "deep hole" problem, which is a question of determining when a received message has, in a sense, incurred the worst possible corruption. We partially resolve this in its traditional context, when the code is based on the finite field F q or Fq*, as well as new contexts, when it is based on a subgroup of F q* or the image of a Dickson polynomial. This is a new and important problem that could give insight on the true error-correcting potential of the Reed-Solomon code.

  7. Entropy of Vaidya Black Hole on Apparent Horizon with Minimal Length Revisited

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Wu, Bin; Sun, Cheng-yi; Song, Yu; Yue, Rui-hong

    2018-03-01

    By considering the generalized uncertainty principle, the degrees of freedom near the apparent horizon of Vaidya black hole are calculated with the thin film model. The result shows that a cut-off can be introduced naturally rather than taking by hand. Furthermore, if the minimal length is chosen to be a specific value, the statistical entropy will satisfy the conventional area law at the horizon, which might reveal some deep things of the minimal length.

  8. ISO deep far-infrared survey in the Lockman Hole

    NASA Astrophysics Data System (ADS)

    Kawara, K.; Sato, Y.; Matsuhara, H.; Taniguchi, Y.; Okuda, H.; Sofue, Y.; Matsumoto, T.; Wakamatsu, K.; Cowie, L. L.; Joseph, R. D.; Sanders, D. B.

    1999-03-01

    Two 44 arcmin x 44 arcmin fields in the Lockman Hole were mapped at 95 and 175 μm using ISOPHOT. A simple program code combined with PIA works well to correct for the drift in the detector responsivity. The number density of 175 μm sources is 3 - 10 times higher than expected from the no-evolution model. The source counts at 95 and 175 μm are consistent with the cosmic infrared background.

  9. Entropy of Vaidya Black Hole on Apparent Horizon with Minimal Length Revisited

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Wu, Bin; Sun, Cheng-yi; Song, Yu; Yue, Rui-hong

    2018-07-01

    By considering the generalized uncertainty principle, the degrees of freedom near the apparent horizon of Vaidya black hole are calculated with the thin film model. The result shows that a cut-off can be introduced naturally rather than taking by hand. Furthermore, if the minimal length is chosen to be a specific value, the statistical entropy will satisfy the conventional area law at the horizon, which might reveal some deep things of the minimal length.

  10. Phylogenetic diversity of microorganisms in subseafloor crustal fluids from Holes 1025C and 1026B along the Juan de Fuca Ridge flank

    PubMed Central

    Jungbluth, Sean P.; Lin, Huei-Ting; Cowen, James P.; Glazer, Brian T.; Rappé, Michael S.

    2014-01-01

    To expand investigations into the phylogenetic diversity of microorganisms inhabiting the subseafloor biosphere, basalt-hosted crustal fluids were sampled from Circulation Obviation Retrofit Kits (CORKs) affixed to Holes 1025C and 1026B along the Juan de Fuca Ridge (JdFR) flank using a clean fluid pumping system. These boreholes penetrate the crustal aquifer of young ocean crust (1.24 and 3.51 million years old, respectively), but differ with respect to borehole depth and temperature at the sediment-basement interface (147 m and 39°C vs. 295 m and 64°C, respectively). Cloning and sequencing of PCR-amplified small subunit ribosomal RNA genes revealed that fluids retrieved from Hole 1025C were dominated by relatives of the genus Desulfobulbus of the Deltaproteobacteria (56% of clones) and Candidatus Desulforudis of the Firmicutes (17%). Fluids sampled from Hole 1026B also contained plausible deep subseafloor inhabitants amongst the most abundant clone lineages; however, both geochemical analysis and microbial community structure reveal the borehole to be compromised by bottom seawater intrusion. Regardless, this study provides independent support for previous observations seeking to identify phylogenetic groups of microorganisms common to the deep ocean crustal biosphere, and extends previous observations by identifying additional lineages that may be prevalent in this unique environment. PMID:24723917

  11. Metallurgical Investigation of Hot Ductility Loss in Ti-6211 Alloy.

    DTIC Science & Technology

    1986-01-15

    Yttrium, Effect of Fractography Phase Transformations Massive Transformations Martensite Widmanstatten a + 0 19. ductility specimens supplied by TNRDC...atom diameters deep . Also, with the recent development of improved gun and detector designs, spot sizes as small as 0.2 um dia. can be employed. Attempts...of deep holes Scattered about the fracture surface, particularly along prior 71 a-grain boundaries and in transgranular locations on ductile rupture

  12. Geotechnical Properties of Periplatform Carbonate Sediments

    DTIC Science & Technology

    1990-07-01

    and Atmospheric and geoacoustic parameters for similar sediments in Research Laboratory participated in Ocean Drilling other regions. Leg 101. During...this exercise sha’"w-water and midwater depth carbonate sediments from a few deep drill holes were studied extensively by Results and Recommendations...protected by the grains and are less Deep Sea Drilling Project Leg 86. In: Heath, G. R., affected by consolidation than they are in matrix- Bruckle, L. H

  13. Potential Physiologies of Deep Branches on the Tree of Life with Deep Subsurface Samples from IODP Leg 347: Baltic Sea Paleoenvironment

    NASA Astrophysics Data System (ADS)

    Lloyd, K. G.; Bird, J. T.; Shumaker, A.

    2014-12-01

    Very little is known about how evolutionary branches that are distantly related to cultured microorganisms make a living in the deep subsurface marine environment. Here, sediments are cut-off from surface inputs of organic substrates for tens of thousands of years; yet somehow support a diverse population of microorganisms. We examined the potential metabolic and ecological roles of uncultured archaea and bacteria in IODP Leg 347: Baltic Sea Paleoenvironment samples, using quantitative PCR holes 60B, 63E, 65C, and 59C and single cell genomic analysis for hole 60B. We quantified changes in total archaea and bacteria, as well as deeply-branching archaeal taxa with depth. These sediment cores alternate between high and low salinities, following a glacial cycle. This allows changes in the quantities of these groups to be placed in the context of potentially vastly different organic matter sources. In addition, single cells were isolated, and their genomes were amplified and sequenced to allow a deeper look into potential physiologies of uncultured deeply-branching organisms found up to 86 meters deep in marine sediments. Together, these data provide deeper insight into the relationship between microorganisms and their organic matter substrates in this extreme environments.

  14. First Microbial Community Assessment of Borehole Fluids from the Deep Underground Science and Engineering Laboratory (DUSEL)

    NASA Astrophysics Data System (ADS)

    Moser, D. P.; Anderson, C.; Bang, S.; Jones, T. L.; Boutt, D.; Kieft, T.; Sherwood Lollar, B.; Murdoch, L. C.; Pfiffner, S. M.; Bruckner, J.; Fisher, J. C.; Newburn, J.; Wheatley, A.; Onstott, T. C.

    2010-12-01

    Fluid and gas samples were collected from two flowing boreholes at the 4100 (1,250 m) and 4850 ft (1478 m) levels of the former Homestake Gold Mine in Lead, South Dakota. Service- and flood water samples were also collected as comparative benchmarks. With a maximum depth of 8,000 ft, (2,438 m), this mine currently hosts the Sanford Laboratory and is the proposed location for the US Deep Underground Science and Engineering Laboratory (DUSEL). The uncased 4100L hole is a legacy of mining; whereas, the cased 4850 hole was drilled in 2009 in support of large cavity construction. Both were packered or valved to exclude mine air and sampled anaerobically using aseptic technique. Physical measurements, aquatic and dissolved gas chemistry, cell counts, and microbial community assessments (SSU rRNA libraries) were performed on all samples. This study represents the first at Sanford Lab/DUSEL specifically focused on the deep biosphere rather than mine microbiology. Fluids from the two holes differed markedly, with that from 4100L being characterized by NaHCO3 and 4850 by Na2SO4. pH values of 8.2 vs. 7.5, conductivities (μS) of 1790 vs. 7667 and alkalinities (mg/L) of 767 vs. 187 were obtained from 4100L and 4850, respectively. As expected, the deeper 4850L hole had the higher temperature (38 vs. 30 oC). Neither had measureable nitrate, but both had similar dissolved organic C (DOC) concentrations (0.8 vs. 0.9 mg/L). Sulfate was present at 337 vs. 4,470 mg/L in 4100L and 4850L. Major dissolved gases were N2 (91 and 81 vol%), O2 (12 and 16 vol%) and CH4 (0.07 and 3.35 vol%) in 4100L and 4850L. The δ13C of CH4 was -51 and -56.7 permil in 4100L and 4850, respectively. The uncorrected 14C age of DIC was calculated at 25,310 (+/- 220) and 47,700 (+/-3,100) years for the two fluids. Cell counts were 5.9e3 and 2.01e5 in 4100L and 4850. Microbial community structure was diverse in both holes and distinct from that of service water. A large proportion of rRNA library clones were Proteobacteria and closely related to known or expected aerobes including: Thiobacillus, Siderooxidans, Leptothrix, Hydrogenophaga, Pseaudomonas, Methylomonas and Thiothrix, consistent with possible mine water or air contamination. Conversely, Deltaproteobacteria and Firmicute clones, often very closely related to others detected from deep mine or sediment habitats, suggests a deep subsurface component as well. Archaeal clones from 4100L were dominated by a deeply-branching clade with no cultivated representatives; whereas, those from 4850 were mostly related to known methanogens (e.g. Methanolobus). Collectively, this dataset suggests mixed end-member or deeply-sourced water partially overprinted by mine-related artifacts. However, until more is known concerning the deep hydrogeology of this system, it will be difficult to ascertain indigenous from impacted microbial communities in DUSEL.

  15. AT THE SOURCE OF AN EXTRAGALACTIC JET

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Artist's concept of the formation region of M87's jet. An accretion disk (red-yellow) surrounds the black hole, and its magnetic field lines twist tightly to channel the outpouring subatomic particles into a narrow jet. The jet opens widely near the black hole, then is shaped into a narrower beam within a light-year of the black hole. Credit: NASA and Ann Feild (Space Telescope Science Institute)

  16. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  17. Concepts for a Shroud or Propellant Tank Derived Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howard, Robert L.

    2012-01-01

    Long duration human spaceflight missions beyond Low Earth Orbit will require much larger spacecraft than capsules such as the Russian Soyuz or American Orion Multi-Purpose Crew Vehicle. A concept spacecraft under development is the Deep Space Habitat, with volumes approaching that of space stations such as Skylab, Mir, and the International Space Station. This paper explores several concepts for Deep Space Habitats constructed from a launch vehicle shroud or propellant tank. It also recommends future research using mockups and prototypes to validate the size and crew station capabilities of such a habitat. Keywords: Exploration, space station, lunar outpost, NEA, habitat, long duration, deep space habitat, shroud, propellant tank.

  18. Sensor Emplacement Techniques and Seismic Noise Analysis for USArray Transportable Array Seismic Stations

    NASA Astrophysics Data System (ADS)

    Busby, Robert; Frassetto, Andy; Hafner, Katrin; Woodward, Robert; Sauter, Allan

    2013-04-01

    In preparation for deployment of EarthScope's USArray Transportable Array (TA) in Alaska beginning in 2014, the National Science Foundation (NSF) is supporting exploratory work on seismic station design, sensor emplacement and communication concepts appropriate for the challenging high-latitude environment that is proposed for deployment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and the lower-48 U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where there are few roads, cellular communications are scarce, most areas are only accessible by small plane or helicopter, and permafrost underlies much of the northern tundra. In this study we review our methods used for directly emplacing of broadband seismometers in comparison to the current methods used to deploy TA stations. These primarily focus on using an auger to drill three to five meters, beneath the active layer of the permafrost, or coring directly into surface bedrock to one meter depth using a portable drill. Both methods have proven logistically effective in trials. Subsequent station performance can be quantitatively assessed using probability density functions summed from power spectral density estimates. These are calculated for the continuous time series of seismic data recorded for each channel of the seismometer. There are five test stations currently operating in Alaska. One was deployed in August 2011 and the remaining four in October 2012. Our results show that the performance of seismometers in Alaska with auger-hole or core-hole installations equals or exceeds that of the quietest TA stations in the lower-48, particularly at long periods, and in exceptional cases approaches the performance of the GSN low noise model. The station at Poker Flat Research Range, Alaska co-locates a sensor in a 5 meter deep auger hole with a 2 meter deep TA tank installation typical of the lower-48. The augered seismometer is currently over 20 dB quieter at periods over 40 seconds than the TA tank installation. Similar performance has been observed at other TA stations, which also compare favorably to co-located permanent stations.

  19. Dual nature of acceptors in GaN and ZnO: The curious case of the shallow MgGa deep state

    NASA Astrophysics Data System (ADS)

    Lany, Stephan; Zunger, Alex

    2010-04-01

    Employing a Koopmans corrected density functional method, we find that the metal-site acceptors Mg, Be, and Zn in GaN and Li in ZnO bind holes in deep levels that are largely localized at single anion ligand atoms. In addition to this deep ground state (DGS), we observe an effective-masslike delocalized state that can exist as a short lived shallow transient state (STS). The Mg dopant in GaN represents the unique case where the ionization energy of the localized deep level exceeds only slightly that of the shallow effective-mass acceptor, which explains why Mg works so exceptionally well as an acceptor dopant.

  20. Continuation of down-hole geophysical testing for rock sockets.

    DOT National Transportation Integrated Search

    2013-11-01

    Site characterization for the design of deep foundations is crucial for ensuring a reliable and economic substructure design, as unanticipated site conditions can cause significant problems and disputes during construction. Traditional invasive explo...

  1. AlN/GaN Digital Alloy for Mid- and Deep-Ultraviolet Optoelectronics.

    PubMed

    Sun, Wei; Tan, Chee-Keong; Tansu, Nelson

    2017-09-19

    The AlN/GaN digital alloy (DA) is a superlattice-like nanostructure formed by stacking ultra-thin ( ≤ 4 monolayers) AlN barriers and GaN wells periodically. Here we performed a comprehensive study on the electronics and optoelectronics properties of the AlN/GaN DA for mid- and deep-ultraviolet (UV) applications. Our numerical analysis indicates significant miniband engineering in the AlN/GaN DA by tuning the thicknesses of AlN barriers and GaN wells, so that the effective energy gap can be engineered from ~3.97 eV to ~5.24 eV. The band structure calculation also shows that the valence subbands of the AlN/GaN DA is properly rearranged leading to the heavy-hole (HH) miniband being the top valence subband, which results in the desired transverse-electric polarized emission. Furthermore, our study reveals that the electron-hole wavefunction overlaps in the AlN/GaN DA structure can be remarkably enhanced up to 97% showing the great potential of improving the internal quantum efficiency for mid- and deep-UV device application. In addition, the optical absorption properties of the AlN/GaN DA are analyzed with wide spectral coverage and spectral tunability in mid- and deep-UV regime. Our findings suggest the potential of implementing the AlN/GaN DA as a promising active region design for high efficiency mid- and deep-UV device applications.

  2. Measurement of stimulated Hawking emission in an analogue system.

    PubMed

    Weinfurtner, Silke; Tedford, Edmund W; Penrice, Matthew C J; Unruh, William G; Lawrence, Gregory A

    2011-01-14

    Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. To address this issue experimentally, we utilize the analogy between the propagation of fields around black holes and surface waves on moving water. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include surface wave horizons. Long waves propagating upstream towards this region are blocked and converted into short (deep-water) waves. This is the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion process for this system. Given the close relationship between stimulated and spontaneous emission, our findings attest to the generality of the Hawking process.

  3. Sub-100-nm ordered silicon hole arrays by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    Sub-100-nm silicon nanohole arrays were fabricated by a combination of the site-selective electroless deposition of noble metals through anodic porous alumina and the subsequent metal-assisted chemical etching. Under optimum conditions, the formation of deep straight holes with an ordered periodicity (e.g., 100 nm interval, 40 nm diameter, and high aspect ratio of 50) was successfully achieved. By using the present method, the fabrication of silicon nanohole arrays with 60-nm periodicity was also achieved. PMID:24090268

  4. DSMS science operations concept

    NASA Technical Reports Server (NTRS)

    Connally, M. J.; Kuiper, T. B.

    2001-01-01

    The Deep Space Mission System (DSMS) Science Operations Concept describes the vision for enabling the use of the DSMS, particularly the Deep Space Network (DSN) for direct science observations in the areas of radio astronomy, planetary radar, radio science and VLBI.

  5. A Study on Micro-Machining Technology for the Machining of NiTi: Five-Axis Micro-Milling and Micro Deep-Hole Drilling

    NASA Astrophysics Data System (ADS)

    Biermann, D.; Kahleyss, F.; Krebs, E.; Upmeier, T.

    2011-07-01

    Micro-sized applications are gaining more and more relevance for NiTi-based shape memory alloys (SMA). Different types of micro-machining offer unique possibilities for the manufacturing of NiTi components. The advantage of machining is the low thermal influence on the workpiece. This is important, because the phase transformation temperatures of NiTi SMAs can be changed and the components may need extensive post manufacturing. The article offers a simulation-based approach to optimize five-axis micro-milling processes with respect to the special material properties of NiTi SMA. Especially, the influence of the various tool inclination angles is considered for introducing an intelligent tool inclination optimization algorithm. Furthermore, aspects of micro deep-hole drilling of SMAs are discussed. Tools with diameters as small as 0.5 mm are used. The possible length-to-diameter ratio reaches up to 50. This process offers new possibilities in the manufacturing of microstents. The study concentrates on the influence of the cutting speed, the feed and the tool design on the tool wear and the quality of the drilled holes.

  6. A Periodically Varying Luminous Quasar at z = 2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi

    Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers and the strongest sirens of gravitational waves (GWs) in the cosmos. Yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of SMBHBs in the time domain. We have begun a systematic search for SMBHB candidates in the Pan-STARRS1 Medium Deep Survey (MDS) and reported our first significant detection of such a candidate from our pilot study of MD09 in Liu et al. (2015). Our candidate PSO J334.2028+01.4075 has a detected period of 542 days, varying persistently over the available baseline. From its archival spectrum, we estimated the black hole mass of the z = 2.06 quasar to be ~1010 M⊙. The inferred ~7 R s binary separation therefore puts this candidate in the regime of GW-dominated orbital decay, opening up the exciting possibility of finding GW sources detectable by pulsar timing arrays (PTAs) in a wide-field optical synoptic survey.

  7. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Li, Luping; Bi, Wengang; Zhang, Zi-Hui

    2018-01-01

    This work proposes the [0001] oriented AlGaN-based deep ultraviolet (DUV) light-emitting diode (LED) possessing a specifically designed p-electron blocking layer (p-EBL) to achieve the high internal quantum efficiency. Both electrons and holes can be efficiently injected into the active region by adopting the Al0.60Ga0.40N/Al0.50Ga0.50N/Al0.60Ga0.40N structured p-EBL, in which a p-Al0.50Ga0.50N layer is embedded into the p-EBL. Moreover, the impact of different thicknesses for the p-Al0.50Ga0.50N insertion layer on the hole and electron injections has also been investigated. Compared with the DUV LED with the bulk p-Al0.60Ga0.40N as the EBL, the proposed LED architectures improve the light output power if the thickness of the p-Al0.50Ga0.50N insertion layer is properly designed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otani, Y; Sumida, I; Yagi, M

    Purpose: Brachytherapy has multiple manual procedures which are prone to human error, especially during the connection process of the treatment device to applicator. This is when considerable attention is required. In this study, we propose a new connection verification device concept. Methods: The system is composed of a ring magnet (anisotropic ferrite : magfine Inc), hole device (A1324LUA-T : Allegro MicroSystems Phil Inc) and an in-house check cable, which is made from magnetic material (Figure1). The magnetic field distribution is affected by the check cable position and any magnetic field variation is detected by the hole device. This system frequencymore » is 20Hz and the average of 4 signals was used as hole device value to reduce noise. Results: The value of the hole device is altered, depending on the location of the check cable. The resolution of the check cable position is 5mm and 10mm, around a 10mm region from the hole device and over 10mm, respectively. There was a reduction in sensitivity of the hole device, in our test, which was linked to the distance of the hole device from the check cable. Conclusion: We demonstrated a new concept of connection verification in a brachytherapy. This system has the possibility to detect an incorrect connection. Moreover, the system is capable of self-optimization, such as determining the number of hole device and the magnet strength.Acknowledgement:This work was supported by JSPS Core -to-Core program Number 23003 and KAKENHI Grant Number 26860401. This work was supported by JSPS Core-to-Core program Number 23003 and KAKENHI Grant Number 26860401.« less

  9. Black hole shadows and invariant phase space structures

    NASA Astrophysics Data System (ADS)

    Grover, J.; Wittig, A.

    2017-07-01

    Utilizing concepts from dynamical systems theory, we demonstrate how the existence of light rings, or fixed points, in a spacetime will give rise to families of periodic orbits and invariant manifolds in phase space. It is shown that these structures can define the shape of the black hole shadow as well as a number of salient features of the spacetime lensing. We illustrate this through the analysis of lensing by a hairy black hole.

  10. Early evolution of salt structures in north Louisiana salt basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobao, J.J.; Pilger, R.H. Jr.

    1986-05-01

    Several salt diapirs and pillows in southern and central north Louisiana have been studied using approximately 355 mi (570 km) of seismic reflection data and information from 57 deep well holes. Using seismic profiles with deep well-hole data is the most advantageous method to document regional salt tectonism through time. The following conclusions were reached on diapirism in the North Louisiana Salt basin. (1) The diapiric event began early (early Coahuilan) in the southern and central part of the basin, and later (late Coahuilan to Comanchean) in the northern part. (2) The initial diapiric event is much more abrupt andmore » intense in the southern and central diapirs when compared with the later diapiric event in the northern diapirs. (3) Regional depocenter shifting, relative sea level, local erosion with salt extrusion, and rapid depositional loading of sediments are the major controls on diapirism in the basin.« less

  11. SOFT X-RAY TEMPERATURE TIDAL DISRUPTION EVENTS FROM STARS ON DEEP PLUNGING ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Lixin; McKinney, Jonathan C.; Miller, M. Coleman, E-mail: cosimo@umd.edu

    One of the puzzles associated with tidal disruption event candidates (TDEs) is that there is a dichotomy between the color temperatures of a few × 10{sup 4} K for TDEs discovered with optical and UV telescopes and the color temperatures of a few × 10{sup 5}–10{sup 6} K for TDEs discovered with X-ray satellites. Here, we propose that high-temperature TDEs are produced when the tidal debris of a disrupted star self-intersects relatively close to the supermassive black hole, in contrast to the more distant self-intersection that leads to lower color temperatures. In particular, we note from simple ballistic considerations thatmore » greater apsidal precession in an orbit is the key to closer self-intersection. Thus, larger values of β, the ratio of the tidal radius to the pericenter distance of the initial orbit, are more likely to lead to higher temperatures of more compact disks that are super-Eddington and geometrically and optically thick. For a given star and β, apsidal precession also increases for larger black hole masses, but larger black hole masses imply a lower temperature at the Eddington luminosity. Thus, the expected dependence of the temperature on the mass of the black hole is non-monotonic. We find that in order to produce a soft X-ray temperature TDE, a deep plunging stellar orbit with β > 3 is needed and a black hole mass of ≲5 × 10{sup 6}M{sub ⊙} is favored. Although observations of TDEs are comparatively scarce and are likely dominated by selection effects, it is encouraging that both expectations are consistent with current data.« less

  12. Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer

    NASA Astrophysics Data System (ADS)

    Chen, Zhuoying; Bird, Matthew; Lemaur, Vincent; Radtke, Guillaume; Cornil, Jérôme; Heeney, Martin; McCulloch, Iain; Sirringhaus, Henning

    2011-09-01

    Understanding the mechanisms limiting ambipolar transport in conjugated polymer field-effect transistors (FETs) is of both fundamental and practical interest. Here, we present a systematic study comparing hole and electron charge transport in an ambipolar conjugated polymer, semicrystalline poly(3,3''-di-n-decylterselenophene) (PSSS). Starting from a detailed analysis of the device characteristics and temperature/charge-density dependence of the mobility, we interpret the difference between hole and electron transport through both the Vissenberg-Matters and the mobility-edge model. To obtain microscopic insight into the quantum mechanical wave function of the charges at a molecular level, we combine charge modulation spectroscopy (CMS) measuring the charge-induced absorption signatures from positive and negative polarons in these ambipolar FETs with corresponding density functional theory (DFT) calculations. We observe a significantly higher switch-on voltage for electrons than for holes due to deep electron trap states, but also a higher activation energy of the mobility for mobile electrons. The CMS spectra reveal that the electrons that remain mobile and contribute to the FET current have a wave function that is more localized onto a single polymer chain than that of holes, which is extended over several polymer chains. We interpret this as evidence that the transport properties of the mobile electrons in PSSS are still affected by the presence of deep electron traps. The more localized electron state could be due to the mobile electrons interacting with shallow trap states in the vicinity of a chemical, potentially water-related, impurity that might precede the capture of the electron into a deeply trapped state.

  13. Galaxies of all Shapes Host Black Holes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground).

    New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams.

    The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.

  14. Deep Intuition as a Level in the Development of the Concept Image

    ERIC Educational Resources Information Center

    Semadeni, Zbigniew

    2008-01-01

    To explicate certain phenomena, e.g., the possibility of deduction without definition, we hypothesize that an individual is able to understand and appreciate reasoning with a due feeling of its necessity when the concept image of each concept involved in the reasoning has reached a certain level of development; we then speak of "deep intuition".…

  15. BLACK HOLE MASS AND EDDINGTON RATIO DISTRIBUTION FUNCTIONS OF X-RAY-SELECTED BROAD-LINE AGNs AT z {approx} 1.4 IN THE SUBARU XMM-NEWTON DEEP FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobuta, K.; Akiyama, M.; Ueda, Y.

    2012-12-20

    In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z {approx} 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 A monochromatic luminosity. We supplement the Mg II FWHM values with the H{alpha} FWHM obtained from our NIRmore » spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V{sub max} method. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 10{sup 8} M{sub Sun} but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts.« less

  16. Conceptual design of modular fixture for frame welding and drilling process integration case study: Student chair in UNS industrial engineering integrated practicum

    NASA Astrophysics Data System (ADS)

    Darmawan, Tofiq Dwiki; Priadythama, Ilham; Herdiman, Lobes

    2018-02-01

    Welding and drilling are main processes of making chair frame from metal material. Commonly, chair frame construction includes many arcs which bring difficulties for its welding and drilling process. In UNS industrial engineering integrated practicum there are welding fixtures which use to fixing frame component position for welding purpose. In order to achieve exact holes position for assembling purpose, manual drilling processes were conducted after the frame was joined. Unfortunately, after it was welded the frame material become hard and increase drilling tools wear rate as well as reduce holes position accuracy. The previous welding fixture was not equipped with clamping system and cannot accommodate drilling process. To solve this problem, our idea is to reorder the drilling process so that it can be execute before welding. Thus, this research aims to propose conceptual design of modular fixture which can integrate welding and drilling process. We used Generic Product Development Process to address the design concept. We collected design requirements from 3 source, jig and fixture theoretical concepts, user requirements, and clamping part standards. From 2 alternatives fixture tables, we propose the first which equipped with mounting slots instead of holes. We test the concept by building a full sized prototype and test its works by conducting welding and drilling of a student chair frame. Result from the welding and drilling trials showed that the holes are on precise position after welding. Based on this result, we conclude that the concept can be a consideration for application in UNS Industrial Engineering Integrated Practicum.

  17. The concept of quasi-tissue-equivalent nanodosimeter based on the glow peak 5a/5 in LiF:Mg,Ti (TLD-100).

    PubMed

    Oster, L; Horowitz, Y S; Biderman, S; Haddad, J

    2003-12-01

    We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.

  18. VL1 Digs A Deep Hole On Mars

    NASA Technical Reports Server (NTRS)

    1977-01-01

    VIKING LANDER DIGS A DEEP HOLE ON MARS -- This six-inch-deep, 12- inch-wide, 29-inch-long hole was dug Feb. 12 and 14 by Viking Lander 1 as the first sequence in an attempt to reach a foot beneath the surface of the red planet. The activity is in the same area where Lander 1 acquired its first soil samples last July. The trench was dug by repeatedly backhoeing in a left-right-center pattern. The backhoe teeth produced the small parallel ridges at the far end of the trench (upper left). The larger ridges running the length of the trench are material left behind during the backhoe operation. What appears to be small rocks along the ridges and in the soil at the near end of the trench are really small dirt clods. The clods and the steepness of the trench walls indicate the material is cohesive and behaves something like ordinary flour. After a later sequence, to be performed March 1 and 2, a soil sample will be taken from the bottom of the trench for inorganic soil analysis and later for biology analysis. Information about the soil taken from the bottom of the trench may help explain the weathering process on Mars and may help resolve the dilemma created by Viking findings that first suggest but then cast doubt on the possibility of life in the Martian soil. The trench shown here is a result of one of the most complex command sequences yet performed by the lander. Viking l has been operating at Chryse Planitia on Mars since it landed July 20, 1976.

  19. A 3 Kilometer Deep Window on the Interior of the Modern Nankai Accretionary Wedge: First Results from IODP Expedition 348

    NASA Astrophysics Data System (ADS)

    Tobin, Harold; Hirose, Takehiro; Demian, Saffer

    2014-05-01

    IODP Site C0002 at the Nankai Trough is now the deepest hole ever drilled in scientific ocean drilling, at 3058 meters below sea floor so far, and the first hole anywhere to access the deep interior of an active convergent margin. Site C0002 is part of the NanTroSEIZE transect off the Kii-Kumano region of Japan, imaged with 3D seismic reflection and drilled on a series of Chikyu expeditions to shed light on the processes around the up-dip edge of seismogenic locking and slip. At Site C0002, riser drilling has passed through the approximately 900 m thick Kumano forearc basin and pierced the underlying Miocene age accretionary wedge. Limited coring, extensive LWD logging, and continuous observations on drill cuttings reveal the materials and processes in the deep interior of the inner wedge. Predominantly fine-grained mudstones with common turbiditic sands were encountered, complexly deformed and exhibiting well-developed scaly clay fabrics, variable bedding dip with very steep dips prevailing, and veins that become more abundant with depth. The biostratigraphic age of the sediments in the lowermost part of the hole is thought to be ~ 9 - 11 Ma, with an assumed age of accretion of 3-5 Ma. Physical properties suggest that the inner wedge from 1600 - 3000 mbsf has quite homogeneous properties. Evidence from borehole logging, drilling parameters, and samples for the state of stress and pore pressure in this never-before accessed tectonic environment will be presented.

  20. Clinical Named Entity Recognition Using Deep Learning Models.

    PubMed

    Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua

    2017-01-01

    Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER.

  1. Clinical Named Entity Recognition Using Deep Learning Models

    PubMed Central

    Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua

    2017-01-01

    Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER. PMID:29854252

  2. Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures

    NASA Astrophysics Data System (ADS)

    Liang, Y. H.; Towe, E.

    2018-03-01

    Doping of high aluminum-containing (Al,Ga)N thin films has remained a challenging problem that has hindered progress in the development of deep ultraviolet light-emitters. This paper reports on the synthesis and use of heavily doped (Al,Ga)N films in deep ultraviolet (˜274 nm) light-emitting structures; these structures were synthesized by molecular beam epitaxy under liquid-metal growth conditions that facilitate the incorporation of extremely high density of Mg dopant impurities (up to 5 × 1019 cm-3) into aluminum-rich (Al,Ga)N thin films. Prototypical light-emitting diode structures incorporating Al0.7Ga0.3N films doped with Mg impurities that ionize to give free hole carrier concentrations of up to 6 × 1017 cm-3 exhibit external quantum efficiencies of up 0.56%; this is an improvement from previous devices made from molecular beam epitaxy-grown materials. This improvement is believed to be due to the high hole carrier concentration enabled by the relatively low activation energy of 220 meV compared to the expected values of 408-507 meV for Al0.7Ga0.3N films.

  3. The development of and experiments on electromagnetic measurement while a drilling system is used for deep exploration

    NASA Astrophysics Data System (ADS)

    Lu, Chunhua; Jiang, Guosheng; Wang, Ziqi; Wang, Jiahao; Wang, Chenli

    2016-10-01

    An electromagnetic measurement while drilling system (EM-MWD) can transfer well track state parameters to the ground in real time, which makes it an indispensable technology for deep-hole drilling. This paper introduces the development of and experiments on an EM-MWD system used for deep exploration in the People’s Republic of China. The designed EM-MWD system is composed of a downhole instrument and a ground instrument, and we elaborate on the structural design of the downhole instrument, the design of the transmission and control circuits and the signal modulation. This work also covers the software and hardware design of the ground instrument and signal demodulation technologies. Finally, some indoor signal decoding experiments and some in-hole signal transmission experiments are performed. This study indicates that the designed EM-MWD system can measure information for downhole drilling parameters and send it to the ground effectively, while the ground receiver can decode the signal accurately and reliably, and the desired signal can be obtained. Furthermore, the strength of the received signal is not affected by the polar distance within a certain polar distance.

  4. Characterization of nitride hole lateral transport in a charge trap flash memory by using a random telegraph signal method

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Heng; Jiang, Cheng-Min; Lin, Hsiao-Yi; Wang, Tahui; Tsai, Wen-Jer; Lu, Tao-Cheng; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    We use a random telegraph signal method to investigate nitride trapped hole lateral transport in a charge trap flash memory. The concept of this method is to utilize an interface oxide trap and its associated random telegraph signal as an internal probe to detect a local channel potential change resulting from nitride charge lateral movement. We apply different voltages to the drain of a memory cell and vary a bake temperature in retention to study the electric field and temperature dependence of hole lateral movement in a nitride. Thermal energy absorption by trapped holes in lateral transport is characterized. Mechanisms of hole lateral transport in retention are investigated. From the measured and modeled results, we find that thermally assisted trap-to-band tunneling is a major trapped hole emission mechanism in nitride hole lateral transport.

  5. Depth Perception in Space Artist Concept

    NASA Image and Video Library

    2007-05-30

    This artist concept shows how astronomers use the unique orbit of NASA Spitzer Space Telescope and a depth-perceiving trick called parallax to determine the distance of dark planets, black holes and failed stars that lurk invisibly among us.

  6. Shifting Coronas Around Black Holes Artist Concept

    NASA Image and Video Library

    2015-10-27

    A supermassive black hole is depicted in this artist's concept, surrounded by a swirling disk of material falling onto it. The purplish ball of light above the black hole, a feature called the corona, contains highly energetic particles that generate X-ray light. If you could view the corona with your eyes, it would appear nearly invisible since we can't see its X-ray light. The corona gathers inward (left), becoming brighter, before shooting away from the black hole (middle and right). Astronomers don't know why the coronas shift, but they have learned that this process leads to a brightening of X-ray light that can be observed by telescopes. Normally, before a black hole's corona shifts, there is already an effect at work called relativistic boosting. As X-ray light from the corona reflects off the black hole's surrounding disk of material -- which is traveling near half the speed of light -- the X-ray light becomes brightened, as seen on the left side of the illustration. This boosting occurs on the side of the disk where the material is traveling toward us. The opposite effect, a dimming of the X-ray light, occurs on the other side of the disk moving away from us. Another form of relativistic boosting happens when the corona shoots away from the black hole, and later collapses. Its X-ray light is also brightened as the corona travels toward us at very fast speeds, leading to X-ray flares. In 2014, NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, and Swift space telescopes witnessed an X-flare from the supermassive black hole in a distant galaxy called Markarian 335. The observations allowed astronomers to link a shifting corona to an X-ray flare for the first time. http://photojournal.jpl.nasa.gov/catalog/PIA20051

  7. Mineral Dilution and Shallow Groundwater Dynamics as Motor to Drive Fluid Migration in the Deep Crystalline Crust - Interpretation of Hydraulic Investigations From the 9,101 m Super Deep German Continental Drillhole -

    NASA Astrophysics Data System (ADS)

    Kessels, W.; Graesle, W.

    2002-12-01

    The results of 16 years of research at the scientific drilling test site KTB Oberpfalz show that fluid flow and open hydraulic fractures exist down to 9,101m (Kessels, 1991; Huenges et. al., 1997). This means that in this seismically low active area, crustal dynamics produces stress accumulation and related fracturing (Zoback et. al. 1993). Two major fractured fault zones cross the KTB main hole at about 4,000 m and 7,100m depth. Hydraulic communication between the KTB main hole and the 4,000 m deep pilot hole shows that the upper 400 m thick fracture zone has a good transmissivity and a very low fracture porosity (Kessels and KÂ\\x81ck, 1995). The distance between both holes was 200m. The isotopic components of the fluid recovered from this zone indicate a west - east fluid flow from a topographic lower sedimentary area to the higher hilly area of the KTB site (M”ller et. al. 1997). To explain this phenomenon, the existence of a permanent, density driven dilution motor pushing such a flow is suggested. With such a system it is possible to explain fluid flow in the deep crust against the higher potential of the groundwater surface. By means of a simple convection model it can be shown that the density driven dilution motor can create a more effective hydraulic potential than a motor driven by precipitation and the related hydraulic head of the groundwater surface. Furthermore, with common geothermal gradients, the geothermal convection motor is weak compared with the fluid density effects discussed here. References: KESSELS, W. (1991): Objectives and execution of hydraulic experiments in the KTB-Oberpfalz borehole within the long-term measurement and test programme, Scientific Drilling 2, S. 287-298. ZOBACK, D., APEL, R., BAUMGÂŽRTNER, J., BRUDY, M., EMMERMANN, R, ENGESER, B., FUCHS, K., KESSELS, W., RISCHMšLLER, H., RUMMEL, F., VERNIK, L. (1993): Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole, Nature, 365, S. 633-635. KESSELS, W. and KšCK, J (1995): Hydraulic Communication in the Crystalline Rock Between the two Boreholes of the Continental Deep Drilling Programme in Germany, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 32, S. 37-47. M™LLER, P., WEISE, S., ALTHAUS, E., BACH, W., BEHR, H. J., BORCHARDT, R, BRŽUER, K., DRESCHER, J., ERZINGER, J., FABER, E., HORN, E., HUENGES, E., KŽMPF, W., KESSELS, W., KIRSTEN, T., LANDWEHR, D., LODEMANN, M., MACHON, L., PEKDEGER, A., PIELOW, H.-U., REUTEL, C., SIMON, K., WALTER, J., WEINLICH, F. H., ZIMMER, M. (1997): Paleo- and Recent Fluids in the Upper Continental Crust - Results from the German Continental Deep Drilling Projekt (KTB), Journal of Geophysical Resarch, 102, B8, S 18223 - 18254. HUENGES, E., ENGESER, B., ERZINGER, J., KESSELS, W., KšCK, J. (1997): The Permeable Crust: Geohydraulic Properties Down to 9000 m Depth - Results from the German Continental Deep Drilling Project (KTB), Journal of Geophysical Resarch, 102, B8, S 18 255 -18 265.

  8. Quenched-in defects in flashlamp-annealed silicon

    NASA Technical Reports Server (NTRS)

    Borenstein, J. T.; Jones, J. T.; Corbett, J. W.; Oehrlein, G. S.; Kleinhenz, R. L.

    1986-01-01

    Deep levels introduced in boron-doped silicon by heat-pulse annealing with a tungsten-halogen flashlamp are investigated using deep-level transient spectroscopy. Two majority-carrier trapping levels in the band gap, at Ev + 0.32 eV and at Ev + 0.45 eV, are observed. These results are compared to those obtained by furnace-quenching and laser-annealing studies. Both the position in the gap and the annealing kinetics of the hole trap at Ev + 0.45 eV suggest that this center is due to an interstitial iron impurity in the lattice. The deep levels are not consistently observed in all flashlamp-annealed Si crystals utilized.

  9. Numerical modeling analysis of stress transfer modification concepts for deep longwall mines. Report of investigations/1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandergrift, T.L.; Jude, C.V.

    1995-12-31

    This U.S. Bureau of Mines (USBM) report evaluates three stress-transfer-modification concepts for their potential in reducing longwall gate road stresses and closures. In each of the three concepts--packwalling, gob infilling, and entry filling--support structures are constructed on the headgate side of the panel parallel with or inby the face line. When the headgate becomes the tailgate of the adjacent panel, these structures are in place to accept stresses transferred from the mined-out panel. Using the USBM nonlinear boundary-element program MULSIM/NL, baseline models of typical longwall stress transfer behavior were developed for both intermediate depth and deep mining conditions. These modelsmore » were verified by comparing model results with field measurements and observations. The stress-transfer-modification concepts were then incorporated into the deep baseline model to quantify the effects of each concept on tailgate closure.« less

  10. Preparatory Drilling Test on Martian Target Windjana

    NASA Image and Video Library

    2014-04-30

    NASA Curiosity Mars rover completed a shallow mini drill test April 29, 2014, in preparation for full-depth drilling at a rock target called Windjana. The hole results from the test is 0.63 inch across and about 0.8 inch deep.

  11. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

    NASA Astrophysics Data System (ADS)

    Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.

    2017-11-01

    Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

  12. VizieR Online Data Catalog: AGNs in submm-selected Lockman Hole galaxies (Serjeant+, 2010)

    NASA Astrophysics Data System (ADS)

    Serjeant, S.; Negrello, M.; Pearson, C.; Mortier, A.; Austermann, J.; Aretxaga, I.; Clements, D.; Chapman, S.; Dye, S.; Dunlop, J.; Dunne, L.; Farrah, D.; Hughes, D.; Lee, H. M.; Matsuhara, H.; Ibar, E.; Im, M.; Jeong, W.-S.; Kim, S.; Oyabu, S.; Takagi, T.; Wada, T.; Wilson, G.; Vaccari, M.; Yun, M.

    2013-11-01

    We present a comparison of the SCUBA half degree extragalactic survey (SHADES) at 450μm, 850μm and 1100μm with deep guaranteed time 15μm AKARI FU-HYU survey data and Spitzer guaranteed time data at 3.6-24μm in the Lockman hole east. The AKARI data was analysed using bespoke software based in part on the drizzling and minimum-variance matched filtering developed for SHADES, and was cross-calibrated against ISO fluxes. (2 data files).

  13. Simple Check Valves for Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  14. Observations of Seafloor Ambient Noise with an Ocean Bottom Seismometer Array

    DTIC Science & Technology

    1989-12-01

    April and May of 1987. The array was situated near Deep Sea Drilling Project (DSDP) Hole 469 at a depth of 3.8 km (Figure 2.1). The area is a 400 m...any array processing method can be gauged by its resolution, bias 34 and stability. These quantities are sensitive to errors such as uncertain...Spectral Ocean Wave Model, Bull. Amer. Meteor. Soc, 67,498-512,1986. Cox, C. S., T. Deaton, and S. C. Webb, A deep-sea differential pressure gauge

  15. Method and system for advancement of a borehole using a high power laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  16. 'Blueberry' Exposed

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic of five images taken by the microscopic imager on the Mars Exploration Rover Opportunity on sol 87 shows the hole drilled by the rover's rock abrasion tool into the rock dubbed 'Pilbara.' A sliced 'blueberry,' or spherule, which is darker and harder than the rest of the rock, can be seen near the center of the hole. The rock abrasion process left a pile of rock powder around the side of the hole, and to a lesser degree, inside the hole. The hole is 7.2 millimeters (about 0.28 inches) deep and 4.5 centimeters (about 1.8 inches) in diameter.

    Because the original images of this hole had areas of bright sunlight as well as shadow, the images making up this mosaic have been arranged to hide as much of the sunlit area as possible. The white spot is one area that could not be covered by other images. It is possible to stretch the image so that features in this white spot are visible, but this makes the rest of the mosaic harder to view. The bright streaks on the bottom part of the hole are most likely reflections from various parts of the robotic arm. The geometric and brightness seams have been corrected in this image.

  17. Distinguishing between deep trapping transients of electrons and holes in TiO2 nanotube arrays using planar microwave resonator sensor.

    PubMed

    Zarifi, Mohammad H; Wiltshire, Benjamin Daniel; Mahdi, Najia; Shankar, Karthik; Daneshmand, Mojgan

    2018-05-16

    A large signal DC bias and a small signal microwave bias were simultaneously applied to TiO2 nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO2 nanotubes, and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time. The DC bias stimulated Poole-Frenkel type trap-mediated electrical injection of excess carriers into TiO2 nanotubes which resulted in a near constant resonant frequency but a pronounced decrease in the microwave amplitude due to free electron absorption. When ultraviolet illumination and DC bias were both present and then step-wise removed, the resonant frequency shifted due to trapping -mediated change in the dielectric constant of the nanotube membranes. Characteristic lifetimes of 60-80 s, 300-800 s and ~3000 s were present regardless of whether light or bias was applied and are also observed in the presence of a hole scavenger, which we attribute to oxygen adsorption and deep electron traps while another characteristic lifetime > 9000 s was only present when illumination was applied, and is attributed to the presence of hole traps.

  18. Photoelectron Transfer at ZnTPyP Self-Assembly/TiO2 Interfaces for Enhanced Two-Photon Photodynamic Therapy.

    PubMed

    Liu, Yanyan; Meng, Xianfu; Wang, Han; Tang, Zhongmin; Zuo, Changjing; He, Mingyuan; Bu, Wenbo

    2018-01-17

    Two-photon (TP) absorption nanomaterials are highly desirable for deep-tissue clinical diagnostics and orthotopic disease treatment. Here, a well-designed core/shell nanostructure was successfully synthesized with a ZnTPyP self-assembly nanocrystal (ZSN) inner core coated by a homogeneous TiO 2 layer outside (ZSN-TO). The ZSN is a good photosemiconductor, showing both one-photon (OP) and TP absorption properties for red fluorescence emission and electron-hole pair generation; TiO 2 with good biocompatibility acts as the electron acceptor, which can transfer photoelectron from ZSN to TiO 2 for highly effective electron-hole separation, favoring the production of long-life superoxide anion (O 2 •- ) by electrons and oxygen and strong oxidizing hydroxyl radical (•OH) by holes and surrounding H 2 O. Once pretreated with ZSN-TO, the simultaneous OP-405 nm or TP-800 nm laser stimulation and fluorescent imaging of reactive oxygen species (ROS) showed dynamical and continuous generation of ROS in HeLa cells, with cytotoxicity significantly increasing via the type-1-like photodynamic therapy process. The results demonstrated that the combination of organic ZSN with inorganic TiO 2 has great applications as an excellent photosensitizer for deep-tissue fluorescent imaging and noninvasive disease treatment via TP photodynamic therapy.

  19. Deep-levels in gallium arsenide for device applications

    NASA Astrophysics Data System (ADS)

    McManis, Joseph Edward

    Defects in semiconductors have been studied for over 40 years as a diagnostic of the quality of crystal growth. In this thesis, we investigate GaAs deep-levels specifically intended for devices. This thesis summarizes our efforts to characterize the near-infrared photoluminescence from deep-levels, study optical transitions via absorption, and fabricate and characterize deep-level light-emitting diodes (LEDs). This thesis also describes the first tunnel diodes which explicitly make use of GaAs deep-levels. Photoluminescence measurements of GaAs deep-levels showed a broad peak around a wavelength extending from 1.0--1.7 mum, which includes important wavelengths for fiber-optic communications (1.3--1.55 mum). Transmission measurements show the new result that very little of the radiative emission is self-absorbed. We measured the deep-level photoluminescence at several temperatures. We are also the first to report the internal quantum efficiency associated with the deep-level transitions. We have fabricated LEDs that, utilize the optical transitions of GaAs deep-levels. The electroluminescence spectra showed a broad peak from 1.0--1.7 mum at low currents, but the spectrum exhibited a blue-shift as the current was increased. To improve device performance, we designed an AlGaAs layer into the structure of the LEDs. The AlGaAs barrier layer acts as a resistive barrier so that the holes in the p-GaAs layer are swept away from underneath the gold p-contact. The AlGaAs layer also reduces the blue-shift by acting as a potential barrier so that only higher-energy holes are injected. We found that the LEDs with AlGaAs were brighter at long wavelengths, which was a significant improvement. Photoluminescence measurements show that the spectral blue-shift is not due to sample heating. We have developed a new physical model to explain the blue-shift: it is caused by Coloumb charging of the deep-centers. We have achieved the first tunnel diodes with which specifically utilize deep-levels in low-temperature-grown (LTG) GaAs. Our devices show the largest ever peak current density in a GaAs tunnel diode at room temperature. Our devices also show significant room-temperature peak-to-valley current ratios. The shape of the current-voltage characteristic and the properties of the optical emission enable us to determine the peak and valley transport mechanisms.

  20. Present-day stress state in the Outokumpu deep drill hole, Finland

    NASA Astrophysics Data System (ADS)

    Pierdominici, Simona; Ask, Maria; Kukkonen, Ilmo; Kueck, Jochem

    2017-04-01

    This study aims to investigate the present-day stress field in the Outokumpu area, eastern Finland, using interpretation of borehole failure on acoustic image logs in a 2516 m deep hole. Two main objectives of this study are: i. to constrain the orientation of maximum horizontal stress by mapping the occurrence of stress-induced deformation features using two sets of borehole televiewer data, which were collected in 2006 and 2011; and ii. to investigate whether any time dependent deformation of the borehole wall has occurred (creep). The Outokumpu deep hole was drilled during 2004-2005 to study deep structures and seismic reflectors within the Outokumpu formation and conducted within the International Continental Scientific Drilling Program (ICDP). The hole was continuously core-drilled into Paleoproterozoic formation of metasediments, ophiolite-derived altered ultrabasic rocks and pegmatitic granite. In 2006 and 2011 two downhole logging campaigns were performed by the Operational Support Group of ICDP to acquire a set of geophysical data. Here we focus on a specific downhole logging measurement, the acoustic borehole televiewer (BHTV), to determine the present-day stress field in the Outokumpu area. We constrain the orientation and magnitude of in situ stress tensor based on borehole wall failures detected along a 2516 m deep hole. Horizontal stress orientation was determined by interpreting borehole breakouts (BBs) and drilling-induced tensile fractures (DIFs) from BHTV logs. BBs are stress-induced enlargements of the borehole cross section and occur in two opposite zones at angles around the borehole where the wellbore stress concentration (hoop stress) exceeds the value required to cause compressive failure of intact rock. DIFs are caused by tensile failure of the borehole wall and form at two opposite spots on the borehole where the stress concentration is lower than the tensile strength of the rock. This occurs at angles 90° apart from the center of the breakout zone. Acoustic imaging logs provide a high-resolution oriented picture of the borehole wall that allows for the direct observation of BBs, which appear as two almost vertical swaths on the borehole image separated by 180°. BBs show poor sonic reflectivity and long travel times due to the many small brittle fractures and the resulting spalling. DIFs appear as two narrow stripes of low reflectivity separated by 180° and typically sub-parallel or slightly inclined to the borehole axis. The analysis of these images shows a distinct compressive failure area consistent with major geological and tectonic lineaments of the area. Deviations from this trend reflect local structural perturbations. Additionally, the 2006 and 2011 dataset are used to compare the changes of breakout geometry and to quantify the growth of the breakouts in this time span from differences in width, length and depth to estimate the magnitude of the horizontal stress tensors. Our study contributes to understand the structure of the shallow crust in the Outokumpu area by defining the current stress field. Furthermore, a detailed understanding of the regional stress field is a fundamental contribution in several research areas such as exploration and exploitation of underground resources, and geothermal reservoir studies.

  1. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  2. Potential-scour assessments and estimates of maximum scour at selected bridges in Iowa

    USGS Publications Warehouse

    Fischer, E.E.

    1995-01-01

    Although the abutment-scour equation predicted deep scour holes at many of the sites, the only significant abutment scour that was measured was erosion of the embankment at the left abutment at one bridge after a flood.

  3. The Education and Skills Gap: A Global Crisis

    ERIC Educational Resources Information Center

    Cornelius, Dave

    2011-01-01

    It is like trying to fit a triangular peg into a round hole while both the hole and the peg continually change shape and size. Sound a little crazy? That is just what industry thinks about the current global "one-size-fits-all" concept of education. The perception from business, government and education leaders of 50 nations at the…

  4. Thought-Experiments About Gravity in the History of Science and in Research into Children's Thinking

    NASA Astrophysics Data System (ADS)

    Blown, E. J.; Bryce, T. G. K.

    2013-03-01

    This article examines the main strands of thinking about gravity through the ages and the continuity of thought-experiments, from the early Greeks, through medieval times, to Galileo, Newton and Einstein. The key ideas are used to contextualise an empirical study of 247 children's ideas about falling objects carried out in China and New Zealand, including the use of scenarios involving thrown and dropped items, and objects falling down deep well holes (as in Carroll's Alice in Wonderland). The sample included 68 pre-school pupils, 68 primary school pupils, 56 middle school students, and 55 high school students; with approximately equal numbers in each group and of boys and girls in each group in each culture. The methodology utilised Piagetian interviews with three media (verbal language, drawing, and play-dough), a shadow stick; and everyday items including model people and soft model animals. The data from each group was categorised and analysed with Kolmogorov- Smirnov Two- Sample Tests and Spearman r s coefficients. It was hypothesised and confirmed (at K- S alpha levels .05; r s : p < .001) that cross-age and cross-cultural research and analysis would reveal that (a) an intuitive sense of gravity is present from an early age and develops in association with concepts like Earth shape and motion; (b) the development of concepts of gravity is similar in cultures such as China and New Zealand where teachers hold a scientific world view; and (c) children's concepts of Earth motion, Earth shape, and gravity are coherent rather than fragmented. It was also demonstrated that multi-media interviews together with concrete experiences and thought-experiments afforded children the opportunity to share their emerging concepts of gravity. The findings provide information that teachers might use for lessons at an appropriate level.

  5. Variability Selected Low-Luminosity Active Galactic Nuclei in the 4 Ms Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Young, M.; Brandt, W. N.; Xue, Y. Q.; Paolillo, D. M.; Alexander, F. E.; Bauer, F. E.; Lehmer, B. D.; Luo, B.; Shemmer, O.; Schneider, D. P.; hide

    2012-01-01

    The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to significant contribution from the host galaxy. We identify long-term X ray variability (approx. month years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts approx equals 00.8 - 1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole. The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma(sub Stack) approx equals 1.93 +/- 0.13, and arc therefore likely LLAGN. The LLAGN tend to lie it factor of approx equal 6-89 below the extrapolated linear variability-luminosity relation measured for luminous AGN. This may he explained by their lower accretion rates. Variability-independent black-hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black hole mass-accretion-rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGNs at the same redshift. We find that an empirical model based on a universal broken power-law power spectral density function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGNs.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less

  7. A new concept of wormholes and the Multiverse

    NASA Astrophysics Data System (ADS)

    Novikov, I. D.

    2018-03-01

    We review a new concept of wormholes. We classify the wormholes into three categories: static, space-like, and time-like, and discuss the properties of each category. The relation between wormholes and black holes is examined. The astrophysical properties of wormholes are investigated.

  8. KSC-99pp0518

    NASA Image and Video Library

    1999-05-12

    At Launch pad 39B, Mike Barber, with United Space Alliance safety, points to one of the holes caused by hail on Space Shuttle Discovery's external tank (ET). Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m

  9. KSC-99pp0517

    NASA Image and Video Library

    1999-05-12

    At Launch Pad 39B, two holes caused by hail on Space Shuttle Discovery's external tank (ET) are visible. Left of the tank is one of the solid rocket boosters. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m

  10. KSC-99pp0515

    NASA Image and Video Library

    1999-05-12

    A hole, created by recent hail storms, is identified as number one on the surface of the external tank (ET) mated to Space Shuttle Discovery at Launch Pad 39B. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m

  11. KSC-99pp0516

    NASA Image and Video Library

    1999-05-12

    A hole, created by recent hail storms, is identified as number two on the surface of the external tank (ET) mated to Space Shuttle Discovery at Launch Pad 39B. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m

  12. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of freezing photo-elasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometries studied were: (1) crack depth to thickness ratios of approximately 0.2, (2) 0.5 and 0.75; (3) crack depth to crack length ratios of approximately 1.0 to 2.0; and (4) crack length to hole radius ratios of about 0.5 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar, with most of the growth occuring through the thickness under remote extension. Stress intensity factors were determined at the intersection of the flaw border.

  13. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  14. Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, L.; Kasameyer, P.; Long, L.

    2001-05-01

    This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local Mmore » = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. This report list earthquakes and stations where recordings were obtained during the period February 29, 2000 to November 11, 2000. Also, preliminary results on noise analysis for up and down hole recordings at Yerba Buena Island is presented.« less

  15. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.

    2018-01-01

    Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.

  16. The Properties of p-GaN with Different Cp2Mg/Ga Ratios and Their Influence on Conductivity

    NASA Astrophysics Data System (ADS)

    Shang, Lin; Ma, Shufang; Liang, Jian; Li, Tianbao; Yu, Chunyan; Liu, Xuguang; Xu, Bingshe

    2016-06-01

    The effect of Cp2Mg/Ga ratio on the properties of p-GaN was explored by scanning Hall probe, photoluminescence (PL), and atomic force microscopy measurement. It was found that p-GaN has an optimal doping concentration under 2% Cp2Mg/Ga ratio, and higher or lower doping concentration is not beneficial to the conductivity. Hole concentration under the optimum condition is 4.2 × 1017 cm-3 at room temperature. If the Cp2Mg/Ga ratio exceeds the optimum value of 2%, surface morphology and electrical conduction properties become poor, and blue emission at 440 nm, considered deep donor-to-acceptor pair transitions in the PL spectra, are dominant. The decrease in electrical properties indicates the existence of compensating donors because the hole concentration decreases at such high Cp2Mg/Ga ratio. The obtained results indicate that Mg is not incorporated in the exact acceptor site under a heavy doping condition, but acts as a deep donor, instead.

  17. General Relativity: An Introduction to Black Holes, Gravitational Waves, and Cosmology

    NASA Astrophysics Data System (ADS)

    Hall, Michael J. W.

    2018-03-01

    General Relativity: An Introduction to Black Holes, Gravitational Waves, and Cosmology provides readers with a solid understanding of the underlying physical concepts of general relativity. It also shows how they may derive important applications of the theory and is a solid grounding for those wishing to pursue further study. This thorough primer is based on class-tested undergraduate lectures from Griffith University, Brisbane. It develops the basic elements of general relativity with applications to the gravitational deflection of light, GPS, black holes, gravitational waves, and cosmology.

  18. Deep-sea lebensspuren: remarks on some echiuran traces in the Porcupine Seabight, northeast Atlantic

    NASA Astrophysics Data System (ADS)

    de Vaugelas, Jean

    1989-06-01

    During an exploration of the Porcupine Seabight aboard the French submersible Cyana, large rosettes attributed to echiurans were observed on the muddy bottom, sometimes associated with clumped mounds showing tension gashes. The intrusion of cores into the gashed mounds resulted in the creation of a fountain-like current of water flowing out of the center hole of the rosette, illustrating a direct connection. These two types of traces, which are classified under distinct generic names in recent classifications of deep-sea lebensspuren, are presumed to be produced by the echiuroid worm, being the two ends of an L-shaped burrow. A sketch of deep-sea echiurans' mode of life is proposed.

  19. Deep Space Gateway - Enabling Missions to Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle; Connolly, John

    2017-01-01

    There are many opportunities for commonality between Lunar vicinity and Mars mission hardware and operations. Best approach: Identify Mars mission risks that can be bought down with testing in the Lunar vicinity, then explore hardware and operational concepts that work for both missions with minimal compromise. Deep Space Transport will validate the systems and capabilities required to send humans to Mars orbit and return to Earth. Deep Space Gateway provides a convenient assembly, checkout, and refurbishment location to enable Mars missions Current deep space transport concept is to fly missions of increasing complexity: Shakedown cruise, Mars orbital mission, Mars surface mission; Mars surface mission would require additional elements.

  20. On the existence of black holes in distorted Schwarzschild spacetime using marginally trapped surfaces

    NASA Astrophysics Data System (ADS)

    Pilkington, Terry

    The classical definition of a black hole in terms of an event horizon relies on global properties of the spacetime. Realistic black holes have matter distributions surrounding them, which negates the asymptotic flatness needed for an event horizon. Using the (quasi-)local concept of marginally trapped surfaces, we investigate the Schwarzschild spacetime distorted by an axisymmetric matter distribution. We determine that it is possible to locate a future outer trapping horizon for a given foliation within certain value ranges of multipole moments. Furthermore, we show that there are no marginally trapped surfaces for arbitrary values of the multipole moment magnitudes. KEYWORDS: SCHWARZSCHILD; BLACK HOLE; DISTORTED SPACETIME; MARGINALLY TRAPPED SURFACE; FUTURE OUTER TRAPPING HORIZON

  1. Testing various modes of installation for permanent broadband stations in open field environment

    NASA Astrophysics Data System (ADS)

    Vergne, Jérôme; Charade, Olivier; Arnold, Benoît; Louis-Xavier, Thierry

    2014-05-01

    In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, we plan to install more than one hundred new permanent broadband stations in metropolitan France within the next 6 years. Whenever possible, the sensors will be installed in natural or artificial underground cavities that provide a stable thermal environment. However such places do not exist everywhere and we expect that about half the future stations will have to be set up in open fields. For such sites, we are thus looking for a standard model of hosting infrastructure for the sensors that would be easily replicated and would provide good noise level performances at long periods. Since early 2013, we have been operating a prototype station at Clévilliers, a small location in the sedimentary Beauce plain, where we test three kinds of buried seismic vaults and a down-hole installation. The cylindrical seismic vaults are 3m deep and 1m wide and only differ by the type of coupling between the casing and the concrete slab where we installed insulated Trillium T120PA seismometers. The down-hole installation consists in a 3m deep well hosting a Trillium Posthole seismometer. For reference, another sensor has been installed in a ~50cm deep hole, similarly to the way we test every new potential site. Here we compare the noise level in each infrastructure at different frequencies. We observe quite similar performances for the vertical component recorded in the different wells. Conversely, the noise levels on the horizontal components at periods greater than 10s vary by more than 20dB depending on the installation condition. The best results are obtained in the completely decoupled vault and for the down-hole setting, both showing performances comparable to some of our permanent stations installed in tunnels. The amplitude of the horizontal noise also appears to be highly correlated to wind speed recorded on site, even at long periods. The variable response of each vault to such external forcing can partly explain the variations of the seismic noise levels.

  2. Tunnel-injected sub-260 nm ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Bajaj, Sanyam; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth

    2017-05-01

    We report on tunnel-injected deep ultraviolet light emitting diodes (UV LEDs) configured with a polarization engineered Al0.75Ga0.25 N/In0.2Ga0.8 N tunnel junction structure. Tunnel-injected UV LED structure enables n-type contacts for both bottom and top contact layers. However, achieving Ohmic contact to wide bandgap n-AlGaN layers is challenging and typically requires high temperature contact metal annealing. In this work, we adopted a compositionally graded top contact layer for non-alloyed metal contact and obtained a low contact resistance of ρc = 4.8 × 10-5 Ω cm2 on n-Al0.75Ga0.25 N. We also observed a significant reduction in the forward operation voltage from 30.9 V to 19.2 V at 1 kA/cm2 by increasing the Mg doping concentration from 6.2 × 1018 cm-3 to 1.5 × 1019 cm-3. Non-equilibrium hole injection into wide bandgap Al0.75Ga0.25 N with Eg>5.2 eV was confirmed by light emission at 257 nm. This work demonstrates the feasibility of tunneling hole injection into deep UV LEDs and provides a structural design towards high power deep-UV emitters.

  3. Transpiration by tree roots in the deep unsaturated regolith buffers the recharge process in a tropical watershed under deciduous forest (Mule Hole, India)

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari Rr; Mohan Kumar, Ms; Sekhar, Muddu; Molenat, Jerome; Marechal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Braun, Jean-Jacques

    2010-05-01

    Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments where deep tree root can uptake water at considerable depth. In this presentation, we assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using the lumped conceptual model COMFORT (Ruiz et al., 2010) to simulate discharge and groundwater levels monitored during six year in an experimental watershed under dry deciduous forest (Mule Hole, South India), which is part of the project "Observatoire de Recherche en Environnement - Bassin Versant Expérimentaux Tropicaux" (http://www.ore.fr/). The model was calibrated on the first four years data, and tested on the two remaining years. The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with successions of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm.year-1 and the evapotranspiration was about 900 mm.year-1 out of which 100 mm.year-1 was uptake from the deep regolith horizons. The stream flow was 100 mm.year-1 while the groundwater underflow was 80 mm.year-1. The simulation results show that i) deciduous trees can uptake a significant amount of water from the deep regolith, ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers, iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. These results are of practical relevance as they invalidate recharge assessment methods based on steady state assumptions in this context. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. Ruiz L, Varma MRR, Mohan Kumar MS, Sekhar M, Maréchal JC, Descloitres M, Riotte J, Sat Kumar, Kumar C and Braun JJ 2010 Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India) : regolith matric storage buffers the groundwater recharge process. Journal of Hydrology, 380, 460-472. http://dx.doi.org/10.1016/j.jhydrol.2009.11.020

  4. Electron holes in phase space: What they are and why they matter

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2017-05-01

    This is a tutorial and selective review explaining the fundamental concepts and some currently open questions concerning the plasma phenomenon of the electron hole. The widespread occurrence of electron holes in numerical simulations, space-craft observations, and laboratory experiments is illustrated. The elementary underlying theory is developed of a one-dimensional electron hole as a localized potential maximum, self-consistently sustained by a deficit of trapped electron phase-space density. The spatial extent of a hole is typically a few Debye lengths; what determines the minimum and maximum possible lengths is explained, addressing the key aspects of the as yet unsettled dispute between the integral and differential approaches to hole structure. In multiple dimensions, holes tend to form less readily; they generally require a magnetic field and distribution-function anisotropy. The mechanisms by which they break up are explained, noting that this transverse instability is not fully understood. Examples are given of plasma circumstances where holes play an important role, and of recent progress on understanding their holistic kinematics and self-acceleration.

  5. Deep Space Telecommunications

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  6. Studies of the degradation mechanism of organic light-emitting diodes based on tris(8-quinolinolate)aluminum Alq and 2-tert-butyl-9,10-di(2-naphthyl)anthracene TBADN

    NASA Astrophysics Data System (ADS)

    Jarikov, Viktor V.; Kondakov, Denis Y.

    2009-02-01

    Previously, radical cation of tris(8-quinolinolate)aluminum (Alq•+) has been associated with the instability of Alq films subjected to holes-only electrical current. Yet, the questions remain (i) whether Alq•+ is the primary source of the intrinsic degradation of bipolar organic light-emitting diodes (OLEDs) based on Alq, (ii) whether Alq•+ reactions result in deep charge traps in holes-only devices as found in bipolar counterparts, and (iii) whether radical cations can be a common source of degradation of OLEDs irrespective of materials. With regards to generality of hole-current-related degradation, it is interesting to examine the behavior of 9,10-diarylanthracenes (DAAs)—the practically important class of blue-fluorescing light-emitting-layer hosts. These questions prompted our comparative study of the effects of unipolar currents in Alq and 2-t-butyl-9,10-di(2-naphthyl)anthracene (TBADN), which was chosen as a representative material of the DAA class. First, we identified device structures allowing for rigorous and stable unipolar conduction. Interestingly, even in pristine holes-only devices, our voltammetric measurements indicated that Alq contains a substantial density of deep hole traps (far deeper than what can be explained by energetic disorder), which can be charged by passing holes-only current and seemingly discharged by exposure to white light. As for aged holes-only Alq devices, they exhibited symptoms qualitatively matching those of aged bipolar Alq devices, viz., photoluminescence (PL) loss, transition voltage (V0) rise, and drive voltage (Vd) rise. Notably, PL and V0 are linearly correlated in both holes-only and bipolar devices, which reinforces the supposed link between Alq•+ and the degradation in both types of devices. Yet, there are indications the Alq•+ instability may not be the only degradation pathway in bipolar devices. Even though our observations for holes-only Alq devices agree qualitatively with previously reported ones, we observe far slower degradation rates [Alq PL fades up to ˜500 times slower in holes-only devices, while Alq electroluminescence (EL) fades ˜50 times slower in bipolar control devices]. It is possible that impurities play a significant, perhaps crucial role in the degradation mechanism of both bipolar and holes-only devices, especially the relatively shorter-lived ones. In sharp contrast to Alq, all three observables (PL, V0, and Vd) indicate that holes-only current in TBADN (neat or doped with a perylene-based blue dopant) does not result in degradation in the time that is sufficient for the corresponding bipolar control devices to lose 60%-80% of EL and 20%-30% of PL. We find that the electrons-only current in Alq or TBADN does not result in degradation either. Thus, the degradation of Alq and DAA bipolar devices may be caused by fundamentally dissimilar mechanisms: while hole current may damage the former, it does not appear to affect the latter, suggesting that the initiation step is different.

  7. Integrated Analysis of Flow, Temperature, and Specific-Conductance Logs and Depth-Dependent Water-Quality Samples from Three Deep Wells in a Fractured-Sandstone Aquifer, Ventura County, California

    USGS Publications Warehouse

    Williams, John H.; Knutson, Kevin D.

    2009-01-01

    Analysis of flow, temperature, and specific-conductance logs and depth-dependent water-quality samples collected under ambient and pumped conditions provided a preliminary delineation of flow zones and water quality in three deep abandoned water-supply wells. The integrated analysis was completed as part of the characterization of a fractured-sandstone aquifer in the mountainous setting of the Santa Susana Field Laboratory in southern Ventura County, California. In the deepest well, which was 1,768 feet deep and had the highest specific capacity (120 gallons per minute per foot), flow zones were detected at 380 feet (base of casing) and at 440, 595, and 770 feet in the open hole. Under ambient conditions, measured flow was downward from the 380- and 440-foot zones to the 595- and 770-foot zones. Under pumped conditions, most of flow was contributed by the 595-foot zone. Flow from the 380- and 440-foot zones appeared to have lower specific conductance and higher trichloroethylene concentrations than that from the 595-foot zone. In the shallowest well, which was reportedly 940 feet deep but only logged to 915 feet due to blockage, flow zones were detected behind the perforated casing and at 867 feet in the open hole. Under ambient conditions, downward and upward flows appeared to exit at a zone behind the perforated casing at 708 feet. Most of the pumped flow was contributed from zones behind the perforated casing between 565 and 708 feet. Pumped flow also was contributed by zones at 867 feet and below the logged depth. Volatile organic compounds were not detected in the ambient and pumped flows. In the third well, which was 1,272 feet deep and had the lowest specific capacity (3.6 gallons per minute per foot), flow zones were detected in the open hole above and just below the water level near 337 feet and at 615, 785, 995, and 1,070 feet. Under ambient conditions, measured flow in well was downward from the shallowmost zones to the 995-foot zone. Fracture zones at 615, 785, and 995 feet each contributed about one-third of the pumped flow measured below the pump. Volatile organic compounds were not detected in the ambient and pumped flows.

  8. The 3 Ms Chandra campaign on Sgr A*: a census of X-ray flaring activity from the Galactic center

    NASA Astrophysics Data System (ADS)

    Neilsen, J.; Nowak, M. A.; Gammie, C.; Dexter, J.; Markoff, S.; Haggard, D.; Nayakshin, S.; Wang, Q. D.; Grosso, N.; Porquet, D.; Tomsick, J. A.; Degenaar, N.; Fragile, P. C.; Houck, J. C.; Wijnands, R.; Miller, J. M.; Baganoff, F. K.

    2014-05-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic center.

  9. The 3 megasecond Chandra campaign on Sgr A*: a census of x-ray flaring activity from the galactic center

    NASA Astrophysics Data System (ADS)

    Neilsen, Joey

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  10. Modelling of the hole-initiated impact ionization current in the framework of hydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Lorenzini, Martino; Van Houdt, Jan

    2002-02-01

    Several research papers have shown the feasibility of the hydrodynamic transport model to investigate impact ionization in semiconductor devices by means of mean-energy-dependent generation rates. However, the analysis has been usually carried out for the case of the electron-initiated impact ionization process and less attention has been paid to the modelling of the generation rate due to impact ionization events initiated by holes. This paper therefore presents an original model for the hole-initiated impact ionization in silicon and validates it by comparing simulation results with substrate currents taken from p-channel transistors manufactured in a 0.35 μm CMOS technology having three different channel lengths. The experimental data are successfully reproduced over a wide range of applied voltages using only one fitting parameter. Since the impact ionization of holes triggers the mechanism responsible for the back-bias enhanced gate current in deep submicron nMOS devices, the model can be exploited in the development of non-volatile memories programmed by secondary electron injection.

  11. The 3 Megasecond Chandra Campaign on Sgr A*: A Census of X-ray Flaring Activity from the Galactic Center

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, N.; Porquet, D.; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Houck, John C.; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.

    2014-08-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  12. The X-Ray Variability of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, Nicolas; Porquet, Delphine; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.

    2015-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  13. Design and Manufacture of Elastically Tailored Tow Placed Plates

    NASA Technical Reports Server (NTRS)

    Tatting, Brain F.; Guerdal, Zafer; Jegley, Dawn (Technical Monitor)

    2002-01-01

    Elastic stiffness tailoring of laminated composite panels by allowing the fibers to curve within the plane of the laminate is a relatively novel design concept that has been demonstrated to be both beneficial and practical. In particular, for structures with highly non-uniform stress states, such as the case of a flat panel with a central hole subjected to in-plane loading, the concept is likely to provide substantial improvements in load carrying capability. The objective of the present study is to determine the effectiveness of stiffness tailoring through the use of curvilinear fibers to reduce stress concentrations around the hole and improve the load carrying capability of panels with holes. In this study software was created that translates standard finite element models with traditional laminate definitions into ones that possess stacking sequences with curvilinear fiber paths that are directly manufacturable using an advanced tow placement machine. Preliminary designs for the manufacturing and testing phase were determined through rudimentary design studies for flat plates without holes under axial compression. These candidate designs were then analyzed using finite element models that accurately reflect the test conditions and geometries in order to select final designs for testing. A total of six large panels, measuring three feet by six feet, each of which are used to produce four specimens with or without holes, were fabricated and delivered to NASA for machining and testing.

  14. Hard-X-Ray-Induced Multistep Ultrafast Dissociation

    NASA Astrophysics Data System (ADS)

    Travnikova, Oksana; Marchenko, Tatiana; Goldsztejn, Gildas; Jänkälä, Kari; Sisourat, Nicolas; Carniato, Stéphane; Guillemin, Renaud; Journel, Loïc; Céolin, Denis; Püttner, Ralph; Iwayama, Hiroshi; Shigemasa, Eiji; Piancastelli, Maria Novella; Simon, Marc

    2016-05-01

    Creation of deep core holes with very short (τ ≤1 fs ) lifetimes triggers a chain of relaxation events leading to extensive nuclear dynamics on a few-femtosecond time scale. Here we demonstrate a general multistep ultrafast dissociation on an example of HCl following Cl 1 s →σ* excitation. Intermediate states with one or multiple holes in the shallower core electron shells are generated in the course of the decay cascades. The repulsive character and large gradients of the potential energy surfaces of these intermediates enable ultrafast fragmentation after the absorption of a hard x-ray photon.

  15. Two-band superlinear electroluminescence in GaSb based nanoheterostructures with AlSb/InAs{sub 1−x} Sb{sub x}/AlSb deep quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailova, M. P.; Ivanov, E. V.; Danilov, L. V.

    2014-06-14

    We report on superlinear electroluminescent structures based on AlSb/InAs{sub 1−x}Sb{sub x}/AlSb deep quantum wells grown by MOVPE on n-GaSb:Te substrates. Dependence of the electroluminescence (EL) spectra and optical power on the drive current in nanoheterostructures with AlSb/InAs{sub 1−x}Sb{sub x}/AlSb quantum well at 77–300 K temperature range was studied. Intensive two-band superlinear EL in the 0.5–0.8 eV photon energy range was observed. Optical power enhancement with the increasing drive current at room temperature is caused by the contribution of the additional electron-hole pairs due to the impact ionization by the electrons heated at the high energy difference between AlSb and the first electronmore » level E{sub e1} in the InAsSb QW. Study of the EL temperature dependence at 90–300 K range enabled us to define the role of the first and second heavy hole levels in the radiative recombination process. It was shown that with the temperature decrease, the relation between the energies of the valence band offset and the second heavy hole energy level changes due to the temperature transformation of the energy band diagram. That is the reason why the EL spectrum revealed radiative transitions from the first electron level E{sub e1} to the first hole level E{sub h1} in the whole temperature range (90–300 K), while the emission band related with the transitions to the second hole level occurred only at T > 200 K. Comparative examination of the nanostructures with high band offsets and different interface types (AlAs-like and InSb-like) reveals more intense EL and optical power enhancement at room temperature in the case of AlAs-like interface that could be explained by the better quality of the heterointerface and more efficient hole localization.« less

  16. Identification of the spatial location of deep trap states in AlGaN/GaN heterostructures by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Porwal, S.; Sharma, T. K.

    2017-12-01

    Spatial and spectral origin of deep level defects in molecular beam epitaxy grown AlGaN/GaN heterostructures are investigated by using surface photovoltage spectroscopy (SPS) and pump-probe SPS techniques. A deep trap center ∼1 eV above the valence band is observed in SPS measurements which is correlated with the yellow luminescence feature in GaN. Capture of electrons and holes is resolved by performing temperature dependent SPS and pump-probe SPS measurements. It is found that the deep trap states are distributed throughout the sample while their dominance in SPS spectra depends on the density, occupation probability of deep trap states and the background electron density of GaN channel layer. Dynamics of deep trap states associated with GaN channel layer is investigated by performing frequency dependent photoluminescence (PL) and SPS measurements. A time constant of few millisecond is estimated for the deep defects which might limit the dynamic performance of AlGaN/GaN based devices.

  17. Reflection from the strong gravity regime in a lensed quasar at redshift z = 0.658.

    PubMed

    Reis, R C; Reynolds, M T; Miller, J M; Walton, D J

    2014-03-13

    The co-evolution of a supermassive black hole with its host galaxy through cosmic time is encoded in its spin. At z > 2, supermassive black holes are thought to grow mostly by merger-driven accretion leading to high spin. It is not known, however, whether below z ≈ 1 these black holes continue to grow by coherent accretion or in a chaotic manner, though clear differences are predicted in their spin evolution. An established method of measuring the spin of black holes is through the study of relativistic reflection features from the inner accretion disk. Owing to their greater distances from Earth, there has hitherto been no significant detection of relativistic reflection features in a moderate-redshift quasar. Here we report an analysis of archival X-ray data together with a deep observation of a gravitationally lensed quasar at z = 0.658. The emission originates within three or fewer gravitational radii from the black hole, implying a spin parameter (a measure of how fast the black hole is rotating) of a = 0.87(+0.08)(-0.15) at the 3σ confidence level and a > 0.66 at the 5σ level. The high spin found here is indicative of growth by coherent accretion for this black hole, and suggests that black-hole growth at 0.5 ≤ z ≤ 1 occurs principally by coherent rather than chaotic accretion episodes.

  18. Hole-to-surface resistivity measurements at Gibson Dome (drill hole GD-1) Paradox basin, Utah

    USGS Publications Warehouse

    Daniels, J.J.

    1984-01-01

    Hole-to-surface resistivity measurements were made in a deep drill hole (GD-1), in San Juan County, Utah, which penetrated a sequence of sandstone, shale, and evaporite. These measurements were made as part of a larger investigation to study the suitability of an area centered around the Gibson Dome structure for nuclear waste disposal. The magnitude and direction of the total electric field resulting from a current source placed in a drill hole is calculated from potential difference measurements for a grid of closely-spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Computation of the apparent resistivity from the total electric field helps to interpret the data with respect to the ideal situation of a layered earth. Repeating the surface measurements for different source depths gives an indication of variations in the geoelectric section with depth. The quantitative interpretation of the field data at Gibson Dome was hindered by the pressure of a conductive borehole fluid. However, a qualitative interpretation of the field data indicates the geoelectric section around drill hole GD-1 is not perfectly layered. The geoelectric section appears to dip to the northwest, and contains anomalies in the resistivity distribution that may be representative of localized thickening or folding of the salt layers.

  19. Sensor Emplacement Techniques and Seismic Noise Analysis for USArray Transportable Array Seismic Stations

    NASA Astrophysics Data System (ADS)

    Frassetto, A.; Busby, R. W.; Hafner, K.; Woodward, R.; Sauter, A.

    2013-12-01

    In preparation for the upcoming deployment of EarthScope's USArray Transportable Array (TA) in Alaska, the National Science Foundation (NSF) has supported exploratory work on seismic station design, sensor emplacement, and communication concepts appropriate for this challenging high-latitude environment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and in the lower-48 of the U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the weight of the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where there are few roads, cellular communications are scarce, most areas are only accessible by small plane or helicopter, and permafrost underlies much of the state. We will review the methods used for directly emplacing broadband seismometers in comparison to the current methods used for the lower-48 TA. These new methods primarily focus on using a portable drill to make a bored hole three to five meters, beneath the active layer of the permafrost, or by coring 1-2 meters deep into surface bedrock. Both methods are logistically effective in preliminary trials. Subsequent station performance has been assessed quantitatively using probability density functions summed from power spectral density estimates. These are calculated for the continuous time series of seismic data recorded for each channel of the seismometer. There are five test stations currently operating in Alaska. One was deployed in August 2011 and the remaining four in October 2012. Our results show that the performance of seismometers in Alaska with auger-hole or core-hole installations can sometimes exceed that of the quietest TA stations in the lower-48, particularly horizontal components at long periods. A comparison of the performance of the various installations is discussed.

  20. Expansible apparatus for removing the surface layer from a concrete object

    DOEpatents

    Allen, Charles H.

    1979-01-01

    A method and apparatus for removing the surface layer from a concrete object. The method consists of providing a hole having a circular wall in the surface layer of the object, the hole being at least as deep as the thickness of the surface layer to be removed, and applying an outward wedging pressure on the wall of the hole sufficient to spall the surface layer around the hole. By the proper spacing of an appropriate number of holes, it is possible to remove the entire surface layer from an object. The apparatus consists of an elongated tubular-shaped body having a relatively short handle with a solid wall at one end, the wall of the remainder of the body containing a plurality of evenly spaced longitudinal cuts to form a relatively long expandable section, the outer end of the expandable section having an expandable, wedge-shaped spalling edge extending from the outer surface of the wall, perpendicular to the longitudinal axis of the body, and expanding means in the body for outwardly expanding the expandable section and forcing the spalling edge into the wall of a hole with sufficient outward pressure to spall away the surface layer of concrete. The method and apparatus are particularly suitable for removing surface layers of concrete which are radioactively contaminated.

  1. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.

  2. Five dimensional microstate geometries

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Wei

    In this thesis, we discuss the possibility of exploring the statistical mechanics description of a black hole from the point view of supergravity. Specifically, we study five dimensional microstate geometries of a black hole or black ring. At first, we review the method to find the general three-charge BPS supergravity solutions proposed by Bena and Warner. By applying this method, we show the classical merger of a black ring and black hole on [Special characters omitted.] base space in general are irreversible. On the other hand, we review the solutions on ambi-polar Gibbons-Hawking (GH) base which are bubbled geometries. There are many possible microstate geometries among the bubbled geometries. Particularly, we show that a generic blob of GH points that satisfy certain conditions can be either microstate geometry of a black hole or black ring without horizon. Furthermore, using the result of the entropy analysis in classical merger as a guide, we show that one can have a merger of a black-hole blob and a black-ring blob or two black-ring blobs that corresponds to a classical irreversible merger. From the irreversible mergers, we find the scaling solutions and deep microstates which are microstate geometries of a black hole/ring with macroscopic horizon. These solutions have the same AdS throats as classical black holes/rings but instead of having infinite throats, the throat is smoothly capped off at a very large depth with some local structure at the bottom. For solutions that produced from U (1) × U (1) invariant merger, the depth of the throat is limited by flux quantization. The mass gap is related with the depth of this throat and we show the mass gap of these solutions roughly match with the mass gap of the typical conformal-field-theory (CFT) states. Therefore, based on AdS/CFT correspondence, they can be dual geometries of the typical CFT states that contribute to the entropy of a black hole/ring. On the other hand, we show that for the solutions produced from more general merger (without U (1) × U (1) invariance), the throat can be arbitrarily deep. This presents a puzzle from the point view of AdS/CFT correspondence. We propose that this puzzle may be solved by some quantization of the angle or promoting the flux vectors to quantum spins. Finally, we suggest some future directions of further study including the puzzle of arbitrary long AdS throat and a general coarse-graining picture of microstate geometries.

  3. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdan, Akos; Forman, William R.; Kraft, Ralph P.

    2012-07-10

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9{sup +3.8}{sub -2.3}% and 1.9% {+-} 0.6%, respectively, which significantly exceed the typical observed ratio of {approx}0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are Almost-Equal-To 5.1{sigma} and Almost-Equal-To 3.4{sigma} outliers from the M{sub .}-M{sub bulge} scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-raymore » observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which {approx}> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.« less

  4. Effects of oxygen vacancy on the photoconductivity in BaSnO3

    NASA Astrophysics Data System (ADS)

    Park, Jisung; Char, Kookrin; Institute of Applied Physics, Department of Physics; Astronomy, Seoul National University Team

    We have found the photoconductive behavior of BaSnO3, especially their magnitude and time dependence, is very sensitive to the oxygen vacancy concentration. We made epitaxial BaSnO3 film with BaHfO3 buffer layer by pulsed laser deposition. As we had reported before, MgO substrate with its large band gap size about 7.8 eV was used to exclude any photoconductance from the substrate. BaHfO3 layer was used to reduce the threading dislocation density in BaSnO3 film. To control the oxygen vacancy concentration in the BaSnO3 film, we annealed the sample in Ar or O2 atmosphere with varying annealing conditions. After each annealing process, photoconductivity of BaSnO3 was measured during illumination of UV light. The result showed that the magnitude of photoconductivity of BaSnO3 increased after annealing at higher temperature in Ar atmosphere, while the changes in the dark current remains minimal. The result can be explained by a hole trap mechanism. Higher Fermi level due to the increased oxygen vacancy concentration can cause occupation of deep acceptor levels in dislocations of the BaSnO3 film. These occupied deep acceptor levels in turn trap photo-generated holes so that the recombination of electron-hole pair is deterred. Samsung Science and Technology Foundation.

  5. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.

    1996-10-01

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drillingmore » method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).« less

  6. Informing Physics: Jacob Bekenstein and the Informational Turn in Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Belfer, Israel

    2014-03-01

    In his PhD dissertation in the early 1970s, the Mexican-Israeli theoretical physicist Jacob Bekenstein developed the thermodynamics of black holes using a generalized version of the second law of thermodynamics. This work made it possible for physicists to describe and analyze black holes using information-theoretical concepts. It also helped to transform information theory into a fundamental and foundational concept in theoretical physics. The story of Bekenstein's work—which was initially opposed by many scientists, including Stephen Hawking—highlights the transformation within physics towards an information-oriented scientific mode of theorizing. This "informational turn" amounted to a mild-mannered revolution within physics, revolutionary without being rebellious.

  7. Precise Electrochemical Drilling of Repeated Deep Holes

    NASA Technical Reports Server (NTRS)

    Kincheloe, J. P.

    1985-01-01

    Tooling enables maintenance of close tolerances. Tooling includes guide that holds electrochemical drilling electrodes in proper relative alinement and guide-positioning fixture clamps directly on reference surfaces of strut. High precision achieved by positioning tooling anew on each strut before drilling: Tolerances of (0.008 mm) maintained in some details.

  8. Preliminary geologic map of the Wadi As Sirhan Quadrangle, sheet 30C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Meissner, C.R.; Griffin, M.B.; Riddler, G.P.; Van Eck, Marcel; Aspinall, N.C.; Farasani, A.M.; Dini, S.M.

    1990-01-01

    Several deep drill holes in the Wadi as Sirhan depression have penetrated thick sequences of marine rocks that are potential sources of oil and gas. Geological and geophysical conditions are favorable for the accumulation of hydrocarbons, and additional exploration is recommended.

  9. The Infrared Medium-deep Survey. IV. The Low Eddington Ratio of A Faint Quasar at z ∼ 6: Not Every Supermassive Black Hole is Growing Fast in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Kim, Minjin; Hyun, Minhee; Kim, Dohyeong; Kim, Jae-Woo; Taak, Yoon Chan; Yoon, Yongmin; Choi, Changsu; Hong, Jueun; Jun, Hyunsung David; Karouzos, Marios; Kim, Duho; Kim, Ji Hoon; Lee, Seong-Kook; Pak, Soojong; Park, Won-Kee

    2018-03-01

    To date, most of the luminous quasars known at z ∼ 6 have been found to be in maximal accretion with the Eddington ratios, {λ }Edd}∼ 1, suggesting enhanced nuclear activities in the early universe. However, this may not be the whole picture of supermassive black hole (SMBH) growth, since previous studies have not reached faint quasars that are more likely to harbor SMBHs with low {λ }Edd}. To gain a better understanding of the accretion activities in quasars in the early universe, we obtained a deep near-infrared (NIR) spectrum of a quasar, IMS J220417.92+011144.8 (hereafter IMS J2204+0112), one of the faintest quasars that has been identified at z ∼ 6. From the redshifted C IV λ1549 emission line in the NIR spectrum, we find that IMS J2204+0112 harbors a SMBH with a solar mass of about a billion and {λ }Edd}∼ 0.1, but with a large uncertainty in both quantities (0.41 dex). IMS J2204+0112 has one of the lowest Eddington ratios among quasars at z ∼ 6, but a common value among quasars at z ∼ 2. Its low {λ }Edd} can be explained with two scenarios; the SMBH growth from a stellar-mass black hole through short-duration super-Eddington accretion events or from a massive black hole seed (∼ {10}5 {M}ȯ ) with Eddington-limited accretion. NIR spectra of more faint quasars are needed to better understand the accretion activities of SMBHs at z ∼ 6.

  10. Information Learned from Generic Language Becomes Central to Children's Biological Concepts: Evidence from Their Open-Ended Explanations

    ERIC Educational Resources Information Center

    Cimpian, Andrei; Markman, Ellen M.

    2009-01-01

    Generic sentences (e.g., "Snakes have holes in their teeth") convey that a property (e.g., having holes in one's teeth) is true of a category (e.g., snakes). We test the hypothesis that, in addition to this basic aspect of their meaning, generic sentences also imply that the information they express is more conceptually central than the…

  11. Bird's eye view of black holes

    NASA Astrophysics Data System (ADS)

    Simien, Clayton

    1998-03-01

    Black hole theory can be quite complex, and from a mathematical point of view very abstract. However, from a bird's perspective its concepts and theories can be easily understood with the aid of a few fundamental ideas of physics. Black holes are just massive dead stars whose very existence originates from the ideas of the great mathematician and scientific pioneer, Pierre Laplace. These astrological wonders of the universe are currently governed by Einstein's General Theory of Relativity. It must be understood that the laws of the universe in accord with the black hole are only valid to its surface known as the horizon . After the horizon, the laws of physics are no longer valid. Consequently, science is replaced with imaginative ideas that are meaningfully probable through hypothetical assumptions.

  12. Extremely Low Ionospheric Peak Altitudes in the Polar-Hole Region

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Grebowsky, Joseph M.

    1999-01-01

    Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.

  13. Density and mobility effects of the majority carriers in organic semiconductors under light excitation

    NASA Astrophysics Data System (ADS)

    Vagenas, N.; Giannopoulou, A.; Kounavis, P.

    2015-01-01

    This study demonstrates that the effect of light excitation on the density and the mobility of the majority carriers can be explored in organic semiconductors by modulated photocurrent spectroscopy. The spectra of phase and amplitude of the modulated photocurrent of pentacene films indicate a significant increase in the density of the photogenerated mobile holes (majority carriers). This increase is accompanied by a comparatively much smaller increase of the steady state photocurrent response which can be reconciled with a decrease in the mobility (μ) of holes. The decrease of μ is supported from an unusual increase of the Y/μ ratio of the out-of-phase modulated photocurrent (Y) signal to the mobility under light excitation. It is proposed that the mobile holes, which are generated from the dissociation of the light-created excitons more likely near the pentacene-substrate interface by electron trapping, populate grain boundaries charging them and producing a downward band bending. As a result, potential energy barriers are build up which limit the transport of holes interacting through trapping-detrapping with deep partially occupied traps in the charged grain boundaries. On the other hand, the transport of holes interacting through trapping-detrapping with empty traps is found unaffected.

  14. On the Role of Discipline-Related Self-Concept in Deep and Surface Approaches to Learning among University Students

    ERIC Educational Resources Information Center

    Platow, Michael J.; Mavor, Kenneth I.; Grace, Diana M.

    2013-01-01

    The current research examined the role that students' discipline-related self-concepts may play in their deep and surface approaches to learning, their overall learning outcomes, and continued engagement in the discipline itself. Using a cross-lagged panel design of first-year university psychology students, a causal path was observed in which…

  15. Method for gasification of deep, thin coal seams. [DOE patent

    DOEpatents

    Gregg, D.W.

    1980-08-29

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  16. Method for gasification of deep, thin coal seams

    DOEpatents

    Gregg, David W.

    1982-01-01

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  17. An integrated deep electrical resistivity model of the Larderello geothermal field (Italy)

    NASA Astrophysics Data System (ADS)

    Rizzo, Enzo; Capozzoli, Luigi; De martino, Gregory; Godio, Alberto; Manzella, Adele; Perciante, Felice; Santilano, Alessandro

    2017-04-01

    A new deep electrical resistivity acquisition was carried out in Larderello geothermal area (Tuscania Region, Italy) by 3D Deep Electrical Resistivity Tomography (3D-DERT) and Magnetotelluric (M) acquisition. The investigated area is located close the Venelle2 well in the southern part of Larderello site, where there is the oldest field in the world under exploitation for power production (actual installed capacity is about 795 MWe). A vapour-dominated system is exploited to depth over 3500 m, with temperatures exceeding 350°C, from two different reservoirs. The Larderello area has been investigated by many geological and geophysical data of previous exploration projects but nowadays several critical issues on deep features of the field are still matter of debate, e.g., permeability distribution in the hydrothermal reservoir and the presence of fluids at supercritical condition at depth. The 3D-DERT system was designed by Surface-Surface and Surface-Hole electrode distributions in the area around Venelle2 well covering an area around 16km2. The well (kindly provided by Enel GP) was accessible down to 1.6 km with a temperature up to 250°C and a metallic casing down to 1 km. The in-hole thermal cable is characterized by n.12 flexible metallic electrodes with an electrodes space of 50m covering the open-hole portion (1050m-1600m). The surface electrodes are located around the Venelle2 hole on n.23 different positions connected to automatic dataloger to acquire the drop of potential and to transmitter device to inject the current (5-10A). The crucial task was the data processing, considering the large distance between the Tx and Rx systems that strongly reduces the signal to-noise ratio. To overcome this drawback, for each quadripole position the corresponding voltage signal was filtered, stored and processed with advanced statistical packages. The new 22 station were installed in the studied area and the data were carried out taking in account a permanent remote station in the Capraia Island. A Zonge International Inc multi-channel 32-bit receivers able to record broadband time-series from 0.0001 to 1 kHz, was used. For each site, we recorded at least 17 hours using the sampling rate of 256 Hz and one hour with a sampling rate of 4096 and 1024 Hz. The integration of MT model and experimental DC resistivity measurements improved the knowledge on the deep structures of the Larderello field. The interpretation took advantage also of a detailed and integrated 3D modelling of many geological and geophysical data available in the area. This study is part of the EU FP7-funded Integrated Methods for Advanced Geothermal Exploration (IMAGE) Project under grant agreement n° 608553. We thank the colleagues that supported the fieldwork during the MT and DC surveys. We thank Enel Green Power for the precious technical and logistical support on carrying out the borehole experiment.

  18. Lectures on Black Hole Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The lectures that follow were originally given in 1992, and written up only slightly later. Since then there have been dramatic developments in the quantum theory of black holes, especially in the context of string theory. None of these are reflected here. The concept of quantum hair, which is discussed at length in the lectures, is certainly of permanent interest, and I continue to believe that in some generalized form it will prove central to the whole question of how information is stored in black holes. The discussion of scattering and emission modes from various classes of black holes could be substantially simplified using modern techniques, and from currently popular perspectives the choice of examples might look eccentric. On the other hand fashions have changed rapidly in the field, and the big questions as stated and addressed here, especially as formulated for "real" black holes (nonextremal, in four-dimensional, asymptotically flat space-time, with supersymmetry broken), remain pertinent even as the tools to address them may evolve. The four lectures I gave at the school were based on two lengthy papers that have now been published, "Black Holes as Elementary Particles," Nuclear Physics B380, 447 (1992) and "Quantum Hair on Black Holes," Nuclear Physics B378, 175 (1992). The unifying theme of this work is to help make plausible the possibility that black holes, although they are certainly unusual and extreme states of matter, may be susceptible to a description using concepts that are not fundamentally different from those we use in describing other sorts of quantum-mechanical matter. In the first two lectures I discussed dilaton black holes. The fact that apparently innocuous changes in the "matter" action can drastically change the properties of a black hole is already very significant: it indicates that the physical properties of small black holes cannot be discussed reliably in the abstract, but must be considered with due regard to the rest of physics. (The macroscopic properties of large black holes, in particular those of astrophysical interest, are presumably well described by the familiar Einstein-Maxwell action which governs the massless fields. Heavy fields will at most provide Yukawa tails to the field surrounding the hole.) I will show how perturbations may be set up and analyzed completely, and why doing this is crucial for understanding the semiclassical physics of the hole including the Hawking radiation quantitatively. It will emerge that there is a class of dilaton black holes which behave as rather straightforward elementary particles. In the other two lectures I discussed the issue of hair on black holes, in particular the existence of hair associated with discrete gauge charges and its physical consequences. This hair is particularly interesting to analyze because it is invisible classically and to all order in ℏ. Its existence shows that black holes can have some "internal" quantum numbers in addition to their traditional classification by mass, charge, and angular momentum. The text that follows, follows the original papers closely.

  19. Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia

    2016-07-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.

  20. Cosmic Accretion and Galaxy Co-Evolution: Lessons from the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan

    2011-05-01

    The Chandra deep fields reveal that most cosmic accretion onto supermassive black holes is obscured by gas and dust. The GOODS and MUSYC multiwavelength data show that many X-ray-detected AGN are faint and red (or even undetectable) in the optical but bright in the infrared, as is characteristic of obscured sources. (N.B. The ECDFS is most sensitive to the AGN that constitute the X-ray background, namely, moderate luminosity AGN, with log Lx=43-44, at moderate redshifts, 0.5

  1. Black hole chemistry: thermodynamics with Lambda

    NASA Astrophysics Data System (ADS)

    Kubizňák, David; Mann, Robert B.; Teo, Mae

    2017-03-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field.

  2. Deep-water oilfield development cost analysis and forecasting —— Take gulf of mexico for example

    NASA Astrophysics Data System (ADS)

    Shi, Mingyu; Wang, Jianjun; Yi, Chenggao; Bai, Jianhui; Wang, Jing

    2017-11-01

    Gulf of Mexico (GoM) is the earliest offshore oilfield which has ever been developed. It tends to breed increasingly value of efficient, secure and cheap key technology of deep-water development. Thus, the analyze of development expenditure in this area is significantly important the evaluation concept of deep-water oilfield all over the world. This article emphasizes on deep-water development concept and EPC contract value in GoM in recent 10 years in case of comparison and selection to the economic efficiency. Besides, the QUETOR has been put into use in this research processes the largest upstream cost database to simulate and calculate the calculating examples’ expenditure. By analyzing and forecasting the deep-water oilfield development expenditure, this article explores the relevance between expenditure index and oil price.

  3. Deep Space Habitat Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  4. Do Hypervolumes Have Holes?

    PubMed

    Blonder, Benjamin

    2016-04-01

    Hypervolumes are used widely to conceptualize niches and trait distributions for both species and communities. Some hypervolumes are expected to be convex, with boundaries defined by only upper and lower limits (e.g., fundamental niches), while others are expected to be maximal, with boundaries defined by the limits of available space (e.g., potential niches). However, observed hypervolumes (e.g., realized niches) could also have holes, defined as unoccupied hyperspace representing deviations from these expectations that may indicate unconsidered ecological or evolutionary processes. Detecting holes in more than two dimensions has to date not been possible. I develop a mathematical approach, implemented in the hypervolume R package, to infer holes in large and high-dimensional data sets. As a demonstration analysis, I assess evidence for vacant niches in a Galapagos finch community on Isabela Island. These mathematical concepts and software tools for detecting holes provide approaches for addressing contemporary research questions across ecology and evolutionary biology.

  5. Notched Strength Allowables and Inplane Shear Strength of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M.

    2013-01-01

    Notched and unnotched strength allowables were developed for a textile composite to provide input data to analytical structural models based on the Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS) concept. Filled-hole tensile strength, filled-hole compressive strength, and inplane shear strength along stitch lines have been measured. The material system evaluated in this study is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. All specimens were tested in as-fabricated (dry) condition. Filled-hole strengths were evaluated with and without through-thickness stitching. The effects of scaling on filled-hole tensile strength were evaluated by testing specimens in two widths, but with identical width / hole-diameter ratios. Inplane shear specimens were stitched in two configurations, and two specimen thicknesses were tested for each stitch configuration.

  6. Effects of partial interlaminar bonding on impact resistance and loaded-hole behavior of graphite/epoxy quasi-isotropic laminates

    NASA Technical Reports Server (NTRS)

    Illg, W.

    1986-01-01

    A partial-bonding interlaminar toughening concept was evaluated for resistance to impact and for behavior of a loaded hole. Perforated Mylar sheets were interleaved between all 24 plies of a graphite/epoxy quasi-isotropic lay-up. Specimens were impacted by aluminum spheres while under tensile or compressive loads. Impact-failure thresholds and residual strengths were obtained. Loaded-hole specimens were tested in three configurations that were critical in bearing, shear, or tension. Partial bonding reduced the tensile and compressive strengths of undamaged specimens by about one-third. For impact, partial bonding did not change the threshold for impact failure under tensile preload. However, under compressive preload, partial bonding caused serious degradation of impact resistance. Partial bonding reduced the maximum load-carrying capacity of all three types of loaded-hole specimens. Overall, partial bonding degraded both impact resistance and bearing strength of holes.

  7. Rapid large area fabrication of multiscale through-hole membranes.

    PubMed

    Tahk, Dongha; Paik, Sang-Min; Lim, Jungeun; Bang, Seokyoung; Oh, Soojung; Ryu, Hyunryul; Jeon, Noo Li

    2017-05-16

    There are many proposed mechanisms by which single cells can be trapped; among them is the through-hole membrane for the characterization of individual microorganisms. Due to the small scale of the fabricated pores, the construction of through-hole membranes on a large scale and with relatively large areas faces many difficulties. This paper describes novel fabrication methods for a large-area, freestanding micro/nano through-hole membrane constructed from versatile membrane materials using through-hole membranes on a microfluidic chip (THMMC). This process can rapidly (<20 min) fabricate membranes with high fidelity multiscale hole size without residual layers. The through-hole site was easily customizable from the micro to the nanoscale, with a low or high aspect ratio giving rise to reliable membranes. Also, the rigidity and biocompatibility of the through-hole membrane are easily tunable by simple injection of versatile membrane materials to obtain a large area (up to 3600 mm 2 ). Membranes produced in this manner were then applied as a proof of concept for the isolation, cultivation, and quantification of individual micro-algal cells for selection with respect to the growth rate, while controlling the quorum sensing mediated metabolic and proliferative changes.

  8. Union Texas hopes to reproduce its Pakistan Badin experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petzet, G.A.

    1997-11-03

    Union Texas Petroleum Holdings Inc. has resolved to transplant elsewhere in the world the success of tis 20 year old grass-roots exploration effort on the Badin block in Pakistan. Union Texas Pakistan Inc. (UTP) is actively seeking exploration concessions in Pakistan, and the parent company is on an international bent aimed at finding other areas where it might reproduce its performance in Pakistan. The 104 exploratory wells drilled through April 1, 1997, resulted in 47 discoveries and 57 dry holes for a 45% success rate. Some oil and gas are produced from the Middle Sand units, and some gas ismore » produced from the Basal Sand units. The 1997 Badin exploration plan called for 11 exploratory wells, including one, Tarai Deep-3, that would test a new play concept in Jurassic Chiltan. It also called for Badin`s first 3D seismic surveys, at South Buzdar and Tangri fields on the northern part of the block, and 146 km of 2D seismic acquisition. The paper discusses Badin development, drilling status, operating challenges, oil price and sales, gas markets, local effects, and future developments.« less

  9. Ionic-Electronic Ambipolar Transport in Metal Halide Perovskites: Can Electronic Conductivity Limit Ionic Diffusion?

    PubMed

    Kerner, Ross A; Rand, Barry P

    2018-01-04

    Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.

  10. Experimental study on the influence of chemical sensitizer on pressure resistance in deep water of emulsion explosives

    NASA Astrophysics Data System (ADS)

    Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao

    2018-03-01

    The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.

  11. The Network Concept of Creativity and Deep Thinking: Applications to Social Opinion Formation and Talent Support

    ERIC Educational Resources Information Center

    Csermely, Peter

    2017-01-01

    Our century has unprecedented new challenges, which need creative solutions and deep thinking. Contemplative, deep thinking became an "endangered species" in our rushing world of Tweets, elevator pitches, and fast decisions. Here, we describe how important aspects of both creativity and deep thinking can be understood as network…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbett, B.S.; Nielson, D.L.; Adams, M.C.

    This technical report on the Phase II geothermal exploration of Ascension Island documents the data collected during thermal gradient drilling and the subsequent thermal and fluid chemical investigations. It also documents the completion of the Phase II exploration strategy which was proposed at the end of the Phase I--Preliminary Examination of Ascension Island. The thermal gradient drilling resulted in seven holes which range from 206 to 1750 ft (53-533 m) deep, with a cumulative footage of 6563 ft (2000 m). The drilling procedure and the problems encountered during the drilling have been explained in detail to provide information valuable formore » any subsequent drilling program on the island. In addition, the subsurface geology encountered in the holes has been documented and, where possible, correlated with other holes or the geology mapped on the surface of the island. Temperatures measured in the holes reach a maximum of 130 F (54.4 C) at 1285 ft (391.7 m) in hole GH-6. When the temperatures of all holes are plotted against elevation, the holes can be classed into three distinct groups, those which have no thermal manifestations, those with definite geothermal affinities, and one hole which is intermediate between the other two. From consideration of this information, it is clear that the highest geothermal potential on the island is in the Donkey Flat area extending beneath Middleton Ridge, and in the Cricket Valley area. Because of the greater drilling depths and the remote nature of the Cricket Valley area, it is recommended that future exploration concentrate in the area around Middleton Ridge.« less

  13. Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at Room and Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Sharpe, William N., Jr.; Beheim, Glenn M.; Evans, Laura J.; Jadaan, Osama M.

    2007-01-01

    Three shapes of tensile specimens were tested--curved with a very low stress concentration factor and straight with either a circular hole or an elliptical hole. The nominal thickness was 125 micron with a net section 100 micron wide; the overall length of these microspecimens was 3.1 mm. They were fabricated by an improved version of deep reactive ion etching, which produced specimens with smooth sidewalls and cross-sections having a slightly trapezoidal shape that was exaggerated inside the holes. The novel test setup used a vertical load train extending into a resistance furnace. The specimens had wedge-shaped ends which fit into ceramic grips. The fixed grip was mounted on a ceramic post, and the movable grip was connected to a load cell and actuator outside the furnace with a ceramic-encased nichrome wire. The same arrangement was used for tests at 24 and at 1000 C. The strengths of the curved specimens for two batches of material (made with slightly different processes) were 0.66+/-0.12 GPa and 0.45+/-0.20 GPa respectively at 24 C with identical values at 1000 C. The fracture strengths of the circular-hole and elliptical-hole specimens (computed from the stress concentration factors and measured loads at failure) were approximately 1.2 GPa with slight decreases at the higher temperature. Fractographic examinations showed failures initiating on the surface--primarily at corners. Weibull predictions of fracture strengths for the hole specimens based on the properties of the curved specimens were reasonably effective for the circular holes, but not for the elliptical holes.

  14. Impact of Group-II Acceptors on the Electrical and Optical Properties of GaN

    NASA Astrophysics Data System (ADS)

    Lyons, John L.; Janotti, Anderson; Van de Walle, Chris G.

    2013-08-01

    We explore the properties of group-II acceptors in GaN by performing hybrid density functional calculations. We find that MgGa gives rise to hole localization in zinc-blende GaN, similar to the behavior in the wurtzite phase. Alternative acceptor impurities, such as Zn and Be, also lead to localized holes in wurtzite GaN, and their ionization energies are larger than that of Mg. All these group-II acceptors also cause large lattice distortions in their neutral charge state, which in turn lead to deep and broad luminescence signals. We explore the consequences of these results for p-type doping.

  15. Hole defects in molecular beam epitaxially grown p-GaAs introduced by alpha irradiation

    NASA Astrophysics Data System (ADS)

    Goodman, S. A.; Auret, F. D.; Meyer, W. E.

    1994-01-01

    Epitaxial aluminum Schottky barrier diodes on molecular beam epitaxially grown p-GaAs with a free carrier density of 2×1016 cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. For the first time, the radiation induced hole defects are characterized using conventional deep level transient spectroscopy (DLTS). The introduction rates and DLTS ``signatures'' of three prominent radiation induced defects Hα1, Hα4, and Hα5, situated 0.08, 0.20, and 0.30 eV above the valence band, respectively, are calculated and compared to those of similar defects introduced during electron irradiation.

  16. Method of retrieving a liquid sample, a suction lysimeter, a portable suction lysimeter, a lysimeter system, and a deep lysimeter

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2003-08-26

    A method of retrieving a liquid sample comprises providing a portable lysimeter including a semi-permeable membrane and a chamber in fluid communication with the semi-permeable membrane; making a hole at a site from which a liquid sample is desired; evacuating the chamber by applying a vacuum to the chamber; lowering the portable lysimeter into the hole; obtaining a sample in the chamber; and retrieving the lysimeter from the bore; wherein it is not necessary to backfill the bore. A portable lysimeter includes a semi-permeable member and a chamber in fluid communication with the semi-permeable membrane.

  17. Uncovering a Salt Giant. Deep-Sea Record of Mediterranean Messinian Events (DREAM) multi-phase drilling project

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas

    2014-05-01

    In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions related to the MSC event. Several proposal ideas also emerged to support the Multi-phase drilling project concept: Salt tectonics and fluids, Deep stratigraphic and crustal drilling in the Gulf of Lion (deriving from the GOLD drilling project), Deep stratigraphic and crustal drilling in the Ionian Sea, Deep Biosphere, Sapropels, and the Red Sea. A second MagellanPlus workshop held in January 2014 in Paris (France), has proceeded a step further towards the drafting of the Multi-phase Drilling Project and a set of pre-proposals for submission to IODP.

  18. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    NASA Astrophysics Data System (ADS)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  19. Granite Springs Valley, Nevada - Well data and Temperature Survey

    DOE Data Explorer

    Faulds, Jim

    2017-09-14

    This data is associated with the Nevada Play Fairway project and includes excel files containing raw 2-meter temperature data and corrections. GIS shapefiles and layer files contain ing location and attribute information for the data are included. Well data includes both deep and shallow TG holes, GIS shapefiles and layer files.

  20. Installation Restoration Program Records Search for Moody Air Force Base, Georgia.

    DTIC Science & Technology

    1983-02-01

    Mocap, and Chlordane ( termite control only). Ochemcomp and anticoagulants are commonly used for rodent control. The major herbicides currently used are...buried in 10 55-gallon drums in 1971. A single pit was excavated about 6 to 8 feet deep, and the filled hole was capped with a clayey-sand mound to

  1. Online Education: Growing, but Painfully

    ERIC Educational Resources Information Center

    Parry, Marc

    2009-01-01

    Evolve or dissolve. That advice, from a recent report on virtual universities, played out in two news stories last May 2009. The University of Texas' online division is staring down a deep budget hole as it loses a longtime subsidy. In Utah, budget cuts have killed a 10-campus online consortium. Those and other predicaments reflect the growing…

  2. Mud, Blood, and Bullet Holes: Teaching History with War Letters

    ERIC Educational Resources Information Center

    Carroll, Andrew

    2013-01-01

    From handwritten letters of the American Revolution to typed emails from Iraq and Afghanistan, correspondence from U.S. troops offers students deep insight into the specific conflicts and experiences of soldiers. Over 100,000 correspondences have been donated to the Legacy Project, a national initiative launched in 1998 to preserve war letters by…

  3. States Dogged by Lawsuits on K-12 Funding

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2012-01-01

    Even as they struggle to climb out of deep financial holes, states are facing lawsuits that contend they do not meet their constitutions' requirements to provide sufficient funding to districts and fail to provide resources for disadvantaged schools and student populations. This article reports on legal battles in Texas, Colorado, and elsewhere…

  4. Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency.

    PubMed

    Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung

    2018-04-24

    This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

  5. Methods of measuring water levels in deep wells

    USGS Publications Warehouse

    Garber, M.S.; Koopman, F. C.

    1968-01-01

    Accurate measurement of water levels deeper than 1,000 feet in wells requires specialized equipment. Corrections for stretch and thermal expansion of measuring tapes must be considered, and other measuring devices must be calibrated periodically. Bore-hole deviation corrections also must be made. Devices for recording fluctuation of fluid level usually require mechanical modification for use at these depths. A multichannel recording device utilizing pressure transducers has been constructed. This device was originally designed to record aquifer response to nearby underground nuclear explosions but can also be used for recording data from multi-well pumping tests. Bottom-hole recording devices designed for oil-field use have been utilized in a limited manner. These devices were generally found to lack the precision required, in ground-water investigations at the Nevada Test Site but may be applicable in other areas. A newly developed bottom-hole recording pressure gauge of improved accuracy has been used with satisfactory results.

  6. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol.

    PubMed

    Chipperfield, M P; Dhomse, S S; Feng, W; McKenzie, R L; Velders, G J M; Pyle, J A

    2015-05-26

    Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ∼2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ∼15% by 2013.

  7. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Chipperfield, M. P.; Dhomse, S. S.; Feng, W.; McKenzie, R. L.; Velders, G. J. M.; Pyle, J. A.

    2015-05-01

    Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ~2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ~15% by 2013.

  8. Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung

    2018-04-01

    This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

  9. Analysis of fractures from borehole televiewer logs in a 500m deep hole at Xiaguan, Yunnan province, Southwest China

    USGS Publications Warehouse

    Zhai, Qingshan; Springer, J.E.; Zoback, M.D.

    1990-01-01

    Fractures from a 500 m deep hole in the Red River fault zone were analyzed using an ultrasonic borehole televiewer. Four hundred and eighty individual fractures were identified between 19 m and 465 m depth. Fracture frequency had no apparent relation to the major stratigraphic units and did not change systematically with depth. Fracture orientation, however, did change with stratigraphic position. The borehole intersected 14 m of Cenozoic deposits, 363 m of lower Ordovician clastic sediments, and 106 m of older ultramafic intrusions. The clastic sequence was encountered again at a depth of 484 m, suggesting a large fault displacement. Fractures in the top 162 m of the sedimentary section appear randomly distributed. Below that depth, they are steeply dipping with northerly and north-westerly strikes, parallel to the major active faults in the region. Fractures in the ultramafic section strike roughly eastwest and are steeply dipping. These orientations are confined to the ultramafic section and are parallel to an older, inactive regional fault set. ?? 1990.

  10. Electroluminescence and other diagnostic techniques for the study of hot-electron effects in compound semiconductor devices

    NASA Astrophysics Data System (ADS)

    Zanoni, Enrico; Meneghesso, Gaudenzio; Menozzi, Roberto

    2000-03-01

    Hot electron in III-V FETs can be indirectly monitored by measuring the current coming out from the gate when the device is biased at high electric fields. This negative current is due to the collection of holes generated by impact ionization in the gate-to drain region. Electroluminescence represents a powerful tool in order to characterize not only hot electrons but also material properties. By using spatially resolved emission microscopy it is possible to show that the light due to cold electron/hole recombination is emitted between the gate and the source (low electric field region), while the contribution due to hot electrons is emitted between the gate and the drain (high electric field region). Deep-traps created in the device by hot carriers can be analysed by means of drain current deep level transient spectroscopy and by transconductance frequency dispersion. Cathodoluminescence, optical beam induced current, X-ray spectroscopy, electron energy loss spectroscopy in combination with a transmission electron microscopy are powerful tools in order to identify and localize surface modification following hot-electron stress tests.

  11. Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi

    2018-01-01

    Supermassive black hole binaries (SMBHBs) should be a common product of the hierarchal growth of galaxies and gravitational wave sources at nano-Hz frequencies. We have performed a systematic search in the Pan-STARRS1 Medium Deep Survey for periodically varying quasars, which are predicted manifestations of SMBHBs, and identified 26 candidates that are periodically varying on the timescale of ~300-1000 days over the 4-year baseline of MDS. We continue to monitor them with the Discovery Channel Telescope and the LCO network telescopes and thus are able to extend the baseline to 3-8 cycles and break false positive signals due to stochastic, normal quasar variability. From our imaging campaign, five candidates show persistent periodic variability and remain strong SMBHB candidates for follow-up observations. We calculate the cumulative number rate of SMBHBs and compare with previous work. We also compare the gravitational wave strain amplitudes of the candidates with the capability of pulsar timing arrays and discuss the future capabilities to detect periodic quasar and SMBHB candidates with the Large Synoptic Survey Telescope.

  12. Cobalt dopant with deep redox potential for organometal halide hybrid solar cells.

    PubMed

    Koh, Teck Ming; Dharani, Sabba; Li, Hairong; Prabhakar, Rajiv Ramanujam; Mathews, Nripan; Grimsdale, Andrew C; Mhaisalkar, Subodh G

    2014-07-01

    In this work, we report a new cobalt(III) complex, tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (MY11), with deep redox potential (1.27 V vs NHE) as dopant for 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). This dopant possesses, to the best of our knowledge, the deepest redox potential among all cobalt-based dopants used in solar cell applications, allowing it to dope a wide range of hole-conductors. We demonstrate the tuning of redox potential of the Co dopant by incorporating pyrimidine moiety in the ligand. We characterize the optical and electrochemical properties of the newly synthesized dopant and show impressive spiro-to-spiro(+) conversion. Lastly, we fabricate high efficiency perovskite-based solar cells using MY11 as dopant for molecular hole-conductor, spiro-OMeTAD, to reveal the impact of this dopant in photovoltaic performance. An overall power conversion efficiency of 12% is achieved using MY11 as p-type dopant to spiro-OMeTAD. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.

    2012-01-01

    Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).

  14. EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY PIT ('THE OLD PIT') WITH LEDGE PREPARED FOR LIMESTONE EXTRACTION. AN ELEVEN-HOLE SHOT WILL DISLODGE APPROXIMATELY 25,000 TONS OF LIMESTONE WHICH, AFTER LOADING AND CRUSHING, WILL BE USED FOR ROAD CONSTRUCTION. THE CALERA QUARRY IS ONE OF FOUR ACTIVE VULCAN MATERIALS COMPANY QUARRIES IN THE DISTRICT. VULCAN MATERIALS, A FORTUNE 500 FIRM, ESTABLISHED IN BIRMINGHAM IN 1906 AS BIRMINGHAM SLAG COMPANY, VULCAN MATERIALS IS THE NATION'S FOREMOST PRODUCER OF CONSTRUCTION AGGREGATE AND A LEADING CHEMICALS MANUFACTURER. - Vulcan Material Company, Calera Quarry, 1614 Highway 84, Calera, Shelby County, AL

  15. EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY PIT ("THE OLD PIT") WITH LEDGE PREPARED FOR LIMESTONE EXTRACTION. AN ELEVEN-HOLE SHOT WILL DISLODGE APPROXIMATELY 25,000 TONS OF LIMESTONE WHICH, AFTER LOADING AND CRUSHING, WILL BE USED FOR ROAD CONSTRUCTION. THE CALERA QUARRY IS ONE OF FOUR ACTIVE VULCAN MATERIALS COMPANY QUARRIES IN THE DISTRICT. VULCAN MATERIALS, A FORTUNE 500 FIRM, ESTABLISHED IN BIRMINGHAM IN 1906 AS BIRMINGHAM SLAG COMPANY, VULCAN MATERIALS IS THE NATION'S FOREMOST PRODUCER OF CONSTRUCTION AGGREGATE AND A LEADING CHEMICALS MANUFACTURER - Vulcan Material Company, Calera Quarry, 1614 Highway 84, Calera, Shelby County, AL

  16. Deep-sea ostracods from the South Atlantic sector of the Southern ocean during the Last 370,000 years

    USGS Publications Warehouse

    Yasuhara, Moriaki; Cronin, T. M.; Hunt, G.; Hodell, D.A.

    2009-01-01

    We report changes of deep-sea ostracod fauna during the last 370,000 yr from the Ocean Drilling Program (ODP) Hole 704A in the South Atlantic sector of the Southern Ocean. The results show that faunal changes are coincident with glacial/interglacial-scale deep-water circulation changes, even though our dataset is relatively small and the waters are barren of ostracods until mid-MIS (Marine Isotope Stage) 5. Krithe and Poseidonamicus were dominant during the Holocene interglacial period and the latter part of MIS 5, when this site was under the influence of North Atlantic Deep Water (NADW). Conversely, Henryhowella and Legitimocythere were dominant during glacial periods, when this site was in the path of Circumpolar Deep Water (CPDW). Three new species (Aversovalva brandaoae, Poseidonamicus hisayoae, and Krithe mazziniae) are described herein. This is the first report of Quaternary glacial/interglacial scale deep-sea ostracod faunal changes in the Southern and South Atlantic Oceans, a key region for understanding Quaternary climate and deep-water circulation, although the paucity of Quaternary ostracods in this region necessitates further research. ?? 2009 The Paleontological Society.

  17. Effect of the particle-hole channel on BCS–Bose-Einstein condensation crossover in atomic Fermi gases

    PubMed Central

    Chen, Qijin

    2016-01-01

    BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875

  18. First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Ferrara, Andrea; Grazian, Andrea; Fiore, Fabrizio; Giallongo, Emanuele; Puccetti, Simonetta

    2016-06-01

    The first black hole seeds, formed when the Universe was younger than ˜500 Myr, are recognized to play an important role for the growth of early (z ˜ 7) supermassive black holes. While progresses have been made in understanding their formation and growth, their observational signatures remain largely unexplored. As a result, no detection of such sources has been confirmed so far. Supported by numerical simulations, we present a novel photometric method to identify black hole seed candidates in deep multiwavelength surveys. We predict that these highly obscured sources are characterized by a steep spectrum in the infrared (1.6-4.5 μm), I.e. by very red colours. The method selects the only two objects with a robust X-ray detection found in the CANDELS/GOODS-S survey with a photometric redshift z ≳ 6. Fitting their infrared spectra only with a stellar component would require unrealistic star formation rates (≳2000 M⊙ yr-1). To date, the selected objects represent the most promising black hole seed candidates, possibly formed via the direct collapse black hole scenario, with predicted mass >105 M⊙. While this result is based on the best photometric observations of high-z sources available to date, additional progress is expected from spectroscopic and deeper X-ray data. Upcoming observatories, like the JWST, will greatly expand the scope of this work.

  19. Hydrogeologic data from a 2,000-foot deep core hole at Polk City, Green Swamp area, central Florida

    USGS Publications Warehouse

    Navoy, A.S.

    1986-01-01

    Two core holes were drilled to depths of 906 and 1,996 feet, respectively, within the Tertiary limestone (Floridan) aquifers, at Polk City, central Florida. Data from the two holes revealed that the bottom of the zone of vigorous groundwater circulation is confined by carbonate rocks at a depth of about 1,000 feet (863 feet below sea level). The zone of circulation is divided into two high-permeability zones. The dissolved solids of the water within the high-permeability zones is approximately 150 milligrams per liter. Within the carbonate rocks, the dissolved solids content of the water reaches about 2,000 milligrams per liter at the bottom of the core hole. Water levels in the core holes declined a total of about 16 feet as the hole was drilled; most of the head loss occurred at depths below 1,800 feet. The porosities of selected cores ranged from 1.6 to 45.3 percent; the hydraulic conductivities ranged from less than 0.000024 to 19.0786 feet per day in the horizontal direction and from less than 0.000024 to 2.99 feet per day in the vertical direction; and the ratio of vertical to horizontal permeability ranged from 0.03 to 1.98. Due to drilling problems, packer tests and geophysical logging could not be accomplished. (USGS)

  20. Switching Oxide Traps

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.

    2003-01-01

    We consider radiation-induced charge trapping in SiO2 dielectric layers, primarily from the point of view of CMOS devices. However, SiO2 insulators are used in many other ways, and the same defects occur in other contexts. The key studies, which determined the nature of the oxide charge traps, were done primarily on gate oxides in CMOS devices, because that was the main radiation problem in CMOS at one time. There are two major reviews of radiation-induced oxide charge trapping already in the literature, which discuss the subject in far greater detail than is possible here. The first of these was by McLean et al. in 1989, and the second, ten years later, was intended as an update, because of additional, new work that had been reported. Basically, the picture that has emerged is that ionizing radiation creates electron-hole pairs in the oxide, and the electrons have much higher mobility than the holes. Therefore, the electrons are swept out of the oxide very rapidly by any field that is present, leaving behind any holes that escape the initial recombination process. These holes then undergo a polaron hopping transport toward the Si/SiO2 interface (under positive bias). Near the interface, some fraction of them fall into deep, relatively stable, long-lived hole traps. The nature and annealing behavior of these hole traps is the main focus of this paper.

  1. Advances in transient (pulsed) eddy current for inspection of multi-layer aluminum structures in the presence of ferrous fasteners

    NASA Astrophysics Data System (ADS)

    Desjardins, D. R.; Vallières, G.; Whalen, P. P.; Krause, T. W.

    2012-05-01

    An experimental investigation of the electromagnetic processes underlying transient (pulsed) eddy current inspection of aircraft wing structures in the vicinity of ferrous fasteners is performed. The separate effects of transient excitation of ferrous fastener and eddy currents induced in the surrounding aluminum structure are explored using a transmit-receive configuration with transient excitation of a steel rod, an aluminum plate with a bore hole and a steel rod through the bore hole. Observations are used to interpret results from a coupled driving and differential coil sensing unit applied to detect fatigue cracks emanating from bolt holes in aluminum structures with ferrous fasteners present. In particular, it is noted that abrupt magnetization of the fastener, by the probe's central driving unit, can transfer flux and consequently, induce strong eddy current responses deep within the aluminum structure in the vicinity of the bore hole. Rotation of the probe, centered over the fastener, permits detection of subsurface discontinuities, such as cracks, by the pair of differentially connected pickup coils.

  2. Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m -plane InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Liu, W.; Butté, R.; Dussaigne, A.; Grandjean, N.; Deveaud, B.; Jacopin, G.

    2016-11-01

    We study the carrier-density-dependent recombination dynamics in m -plane InGaN/GaN multiple quantum wells in the presence of n -type background doping by time-resolved photoluminescence. Based on Fermi's golden rule and Saha's equation, we decompose the radiative recombination channel into an excitonic and an electron-hole pair contribution, and extract the injected carrier-density-dependent bimolecular recombination coefficients. Contrary to the standard electron-hole picture, our results confirm the strong influence of excitons even at room temperature. Indeed, at 300 K, excitons represent up to 63 ± 6% of the photoexcited carriers. In addition, following the Shockley-Read-Hall model, we extract the electron and hole capture rates by deep levels and demonstrate that the increase in the effective lifetime with injected carrier density is due to asymmetric capture rates in presence of an n -type background doping. Thanks to the proper determination of the density-dependent recombination coefficients up to high injection densities, our method provides a way to evaluate the importance of Auger recombination.

  3. High-resolution dating of deep-sea clays using Sr isotopes in fossil fish teeth

    NASA Astrophysics Data System (ADS)

    Ingram, B. Lynn

    1995-09-01

    Strontium isotopic compostitions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/ 86Sr ratios of fish teeth from the top of the pelagic clay unit (0.708989), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/ 86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/ 86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.707519), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of 10-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).

  4. Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes

    NASA Astrophysics Data System (ADS)

    Klein, Fred W.

    2016-04-01

    Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.

  5. Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes

    USGS Publications Warehouse

    Klein, Fred W.

    2016-01-01

    Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.

  6. Deep drilling in the Chesapeake Bay impact structure - An overview

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast-dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies. ?? 2009 The Geological Society of America.

  7. An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Lim, Hyoungcheol; Shin, Hyun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Huh, Jin-Suk; Kim, Jang-Joo

    2017-11-01

    The use of exciplex hosts is attractive for high-performance phosphorescent organic light-emitting diodes (PhOLEDs) and thermally activated delayed fluorescence OLEDs, which have high external quantum efficiency, low driving voltage, and low efficiency roll-off. However, exciplex hosts for deep-blue OLEDs have not yet been reported because of the difficulties in identifying suitable molecules. Here, we report a deep-blue-emitting exciplex system with an exciplex energy of 3.0 eV. It is composed of a carbazole-based hole-transporting material (mCP) and a phosphine-oxide-based electron-transporting material (BM-A10). The blue PhOLEDs exhibited maximum external quantum efficiency of 24% with CIE coordinates of (0.15, 0.21) and longer lifetime than the single host devices.

  8. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less

  9. Shining in the dark: the spectral evolution of the first black holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Ferrara, Andrea; Volonteri, Marta; Dubus, Guillaume

    2015-12-01

    Massive black hole (MBH) seeds at redshift z ≳ 10 are now thought to be key ingredients to explain the presence of the supermassive (109-10 M⊙) black holes in place <1 Gyr after the big bang. Once formed, massive seeds grow and emit copious amounts of radiation by accreting the left-over halo gas; their spectrum can then provide crucial information on their evolution. By combining radiation-hydrodynamic and spectral synthesis codes, we simulate the time-evolving spectrum emerging from the host halo of a MBH seed with initial mass 105 M⊙, assuming both standard Eddington-limited accretion, or slim accretion discs, appropriate for super-Eddington flows. The emission occurs predominantly in the observed infrared-submm (1-1000 μm) and X-ray (0.1-100 keV) bands. Such signal should be easily detectable by JWSTaround ˜ 1 μm up to z ˜ 25, and by ATHENA (between 0.1 and 10 keV, up to z ˜ 15). Ultra-deep X-ray surveys like the Chandra Deep Field South could have already detected these systems up to z ˜ 15. Based on this, we provide an upper limit for the z ≳ 6 MBH mass density of ρ• ≲ 2.5 × 102 M⊙ Mpc-3 assuming standard Eddington-limited accretion. If accretion occurs in the slim disc mode the limits are much weaker, ρ• ≲ 7.6 × 103 M⊙ Mpc-3 in the most constraining case.

  10. Author Correction: Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chin; Maier, Joachim

    2018-05-01

    In the version of this Perspective originally published, in the sentence "It is worthy of note that the final LiF-free situation characterized by MnO taking up the holes and the (F- containing) MnO surface taking up the lithium ions is also a subcase of the job-sharing concept23.", the word `holes' should have been `electrons'. This has now been corrected.

  11. Multiflash X ray with Image Detanglement for Single Image Isolation

    DTIC Science & Technology

    2017-08-31

    known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image

  12. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less

  13. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matric storage buffers the groundwater recharge process

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari R. R.; Kumar, M. S. Mohan; Sekhar, M.; Maréchal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Kumar, C.; Braun, Jean-Jacques

    2010-01-01

    SummaryAccurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year -1 and the evapotranspiration was about 900 mm year -1 out of which 100 mm year -1 was uptake from the deep saprolite horizons. The stream flow was 100 mm year -1 while the groundwater underflow was 80 mm year -1. The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems.

  14. Lateral changes in temperature at the base of the Laurentide ice sheet inferred from borehole temperature data

    NASA Astrophysics Data System (ADS)

    Mareschal, J.; Rolandone, F.; Jaupart, C.

    2001-12-01

    Three temperature depth profiles from very deep (1720-2800m) boreholes in Canada were inverted to determine temporal changes in ground surface temperature. These boreholes are sufficiently deep to be affected by the ground surface temperature during and after the last glacial episode when the three sites were beneath the Laurentide ice sheet. At Sept Iles, Québec, on the north shore of the Bay of St Lawrence, the inversion of an 1820m deep profile suggests that temperature was <-4 \\deg C at the end of the Last Glacial Maximum, vs 3 \\deg C now. For FlinFlon, Manitoba, the inversion of a 2800m hole suggests that ground temperature was moderately colder (≈-1\\deg C) at the end of the LGM than at present (≈3\\deg C). This result is within the bounds suggested by Sass et al. [1971]. For a 1720m deeep borehole near Balmertown, Ontario, northwest of Lake Superior, the inversion shows almost no change in ground surface temperature (3+/-1 \\deg C) for the past 50,000 years. The difference between Balmertown and FlinFlon is difficult to explain within the framework of accepted ice sheet models because the two sites are at about the same distance from the center of the ice sheet and have experienced the same ice accumulation history. Simple models will be presented that explain how the temperature at the base of a large glacier is affected by the geometry and the flow of the ice sheet. Sass, J.H., A.H. Lachenbruch, & A.M. Jessop, Uniform heat flow in a deep hole in the Canadian Shield and its paleoclimatic implications, J. Geophys. Res., 76, 8586-8596, 1971.

  15. A Psychometric Evaluation of the Digital Logic Concept Inventory

    ERIC Educational Resources Information Center

    Herman, Geoffrey L.; Zilles, Craig; Loui, Michael C.

    2014-01-01

    Concept inventories hold tremendous promise for promoting the rigorous evaluation of teaching methods that might remedy common student misconceptions and promote deep learning. The measurements from concept inventories can be trusted only if the concept inventories are evaluated both by expert feedback and statistical scrutiny (psychometric…

  16. 49 CFR 230.39 - Broken staybolts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... at that time. Broken staybolts detected in between 31 service day inspections must be replaced no later than 30 calendar days from the time of detection. When staybolts 8 inches or less in length are... at least 11/4 inches deep at each end, or that have telltale holes 3/16 inch to 7/32 inch in diameter...

  17. Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Mourou, Gerard

    2017-01-01

    The question of whether Hawking evaporation violates unitarity, and therefore results in the loss of information, has remained unresolved since Hawking's seminal discovery. To date, the investigations have remained mostly theoretical since it is almost impossible to settle this paradox through direct astrophysical black hole observations. Here, we point out that relativistic plasma mirrors can be accelerated drastically and stopped abruptly by impinging intense x-ray pulses on solid plasma targets with a density gradient. This is analogous to the late time evolution of black hole Hawking evaporation. A conception of such an experiment is proposed and a self-consistent set of physical parameters is presented. Critical issues, such as how the black hole unitarity may be preserved, can be addressed through the entanglement between the analog Hawking radiation photons and their partner modes.

  18. Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox.

    PubMed

    Chen, Pisin; Mourou, Gerard

    2017-01-27

    The question of whether Hawking evaporation violates unitarity, and therefore results in the loss of information, has remained unresolved since Hawking's seminal discovery. To date, the investigations have remained mostly theoretical since it is almost impossible to settle this paradox through direct astrophysical black hole observations. Here, we point out that relativistic plasma mirrors can be accelerated drastically and stopped abruptly by impinging intense x-ray pulses on solid plasma targets with a density gradient. This is analogous to the late time evolution of black hole Hawking evaporation. A conception of such an experiment is proposed and a self-consistent set of physical parameters is presented. Critical issues, such as how the black hole unitarity may be preserved, can be addressed through the entanglement between the analog Hawking radiation photons and their partner modes.

  19. Identification of black hole horizons using scalar curvature invariants

    NASA Astrophysics Data System (ADS)

    Coley, Alan; McNutt, David

    2018-01-01

    We introduce the concept of a geometric horizon, which is a surface distinguished by the vanishing of certain curvature invariants which characterize its special algebraic character. We motivate its use for the detection of the event horizon of a stationary black hole by providing a set of appropriate scalar polynomial curvature invariants that vanish on this surface. We extend this result by proving that a non-expanding horizon, which generalizes a Killing horizon, coincides with the geometric horizon. Finally, we consider the imploding spherically symmetric metrics and show that the geometric horizon identifies a unique quasi-local surface corresponding to the unique spherically symmetric marginally trapped tube, implying that the spherically symmetric dynamical black holes admit a geometric horizon. Based on these results, we propose a suite of conjectures concerning the application of geometric horizons to more general dynamical black hole scenarios.

  20. Novel fiber-based technique for inspection of holes in narrow-bore tubes

    NASA Astrophysics Data System (ADS)

    Bernard, Fabien; Flaherty, Tony; O'Connor, Gerard M.

    2009-06-01

    Optical tools offer a route to increasing throughput and efficiency in industrial inspection operations, one of the most time-consuming and labour-intensive aspects of modern manufacturing. One prominent example in the medical device industry is inspection of drilled holes, particularly in narrow-bore tubes (precision-flow devices, such as catheters for drug delivery, radio-opaque contrast agents, etc). The products in which these holes feature are increasing in complexity (reduced dimensions, increasing number of drilled features- in some products now reaching into the hundreds). These trends present a number of technical challenges, not least to ensure that holes are completed and that no damage to the part occurs as a result of over-drilling, for example. This paper will present a novel sensor based on back-side illumination of the drilled hole using side-glowing optical fibers to detect, qualify and quantify drilled holes. The concept is based on inserting a laser-coupled side-glowing optical fiber into the lumen of the tube to be drilled, and imaging the light emitted from this fiber through a drilled hole using a vision system mounted external to the tube. The light from the fiber allows rapid determination of hole completion, shape and size, as well as quantity in the case of products with multiple holes. If the fiber is mounted in the tube prior to drilling, the light emitted from the fiber can be used as a real-time hole breakthrough sensor, preventing under or overdrilling of the tube.

  1. Can the composition and structure of the lower ocean crust and upper mantle be known without deep ocean drilling?

    NASA Astrophysics Data System (ADS)

    Dick, H.; Natland, J.

    2003-04-01

    No. With few exceptions, lower ocean crust sampled by dredge or submersible in tectonic windows such as Atlantis Bank in the Indian Ocean or the MARK area on the Mid-Atlantic Ridge are not representative of the ocean crust. They represent tectonic mixing of rocks from the mantle and crust on large faults that also localize late magmatic intrusion. Where this can be sorted out, the in-situ crustal sections may generally represent a sub-horizontal cross-section through the lower crust and mantle and not a vertical one. The gabbroic rocks exposed represent largely high-level intrusions, highly hybridized by late melt flow along deep faults, or highly evolved gabbro at the distal ends of larger intrusions emplaced into the mantle near transforms. Oceanic gabbros have average compositions that lie outside the range of primary MORB compositions, and rarely are equivalent to spatially associated MORB either as a parent to, or as a residue of their crystallization. Oceanic gabbros sampled from these complexes generally are very coarse-grained, and are unlike those seen in nearly all ophiolites and layered intrusions. In addition, there are few exposures of gabbro and lower ocean crust and mantle in Pacific tectonic windows, though there the possibility of more representative sections is greater due to their exposure in propagating rifts. Limited samples of the mantle from near the midpoints of ocean ridge segments at slow-spreading rifts are from anomalous crustal environments such as ultra-slow spreading ridges or failed rifts. These include abundant dunites, as opposed to samples from fracture zones, which contain only about 1% dunite. While this indicates focused mantle flow towards the midpoint of a ridge, it also shows that fracture zone peridotites are not fully representative of the oceanic upper mantle. Major classes of rocks common in ophiolites, such as fine to medium grained layered primitive olivine gabbros, troctolites, wherlites and dunites, sheeted dikes, and epidosites are rarely or even not exposed. Models of lower ocean crust stratigraphy drawn from deep sea sampling, certainly from slow spreading ridges, do not match those for major intact ophiolites. Thus the ophiolite hypothesis remains unconfirmed for the lower ocean crust and shallow mantle, and it is nearly impossible to accurately identify the ocean ridge environment of any one ophiolite. The one deep drill hole that exists in lower ocean crust, 1.5 km Hole 735B, has a bulk composition too fractionated to mass balance MORB back to a primary mantle melt composition. Thus, a large mass of primitive cumulates is missing and could be situated in the crust below the base of the hole or in the underlying mantle. This is an unresolved question that is critical to understanding the evolution of the most common magma on earth: MORB. Since lower ocean crust and mantle represent a major portion of the crust and the exchange of mass, heat and volatiles from the earth's interior to its exterior this leaves a major hole in our understanding of the global geochemical and tectonic cycle which can only be filled by deep drilling.

  2. The basic physics of the binary black hole merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2017-01-01

    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere,in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as ~350 km apart, and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.

  3. Deep Space Habitat Concept of Operations for Transit Mission Phases

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.

  4. Deep Ecology Education: Learning from Its Vaisnava Roots

    ERIC Educational Resources Information Center

    Haigh, Martin

    2006-01-01

    Deep ecology arises from the personal intuition that one's self is part of the world's environmental wholeness. This awareness may be constructed upon scientific foundations but it is more commonly thought a spiritual concept. Deep ecology pedagogy emerges from its three-step process of ecological Self-realization. This paper traces the roots of…

  5. Journey to Elsewhere and Elsewhen

    ERIC Educational Resources Information Center

    Sagan, Carl

    1973-01-01

    A Cornell University astronomer discusses teaching astronomy in schools and provides details on concepts such as the theorized black holes that may be apertures to distant galaxies and remote epochs. (Author/JA)

  6. Hydrogeological Investigations in Deep Wells at the Meuse/Haute Marne Underground Research Laboratory

    NASA Astrophysics Data System (ADS)

    Delay, Jacques; Distinguin, Marc

    ANDRA (Agence Nationale pour la Gestion de Déchets Radioactifs) has developed an integrated approach to characterizing the hydrogeology of the carbonate strata that encase the Callovo-Oxfordian argillite at the Meuse/Haute-Marne Laboratory site. The argillites are difficult to characterize due to their low permeability. The barrier properties of the argillites can be inferred from the flow and chemistry properties of the encasing Oxfordian and Dogger carbonates. Andras deep hole approach uses reverse air circulation drilling, geophysical logging, flow meter logging, geochemical sampling, and analyses of the pumping responses during sampling. The data support numerical simulations that evaluate the argillites hydraulic behaviour.

  7. Non-singular black holes and the limiting curvature mechanism: a Hamiltonian perspective

    NASA Astrophysics Data System (ADS)

    Ben Achour, J.; Lamy, F.; Liu, H.; Noui, K.

    2018-05-01

    We revisit the non-singular black hole solution in (extended) mimetic gravity with a limiting curvature from a Hamiltonian point of view. We introduce a parameterization of the phase space which allows us to describe fully the Hamiltonian structure of the theory. We write down the equations of motion that we solve in the regime deep inside the black hole, and we recover that the black hole has no singularity, due to the limiting curvature mechanism. Then, we study the relation between such black holes and effective polymer black holes which have been introduced in the context of loop quantum gravity. As expected, contrary to what happens in the cosmological sector, mimetic gravity with a limiting curvature fails to reproduce the usual effective dynamics of spherically symmetric loop quantum gravity which are generically not covariant. Nonetheless, we exhibit a theory in the class of extended mimetic gravity whose dynamics reproduces the general shape of the effective corrections of spherically symmetric polymer models, but in an undeformed covariant manner. These covariant effective corrections are found to be always metric dependent, i.e. within the bar mu-scheme, underlying the importance of this ingredient for inhomogeneous polymer models. In that respect, extended mimetic gravity can be viewed as an effective covariant theory which naturally implements a covariant notion of point wise holonomy-like corrections. The difference between the mimetic and polymer Hamiltonian formulations provides us with a guide to understand the deformation of covariance in inhomogeneous polymer models.

  8. Sulfate Deposition in Regolith Exposed in Trenches on the Plains Between the Spirit Landing Site and Columbia Hills in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, L. A.; Squyres, S. W.; Arvidson, R.; Crumpler, L.; Gellert, R.; Hurowitz, J.; Schroeder, C.; Tosca, N.; Herkenhoff, K.

    2005-01-01

    During its exploration within Gusev crater between sol 01 and sol 158, the Spirit rover dug three trenches (Fig. 1) to expose the subsurface regolith [1, 2, 9]. Laguna trench (approx. 6 cm deep, approx.203 m from the rim of Bonneville crater) was dug in Laguna Hollow at the boundary of the impact ejecta from Bonneville crater and the surrounding plains. The Big Hole trench (approx. 6-7 cm deep) and The Boroughs trench (approx. 11 cm deep) were dug in the plains between the Bonneville crater and the Columbia Hills (approx.556 m and approx.1698 m from the rim of Bonneville crater respectively). The top, wall and floor regolith of the three trenches were investigated using the entire set of Athena scientific instruments [10].

  9. Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs

    NASA Technical Reports Server (NTRS)

    Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.

    1979-01-01

    The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.

  10. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David

    2017-03-01

    This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.

  11. Map showing general chemical quality of ground water in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1977-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. Chemical analyses of water from about 40 widely scattered springs, 20 coal-exploration holes in the Kaiparowits Plateau, and 7 water wells in the vicinity of the communities of Escalante and Glen Canyon were used to compile this map. All the water samples were from depths of less than 1,000 feet (305 m). Water-quality data were also available from a number of petroleum wells and exploration holes more than 5,000 feet (1,524 m) deep; however, those data were used with considerable discretion because water produced by deep petroleum wells and exploration holes usually is more saline than water found at shallower depths at the drilling sites.Most of the chemical analyses used were collected by the U.S. Geological Survey in cooperation with State, local, and other Federal agencies. Published sources of data included Phoenix (1963), Iorns, Hembree, and Phoenix (1964), Cooley (1965), Feltis (1966), and Goode (1966, 1969), and the Environmental Impact Statement of the proposed Kaiparowits power project (U.S. Bureau of Land Management, 1976).Little or no ground-water-quality data were available for large areas in the Kaiparowits coal basin. In those areas, the indicated ranged of dissolved-solids concentrations in water from springs and wells are inferred largely from the geology as compiled by Stokes (1964) and Hackman and Wyant (1973). This is especially true for those areas where the designated ranges of dissolved-solids concentrations are 100-1,000 and 500-3,000 mg/l (milligrams per liter).El Paso Natural Gas Co., Resources Co., Kaiser Engineers, and Southern California Edison Co. provided ground-water samples and specific water-quality data collected from their exploratory drill holes on the Kaiparowits Plateau. The cooperation of those firms is gratefully acknowledged.

  12. CCDS concept paper: Delta-DOR

    NASA Technical Reports Server (NTRS)

    Berry, David S.; Broder, James S.

    2005-01-01

    This Concept Paper proposes the development of Consultative Committee for Space Data Systemes (CCSDS) standards for the deep space navigation technique known as 'delta-DOR' (Delta Differential One-Way Ranging).

  13. CCSDS concept paper: Delta-DOR

    NASA Technical Reports Server (NTRS)

    Berry, David S.; Border, James S.

    2005-01-01

    This Concept Paper proposes the development of Consultative Committee for Space Data Systems (CCSDS) standards for the deep space navigation technique known as 'delta-DOR' (Delta Differential One-Way Ranging).

  14. Measuring Galactic Feedback with the Origins Space Telescope

    NASA Astrophysics Data System (ADS)

    Armus, Lee; Bolatto, Alberto; Pope, Alexandra; Bradford, Charles Matt; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    Since a significant fraction of star formation and black hole growth occurs behind dust, our understanding of how and why galaxies evolve will remain incomplete until deep, wide area spectroscopic surveys in the FIRcan be carried out from space. The Origins Space Telescope (OST), a mission concept being studied for presentation to the 2020 Decadal Survey, represents an enormous leap over any existing infrared mission, and will uniquely measure black hole growth and star formation in dusty galaxies over more than 95% of cosmic history. Energetic feedback from AGN, young stars, and supernovae can regulate galaxy growth over a wide range in mass and be important for the enrichment of the interstellar and circumgalactic medium, yet the existence and type of feedback as a function of redshift, luminosity, and environment is poorly constrained. With wide wavelength coverage (5-600 microns), a large primary mirror actively cooled to ~4K, and a capable suite of imagers and spectrometers, OST will be an extremely sensitive probe of the effects of feedback on the multi-phase ISM in galaxies, through measurement of key feedback tracers such as OH and H2O absorption lines, fine structure emission lines, and PAH dust features. With OST we can directly observe the role of feedback in quenching galaxies, derive the wind kinetic energy and mass outflow rates, and correlate these with key galaxy properties (AGN or starburst power, environment, mass, age). In this poster we will explain how blind and targeted surveys with OST will have an enormous impact on our understanding of the duty cycle and basic physical properties of feedback in AGN and starburst galaxies over the last 12 Gyr.

  15. Fabrication and Probabilistic Fracture Strength Prediction of High-Aspect-Ratio Single Crystal Silicon Carbide Microspecimens With Stress Concentration

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Evans, Laura J.; Jadaan, Osama M.; Sharpe, William N., Jr.; Beheim, Glenn M.; Trapp, Mark A.

    2005-01-01

    Single crystal silicon carbide micro-sized tensile specimens were fabricated with deep reactive ion etching (DRIE) in order to investigate the effect of stress concentration on the room-temperature fracture strength. The fracture strength was defined as the level of stress at the highest stressed location in the structure at the instant of specimen rupture. Specimens with an elliptical hole, a circular hole, and without a hole (and hence with no stress concentration) were made. The average fracture strength of specimens with a higher stress concentration was larger than the average fracture strength of specimens with a lower stress concentration. Average strength of elliptical-hole, circular-hole, and without-hole specimens was 1.53, 1.26, and 0.66 GPa, respectively. Significant scatter in strength was observed with the Weibull modulus ranging between 2 and 6. No fractographic examination was performed but it was assumed that the strength controlling flaws originated from etching grooves along the specimen side-walls. The increase of observed fracture strength with increasing stress concentration was compared to predictions made with the Weibull stress-integral formulation by using the NASA CARES/Life code. In the analysis isotropic material and fracture behavior was assumed - hence it was not a completely rigorous analysis. However, even with these assumptions good correlation was achieved for the circular-hole specimen data when using the specimen data without stress concentration as a baseline. Strength was over predicted for the elliptical-hole specimen data. Significant specimen-to-specimen dimensional variation existed in the elliptical-hole specimens due to variations in the nickel mask used in the etching. To simulate the additional effect of the dimensional variability on the probabilistic strength response for the single crystal specimens the ANSYS Probabilistic Design System (PDS) was used with CARES/Life.

  16. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.

    1986-12-31

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less

  17. 'Diamond Jenness': Before the Grind

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This microscopic imager mosaic of the rock called 'Diamond Jenness' was snapped on sol 177 before NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool, or 'Rat.'

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer. On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  18. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  19. 'Diamond Jenness': A Tough Grind

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This microscopic imager mosaic of the target area called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  20. Well construction information, lithologic logs, water level data, and overview of research in Handcart Gulch, Colorado: an alpine watershed affected by metalliferous hydrothermal alteration

    USGS Publications Warehouse

    Caine, Jonathan S.; Manning, Andrew H.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine Gurley; Ge, Shemin

    2006-01-01

    Integrated, multidisciplinary studies of the Handcart Gulch alpine watershed provide a unique opportunity to study and characterize the geology and hydrology of an alpine watershed along the Continental Divide. The study area arose out of the donation of four abandoned, deep mineral exploration boreholes to the U.S. Geological Survey for research purposes by Mineral Systems Inc. These holes were supplemented with nine additional shallow holes drilled by the U.S. Geological Survey along the Handcart Gulch trunk stream. All of the holes were converted into observation wells, and a variety of data and samples were measured and collected from each. This open-file report contains: (1) An overview of the research conducted to date in Handcart Gulch; (2) well location, construction, lithologic log, and water level data from the research boreholes; and (3) a brief synopsis of preliminary results. The primary purpose of this report is to provide a research overview as well as raw data from the boreholes. Interpretation of the data will be reported in future publications. The drill hole data were tabulated into a spreadsheet included with this digital open-file report.

  1. Monitoring the Black Hole Binary GRS 1758-258 with INTEGRAL and RXTE

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja; Chernyakova, Masha; Lubinski, Piotr; Migliari, Simone; Smith, David M.; Zdziarski, Andrzej A.; Tomsick, John A.; Bezayiff, N.; Kreykenbohm, Ingo; Kretschmar, Peter; hide

    2008-01-01

    The microquasar GRS 1758-258 is one of only three persistent black hole binaries that spend most of their time in the hard spectral state, the other two being Cyg X-l and 1E 1741.7-2942. It therefore provides the rare opportunity for an extensive long term study of this important black hole state which is associated with strong variability and radio jet emission. INTEGRAL has been monitoring the source since the first Galactic Center Deep Exposure season in spring 2003 during two 2-3 months long Galactic Center viewing epochs each year, amounting to 11 epochs including spring of 2008. With the exception of the last epoch quasi-simultaneous RXTE monitoring observations are available as well. Here we present an analysis of the epoch averaged broad band spectra which display considerable long term variability, most notably the occurrence of two soft/off states, extreme examples for the hysteretic behavior of black hole binaries. The hard source spectrum and long exposures allow us to extend the analysis for several epochs to approximately 800 keV using PICsIT data and address the question of the presence of a non-thermal Comptonization component.

  2. Where the Wild Things Are: Observational Constraints on Black Holes' Growth

    NASA Astrophysics Data System (ADS)

    Merloni, Andrea

    2009-12-01

    The physical and evolutionary relation between growing supermassive black holes (AGN) and host galaxies is currently the subject of intense research activity. Nevertheless, a deep theoretical understanding of such a relation is hampered by the unique multi-scale nature of the combined AGN-galaxy system, which defies any purely numerical, or semi-analytic approach. Various physical process active on different physical scales have signatures in different parts of the electromagnetic spectrum; thus, observations at different wavelengths and theoretical ideas all can contribute towards a ``large dynamic range'' view of the AGN phenomenon, capable of conceptually ``resolving'' the many scales involved. As an example, I will focus in this review on two major recent observational results on the cosmic evolution of supermassive black holes, focusing on the novel contribution given to the field by the COSMOS survey. First of all, I will discuss the evidence for the so-called ``downsizing'' in the AGN population as derived from large X-ray surveys. I will then present new constraints on the evolution of the black hole-galaxy scaling relation at 1

  3. 'Diamond Jenness': Before the Grind

    NASA Image and Video Library

    2004-08-03

    This microscopic imager mosaic of the rock called "Diamond Jenness" was snapped on sol 177 before NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool, or "Rat." Opportunity has bored nearly a dozen holes into the inner walls of "Endurance Crater." On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer. On Sol 178, Opportunity's "robotic rodent" dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed. The image mosaic is about 6 centimeters (2.4 inches) across. http://photojournal.jpl.nasa.gov/catalog/PIA06748

  4. Blazar Artist Concept

    NASA Image and Video Library

    2016-08-24

    Black-hole-powered galaxies called blazars are the most common sources detected by NASA's Fermi Gamma-ray Space Telescope. As matter falls toward the supermassive black hole at the galaxy's center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar. http://photojournal.jpl.nasa.gov/catalog/PIA20912

  5. Strategies for Effective Faculty Involvement in Online Activities Aimed at Promoting Critical Thinking and Deep Learning

    ERIC Educational Resources Information Center

    Abdul Razzak, Nina

    2016-01-01

    Highly-traditional education systems that mainly offer what is known as "direct instruction" usually result in graduates with a surface approach to learning rather than a deep one. What is meant by deep-learning is learning that involves critical analysis, the linking of ideas and concepts, creative problem solving, and application…

  6. "Whoa! We're Going Deep in the Trees!": Patterns of Collaboration around an Interactive Information Visualization Exhibit

    ERIC Educational Resources Information Center

    Davis, Pryce; Horn, Michael; Block, Florian; Phillips, Brenda; Evans, E. Margaret; Diamond, Judy; Shen, Chia

    2015-01-01

    In this paper we present a qualitative analysis of natural history museum visitor interaction around a multi-touch tabletop exhibit called "DeepTree" that we designed around concepts of evolution and common descent. DeepTree combines several large scientific datasets and an innovative visualization technique to display a phylogenetic…

  7. The Deep Space Network: The challenges of the next 20 years - The 21st century

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Edwards, C. D.; Hall, J. R.; Posner, E. C.

    1990-01-01

    The Deep Space Network (DSN) has been the radio navigation and communications link between NASA's lunar and deep space missions for 30 years. In this paper, new mission opportunities over the next 20 years are discussed. The system design drivers and the DSN architectural concepts for those challenges are briefly considered.

  8. Auger planting of oak seedlings in northern Arkansas

    Treesearch

    Eric Heitzman; Adrian Grell

    2003-01-01

    Planting oak seedlings to regenerate upland oak forests is a promising but untested silvicultural practice in the Ozark Mountains of northern Arkansas. The stony (cherty) soils of the region make it difficult to dig deep planting holes using conventional hand planting tools. In 2001, we planted 1-0 northern red oak and white oak seedlings in 0.5 to 1 acre group...

  9. Climbing out of a Deep Hole: Which Path up?

    ERIC Educational Resources Information Center

    Haveman, Robert; Heinrich, Carolyn; Smeeding, Timothy

    2012-01-01

    In this paper, the authors first discuss the Neumark and Troske piece, and then compare the U.S. context to that in Europe and Korea, as described by the Caspar, Hartwig, and Moench and the Cho and Shin contributions. Although they are in basic agreement with Neumark and Troske on the extent and depth of the current employment situation, they…

  10. Optimization of Elastically Tailored Tow-Placed Plates with Holes

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Tatting, Brian F.; Guerdal, Zafer

    2003-01-01

    Elastic stiffness tailoring of laminated composite panels by allowing the fibers to curve within the plane of the laminate is a design concept that has been demonstrated to be both beneficial and practical. The objective of the present paper is to demonstrate the effectiveness of stiffness tailoring through the use of curvilinear fibers to reduce stress concentrations around the hole and improve the load carrying capability of panels. Preliminary panel designs that are to be manufactured and tested were determined through design studies for flat plates without holes under axial compression using an optimization program. These candidate designs were then analyzed with finite element models that accurately reflect the test conditions and geometries in order to decide upon the final designs for manufacture and testing. An advanced tow-placement machine is used to manufacture the test panels with varying fiber orientation angles. A total of six large panels measuring three feet by six feet, each of which is used to produce four specimens with or without holes, are fabricated. The panels were machined into specimens with holes and tested at NASA Langley Research Center. Buckling response and failure of panels without holes and with two different hole dimensions are presented. Buckling and failure loads of tow-steered specimens are significantly greater than the buckling and failure loads of traditional straight-fiber specimens.

  11. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in other holes at the M3.5 seismogenic zone. As we successfully conducted DCDA with the above-mentioned drilled core, we look forward to shedding light on spatial variations of stress in the seismogenic zones following our ICDP DSeis drilling. A M5.5 earthquake which took place near Orkney, South Africa on 5 August 2014, offers a special opportunity to compare seismically inverted spatio-temporal evolution of both the main rupture and the aftershock activity with the information directly probed by the ICDP DSeis project. Moyer et al. (2016 Seismol. Res. Lett. submitted) calls for comparing seismic source models as part of a workshop proposed to the Southern California Earthquake Center for Fall 2017. In addition, the upper edge of the M5.5 rupture is located hundreds of meters below the mining horizon, sufficiently away from anthropogenic activity. This allows geomicrobiologists to investigate deep microbiological activity fueled by H2 from seismic rupture to address questions about Earth's early life. Drilling machines are being rigged underground soon to kick off our ICDP DSeis drilling in early 2017.

  12. Restoration of the Apollo Heat Flow Experiments Metadata

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.

    2015-01-01

    Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.

  13. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Hang, E-mail: xli@gatech.edu, E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub

    2015-01-26

    We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-fieldmore » split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.« less

  14. Tuning the polarization-induced free hole density in nanowires graded from GaN to AlN

    NASA Astrophysics Data System (ADS)

    Golam Sarwar, A. T. M.; Carnevale, Santino D.; Kent, Thomas F.; Yang, Fan; McComb, David W.; Myers, Roberto C.

    2015-01-01

    We report a systematic study of p-type polarization-induced doping in graded AlGaN nanowire light emitting diodes grown on silicon wafers by plasma-assisted molecular beam epitaxy. The composition gradient in the p-type base is varied in a set of samples from 0.7%Al/nm to 4.95%Al/nm corresponding to negative bound polarization charge densities of 2.2 × 1018 cm-3 to 1.6 × 1019 cm-3. Capacitance measurements and energy band modeling reveal that for gradients greater than or equal to 1.30%Al/nm, the deep donor concentration is negligible and free hole concentrations roughly equal to the bound polarization charge density are achieved up to 1.6 × 1019 cm-3 at a gradient of 4.95%Al/nm. Accurate grading lengths in the p- and n-side of the pn-junction are extracted from scanning transmission electron microscopy images and are used to support energy band calculation and capacitance modeling. These results demonstrate the robust nature of p-type polarization doping in nanowires and put an upper bound on the magnitude of deep donor compensation.

  15. Geological Engineering Characteristics of the Residual Soil: Implementation for Soil Bearing Capacity at Gayungan, Surabaya, East Java

    NASA Astrophysics Data System (ADS)

    Rukmana, Y. Y.; Ridwan, M.

    2018-01-01

    This paper presents the results of soil investigation on the residual soil at Gayungan Surabaya. The methodology of the research consists of Drilling + Standard Penetration Test (ASTM D1586-99), sampling and laboratory test for index properties & mechanical of soil, then analyzed for Soil Bearing Capacity (Meyerhoff, 1976). Field test analysis data showed that Bore Hole.01(BH.01) and Bore Hole.03 (BH.03) were dominated by Sand / Sandy clay layer with Standart Penetration Test (SPT) values: 6-68, whereas in BH.02 was dominated by Clayey sand layer with Standard Penetration Test (SPT) values: 32-68. Based on Soil classification according to Unified Soil Classification System (USCS), the soil type at the research area consisted of ML (Silt with Low plasticity), CL ( Clay with low plasticity), MH (Silt with High plasticity), and SP (Sand with Poor gradation). Based on the borlog data and soil bearing capacity analysis of the research area is recommended: for The Deep foundation to reaches at least 16 meters depth with Qa = 1160.40-2032.80 kN / m2, and Shallow foundation reaches at least 1-2 meters deep with Qa = 718.25 kN / M2.

  16. GOODS Far Infrared Imaging with Herschel

    NASA Astrophysics Data System (ADS)

    Frayer, David T.; Elbaz, D.; Dickinson, M.; GOODS-Herschel Team

    2010-01-01

    Most of the stars in galaxies formed at high redshift in dusty environments, where their energy was absorbed and re-radiated at infrared wavelengths. Similarly, much of the growth of nuclear black holes in active galactic nuclei (AGN) was also obscured from direct view at UV/optical and X-ray wavelengths. The Great Observatories Origins Deep Survey Herschel (GOODS-H) open time key program will obtain the deepest far-infrared view of the distant universe, mapping the history of galaxy growth and AGN activity over a broad swath of cosmic time. GOODS-H will image the GOODS-North field with the PACS and SPIRE instruments at 100 to 500 microns, matching the deep survey of GOODS-South in the guaranteed time key program. GOODS-H will also observe an ultradeep sub-field within GOODS-South with PACS, reaching the deepest flux limits planned for Herschel (0.6 mJy at 100 microns with S/N=5). GOODS-H data will detect thousands of luminous and ultraluminous infrared galaxies out to z=4 or beyond, measuring their far-infrared luminosities and spectral energy distributions, and providing the best constraints on star formation rates and AGN activity during this key epoch of galaxy and black hole growth in the young universe.

  17. A study for high accuracy measurement of residual stress by deep hole drilling technique

    NASA Astrophysics Data System (ADS)

    Kitano, Houichi; Okano, Shigetaka; Mochizuki, Masahito

    2012-08-01

    The deep hole drilling technique (DHD) received much attention in recent years as a method for measuring through-thickness residual stresses. However, some accuracy problems occur when residual stress evaluation is performed by the DHD technique. One of the reasons is that the traditional DHD evaluation formula applies to the plane stress condition. The second is that the effects of the plastic deformation produced in the drilling process and the deformation produced in the trepanning process are ignored. In this study, a modified evaluation formula, which is applied to the plane strain condition, is proposed. In addition, a new procedure is proposed which can consider the effects of the deformation produced in the DHD process by investigating the effects in detail by finite element (FE) analysis. Then, the evaluation results obtained by the new procedure are compared with that obtained by traditional DHD procedure by FE analysis. As a result, the new procedure evaluates the residual stress fields better than the traditional DHD procedure when the measuring object is thick enough that the stress condition can be assumed as the plane strain condition as in the model used in this study.

  18. IMPACT OF INTERNAL LIMITING MEMBRANE PEELING ON MACULAR HOLE REOPENING: A Systematic Review and Meta-Analysis.

    PubMed

    Rahimy, Ehsan; McCannel, Colin A

    2016-04-01

    To assess the literature regarding macular hole reopening rates stratified by whether the internal limiting membrane (ILM) was peeled during vitrectomy surgery. Systematic review and meta-analysis of studies reporting on macular hole reopenings among previously surgically closed idiopathic macular holes. A comprehensive literature search using the National Library of Medicine PubMed interface was used to identify potentially eligible publications in English. The minimum mean follow-up period for reports to be included in this study was 12 months. Analysis was divided into eyes that underwent vitrectomy with and without ILM peeling. The primary outcome parameter was the proportion of macular hole reopenings among previously closed holes between the two groups. Secondary outcome parameters included duration from initial surgery to hole reopening and preoperative and postoperative best-corrected correct visual acuities among the non-ILM peeling and ILM peeling groups. A total of 50 publications reporting on 5,480 eyes met inclusion criteria and were assessed in this meta-analysis. The reopening rate without ILM peeling was 7.12% (125 of 1,756 eyes), compared with 1.18% (44 of 3,724 eyes) with ILM peeling (odds ratio: 0.16; 95% confidence interval: 0.11-0.22; Fisher's exact test: P < 0.0001). There were no other identifiable associations or risk factors for reopening. The results of this meta-analysis support the concept that ILM peeling during macular hole surgery reduces the likelihood of macular hole reopening.

  19. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portionsmore » of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.« less

  20. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  1. Hole polarons and p -type doping in boron nitride polymorphs

    NASA Astrophysics Data System (ADS)

    Weston, L.; Wickramaratne, D.; Van de Walle, C. G.

    2017-09-01

    Boron nitride polymorphs hold great promise for integration into electronic and optoelectronic devices requiring ultrawide band gaps. We use first-principles calculations to examine the prospects for p -type doping of hexagonal (h -BN ), wurtzite (w z -BN ), and cubic (c -BN ) boron nitride. Group-IV elements (C, Si) substituting on the N site result in a deep acceptor, as the atomic levels of the impurity species lie above the BN valence-band maximum. On the other hand, group-II elements (Be, Mg) substituting on the B site do not give impurity states in the band gap; however, these dopants lead to the formation of small hole polarons. The tendency for polaron formation is far more pronounced in h -BN compared to w z -BN or c -BN . Despite forming small hole polarons, Be acceptors enable p -type doping, with ionization energies of 0.31 eV for w z -BN and 0.24 eV for c -BN ; these values are comparable to the Mg ionization energy in GaN.

  2. Hydrostratigraphic interpretation of test-hole and geophysical data, Upper Loup River Basin, Nebraska, 2008-10

    USGS Publications Warehouse

    Hobza, Christopher M.; Asch, Theodore H.; Bedrosian, Paul A.

    2011-01-01

    Test-hole drilling has indicated greater variation in the base-of-aquifer elevation in the western part of the upper Loup study area than in the eastern part reflecting a number of deep paleovalleys incised into the Brule Formation of the White River Group. TDEM measurements within the upper Loup study area were shown to be effective as virtual boreholes in mapping out the base of the aquifer. TDEM estimates of the base of aquifer were in good accordance with existing test-hole data and were able to improve the interpreted elevation and topology of the base of the aquifer. In 2010, AMT data were collected along a profile, approximately 12 miles (19 kilometers) in length, along Whitman Road, in Grant and Cherry Counties. The AMT results along Whitman Road indicated substantial variability in the elevation of the base of the High Plains aquifer and in the distribution of highly permeable zones within the aquifer.

  3. Carrier providers or killers: The case of Cu defects in CdTe

    DOE PAGES

    Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai

    2017-07-24

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less

  4. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol

    PubMed Central

    Chipperfield, M. P.; Dhomse, S. S.; Feng, W.; McKenzie, R. L.; Velders, G.J.M.; Pyle, J. A.

    2015-01-01

    Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ∼2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ∼15% by 2013. PMID:26011106

  5. The World Already Avoided: Quantifying the Ozone Benefits Achieved by the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Chipperfield, Martyn; Dhomse, Sandip; Feng, Wuhu; McKenzie, Richard; Velders, Guus; Pyle, John

    2015-04-01

    Chlorine and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic Ozone Hole expected to disappear by ~2050. However, we show that by 2014 the Montreal Protocol has already achieved significant benefits for the ozone layer. Using an off-line 3-D atmospheric chemistry model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with benefits for surface UV and climate. A deep Arctic Ozone Hole, with column values <120 DU, would have occurred given the meteorological conditions in 2011. The Antarctic Ozone Hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The ozone decline over northern hemisphere middle latitudes would have continued, more than doubling to ~15% by 2013.

  6. Carrier providers or killers: The case of Cu defects in CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less

  7. Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries

    NASA Astrophysics Data System (ADS)

    Sesana, A.; Roedig, C.; Reynolds, M. T.; Dotti, M.

    2012-02-01

    In the decade of the dawn of gravitational wave astronomy, the concept of multimessenger astronomy, combining gravitational wave signals to conventional electromagnetic observation, has attracted the attention of the astrophysical community. So far, most of the effort has been focused on ground- and space-based laser interferometer sources, with little attention devoted to the ongoing and upcoming pulsar timing arrays (PTAs). We argue in this paper that PTA sources, being very massive (>108 M⊙) cosmologically nearby (z < 1) black hole binaries (MBHBs), are particularly appealing multimessenger carriers. According to current models for massive black hole formation and evolution, the planned Square Kilometre Array will observe thousands of such massive systems, being able to individually resolve and locate in the sky several of them (maybe up to a hundred). MBHBs form in galaxy mergers, which are usually accompanied by strong inflows of gas in the centre of the merger remnant. By employing a standard model for the evolution of MBHBs in circumbinary discs, with the aid of dedicated numerical simulations, we characterize the gas-binary interplay, identifying possible electromagnetic signatures of the PTA sources. We concentrate our investigation on two particularly promising scenarios in the high-energy domain, namely the detection of X-ray periodic variability and double broad Kα iron lines. Up to several hundreds of periodic X-ray sources with a flux >10-13 erg s-1 cm-2 will be in the reach of upcoming X-ray observatories; in the most optimistic case, a few of them may be already being observed by the MAXI detector placed on the International Space Station. Double relativistic Kα lines may be observable in a handful of low-redshift (z < 0.3) sources by proposed deep X-ray probes, such as Athena. The exact figures depend on the details of the adopted MBHB population and on the properties of the circumbinary discs, but the existence of a sizeable population of sources suitable to multimessenger astronomy is a robust prediction of our investigation.

  8. Massive Binary Black Holes in the Cosmic Landscape

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Dotti, Massimo

    2011-02-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view into the process of hierarchical clustering which is at the heart of the current paradigm of galaxy formation. They will also be exquisite probes for testing General Relativity, as the theory of gravity. The waveforms emitted during the inspiral, coalescence and ring-down phase carry in their shape the sign of a dynamically evolving space-time and the proof of the existence of an horizon.

  9. Instruments for Deep Space Weather Prediction and Science

    NASA Astrophysics Data System (ADS)

    DeForest, C. E.; Laurent, G.

    2018-02-01

    We discuss remote space weather monitoring system concepts that could mount on the Deep Space Gateway and provide predictive capability for space weather events including SEP events and CME crossings, and advance heliophysics of the solar wind.

  10. The influence mechanism of processing holes on the flexural properties of biomimetic integrated honeycomb plates.

    PubMed

    Zhang, Xiaoming; Liu, Chang; Chen, Jinxiang; Zhang, Jiandong; Gu, Yueyan; Zhao, Yong

    2016-12-01

    The influence mechanism of processing holes on the flexural properties of fully integrated honeycomb plates (FIHPs) was analyzed using the finite element method (FEM), and the results were compared with experimental data, yielding the following findings: 1) Processing holes under tensile stress have a significant impact on the mechanical properties of FIHPs, which is particularly obvious when initial imperfections are formed during sample preparation. 2) A proposed design technique based on changing the shape of the processing holes from circular to elliptical effectively reduces the stress concentration when such holes must exist in skin or components under tension, and this method motivates a design concept for experimental tests of FIHPs bearing dynamic or fatigue loads. 3) The flexural failure modes of FIHPs were confirmed via FEM analysis, and the mechanism by which trabeculae in FIHPs can effectively prevent cracks from emerging and cause cracks to develop along certain paths was ascertained. Therefore, this paper provides a theoretical basis for the design of processing holes in bionic honeycomb plates and other similar components in practical engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Influence of hole shape on sound absorption of underwater anechoic layers

    NASA Astrophysics Data System (ADS)

    Ye, Changzheng; Liu, Xuewei; Xin, Fengxian; Lu, Tian Jian

    2018-07-01

    A theoretical model is established to evaluate the sound absorption performance of underwater anechoic layers containing periodically distributed axial holes. Based on the concept for homogenized equivalent layer and on the theory of wave propagation in viscoelastic cylindrical tubes, the transfer function method is used to obtain the absorption coefficient of the anechoic layer adhered on the rigid plate. Three different types of axial holes are considered, the cylindrical, the conical and the horn shaped one. Results obtained with full finite element simulations are used to validate the model predictions. For each hole type, the vibration characteristics of the anechoic layer as well as the propagation of longitudinal and transverse waves in the layer are analyzed in detail to explore the physical mechanisms underlying its absorption performance. Furthermore, a three-dimensional finite element model for oblique incidence is developed to study the effect of hole shape at different incidence angles. The results show that two new absorption peaks appear since the oblique incidence excites two horizontal modes. Among the three hole types, the horn one achieves the best absorption performance at relatively low frequencies both in normal incidence and in oblique incidence.

  12. System concepts and design examples for optical communication with planetary spacecraft

    NASA Astrophysics Data System (ADS)

    Lesh, James R.

    Systems concepts for optical communication with future deep-space (planetary) spacecraft are described. These include not only the optical transceiver package aboard the distant spacecraft, but the earth-vicinity optical-communications receiving station as well. Both ground-based, and earth-orbiting receivers are considered. Design examples for a number of proposed or potential deep-space missions are then presented. These include an orbital mission to Saturn, a Lander and Rover mission to Mars, and an astronomical mission to a distance of 1000 astronomical units.

  13. 'Diamond Jenness': After the Grind

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This microscopic imager mosaic taken by NASA's Mars Exploration Rover Opportunity shows the rock dubbed 'Diamond Jenness.' It was taken on sol 177 (July 23, 2004) after the rover first ground into the rock with its rock abrasion tool, or 'Rat.' The rover later ground into the rock a second time. A sliced spherule, or 'blueberry,' is visible in the upper left corner of the hole.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  14. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    PubMed Central

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm−3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334

  15. High precision and high aspect ratio laser drilling: challenges and solutions

    NASA Astrophysics Data System (ADS)

    Uchtmann, Hermann; He, Chao; Gillner, Arnold

    2016-03-01

    Laser drilling is a very versatile tool to produce high accuracy bores in small and large geometries using different technologies. In large and deep hole drilling laser drilling can be found in drilling cooling holes into turbomachinery components such as turbine blades. In micro drilling, the technology is used for the generation of nozzles and filters. However, especially in macro drilling, the process often causes microstructure changes and induces defects such as recast layers and cracks. The defects are caused by the melt dominated drilling process by using pulse durations in the range of some 100 μm up to a few ms. A solution of this problem is the use of ultrashort pulsed laser radiation with pulse durations in the range of some 100 fs up to a few ps, however with the disadvantage of long drilling times. Thus, the aim of this work is to combine the productive process by using ms pulsed fiber laser radiation with subsequent ablation of existing recast layers at the hole wall by using ultrashort pulsed laser radiation. By using fast scanning techniques the recast layer can be avoided almost completely. With a similar technology also very small hole can be produced. Using a rotating dove prism a circular oscillation of the laser spots is performed and holes are drilled at intervals in 1 mm thick stainless steel (1.4301) by ultra-short laser pulses of 7 ps at 515 nm. The formation of hole and the behavior of energy deposition differ from other drilling strategies due to the helical revolution. The temporal evolution of the hole shape is analyzed by means of SEM techniques from which three drilling phases can be distinguished.

  16. Black Hole Disk Accretion in Supernovae

    NASA Astrophysics Data System (ADS)

    Mineshige, Shin; Nomura, Hideko; Hirose, Masahito; Nomoto, Ken'ichi; Suzuki, Tomoharu

    1997-11-01

    Massive stars in a certain mass range may form low-mass black holes after supernova explosions. In such massive stars, fallback of ~0.1 M⊙ materials onto a black hole is expected because of a deep gravitational potential or a reverse shock propagating back from the outer composition interface. We study hydrodynamical disk accretion onto a newborn low-mass black hole in a supernova using the smoothed particle hydrodynamics method. If the progenitor was rotating before the explosion, the fallback material should have a certain amount of angular momentum with respect to the black hole, thus forming an accretion disk. The disk material will eventually accrete toward the central object because of viscosity at a supercritical accretion rate, Ṁ/Ṁcrit>106, for the first several tens of days. (Here, Ṁcrit is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection dominated; that is, the disk is so hot that the produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity. The disk becomes hot and dense; for Ṁ/Ṁcrit~106, for example, T ~ 109(αvis/0.01)-1/4 K and ρ ~ 103(αvis/0.01)-1 g cm-3 (with αvis being the viscosity parameter) in the vicinity of the black hole. Depending on the material mixing, some interesting nucleosynthesis processes via rapid proton and alpha-particle captures are expected even for reasonable viscosity magnitudes (αvis ~ 0.01), and some of them could be ejected in a disk wind or a jet without being swallowed by the black hole.

  17. IODP Expedition 335: Deep Sampling in ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Teagle, D. A. H.; Ildefonse, B.; Blum, P.; IODP Expedition 335 Scientists, the

    2012-04-01

    Observations of the gabbroic layers of untectonized ocean crust are essential to test theoretical models of the accretion of new crust at mid-ocean ridges. Integrated Ocean Drilling Program (IODP) Expedition 335 ("Superfast Spreading Rate Crust 4") returned to Ocean Drilling Program (ODP) Hole 1256D with the intention of deepening this reference penetration of intact ocean crust a significant distance (~350 m) into cumulate gabbros. Three earlier cruises to Hole 1256D (ODP 206, IODP 309/312) have drilled through the sediments, lavas, and dikes and 100 m into a complex dike-gabbro transition zone. Operations on IODP Expedition 335 proved challenging throughout, with almost three weeks spent re-opening and securing unstable sections of the hole. When coring commenced, the comprehensive destruction of the coring bit required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets were successful, and they recovered large irregular samples that document a hitherto unseen sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting, and retrogressive processes. Hole 1256D is now clean of junk, and it has been thoroughly cleared of the drill cuttings that hampered operations during this and previous expeditions. At the end of Expedition 335, we briefly resumed coring before undertaking cementing operations to secure problematic intervals. To ensure the greatest scientific return from the huge efforts to stabilize this primary ocean lithosphere reference site, it would be prudent to resume the deepening of Hole 1256D in the nearest possible future while it is open to full depth. doi:10.2204/iodp.sd.13.04.2011

  18. "The Hole in the Sky Causes Global Warming": A Case Study of Secondary School Students' Climate Change Alternative Conceptions

    ERIC Educational Resources Information Center

    Chang, Chew-Hung; Pascua, Liberty

    2015-01-01

    This study identified secondary school students' alternative conceptions (ACs) of climate change and their resistance to instruction. Using a case-based approach, a diagnostic test was administered to Secondary 3 male students in a pre-test and post-test. The ACs identified in the pre-test were on the causes of climate change, the natural…

  19. Image of the Black Hole, Cygnus X-1, Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This image of the suspected Black Hole, Cygnus X-1, was the first object seen by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. According to the theories to date, one concept of a black hole is a star, perhaps 10 times more massive than the Sun, that has entered the last stages of stelar evolution. There is an explosion triggered by nuclear reactions after which the star's outer shell of lighter elements and gases is blown away into space and the heavier elements in the stellar core begin to collapse upon themselves. Once this collapse begins, the inexorable force of gravity continues to compact the material until it becomes so dense it is squeezed into a mere point and nothing can escape from its extreme gravitational field, not even light. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy.

  20. Numerical investigation of the influence of elevated turbulence levels on the cooling effectiveness of an anti-vortex hole geometry

    NASA Astrophysics Data System (ADS)

    Repko, Timothy William

    A novel film cooling hole geometry for use in gas turbine engines has been investigated numerically by solving the Reynolds Averaged Navier-Stokes equations in a commercial CFD code (STAR-CCM+) with varying turbulence intensity and length scale using the k-o SST turbulence model. Both steady and unsteady results were considered in order to investigate the effects of freestream turbulence intensity and length scale on this novel anti-vortex hole (AVH) concept. The AVH geometry utilizes two side holes, one on each side of the main hole, to attempt to mitigate the vorticity from the jet from the main hole. The AVH concept has been shown by past research to provide a substantial improvement over conventional film cooling hole designs. Past research has been limited to low turbulence intensity and small length scales that are not representative of the turbulent flow exiting the combustor. Three turbulence intensities (Tu = 5, 10 and 20%) and three length scales normalized by the main cooling hole diameter (Λ x/dm = 1, 3, 6) were considered in this study for a total of nine turbulence conditions. The highest intensity, largest length scale turbulence case (Tu = 20, Λx/dm = 6) is considered most representative of engine conditions and was shown to have the best cooling performance. Results show that the turbulence in the hot gases exiting the combustor can aid in the film cooling for the AVH geometry at high blowing ratios (BR = 2.0), where the blowing ratio is essentially the ratio of the jet-to-mainstream mass flux ratios. Length scale was shown to have an insignificant effect on the cooling performance at low turbulence intensity and a moderate effect at higher turbulence intensities. The adiabatic film cooling effectiveness was shown to increase as the turbulence intensity was elevated. The convective heat transfer coefficient was also shown to increase at the turbulence intensity was elevated. An increase in the heat transfer coefficient is a deleterious effect and must be weighed against the improvements in the adiabatic cooling effectiveness. The net heat flux reduction (NHFR) is the parameter used to quantify the net benefit of film cooling. As a general trend, the NHFR was shown to increase with the turbulence intensity in all cases.

  1. Rapid ice drilling with continual air transport of cuttings and cores: General concept

    NASA Astrophysics Data System (ADS)

    Wang, Rusheng; An, Liu; Cao, Pinlu; Chen, Baoyi; Sysoev, Mikhail; Fan, Dayou; Talalay, Pavel G.

    2017-12-01

    This article describes the investigation of the feasibility of rapid drilling in ice sheets and glaciers to depths of up to 600 m, with cuttings and cores continually transported by air reverse circulation. The method employs dual wall drill rods. The inner tubes provide a continuous pathway for the chips and cores from the drill bit face to the surface. To modify air reverse circulation drilling technology according to the conditions of a specific glacier, original cutter drill bits and air processing devices (air-cooled aftercoolers, air receivers, coalescing filters, desiccant dryers) should be used. The airflow velocity for conveying a 60-mm diameter and 200-mm long ice core should not be lower than 22.5 m/s, and the minimal airflow rate for continual chip and cores transport is 6.8 m3/min at 2.3-2.6 MPa. Drilling of a 600-m deep hole can be accomplished within 1.5 days in the case of 24 h drilling operations. However, to avoid sticking while drilling through ice, the drilling depth should to be limited to 540 m at a temperature of -20 °C and to 418 m at a temperature of -10 °C.

  2. GAS HYDRATES AT TWO SITES OF AN ACTIVE CONTINENTAL MARGIN.

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Sediment containing gas hydrates from two distant Deep Sea Drilling Project sites (565 and 568), located about 670 km apart on the landward flank of the Middle America Trench, was studied to determine the geochemical conditions that characterize the occurrence of gas hydrates. Site 565 was located in the Pacific Ocean offshore the Nicoya Peninsula of Costa Rica in 3,111 m of water. The depth of the hole at this site was 328 m, and gas hydrates were recovered from 285 and 319 m. Site 568 was located about 670 km to the northwest offshore Guatemala in 2,031 m of water. At this site the hole penetrated to 418 m, and gas hydrates were encountered at 404 m.

  3. A novel method about detecting missing holes on the motor carling

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Tan, Hao; Li, Guirong

    2018-03-01

    After a deep analysis on how to use an image processing system to detect the missing holes on the motor carling, we design the whole system combined with the actual production conditions of the motor carling. Afterwards we explain the whole system's hardware and software in detail. We introduce the general functions for the system's hardware and software. Analyzed these general functions, we discuss the modules of the system's hardware and software and the theory to design these modules in detail. The measurement to confirm the area to image processing, edge detection, randomized Hough transform to circle detecting is explained in detail. Finally, the system result tested in the laboratory and in the factory is given out.

  4. Recent changes in the ventilation of the southern oceans.

    PubMed

    Waugh, Darryn W; Primeau, Francois; Devries, Tim; Holzer, Mark

    2013-02-01

    Surface westerly winds in the Southern Hemisphere have intensified over the past few decades, primarily in response to the formation of the Antarctic ozone hole, and there is intense debate on the impact of this on the ocean's circulation and uptake and redistribution of atmospheric gases. We used measurements of chlorofluorocarbon-12 (CFC-12) made in the southern oceans in the early 1990s and mid- to late 2000s to examine changes in ocean ventilation. Our analysis of the CFC-12 data reveals a decrease in the age of subtropical subantarctic mode waters and an increase in the age of circumpolar deep waters, suggesting that the formation of the Antarctic ozone hole has caused large-scale coherent changes in the ventilation of the southern oceans.

  5. Deep-sea biostratigraphy of prograding platform margins (Neogene, Bahamas): key evidence linked to depositional rhythm

    USGS Publications Warehouse

    Lidz, B.H.; McNeill, D.F.

    1995-01-01

    New foraminiferal evidence from two boreholes on the paleoshelf and slope of western Great Bahama Bank has wide-ranging implications for understanding formation and evolution of carbonate-platform margins. The new data, abundant well-preserved planktic foraminifera, were obtained by disaggregating samples from intercalated pelagic layers and selected parts of thick hemipelagic limestone. The new data define six units in one hole and seven in the other, bracket the biozones present and their ages, indicate different sedimentation rates, and show that within the limits of biostratigraphic resolution the biozones are correlative between the holes. Most importantly, the revised ages show that the paleoshelf borehole probably penetrated the late Miocene rather than middle Miocene. -from Authors

  6. Effects of Phosphorus Implantation on the Activation of Magnesium Doped in GaN

    NASA Astrophysics Data System (ADS)

    Liu, Kuan-Ting; Chang, Shoou-Jinn; Wu, Sean

    2009-08-01

    The effects of phosphorus implantation on the activation of magnesium doped in GaN at different dopant concentration ratios have been systematically investigated. Hall effect measurements show that P implantation improves the hole concentration, and that this improvement is dependent on P/Mg dopant concentration ratio and annealing conditions. This phenomenon is attributable to the reduction in self-compensation that results from the formation of deep donors and the enhanced Mg atom activation, which is in reasonable agreement with the optical properties observed by photoluminescence measurements. In addition, a new photoluminescence peak resulting from P-related transitions is also observed, evidently owing to the recombination of electrons from the shallow native donors with holes previously captured by isoelectronic P traps.

  7. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.

  8. Integrating Conceptual Knowledge Within and Across Representational Modalities

    PubMed Central

    McNorgan, Chris; Reid, Jackie; McRae, Ken

    2011-01-01

    Research suggests that concepts are distributed across brain regions specialized for processing information from different sensorimotor modalities. Multimodal semantic models fall into one of two broad classes differentiated by the assumed hierarchy of convergence zones over which information is integrated. In shallow models, communication within- and between-modality is accomplished using either direct connectivity, or a central semantic hub. In deep models, modalities are connected via cascading integration sites with successively wider receptive fields. Four experiments provide the first direct behavioral tests of these models using speeded tasks involving feature inference and concept activation. Shallow models predict no within-modal versus cross-modal difference in either task, whereas deep models predict a within-modal advantage for feature inference, but a cross-modal advantage for concept activation. Experiments 1 and 2 used relatedness judgments to tap participants’ knowledge of relations for within- and cross-modal feature pairs. Experiments 3 and 4 used a dual feature verification task. The pattern of decision latencies across Experiments 1 to 4 is consistent with a deep integration hierarchy. PMID:21093853

  9. Do sophisticated epistemic beliefs predict meaningful learning? Findings from a structural equation model of undergraduate biology learning

    NASA Astrophysics Data System (ADS)

    Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung

    2016-10-01

    This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely 'multiple-source,' 'uncertainty,' 'development,' and 'justification.' COLB is further divided into 'constructivist' and 'reproductive' conceptions, while SLB represents deep strategies and surface learning strategies. Questionnaire responses were gathered from 303 college students. The results of the confirmatory factor analysis and structural equation modelling showed acceptable model fits. Mediation testing further revealed two paths with complete mediation. In sum, students' epistemic beliefs of 'uncertainty' and 'justification' in biology were statistically significant in explaining the constructivist and reproductive COLB, respectively; and 'uncertainty' was statistically significant in explaining the deep SLB as well. The results of mediation testing further revealed that 'uncertainty' predicted surface strategies through the mediation of 'reproductive' conceptions; and the relationship between 'justification' and deep strategies was mediated by 'constructivist' COLB. This study provides evidence for the essential roles some epistemic beliefs play in predicting students' learning.

  10. Optical subnet concepts for the deep space network

    NASA Technical Reports Server (NTRS)

    Shaik, K.; Wonica, D.; Wilhelm, M.

    1993-01-01

    This article describes potential enhancements to the Deep Space Network, based on a subnet of receiving stations that will utilize optical communications technology in the post-2010 era. Two optical subnet concepts are presented that provide full line-of-sight coverage of the ecliptic, 24 hours a day, with high weather availability. The technical characteristics of the optical station and the user terminal are presented, as well as the effects of cloud cover, transmittance through the atmosphere, and background noise during daytime or nighttime operation on the communications link. In addition, this article identifies candidate geographic sites for the two network concepts and includes a link design for a hypothetical Pluto mission in 2015.

  11. Operations Concepts for Deep-Space Missions: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.

    2010-01-01

    Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations

  12. Concept-Based Learning in Clinical Experiences: Bringing Theory to Clinical Education for Deep Learning.

    PubMed

    Nielsen, Ann

    2016-07-01

    Concept-based learning is used increasingly in nursing education to support the organization, transfer, and retention of knowledge. Concept-based learning activities (CBLAs) have been used in clinical education to explore key aspects of the patient situation and principles of nursing care, without responsibility for total patient care. The nature of best practices in teaching and the resultant learning are not well understood. The purpose of this multiple-case study research was to explore and describe concept-based learning in the context of clinical education in inpatient settings. Four clinical groups (each a case) were observed while they used CBLAs in the clinical setting. Major findings include that concept-based learning fosters deep learning, connection of theory with practice, and clinical judgment. Strategies used to support learning, major teaching-learning foci, and preconditions for concept-based teaching and learning will be described. Concept-based learning is promising to support integration of theory with practice and clinical judgment through application experiences with patients. [J Nurs Educ. 2016;55(7):365-371.]. Copyright 2016, SLACK Incorporated.

  13. Surface-geophysical techniques used to detect existing and infilled scour holes near bridge piers

    USGS Publications Warehouse

    Placzek, Gary; Haeni, F.P.

    1995-01-01

    Surface-geophysical techniques were used with a position-recording system to study riverbed scour near bridge piers. From May 1989 to May 1993. Fathometers, fixed- and swept-frequency con- tinuous seismic-reflection profiling (CSP) systems, and a ground-penetrating radar (GPR) system were used with a laser-positioning system to measure the depth and extent of existing and infilled scour holes near bridge piers. Equipment was purchased commercially and modified when necessary to interface the components and (or) to improve their performance. Three 200-kHz black-and-white chart- recording Fathometers produced profiles of the riverbed that included existing scour holes and exposed pier footings. The Fathometers were used in conjunction with other geophysical techniques to help interpret the geophysical data. A 20-kHz color Fathometer delineated scour-hole geometry and, in some cases, the thickness of fill material in the hole. The signal provided subbottom information as deep as 10 ft in fine-grained materials and resolved layers of fill material as thin as 1 foot thick. Fixed-frequency and swept-frequency CSP systems were evaluated. The fixed-frequency system used a 3.5-, 7.0-, or 14-kHz signal. The 3.5-kHz signal pene- trated up to 50 ft of fine-grained material and resolved layers as thin as 2.5-ft thick. The 14-kHz signal penetrated up to 20 ft of fine-grained material and resolved layers as thin as 1-ft thick. The swept-frequency systems used a signal that swept from 2- to 16-kHz. With this system, up to 50 ft of penetration was achieved, and fill material as thin as 1 ft was resolved. Scour-hole geometry, exposed pier footings, and fill thickness in scour holes were detected with both CSP systems. The GPR system used an 80-, 100-, or 300-megahertz signal. The technique produced records in water up to 15 ft deep that had a specific conductance less than 200x11ms/cm. The 100-MHz signal penetrated up to 40 ft of resistive granular material and resolved layers as thin as 2-ft thick. Scour-hole geometry, the thickness of fill material in scour holes, and riverbed deposition were detected using this technique. Processing techniques were applied after data collection to assist with the interpretation of the data. Data were transferred from the color Fathometer, CSP, and GPR systems to a personal computer, and a commercially available software package designed to process GPR data was used to process the GPR and CSP data. Digital filtering, predictive-deconvolution, and migration algorithms were applied to some of the data. The processed data were displayed and printed as color amplitude or wiggle-trace plots. These processing methods eased and improved the interpretation of some of the data, but some interference from side echoes from bridge piers and multiple reflections remained in the data. The surface-geophysical techniques were applied at six bridge sites in Connecticut. Each site had different water depths, specific conductance, and riverbed materials. Existing and infilled scour holes, exposed pier footings, and riverbed deposition were detected by the surveys. The interpretations of the geophysical data were confirmed by comparing the data with lithologic and (or) probing data.

  14. Voyager in Deep Space (Artist Concept)

    NASA Image and Video Library

    2017-07-31

    An artist concept depicting one of NASA's twin Voyager spacecraft. Humanity's farthest and longest-lived spacecraft are celebrating 40 years in August and September 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21839

  15. Balanced Ambipolar Organic Field-Effect Transistors by Polymer Preaggregation.

    PubMed

    Janasz, Lukasz; Luczak, Adam; Marszalek, Tomasz; Dupont, Bertrand G R; Jung, Jaroslaw; Ulanski, Jacek; Pisula, Wojciech

    2017-06-21

    Ambipolar organic field-effect transistors (OFETs) based on heterojunction active films still suffer from an imbalance in the transport of electrons and holes. This problem is related to an uncontrolled phase separation between the donor and acceptor organic semiconductors in the thin films. In this work, we have developed a concept to improve the phase separation in heterojunction transistors to enhance their ambipolar performance. This concept is based on preaggregation of the donor polymer, in this case poly(3-hexylthiophene) (P3HT), before solution mixing with the small-molecular-weight acceptor, phenyl-C61-butyric acid methyl ester (PCBM). The resulting heterojunction transistor morphology consists of self-assembled P3HT fibers embedded in a PCBM matrix, ensuring balanced mobilities reaching 0.01 cm 2 /V s for both holes and electrons. These are the highest mobility values reported so far for ambipolar OFETs based on P3HT/PCBM blends. Preaggregation of the conjugated polymer before fabricating binary blends can be regarded as a general concept for a wider range of semiconducting systems applicable in organic electronic devices.

  16. Development of the EM tomography system by the vertical electromagnetic profiling (VEMP) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Y.; Osato, K.; Takasugi, S.

    1995-12-31

    As a part of the {open_quotes}Deep-Seated Geothermal Resources Survey{close_quotes} project being undertaken by the NEDO, the Vertical ElectroMagnetic Profiling (VEMP) method is being developed to accurately obtain deep resistivity structure. The VEMP method acquires multi-frequency three-component magnetic field data in an open hole well using controlled sources (loop sources or grounded-wire sources) emitted at the surface. Numerical simulation using EM3D demonstrated that phase data of the VEMP method is very sensitive to resistivity structure and the phase data will also indicate presence of deep anomalies. Forward modelling was also used to determine required transmitter moments for various grounded-wire and loopmore » sources for a field test using the WD-1 well in the Kakkonda geothermal area. Field logging of the well was carried out in May 1994 and the processed field data matches well the simulated data.« less

  17. Computer analysis of the negative differential resistance switching phenomenon of double-injection devices

    NASA Technical Reports Server (NTRS)

    Shieh, Tsay-Jiu

    1989-01-01

    By directly solving the semiconductor differential equations for the double-injection (DI) devices involving two interacting deep levels, the authors studied the negative differential resistance switching characteristic and its relationship with the device dimension, doping level, and dependence on the deep impurity profile. Computer simulation showed that although one can increase the threshold voltage by increasing the device length, the excessive holding voltage that would follow would put this device in a very limited application such as pulse power source. The excessive leakage current in the low conductance state also jeopardizes the attempt to use the device for any practical purpose. Unless there are new materials and deep impurities found that have a great differential hole and electron capture cross sections and a reasonable energy bandgap for low intrinsic carrier concentration, no big improvement in the fate of DI devices is expected in the near future.

  18. Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space

    NASA Astrophysics Data System (ADS)

    Dehyadegari, Amin; Sheykhi, Ahmad; Montakhab, Afshin

    2017-05-01

    It has been argued that charged Anti-de Sitter (AdS) black holes have similar thermodynamic behavior as the Van der Waals fluid system, provided one treats the cosmological constant as a thermodynamic variable (pressure) in an extended phase space. In this paper, we disclose the deep connection between charged AdS black holes and Van der Waals fluid system from an alternative point of view. We consider the mass of an AdS black hole as a function of square of the charge Q2 instead of the standard Q, i.e. M = M (S ,Q2 , P). We first justify such a change of view mathematically and then ask if a phase transition can occur as a function of Q2 for fixed P. Therefore, we write the equation of state as Q2 =Q2 (T , Ψ) where Ψ (conjugate of Q2) is the inverse of the specific volume, Ψ = 1 / v. This allows us to complete the analogy of charged AdS black holes with Van der Waals fluid system and derive the phase transition as well as critical exponents of the system. We identify a thermodynamic instability in this new picture with real analogy to Van der Waals fluid with physically relevant Maxwell construction. We therefore study the critical behavior of isotherms in Q2- Ψ diagram and deduce all the critical exponents of the system and determine that the system exhibits a small-large black hole phase transition at the critical point (Tc , Qc2 ,Ψc). This alternative view is important as one can imagine such a change for a given single black hole i.e. acquiring charge which induces the phase transition. Finally, we disclose the microscopic properties of charged AdS black holes by using thermodynamic geometry. Interestingly, we find that scalar curvature has a gap between small and large black holes, and this gap becomes exceedingly large as one moves away from the critical point along the transition line. Therefore, we are able to attribute the sudden enlargement of the black hole to the strong repulsive nature of the internal constituents at the phase transition.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkoris, George; Boudouvis, Andreas G.; Gogolides, Evangelos

    An integrated framework for the neutral flux calculation inside trenches and holes during plasma etching is described, and a comparison between the two types of structure in a number of applications is presented. First, a detailed and functional set of equations for the neutral and ion flux calculations inside long trenches and holes with cylindrical symmetry is explicitly formulated. This set is based on early works [T. S. Cale and G. B. Raupp, J. Vac. Sci. Technol. B 8, 1242 (1990); V. K. Singh et al., J. Vac. Sci. Technol. B 10, 1091 (1992)], and includes new equations for themore » case of holes with cylindrical symmetry. Second, a method for the solution of the respective numerical task, i.e., one or a set of linear or nonlinear integral equations, is described. This method includes a coupling algorithm with a surface chemistry model and resolves the singularity problem of the integral equations. Third, the fluxes inside trenches and holes are compared. The flux from reemission is the major portion of the local flux at the bottom of both types of structure. The framework is applied in SiO{sub 2} etching by fluorocarbon plasmas to predict the increased intensity of reactive ion etching lag in SiO{sub 2} holes compared to trenches. It is also applied in deep Si etching: By calculating the flux of F atoms at the bottom of very high aspect ratio (up to 150) Si trenches and holes during the gas chopping process, the aspect ratio at which the flux of F atoms is eliminated and etching practically stops is estimated.« less

  20. The /a/m ratio of the baryonic matter and the black holes demography in galaxies

    NASA Astrophysics Data System (ADS)

    Curir, Anna; Mazzei, Paola

    2001-06-01

    The last years have seen a big progress in establishing the existence of supermassive black holes in the centers of galaxies. There are numerous very good cases [MNRAS 291 (1997) 219] where observations require a deep potential well. These observations raise the problem of when and how they formed and eventually when they gain most of their mass. The formation of a stationary black-hole is constrained by the conditions M>3 M ⊙ and cJ/ GM2≡ a/ m<1, J and M being the angular momentum and the total mass of the configuration which has collapsed to the hole. In this paper we analyze the behaviour of the a/ m ratio of the baryonic content in a protogalaxy, "primordial" scenario, and in a hot galaxy, "evolved" scenario, endowed with a suitable angular momentum distribution. In both the cases the baryonic matter is embedded in the gravitational potential generated by a cosmological Dark Matter (DM) halo. We deduce that the "primordial" scenario is less favourable to the black hole formation than the "evolved" one. Moreover, in the "evolved" scenario we find a twofold behaviour of the a/ m parameter which reflects the observed bimodal distribution of the central brightness in early-type galaxies and agrees with their corresponding degree of nuclear activity. As suggested by results of our SPH simulations of barred galaxies, the treatment of the dissipative processes and the inclusion of the star formation further improve the previous framework showing that barred galaxies provide very good environment for black hole formation.

  1. Anomalous photoluminescence in InP1−xBix

    PubMed Central

    Wu, Xiaoyan; Chen, Xiren; Pan, Wenwu; Wang, Peng; Zhang, Liyao; Li, Yaoyao; Wang, Hailong; Wang, Kai; Shao, Jun; Wang, Shumin

    2016-01-01

    Low temperature photoluminescence (PL) from InP1−xBix thin films with Bi concentrations in the 0–2.49% range reveals anomalous spectral features with strong and very broad (linewidth of 700 nm) PL signals compared to other bismide alloys. Multiple transitions are observed and their energy levels are found much smaller than the band-gap measured from absorption measurements. These transitions are related to deep levels confirmed by deep level transient spectroscopy, which effectively trap free holes and enhance radiative recombination. The broad luminescence feature is beneficial for making super-luminescence diodes, which can theoretically enhance spatial resolution beyond 1 μm in optical coherent tomography (OCT). PMID:27291823

  2. The Secret Lives Of Galaxies Unveiled In Deep Survey

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Two of NASA's Great Observatories, bolstered by the largest ground-based telescopes around the world, are beginning to harvest new clues to the origin and evolution of galaxies. It's a bit like finding a family scrapbook containing snapshots that capture the lives of family members from infancy through adolescence to adulthood. "This is the first time the cosmic tale of how galaxies build themselves has been traced reliably to such early times in the universe's life," said Mauro Giavalisco, head of the Hubble Space Telescope (HST) portion of the survey, and research astronomer at the Space Telescope Science Institute (STScI) in Baltimore. The HST has joined forces with the Chandra X-ray Observatory to survey a relatively broad swath of sky encompassing tens of thousands of galaxies stretching far back into time. The Space Infrared Telescope Facility (SIRTF), scheduled for launch in August, will soon join this unprecedented survey. Called the Great Observatories Origins Deep Survey (GOODS), astronomers are studying galaxy formation and evolution over a wide range of distances and ages. The project is tracing the assembly history of galaxies, the evolution of their stellar populations, and the gusher of energy from star formation and active nuclei powered by immense black holes. HST astronomers report the sizes of galaxies clearly increase continuously from the time the universe was about 1 billion years old to an age of 6 billion years. This is approximately half the current age of the universe, 13.7 billion years. GOODS astronomers also find the star birth rate rose mildly, by about a factor of three, between the time the universe was about one billion years old and 1.5 billion years old, and remained high until about 7 billion years ago, when it quickly dropped to one-tenth the earlier "baby boomer" rate. This is further evidence major galaxy building trailed off when the universe was about half its current age. GOODS Chandra Deep Fields South Chandra Deep Field South This increase in galaxy size is consistent with "bottom-up" models, where galaxies grow hierarchically, through mergers and accretion of smaller satellite galaxies. This is also consistent with the idea the sizes of galaxies match hand-in-glove to a certain fraction of the sizes of their dark-matter halos. Dark matter is an invisible form of mass that comprises most of the matter in the universe. The theory is dark matter essentially pooled into gravitational "puddles" in the early universe, then collected normal gas that quickly contracted to build star clusters and small galaxies. These dwarf galaxies merged piece-by-piece over billions of years to build the immense spiral and elliptical galaxies we see today. The Chandra observations amounted to a "high-energy core sample" of the early universe, allowing us to "study the history of black holes over almost the entire age of the universe," said Niel Brandt of Penn State University, a co-investigator on the Chandra GOODS team. One of the fascinating findings in this deepest X-ray image ever taken is the discovery of mysterious black holes, which have no optical counterparts. "We found seven mysterious sources that are completely invisible in the optical with Hubble," said Anton Koekemoer of the STScI, a co-investigator on both the Hubble and Chandra GOODS teams. "Either they are the most distant black holes ever detected, or they are less distant black holes that are the most dust enshrouded known, a surprising result as well." When comparing the HST and Chandra fields, astronomers also found active black holes in distant, relatively small galaxies were rarer than expected. This may be due to the effects of early generations of massive stars that exploded as supernovae, evacuating galactic gas and thus reducing the supply of gas needed to feed a super massive black hole. These and other results from the GOODS project will be published in a special issue of the Astrophysical Journal Letters, entirely devoted to the team's results. The Chandra results are found in papers led by Koekemoer and Stefano Cristiani of the Trieste Astronomical Observatory. Hubble's findings came from papers led by Giavalisco, Mark Dickinson, and Harry Ferguson of the STScI. The image and additional information are available at: http://chandra.harvard.edu and http://hubblesite.org/newscenter/archive/2003/18/

  3. Investigation of Cold Expansion of Short Edge Margin Holes with Pre-existing Cracks in 2024-T351 Aluminum Alloy

    DTIC Science & Technology

    2011-12-01

    Fractography ............................................................................................................ 57 5. DISCUSSION...small radial cracks (0.03 to 0.07 inch) can be retarded by deep cold expansion (3.5% interference fit cold expansion). Petrak and Stewart (1974) and...the research done by Carlson, 13 and is shown in Fig. 48. 4.6 Fractography Select images were taken for fractography purposes. It should be

  4. Gulf Coast Deep Water Port Facilities Study. Environmental Assessment.

    DTIC Science & Technology

    1973-04-01

    contributions of our consultants - Dr. George L. Clarke, Harvard Univer- sity; Dr. Bostwick H. Ketchum, Woods Hole Oceanographic Institution; and Dr...NATURE OF ADVERSE ENVIRONMENTAL EFFECTS A. TERMINAL CONSTRUCTION Rounsefell (1972) has recently reviewed the potential ecological effects of offshore...area for a variety of avian and mammalian forms, the effects of oil spills on these regions are particularly severe. The ecological chain of depen

  5. Constructing Artifical Red-Cockaded Woodpecker Cavities

    Treesearch

    David H. Allen

    1991-01-01

    A complete guide is provided for excavating red-cockaded woodpecker (Picoides borealis) cavities. A hole 4 inches wide by 10 inches high by 6 inches deep is cut from a live pine(Pinusspp.) tree with a chainsaw, and a prefabricated cavity is inserted. Cavities can be excavated in pines of any age, but the diameter of the tree at the height of insertion must be greater...

  6. First-Year Growth and Survival Of Long Cottonwood Cuttings

    Treesearch

    W.K. Randall; R.M. Krinard

    1977-01-01

    When five Stoneville cottonwood clones were grown in a nursery for one season, lifted with about a foot of root, and planted in 3-foot deep holes, they averaged 9.6 feet in height growth and 92 percent survival after 1 year in the field. Planted height averaged 8.3 feet. The same clonal material planted without roots averaged only 36 percent survival. These results...

  7. Authigenic minerals related to carbon and sulfur biogeochemical cycling from deep-sea active methane seeps offshore South-West Africa

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Blanc-Valleron, M.; Demange, J.; Boudouma, O.; Pape, T.; Himmler, T.; Fekete, N.; Spiess, V.

    2011-12-01

    The South-West African continental margin is well known for occurrences of active methane-rich fluid seeps that are associated with seafloor pockmarks in a broad range of water depths, from the shelf to the deep basins. High gas flares in the water column, luxurious oases of benthic fauna, gas hydrate accumulations and diagenetic carbonate crusts have been observed at these seeps. During the M76/3a expedition of R/V METEOR (summer 2008) gravity cores recovered abundant authigenic carbonate concretions from five pockmarks of the South-West African margin including previously studied sites (Hydrate Hole, Worm Hole, Regab Pockmark) and two sites (Deep Hole, Baboon Cluster) newly discovered during the cruise. Carbonate concretions were mostly associated to sediments settled by seep-associated benthic macrofauna and bearing shallow gas hydrates. We present new results of the comprehensive analysis of the mineralogy and isotope geochemistry of the diagenetic carbonates sampled in the five pockmarks. The mineralogy of authigenic carbonates is dominated by magnesian calcite and aragonite, associated occasionally with dolomite. The oxygen and carbon isotopic compositions of authigenic carbonates (+2.4 < δ18O % V-PDB < +6.2 ; -61.0 < δ13C % V-PDB < -40.1) indicate that microbial anaerobic oxidation of methane (AOM) was the main process controling carbonate precipitation within sub-seafloor sediments deposited from the glacial-time up to the present. The frequent occurrence of diagenetic gypsum crystals within the sediments demonstrates that bio-irrigation with oxygenated bottom water by the burrowing activity of benthic fauna caused the secondary oxidation of reduced sulfur (hydrogen sulfide and pyrite) that was produced by sulfate reducting bacteria as a by-product of AOM; during the sulfide oxidation process, the released acidity induced the partial dissolution of carbonates. Our results demonstrate also the strong link that existed between the carbon and sulfur cycles in cold seep systems where the anoxic-oxic boundary may move within the sediment due to variations in the strength of the methane flux.

  8. Chandra Reviews Black Hole Musical: Epic But Off-Key

    NASA Astrophysics Data System (ADS)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also give the strongest evidence to date of a shock wave produced by the supermassive black hole, a clear sign of a powerful explosion. This shock wave appears as a nearly circular ring of high-energy X-rays that is 85,000 light years in diameter and centered on the black hole. Other remarkable features are seen in M87 for the first time including narrow filaments of X-ray emission -- some over 100,000 light years long -- that may be due hot gas trapped by magnetic fields. Also, a large, previously unknown cavity in the hot gas, created by an outburst from the black hole about 70 million years ago, is seen in the X-ray image. Animation Showing a Supermassive Black Hole Outburst in M87 Animation Showing a Supermassive Black Hole Outburst in M87 "We can explain some of what we see, like the shock wave, with textbook physics," said team member Christine Jones, also of the CfA. "However, other details, like the filaments we find, leave us scratching our heads." Sound has been detected from another black hole in the Perseus cluster, which was calculated to have a note some 57 octaves below middle C. However, the sound in M87 appears to be more discordant and complex. A series of unevenly spaced loops in the hot gas gives evidence for small outbursts from the black hole about every 6 million years. These loops imply the presence of sound waves, not visible in the Chandra image, which are about 56 octaves below middle C. The presence of the large cavity and the sonic boom gives evidence for even deeper notes -- 58 or 59 octaves below middle C -- powered by large outbursts. These new results on M87 were presented at the High-Energy Astrophysics Division meeting being held in San Francisco. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  9. Clean subglacial access: prospects for future deep hot-water drilling

    PubMed Central

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  10. Iron Kα line of Kerr black holes with scalar hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Yueying; Zhou, Menglei; Bambi, Cosimo

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J , these objects are characterized by a Noether charge Q , measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q , ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. Inmore » the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q , because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.« less

  11. Deep Operations in Airland Battle Doctrine: The Employment of U.S. Ground Forces in Deep Operational Maneuver

    DTIC Science & Technology

    1989-05-16

    development and is manifested today in the Operational .Maneuver Group. As the name implies, the Soviet emphiasis is at the operational level. The mission of...high-intensity war! 10 answer this question I (1) analyze Soviet deep operations theory to determine how their concept developed and what they expect...USA, 32 pageF., In Soviet Army doctrine, deep operations has been a long time in development and is manifested today in the Operational Maneuver Group

  12. A new high-precision borehole-temperature logging system used at GISP2, Greenland, and Taylor Dome, Antarctica

    USGS Publications Warehouse

    Clow, G.D.; Saltus, R.W.; Waddington, E.D.

    1996-01-01

    We describe a high-precision (0.1-1.0 mK) borehole-temperature (BT) logging system developed at the United States Geological Survey (USGS) for use in remote polar regions. We discuss calibration, operational and data-processing procedures, and present an analysis of the measurement errors. The system is modular to facilitate calibration procedures and field repairs. By interchanging logging cables and temperature sensors, measurements can be made in either shallow air-filled boreholes or liquid-filled holes up to 7 km deep. Data can be acquired in either incremental or continuous-logging modes. The precision of data collected by the new logging system is high enough to detect and quantify various thermal effects at the milli-Kelvin level. To illustrate this capability, we present sample data from the 3 km deep borehole at GISP2, Greenland, and from a 130m deep air-filled hole at Taylor Dome, Antarctica. The precision of the processed GTSP2 continuous temperature logs is 0.25-0.34 mK, while the accuracy is estimated to be 4.5 mK. The effects of fluid convection and the dissipation of the thermal disturbance caused by drilling the borehole are clearly visible in the data. The precision of the incremental Taylor Dome measurements varies from 0.11 to 0.32mK, depending on the wind strength during the experiments. With this precision, we found that temperature fluctuations and multi-hour trends in the BT measurements correlate well with atmospheric-pressure changes.

  13. Peering Into the Bondi Radius of the Supermassive Black Hole of NGC3115

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy; Quataert, E.; Mathews, W.; Strader, J.; Brodie, J.; Bregman, J.; Larsen, S.

    2010-03-01

    Understanding accretion onto black holes remains one of the most active areas of research in astrophysics today, both for the intrinsic interest of black holes and because of their impact on larger scale problems in galaxy and structure formation. The key to understanding the accretion process lies in correctly modeling the behavior of the accreting gas once it falls within the gravitational influence of the black hole, the Bondi radius, R_B. The lack of significant observed radiation from most nearby massive black holes has prompted a significant theoretical effort aimed at explaining the very low radiative efficiencies and/or accretion rates. Determining which (if any!) of these scenarios describes low-L_X black hole systems is of fundamental importance to our understanding of accretion physics and black hole demography. Observational work has focused on using spatially unresolved spectral information to constrain theoretical models. While such studies have been successful in ruling out classical ADAF models in some instances, the main limitation has been the inability of even Chandra to resolve the accretion flow inside R_B and directly determine the temperature and density profile of the accretion flow, as it is the shape of the density profile that most strongly distinguishes the theoretical models (ADAFs, CDAFs, ADIOS). Measuring T(R) and rho(R) of an accretion flow is the only way of determining if current accretion models actually describe what is occurring inside the flow region. We present results from a deep (125 ksec) Chandra observation of the nearby S0 galaxy NGC3115, one of the very few galaxies with a resolvable Bondi radius (2"-4"). Based on these results, we discuss the possibility of deriving for the first time T(R) and rho(R) inside the Bondi radius of a black hole with an ultralong Chandra observation.

  14. Use of a ground-penetrating radar system to detect pre-and post-flood scour at selected bridge sites in New Hampshire, 1996-98

    USGS Publications Warehouse

    Olimpio, Joseph R.

    2000-01-01

    Ground-penetrating radar was used to measure the depth and extent of existing and infilled scour holes and previous scour surfaces at seven bridges in New Hampshire from April 1996 to November 1998. Ground-penetrating-radar survey techniques initially were used by the U.S. Geological Survey to study streambed scour at 30 bridges. Sixteen of the 30 bridges were re-surveyed where floods exceeded a 2-year recurrence interval. A 300-megahertz signal was used in the ground-penetrating radar system that penetrated through depths as great as 20 feet of water and as great as 32 feet of streambed materials. Existing scour-hole dimensions, infilled thickness, previous scour surfaces, and streambed materials were detected using ground-penetrating radar. Depths to riprap materials and pier footings were identified and verified with bridge plans. Post data-collection-processing techniques were applied to assist in the interpretation of the data, and the processed data were displayed and printed as line plots. Processing included distance normalization, migration, and filtering but processing was kept to a minimum and some interference from multiple reflections was left in the record. Of the 16 post-flood bridges, 22 ground-penetrating-radar cross sections at 7 bridges were compared and presented in this report. Existing scour holes were detected during 1996 (pre-flood) data collection in nine cross sections where scour depths ranged from 1 to 3 feet. New scour holes were detected during 1998 (post-flood) data collection in four cross sections where scour depths were as great as 4 feet deep. Infilled scour holes were detected in seven cross sections, where depths of infilling ranged from less than 1 to 4 feet. Depth of infilling by means of steel rod and hammer was difficult to verify in the field because of cobble and boulder streambeds or deep water. Previous scour surfaces in streambed materials were identified in 15 cross sections and the depths to these surfaces ranged from 1 to 10 feet below the streambed. Riprap materials or pier footings were identified in all cross sections. Calculated record depths generally agree with bridge plans. Pier footings were exposed at two bridges and steel pile was exposed at one bridge. Exposures were verified by field observations.

  15. A new electrode design for ambipolar injection in organic semiconductors.

    PubMed

    Kanagasekaran, Thangavel; Shimotani, Hidekazu; Shimizu, Ryota; Hitosugi, Taro; Tanigaki, Katsumi

    2017-10-17

    Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm 2  V -1  s -1 ) and electrons (5.0 cm 2  V -1  s -1 ) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.One of technological challenges building organic electronics is efficient injection of electrons at metal-semiconductor interfaces compared to that of holes. The authors show an air-stable electrode design with induced gap states, which support Fermi level pinning and thus ambipolar carrier injection.

  16. Deep Play. Rationality in the Life World with Special Reference to Sailing

    ERIC Educational Resources Information Center

    Goold, Patrick

    2014-01-01

    In an essay on the rationality of play, the author characterizes rationality by the three distinct demands it makes on the individual--demands for autonomy, solidarity, and integrity. He develops each of these as they apply to the sport of sailing, using the example of two deep-ocean expeditions to arrive at a concept of deep play he sees as one…

  17. Making a Submarine.

    ERIC Educational Resources Information Center

    Cornacchia, Deborah J.

    2002-01-01

    Describes Archimedes principle and why a ship sinks when it gets a hole in it. Suggests an activity for teaching the concept of density and water displacement through the construction of a simple submarine. Includes materials and procedures for this activity. (KHR)

  18. Strain energy density and surface layer energy for a crack-like ellipse

    NASA Technical Reports Server (NTRS)

    Kipp, M. E.; Sih, G. C.

    1973-01-01

    Some of the fundamental concepts of sharp crack fracture criteria are applied to cracks and narrow ellipses. The strain energy density theory is extended to notch boundaries, where the energy in a surface layer is calculated and the location of failure initiation is determined. The concept of a core region near the notch tip, and its consequences, are examined in detail. The example treated is that of an elliptical cavity loaded uniformly at a large distance from the hole, and at an angle to the hole; the results are shown to approach that of the crack solution for narrow ellipses, and to display quite satisfactory agreement with recently published experimental data under both tensile and compressive loading conditions. Results also indicate that in globally unstable configurations in brittle materials, the original loading and notch geometry are sufficient to predict the subsequent crack trajectory with considerable accuracy.

  19. Coolest Orbs on the Block Artist Concept

    NASA Image and Video Library

    2010-06-24

    This artist concept shows hundreds of brown dwarfs deep red, expected to be added to the population of known stars in our solar neighborhood. Our sun and other known stars appear white, yellow or red.

  20. Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1977-01-01

    Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.

  1. Late time cosmology with LISA: Probing the cosmic expansion with massive black hole binary mergers as standard sirens

    NASA Astrophysics Data System (ADS)

    Tamanini, Nicola

    2017-05-01

    This paper summarises the potential of the LISA mission to constrain the expansion history of the universe using massive black hole binary mergers as gravitational wave standard sirens. After briefly reviewing the concept of standard siren, the analysis and methodologies of Ref [1] are briefly outlined to show how LISA can be used as a cosmological probe, while a selection of results taken from Refs. [1, 2] is presented in order to estimate the power of LISA in constraining cosmological parameters.

  2. Progress to a Gallium-Arsenide Deep-Center Laser

    PubMed Central

    Pan, Janet L.

    2009-01-01

    Although photoluminescence from gallium-arsenide (GaAs) deep-centers was first observed in the 1960s, semiconductor lasers have always utilized conduction-to-valence-band transitions. Here we review recent materials studies leading to the first GaAs deep-center laser. First, we summarize well-known properties: nature of deep-center complexes, Franck-Condon effect, photoluminescence. Second, we describe our recent work: insensitivity of photoluminescence with heating, striking differences between electroluminescence and photoluminescence, correlation between transitions to deep-states and absence of bandgap-emission. Room-temperature stimulated-emission from GaAs deep-centers was observed at low electrical injection, and could be tuned from the bandgap to half-the-bandgap (900–1,600 nm) by changing the electrical injection. The first GaAs deep-center laser was demonstrated with electrical injection, and exhibited a threshold of less than 27 mA/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This small injection for laser action was explained by fast depopulation of the lower state of the optical transition (fast capture of free holes onto deep-centers), which maintains the population inversion. The evidence for laser action included: superlinear L-I curve, quasi-Fermi level separations satisfying Bernard-Duraffourg’s criterion, optical gains larger than known significant losses, clamping of the optical-emission from lossy modes unable to reach laser action, pinning of the population distribution during laser action.

  3. Lunar Science Enabled by the Deep Space Gateway and PHASR Rover

    NASA Astrophysics Data System (ADS)

    Bakambu, J. N.; Shaw, A.; Fulford, P.; Osinski, G.; Bourassa, M.; Rehmatullah, F.; Zanetti, M.; Rembala, R.

    2018-02-01

    The Deep Space Gateway will be a tremendous boon to lunar surface science. It will enable the PHASR Rover, a concept for a Canadian rover system, with international contributions and the goal of sample acquisition and lunar surface science.

  4. Active Deep Learning-Based Annotation of Electroencephalography Reports for Cohort Identification

    PubMed Central

    Maldonado, Ramon; Goodwin, Travis R; Harabagiu, Sanda M

    2017-01-01

    The annotation of a large corpus of Electroencephalography (EEG) reports is a crucial step in the development of an EEG-specific patient cohort retrieval system. The annotation of multiple types of EEG-specific medical concepts, along with their polarity and modality, is challenging, especially when automatically performed on Big Data. To address this challenge, we present a novel framework which combines the advantages of active and deep learning while producing annotations that capture a variety of attributes of medical concepts. Results obtained through our novel framework show great promise. PMID:28815135

  5. Donor and double-donor transitions of the carbon vacancy related EH{sub 6∕7} deep level in 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, I. D., E-mail: ianbo@ifm.liu.se; Janzén, E., E-mail: erija@ifm.liu.se; Son, N. T.

    Using medium- and high-resolution multi-spectra fitting of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), optical O-DLTS and optical-electrical (OE)-MCTS measurements, we show that the EH{sub 6∕7} deep level in 4H-SiC is composed of two strongly overlapping, two electron emission processes with thermal activation energies of 1.49 eV and 1.58 eV for EH{sub 6} and 1.48 eV and 1.66 eV for EH{sub 7}. The electron emission peaks of EH{sub 7} completely overlap while the emission peaks of EH{sub 6} occur offset at slightly different temperatures in the spectra. OE-MCTS measurements of the hole capture cross section σ{sub p0}(T) in p-type samples revealmore » a trap-Auger process, whereby hole capture into the defect occupied by two electrons leads to a recombination event and the ejection of the second electron into the conduction band. Values of the hole and electron capture cross sections σ{sub n}(T) and σ{sub p}(T) differ strongly due to the donor like nature of the deep levels and while all σ{sub n}(T) have a negative temperature dependence, the σ{sub p}(T) appear to be temperature independent. Average values at the DLTS measurement temperature (∼600 K) are σ{sub n2+}(T) ≈ 1 × 10{sup −14} cm{sup 2}, σ{sub n+}(T) ≈ 1 × 10{sup −14} cm{sup 2}, and σ{sub p0}(T) ≈ 9 × 10{sup −18} cm{sup 2} for EH{sub 6} and σ{sub n2+}(T) ≈ 2 × 10{sup −14} cm{sup 2}, σ{sub n+}(T) ≈ 2 × 10{sup −14} cm{sup 2}, σ{sub p0}(T) ≈ 1 × 10{sup −20} cm{sup 2} for EH{sub 7}. Since EH{sub 7} has already been identified as a donor transition of the carbon vacancy, we propose that the EH{sub 6∕7} center in total represents the overlapping first and second donor transitions of the carbon vacancy defects on both inequivalent lattice sites.« less

  6. Post-traumatic orbital reconstruction: anatomical landmarks and the concept of the deep orbit.

    PubMed

    Evans, B T; Webb, A A C

    2007-04-01

    Dissection deep within the orbit is a cause for concern to surgeons because of the perceived risks of injuring critical structures such as the contents of the superior orbital fissure and the optic nerve. Although "safe distances" (those distances within which it is considered safe to dissect within the orbit) have been described, these are of limited value if the orbit is severely disrupted or is congenitally shallow. In addition, traumatic defects in the orbital floor, in particular, often extend beyond these distances. Reliable landmarks based on the relations between anatomical structures within the orbit, rather than absolute distances, are described that permit safe dissection within the orbit. We present the concept of the deep orbit and describe its relevance to repair of injuries.

  7. LISA Mission Concept Study, Laser Interferometer Space Antenna for the Detection and Observation of Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Bender, P. L.; Stebbins, R. T.

    1998-01-01

    This document presents the results of a design feasibility study for LISA (Laser Interferometer Space Antenna). The goal of LISA is to detect and study low-frequency astrophysical gravitational radiation from strongly relativistic regions. Astrophysical sources potentially visible to LISA include extra-galactic massive black hole binaries at cosmological distances, binary systems composed of a compact star and a massive black hole, galactic neutron star-black hole binaries, and background radiation from the Big Bang. The LISA mission will comprise three spacecraft located five million kilometers apart forming an equilateral triangle in an Earth-trailing orbit. Fluctuations in separation between shielded test masses located within each spacecraft will be determined by optical interferometry which determines the phase shift of laser light transmitted between the test masses.

  8. Post-Test Analysis of the Deep Space One Spare Flight Thruster Ion Optics

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Sengupta, Anita; Brophy, John R.

    2004-01-01

    The Deep Space 1 (DSl) spare flight thruster (FT2) was operated for 30,352 hours during the extended life test (ELT). The test was performed to validate the service life of the thruster, study known and identify unknown life limiting modes. Several of the known life limiting modes involve the ion optics system. These include loss of structural integrity for either the screen grid or accelerator grid due to sputter erosion from energetic ions striking the grid, sputter erosion enlargement of the accelerator grid apertures to the point where the accelerator grid power supply can no longer prevent electron backstreaming, unclearable shorting between the grids causes by flakes of sputtered material, and rouge hole formation due to flakes of material defocusing the ion beam. Grid gap decrease, which increases the probability of electron backstreaming and of arcing between the grids, was identified as an additional life limiting mechanism after the test. A combination of accelerator grid aperture enlargement and grid gap decrease resulted in the inability to prevent electron backstreaming at full power at 26,000 hours of the ELT. Through pits had eroded through the accelerator grid webbing and grooves had penetrated through 45% of the grid thickness in the center of the grid. The upstream surface of the screen grid eroded in a chamfered pattern around the holes in the central portion of the grid. Sputter deposited material, from the accelerator grid, adhered to the downstream surface of the screen grid and did not spall to form flakes. Although a small amount of sputter deposited material protruded into the screen grid apertures, no rouge holes were found after the ELT.

  9. Twelve Years of Spectroscopic Monitoring in the Galactic Center: The Closest Look at S-stars near the Black Hole

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Gillessen, S.; Martins, F.; Eisenhauer, F.; Plewa, P. M.; Pfuhl, O.; George, E.; Dexter, J.; Waisberg, I.; Ott, T.; von Fellenberg, S.; Bauböck, M.; Jimenez-Rosales, A.; Genzel, R.

    2017-10-01

    We study the young S-stars within a distance of 0.04 pc from the supermassive black hole in the center of our Galaxy. Given how inhospitable the region is for star formation, their presence is more puzzling the younger we estimate their ages. In this study, we analyze the result of 12 years of high-resolution spectroscopy within the central arcsecond of the Galactic Center (GC). By co-adding between 55 and 105 hr of spectra we have obtained high signal-to-noise H- and K-band spectra of eight stars orbiting the central supermassive black hole. Using deep H-band spectra, we show that these stars must be high surface gravity (dwarf) stars. We compare these deep spectra to detailed model atmospheres and stellar evolution models to infer the stellar parameters. Our analysis reveals an effective temperature of 21,000-28,500 K, a rotational velocity of 60-170 km s-1, and a surface gravity of 4.1-4.2. These parameters imply a spectral type of B0-B3V for these stars. The inferred masses lie within 8-14 {M}⊙ . We derive an age of {6.6}-4.7+3.4 Myr for the star S2, which is compatible with the age of the clockwise-rotating young stellar disk in the GC. We estimate the ages of all other studied S-stars to be less than 15 Myr, which is compatible with the age of S2 within the uncertainties. The relatively low ages for these S-stars favor a scenario in which the stars formed in a local disk rather than a field binary-disruption scenario that occurred over a longer period of time.

  10. Weak annihilation cusp inside the dark matter spike about a black hole.

    PubMed

    Shapiro, Stuart L; Shelton, Jessie

    2016-06-15

    We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic model for an isotropic phase space distribution function that accounts for annihilation and reproduces the "weak cusp" found by Vasiliev for DM deep within the spike and away from its boundaries. The DM density in the cusp varies as r -1/2 for s -wave annihilation, where r is the distance from the central black hole, and is not a flat "plateau" profile. We then extend this model by incorporating a loss cone that accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its density decreases with time. We treat two cases, one for s -wave and the other for p -wave DM annihilation, adopting parameters characteristic of the Milky Way nuclear core and typical WIMP models for DM. The cusp density profile for p -wave annihilation is weaker, varying like ~ r -0.34 , but is still not a flat plateau.

  11. Weight, Mass, and Gravity: Threshold Concepts in Learning Science

    ERIC Educational Resources Information Center

    Bar, Varda; Brosh, Yaffa; Sneider, Cary

    2016-01-01

    Threshold concepts are essential ideas about the natural world that present either a barrier or a gateway to a deep understanding of science. Weight, mass, and gravity are threshold concepts that underpin students' abilities to understand important ideas in all fields of science, embodied in the performance expectations in the Next Generation…

  12. Deep Understanding of Electromagnetism Using Crosscutting Concepts

    ERIC Educational Resources Information Center

    De Poorter, John; De Lange, Jan; Devoldere, Lies; Van Landeghem, Jouri; Strubbe, Katrien

    2017-01-01

    Crosscutting concepts like patterns and models are fundamental parts in both the American framework of science education (from the AAAS) and our proposals for a new science education framework in Flanders. These concepts deepen the insight of both students and teachers. They help students to ask relevant questions during an inquiry and they give…

  13. Big-Ass Holes in the Surfzone: Waves, Currents, and Sediment Transport in a Seafloor Perturbation Experiment

    NASA Astrophysics Data System (ADS)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2010-12-01

    The evolution of 2-m deep, 10-m diameter holes excavated in the inner surfzone on an energetic beach was monitored with a downward-looking current profiler at the center of each hole, a surfboard-mounted GPS-sonar survey system, and tall divers with graduated poles, tape measures, marked lines, and long arms. Waves and currents were measured with up to 14 current meters and profilers over a 1600-sq-m area. The mean water depth surrounding the holes was 1.5 m and the tidal range was 1 m. Significant wave heights ranged from 0.2 to 1.2 m, and mean current speeds ranged from 0.1 to 1.2 m/s. The surfzone holes filled with sand in 2 to 6 days, in contrast to a previous study in which holes of the same size in the swashzone filled in a few hours. Preliminary results suggest that the rate of change of the sand level in the holes was correlated more strongly with wave heights (and thus with wave-orbital velocities) than with mean current speeds. In a hole dug in the trough between a sandbar and the shoreline, the sand level rose relatively slowly (1 m in 4.5 days) when wave heights were small (0.4 m) and mean currents were increasing (from 0.15 to 0.8 m/s), then filled rapidly (0.8 m in 6 hours) as wave heights increased (to 1.1 m) and mean currents increased (to 1.2 m/s). For a second hole dug in the same location, wave heights were moderate and variable (0.3 to 0.8 m), mean flow speeds were moderate and increasing (from 0.3 to 0.7 m/s), and the hole filled steadily (1.7 m in 2.5 days). In some instances, horizontal flow patterns were consistent with rip current circulation, with converging alongshore currents feeding an offshore jet centered at the depression. Here, volume changes in the hole will be compared with the observed waves, wave-orbital velocities, mean currents, and surrounding bathymetry. These data were collected in August 2010 at the US Army Corps of Engineers Field Research Facility in Duck, North Carolina. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  14. Exploration Criteria for Low Permeability Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, D

    1977-03-01

    The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results ofmore » the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005]« less

  15. Geohydrologic and water-quality characterization of a fractured-bedrock test hole in an area of Marcellus shale gas development, Bradford County, Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Williams, John H.; Hand, Kristen L.; Behr, Rose-Anna; Markowski, Antonette K.

    2013-01-01

    Open-File Miscellaneous Investigation 13–01.1 presents the results of geohydrologic investigations on a 1,664-foot-deep core hole drilled in the Bradford County part of the Gleason 7.5-minute quadrangle in north-central Pennsylvania. In the text, the authors discuss their methods of investigation, summarize physical and analytical results, and place those results in context. Four appendices include (1) a full description of the core in an Excel worksheet; (2) water-quality and core-isotope analytical results in Excel workbooks; (3) geophysical logs in LAS and PDF files, and an Excel workbook containing attitudes of bedding and fractures calculated from televiewer logs; and (4) MP4 clips from the downhole video at selected horizons.

  16. Probing Massive Black Hole Populations and Their Environments with LISA

    NASA Astrophysics Data System (ADS)

    Katz, Michael; Larson, Shane

    2018-01-01

    With the adoption of the LISA Mission Proposal by the European Space Agency in response to its call for L3 mission concepts, gravitational wave measurements from space are on the horizon. With data from the Illustris large-scale cosmological simulation, we provide analysis of LISA detection rates accompanied by characterization of the merging Massive Black Holes (MBH) and their host galaxies. MBHs of total mass $\\sim10^6-10^9 M_\\odot$ are the main focus of this study. Using a precise treatment of the dynamical friction evolutionary process prior to gravitational wave emission, we evolve MBH simulation particle mergers from $\\sim$kpc scales until coalescence to achieve a merger distribution. Using the statistical basis of the Illustris output, we Monte-carlo synthesize many realizations of the merging massive black hole population across space and time. We use those realizations to build mock LISA detection catalogs to understand the impact of LISA mission configurations on our ability to probe massive black hole merger populations and their environments throughout the visible Universe.

  17. Linear dark field control: simulation for implementation and testing on the UA wavefront control testbed

    NASA Astrophysics Data System (ADS)

    Miller, Kelsey; Guyon, Olivier

    2016-07-01

    This paper presents the early-stage simulation results of linear dark field control (LDFC) as a new approach to maintaining a stable dark hole within a stellar post-coronagraphic PSF. In practice, conventional speckle nulling is used to create a dark hole in the PSF, and LDFC is then employed to maintain the dark field by using information from the bright speckle field. The concept exploits the linear response of the bright speckle intensity to wavefront variations in the pupil, and therefore has many advantages over conventional speckle nulling as a method for stabilizing the dark hole. In theory, LDFC is faster, more sensitive, and more robust than using conventional speckle nulling techniques, like electric field conjugation, to maintain the dark hole. In this paper, LDFC theory, linear bright speckle characterization, and first results in simulation are presented as an initial step toward the deployment of LDFC on the UA Wavefront Control testbed in the coming year.

  18. The Centennial of GR: Looking forward to Black Hole Mergers at Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2015-01-01

    Einstein's theory of gravity has fundamentally altered mankind's conception of the Universe and its contents. Once outlandish notions such as the Universe expanding from a mere speck to its current vast size, or stars collapsing to form black holes are now well supported pillars of modern astronomy. Gravity is the dominant force that shapes the Universe, and gravity is behind all extremely energetic astrophysical phenomena. However, we are currently blind to the most powerful events in nature - bursts of pure gravitational wave energy from the collision of two black holes. A Laser Interferometer Space Antenna (LISA) will be able to record these collisions throughout the Universe, and provide unique insights into the co-evolution of galaxies and massive black holes. Motivated by the GR centennial, I'll take a look back at the rich and turbulent history of the LISA mission, and a look forward to the incredible science potential of its current incarnation as the European L3 eLISA mission.

  19. Black Hole with Wobbling Disk Artist Concept

    NASA Image and Video Library

    2016-07-12

    This artist's impression depicts the accretion disc surrounding a black hole, in which the inner region of the disc precesses. "Precession" means that the orbit of material surrounding the black hole changes orientation around the central object. In these three views, the precessing inner disc shines high-energy radiation that strikes the matter in the surrounding accretion disc. This causes the iron atoms in that disc to emit X-rays, depicted as the glow on the accretion disc to the right (in view a), to the front (in view b) and to the left (in view c) (see Figure 1). In a study published in July 2016, astronomers used data from ESA's XMM-Newton X-ray Observatory and NASA's NuSTAR telescope to measure this "wobble" in X-ray emission from excited iron atoms. Scientists interpreted this as evidence for the Lense-Thirring effect -- a name for the precession phenomenon -- in the strong gravitational field of a black hole. http://photojournal.jpl.nasa.gov/catalog/PIA20697

  20. Lunar Heat Flux Measurements Enabled by a Microwave Radiometer Aboard the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Ruf, C.; Putzig, N.; Morgan, G.; Hayne, P.; Paige, D.; Nagihara, S.; Weber, R.

    2018-02-01

    We would like to present a concept to use the Deep Space Gateway as a platform for constraining the geothermal heat production, surface, and near-surface rocks, and dielectric properties of the Moon from orbit with passive microwave radiometery.

  1. [The Triumph of "Stupidity" : Deep Blue`s Victory over Garri Kasparov. The Controversy about its Impact on Artficial Intelligence Research].

    PubMed

    Heßler, Martina

    2017-03-01

    The competition between the chess computer Deep Blue and the former chess world champion Garri Kasparov in 1997 was a spectacle staged for the media. However, the chess game, like other games, was also a test field for artificial intelligence research. On the one hand Deep Blue's victory was called a "milestone" for AI research, on the other hand, a dead end, since the superiority of the chess computer was based on pure computing power and had nothing to do with "real" AI.The article questions the premises of these different interpretations and maps Deep Blue and its way of playing chess into the history of AI. This also requires an analysis of the underlying concepts of thinking. Finally, the essay calls for assuming different "ways of thinking" for man and computer. Instead of fundamental discussions of concepts of thinking, we should ask about the consequences of the human-machine division of labor.

  2. New Panorama Reveals More Than a Thousand Black Holes

    NASA Astrophysics Data System (ADS)

    2007-03-01

    By casting a wide net, astronomers have captured an image of more than a thousand supermassive black holes. These results give astronomers a snapshot of a crucial period when these monster black holes are growing, and provide insight into the environments in which they occur. The new black hole panorama was made with data from NASA's Chandra X-ray Observatory, the Spitzer Space Telescope and ground-based optical telescopes. The black holes in the image are hundreds of millions to several billion times more massive than the sun and lie in the centers of galaxies. X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field Material falling into these black holes at high rates generates huge amounts of light that can be detected in different wavelengths. These systems are known as active galactic nuclei, or AGN. "We're trying to get a complete census across the Universe of black holes and their habits," said Ryan Hickox of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. "We used special tactics to hunt down the very biggest black holes." Instead of staring at one relatively small part of the sky for a long time, as with the Chandra Deep Fields -- two of the longest exposures obtained with the observatory -- and other concentrated surveys, this team scanned a much bigger portion with shorter exposures. Since the biggest black holes power the brightest AGN, they can be spotted at vast distances, even with short exposures. Scale Chandra Images to Full Moon Scale Chandra Images to Full Moon "With this approach, we found well over a thousand of these monsters, and have started using them to test our understanding of these powerful objects," said co-investigator Christine Jones, also of the CfA. The new survey raises doubts about a popular current model in which a supermassive black hole is surrounded by a doughnut-shaped region, or torus, of gas. An observer from Earth would have their view blocked by this torus by different amounts, depending on the orientation of the torus. According to this model, astronomers would expect a large sample of black holes to show a range of absorption of the radiation from the nuclei. This absorption should range from completely exposed to completely obscured, with most in-between. Nuclei that are completely obscured are not detectable, but heavily obscured ones are. "Instead of finding a whole range, we found nearly all of the black holes are either naked or covered by a dense veil of gas," said Hickox. "Very few are in between, which makes us question how well we know the environment around these black holes." This study found more than 600 obscured and 700 unobscured AGN, located between about six to 11 billion light years from Earth. They were found using an early application of a new search method. By looking at the infrared colors of objects with Spitzer, AGN can be separated from stars and galaxies. The Chandra and optical observations then verify these objects are AGN. This multi-wavelength method is especially efficient at finding obscured AGN. "These results are very exciting, using two NASA Great Observatories to find and understand the largest sample of obscured supermassive black holes ever found in the distant universe", said co-investigator Daniel Stern, of NASA's Jet Propulsion Laboratory in Pasadena, Calif. The Chandra image is the largest contiguous field ever obtained by the observatory. At 9.3 square degrees, it is over 40 times larger than the full moon seen on the night sky and over 80 times larger than either of the Chandra Deep Fields. This survey, taken in a region of the Bootes constellation, involved 126 separate pointings of 5,000-second Chandra exposures each. The researchers combined this with data obtained from Spitzer, and Kitt Peak's 4-meter Mayall and the MMT 6.5-meter optical telescopes, both located outside Tuscon, Ariz., from the same patch of sky. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  3. Glacial moulin formation triggered by rapid lake drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Matt

    Scientists at Los Alamos National Laboratory and collaborators are uncovering the mystery of how, where and when a glacial feature called a moulin can form on the Greenland Ice Sheet. Moulins, drain-like holes that form in glaciers, funnel meltwater from the ice surface to the ground beneath, and they are the alarmingly efficient conduits that allow surface water to reach deep and drive the ice to flow faster.

  4. 78 FR 61081 - Endangered and Threatened Wildlife and Plants; Withdrawal of the Proposed Rule To List Coral Pink...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... occurs in a manner typical of most tiger beetles, which can include several different methods. For one method, the female is positioned vertically and digs a small hole with the ovipositor at the end of her... at night. These burrows are about 25.4-50.8 mm (1-2 in) deep and 50.8 mm (2 in) long. This method...

  5. JPRS Report, Science & Technology, USSR: Science & Technology Policy..

    DTIC Science & Technology

    1987-11-13

    is necessary to have for comparison a gauge —"how much he should have done." How to surmount these difficulties is a theme for a separate study. Here...undergo in the shop complete machining, including the milling of complex surfaces, the boring of sockets, grooving, the drilling of holes, including deep...particularly machine building products. Thus, the sectorial ministries are implementing programs of the complete standardization and metrological

  6. P-type conductivity in annealed strontium titanate

    DOE PAGES

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-12-17

    In this study, Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO 3, or STO) samples that were annealed at 1200°C. Room temperature mobilities above 100 cm 2/Vs were measured, an order of magnitude higher than those for electrons (5-10 cm 2/Vs). Average hole densities were in the 10 9-10 10 cm -3 range, consistent with a deep acceptor.

  7. Holes Creek, Water Resources Development. Volume I. Main Report and Environmental Impact Statement.

    DTIC Science & Technology

    1980-09-01

    Miami River also cause problems on the lower reaches of both creeks. The Miami Conservancy District has constructed levees along the Miami River to...design concepts to reduce adverse impacts to fish and wildlife habitat. These concepts include the construction of a low flow channel, installation of...pools and riffles, preservation of a small woodlot, and in certain areas restricting construction to one bank only. The remaining detrimental impacts are

  8. The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background

    NASA Technical Reports Server (NTRS)

    Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.; hide

    2013-01-01

    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.

  9. Methane-related metabolisms of deep-sea sediments captured with a colonization experiment.

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Wheat, C. G.; Orcutt, B.; Kopf, A.; Saffer, D. M.; Toczko, S.

    2016-12-01

    NanTroSEIZE is a multi-expedition project of the International Ocean Discovery Program (IODP) designed to investigate the Nankai Trough subduction zone. In 2016, a long-term borehole instrument package known as the "GeniusPlug" was collected from Hole C0010A after a six-year deployment within the sediment of a major fault zone, at a depth of 400 mbsf. This GeniusPlug included a set of osmotically-driven pumps, which continuously pumped in situ deep seated, formation water through a microbiological colonization experiment (flow-through osmo colonization system (FLOCS)). This FLOCS experiment contained cassettes of olivine, barite, and sediment collected from nearby Hole C0004D, to serve as colonization substrates. While similar FLOCS have been deployed within boreholes in the igneous oceanic crust, this FLOCS experiment represents the first to be deployed within a sedimentary environment, and thus represents the first opportunity to observe how pore water communities colonize sediment and rock substrates. Initial geochemistry results suggest that conditions within the FLOCS experiment were similar to a methane-sulfate transition zone, and initial enrichment cultures inoculated with the FLOCS substrates demonstrate methane production. Here, we will present integrated results of culturing experiments and culture-independent genomic investigations as a means to elucidate the methane-related metabolisms of these colonizing communities.

  10. Stimulation of Cl- uptake and morphological changes in gill mitochondria-rich cells in freshwater tilapia (Oreochromis mossambicus).

    PubMed

    Chang, Il-Chi; Wei, Yuan-Yaw; Chou, Fong-In; Hwang, Pung-Pung

    2003-01-01

    The purpose of the present article is to examine the relationships between ion uptakes and morphologies of gill mitochondria-rich (MR) cells in freshwater tilapia. Tilapia were acclimated to three different artificial freshwaters (high Na [10 mM], high Cl [7.5 mM]; high Na, low Cl [0.02-0.07 mM], and low Na [0.5 mM], low Cl) for 1 wk, and then morphological measurements of gill MR cells were made and ion influxes were determined. The number and the apical size of wavy-convex MR cells positively associated with the level of Cl(-) influx. Conversely, Na(+) influx showed no positive correlation with the morphologies of MR cells. The dominant MR cell type in tilapia gills changed from deep-hole to wavy-convex within 6 h after acute transfer from a high-Cl(-) to a low-Cl(-) environment. Deep-hole MR cells became dominant 24-96 h after acute transfer from a low-Cl(-) to a high-Cl(-) environment. We conclude that wavy-convex MR cells associate with Cl(-) uptake but not Na(+) uptake, and the rapid formation of wavy-convex MR cells reflects the timely stimulation of Cl(-) uptake to recover the homeostasis of internal Cl(-) levels on acute challenge with low environmental Cl(-).

  11. NASA's Future X-ray Missions: From Constellation-X to Generation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2006-01-01

    Among the most important topics in modern astrophysics are the formation and evolution of supermassive black holes in concert with galaxy bulges, the nature of the dark energy equation of state, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. NASA's next major X-ray observatory is Constellation-X, which is being developed to perform spatially resolved high-resolution X-ray spectroscopy. Con-X will directly measure the physical properties of material near black holes' last stable orbits and the absolute element abundances and velocities of hot gas in clusters of galaxies. The Con-X mission will be described, as well as its successor, Generation-X (anticipated to fly approx.1 decade after Con-X). After describing these missions and their driving science areas, the talk will focus on areas in which Chandra observing programs may enable science with future X-ray observatories. These areas include a possible ultra-deep Chandra imaging survey as an early Universe pathfinder, a large program to spatially resolve the hot intracluster medium of massive clusters to aid dark energy measurements, and possible deep spectroscopic observations to aid in preparatory theoretical atomic physics work needed for interpreting Con-X spectra.

  12. Deep remission: a new concept?

    PubMed

    Colombel, Jean-Frédéric; Louis, Edouard; Peyrin-Biroulet, Laurent; Sandborn, William J; Panaccione, Remo

    2012-01-01

    Crohn's disease (CD) is a chronic inflammatory disorder characterized by periods of clinical remission alternating with periods of relapse defined by recurrent clinical symptoms. Persistent inflammation is believed to lead to progressive bowel damage over time, which manifests with the development of strictures, fistulae and abscesses. These disease complications frequently lead to a need for surgical resection, which in turn leads to disability. So CD can be characterized as a chronic, progressive, destructive and disabling disease. In rheumatoid arthritis, treatment paradigms have evolved beyond partial symptom control alone toward the induction and maintenance of sustained biological remission, also known as a 'treat to target' strategy, with the goal of improving long-term disease outcomes. In CD, there is currently no accepted, well-defined, comprehensive treatment goal that entails the treatment of both clinical symptoms and biologic inflammation. It is important that such a treatment concept begins to evolve for CD. A treatment strategy that delays or halts the progression of CD to increasing damage and disability is a priority. As a starting point, a working definition of sustained deep remission (that includes long-term biological remission and symptom control) with defined patient outcomes (including no disease progression) has been proposed. The concept of sustained deep remission represents a goal for CD management that may still evolve. It is not clear if the concept also applies to ulcerative colitis. Clinical trials are needed to evaluate whether treatment algorithms that tailor therapy to achieve deep remission in patients with CD can prevent disease progression and disability. Copyright © 2012 S. Karger AG, Basel.

  13. Deep Borehole Field Test Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest L.

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBDmore » concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.« less

  14. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    NASA Astrophysics Data System (ADS)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale of the Hamersley Group near Yilgalong Creek. This location had been previously drilled by a mining company in the 1980’s and the core provided the highest biomarker yields of any Archean rocks thus far sampled. As it has been suggested that these biomarkers are non-indigenous contaminants, one possibility is that they were introduced into the drill-core at some time between drilling and sampling, so this hole tests that hypothesis. If biomarker concentrations and ratios differ significantly between the two adjacent holes with differing exposures to post-drilling contaminants, then clearly contamination has affected one or other of the cores. The third hole sampled an off-shore equivalent, through banded irons and kerogenous shales of the ~2.65 Ga Marra Mamba and Jeerinah Formations of the Hamersley Group near Cowcumba Creek. Another opportunity for contamination may arise during post-depositional but pre-drilling hydrocarbon migration, when biomarkers can potentially be introduced into previously barren rocks by younger oils, so this hole tests that possibility. As it was drilled through the same stratigraphic interval and structural domain as the second hole but in a different environment, biomarker ratios should be similar if contaminated but different if indigenous.

  15. Integrating conceptual knowledge within and across representational modalities.

    PubMed

    McNorgan, Chris; Reid, Jackie; McRae, Ken

    2011-02-01

    Research suggests that concepts are distributed across brain regions specialized for processing information from different sensorimotor modalities. Multimodal semantic models fall into one of two broad classes differentiated by the assumed hierarchy of convergence zones over which information is integrated. In shallow models, communication within- and between-modality is accomplished using either direct connectivity, or a central semantic hub. In deep models, modalities are connected via cascading integration sites with successively wider receptive fields. Four experiments provide the first direct behavioral tests of these models using speeded tasks involving feature inference and concept activation. Shallow models predict no within-modal versus cross-modal difference in either task, whereas deep models predict a within-modal advantage for feature inference, but a cross-modal advantage for concept activation. Experiments 1 and 2 used relatedness judgments to tap participants' knowledge of relations for within- and cross-modal feature pairs. Experiments 3 and 4 used a dual-feature verification task. The pattern of decision latencies across Experiments 1-4 is consistent with a deep integration hierarchy. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Deep Reflection on My Pedagogical Transformations

    ERIC Educational Resources Information Center

    Suzawa, Gilbert S.

    2014-01-01

    This retrospective essay contains my reflection on the deep concept of ambiguity (uncertainty) and a concomitant epistemological theory that all of our human knowledge is ultimately self-referential in nature. This new epistemological perspective is subsequently utilized as a platform for gaining insights into my experiences in conjunction with…

  17. Science Goals and Objectives for Canadian Robotic Exploration of the Moon Enabled by the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Bourassa, M.; Osinski, G. R.; Cross, M.; Hill, P.; King, D.; Morse, Z.; Pilles, E.; Tolometti, G.; Tornabene, L. L.; Zanetti, M.

    2018-02-01

    Canadian contributions to the science goals and objectives of a lunar precursor rover for HERACLES, an international mission concept, are discussed. Enabled by the Deep Space Gateway, this rover is a technical demonstrator for robotic sample return.

  18. Anisotropic polaron localization and spontaneous symmetry breaking: Comparison of cation-site acceptors in GaN and ZnO

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Abtew, Tesfaye A.; Zhang, Peihong; Zhang, S. B.

    2014-10-01

    The behavior of cation substitutional hole doping in GaN and ZnO is investigated using hybrid density functional calculations. Our results reveal that Mg substitution for Ga (MgGa) in GaN can assume three different configurations. Two of the configurations are characterized by the formation of defect-bound small polaron (i.e., a large structural distortion accompanied by hole localization on one of the neighboring N atoms). The third one has a relatively small but significant distortion that is characterized by highly anisotropic polaron localization. In this third configuration, MgGa exhibits both effective-mass-like and noneffective-mass-like characters. In contrast, a similar defect in ZnO, LiZn, cannot sustain the anisotropic polaron in the hybrid functional calculation, but undergoes spontaneous breaking of a mirror symmetry through a mechanism driven by the hole localization. Finally, using NaZn in ZnO as an example, we show that the deep acceptor levels of the small-polaron defects could be made shallower by applying compressive strain to the material.

  19. Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum dot solids.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; Mitoraj, Dariusz; Eichberger, Rainer; Hannappel, Thomas; Vanmaekelbergh, Daniel

    2013-04-10

    Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface.

  20. Effects of excimer laser illumination on microdrilling into an oblique polymer surface

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Yang; Shu, Chun-Wei; Yeh, Zhi-Chang

    2006-08-01

    In this work, we present the experimental results of micromachining into polymethy-methacrylate exposed to oblique KrF excimer laser beams. The results of low-aspect-ratio ablations show that the ablation rate decreases monotonously with the increase of incident angle for various fluences. The ablation rate of high-aspect-ratio drilling with opening center on the focal plane is almost independent of incident angles and is less than that of low-aspect-ratio ablation. The results of high-aspect-ratio ablations show that the openings of the holes at a distance from the focal plane are enlarged and their edges are blurred. Besides, the depth of a hole in the samples oblique to the laser beam at a distance from the focal plane decreases with the increase of the distance from the focal plane. The number of deep holes generated by oblique laser beams through a matrix of apertures decreases with the increase of incident angle. Those phenomena reveal the influence of the local light intensity on microdrilling into an oblique surface.

  1. Marshall Space Flight Center - Launching the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  2. A Combined Theoretical and Experimental Study of Dissociation of Charge Transfer States at the Donor-Acceptor Interface of Organic Solar Cells.

    PubMed

    Tscheuschner, Steffen; Bässler, Heinz; Huber, Katja; Köhler, Anna

    2015-08-13

    The observation that in efficient organic solar cells almost all electron-hole pairs generated at the donor-acceptor interface escape from their mutual coulomb potential remains to be a conceptual challenge. It has been argued that it is the excess energy dissipated in the course of electron or hole transfer at the interface that assists this escape process. The current work demonstrates that this concept is unnecessary to explain the field dependence of electron-hole dissociation. It is based upon the formalism developed by Arkhipov and co-workers as well as Baranovskii and co-workers. The key idea is that the binding energy of the dissociating "cold" charge-transfer state is reduced by delocalization of the hole along the polymer chain, quantified in terms of an "effective mass", as well as the fractional strength of dipoles existent at the interface in the dark. By covering a broad parameter space, we determine the conditions for efficient electron-hole dissociation. Spectroscopy of the charge-transfer state on bilayer solar cells as well as measurements of the field dependence of the dissociation yield over a broad temperature range support the theoretical predictions.

  3. Initiation of long-term coupled microbiological, geochemical, and hydrological experimentation within the seafloor at North Pond, western flank of the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Edwards, K.J.; Backert, N.; Bach, W.; Becker, K.; Klaus, A.; Griffin, Dale W.; Anderson, L.; Haddad, A.G.; Harigane, Y.; Campion, P.L.; Hirayama, H.; Mills, H.J.; Hulme, S.M.; Nakamura, K.; Jorgensen, S.L.; Orcutt, B.; Insua, T.L.; Park, Y.-S.; Rennie, V.; Salas, E.C.; Rouxel, O.; Wang, F.; Russel, J.A.; Wheat, C.G.; Sakata, K.; Brown, M.; Magnusson, J.L.; Ettlinger, Z.

    2012-01-01

    Integrated Ocean Drilling Program (IODP) Expedition 336 successfully initiated subseafloor observatory science at a young mid-ocean-ridge flank setting. All of the drilled sites are located in the North Pond region of the Atlantic Ocean (22??45'N, 46??05'W) in 4414-4483 m water depth. This area is known from previous ocean drilling and site survey investigations as a site of particularly vigorous circulation of seawater in permeable 8 Ma basaltic basement underlying a <300 m thick sedimentary pile. Understanding how this seawater circulation affects microbial and geochemical processes in the uppermost basement was the primary science objective of Expedition 336. Basement was cored and wireline-logged in Holes U1382A and U1383C. Upper oceanic crust in Hole U1382A, which is only 50 m west of Deep Sea Drilling Project (DSDP) Hole 395A, recovered 32 m of core between 110 and 210 meters below seafloor (mbsf). Core recovery in basement was 32%, yielding a number of volcanic flow units with distinct geochemical and petrographic characteristics. A unit of sedimentary breccia containing clasts of basalt, gabbroic rocks, and mantle peridotite was found intercalated between two volcanic flow units and was interpreted as a rock slide deposit. From Hole U1383C we recovered 50.3 m of core between 69.5 and 331.5 mbsf (19%). The basalts are aphyric to highly plagioclase-olivine-phyric tholeiites that fall on a liquid line of descent controlled by olivine fractionation. They are fresh to moderately altered, with clay minerals (saponite, nontronite, and celadonite), Fe oxyhydroxide, carbonate, and zeolite as secondary phases replacing glass and olivine to variable extents. In addition to traditional downhole logs, we also used a new logging tool for detecting in situ microbial life in ocean floor boreholes-the Deep Exploration Biosphere Investigative tool (DEBI-t). Sediment thickness was ???90 m at Sites U1382 and U1384 and varied between 38 and 53 m at Site U1383. The sediments are predominantly nannofossil ooze with layers of coarse foraminiferal sand and occasional pebble-size clasts of basalt, serpentinite, gabbroic rocks, and bivalve debris. The bottommost meters of sections cored with the advanced piston corer feature brown clay. Extended core barrel coring at the sediment/basement interface recovered <1 m of brecciated basalt with micritic limestone. Sediments were intensely sampled for geochemical pore water analyses and microbiological work. In addition, high-resolution measurements of dissolved oxygen concentration were performed on the whole-round sediment cores. Major strides in ridge-flank studies have been made with subseafloor borehole observatories (CORKs) because they facilitate combined hydrological, geochemical, and microbiological studies and controlled experimentation in the subseafloor. During Expedition 336, two fully functional observatories were installed in two newly drilled holes (U1382A and U1383C) and an instrument and sampling string were placed in an existing hole (395A). Although the CORK wellhead in Hole 395A broke off and Hole U1383B was abandoned after a bit failure, these holes and installations are intended for future observatory science targets. The CORK observatory in Hole U1382A has a packer seal in the bottom of the casing and monitors/samples a single zone in uppermost oceanic crust extending from 90 to 210 mbsf. Hole U1383C was equipped with a three-level CORK observatory that spans a zone of thin basalt flows with intercalated limestone (???70-146 mbsf), a zone of glassy, thin basaltic flows and hyaloclastites (146-200 mbsf), and a lowermost zone (???200-331.5 mbsf) of more massive pillow flows with occasional hyaloclastites in the upper part.

  4. Long-term hydrothermal temperature and pressure monitoring equipped with a Kuroko cultivation apparatus on the deep-sea artificial hydrothermal vent at the middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Nozaki, T.; Saruhashi, T.; Kyo, M.; Sakurai, N.; Yokoyama, T.; Akiyama, K.; Watanabe, M.; Kumagai, H.; Maeda, L.; Kinoshita, M.

    2017-12-01

    The middle Okinawa Trough, located along the Ryukyu- arc on the margin of the East China Sea, has several active hydrothermal fields. From February to March 2016, Cruise CK16-01 by D/V Chikyu targeted the Iheya-North Knoll and southern flank of the Iheya Minor Ridge to comprehend sub-seafloor geological structure and polymetallic sulfide mineralization. In this cruise, we installed two Kuroko cultivation apparatuses equipped with P/T sensors, flowmeter and load cell to monitor pressure, temperature and flow rate of hydrothermal fluid discharged from the artificial hydrothermal vent together with weight of hydrothermal precipitate. During Cruise KR16-17 in January 2017, two cultivation cells with sensor loggers were successfully recovered by ROV Kaiko MK-IV and R/V Kairei. We report these physical sensor data obtained by more than 10 months monitoring at two deep-sea artificial hydrothermal vents through many first and challenging operations.Hole C9017B at southern flank of the Iheya Minor Ridge (water depth of 1,500 mbsl), fluid temperature was constant ca. 75 ºC for 5 months from the beginning of monitoring. Then temperature gradually decrease to be 40 ºC. In November 2016, temperature and pressure suddenly dropped and quickly recovered due to the disturbance of subseafloor hydrology, induced by another drilling operation at Hole C9017A which is 10.8 meters northeastward from Hole C9017B during Cruise CK16-05. Temperature data exhibit conspicuous periodic 12.4hour cycles and this is attributable to oceanic tidal response. The amplitude of temperature variations increased along with decline of the temperature variations increased along with decline of the temperature. The average flow rate was 67 L/min for 9 hours from the onset of monitoring.Hole C9024A at the Iheya-North Knoll (water depth of 1,050 msl), the maximum temperature reached 308 ºC, which is similar to the maximum value of 311 ºC obtained from the ROV thermometer. The average flow rate was 289 L/min for 8 days from onset of monitoring.

  5. Evolutionary Scheduler for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Guillaume, Alexandre; Lee, Seungwon; Wang, Yeou-Fang; Zheng, Hua; Chau, Savio; Tung, Yu-Wen; Terrile, Richard J.; Hovden, Robert

    2010-01-01

    A computer program assists human schedulers in satisfying, to the maximum extent possible, competing demands from multiple spacecraft missions for utilization of the transmitting/receiving Earth stations of NASA s Deep Space Network. The program embodies a concept of optimal scheduling to attain multiple objectives in the presence of multiple constraints.

  6. The history of star formation in nearby dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel Ray

    2010-11-01

    We present detailed analysis of color-magnitude diagrams (CMDs) of resolved stellar populations in nearby dwarf galaxies based on observations taken with the Hubble Space Telescope (HST). From the positions of individual stars on a CMD, we are able to derive the star formation histories (SFHs), i.e., the star formation rate (SFR) as a function of time and metallicity, of the observed stellar populations. Specifically, we apply this technique to a number of nearby dwarf galaxies to better understand the mechanisms driving their evolution. The ACS Nearby Galaxy Survey Treasury program (ANGST) provides multi-color photometry of resolved stars in ˜ 60 nearby dwarf galaxies from images taken with HST. This sample contains 12 dSph, 5 dwarf spiral, 28 dIrr, 12 dSph/dIrr (transition), and 3 tidal dwarf galaxies. The sample spans a range of ˜ 10 in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best fit lifetime SFHs we find three significant results: (1) the average dwarf galaxy formed ˜ 60% of its stars by z ˜ 2 and 70% of its stars by z ˜ 1, regardless of morphological type, (2) the only statistically significant difference between the SFHs of different morphological types is within the most recent 1 Gyr (excluding tidal dwarf galaxies), and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e.g., single epoch SF or constant SFH. We then present the recent ( ≲ 1 Gyr) SFHs of nine M81 Group Dwarf Galaxies. Comparing the SFHs, birthrate parameters, fraction of stars formed per time interval, and spatial distribution of stellar components as a function of luminosity, we find only minor differences in SF characteristics among the M81 Group dIs despite a wide range of physical properties. We extend our comparison to select dIs in the Local Group (LG), with similar quality photometry, and again find only minor differences in SF parameters. The lack of a clear trend in SF parameters over a wide range of diverse environments suggests that SF in low mass systems may be dominated by stochastic processes. The fraction of stars formed per time interval for an average M81 Group and LG dI is consistent with a constant SFH. However, individual galaxies can show significant departures from a constant SFH. Thus, we find this result underlines the importance of stochastic SF in dIs. Comparing the recent SFHs and spatial locations of young stars with observations of the neutral interstellar medium (HI), we are able to gain new insight into the physics of stellar 'feedback'. We first make this type of comparison in IC 2754, a luminous dwarf irregular galaxy in the M81 Group with a ˜ 1 kpc supergiant HI shell. We find two significant episodes of SF inside the SGS from 200--300 Myr and ˜ 25 Myr ago. Comparing the timing of the SF events to the dynamic age of the SGS and the energetics from the HI and SF, we find compelling evidence that stellar feedback is responsible for creating the SGS and triggering secondary SF around its rim. We then conduct an extensive analysis of HI holes in M81 Group dwarf irregular galaxy, Holmberg II. From the deep photometry, we construct the CMDs and measure the SFHs for stars contained in HI holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of HI column densities. The CMDs reveal young (< 200 Myr) stellar populations inside all HI holes, which contain very few bright OB stars with ages less than 10 Myr, indicating they are not reliable tracers of HI hole locations while the recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a time scale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and HI holes are statistically indistinguishable. However, because we are only sensitive to holes ˜ 100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside HI holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of HI holes, we propose a potential new model: a viable mechanism for creating the observed HI holes in Ho II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an HI hole is intrinsically ambiguous. (Abstract shortened by UMI.)

  7. Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.

    NASA Astrophysics Data System (ADS)

    Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.

    2003-12-01

    The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the drill pipe, through the strainmeter assembly and out the tube about 25 feet below the bottom of the strain sensing assembly. About 450 feet of the hole was cemented, the cement going into the casing. The coupling tubes from the strainmeters were connected to a surface mounted sensing head that had hydraulic amplification and electronic transducers. Pressure changes in the lower aquifer cause flow through two 1/4 inch diameter tubes into the annulus outside the mounting and cementing pipe. An opening sleeve in the installed pipe will allow the resulting water level changes to be monitored in a protected environment. All installed instrumentation seems to be functioning satisfactorily.

  8. The Generation-X Vision Mission Study and Advanced Mission Concept

    NASA Astrophysics Data System (ADS)

    Brissenden, Roger J. V.; Generation-X Team

    2008-03-01

    The Generation-X (Gen-X) mission was selected as one of NASA's Vision Missions as a concept for a next generation X-ray telescope designed to study the very early universe with 1000-times greater sensitivity than current X-ray telescopes. The mission has also been proposed as an Advanced Mission Concept Study (AMCS) to further define the technology development plan and mission design. The scientific goals for Gen-X include studying the first generations of stars and black holes in the epoch z=10-20, the evolution of black holes and galaxies from high z to the present, the chemical evolution of the universe and the properties of matter under extreme conditions. The key parameters required to meet these goals define a challenging mission and include an effective area of 50 m2 at 1 keV, and an angular resolution (HPD) of 0.1 arcsec over an energy band of 0.1-10 keV. The required effective area implies that extremely lightweight grazing incidence X-ray optics must be developed. To achieve the required areal density of at least 100 times lower than in Chandra, thin ( 0.1 mm) mirrors that have active on-orbit figure control are required. We present the major findings from the Gen-X Vision Mission Study and a streamlined mission concept enabled by the Ares V launch capability, as proposed in response to the AMSC call.

  9. Overview of Hole GT2A: Drilling middle gabbro in Wadi Tayin massif, Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Takazawa, E.; Kelemen, P. B.; Teagle, D. A. H.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.

    2017-12-01

    Hole GT2A (UTM: 40Q 655960.7E / 2529193.5N) was drilled by the Oman Drilling Project (OmDP) into Wadi Gideah of Wadi Tayin massif in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT2A was diamond cored in 25 Dec 2016 to 18 Jan 2017 to a total depth of 406.77 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. 33 shipboard scientists were divided into six teams (Igneous, Alteration, Structural, Geochem, Physical Properties, Paleomag) to describe and analyze the cores. Hole GT2A drilled through the transition between foliated and layered gabbro. The transition zone occurs between 50 and 150 m curation corrected depth (CCD). The top 50 m of Hole GT2A is foliated gabbro whereas the bottom 250 m consists of layered gabbro. Brittle fracture is observed throughout the core. Intensity of alteration vein decreases from the top to the bottom of the hole. On the basis of changes in grain size and/or modal abundance and/or appearance/disappearance of igneous primary mineral(s) five lithological units are defined in Hole GT2A (Unit I to V). The uppermost part of Hole GT2A (Unit I) is dominated by fine-grained granular olivine gabbro intercalated with less dominant medium-grained granular olivine gabbro and rare coarse-grained varitextured gabbro. The lower part of the Hole (Units II, III and V) is dominated by medium-grained olivine gabbro, olivine melagabbro and olivine-bearing gabbro. Modally-graded rhythmic layering with olivine melagabbro and olivine-bearing gabbro is well conspicuous in the bottom part of Unit II. The Unit IV occurs between 284.25 m and 293.92 m CCD from the top of the hole and is characterized by orthopyroxene-bearing lithologies such as fine-grained gabbronorite and coarse-grained troctolite. Discrete orthopyroxene crystals occur in these lithologies.

  10. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    PubMed

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

  11. Characterization of few transient black hole candidates during their X-ray outbursts with TCAF Solution

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Mondal, S.; Chakrabarti, S. K.; Jana, A.; Molla, A. A.; Chatterjee, D.

    The theoretical concept of Chakrabarti-Titarchuk two Component Advective Flow (TCAF) model was introduced around two decades ago in mid-90s. Recently after the inclusion of TCAF model into XSPEC as an additive table model, we find that it is quite capable to fit spectra from different phases of few transient black hole candidates (TBHCs) during their outbursts. This quite agrees with our theoretical understanding. Here, a brief summary of our recent studies of spectral and temporal properties of few TBHCs during their X-ray outbursts with TCAF will be discussed.

  12. Toward holographic reconstruction of bulk geometry from lattice simulations

    NASA Astrophysics Data System (ADS)

    Rinaldi, Enrico; Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan; Vranas, Pavlos

    2018-02-01

    A black hole described in SU( N ) gauge theory consists of N D-branes. By separating one of the D-branes from others and studying the interaction between them, the black hole geometry can be probed. In order to obtain quantitative results, we employ the lattice Monte Carlo simulation. As a proof of the concept, we perform an explicit calculation in the matrix model dual to the black zero-brane in type IIA string theory. We demonstrate this method actually works in the high temperature region, where the stringy correction is large. We argue possible dual gravity interpretations.

  13. Toward holographic reconstruction of bulk geometry from lattice simulations

    DOE PAGES

    Rinaldi, Enrico; Berkowitz, Evan; Hanada, Masanori; ...

    2018-02-07

    A black hole described in SU(N ) gauge theory consists of N D-branes. By separating one of the D-branes from others and studying the interaction between them, the black hole geometry can be probed. In order to obtain quantitative results, we employ the lattice Monte Carlo simulation. As a proof of the concept, we perform an explicit calculation in the matrix model dual to the black zero-brane in type IIA string theory. We demonstrate this method actually works in the high temperature region, where the stringy correction is large. We argue possible dual gravity interpretations.

  14. Biotic interactions at hydrothermal vents: Recruitment inhibition by the mussel Bathymodiolus thermophilus

    NASA Astrophysics Data System (ADS)

    Lenihan, H. S.; Mills, S. W.; Mullineaux, L. S.; Peterson, C. H.; Fisher, C. R.; Micheli, F.

    2008-12-01

    The structure and dynamics of marine communities are regulated in part by variation in recruitment. As in other ecosystems, recruitment at deep-sea hydrothermal vents is controlled by the interplay of propagule supply and behavior, gradients in physical-chemical conditions, and biotic interactions during pre- and post-settlement periods. Recent research along the East Pacific Rise indicates that inhibition of recently settled larvae by mobile predators (mainly limpets) influences patterns of recruitment and subsequent community succession. We conducted a manipulative experiment at the same sites (˜2510 m water depth) to test whether high-density assemblages of the mussel Bathymodiolus thermophilus also inhibit recruitment. In a preliminary study, recruitment of vent invertebrates within the faunal zone dominated by B. thermophilus was strikingly different at two sites, East Wall and Worm Hole. East Wall had high densities of mussels but very low total recruitment. In contrast, Worm Hole had few mussels but high recruitment. Using the submersible Alvin, we transplanted a large number of mussels from East Wall to Worm Hole and quantified recruitment on basalt blocks placed in three treatments: (1) naturally high densities of mussels at East Wall; (2) naturally low densities of mussels at Worm Hole; and (3) high densities of transplanted mussels at Worm Hole. After 11 months, a total of 24 taxa had recruited to the basalt blocks. Recruitment was 44-60% lower in the transplanted high-density mussel patch at Worm Hole and the natural high-density patch at East Wall than within the natural low-density patch at Worm Hole. Biotic processes that may have caused the pattern of recruitment observed included predation of larvae via water filtration by mussels, larval avoidance of superior competitors, interference competition, and enhanced predation by species within the mussel-bed community. Our results indicate that biotic interactions affecting recruitment must be understood to explain patterns of invertebrate community organization and dynamics at hydrothermal vents.

  15. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    NASA Astrophysics Data System (ADS)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  16. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins

    USGS Publications Warehouse

    Hesse, R.; Harrison, W.E.

    1981-01-01

    The occurrence of gas hydrates in deep-water sections of the continental margins predicted from anomalous acoustic reflectors on seismic profiles has been confirmed by recent deep-sea drilling results. On the Pacific continental slope off Guatemala gas hydrates were brought up for the first time from two holes (497, 498A) drilled during Leg 67 of the DSDP in water depths of 2360 and 5500 m, respectively. The hydrates occur in organic matter-rich Pleistocene to Miocene terrigenous sediments. In the hydrate-bearing zone a marked decrease in interstitial water chlorinities was observed starting at about 10-20 m subbottom depth. Pore waters at the bottom of the holes (near 400 m subbottom) have as little as half the chlorinity of seawater (i.e. 9???). Similar, but less pronounced, trends were observed during previous legs of the DSDP in other hydrate-prone segments of the continental margins where recharge of fresh water from the continent can be excluded (e.g. Leg 11). The crystallization of hydrates, like ice, excludes salt ions from the crystal structure. During burial the dissolved salts are separated from the solids. Subsidence results in a downward motion of the solids (including hydrates) relative to the pore fluids. Thawing of hydrates during recovery releases fresh water which is remixed with the pore fluid not involved in hydrate formation. The volume of the latter decreases downhole thus causing downward decreasing salinity (chlorinity). Hydrate formation is responsible for oxygen isotope fractionation with 18O-enrichment in the hydrate explaining increasingly more positive ??18O values in the pore fluids recovered (after hydrate dissociation) with depth. ?? 1981.

  17. Hot, deep origin of petroleum: deep basin evidence and application

    USGS Publications Warehouse

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  18. Incorporating ecosystem services into environmental management of deep-seabed mining

    NASA Astrophysics Data System (ADS)

    Le, Jennifer T.; Levin, Lisa A.; Carson, Richard T.

    2017-03-01

    Accelerated exploration of minerals in the deep sea over the past decade has raised the likelihood that commercial mining of the deep seabed will commence in the near future. Environmental concerns create a growing urgency for development of environmental regulations under commercial exploitation. Here, we consider an ecosystem services approach to the environmental policy and management of deep-sea mineral resources. Ecosystem services link the environment and human well-being, and can help improve sustainability and stewardship of the deep sea by providing a quantitative basis for decision-making. This paper briefly reviews ecosystem services provided by habitats targeted for deep-seabed mining (hydrothermal vents, seamounts, nodule provinces, and phosphate-rich margins), and presents practical steps to incorporate ecosystem services into deep-seabed mining regulation. The linkages and translation between ecosystem structure, ecological function (including supporting services), and ecosystem services are highlighted as generating human benefits. We consider criteria for identifying which ecosystem services are vulnerable to potential mining impacts, the role of ecological functions in providing ecosystem services, development of ecosystem service indicators, valuation of ecosystem services, and implementation of ecosystem services concepts. The first three steps put ecosystem services into a deep-seabed mining context; the last two steps help to incorporate ecosystem services into a management and decision-making framework. Phases of environmental planning discussed in the context of ecosystem services include conducting strategic environmental assessments, collecting baseline data, monitoring, establishing marine protected areas, assessing cumulative impacts, identifying thresholds and triggers, and creating an environmental damage compensation regime. We also identify knowledge gaps that need to be addressed in order to operationalize ecosystem services concepts in deep-seabed mining regulation and propose potential tools to fill them.

  19. Observing the Birth and evolution of Galaxies - the ATCA-AKARI-ASTE/AzTEC deep South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    White, Glenn; Kohno, Kotaro; Matsuhara, Hideo; Matsuura, Shuji; Hanami, Hitoshi; Lee, Hyung Mok; Pearson, Chris; Takagi, Toshi; Serjeant, Stephen; Jeong, Woongseob; Oyabu, Shinki; Shirahata, Mai; Nakanishi, Kouichiro; Figueredo, Elysandra; Etxaluze, Mireya

    2007-04-01

    We propose deep 20 cm observations supporting the AKARI (3-160 micron)/ASTE/AzTEC (1.1 mm) SEP ultra deep ('Oyabu Field') survey of an extremely low cirrus region at the South Ecliptic Pole. Our combined IR/mm/Radio survey addresses the questions: How do protogalaxies and protospheroids form and evolve? How do AGN link with ULIRGs in their birth and evolution? What is the nature of the mm/submm extragalactic source population? We will address these by sampling the star formation history in the early universe to at least z~2. Compared to other Deep Surveys, a) AKARI multi-band IR measurements allow precision photo-z estimates of optically obscured objects, b) our multi-waveband contiguous area will mitigate effects of cosmic variance, c) the low cirrus noise at the SEP (< 0.08 MJy/sr) rivals that of the Lockman Hole "Astronomy's other ultra-deep 'cosmological window'", and d) our coverage of four FIR bands will characterise the far-IR dust emission hump of our starburst galaxies better than SPITZER's two MIPS bands allow. The ATCA data are crucial to galaxy identification, and determining the star formation rates and intrinsic luminosities through this unique Southern cosmological window.

  20. 2-(2-Hydroxyphenyl)benzimidazole-based four-coordinate boron-containing materials with highly efficient deep-blue photoluminescence and electroluminescence.

    PubMed

    Zhang, Zhenyu; Zhang, Houyu; Jiao, Chuanjun; Ye, Kaiqi; Zhang, Hongyu; Zhang, Jingying; Wang, Yue

    2015-03-16

    Two novel four-coordinate boron-containing emitters 1 and 2 with deep-blue emissions were synthesized by refluxing a 2-(2-hydroxyphenyl)benzimidazole ligand with triphenylborane or bromodibenzoborole. The boron chelation produced a new π-conjugated skeleton, which rendered the synthesized boron materials with intense fluorescence, good thermal stability, and high carrier mobility. Both compounds displayed deep-blue emissions in solutions with very high fluorescence quantum yields (over 0.70). More importantly, the samples showed identical fluorescence in the solution and solid states, and the efficiency was maintained at a high level (approximately 0.50) because of the bulky substituents between the boron atom and the benzimidazole unit, which can effectively separate the flat luminescent units. In addition, neat thin films composed of 1 or 2 exhibited high electron and hole mobility in the same order of magnitude 10(-4), as determined by time-of-flight. The fabricated electroluminescent devices that employed 1 or 2 as emitting materials showed high-performance deep-blue emissions with Commission Internationale de L'Eclairage (CIE) coordinates of (X = 0.15, Y = 0.09) and (X = 0.16, Y = 0.08), respectively. Thus, the synthesized boron-containing materials are ideal candidates for fabricating high-performance deep-blue organic light-emitting diodes.

Top