Sample records for deep ldef experiment

  1. Future radiation measurements in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    1993-01-01

    The first Long Duration Exposure Facility (LDEF) mission has demonstrated the value of the LDEF concept for deep surveys of the space radiation environment. The kinds of measurements that could be done on a second LDEF mission are discussed. Ideas are discussed for experiments which: (1) capitalize on the discoveries from LDEF 1; (2) take advantage of LDEF's unique capabilities; and (3) extend the investigations begun on LDEF 1. These ideas have been gleaned from investigators on LDEF 1 and others interested in the space radiation environment. They include new approaches to the investigation of Be-7 that was discovered on LDEF 1, concepts to obtain further information on the ionic charge state of cosmic rays and other energetic particles in space and other ideas to extend the investigations begun on LDEF 1.

  2. Exposure of LDEF materials to atomic oxygen: Results of EOIM 3

    NASA Technical Reports Server (NTRS)

    Jaggers, C. H.; Meshishnek, M. J.

    1995-01-01

    The third Effects of Oxygen Atom Interaction with Materials (EOIM 3) experiment flew on STS-46 from July 31 to August 8, 1992. The EOIM-3 sample tray was exposed to the low-earth orbit space environment for 58.55 hours at an altitude of 124 nautical miles resulting in a calculated total atomic oxygen (AO) fluence of 1.99 x 10(exp 20) atoms/sq cm. Five samples previously flown on the Long Duration Exposure Facility (LDEF) Experiment M0003 were included on the Aerospace EOIM 3 experimental tray: (1) Chemglaze A276 white thermal control paint from the LDEF trailing edge (TE); (2) S13GLO white thermal control paint from the LDEF TE; (3) S13GLO from the LDEF leading edge (LE) with a visible contamination layer from the LDEF mission; (4) Z306 black thermal control paint from the LDEF TE with a contamination layer from the LDEF mission; and (5) anodized aluminum from the LDEF TE with a contamination layer from the LDEF mission. The purpose of this experiment was twofold: (l) investigate the response of trailing edge LDEF materials to atomic oxygen exposure, thereby simulating LDEF leading edge phenomena; (2) investigate the response of contaminated LDEF samples to atomic oxygen in attempts to understand LDEF contamination-atomic oxygen interactions. This paper describes the response of these materials to atomic oxygen exposure, and compares the results of the EOIM 3 experiment to the LDEF mission and to ground-based atomic oxygen exposure studies.

  3. Ionizing radiation exposure of LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V. (Editor); Heinrich, W. (Editor)

    1990-01-01

    The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment.

  4. LDEF mechanical systems

    NASA Technical Reports Server (NTRS)

    Spear, W. Steve; Dursch, Harry W.

    1992-01-01

    Following LDEF retrieval, a number of studies were made of mechanical hardware and structure flown on the LDEF. The primary objectives are to determine the effects of long term space exposure on (1) mechanisms either used on LDEF or as part of individual experiments; (2) LDEF structural components; and (3) fasteners. Results from examination and testing of LDEF structure, fasteners, LDEF end support beam, environment exposure control canisters, experiment tray clamps, LDEF grapple fixtures, and viscous damper are presented. The most significant finding is the absence of space exposure related cold welding. The instances of seizure or removal difficulties initially attributed to cold welding were shown to have resulted from installation galling damage or improper removal techniques. Widespread difficulties encountered with removal of stainless steel fasteners underscore the need for effective thread lubrication schemes to ensure successful application of proposed orbital replacement units onboard Space Station Freedom.

  5. Overview of the Systems Special Investigation Group investigation

    NASA Technical Reports Server (NTRS)

    Mason, James B.; Dursch, Harry; Edelman, Joel

    1993-01-01

    The Long Duration Exposure Facility (LDEF) carried a remarkable variety of electrical, mechanical, thermal, and optical systems, subsystems, and components. Nineteen of the fifty-seven experiments flown on LDEF contained functional systems that were active on-orbit. Almost all of the other experiments possessed at least a few specific components of interest to the Systems Special Investigation Group (Systems SIG), such as adhesives, seals, fasteners, optical components, and thermal blankets. Almost all top level functional testing of the active LDEF and experiment systems has been completed. Failure analysis of both LDEF hardware and individual experiments that failed to perform as designed has also been completed. Testing of system components and experimenter hardware of interest to the Systems SIG is ongoing. All available testing and analysis results were collected and integrated by the Systems SIG. An overview of our findings is provided. An LDEF Optical Experiment Database containing information for all 29 optical related experiments is also discussed.

  6. Long Duration Exposure Facility (LDEF) attitude measurements of the interplanetary dust experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.; Motley, William R., III

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) was unique in providing a time history of impacts of micron-sized particles on six orthogonal faces of LDEF during the first year in orbit. The value of this time resolved data depended on and was enhanced by the proper operation of some basic LDEF systems. Thus, the value of the data is greatly enhanced when the location and orientation of LDEF is known for each time of impact. The location and velocity of LDEF as a function of time can be calculated from the 'two-line elements' published by GSFC during the first year of the LDEF mission. The attitude of LDEF was passively stabilized in a gravity-gradient mode and a magnetically anchored viscous damper was used to dissipate roll, pitch, and yaw motions. Finally, the IDE used a standard LDEF Experiment Power and Data System (EPDS) to collect and store data and also to provide a crystal derived clock pulse (1 count every 13.1072 seconds) for all IDE time measurements. All that remained for the IDE was to provide a system to calibrate the clock, eliminating accumulative errors, and also verify the attitude of LDEF. The IDE used solar cells on six orthogonal faces to observe the LDEF sunrise and provide data about the LDEF attitude. The data was recorded by the EPDS about 10 times per day for the first 345 days of the LDEF mission. This data consist of the number of IDE counts since the last LDEF sunrise and the status of the six solar cells (light or dark) at the time of the last IDE count. The EPDS determined the time that data was recorded and includes, with each record, the master EPDS clock counter (1 count every 1.6384 seconds) that provided the range and resolution for time measurements. The IDE solar cells provided data for an excellent clock calibration, meeting their primary purpose, and the time resolved LDEF attitude measurements that can be gleaned from this data are presented.

  7. Third LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1993-01-01

    This volume is a compilation of abstracts submitted to the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The abstracts represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  8. The LDEF benefits. [planned experiments

    NASA Technical Reports Server (NTRS)

    Kinard, W. H.

    1982-01-01

    The Long Duration Exposure Facility (LDEF) is described, and experiments planned for the first LDEF mission are discussed. Four of the eight involve scientific studies of interstellar gas, micrometeoroids, cosmic rays, and crystal growth in zero gravity, and four involve technology studies of the space environmental effects on solar cells, composite materials, thermal coatings, fiber optics, and electronic instruments. For each experiment, the objectives and methods are discussed.

  9. Ionizing radiation exposure of LDEF (pre-recovery estimates)

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Heinrich, W.; Parnell, T. A.; Armstrong, T. W.; Derrickson, J. H.; Fishman, G. J.; Frank, A. L.; Watts, J. W. Jr; Wiegel, B.

    1992-01-01

    The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed.

  10. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  11. Geometry and mass model of ionizing radiation experiments on the LDEF satellite

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    Extensive measurements related to ionizing radiation environments and effects were made on the LDEF satellite during its mission lifetime of almost 6 years. These data, together with the opportunity they provide for evaluating predictive models and analysis methods, should allow more accurate assessments of the space radiation environment and related effects for future missions in low Earth orbit. The LDEF radiation dosimetry data is influenced to varying degrees by material shielding effects due to the dosimeter itself, nearby components and experiments, and the spacecraft structure. A geometry and mass model is generated of LDEF, incorporating sufficient detail that it can be applied in determining the influence of material shielding on ionizing radiation measurements and predictions. This model can be used as an aid in data interpretation by unfolding shielding effects from the LDEF radiation dosimeter responses. Use of the LDEF geometry/mass model, in conjunction with predictions and comparisons with LDEF dosimetry data currently underway, will also allow more definitive evaluations of current radiation models for future mission applications.

  12. LDEF: 69 Months in Space. Part 4: Second Post-Retrieval Symposium

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are presented. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.

  13. LDEF: 69 Months in Space. Part 1: Second Post-Retrieval Symposium

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.

  14. LDEF: 69 Months in Space. Part 3: Second Post-Retrieval Symposium

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    Papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  15. Summary of solar cell data from the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The contractor has obtained and reviewed data relating solar cells assemblies (SCA's) flown as part of the following LDEF experiments: the Advanced Photovoltaic Experiment (S0014); the Solar Array Materials Passive LDEF Experiment (A0171); the Advanced Solar Cell and Coverglass Analysis Experiment (M0003-4); the LDEF Heat Pipe Experiment (S1001); the Evaluation of Thermal Control Coatings Y Solar Cells Experiment (S1002); and the Space Plasma-High Voltage Drainage Experiment (A0054). Where possible, electrical data have been tabulated and correlated with various environmental effects, including meteoroid and debris impacts, radiation exposure, atomic oxygen exposure, contamination, UV radiation exposure, and thermal cycling. The type, configuration, and location of all SCA's are documented here. By gathering all data and results together, a comparison of the survivability of the various types and configurations can be made.

  16. The geocentric particulate distribution: Cometary, asteroidal, or space debris?

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Ratcliff, P. R.

    1992-01-01

    Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the temporal fluctuations seen on LDEF; space debris could also explain the phenomenon.

  17. LDEF mechanical systems

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry

    1991-01-01

    Following the Long Duration Exposure Facility (LDEF), the Systems Special Investigation Group (SIG) was involved in a considerable amount of testing of mechanical hardware flown on the LDEF. The primary objectives were to determine the effects of the long term exposure on: (1) mechanisms employed both on the LDEF or as part of individual experiments; (2) structural components; and (3) fasteners. Results of testing the following LDEF hardware are presented: LDEF structure, fasteners, trunnions, end support beam, environment exposure control cannisters, motors, and lubricants. A limited discussion of PI test results is included. The lessons learned are discussed along with the future activities of the System SIG.

  18. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1992-01-01

    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.

  19. M and D SIG progress report: Laboratory simulations of LDEF impact features

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, R. P.; See, Thomas H.; Atkinson, Dale R.; Allbrooks, Martha K.

    1991-01-01

    Reported here are impact simulations into pure Teflon and aluminum targets. These experiments will allow first order interpretations of impact features on the Long Duration Exposure Facility (LDEF), and they will serve as guides for dedicated experiments that employ the real LDEF blankets, both unexposed and exposed, for a refined understanding of the Long Duration Exposure Facility's collisional environment.

  20. LDEF: 69 Months in Space. Second Post-Retrieval Symposium, part 2

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    This document is a compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  1. LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 3

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1992-01-01

    A compilation of papers presented at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroid), electronics, optics, and life sciences.

  2. Data bases for LDEF results

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1993-01-01

    The Long Duration Exposure Facility (LDEF) carried 57 experiments and 10,000 specimens for some 200 LDEF experiment investigators. The external surface of LDEF had a large variety of materials exposed to the space environment which were tested preflight, during flight, and post flight. Thermal blankets, optical materials, thermal control paints, aluminum, and composites are among the materials flown. The investigations have produced an abundance of analysis results. One of the responsibilities of the Boeing Support Contract, Materials and Systems Special Investigation Group, is to collate and compile that information into an organized fashion. The databases developed at Boeing to accomplish this task is described.

  3. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.

  4. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  5. Preliminary findings of the LDEF Materials Special Investigation Group

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Pippin, H. Gary

    1992-01-01

    The retrieval of NASA's LDEF from low Earth orbit provided an opportunity for the study of long duration space environmental effects on materials. The five year, nine month flight of the LDEF greatly enhanced the potential value of most LDEF materials. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG). Its goal is to explore the expanded materials analysis opportunities available in the LDEF structure and on experiment trays. The charter and scope of MSIG activities is presented, followed by an overview of the preliminary MSIG observations. These observations of low Earth orbit environmental effects on materials were made in-space during LDEF retrieval and during LDEF tray disintegration. Also presented are initial findings of lab analyses of LDEF materials. Included are effects of individual environmental parameters: atomic oxygen, ultraviolet radiation, meteoroid and debris impacts, thermal cycling, vacuum, and contamination, plus combined effects of these parameters. Materials considered include anodized aluminum, polymer matrix composites, polymer films, silvered Teflon thermal blankets, and a white thermal control paint.

  6. Long Duration Exposure Facility (LDEF) attitude measurements of the Interplanetary Dust Experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Motley, William R., III; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.

    1993-01-01

    Analysis of the data from the Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) sun sensors has allowed a confirmation of the attitude of LDEF during its first year in orbit. Eight observations of the yaw angle at specific times were made and are tabulated in this paper. These values range from 4.3 to 12.4 deg with maximum uncertainty of plus or minus 2.0 deg and an average of 7.9 deg. No specific measurements of pitch or roll were made but the data indicates that LDEF had an average pitch down attitude of less than 0.7 deg.

  7. Summary of materials and hardware performance on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Pippin, Gary; Teichman, Lou

    1993-01-01

    A wide variety of materials and experiment support hardware were flown on the Long Duration Exposure Facility (LDEF). Postflight testing has determined the effects of the almost 6 years of low-earth orbit (LEO) exposure on this hardware. An overview of the results are presented. Hardware discussed includes adhesives, fasteners, lubricants, data storage systems, solar cells, seals, and the LDEF structure. Lessons learned from the testing and analysis of LDEF hardware is also presented.

  8. Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.

  9. LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 3

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1995-01-01

    This volume is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included.

  10. Sixty-nine months in space: A history of the first LDEF (Long Duration Exposure Facility)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The LDEF project is summarized from its conception, through its deployment, to the return of the experiments. A LDEF chronology and a fact sheet is included. The experiments carried more than 10,000 specimens to gather scientific data and to test the effects of long term space exposure on spacecraft materials, components, and systems. Results will be invaluable for the design of future spacecraft such as Space Station Freedom.

  11. Second LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1992-01-01

    These abstracts from the symposium represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science, (cosmic ray, interstellar gas, heavy ions, micrometeoroids, etc.), electronics, optics, and life science.

  12. Polymer matrix composites on LDEF experiments M0003-9 and M0003-10

    NASA Technical Reports Server (NTRS)

    Steckel, Gary L.; Cookson, Thomas; Blair, Christopher

    1992-01-01

    Over 250 polymer matrix composites were exposed to the natural space environment on Long Duration Exposure Facility (LDEF) experiments M0003-9 and 10. The experiments included a wide variety of epoxy, thermoplastic, polyimide, and bismalimide matrix composites reinforced with graphite, glass, or organic fibers. A review of the significant observations and test results obtained to date is presented. Estimated recession depths from atomic oxygen exposure are reported and the resulting surface morphologies are discussed. The effects of the LDEF exposure on the flexural strength and modulus, short beam shear strength, and coefficient of thermal expansion of several classes of bare and coated composites are reviewed. Lap shear data are presented for composite-to-composite and composite-to-aluminum alloy samples that were prepared using different bonding techniques and subsequently flown on LDEF.

  13. LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 1

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1995-01-01

    This volume (Part 1 of 3) is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included.

  14. LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 2

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1995-01-01

    This volume is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included. This second of three parts covers spacecraft construction materials.

  15. M and D SIG progress report: Laboratory simulations of LDEF impact features

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, R. P.; See, T. H.; Atkinson, D.; Allbrooks, M.

    1992-01-01

    Laboratory impact experiments are needed to understand the relationship between a measured penetration hole diameter and associated projectile dimension in the thermal blankets of experiment A0178, which occupied some 16 sq. m. These blankets are composed of 125 micron thick Teflon that has an Ag/enconel second mirror surface, backed by organic binder and Chemglaze paint for a total thickness of some 170 microns. While dedicated experiments are required to understand the penetration behavior of this compound target in detail, we report here on impact simulations sponsored by other projects into pure Teflon and aluminum targets. These experiments will allow first order interpretations of impact features on the Long Duration Exposure Facility (LDEF), and they will serve as guides for dedicated experiments that employ the real LDEF blankets, both exposed and unexposed, for a refined understanding of the LDEF's collisional environment. We employed a light gas gun to launch soda-lime glass spheres from 50 to 3200 microns in diameter that impacted targets of variable thickness. Penetration measurements are given.

  16. Closeup of LDEF experiment trays documented during STS-32 photo survey

    NASA Image and Video Library

    1990-01-20

    Closeup of Long Duration Exposure Facility (LDEF) experiment trays is documented during STS-32 retrieval activity and photo survey conducted by crewmembers onboard Columbia, Orbiter Vehicle (OV) 102. Partially visible is the Polymer Matrix Composite Materials Experiment. In the background is the surface of the Earth.

  17. Proceedings of the LDEF Materials Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Stein, Bland A. (Compiler); Young, Philip R. (Compiler)

    1990-01-01

    The 5-year, 10-month flight of the Long Duration Exposure Facility (LDEF) greatly enhanced the potential value of most LDEF materials, compared to the original 1-year flight plan. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group in early 1989 to address the expanded opportunities available in the LDEF structure and on experimental trays, so that the value of all LDEF materials to current and future space missions would be assessed and documented. The LDEF Materials Data Analysis Workshop served as one step toward the realization of that responsibility and ran concurrently with activities surrounding the successful return of the spacecraft to the NASA Kennedy Space Center. A compilation of visual aids utilized by speakers at the workshop is presented. Session 1 summarized current information on analysis responsibilities and plans and was aimed at updating the workshop attendees: the LDEF Advisory Committee, Principle Investigators, Special Investigation Group Members, and others involved in LDEF analyses or management. Sessions 2 and 3 addressed materials data analysis methodology, specimen preparation, shipment and archival, and initial plans for the LDEF Materials Data Base. A complementary objective of the workshop was to stimulate interest and awareness of opportunities to vastly expand the overall data base by considering the entire spacecraft as a materials experiment.

  18. Characteristics of low energy ions in the Heavy Ions In Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Kleis, Thomas; Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.

    1995-01-01

    We present preliminary data on heavy ions (Z greater than or equal to 10) detected in the topmost Lexan sheets of the track detector stacks of the Heavy Ions in space (HIIS) experiment (M0001) on LDEF. The energy interval covered by these observations varies with the element, with (for example) Ne observable at 18-100 MeV nuc and Fe at 45-200 MeV/nuc. All of the observed ions are at energies far below the geomagnetic cutoff for fully-ionized particles at the LDEF orbit. Above 50 MeV/nuc (where most of our observed particles are Fe), the ions arrive primarily from the direction of lowest geomagnetic cutoff. This suggests that these particles originate outside the magnetosphere from a source with a steeply-falling spectrum and may therefore be associated with solar energetic particle (SEP) events. Below 50 MeV/nuc, the distribution of arrival directions suggests that most of the observed heavy ions are trapped in the Earth's magnetic field. Preliminary analysis, however, shows that these trapped heavy ions have a very surprising composition: they include not only Ne and Ar, which are expected from the trapping of anomalous cosmic rays (ACR's), but also Mg and Si, which are not part of the anomalous component. Our preliminary analysis shows that trapped heavy ions at 12 less than or equal to Zeta less than or equal to 14 have a steeply-falling spectrum, similar to that reported by the Kiel experiment (exp 1,2,3) on LDEF (M0002) for trapped Ar and Fe at E less than 50 MeV/nuc. The trapped Mg, Si, and Fe may also be associated with SEP events, but the mechanism by which they have appeared to deep in the inner magnetosphere requires further theoretical investigation.

  19. Passive exposure of Earth radiation budget experiment components LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1991-01-01

    The Passive Exposure of Earth Radiation Budget Experiment Components (PEERBEC) experiment of the Long Duration Exposure Facility (LDEF) mission was composed of sensors and components associated with the measurement of the earth radiation budget (ERB) from satellites. These components included the flight spare sensors from the ERB experiment which operated on Nimbus 6 and 7 satellites. The experiment components and materials as well as the pertinent background and ancillary information necessary for the understanding of the intended mission and the results are described. The extent and timing of the LDEF mission brought the exposure from solar minimum between cycles 21 and 22 through the solar maximum of cycle 22. The orbital decay, coupled with the events of solar maximum, caused the LDEF to be exposed to a broader range of space environmental effects than were anticipated. The mission spanned almost six years concurrent with the 12 year (to date) Nimbus 7 operations. Preliminary information is presented on the following: (1) the changes in transmittance experienced by the interference filters; (2) the results of retesting of the thermopile sensors, which appear to be relatively unaffected by the exposure; and (3) the results of the recalibration of the APEX cavity radiometer. The degradation and recovery of the filters of the Nimbus 7 ERB are also discussed relative to the apparent atomic oxygen cleaning which also applies to the LDEF.

  20. Manual for LDEF tensile tests

    NASA Technical Reports Server (NTRS)

    Witte, W. G., Jr.

    1985-01-01

    One of the experiments aboard the NASA Long Duration Exposure Facility (LDEF) consists of a tray of approximately one hundred tensile specimens of several candidate space structure composite materials. During the LDEF flight the materials will be subjected to the space environment and to possible contamination during launch and recovery. Tensile tests of representative samples were made before the LDEF flight to obtain baseline data. Similar tests will be made on control specimens stored on earth for the length of the LDEF flight and on recovered flight specimens. This manual codifies the details of testing, data acquisition, and handling used in obtaining the baseline data so that the same procedures and equipment will be used on the subsequent tests.

  1. A measurement of the radiation dose to LDEF by passive dosimetry

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Imamoto, S. S.

    1993-01-01

    The results from a pair of thermoluminescent dosimeter experiments flown aboard the Long Duration Exposure Facility (LDEF) show an integrated dose several times smaller than that predicted by the NASA environmental models for shielding thicknesses much greater than 0.10 gm/sq cm aluminum. For thicknesses between 0.01 and 0.1 gm/sq cm, the measured dose was in agreement with predictions. The Space and Environment Technology Center of The Aerospace Corporation fielded two related experiments on LDEF to measure the energetic radiation dose by means of passive dosimetry. The sensors were LiF thermoluminescent dosimeters mounted behind various thicknesses of shielding. The details of the experiment are described first, followed by the results of the observations. A comparison is made with the predictions based upon the NASA environmental models and the actual mission profile flown by LDEF; conclusions follow.

  2. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1991-01-01

    The Ionizing Radiation Special Investigation Group (IRSIG) for the Long Duration Exposure Facility (LDEF) was established to perform radiation measurements and analysis not planned in the original experiments, and to assure availability of LDEF analysis results in a form useful to future missions. The IRSIG has organized extensive induced radioactivity measurements throughout LDEF, and a comprehensive program to compare the LDEF radiation measurements to values calculated using environment models. The activities and present status of the Group is described. The ionizing radiation results presented is summarized.

  3. Atomic oxygen erosion considerations for spacecraft materials selection

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) satellite carried 57 experiments that were designed to define the low-Earth orbit (LEO) space environment and to evaluate the impact of this environment on potential engineering materials and material processes. Deployed by the Shuttle Challenger in April of 1984, LDEF made over 32,000 orbits before being retrieved nearly 6 years later by the Shuttle Columbia in January of 1990. The Solar Array Passive LDEF Experiment (SAMPLE) AO171 contained approximately 300 specimens, representing numerous material classes and material processes. AO171 was located on LDEF in position A8 at a yaw of 38.1 degrees from the ram direction and was subjected to an atomic oxygen (AO) fluence of 6.93 x 10(exp 21) atoms/sq cm. LDEF AO171 data, as well as short-term shuttle data, will be discussed in this paper as it applies to engineering design applications of composites, bulk and thin film polymers, glassy ceramics, thermal control paints, and metals subjected to AO erosion.

  4. LDEF: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Gouger, H. Garland (Editor)

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was a free-flying cylindrical structure that housed self-contained experiments in trays mounted on the exterior of the structure. Launched into orbit from the Space Shuttle Challenger in 1984, the LDEF spent almost six years in space before being recovered in 1990. The 57 experiments investigated the effects of the low earth orbit environment on materials, coatings, electronics, thermal systems, seeds, and optics. It also carried experiments that measured crystals growth, cosmic radiation, and micrometeoroids. This bibliography contains 435 selected records from the NASA aerospace database covering the years 1973 through June of 1992. The citations are arranged within subject categories by author and date of publication.

  5. Migration and generation of contaminants from launch through recovery: LDEF case history

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1992-01-01

    It is possible to recreate the contamination history of the Long Duration Exposure Facility (LDEF) through an analysis of its contaminants and selective samples that were collected from surfaces with better documented exposure histories. This data was then used to compare estimates based on monitoring methods that were selected for the purpose of tracking LDEF's exposure to contaminants. The LDEF experienced much more contamination than would have been assumed based on the monitors. Work is still in progress but much of what was learned so far is already being used in the selection of materials and in the design of systems for space. Now experiments are being prepared for flight to resolve questions created by the discoveries on the LDEF. A summary of what was learned about LDEF contaminants over the first year since recovery and deintegration is presented. Over 35 specific conclusions in 5 contamination related categories are listed.

  6. Collection and review of metals data obtained from LDEF experiment specimens and support hardware

    NASA Technical Reports Server (NTRS)

    Bourassa, Roger; Pippin, H. Gary

    1995-01-01

    LDEF greatly extended the range of data available for metals exposed to the low-Earth-orbital environment. The effects of low-Earth-orbital exposure on metals include meteoroid and debris impacts, solar ultraviolet radiation, thermal cycling, cosmic rays, solar particles, and surface oxidation and contamination. This paper is limited to changes in surface composition and texture caused by oxidation and contamination. Surface property changes afford a means to study the environments (oxidation and contamination) as well as in-space stability of metal surfaces. We compare thermal-optical properties for bare aluminum and anodized aluminum clamps flown on LDEF. We also show that the silicon observed on the LDEF tray clamps and tray clamp bolt heads is not necessarily evidence of silicon contamination of LDEF from the shuttle. The paper concludes with a listing of LDEF reports that have been published thus far that contain significant findings concerning metals.

  7. Passive exposure of Earth radiation budget experiment components. LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1992-01-01

    The flight spare sensors of the Earth Radiation Budget (ERB) experiment of the Nimbus 6 and 7 missions were flown aboard the LDEF. The preliminary post retrieval examination and test results are presented here for the sensor windows and filters, the thermopile sensors and a cavity radiometer.

  8. LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 2

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1992-01-01

    A compilation of papers from the symposium is presented. The preliminary data analysis is presented of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroid), electronics, optics, and life science.

  9. Follow up on the crystal growth experiments of the LDEF

    NASA Technical Reports Server (NTRS)

    Nielsen, K. F.; Lind, M. D.

    1993-01-01

    The results of the 4 solution growth experiments on the LDEF have been published elsewhere. Both the crystals of CaCO3, which were large and well shaped, and the much smaller TTF-TCNQ crystals showed unusual morphological behavior. The follow up on these experiments was begun in 1981, when ESA initiated a 'Concept Definition Study' on a large, 150 kg, Solution Growth Facility (SGF) to be included in the payload of EURECA-1, the European Retrievable Carrier. This carrier was a continuation of the European Spacelab and at that time planned for launch in 1987. The long delay of the LDEF retrieval and of subsequent missions brought about reflections both on the concept of crystal growth in space and on the choice of crystallization materials that had been made for the LDEF. Already before the LDEF retrieval, research on TTF-TCNQ had been stopped, and a planned growth experiment with TTF-TCNQ on the SGF/EURECA had been cancelled. The target of the SGF investigation is now more fundamental in nature. None of the crystals to be grown here are, like TTF-TCNQ, in particular demand by science or industry, and the crystals only serve the purpose of model crystals. The real purpose of the investigation is to study the growth behavior. One of the experiments, the Soret Coefficient Measurement experiment is not growing crystals at all, but has it as its sole purpose to obtain accurate information on thermal diffusion, a process of importance in crystal growth from solution.

  10. LDEF materials overview

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.

    1993-01-01

    The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effects (SEE) on materials that is unparalleled in the history of the U.S. Space Program. The 5-year, 9-month flight of LDEF greatly enhanced the potential value of all materials on LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of individual and combined effects of LEO environmental parameters on identical materials on the same space vehicle. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements so that the combined value of all LDEF materials data to current and future space missions will be addressed and documented. An overview of the interim LDEF materials findings of the principal investigators and the Materials Special Investigation Group is provided. These revelations are based on observations of LEO environmental effects on materials made in space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format that categorizes the revelations as 'clear findings' or 'obscure preliminary findings' (and progress toward their resolution), plus resultant needs for new space materials developments and ground simulation testing/analytical modeling, in seven categories: materials/environmental parameters and data bases; LDEF contamination; thermal control coatings and protective treatments; polymers and films; polymer-matrix composites; metals, ceramics, and optical materials; and systems-related materials. The utilization of LDEF materials data for future low-Earth orbit missions is also discussed, concentrating on Space Station Freedom. In general, the LDEF data is remarkably consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8-years; other 'space qualified' materials displayed significant environmental degradation. General contamination levels on LDEF were low, but molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions were identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.

  11. Thermal control surfaces experiment: Initial flight data analysis

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-01

    The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.

  13. LDEF materials: An overview of the interim findings

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.

    1992-01-01

    The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effect (SEE) on materials that are unparalleled in the history of the U.S. space program. The 5.8-year flight of LDEF greatly enhanced the potential value of materials data from LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials of the same space vehicle. NASA recognized the potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment parameter analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements, so that the combined value of all LDEF materials data to current and future space missions will be assessed and documented. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. These revelations are based on observations of LEO environmental effects on materials made in-space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format which categorizes the revelations as 'clear findings' or 'confusing/unexplained findings' and resultant needs for new space materials developments and ground simulation testing/analytical modeling in seven categories: environmental parameters and data bases; LDEF contamination; thermal control coatings and protective treatments; polymers and films; polymer-matrix composites; metals, ceramics, and optical materials; and systems-related materials. General outlines of findings of the other LDEF Special Investigation Groups (Ionizing Radiation, Meteoroid and Debris, and Systems) are also included. The utilization of LDEF materials data for future low-earth orbit missions is also discussed, concentrating on Space Station Freedom. Some directions for continuing studies of LDEF materials are outlined. In general, the LDEF data is remarkable consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8-years; other 'space qualified' materials displayed significant environmental degradation. Molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions have been identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.

  14. The Long Duration Exposure Facility (LDEF). Mission 1 Experiments.

    ERIC Educational Resources Information Center

    Clark, Lenwood G., Ed.; And Others

    The Long Duration Exposure Facility (LDEF) has been designed to take advantage of the two-way transportation capability of the space shuttle by providing a large number of economical opportunities for science and technology experiments that require modest electrical power and data processing while in space and which benefit from postflight…

  15. LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 1

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1992-01-01

    A compilation of papers from the symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the Long Duration Exposure Facility (LDEF). The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroids), electronics, optics, and life sciences.

  16. Photographic Survey of the LDEF Mission

    NASA Technical Reports Server (NTRS)

    ONeal, Robert L.; Levine, Arlene S.; Kiser, Carol C.

    1996-01-01

    This publication documents a selected number of pre-flight, in-flight, and postflight photographs of the LDEF and experiments. Changes in condition of the experiments caused by space exposure are discussed. Accompanying this black and white publication it a CD-ROM that contains the color version of the photographs as well as the text.

  17. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    NASA Astrophysics Data System (ADS)

    Bohnhoff-Hlavacek, Gail

    1992-09-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  18. Long Duration Exposure Facility (LDEF) optical systems SIG summary and database

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    The main objectives of the Long Duration Exposure Facility (LDEF) Optical Systems Special Investigative Group (SIG) Discipline are to develop a database of experimental findings on LDEF optical systems and elements hardware, and provide an optical system overview. Unlike the electrical and mechanical disciplines, the optics effort relies primarily on the testing of hardware at the various principal investigator's laboratories, since minimal testing of optical hardware was done at Boeing. This is because all space-exposed optics hardware are part of other individual experiments. At this time, all optical systems and elements testing by experiment investigator teams is not complete, and in some cases has hardly begun. Most experiment results to date, document observations and measurements that 'show what happened'. Still to come from many principal investigators is a critical analysis to explain 'why it happened' and future design implications. The original optical system related concerns and the lessons learned at a preliminary stage in the Optical Systems Investigations are summarized. The design of the Optical Experiments Database and how to acquire and use the database to review the LDEF results are described.

  19. Results from the testing and analysis of LDEF batteries

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry; Johnson, Chris

    1992-01-01

    Batteries were used on the Long Duration Exposure Facility (LDEF) to provide power to both the active experiments and the experiment support equipment such as the Experiment Initiative System, Experiment Power and Data System (data acquisition system), and the Environment Exposure Control Canisters. Three different types of batteries were used: lithium sulfur dioxide (LiSO2), lithium carbon monofluoride (LiCF), and nickel cadmium (NiCd). A total of 92 LiSO2, 10 LiCF, and 1 NiCd batteries were flown on the LDEF. In addition, approximately 20 LiSO2 batteries were kept in cold storage at NASA LaRC. The various investigations and post-flight analyses of the flight and control batteries are reviewed. The primary objectives of these studies was to identify degradation modes (if any) of the batteries and to provide information useful to future spacecraft missions. Systems SIG involvement in the post-flight evaluation of LDEF batteries was two-fold: (1) to fund SAFT (original manufacturer of the LiSO2 batteries) to perform characterization of 13 LiSO2 batteries (10 flight and 3 control batteries); and (2) to integrate investigator results.

  20. Space environmental effect on solar cells: LDEF and other flight tests

    NASA Technical Reports Server (NTRS)

    Gruenbaum, Peter; Dursch, Harry

    1995-01-01

    This paper summarizes results of several experiments flown on the Long Duration Exposure Facility (LDEF) to examine the effects of the space environment on materials and technologies to be used in solar arrays. The various LDEF experiments are compared to each other as well as to other solar cell flight data published in the literature. Data on environmental effects such as atomic oxygen, ultraviolet light, micrometeoroids and debris, and charged particles are discussed in detail. The results from the LDEF experiments allow us to draw several conclusions. Atomic oxygen erodes unprotected silver interconnects, unprotected Kapton, and polymer cell covers, but certain dielectric coatings can protect both silver and Kapton. Cells that had wrap-around silver contacts sometimes showed erosion at the edges, but more recently developed wrap-through cells are not expected to have these problems. Micrometeoroid and debris damage is limited to the area close to the impact, and microsheet covers provide the cells with some protection. Damage from charged particles was as predicted, and the cell covers provided adequate protection. In general, silicon cells with microsheet covers showed very little degradation, and solar modules showed less than 3 percent degradation, except when mechanically damaged. The solar cell choices for the Space Station solar array are supported by the data from LDEF.

  1. A photon phreak digs the LDEF happening

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1993-01-01

    A year ago at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium, detailed measurements on trunnion sections, as well as results from 'intentional' samples (Co, Ni, In, Ta, and V) and spacecraft parts were reported. For this year's Symposium, some of these findings are re-evaluated in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned need to be applied to future missions - right back to the early phases of mission planning.

  2. Summary of solar cell data from the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The Long Duration Exposure Facility (LDEF) was composed of many separate experiments, some of which contained solar cells. These solar cells were distributed at various positions on the LDEF and, therefore, were exposed to the space environment with an orientational dependence. This report will address the space environmental effects on solar cells and solar cell assemblies (SCA's), including electrical interconnects and associated insulation blankets where flown in conjunction with solar cells.

  3. Radioactivities induced in some LDEF samples

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.; Moss, Calvin E.; Bobias, S. George; Masarik, Jozef

    1993-01-01

    Radioactivities induced in several Long Duration Exposure Facilities (LDEF) samples were measured by low-level counting at Los Alamos and elsewhere. These radionuclides have activities similar to those observed in meteorites and lunar samples. Some trends were observed in these measurements in terms of profiles in trunnion layers and as a function of radionuclide half-life. Several existing computer codes were used to model the production by the protons trapped in the Earth's radiation belts and by the galactic cosmic rays of some of these radionuclides, Mn-54 and Co-57 in steel, Sc-46 in titanium, and Na-22 in alloys of titanium and aluminum. Production rates were also calculated for radionuclides possibly implanted in LDEF, Be-7, Be-10, and C-14. Enhanced concentrations of induced isotopes in the surfaces of trunnion sections relative to their concentrations in the center are caused by the lower-energy protons in the trapped radiation. Secondary neutrons made by high-energy trapped protons and by galactic cosmic rays produce much of the observed radioactivities, especially deep in an object. Comparisons of the observed to calculated activities of several radionuclides with different half-lives indicate that the flux of trapped protons at LDEF decreased significantly at the end of the mission.

  4. LDEF systems special investigation group overview

    NASA Technical Reports Server (NTRS)

    Mason, Jim; Dursch, Harry

    1995-01-01

    The Systems Special Investigation Group (Systems SIG), formed by the LDEF Project Office to perform post-flight analysis of LDEF systems hardware, was chartered to investigate the effects of the extended LDEF mission on both satellite and experiment systems and to coordinate and integrate all systems related analyses performed during post-flight investigations. The Systems SIG published a summary report in April, 1992 titled 'Analysis of Systems Hardware Flown on LDEF - Results of the Systems Special Investigation Group' that described findings through the end of 1991. The Systems SIG, unfunded in FY 92 and FY93, has been funded in FY 94 to update this report with all new systems related findings. This paper provides a brief summary of the highlights of earlier Systems SIG accomplishments and describes tasks the Systems SIG has been funded to accomplish in FY 94.

  5. Early results from the ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Jansen, F.; Domingo, C.

    1995-01-01

    Data extraction and analysis of the LDEF Ultra Heavy Cosmic Ray Experiment is continuing. Almost twice the pre LDEF world sample has been investigated and some details of the charge spectrum in the region from Z approximately 70 up to and including the actinides are presented. The early results indicate r process enhancement over solar system source abundances.

  6. Micrometeoroids and debris on LDEF comparison with MIR data

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude; Berthoud, Lucinda

    1995-01-01

    Part of the LDEF tray allocated to French experiments (FRECOPA) has been devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Crater size distributions have made possible the evaluation of the incident microparticle flux in the near-Earth environment. Comparisons are made with measurements obtained on the other faces of LDEF (tray clamps), on the leading edge (MAP) and with results of a similar experiment flown on the MIR space station. The geometry of impact craters, depth in particular, provides useful information on the nature of impacting particles and the correlation of geometry with the chemical analysis of projectile remnants inside craters make possible a discrimination between meteoroids and orbital debris. Emphasis has been laid on the size distribution of small craters in order to assess a cut-off in the distribution of particles in LEO. Special attention has been paid to the phenomenon of secondary impacts. A comparison of flight data with current models of meteoroids and space debris shows a fair agreement for LDEF, except for the smaller particles: the possible contribution of orbital debris in GTO orbits to the LDEF trailing edge flux is discussed. For MIR, flight results show differences with current modeling: the possible enhancement of orbital debris could be due to the contaminating presence of a permanently manned space station.

  7. LDEF Materials/Contamination

    NASA Technical Reports Server (NTRS)

    Pippin, Gary

    1997-01-01

    This pictorial presentation reviews the post-flight analysis results from two type of hardware (tray clamp bolt heads and uhcre flight experiment tray walls) from the Long Duration Exposure Facility (LDEF). It will also discuss flight hardware for one upcoming (Effects of the Space Environment on Materials (ESEM) flight experiment), and two current flight experiments evaluating the performance of materials in space (Passive Optical Sample Assembly (POSA) 1&2 flight experiments. These flight experiments also are concerned with contamination effects which will also be discussed.

  8. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstong, T. W.

    1993-01-01

    A three-dimensional geometry and mass model of the Long Duration Exposure Facility (LDEF) spacecraft and experiment trays was developed for use in predictions and data interpretation related to ionizing radiation measurements. The modeling approach, level of detail incorporated, example models for specific experiments and radiation dosimeters, and example applications of the model are described.

  9. Micrometeoroids and debris on LDEF

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude

    1992-01-01

    Part of the LDEF tray allocated to French Experiments (FRECOPA) was devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Two passive experiments were flown: a set of glass and metallic samples; and multilayer thin foil detectors. Crater size distribution made possible the evaluation of the incident microparticle flux in the near environment. Comparisons are made with measurements obtained on the other faces of LDEF and with results from similar experiments on the MIR. Of interest was the study of impact features on stacked thin foil detectors. The top foil acted as a shield, fragmenting the projectiles and spreading the fragments over the surface of the thick plate located underneath. EDS analysis has provided evidence of impactor fragments. Detectors consisting of a thin shield and thick bottom plate appear to offer a significantly higher return of data concerning chemical analysis of impactor residues than single plate detectors. The samples of various materials offer a unique opportunity for the study of the many processes involved upon hypervelocity impact phenomena.

  10. Micrometeoroids and debris on LDEF

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude

    1993-01-01

    Two experiments within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust were flown on the Long Duration Exposure Facility (LDEF). A variety of sensors and collecting devices have made possible the study of impact processes on dedicated sensors and on materials of technological interest. Examination of hypervelocity impact features on these experiments gives valuable information on the size distribution and nature of interplanetary dust particles in low-Earth orbit (LEO), within the 0.5-300 micrometer size range. However no crater smaller than 1.5 microns has been observed, thus suggesting a cut-off in the near Earth particle distribution. Chemical investigation of craters by EDX clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. However, remnants of orbital debris have been found in a few craters; this can be the result of particles in eccentric orbits about the Earth and of the 8 deg offset in the orientation of LDEF. Crater size distribution is compared with results from other dust experiments flown on LDEF and with current models. Possible origin and orbital evolution of micrometeoroids is discussed. Use of thin foil detectors for the chemical study of particle remnants looks promising for future experiments.

  11. Long Duration Exposure Facility M0003-5 recent results on polymeric films

    NASA Technical Reports Server (NTRS)

    Hurley, Charles J.; Jones, Michele D.

    1992-01-01

    The M0003-5 polymeric film specimens orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger thermal control materials experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effects of the LDEF environment on the physical and optical properties of polymeric thin film thermal control materials, the interaction of the LDEF environment with silvered spacecraft surfaces, and the performance of low outgassing adhesives. Sixteen combinations of various polymeric films, metallized and unmetallized, adhesively bonded and unbonded films were orbited on LDEF in the M0003-5 experiment. The films were exposed in two separate locations on the vehicle. One set was exposed on the direct leading edge of the satellite. The other set was exposed on the direct trailing edge of the vehicle. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the polymeric film materials were exposed for a full five years and ten months to the space environment.

  12. Some results of the oxidation investigation of copper and silver samples flown on LDEF

    NASA Technical Reports Server (NTRS)

    Derooij, A.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Mission provides a unique opportunity to study the long term effects of the space environment on materials. The LDEF has been deployed in orbit on 7 April 1984 by the shuttle Challenger in an almost circular orbit with a mean altitude of 477 km and an inclination of 28.5 degrees. It was retrieved from its decayed orbit of 335 km by the shuttle Columbia on 12 January 1990 after almost 6 years in space. The LDEF is a 12-sided, 4.267 m diameter, and 9.144 m long structure. The experiments, placed on trays, are attached to the twelve sides and the two ends of the spacecraft. The LDEF was passively stabilized with one end of the spacecraft always pointing towards the earth center and one of the sides (row 9) always facing the flight direction. The materials investigated originate from the Ultra-Heavy Cosmic Ray Experiment (UHCRE). The main objective is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc to uranium and beyond, using solid-state track detectors. Besides the aluminium alloy used for the experiment, UHCRE comprises several other materials. The results of space exposure for two of them, the copper grounding strips and the thermal covers (FEP Teflon/Ag/Inconel) painted black on the inner side (Chemglaze Z306), are presented.

  13. Preliminary analysis of LDEF instrument A0187-1: Chemistry of Micrometeoroids Experiment

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Bernhard, Ronald P.; Warren, Jack; See, Thomas H.; Brownlee, Donald E.; Laurance, Mark R.; Messenger, Scott; Peterson, Robert B.

    1992-01-01

    The Chemistry of Micrometeoroids Experiment (CME) exposed approximately 0.8 sq. m of gold on the Long Duration Exposure Facility's (LDEF's) trailing edge (location A03) and approximately 1.1 sq. m of aluminum in the forward-facing A11 location. The most significant results to date relate to the discovery of unmelted pyroxene and olivine fragments associated with natural cosmic dust impacts. The latter are sufficiently large for detailed phase studies, and they serve to demonstrate that recovery of unmelted dust fragments is a realistic prospect for further dust experiments that will employ more advanced collector media. We also discovered that man-made debris impacts occur on the LDEF's trailing edge with substantially higher frequency than expected, suggesting that orbital debris in highly elliptical orbits may have been somewhat underestimated.

  14. First LDEF Post-Retrieval Symposium abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1991-01-01

    The LDE facility was designed to better understand the environments of space and the effects of prolonged exposure in these environments on future spacecraft. The symposium abstracts presented here are organized according to the symposium agenda into five sessions. The first session provides an overview of the LDEF, the experiments, the mission, and the natural and induced environments the spacecraft and experiments encountered during the mission. The second session presents results to date from studies to better define the environments of near-Earth space. The third session addresses studies of the effects of the space environments on spacecraft materials. The fourth session addresses studies of the effects of the space environments on spacecraft systems. And the fifth session addresses other subjects such as results of the LDEF life science and crystal growth experiments.

  15. Long Duration Exposure Facility (LDEF) low-temperature heat pipe experiment package power system results

    NASA Technical Reports Server (NTRS)

    Tiller, Smith E.; Sullivan, David

    1992-01-01

    An overview of a self-contained Direct Energy Transfer Power System which was developed to provide power to the Long Duration Exposure Facility (LDEF) Low-Temperature Heat Pipe Experiment Package is presented. The power system operated successfully for the entire mission. Data recorded by the onboard recorder shows that the system operated within design specifications. Other than unanticipated overcharging of the battery, the power system operated as expected for nearly 32,000 low earth orbit cycles, and was still operational when tested after the LDEF recovery. Some physical damage was sustained by the solar array panels due to micrometeoroid hits, but there were not electrical failures.

  16. Further investigations of experiment A0034 atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Thermal control coatings within the recessed compartments of LDEF Experiment A0034 experienced the maximum leading edge fluence of atomic oxygen with considerably less solar UV radiation exposure than top-surface mounted materials of other LDEF experiments on either the leading or the trailing edge. This combination of exposure within A0034 resulted in generally lower levels of darkening attributable to solar UV radiation than for similar materials on other LDEF experiments exposed to greater cumulative solar UV radiation levels. Changes in solar absorptance and infrared thermal emittance of the exposed coatings are thus unique to this exposure. Analytical results for other applications have been found for environmentally induced changes in fluorescence, surface morphology, light scattering, and the effects of coating outgassing products on adjacent mirrors and windows of the A0034 experiment. Some atmospheric bleaching of the thermal control coatings, in addition to that presumably experience during reentry and recovery operations, has been found since initial post-flight observations and measurements.

  17. The Long Duration Exposure Facility (LDEF) annotated bibliography

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S.

    1995-01-01

    A major objective of the Space Act of 1958 which led to the establishment of the National Aeronautics and Space Administration (NASA) was the dissemination of science and technology. Today, under NASA administrator Daniel Goldin and the White House, there is a reemphasis on the dissemination and transfer of NASA science and technology to U.S. industry: both aerospace and non aerospace. The goal of this transfer of science and technology is to aid U.S. industries, making them more competitive in the global economy. After 69 months in space, LDEF provided new and important information on the space environment and how this hostile environment impacts spacecraft materials and systems. The space environment investigated by the LDEF researchers included: ionizing radiation, ultraviolet radiation, meteoroid and debris, atomic oxygen, thermal cycling, vacuum, microgravity, induced contamination and various synergistic effects. The materials used as part of LDEF and its experiments include polymers, metals, glass, paints and coatings. Fiber optic, mechanical, electrical, and optical systems were also used on LDEF. As part of the effort to disseminate and transfer LDEF science and technology, an annotated bibliographic database is being developed. This bibliography will be available electronically, as well as in hard copy. All LDEF domestic and foreign publications in the open literature, including scientific journals, the NASA LDEF Symposia volumes, books, technical reports and unrestricted contractor reports will be included in this database. The hard copy, as well as the electronic database, will be categorized by section in the scientific and technical discipline.

  18. Selected results for LDEF thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    Several different thermal control coatings were analyzed as part of the Long Duration Exposure Facility (LDEF) Materials Special Investigation Group activity and as part of the Space Environment Effects on Spacecraft Materials Experiment M0003. A brief discussion of the results obtained for these materials is presented.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.R.; Hurley, D.L.

    A year ago at the First LDEF Post-Retrieval Symposium, we reported detailed measurements on trunnion sections, as well as results from intentional'' samples (Co, Ni, In, Ta, and V) and spacecraft parts. For this year's Symposium we re-evaluate some of these findings in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned needs be applied to future missions -- right back to the early phases of mission planning.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.R.; Hurley, D.L.

    A year ago at the First LDEF Post-Retrieval Symposium, we reported detailed measurements on trunnion sections, as well as results from ``intentional`` samples (Co, Ni, In, Ta, and V) and spacecraft parts. For this year`s Symposium we re-evaluate some of these findings in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned needs be applied to future missions -- right back to the early phases of mission planning.

  1. Analysis of LDEF micrometeoroid/debris data and damage to composite materials

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Manuelpillai, G.

    1993-01-01

    This report presented published LDEF micrometeoroid/debris impact data in a nomogram format useful for estimating the total number of hits that could be expected on a space structure as a function of time in orbit, angular location relative to ram, and exposed surface area. Correction factors accounting for different altitudes are given. These are normalized to the average LDEF altitude. Examples on how to use the nomograph are also included. In addition, impact data and damage areas observed on composite laminates (experiment AO 180) are discussed.

  2. Holographic data storage crystals for LDEF (A0044)

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Gaylord, T. K.

    1984-01-01

    Electro-optic holographic recording systems were developed. The spaceworthiness of electro-optic crystals for use in ultrahigh capacity space data storage and retrieval systems are examined. The crystals for this experiment are included with the various electro-optical components of LDEF experiment. The effects of long-duration exposure on active optical system components is investigated. The concept of data storage in an optical-phase holographic memory is illustrated.

  3. Second LDEF Post-Retrieval Symposium interim results of experiment A0034

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Kamenetzky, Rachel R.

    1993-01-01

    Thermal control coatings and contaminant collector mirrors were exposed on the leading and trailing edge modules of Long Duration Exposure Facility (LDEF) experiment A0034 to provide a basis of comparison for investigating the role of atomic oxygen in the stimulation of volatile outgassing products. The exposure of identical thermal coatings on both the leading and trailing edges of the LDEF and the additional modified exposure of identical coatings under glass windows and metallic covers in each of the flight modules provided multiple combinations of space environmental exposure to the coatings and the contaminant collector mirrors. Investigations were made to evaluate the effects of the natural space and the induced environments on the thermal coatings and the collector mirrors to differentiate the sources of observed material degradation. Two identical flight units were fabricated for the LDEF mission, each of which included twenty-five thermal control coatings mounted in isolated compartments, each with an adjacent contaminant collector mirror mounted on the wall. The covers of the flight units included apertures for each compartment, exposing the thermal coatings directly to the space environment. Six of these compartments were sealed with ultraviolet-grade transmitting quartz windows and four other compartments were sealed with aluminum covers. One module of this passive LDEF experiment, occupying one-sixth of a full tray, was mounted in Tray C9 (leading edge), while the other identical module was mounted in Tray C3 (trailing edge).

  4. LET spectra measurements of charged particles in the P0006 experiment on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1993-01-01

    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members.

  5. Study of cosmic dust particles on board LDEF: The FRECOPA experiments AO138-1 and AO138-2

    NASA Technical Reports Server (NTRS)

    Mandeville, J. C.; Borg, Janet

    1992-01-01

    Two experiments, within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust, were flown on the LDEF. A variety of sensors and collecting devices have made possible the study of impact processes on materials of technological interest. Preliminary examination of hypervelocity impact features gives valuable data on size distribution and nature of interplanetary dust particles in low earth orbit, within the 0.5 to 300 micrometer size range. Most of the events detected on the trailing face of LDEF are expected to be the result of impacts of meteoritic particles only. So far, chemical analysis of craters by EDS clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. Systematic occurrence of C and O in crater residues is an important result, to be compared with the existence of CHON particles detected in P-Halley comet nucleus. Crater size distribution is in good agreement with results from other dust experiments flown on LDEF. However, no crater smaller than 1.5 micron was observed, thus suggesting a cutoff in the near earth particle distribution. Possible origin and orbital evolution of micrometeoroids is discussed.

  6. Thermal control surfaces on the MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Whitaker, Ann F.; Zwiener, James M.; Linton, Roger C.; Shular, David; Peters, Palmer N.; Gregory, John C.

    1992-01-01

    There were five Marshall Space Flight Center (MSFC) experiments on the LDEF. Each of those experiments carried thermal control surfaces either as test samples or as operational surfaces. These materials experienced varying degrees of mechanical and optical damage. Some materials were virtually unchanged by the extended exposure while others suffered extensive degradation. The synergistic effects due to the constituents of the space environment are evident in the diversity of these material changes. The sample complement for the MSFC experiments is described along with results of the continuing analyses efforts.

  7. Long Duration Exposure Facility Mini-Data Base User`s Guide: Macintosh version. (Diskette)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohnhoff-Hlavacek, G.; Pippin, H.G.; Dursch, H.W.

    1995-04-01

    One of the objectives of the LDEF Special Investigation Group (SIG) was to develop a LDEF data base that identifies the experiment objectives and hardware flown, summarizes results and conclusions, and provides a system analysis overview, including spacecraft design guidelines and space environmental effects. Compiling the information into an easily accessible data base format, and making it available to the space community was a major task accomplished by the System and Materials SIG effort beginning in 1981. Included in this document is a short user`s manual for the LDEF Mini-Data Bases. The user`s manual contains pertinent examples from the datamore » base on specifically how to access and work with the LDEF information. Accompanying this document are the mini-data bases on disk.« less

  8. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  9. What LDEF means for development and testing of materials

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Stuckey, Wayne K.; Stein, Bland A.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) served as the ultimate laboratory to provide combined space environmental effects on materials. The LDEF structure and its 57 experiments contained an estimated 12,000 to 14,000 specimens of materials and materials processes. It not only provided information about the resistance of these materials to the space environment but gives us direction into future needs for spacecraft materials development and testing. This paper provides an overview of the materials effects observed on the satellite and suggests recommendations for the future work in space-qualified materials development and space environmental simulation.

  10. LDEF transverse flat plate heat pipe experiment /S1005/. [Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Robinson, G. A., Jr.

    1979-01-01

    The paper describes the Transverse Flat Plate Heat Pipe Experiment. A transverse flat plate heat pipe is a thermal control device that serves the dual function of temperature control and mounting base for electronic equipment. In its ultimate application, the pipe would be a lightweight structure member that could be configured in a platform or enclosure and provide temperature control for large space structures, flight experiments, equipment, etc. The objective of the LDEF flight experiment is to evaluate the zero-g performance of a number of transverse flat plate heat pipe modules. Performance will include: (1) the pipes transport capability, (2) temperature drop, and (3) ability to maintain temperature over varying duty cycles and environments. Performance degradation, if any, will be monitored over the length of the LDEF mission. This information is necessary if heat pipes are to be considered for system designs where they offer benefits not available with other thermal control techniques, such as minimum weight penalty, long-life heat pipe/structural members.

  11. Effects of low Earth orbit environment on the Long Duration Exposure Facility thermal control coatings

    NASA Technical Reports Server (NTRS)

    Sampair, Thomas R.; Berrios, William M.

    1992-01-01

    One of the benefits of the Long Duration Exposure Facility (LDEF) was the opportunity to study the before and after effects of low earth orbit space environment on the spacecraft thermal control coatings. Since the LDEF's thermal control was totally passive by design, the selection of the external surface absorptivity to emissivity ratio (alpha/epsilon) and the ability for the coating to retain the alpha/epsilon over time was an important consideration in the thermal design of the LDEF. The primary surface coating chosen for the LDEF structure was clear chromic anodized aluminum with an average design alpha/epsilon of 0.32/0.16. External surface absorptivity (alpha) and emissivity (epsilon) were measured on all intercostals, longerons, tray mounting flanges, thermal control panels, and a limited number of experiment surface coatings after the experiment trays were removed from the LDEF structure. All surface alpha/epsilon measurements were made using portable hand held infrared and solar spectrum reflectometers. The absorptivity measurements were taken with a Devices and Services SSR-ER version 5.0 solar spectra reflectometer which has a stated uncertainty of +/- 0.01, and all normal emissivity measurements were made using the Gier Dunkle DB-100 infrared reflectometer also with a stated uncertainty of +/- 0.01. Both instruments were calibrated in the laboratory by LaRC instrumentation personnel before being used in the field at KSC. A combined total of 733 measurements were taken on the anodized aluminum hardware which included the structure (intercostals, longerons, and center ring), earth and space end thermal control panels, and experiment tray mounting flanges. The facility thermal control coatings measured in this survey cover 33 percent of the total exposed LDEF surface area. To correlate low earth orbit environmental effects on the anodized coatings, measurements were taken in both exposed and unexposed surfaces and compared to quality assurance (QA) measurements taken on the new surfaces at the time of hardware fabrication in 1978. The results of investigation are presented.

  12. Long Duration Exposure Facility mini-data base user`s guide: IBM-compatible PC computer version. (Diskette)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohnhoff-Hlavacek, G.; Pippin, G.; Dursch, H.

    1995-04-01

    One of the objectives of the LDEF Special Investigation Group (SIG) was to develop a LDEF data base that identifies the experiment objectives and hardware flown, summarizes results and conclusions, and provides a system analysis overview which would include spacecraft design guidelines and space environmental effects. Compiling this information into an easily accessible data base format and making it available to the space community was a major task accomplished by the System and Materials SIG effort beginning in 1991. Included in this document is a short user`s manual for the LDEF Mini-Data Bases. The user`s manual contains pertinent examples frommore » the data base on specifically how to access and work with the LDEF information. Accompanying this document are the mini-data bases on disk.« less

  13. The performance of thermal control coatings on LDEF and implications to future spacecraft

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  14. Analysis of impactor residues in tray clamps from the Long Duration Exposure Facility. Part 2: Clamps from Bay B of the satellite

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) was placed in low-Earth orbit (LEO) in 1984 and recovered 5.7 years later. The LDEF was host to several individual experiments specifically designed to characterize critical aspects of meteoroid and debris environment in LEO. However, it was realized from the beginning that the most efficient use of the satellite would be to examine the entire surface for impact features. In this regard, particular interest centered on common exposed materials that faced in all LDEF pointing directions. Among the most important of these materials was the tray clamps. Therefore, in an effort to better understand the nature of particulates in LEO and their effects on spacecraft hardware, residues found in impact features on LDEF tray clamp surfaces are being analyzed. This catalog presents all data from clamps from Bay B of the LDEF. NASA Technical Memorandum 104759 has cataloged impacts that occurred on Bay B (published March 1993). Subsequent catalogs will include clamps from succeeding bays of the satellite.

  15. Organic matrix composite protective coatings for space applications

    NASA Technical Reports Server (NTRS)

    Dursch, Harry W.; George, Pete

    1995-01-01

    Successful use of composites in low earth orbit (LEO) depends on their ability to survive long-term exposure to atomic oxygen (AO), ultraviolet radiation, charged particle radiation, thermal cycling, and micrometeoroid and space debris. The AO environment is especially severe for unprotected organic matrix composites surfaces in LEO. Ram facing unprotected graphite/epoxy flown on the 69-month Long Duration Exposure Facility (LDEF) mission lost up to one ply of thickness (5 mils) resulting in decreased mechanical properties. The expected AO fluence of the 30 year Space Station Alpha mission is approximately 20 times that seen on LDEF. This exposure would result in significant material loss of unprotected ram facing organic matrix composites. Several protective coatings for composites were flown on LDEF including anodized aluminum, vacuum deposited coatings, a variety of thermal control coatings, metalized Teflon, and leafing aluminum. Results from the testing and analysis of the coated and uncoated composite specimens flown on LDEF's leading and trailing edges provide the baseline for determining the effectiveness of protectively coated composites in LEO. In addition to LDEF results, results from shuttle flight experiments and ground based testing will be discussed.

  16. LDEF Experiment P0006 Linear Energy Transfer Spectrum Measurement (LETSME) quick look report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary analysis of the various passive radiation detector materials included in the P0006 LETSME experiment flown on LDEF (Long Duration Exposure Facility) is presented. It consists of four tasks: (1) readout and analysis of thermoluminescent detectors (TLD); (2) readout and analysis of fission foil/mica detectors; (3) readout and analysis of (6)LiF/CR-39 detectors; and (4) preliminary processing and readout of CR-39 and polycarbonate plastic nuclear track detectors (PNTD).

  17. Applicability of Long Duration Exposure Facility environmental effects data to the design of Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene

    1992-01-01

    Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.

  18. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-07

    This is an onboard photo of the deployment of the Long Duration Exposure Facility (LDEF) from the cargo bay of the Space Shuttle Orbiter Challenger STS-41C mission, April 7, 1984. After a five year stay in space, the LDEF was retrieved during the STS-32 mission by the Space Shuttle Orbiter Columbia in January 1990 and was returned to Earth for close examination and analysis. The LDEF was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids, space debris, radiation particles, atomic oxygen, and solar radiation for an extended period of time. Proving invaluable to the development of both future spacecraft and the International Space Station (ISS), the LDEF carried 57 science and technology experiments, the work of more than 200 investigators, 33 private companies, 21 universities, 7 NASA centers, 9 Department of Defense laboratories, and 8 forein countries.

  19. Partial analysis of LDEF experiment A-0114

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1991-01-01

    During the contract period, work concentrated on four main components. Data from the UAH silver pin hole camera was analyzed for determination of the mean Long Duration Exposure Facility (LDEF) satellite attitude and stability in orbit, to include pitch and yaw. Chemical testing performed on the AO-114 hot plate determined the form and locus of absorption of cosmogenic beryllium-7. Reaction rates of atomic oxygen with Kapton and other polymeric solids integrated over the whole LDEF orbital lifetime were analyzed. These rates were compared with the JSC estimated values for Space Station exposures. Metal and polymer films exposed on A0114 (C-9 and C-3 plates) were also analyzed.

  20. Experimental impacts into Teflon targets and LDEF thermal blankets

    NASA Astrophysics Data System (ADS)

    Hoerz, F.; Cintala, M. J.; Zolensky, M. E.; Bernhard, R. P.; See, T. H.

    1994-03-01

    The Long Duration Exposure Facility (LDEF) exposed approximately 20 sq m of identical thermal protective blankets, predominantly on the Ultra-Heavy Cosmic Ray Experiment (UHCRE). Approximately 700 penetration holes greater than 300 micron in diameter were individually documented, while thousands of smaller penetrations and craters occurred in these blankets. As a result of their 5.7 year exposure and because they pointed into a variety of different directions relative to the orbital motion of the nonspinning LDEF platform, these blankets can reveal important dynamic aspects of the hypervelocity particle environment in near-earth orbit. The blankets were composed of an outer teflon layer (approximately 125 micron thick), followed by a vapor-deposited rear mirror of silver (less than 1000 A thick) that was backed with an organic binder and a thermal protective paint (approximately 50 to 75 micron thick), resulting in a cumulative thickness (T) of approximately 175 to 200 microns for the entire blanket. Many penetrations resulted in highly variable delaminations of the teflon/metal or metal/organic binder interfaces that manifest themselves as 'dark' halos or rings, because of subsequent oxidation of the exposed silver mirror. The variety of these dark albedo features is bewildering, ranging from totally absent, to broad halos, to sharp single or multiple rings. Over the past year experiments were conducted over a wide range of velocities (i.e., 1 to 7 km/s) to address velocity dependent aspects of cratering and penetrations of teflon targets. In addition, experiments were performed with real LDEF thermal blankets to duplicate the LDEF delaminations and to investigate a possible relationship of initial impact conditions on the wide variety of dark halo and ring features.

  1. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Technical Reports Server (NTRS)

    Bourrieau, J.

    1992-01-01

    One of the objectives of the AO 138-7 experiment on board the LDEF was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical cases, both including 5 TLDs inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile induced. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (solar maximum and solar minimum periods) and the cosmic rays; due to the magnetospheric shielding, the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi-infinite plane shield of Al are computed with radiation transport codes. TLD reading are performed after flight; due to the mission duration increase, a post-flight calibration was necessary in order to cover the range of the flight induced dose. The results obtained, similar (+ or - 30 pct.) in both cases, are compared with the dose profile computation. In practice, these LDEF results, with less than a factor 1.4 between measurements and forecasts, reinforce the validity of the computation methods and models used for the long term evaluation of space radiation intensity on low inclination Earth orbits.

  2. LDEF Interplanetary Dust Experiment (IDE) results

    NASA Technical Reports Server (NTRS)

    Oliver, John P.; Singer, S. F.; Weinberg, J. L.; Simon, C. G.; Cooke, W. J.; Kassel, P. C.; Kinard, W. H.; Mulholland, J. D.; Wortman, J. J.

    1995-01-01

    The Interplanetary Dust Experiment (IDE) provided high time resolution detection of microparticle impacts on the Long Duration Exposure Facility satellite. Particles, in the diameter range from 0.2 microns to several hundred microns, were detected impacting on six orthogonal surfaces of the gravity-gradient stabilized LDEF spacecraft. The total sensitive surface area was about one square meter, distributed between LDEF rows 3 (Wake or West), 6 (South), 9 (Ram or East), 12 (North), as well as the Space and Earth ends of LDEF. The time of each impact is known to an accuracy that corresponds to better than one degree in orbital longitude. Because LDEF was gravity-gradient stabilized and magnetically damped, the direction of the normal to each detector panel is precisely known for each impact. The 11 1/2 month tape-recorded data set represents the most extensive record gathered of the number, orbital location, and incidence direction for microparticle impacts in low Earth orbit. Perhaps the most striking result from IDE was the discovery that microparticle impacts, especially on the Ram, South, and North surfaces, were highly episodic. Most such impacts occurred in localized regions of the orbit for dozens or even hundreds of orbits in what we have termed Multiple Orbit Event Sequences (MOES). In addition, more than a dozen intense and short-lived 'spikes' were seen in which impact fluxes exceeded the background by several orders of magnitude. These events were distributed in a highly non-uniform fashion in time and terrestrial longitude and latitude.

  3. Space environment durability of beta cloth in LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  4. LDEF post-retrieval evaluation of exobiology interests

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Radicatldibrozolo, F.; Fitzgerald, Ray

    1991-01-01

    Cursory examination of the Long Duration Exposure Facility (LDEF) shows the existence of thousands of impact craters of which less than 1/3 exceed 0.3 mm in diameter; the largest crater is 5.5 mm. Few craters show oblique impact morphology and, surprisingly, only a low number of craters have recognizable impact debris. Study of this debris could be of interest to exobiology in terms of C content and carbonaceous materials. All craters greater that 0.3 mm have been imaged and recorded into a data base by the preliminary examination team. Various portions of the LDEF surfaces are contaminated by outgassed materials from experimenters trays, in addition to the LDEF autocontamination and impact with orbital debris not of extraterrestrial origin. Because interplanetary dust particles (IDP's) nominally impacted the LDEF at velocities greater than 3 km/s, the potential for intact survival of carbonaceous compounds is mostly unknown for hypervelocity impacts. Calculations show that for solid phthalic acid (a test impactor), molecular dissociation would not necessarily occur below 3 km/s, if all of the impact energy was directed at breaking molecular bonds, which is not the case. Hypervelocity impact experiments (LDEF analogs) were performed using the Ames Vertical Gun Facility. Grains of phthalic acid and the Murchison meteorite (grain diameter = 0.2 for both) were fired into an Al plate at 2.1 and 4.1 km/s respectively. The results of the study are presented, and it is concluded that meaningful biogenic elemental and compound information can be obtained from IDP impacts on the LDEF.

  5. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  6. Syncom 4 deploy, LDEF retrieval highlight 10-day Columbia flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-32 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objectives of STS-32 are the deployment of a Navy synchronous communications satellite (Syncom 4) and the retrieval of the Long Duration Exposure Facility (LDEF) launched from the Challenger in April 1984. Secondary STS-32 payloads include a protein crystal growth experiment, the Fluids Experiment Apparatus (FEA) for the investigation of microgravity materials processing, the Mesoscale Lighting Experiment, the Latitude-Longitude Locator Experiment, the Americal Flight Echocardiograph, and an experiment to investigate neurospora circadian rhythms in a microgravity environment.

  7. Thermal control paints on LDEF: Results of M0003 sub-experiment 18

    NASA Technical Reports Server (NTRS)

    Jaggers, C. H.; Meshishnek, M. J.; Coggi, J. M.

    1993-01-01

    Several thermal control paints were flown on the Long Duration Exposure Facility (LDEF), including the white paints Chemglaze A276, S13GLO, and YB-71, and the black paint D-111. The effects of low earth orbit, which includes those induced by UV radiation and atomic oxygen, varied significantly with each paint and its location on LDEF. For example, samples of Chemglaze A276 located on the trailing edge of LDEF darkened significantly due to UV-induced degradation of the paint's binder, while leading edge samples remained white but exhibited severe atomic oxygen erosion of the binder. Although the response of S13GLO to low earth orbit is much more complicated, it also exhibited greater darkening on trailing edge samples as compared to leading edge samples. In contrast, YB-71 and D-111 remained relatively stable and showed minimal degradation. The performance of these paints as determined by changes in their optical and physical properties, including solar absorptance as well as surface chemical changes and changes in surface morphology is examined. It will also provide a correlation of these optical and physical property changes to the physical phenomena that occurred in these materials during the LDEF mission.

  8. Radiation and temperature effects on LDEF fiber optic samples

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Hartmayer, R.; Bergman, L. A.

    1993-01-01

    Results obtained from the JPL Fiber Optics Long Duration Exposure Facility (LDEF) Experiment since the June 1991 Experimenters' Workshop are addressed. Radiation darkening of laboratory control samples and the subsequent annealing was measured in the laboratory for the control samples. The long-time residual loss was compared to the LDEF flight samples and found to be in agreement. The results of laboratory temperature tests on the flight samples, extending over a period of about nine years, including the pre-flight and post-flight analysis periods, are described. The temperature response of the different cable samples varies widely, and appears in two samples to be affected by polymer aging. Conclusions to date are summarized.

  9. Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Drolshagen, Gerhard

    1993-01-01

    The number of impacts from meteoroids and space debris particles to the various LDEF rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on recent reference environment flux models and includes geometrical and directional effects. A comparison of model predictions and actual observations is made for penetrations of the thermal blankets which covered the UHCR experiment. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a test case for the latest meteoroid and debris flux models.

  10. Large craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1991-01-01

    The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.

  11. Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates

    NASA Technical Reports Server (NTRS)

    Griffis, D. P.; Wortman, J. J.

    1992-01-01

    The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.

  12. Projectile compositions and modal frequencies on the chemistry of micrometeoroids LDEF experiment

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; See, Thomas H.; Hoerz, Friedrich

    1993-01-01

    The Chemistry of Micrometeoroids Experiment (LDEF instrument A0187-1) exposed witness plates of high-purity gold (greater than 99.99 percent Au) and commercial aluminum (greater than 99 percent Al) with the objective of analyzing the residues of cosmic-dust and orbital-debris particles associated with hypervelocity impact craters. The gold substrates were located approximately 8 deg off LDEF's trailing edge (Bay A03), while the aluminum surfaces resided in Bay A11, approximately 52 deg from LDEF's leading edge. SEM-EDX techniques were employed to analyze the residues associated with 199 impacts on the gold and 415 impacts on the aluminum surfaces. The residues that could be analyzed represent natural or man-made materials. The natural particles dominate at all particle sizes less than 5 micron. It is possible to subdivide both particle populations into subclasses. Chondritic compositions dominate the natural impactors (71 percent), followed by monomineralic, mafic-silicate compositions (26 percent), and by Fe-Ni rich sulfides (approximately 3 percent). Approximately 30 percent of all craters on the gold collectors were caused by man-made debris such as aluminum, paint flakes, and other disintegrated, structural and electronic components. Equations-of-state and associated calculations of shock stresses for typical LDEF impacts into the gold and aluminum substrates suggest that substantial vaporization may have occurred during many of the impacts and is the reason why approximately 50 percent of all craters did not contain sufficient residue to permit analysis by the SEM-EDX technique. After converting the crater diameters into projectile sizes using encounter speeds typical for the trailing-edge and forward-facing (Row 11) directions, and accounting for normalized exposure conditions of the CME collectors, we derived the absolute and relative fluxes of specific projectile classes. The natural impactors encounter all LDEF pointing directions with comparable, modal frequencies suggesting compositional (and dynamic) homogeneity of the interplanetary-dust environment in near-Earth orbit.

  13. LDEF materials data bases

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  14. Changes in chemical and optical properties of thin film metal mirrors on LDEF

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Zwiener, James M.; Gregory, John C.; Raikar, Ganesh N.; Christl, Ligia C.; Wilkes, Donald R.

    1995-01-01

    Thin films of the metals Cu, Ni, Pt, Au, Sn, Mo, and W deposited on fused silica flats were exposed at ambient temperature on the leading and trailing faces of the LDEF. Reflectances of these films were measured from 250 to 2500 nm and compared with controls. The exposed films were subjected to the LDEF external environment including atomic oxygen, molecular contamination, and solar ultraviolet. Major changes in optical and infrared reflectance were seen for Cu, Mo, Ni, and W films on the leading face of LDEF and are attributed to partial conversion of metal to metal oxide. Smaller changes in optical properties are seen on all films and are probably caused by thin contaminant films deposited on top of the metal. The optical measurements are correlated with film thickness measurements, x-ray photoelectron spectroscopy, optical calculations, and, in the case of Cu, with x-ray diffraction measurements. In a few cases, comparisons with results from a similar UAH experiment on STS-8 have been drawn.

  15. Meteoroid and Debris Impact Features Documented on the Long Duration Exposure Facility: A Preliminary Report

    NASA Technical Reports Server (NTRS)

    See, T. (Compiler); Allbrooks, M. (Compiler); Atkinson, D. (Compiler); Simon, C. (Compiler); Zolensky, M. (Compiler)

    1990-01-01

    The Long Duration Exposure Facility (LDEF) was host to several individual experiments designed to characterize aspects of the meteoroid and space-debris environment in low-Earth orbit. It was realized from the very start, however, that the most complete way to accomplish this goal was to exploit the meteoroid and debris record of the entire LDEF. The Meteoroid and Debris Special Investigation Group (M&D SIG) was organized to achieve this end. Two dominant goals of the M&D SIG are the documentation of the impact record of the entire LDEF, and the dissemination of this information to all interested workers. As a major step towards the accomplishment of these goals, we have prepared this publication describing the M&D SIG observations of impact features made during LDEF deintegration activities at KSC in the spring of 1990. It is hoped that this report will serve as a useful guide for spacecraft designers as well as for meteoroid and space-debris workers, and that it will spur further work on the LDEF impact-laden surfaces collected by the M&D SIG and now available for allocation to qualified investigators. An important aim is to present all data and descriptions of impact features in a form which, though terse, remains comprehensible to the wider community. There is a deliberate minimum of interpretations. Thus, this catalog is intended to serve as a guide to the impact features found on LDEF and is not intended to stand as a definitive interpretive work.

  16. Long-term exposure of bacterial spores to space

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Buecker, H.; Reitz, G.

    1992-01-01

    With the NASA mission of the Long Duration Exposure Facility (LDEF), the authors have obtained the opportunity to expose Bacillus subtilis spores for nearly six years to the space environment and to analyze their responses after retrieval. The experiment was mounted onto a side tray of LDEF facing space. Data shows that the chances of microorganisms surviving in free space will be greatly increased by adequate shielding against solar ultraviolet light.

  17. Long-term microparticle flux variability indicated by comparison of Interplanetary Dust Experiment (IDE) timed impacts for LDEF's first year in orbit with impact data for the entire 5.77-year orbital lifetime

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Mulholland, J. Derral; Oliver, John P.; Cooke, William J.; Kassel, Philip C., Jr.

    1993-01-01

    The electronic sensors of the Interplanetary Dust Experiment (IDE) recorded precise impact times and approximate directions for submicron to approximately 100 micron size particles on all six primary sides of the spacecraft for the first 346 days of the LDEF orbital mission. Previously-reported analyses of the timed impact data have established their spatio-temporal features, including the demonstration that a preponderance of the particles in this regime are orbital debris and that a large fraction of the debris particles are encountered in megameter-size clouds. Short-term fluxes within such clouds can rise several orders of magnitude above the long-term average. These unexpectedly large short-term variations in debris flux raise the question of how representative an indication of the multi-year average flux is given by the nearly one year of timed data. One of the goals of the IDE was to conduct an optical survey of impact sites on detectors that remained active during the entire LDEF mission, to obtain full-mission fluxes. We present here the comparisons and contrasts among the new IDE optical survey impact data, the IDE first-year timed impact data, and impact data from other LDEF micrometeoroid and debris experiments. The following observations are reported: (1) the 5.77 year long-term integrated microparticle impact fluxes recorded by IDE detectors matched the integrated impact fluxes measured by other LDEF investigators for the same period; (2) IDE integrated microparticle impact fluxes varied by factors from 0.5 to 8.3 for LDEF days 1-346, 347-2106 and 1-2106 (5.77 years) on rows 3 (trailing edge, or West), 6 (South side), 12 (North side), and the Earth and Space ends; and (3) IDE integrated microparticle impact fluxes varied less than 3 percent for LDEF days 1-346, 347-2106 and 1-2106 (5.77 years) on row 9 (leading edge, or East). These results give further evidence of the accuracy and internal consistency of the recorded IDE impact data. This leads to the further conclusion that the utility of long-term ratios for impacts on various sides of a stabilized satellite in low Earth orbit (LEO) is extremely limited. These observations and their consequences highlight the need for continuous, real time monitoring of the dynamic microparticle environment in LEO.

  18. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1992-01-01

    The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently transported up from the stratosphere with exceptional efficiency.

  19. Micro-abrasion package capture cell experiment on the trailing edge of LDEF: Impactor chemistry and whipple bumper shield efficiencies

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Howard J.; Yano, Hajime

    1995-01-01

    Four of the eight available double layer microparticle capture cells, flown as the experiment A0023 on the trailing (West) face of LDEF, have been extensively studied. An investigation of the chemistry of impactors has been made using SEM/EDX techniques and the effectiveness of the capture cells as bumper shields has also been examined. Studies of these capture cells gave positive EDX results, with 53 percent of impact sites indicating the presence of some chemical residues, the predominant residue identified as being silicon in varying quantities.

  20. A final look at LDEF electro-optic systems components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1995-01-01

    Postrecovery characteristics of LDEF electro-optic components from the GTRI tray are compared with their prelaunch characteristics and with the characteristics of similar components from related experiments. Components considered here include lasers, light-emitting diodes, semiconducting radiation detectors and arrays, optical substrates, filters, and mirrors, and specialized coatings. Our understanding of the physical effects resulting from low earth orbit are described, and guidelines and recommendations for component and materials choices are presented.

  1. Derivation of particulate directional information from analysis of elliptical impact craters on LDEF

    NASA Technical Reports Server (NTRS)

    Newman, P. J.; Mackay, N.; Deshpande, S. P.; Green, S. F.; Mcdonnell, J. A. M.

    1993-01-01

    The Long Duration Exposure Facility provided a gravity gradient stabilized platform which allowed limited directional information to be derived from particle impact experiments. The morphology of impact craters on semi-infinite materials contains information which may be used to determine the direction of impact much more accurately. We demonstrate the applicability of this technique and present preliminary results of measurements from LDEF and modelling of interplanetary dust and space debris.

  2. Secondary ion mass spectrometry (SIMS) analysis of hypervelocity microparticle impact sites on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.

    1995-01-01

    Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal blankets.

  3. The ionizing radiation environment of LDEF prerecovery predictions

    NASA Technical Reports Server (NTRS)

    Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang

    1991-01-01

    The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.

  4. Spacecraft contamination issues from LDEF: Issues for design

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    Many contamination sources have been identified on the Long Duration Exposure Facility (LDEF). Effects of contamination from these sources are being quantified and have been reported on in several papers. For a designer, the essential question is how much contamination from all sources can be tolerated without causing a given spacecraft system to degrade below a critical performance level, or fail altogether. Even a rudimentary knowledge of the mechanisms by which molecular and particulate contamination can occur will allow simple design options to be chosen to circumvent potential contamination problems and reduce contamination levels. Because of the varied nature and condition of hardware used on LDEF experiments, examples of many types of contamination were seen and these provide a useful guide to expected performance of many types of materials in space environments.

  5. Long Duration Exposure Facility (LDEF). Mission 1 Experiments

    NASA Technical Reports Server (NTRS)

    Clark, L. G. (Editor); Kinard, W. H. (Editor); Carter, D. L., Jr. (Editor); Jones, J. L., Jr. (Editor)

    1984-01-01

    Spaceborne experiments using the space shuttle payload known as the Long Duration Exposure Facility are described. Experiments in the fields of materials, coatings, thermal systems, power and propulsion, electronic, and optics are discussed.

  6. Long Duration Exposure Facility M0003-5 thermal control coatings on DoD flight experiment

    NASA Technical Reports Server (NTRS)

    Hurley, Charles J.; Lehn, William L.

    1992-01-01

    The M0003-5 thermal control coatings and materials orbited on the LDEF M0003 Space Environment Effects on Spacecraft Materials were a part of a Wright Laboratories Materials Directorate larger experiment. They were selected from new materials which emerged from development programs during the 1978-1982 time frame. Included were materials described in the technical literature which were being considered or had been applied to satellites. Materials that had been exposed on previous satellite materials experiments were also included to provide data correlation with earlier space flight experiments. The objective was to determine the effect of the LDEF environment on the physical and optical properties of thermal control coatings and materials. One hundred and two specimens of various pigmented organic and inorganic coatings, metallized polymer thin films, optical solar reflectors, and mirrors were orbited on LDEF. The materials were exposed in four separate locations on the vehicle. The first set was exposed on the direct leading edge of the satellite. The second set was exposed on the direct trailing edge of the vehicle. The third and fourth sets were exposed in environmental exposure control canisters (EECC) located 30 degrees off normal to the leading and trailing edges. The purpose of the experiment was to understand the changes in the properties of materials before and after exposure to the space environment and to compare the changes with predictions based on laboratory experiments. The basic approach was to measure the optical and physical properties of materials before and after long-term exposure to a low earth orbital environment comprised of UV, VUV, electrons, protons, atomic oxygen, thermal cycling, vacuum, debris, and micrometeoroids. Due to the unanticipated extended orbital flight of LDEF, the thermal control coatings and materials in the direct leading and trailing edge were exposed for a full five years and ten months to the space environment and the canister materials were exposed for approximately one year to the full environment.

  7. Status of LDEF ionizing radiation measurements and analysis

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1992-01-01

    The LDEF-1 results from the particle astrophysics, radiation environments, and dosimetry measurements on LDEF-1 are summarized, including highlights from presentations at the 2nd symposium. Progress in using LDEF data to improve radiation environment models and calculation methods is reviewed. Radiation effects, or the lack thereof are discussed. Future plans of the LDEF Ionizing Radiation Special Investigation Group are presented.

  8. Long duration exposure facility post-flight thermal analysis, part 1

    NASA Technical Reports Server (NTRS)

    Berrios, William M.; Sampair, Thomas R.

    1992-01-01

    Results of the post-flight thermal analysis of the Long Duration Exposure Facility (LDEF) mission are presented. The LDEF mission thermal analysis was verified by comparing the thermal model results to flight data from the LDEF Thermal Measurements System (THERM). Post-flight calculated temperature uncertainties have been reduced to under +/- 18 F from the pre-flight uncertainties of +/- 40 F. The THERM consisted of eight temperature sensors, a shared tape recorder, a standard LDEF flight battery, and an electronics control box. The temperatures were measured at selected locations on the LDEF structure interior during the first 390 days of flight and recorded for post-flight analysis. After the LDEF retrieval from Space on 12 Jan. 1990, the tape recorder was recovered from the spacecraft and the data reduced for comparison to the LDEF predicted temperatures. The LDEF mission temperatures were calculated prior to the LDEF deployment on 7 Apr. 1980, and updated after the LDEF retrieval with the following actual flight parameter data: including thermal fluxes, spacecraft attitudes, thermal coatings degradation, and contamination effects. All updated data used for the calculation of post-flight temperatures is also presented in this document.

  9. Post flight system analysis of FRECOPA (AO 138)

    NASA Technical Reports Server (NTRS)

    Durin, Christian

    1991-01-01

    The unexpected duration for the flight of the Long Duration Exposure Facility (LDEF) conducted CNES to create a special investigation group in order to analyze all the materials and systems which compose the French Cooperative Payload (FRECOPA) except the experiments especially prepared for the flight. The FRECOPA tray was on the trailing face (V-) of the LDEF and protected from the atomic oxygen flux during all the flight. However, the solar irradiation was very important with solar flux quite perpendicular to the experiment once an orbit. There was also a good vacuum environment. The objectives are to test the effects of the combined space environment on materials and components like: structure, thermal control coatings and blankets, electronic unit, motors, and mechanical fixtures. When the LDEF returned to Kennedy Space Center, a visual inspection showed the very good behavior of the materials used and it was noted that the three mechanisms to open and close the experiment canisters worked completely. Many impacts of micrometeoroids or space debris on the structure and on the thermal protections were observed. After FRECOPA was brought back to Toulouse, many tests were performed and include: working order tests, mechanical tests (tension), optical and electronic microscopy (SEM), surface analysis (ESCA, SIMS, RBS, AUGER, etc.), thermal analysis, pressure measurements, and gas analysis (outgassing tests). The results of these experiments are discussed.

  10. Whisker/Cone growth on the thermal control surfaces experiment no. S0069

    NASA Technical Reports Server (NTRS)

    Zwiener, James M.; Coston, James E., Jr.; Miller, Edgar R.; Mell, Richard J.; Wilkes, Donald R.

    1995-01-01

    An unusual surface 'growth' was found during scanning electron microscope (SEM) investigations of the Thermal Control Surface Experiment (TCSE) S0069 front thermal cover. This 'growth' is similar to the cone type whisker growth phenomena as studied by G. K. Wehner beginning in the 1960's. Extensive analysis has identified the most probable composition of the whiskers to be a silicate type glass. Sources of the growth material are outgassing products from the experiment and orbital atomic oxygen, which occurs naturally at the orbital altitudes of the LDEF mission in the form of neutral atomic oxygen. The highly ordered symmetry and directionality of the whiskers are attributed to the long term (5.8 year) stable flight orientation of the LDEF.

  11. Contamination on LDEF: Sources, distribution, and history

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    An introduction to contamination effects observed on the Long Duration Exposure Facility (LDEF) is presented. The activities reported are part of Boeing's obligation to the LDEF Materials Special Investigation Group. The contamination films and particles had minimal influence on the thermal performance of the LDEF. Some specific areas did have large changes in optical properties. Films also interfered with recession rate determination by reacting with the oxygen or physically shielding underlying material. Generally, contaminant films lessen the measured recession rate relative to 'clean' surfaces. On orbit generation of particles may be an issue for sensitive optics. Deposition on lenses may lead to artifacts on photographic images or cause sensors to respond inappropriately. Particles in the line of sight of sensors can cause stray light to be scattered into sensors. Particles also represent a hazard for mechanisms in that they can physically block and/or increase friction or wear on moving surfaces. LDEF carried a rather complex mixture of samples and support hardware into orbit. The experiments were assembled under a variety of conditions and time constraints and stored for up to five years before launch. The structure itself was so large that it could not be baked after the interior was painted with chemglaze Z-306 polyurethane based black paint. Any analysis of the effects of molecular and particulate contamination must account for a complex array of sources, wide variation in processes over time, and extreme variation in environment from ground to launch to flight. Surface conditions at certain locations on LDEF were established by outgassing of molecular species from particular materials onto adjacent surfaces, followed by alteration of those species due to exposure to atomic oxygen and/or solar radiation.

  12. Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets

    NASA Astrophysics Data System (ADS)

    Drolshagen, Gerhard

    1992-06-01

    The number of impacts from meteoroids and space debris particles to the various Long Duration Exposure Facility (LDEF) rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on the latest environment flux models and includes geometrical and directional effects. A detailed comparison of model predictions and actual observations is made for impacts on the thermal blankets which covered the USCR experiment. Impact features on these blankets were studied intensively in European laboratories and hypervelocity impacts for calibration were performed. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a unique test case for the latest meteoroid and debris flux models.

  13. Low-Earth orbit effects on organic composite materials flown on LDEF

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.

    1993-01-01

    Over 35 different types of organic matrix composites were flown as part of 11 different experiments onboard the NASA Long Duration Exposure Facility (LDEF) satellite. This materials and systems experiment satellite flew in low-earth orbit (LEO) for 69 months. For that period, the experiments were subjected to the LEO environment including atomic oxygen (AO), ultraviolet (UV) radiation, thermal cycling, microvacuum, meteoroid and space debris (M&D), and particle radiation. Since retrieval of the satellite in January of 1990, the principal experiment investigators have been deintegrating, examining, and testing the materials specimens flown. The most detrimental environmental effect on all organic matrix composites was material loss due to AO erosion. AO erosion of uncoated organic matrix composites (OMC) facing the satellite ram direction was responsible for significant mechanical property degradations. Also, thermal cycling-induced microcracking was observed in some nonunidirectional reinforced OMC's. Thermal cycling and outgassing caused significant but predictable dimensional changes as measured in situ on one experiment. Some metal and metal oxide-based coatings were found to be very effective at preventing AO erosion of OMC's. However, M&D impacts and coating fractures which compromised these coatings allowed AO erosion of the underlying OMC substrates. The findings for organic matrix composites flown on the LDEF are summarized and the LEO environmental factors, their effects, and the influence on space hardware design factors for LEO applications are identified.

  14. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.

  15. Preliminary results of radiation measurements on EURECA

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The eleven-month duration of the EURECA mission allows long-term radiation effects to be studied similarly to those of the Long Duration Exposure Facility (LDEF). Basic data can be generated for projections to crew doses and electronic and computer reliability on spacecraft missions. A radiation experiment has been designed for EURECA which uses passive integrating detectors to measure average radiation levels. The components include a Trackoscope, which employs fourteen plastic nuclear track detector (PNTD) stacks to measure the angular dependence of high LET (greater than or equal to 6 keV/micro m) radiation. Also included are TLD's for total absorbed doses, thermal/resonance neutron detectors (TRND's) for low energy neutron fluences and a thick PNTD stack for depth dependence measurements. LET spectra are derived from the PNTD measurements. Preliminary TLD results from seven levels within the detector array show that integrated does inside the flight canister varied from 18.8 +/- 0.6 cGy to 38.9 +/- 1.2 cGy. The TLD's oriented toward the least shielded direction averaged 53% higher in dose than those oriented away from the least shielded direction (minimum shielding toward the least shielded direction varied from 1.13 to 7.9 g/cm(exp 2), Al equivalent). The maximum dose rate on EURECA (1.16 mGy/day) was 37% of the maximum measured on LDEF and dose rates at all depths were less than measured on LDEF. The shielding external to the flight canister covered a greater solid angle about the canister than the LDEF experiments.

  16. Performance of selected polymeric materials on LDEF

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Stein, Bland A.

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials for potential advanced spacecraft application. This paper examines the molecular level response of selected polymeric materials which flew onboard this vehicle. Polymers include epolyimide, polysulfone, and polystyrene film and polyimide, polysulfone, and epoxy matrix resin/graphite fiber reinforced composites. Several promising experimental films were also studied. Most specimens received 5.8 years of low Earth orbital (LEO) exposure on LDEF. Several samples received on 10 months of exposure. Chemical characterization techniques included ultraviolet-visible and infrared spectroscopy, thermal analysis, x-ray photoelectron spectroscopy, and selected solution property measurements. Results suggest that many molecular level effects present during the first 10 months of exposure were not present after 5.8 years of exposure for specimens on or near Row 9. Increased AO fluence near the end of the mission likely eroded away much environmentally induced surface phenomena. The objective of this work is to provide fundamental information for use in improving the performance of polymeric materials for LEO application. A secondary objective is to gain an appreciation for the constraints and limitations of results from LDEF polymeric materials experiments.

  17. LDEF Materials Results for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F. (Compiler); Gregory, John (Compiler)

    1993-01-01

    These proceedings describe the application of LDEF data to spacecraft and payload design, and emphasize where space environmental effects on materials research and development is needed as defined by LDEF data. The LDEF six years of exposure of materials has proven to be by far the most comprehensive source of information ever obtained on the long-term performance of materials in the space environment. The conference provided a forum for materials scientists and engineers to review and critically assess the LDEF results from the standpoint of their relevance, significance, and impact on spacecraft design practice. The impact of the LDEF findings on materials selection and qualification, and the needs and plans for further study, were addressed from several perspectives. Many timely and needed changes and modifications in external spacecraft materials selection have occurred as a result of LDEF investigations.

  18. Overview of the systems special investigation. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Mason, James B.; Dursch, Harry; Edelman, Joel

    1992-01-01

    The Systems Special Investigation Group (SIG), formed by the Long Duration Exposure Facility (LDEF) Project Office to perform post flight analysis of systems hardware, was chartered to investigate the effects of the extended LDEF mission on both satellite and experiment systems and to coordinate and integrate all systems analysis performed in post flight investigations. Almost all of the top level functional testing of the active experiments has been completed, but many components are still under investigation by either the Systems SIG or individual experimenters. Results reported to date have been collected and integrated by the Systems SIG and an overview of the current results and the status of the Systems Investigation are presented in this paper.

  19. New results from FRECOPA analysis

    NASA Technical Reports Server (NTRS)

    Durin, Christian

    1993-01-01

    New results from the ongoing analysis of the FRECOPA's (FREnch COoperative PAssive payload) system hardware are discussed. FRECOPA (AO138) was one of the 57 experiments flown on the LDEF satellite. The experiment was located on the trailing edge (Tray B3) and was exposed to UV radiation (11,100 equivalent sun hours), approximately equal to 34,000 thermal cycles, higher vacuum levels than the leading edge, a low atomic oxygen flux, and minor doses of protons and electrons. Due to LDEF's extended mission (5.8 years), CNES decided to set up a team to analyze the FRECOPA system. Initial results were presented at the First Post-Retrieval Conference, June, 1991. The results obtained since then are summarized.

  20. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  1. LDEF electronic systems: Successes, failures, and lessons

    NASA Technical Reports Server (NTRS)

    Miller, Emmett; Porter, Dave; Smith, Dave; Brooks, Larry; Levorsen, Joe; Mulkey, Owen

    1991-01-01

    Following the Long Duration Exposure Facility (LDEF) retrieval, the Systems Special Investigation Group (SIG) participated in an extensive series of tests of various electronic systems, including the NASA provided data and initiate systems, and some experiment systems. Overall, these were found to have performed remarkably well, even though most were designed and tested under limited budgets and used at least some nonspace qualified components. However, several anomalies were observed, including a few which resulted in some loss of data. The postflight test program objectives, observations, and lessons learned from these examinations are discussed. All analyses are not yet complete, but observations to date will be summarized, including the Boeing experiment component studies and failure analysis results related to the Interstellar Gas Experiment. Based upon these observations, suggestions for avoiding similar problems on future programs are presented.

  2. Predictions of LDEF radioactivity and comparison with measurements

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Harmon, B. A.; Laird, C. E.

    1995-01-01

    As part of the program to utilize LDEF data for evaluation and improvement of current ionizing radiation environmental models and related predictive methods for future LEO missions, calculations have been carried out to compare with the induced radioactivity measured in metal samples placed on LDEF. The predicted activation is about a factor of two lower than observed, which is attributed to deficiencies in the AP8 trapped proton model. It is shown that this finding based on activation sample data is consistent with comparisons made with other LDEF activation and dose data. Plans for confirming these results utilizing additional LDEF data sets, and plans for model modifications to improve the agreement with LDEF data, are discussed.

  3. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1992-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  4. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  5. An introduction to shuttle/LDEF retrieval operations: The R-bar approach option. [orbital mechanics and braking schedule

    NASA Technical Reports Server (NTRS)

    Hall, W. M.

    1978-01-01

    Simulated orbiter direct approaches during long duration exposure facility (LDEF) retrieval operations reveal that the resultant orbiter jet plume fields can significantly disturb LDEF. An alternate approach technique which utilizes orbital mechanics forces in lieu of jets to brake the final orbiter/LDEF relative motion during the final approach, is described. Topics discussed include: rendezvous operations from the terminal phase initiation burn through braking at some standoff distance from LDEF, pilot and copilot activities, the cockpit instrumentation employed, and a convenient coordinate frame for studying the relative motion between two orbiting bodies. The basic equations of motion for operating on the LDEF radius vector are introduced. Practical considerations of implementing an R-bar approach, namely, orbiter/LDEF relative state uncertainties and orbiter control system limitations are explored. A possible R-bar approach strategy is developed and demonstrated.

  6. Ionizing radiation measurements on LDEF: A0015 Free flyer biostack experiment

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Csige, I.; Frigo, L. A.

    1995-01-01

    This report covers the analysis of passive radiation detectors flown as part of the A0015 Free Flyer Biostack on LDEF (Long Duration Exposure Facility). LET (linear energy transfer) spectra and track density measurements were made with CR-39 and Polycarbonate plastic nuclear track detectors. Measurements of total absorbed dose were carried out using Thermoluminescent Detectors. Thermal and resonance neutron dose equivalents were measured with LiF/CR-39 detectors. High energy neutron and proton dose equivalents were measured with fission foil/CR-39 detectors.

  7. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Model calculations and analyses have been carried out to compare with several sets of data (dose, induced radioactivity in various experiment samples and spacecraft components, fission foil measurements, and LET spectra) from passive radiation dosimetry on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The calculations and data comparisons are used to estimate the accuracy of current models and methods for predicting the ionizing radiation environment in low earth orbit. The emphasis is on checking the accuracy of trapped proton flux and anisotropy models.

  8. Long duration exposure facility post-flight thermal analysis: Orbital/thermal environment data package

    NASA Technical Reports Server (NTRS)

    Berrios, William M.

    1990-01-01

    A post flight mission thermal environment for the Long Duration Exposure Facility was created as part of the thermal analysis data reduction effort. The data included herein is the thermal parameter data used in the calculation of boundary temperatures. This boundary temperature data is to be released in the near future for use by the LDEF principal investigators in the final analysis of their particular experiment temperatures. Also included is the flight temperature data as recorded by the LDEF Thermal Measurements System (THERM) for the first 90 days of flight.

  9. Atomic oxygen exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.

  10. LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1992-01-01

    The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF, corresponding to a V(infinity) Earth approach velocity = 20.9 km/s. Normally resolved average impact velocities on LDEF's cardinal point faces are shown. As 'excess' flux on the east, north, and south faces is observed, compatible with an Earth orbital component below some 5 microns in particle diameter.

  11. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1992-01-01

    Data from the ionizing radiation dosimetry aboard LDEF provide a unique opportunity for assessing the accuracy of current space radiation models and in identifying needed improvements for future mission applications. Details are given of the LDEF data available for radiation model evaluations. The status is given of model comparisons with LDEF data, along with future directions of planned modeling efforts and data comparison assessments. The methodology is outlined which is related to modeling being used to help insure that the LDEF ionizing radiation results can be used to address ionizing radiation issues for future missions. In general, the LDEF radiation modeling has emphasized quick-look predictions using simplified methods to make comparisons with absorbed dose measurements and induced radioactivity measurements of emissions. Modeling and LDEF data comparisons related to linear energy transfer spectra are of importance for several reasons which are outlined. The planned modeling and LDEF data comparisons for LET spectra is discussed, including components of the LET spectra due to different environment sources, contribution from different production mechanisms, and spectra in plastic detectors vs silicon.

  12. LDEF materials results for spacecraft applications: Executive summary

    NASA Astrophysics Data System (ADS)

    Whitaker, A. F.; Dooling, D.

    1995-03-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  13. LDEF materials results for spacecraft applications: Executive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Compiler); Dooling, D. (Compiler)

    1995-01-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  14. An interim overview of LDEF materials findings

    NASA Technical Reports Server (NTRS)

    Stein, Brad A.

    1992-01-01

    The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effects (SEE) on materials that is unparalleled in the history of the U.S. Space Program. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials on the same space vehicle. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. In general, the LDEF data is remarkably consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8 years; other 'space qualified' materials displayed significant environmental degradation. Molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions have been identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.

  15. Analysis of systems hardware flown on LDEF. Results of the systems special investigation group

    NASA Technical Reports Server (NTRS)

    Dursch, Harry W.; Spear, W. Steve; Miller, Emmett A.; Bohnhoff-Hlavacek, Gail L.; Edelman, Joel

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was retrieved after spending 69 months in low Earth orbit (LEO). LDEF carried a remarkable variety of mechanical, electrical, thermal, and optical systems, subsystems, and components. The Systems Special Investigation Group (Systems SIG) was formed to investigate the effects of the long duration exposure to LEO on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. Discussed here is the status of the LDEF Systems SIG investigation through the end of 1991.

  16. Analysis of systems hardware flown on LDEF. Results of the systems special investigation group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursch, H.W.; Spear, W.S.; Miller, E.A.

    1992-04-01

    The Long Duration Exposure Facility (LDEF) was retrieved after spending 69 months in low Earth orbit (LEO). LDEF carried a remarkable variety of mechanical, electrical, thermal, and optical systems, subsystems, and components. The Systems Special Investigation Group (Systems SIG) was formed to investigate the effects of the long duration exposure to LEO on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. Discussed here is the status of the LDEF Systems SIG investigation through the end of 1991.

  17. Current activities and results of the Long Duration Exposure Facility Meteoroid and Debris Special Investigation Group

    NASA Astrophysics Data System (ADS)

    See, Thomas H.; Leago, Kimberly S.; Warren, Jack L.; Bernhard, Ronald P.; Zolensky, Michael E.

    1994-03-01

    Fiscal Year 1994 will bring to a close the initial investigative activities associated with the Long Duration Exposure Facility (LDEF). LDEF was a 14-faced spacecraft (i.e., 12-sided cylinder and two ends) which housed 54 different experimental packages in low-Earth orbit (LEO) from Apr. 1984 to Jan. 1990 (i.e., for approx. 5.75 years). Since LDEF's return, the Meteoroid & Debris Special Investigation Group (M&D SIG) has been examining various LDEF components in order to better understand and define the LEO particulate environment. Members of the M&D SIG at JSC in Houston, TX have been contributing to these studies by carefully examining and documenting all impact events found on LDEF's 6061-T6 aluminum Intercostals (i.e., one of the spacecraft's structural frame components). Unlike all other hardware on LDEF, the frame exposed significantly large surface areas of a single homogeneous material in all (i.e., 26) possible LDEF pointing directions. To date, 28 of the 68 Intercostals in the possession of the M&D SIG have been documented. This data, as well as similar information from various LDEF investigators, can be accessed through the M&D SIG Database which is maintained at JSC.

  18. Current activities and results of the Long Duration Exposure Facility Meteoroid and Debris Special Investigation Group

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Leago, Kimberly S.; Warren, Jack L.; Bernhard, Ronald P.; Zolensky, Michael E.

    1994-01-01

    Fiscal Year 1994 will bring to a close the initial investigative activities associated with the Long Duration Exposure Facility (LDEF). LDEF was a 14-faced spacecraft (i.e., 12-sided cylinder and two ends) which housed 54 different experimental packages in low-Earth orbit (LEO) from Apr. 1984 to Jan. 1990 (i.e., for approx. 5.75 years). Since LDEF's return, the Meteoroid & Debris Special Investigation Group (M&D SIG) has been examining various LDEF components in order to better understand and define the LEO particulate environment. Members of the M&D SIG at JSC in Houston, TX have been contributing to these studies by carefully examining and documenting all impact events found on LDEF's 6061-T6 aluminum Intercostals (i.e., one of the spacecraft's structural frame components). Unlike all other hardware on LDEF, the frame exposed significantly large surface areas of a single homogeneous material in all (i.e., 26) possible LDEF pointing directions. To date, 28 of the 68 Intercostals in the possession of the M&D SIG have been documented. This data, as well as similar information from various LDEF investigators, can be accessed through the M&D SIG Database which is maintained at JSC.

  19. The Long Duration Exposure Facility (LDEF) photographic survey special publication

    NASA Technical Reports Server (NTRS)

    Oneal, Robert L.; Levine, Arlene S.; Kiser, Carol C.

    1995-01-01

    During the construction, integration, launch, retrieval and deintegration of the Long Duration Exposure Facility (LDEF), photographic surveys were made. Approximately 10,000 photographs were taken during the various phases of the LDEF project. These surveys are of technical and scientific importance because they revealed the pre and post flight conditions of the experiment trays as well as the spacecraft. Visual inspection of the photographs reveal valuable data such as space environment's effects and the earth atmosphere's effects post-retrieval. Careful files and records have been kept of these photographs. Each photograph has a Kennedy Space Center photo number or a Johnson Spaceflight Center photo number as well as a Langley Research Center photo number. The tray number, row number, and experiment number are also noted. Out of the 10,000 photographs taken, approximately 700 selected photographs were chosen for publication in a NASA Special Publication (SP) because they reveal the effects of space exposure to the viewer. These photographs will give researchers and spacecraft designers visual images of the effects of the space environment on specific materials, systems and spacecraft in general. One can visually see the degradation of thermal blankets, meteoroid craters, outgassing discoloration, atomic oxygen erosion, etc.

  20. Property changes induced by the space environment in composite materials on LDEF: Solar array materials passive LDEF experiment A0171 (SAMPLE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Surface modifications to composite materials induced by long term exposure in low earth orbit (LEO) were dominated by atomic oxygen erosion and micrometeoroid and space debris impacts. As expected, calculated erosion rates were peculiar to material type and within the predicted order of magnitude. Generally, about one ply of the carbon fiber composites was eroded during the 70 month LDEF experiment. Matrix erosion was greater than fiber erosion and was more evident for a polysulfone matrix than for epoxy matrices. Micrometeoroid and space debris impacts resulted in small (less than 1mm) craters and splattered contaminants on all samples. Surfaces became more diffuse and darker with small increases in emissivity and absorption. Tensile strength decreased roughly with thickness loss, and epoxy matrices apparently became slightly embrittled, probably as a result of continued curing under UV and/or electron bombardment. However, changes in the ultimate yield stress of the carbon reinforced epoxy composites correlate neither with weave direction nor fiber type. Unexpected developments were the discovery of new synergistic effects of the space environment in the interaction of atomic oxygen and copious amounts of contamination and in the induced luminescence of many materials.

  1. Long Duration Exposure Facility (LDEF) preliminary findings: LEO space effects on the space plasma-voltage drainage experiment

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian K.; Yaung, James Y.; Henderson, Kelly A.; Taylor, William W.; Ryan, Lorraine E.

    1992-01-01

    The Space Plasma-High Voltage Drainage Experiment (SP-HVDE) provided a unique opportunity to study long term space environmental effects on materials because it was comprised of two identical experimental trays; one tray located on the ram facing side (D-10), and the other on the wake facing side (B-4) of the LDEF. This configuration allows for the comparison of identical materials exposed to two distinctly different environments. The purpose of this work is to document an assessment of the effects of five and three quarters years of low Earth orbital space exposure on materials comprising the SP-HVDE (experiment no. A0054). The findings of the materials investigation reported focus on atomic oxygen effects, micrometeor and debris impact site documentation, thermal property measurements, and environmentally induced contamination.

  2. Skylab D024 thermal control coatings and polymeric films experiment

    NASA Technical Reports Server (NTRS)

    Lehn, William L.; Hurley, Charles J.

    1992-01-01

    The Skylab D024 Thermal Control Coatings and Polymeric Films Experiment was designed to determine the effects of the external Skylab space environment on the performance and properties of a wide variety of selected thermal control coatings and polymeric films. Three duplicate sets of thermal control coatings and polymeric films were exposed to the Skylab space environment for varying periods of time during the mission. The specimens were retrieved by the astronauts during extravehicular activities (EVA) and placed in hermetically sealed return containers, recovered, and returned to the Wright Laboratory/Materials Laboratory/WPAFB, Ohio for analysis and evaluation. Postflight analysis of the three sets of recovered thermal control coatings indicated that measured changes in specimen thermo-optical properties were due to a combination of excessive contamination and solar degradation of the contaminant layer. The degree of degradation experienced over-rode, obscured, and compromised the measurement of the degradation of the substrate coatings themselves. Results of the analysis of the effects of exposure on the polymeric films and the contamination observed are also presented. The D024 results were used in the design of the LDEF M0003-5 Thermal Control Materials Experiment. The results are presented here to call to the attention of the many other LDEF experimenters the wealth of directly related, low earth orbit, space environmental exposure data that is available from the ten or more separate experiments that were conducted during the Skylab mission. Results of these experiments offer data on the results of low altitude space exposure on materials recovered from space with exposure longer than typical STS experiments for comparison with the LDEF results.

  3. Analysis of systems hardware flown on LDEF: New findings and comparison to other retrieved spacecraft hardware

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Bohnhoff-Hlavacek, Gail; Blue, Donald; Hansen, Patricia

    1995-01-01

    The Long Duration Exposure Facility (LDEF) was retrieved in 1990 after spending 69 months in low-earth-orbit (LEO). A wide variety of mechanical, electrical, thermal, and optical systems, subsystems, and components were flown on LDEF. The Systems Special Investigation Group (Systems SIG) was formed by NASA to investigate the effects of the 69 month exposure on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. This report is the Systems SIG final report which updates earlier findings and compares LDEF systems findings to results from other retrieved spacecraft hardware such as Hubble Space Telescope. Also included are sections titled (1) Effects of Long Duration Space Exposure on Optical Scatter, (2) Contamination Survey of LDEF, and (3) Degradation of Optical Materials in Space.

  4. Analysis of systems hardware flown on LDEF: New findings and comparison to other retrieved spacecraft hardware

    NASA Astrophysics Data System (ADS)

    Dursch, Harry; Bohnhoff-Hlavacek, Gail; Blue, Donald; Hansen, Patricia

    1995-09-01

    The Long Duration Exposure Facility (LDEF) was retrieved in 1990 after spending 69 months in low-earth-orbit (LEO). A wide variety of mechanical, electrical, thermal, and optical systems, subsystems, and components were flown on LDEF. The Systems Special Investigation Group (Systems SIG) was formed by NASA to investigate the effects of the 69 month exposure on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. This report is the Systems SIG final report which updates earlier findings and compares LDEF systems findings to results from other retrieved spacecraft hardware such as Hubble Space Telescope. Also included are sections titled (1) Effects of Long Duration Space Exposure on Optical Scatter, (2) Contamination Survey of LDEF, and (3) Degradation of Optical Materials in Space.

  5. Thermal Control Surfaces Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.

    1999-01-01

    This report is the final experiment report for the TCSE and summarizes many years of hardware development and analyses. Also included are analyses presented in a number of TCSE papers that were prepared and given at scientific conferences including three LDEF Post-Retrieval Symposiums.

  6. Ionizing radiation calculations and comparisons with LDEF data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.

    1992-01-01

    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.

  7. Model of spacecraft atomic oxygen and solar exposure microenvironments

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Pippin, H. G.

    1993-01-01

    Computer models of environmental conditions in Earth orbit are needed for the following reasons: (1) derivation of material performance parameters from orbital test data, (2) evaluation of spacecraft hardware designs, (3) prediction of material service life, and (4) scheduling spacecraft maintenance. To meet these needs, Boeing has developed programs for modeling atomic oxygen (AO) and solar radiation exposures. The model allows determination of AO and solar ultraviolet (UV) radiation exposures for spacecraft surfaces (1) in arbitrary orientations with respect to the direction of spacecraft motion, (2) overall ranges of solar conditions, and (3) for any mission duration. The models have been successfully applied to prediction of experiment environments on the Long Duration Exposure Facility (LDEF) and for analysis of selected hardware designs for deployment on other spacecraft. The work on these models has been reported at previous LDEF conferences. Since publication of these reports, a revision has been made to the AO calculation for LDEF, and further work has been done on the microenvironments model for solar exposure.

  8. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1991-01-01

    The systematics of induced radioactivity on the Long Duration Exposure Facility (LDEF) were studied in a wide range of materials using low level background facilities for detection of gamma rays. Approx. 400 samples of materials processed from structural parts of the spacecraft, as well as materials from onboard experiments, were analyzed at national facilities. These measurements show the variety of radioisotopes that are produced with half-lives greater than 2 wks, most of which are characteristic of proton induced reactions above 20 MeV. For the higher activity, long lived isotopes, it was possible to map the depth and directional dependences of the activity. Due to the stabilized configuration of the LDEF, the induced radioactivity data clearly show contributions from the anisotropic trapped proton flux in the South Atlantic Anomaly. This effect is discussed, along with evidence for activation by galactic protons and thermal neutrons. The discovery of Be-7 was made on leading side parts of the spacecraft, although this was though not to be related to the in situ production of radioisotopes from external particle fluxes.

  9. Databases for LDEF results

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    One of the objectives of the team supporting the LDEF Systems and Materials Special Investigative Groups is to develop databases of experimental findings. These databases identify the hardware flown, summarize results and conclusions, and provide a system for acknowledging investigators, tracing sources of data, and future design suggestions. To date, databases covering the optical experiments, and thermal control materials (chromic acid anodized aluminum, silverized Teflon blankets, and paints) have been developed at Boeing. We used the Filemaker Pro software, the database manager for the Macintosh computer produced by the Claris Corporation. It is a flat, text-retrievable database that provides access to the data via an intuitive user interface, without tedious programming. Though this software is available only for the Macintosh computer at this time, copies of the databases can be saved to a format that is readable on a personal computer as well. Further, the data can be exported to more powerful relational databases, capabilities, and use of the LDEF databases and describe how to get copies of the database for your own research.

  10. Evaluation of adhesive materials used on the Long Duration Exposure Facility. Report, October 1989-January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursch, H.W.; Keough, B.K.; Pippin, H.G.

    1995-03-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIGmore » investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF`s external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.« less

  11. Evaluation of seals, lubricants, and adhesives used on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Keough, Bruce; Pippin, Gary

    1993-01-01

    A wide variety of seals, lubricants, and adhesives were used on the Long Duration Exposure Facility (LDEF). The results, to date, of the Systems Special Investigation Group (SIG) and the Materials SIG investigation into the effect of the long term low Earth orbit (LEO) exposure on these materials is discussed. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had minimal effect on the material. However, if the material was on LDEF's exterior surface, a variety of events occurred ranging from no material change, to changes in mechanical or physical properties, to complete disappearance of the material. The results are from the following sources: (1) visual examinations and/or testing of materials performed by various LDEF experimenters, (2) testing done at Boeing in support of the Materials or Systems SIG investigations, (3) testing done at Boeing on Boeing hardware flown on LDEF.

  12. Meteoroid, and debris special investigation group preliminary results: Size-frequency distribution and spatial density of large impact features on LDEF

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Hoerz, Friedrich; Zolensky, Michael E.; Allbrooks, Martha K.; Atkinson, Dale R.; Simon, Charles G.

    1992-01-01

    All craters greater than or equal to 500 microns and penetration holes greater than or equal to 300 microns in diameter on the entire Long Duration Exposure Facility (LDEF) were documented. Summarized here are the observations on the LDEF frame, which exposed aluminum 6061-T6 in 26 specific directions relative to LDEF's velocity vector. In addition, the opportunity arose to characterize the penetration holes in the A0178 thermal blankets, which pointed in nine directions. For each of the 26 directions, LDEF provided time-area products that approach those afforded by all previous space-retrieved materials combined. The objective here is to provide a factual database pertaining to the largest collisional events on the entire LDEF spacecraft with a minimum of interpretation. This database may serve to encourage and guide more interpretative efforts and modeling attempts.

  13. A Comparison of Results from NASA's Meteoroid Engineering Model to the LDEF Cratering Record

    NASA Technical Reports Server (NTRS)

    Ehlert, S.; Moorhead, A; Cooke, W. J.

    2017-01-01

    NASA's Long Duration Exposure Facility (LDEF) has provided an extensive record of the meteoroid environment in low Earth orbit. LDEF's combination of fixed orientation, large collecting area, and long lifetime imposes constraints on the absolute flux of potentially hazardous meteoroids. The relative impact rate on each of LDEF's fourteen surfaces arises from the underlying velocity distribution and directionality of the meteoroid environment. For the first time, we model the meteoroid environment encountered by LDEF over its operational lifetime using NASA's Meteoroid Engineering Model Release 2 (MEMR2) and compare the model results with the observed craters of potentially hazardous meteoroids (i.e. crater diameters larger than approximately 0.75 mm). We discuss the extent to which the observations and model agree and how the impact rates across all of the LDEF surfaces may be utilized to help calibrate future versions of MEM.

  14. A Comparison of Results From NASA's Meteoroid Engineering Model to the LDEF Cratering Record

    NASA Technical Reports Server (NTRS)

    Ehlert, S.; Moorhead, A.; Cooke, W. J.

    2017-01-01

    NASA's Long Duration Exposure Facility (LDEF) has provided an extensive record of the meteoroid environment in Low Earth Orbit. LDEF's combination of fixed orientation, large collecting area, and long lifetime imposes constraints on the absolute flux of potentially hazardous meteoroids. The relative impact rate on each of LDEF's fourteen surfaces arises from the underlying velocity distribution and directionality of the meteoroid environment. For the first time, we model the meteoroid environment encountered by LDEF over its operational lifetime using NASA's Meteoroid Engineering Model Release 2 (MEMR2) and compare the model results with the observed craters of potentially hazardous meteoroids (i.e. crater diameters larger than approximately 0.6 mm). We discuss the extent to which the observations and model agree and how the impact rates across all of the LDEF surfaces may suggest improvements to the underlying assumptions that go into future versions of MEM.

  15. SIMS chemical and isotopic analysis of impact features from LDEF experiments AO187-1 and AO187-2

    NASA Technical Reports Server (NTRS)

    Stadermann, Frank J.; Amari, Sachiko; Foote, John; Swan, Pat; Walker, Robert M.; Zinner, Ernst

    1995-01-01

    Previous secondary ion mass spectrometry (SIMS) studies of extended impact features from LDEF capture cell experiment AO187-2 showed that it is possible to distinguish natural and man-made particle impacts based on the chemical composition of projectile residues. The same measurement technique has now been applied to specially prepared gold target impacts from experiment AO187-1 in order to identify the origins of projectiles that left deposits too thin to be analyzed by conventional energy-dispersive x-ray (EDX) spectroscopy. The results indicate that SIMS may be the method of choice for the analysis of impact deposits on a variety of sample surfaces. SIMS was also used to determine the isotopic compositions of impact residues from several natural projectiles. Within the precision of the measurements all analyzed residues show isotopically normal compositions.

  16. Status of LDEF ionizing radiation measurements and analysis

    NASA Technical Reports Server (NTRS)

    Parnell, Thomas A.

    1993-01-01

    At this symposium significant new data and analyses were reported in cosmic ray research, radiation dosimetry, induced radioactivity, and radiation environment modeling. Measurements of induced radioactivity and absorbed dose are nearly complete, but much analysis and modeling remains. Measurements and analyses of passive nuclear track detectors (PNTD), used to derive the cosmic ray composition and spectra, and linear energy transfer (LET) spectra, are only a few percent complete, but important results have already emerged. As one might expect at this stage of the research, some of the new information has produced questions rather than answers. Low-energy heavy nuclei detected by two experiments are not compatible with known solar or cosmic components. Various data sets on absorbed dose are not consistent, and a new trapped proton environment model does not match the absorbed dose data. A search for cosmogenic nuclei other than Be-7 on Long Duration Exposure Facility (LDEF) surfaces has produced an unexpected result, and some activation data relating to neutrons is not yet understood. Most of these issues will be resolved by the analysis of further experiment data, calibrations, or the application of the large LDEF data set that offers alternate data or analysis techniques bearing on the same problem. The scope of the papers at this symposium defy a compact technical summary. I have attempted to group the new information that I noted into the following groups: induced radioactivity; absorbed dose measurements; LET spectra and heavy ion dosimetry; environment modeling and three dimensional shielding effects; cosmogenic nuclei; and cosmic rays and other heavy ions. The papers generally are expository and have excellent illustrations, and I refer to their figures rather than reproduce them here. The general program and objectives of ionizing radiation measurements and analyses on LDEF has been described previously.

  17. Impact penetration experiments in teflon targets of variable thickness

    NASA Astrophysics Data System (ADS)

    Hoerz, F.; Cintala, M. J.; Bernhard, R. P.; See, T. H.

    1993-03-01

    Approximately 20.4 sq m of Teflon thermal blankets on the nonspinning Long Duration Exposure Facility (LDEF) were exposed to the orbital debris and micrometeoroid environment in low-Earth orbit (LEO) for approximately 5.7 years. Each blanket consisted of an outer layer (approximately 125 micron thick) of FEP Teflon that was backed by a vapor-deposited metal mirror (Inconel; less than 1 micron thick). The inner surface consisted of organic binders and Chemglaze thermal protective paint (approximately 50 micron thick) resulting in a somewhat variable, total blanket thickness of approximately 180 to 200 microns. There was at least one of these blankets, each exposing approximately 1.2 sq m of surface area, on nine of LDEF's 12 principal pointing directions, the exceptions being Rows 3, 9, and 12. As a consequence, these blankets represent a significant opportunity for micrometeoroid and debris studies, in general, and specifically they provide an opportunity to address those issues that require information about pointing direction (i.e., spatial density of impact events as a function of instrument orientation). During deintegration of the LDEF spacecraft at KSC, all penetration holes greater than or equal to 300 micron in diameter were documented and were recently synthesized in terms of spatial density as a function of LDEF viewing direction by. The present report describes ongoing cratering and penetration experiments in pure Teflon targets, which are intended to establish the relationships between crater or penetration-hole diameters and the associated projectile dimensions at laboratory velocities (i.e., 6 km/s). The ultimate objective of these efforts is to extract reliable mass-frequencies and associated fluxes of hypervelocity particles in LEO.

  18. Induced activation study of LDEF

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1993-01-01

    Analysis of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is continuing with extraction of specific activities for various spacecraft materials. Data and results of activation measurements from eight facilities are being collected for interpretation at Eastern Kentucky University and NASA/Marshall Space Flight Center. The major activation mechanism in LDEF components is the proton flux in the South Atlantic Anomaly (SAA). This flux is highly anisotropic, and could be sampled by taking advantage of the gravity-gradient stabilization of the LDEF. The directionally-dependent activation due to these protons was clearly observed in the data from aluminum experiment tray clamps (reaction product Na-22), steel trunnions (reaction product Mn-54 and others) and is also indicated by the presence of a variety of nuclides in other materials. A secondary production mechanism, thermal neutron capture, was observed in cobalt, indium, and tantalum, which are known to have large capture cross sections. Experiments containing samples of these metals and significant amounts of thermalizing low atomic number (Z) material showed clear evidence of enhanced activation of Co-60, In-114m, and Ta-182. Other mechanisms which activate spacecraft material that are not as easily separable from SAA proton activation, such as galactic proton bombardment and secondary production by fast neutrons, are being investigated by comparison to radiation environmental calculations. Deviations from one-dimensional radiation models indicate that these mechanisms are more important at greater shielding depths. The current status of the induced radioactivity measurements as of mid-year 1992 are reviewed. Specific activities for a number of materials which show SAA effects and thermal neutron capture are presented. The results for consistency by combining data from the participating institutions is also examined.

  19. Space Station WP-2 application of LDEF MLI results

    NASA Technical Reports Server (NTRS)

    Smith, Charles A.; Hasegawa, Mark M.; Jones, Cherie A.

    1993-01-01

    The Cascaded Variable Conductance Heat Pipe Experiment, which was developed by Michael Grote of McDonnell Douglas Electronic Systems Company, was located in Tray F-9 of the Long Duration Exposure Facility (LDEF), where it received atomic oxygen almost normal to its surface. The majority of the tray was covered by aluminized Kapton polyimide multilayer insulation (MLI), which showed substantial changes from atomic oxygen erosion. Most of the outermost Kapton layer of the MLI and the polyester scrim cloth under it were lost, and there was evidence of contaminant deposition which discolored the edges of the MLI blanket. Micrometeoroid and orbital debris (MM/OD) hits caused small rips in the MLI layers, and in some cases left cloudy areas where the vapor plume caused by a hit condensed on the next layer. The MLI was bent gradually through 90 deg at the edges to enclose the experiment, and the Kapton that survived along the curved portion showed the effects of atomic oxygen erosion at oblique angles. In spite of space environment effects over the period of the LDEF mission, the MLI blanket remained functional. The results of the analysis of LDEF MLI were used in developing the standard MLI blanket for Space Station Work Package-2 (WP-2). This blanket is expected to last 30 years when exposed to the low Earth orbit (LEO) environment constituents of atomic oxygen and MM/OD, which are the most damaging to MLI materials. The WP-2 standard blanket consists of an outer cover made from Beta-cloth glass fiber fabric which is aluminized on the interior surface, and an inner cover of 0.076-mm (0.003-in) double-side-aluminized perforated Kapton. The inner reflector layers are 0.0076-mm (0.0003-in) double-side aluminized, perforated Kapton separated by layers of Dacron polyester fabric. The outer cover was selected to be resistant to the LEO environment and durable enough to survive in orbit for 30 years. This paper describes the analyses of the LDEF MLI results, and how these results contributed to the selection of the WP-2 MLI blanket materials and configuration.

  20. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Technical Reports Server (NTRS)

    Bourrieau, J.

    1993-01-01

    One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.

  1. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Astrophysics Data System (ADS)

    Bourrieau, J.

    1993-04-01

    One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.

  2. Long Duration Exposure Facility (LDEF) structural verification test report

    NASA Technical Reports Server (NTRS)

    Jones, T. C.; Lucy, M. H.; Shearer, R. L.

    1983-01-01

    Structural load tests on the Long Duration Exposure Facility's (LDEF) primary structure were conducted. These tests had three purposes: (1) demonstrate structural adequacy of the assembled LDEF primary structure when subjected to anticipated flight loads; (2) verify analytical models and methods used in loads and stress analysis; and (3) perform tests to comply with the Space Transportation System (STS) requirements. Test loads were based on predicted limit loads which consider all flight events. Good agreement is shown between predicted and observed load, strain, and deflection data. Test data show that the LDEF structure was subjected to 1.2 times limit load to meet the STS requirements. The structural adequacy of the LDEF is demonstrated.

  3. Status of LDEF radiation modeling

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1995-01-01

    The current status of model prediction and comparison with LDEF radiation dosimetry measurements is summarized with emphasis on major results obtained in evaluating the uncertainties of present radiation environment model. The consistency of results and conclusions obtained from model comparison with different sets of LDEF radiation data (dose, activation, fluence, LET spectra) is discussed. Examples where LDEF radiation data and modeling results can be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space Station) are given.

  4. Results of the TTF-TCNQ- and the calcium carbonate-crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1991-01-01

    Experiment AO139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit for five years with crystal growth solutions for lead sulfide, calcium carbonate, and tetra thiafulvalene- tetra cyanoquino methane (TTF-TCNQ). The LDEF was in excellent condition after the long orbital stay, and although the temperature data was lost, the experiment program had been working since the valves in all containers were opened. All four experiments produced crystals; however, they were of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X-ray investigations as well as conductivity measurements on the long duration space grown TTF-TCNQ crystals are presented, and pictures of the calcium carbonate are shown. Comparisons are made with previous space solution growth experiments on the European Spacelab Mission and the Apollo-Soyuz Test Project.

  5. Identification and evaluation of lubricants, adhesives, and seals used on LDEF

    NASA Technical Reports Server (NTRS)

    Keough, Bruce

    1992-01-01

    A variety of lubricants, adhesives, and seals were flown on Long Duration Exposure Facility (LDEF). They were used in the fabrication and assembly of the experiments similar to other spacecraft applications. Typically, these materials were not exposed to U.V. radiation or atomic oxygen, except possibly around the perimeter of the joints. Most of these materials were of secondary interest and were only investigated by visual examination and a 'Did they fall?' criteria. Because of this role, most applications had only a few specimens, not enough for statistical data generation. Often, no control samples were kept, and documentation of what was used was occasionally sketchy.

  6. Surface characterization of LDEF materials

    NASA Astrophysics Data System (ADS)

    Wightman, J. P.; Grammer, Holly Little

    1993-10-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  7. Surface characterization of LDEF materials

    NASA Technical Reports Server (NTRS)

    Wightman, J. P.; Grammer, Holly Little

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  8. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  9. Total Dose Effects (TDE) of heavy ionizing radiation in fungus spores and plant seeds: Preliminary investigations

    NASA Technical Reports Server (NTRS)

    Kranz, A. R.; Zimmermann, M. W.; Stadler, R.; Gartenbach, K. E.; Pickert, M.

    1992-01-01

    The opportunity to compare cosmic radiation effects caused during long and short duration exposure flights in biological objects are limited until now, and data obtained so far are very rare and insufficient. Because of the very long exposure of the experiment during the Long Duration Exposure Facility (LDEF) mission (approximately 2000 days) structural changes of the hardware material can be expected which will influence its biocompatibility and, thus, will interact with the radiobiological effects. The aim of the experiment flown on LDEF was a detailed investigation of biological effects caused by cosmic radiation especially of particles of high atomic number Z and high energy. The flight hardware consisted of standard BIOSTACK containers; in these containers a special sandwich construction consisted of visual plastic detectors with seed rsp. spore layers interlocked.

  10. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    A calculational program utilizing data from radiation dosimetry measurements aboard the Long Duration Exposure Facility (LDEF) satellite to reduce the uncertainties in current models defining the ionizing radiation environment is in progress. Most of the effort to date has been on using LDEF radiation dose measurements to evaluate models defining the geomagnetically trapped radiation, which has provided results applicable to radiation design assessments being performed for Space Station Freedom. Plans for future data comparisons, model evaluations, and assessments using additional LDEF data sets (LET spectra, induced radioactivity, and particle spectra) are discussed.

  11. Results from testing and analysis of solar cells flown on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry

    1992-01-01

    A brief discussion of the solar cell experiments flown on the Long Duration Exposure Facility (LDEF) is provided. The information presented is a collation of results published by the various experimenters. This process of collation and documentation is an ongoing Systems Special Investigation Group (SIG) effort. There are four LEO environments, operating individually and/or synergistically, that cause performance loss in solar cells: meteoroid and space debris, atomic oxygen, ultraviolet radiation, and charged particle radiation. In addition, the effects of contamination caused by outgassing of materials used on the specific spacecraft play a role in decreasing the light being transmitted through the coverglass and adhesive to the solar cell. From the results presented on the solar cells aboard LDEF, the most extensive degradation of the solar cells came from impacts and the resulting cratering. The extent of the damage to the solar cells was largely dependent upon the size and energy of the meteoroids or space debris. The other cause of degradation was reduced light reaching the solar cell. This was caused by contamination, UV degradation of coverglass adhesive, and/or atomic oxygen/UV degradation of antireflection coatings.

  12. Resolving LDEF's flux distribution: Orbital (debris?) and natural meteoroid populations

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1993-01-01

    A consistent methodology for the collation of data from both penetration and perforation experiments and from data in the Meteoroid and Debris Special Investigator Group (M-D SIG) data-base has led to the derivation of the average impact flux over LDEF's exposure history 1984-1990. Data are first presented for LDEF's N,S,E,W and Space faces ('offset' by 8 deg and 'tilted' by 1 deg respectively). A model fit is derived for ballistic limits of penetration from 1 micron to 1mm of aluminium target, corresponding to impactor masses from 10(exp -18) kg (for rho sub p = 2g/cu cm) to 10(exp -10) kg (for rho sub p = 1g/cu cm). A second order harmonic function is fitted to the N,S,E, and W fluxes to establish the angular distribution at regular size intervals; this fit is then used to provide 'corrected' data corresponding to fluxes applicable to true N,S,E,W and Space directions for a LEO 28.5 degree inclination orbit at a mean altitude of 465 km.

  13. Long term microparticle impact fluxes on LDEF determined from optical survey of Interplanetary Dust Experiment (IDE) sensors

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Oliver, J. P.; Cooke, W. J.; Downey, K. I.; Kassel, P. C.

    1995-01-01

    Many of the IDE metal-oxide-silicon (MOS) capacitor-discharge impact sensors remained active during the entire Long Duration Exposure Facility (LDEF) mission. An optical survey of impact sites on the active surfaces of these sensors has been extended to include all sensors from the low-flux sides of LDEF (i.e. the west or trailing side, the earth end, and the space end) and 5-7 active sensors from each LDEF's high-flux sides (i.e. the east or leading side, the south side, and the north side). This survey was facilitated by the presence of a relatively large (greater than 50 micron diameter) optical signature associated with each impact site on the active sensor surfaces. Of the approximately 4700 impacts in the optical survey data set, 84% were from particles in the 0.5 to 3 micron size range. An estimate of the total number of hypervelocity impacts on LDEF from particles greater than 0.5 micron diameter yields a value of approximately 7 x 10(exp 6). Impact feature dimensions for several dozen large craters on MOS sensors and germanium witness plates are also presented. Impact fluxes calculated from the IDE survey data closely matched surveys of similar size impacts (greater than or equal to 3 micron diameter craters in Al, or marginal penetrations of a 2.4 micron thick Al foil) by other LDEF investigators. Since the first year IDE data were electronically recorded, the flux data could be divided into three long term time periods: the first year, the entire 5.8 year mission, and the intervening 4.8 years (by difference). The IDE data show that there was an order of magnitude decrease in the long term microparticle impact flux on the trailing side of LDEF, from 1.01 to 0.098 x 10(exp -4) m(exp 2)/s, from the first year in orbit compared to years 2-6. The long term flux on the leading edge showed an increase from 8.6 to 11.2 x 10(exp -4) m(exp -2)/s over this same time period. (Short term flux increases up to 10,000 times the background rate were recorded on the leading side during LDEF's first year in orbit.) The overall east/west ratio was 44, but during LDEF's first year in orbit the ratio was 8.5, and during years 2-6 the ratio was 114. Long term microparticle impact fluxes on the space end decreased from 1.12 to 0.55 x 10(exp -4) m(exp -2)/s from the first year in orbit compared to years 2-6. The earth end showed the opposite trend with an increase from 0.16 to 0.38 x 10(exp -4) m(exp -2)/s. Fluxes on rows 6 and 12 decreased from 6.1 to 3.4 and 6.7 to 3.7 x 10(exp -4) m(exp -2)/s, respectively, over the same time periods. This resulted in space/earth microparticle impact flux ratios of 7.1 during the first year and 1.5 during years 2-6, while the south/north, space/north and space/south ratios remained constant at 1.1, 0.16 and 0.17, respectively, during the entire mission. This information indicates the possible identification of long term changes in discrete microparticle orbital debris component contributions to the total impact flux experienced by LDEF. A dramatic decrease in the debris population capable of striking the trailing side was detected that could possibly be attributed to the hiatus of western launch activity experienced from 1986-1989. A significant increase in the debris population that preferentially struck the leading side was also observed and could possibly be attributed to a single breakup event that occurred in September of 1986. A substantial increase in the microparticle debris population that struck the earth end of LDEF, but not the space end, was also detected and could possibly be the result of a single breakup event at low altitude. These results point to the importance of including discrete orbital debris component contribution changes in flux models in order to achieve accurate predictions of the microparticle environment that a particular spacecraft will experience in earth orbit. The only reliable, verified empirical measurements of these changes are reported in this paper. Further time-resolved in-situ measurements of these debris populations are needed to accurately assess model predictions and mitigation practices.

  14. LDEF - 69 Months in Space. First Post-Retrieval Symposium. Proceeding of a symposium held in Kissimmee, Florida, 2-8 June 1991.

    DTIC Science & Technology

    1992-01-01

    Gregory, Ligia C. Christi and Ganesh N. Raikar vin LDEF EXPERIMENT AO034: ATOMIC OXYGEN STIMULATED OUTGAS SING 763 Roger C. Linton, Rachel R. Kamenetzky...A 8/27/90 1 Micron Stylus Radius 1 Mg Stylus Loading rW^wV^WvANw/VW^ W ,’"’’M’*****W^^ 150 SCRN LENGTH (microns) 350 4E 450^ e £00...4-^ 4-5 rt3-t- CL S-4-J «J ~CJ +J U ^’ CO V> 3 ! T3 XS -O <: c: 3 c o O 00 o 5* CO <JS ?*ssasssBsss;;>s!ss

  15. First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores

    NASA Astrophysics Data System (ADS)

    Zimmermann, M. W.; Gartenbach, K. E.; Kranz, A. R.

    1994-10-01

    This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Hennh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.

  16. First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores.

    PubMed

    Zimmermann, M W; Gartenbach, K E; Kranz, A R

    1994-10-01

    This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Heynh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.

  17. Long Duration Exposure Facility experiment M0003 deintegration observation data base

    NASA Technical Reports Server (NTRS)

    Gyetvay, S. R.; Coggi, J. M.; Meshishnek, M. J.

    1993-01-01

    The four trays (2 leading edge and 2 trailing edge) of the M0003 materials experiment on the Long Duration Exposure Facility (LDEF) contained 1274 samples from 20 subexperiments. The complete sample complement represented a broad range of materials, including thin film optical coatings, paints, polymer sheets and tapes, adhesives, and composites, for use in various spacecraft applications, including thermal control, structures, optics, and solar power. Most subexperiments contained sets of samples exposed on both the leading and trailing edge trays of LDEF. Each individual sample was examined by high resolution optical microscope during the deintegration of the subexperiments from the M0003 trays. Observations of the post-flight condition of the samples made during this examination were recorded in a computer data base. The deintegration observation data base is available to requesters on floppy disk in 4th Dimension for the Macintosh format. Over 3,000 color macrographs and photomicrographs were shot to complement the observation records and to document the condition of the individual samples and of the M0003 trays. The photographs provide a visual comparison of the response of materials in leading and trailing edge LDEF environments. The Aerospace Corporate Archives is distributing photographs of the samples and hard copies of the database records to the general public upon request. Information on obtaining copies of the data base disks and for ordering photographs and records of specific samples or materials are given.

  18. Exposure to space radiation of high-performance infrared multilayer filters

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hawkins, G. J.; Hunneman, R.

    1991-01-01

    The University of Reading experiment exposed IR interference filters and crystal substrates on identical earth facing and leading-edge sites of the Long Duration Exposure Facility (LDEF). Filters mostly comprised multilayer coatings of lead telluride (PbTe)/II-IV on germanium (Ge) and other substrates: crystals comprised CdTe, MgF2, sapphire, quartz, silicon, and some softer materials. Identical control samples were maintained in the laboratory throughout the experiment. The filters were novel in their design, construction and manufacture, and categorized high-performance because of their ability to resolve emission spectra of the important atmospheric gases for various purposes in remote sensing. No significant changes were found in the spectra of the hard-coated filters or in the harder crystals (the softer materials were degraded to an extent). By virtue of this well-documented and long exposure in LDEF, the qualification of the filter type is significantly improved for its future requirements.

  19. Analysis of space environment damage to solar cell assemblies from LDEF experiment A0171-GSFC test plate

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The results of the postflight analysis of the solar cell assemblies from the LDEF (Long Duration Exposure facility) experiment A0171 is provided in this NASA sponsored research project. The following data on this research are provided as follows: (1) solar cell description, including, substrate composition and thickness, crystal orientation, anti-reflective coating composition and thickness; (2) preflight characteristics of the solar cell assemblies with respect to current and voltage; and (3) post-flight characteristics of the solar cell assemblies with respect to voltage and current. These solar cell assemblies are part of the Goddard Space Flight Center test plate which was designed to test the space environment effects (radiation, atomic oxygen, thermal cycling, meteoroid and debris) on conductively coated solar cell coversheets, various electrical bond materials, solar cell performance, and other material properties where feasible.

  20. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.

    1992-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.

  1. Radiation model predictions and validation using LDEF satellite data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    Predictions and comparisons with the radiation dose measurements on Long Duration Exposure Facility (LDEF) by thermoluminescent dosimeters were made to evaluate the accuracy of models currently used in defining the ionizing radiation environment for low Earth orbit missions. The calculations include a detailed simulation of the radiation exposure (altitude and solar cycle variations, directional dependence) and shielding effects (three-dimensional LDEF geometry model) so that differences in the predicted and observed doses can be attributed to environment model uncertainties. The LDEF dose data are utilized to assess the accuracy of models describing the trapped proton flux, the trapped proton directionality, and the trapped electron flux.

  2. LDEF meteoroid and debris special investigation group investigations and activities at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.

    1995-01-01

    Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).

  3. LDEF meteoroid and debris special investigation group investigations and activities at the Johnson Space Center

    NASA Astrophysics Data System (ADS)

    See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.

    1995-02-01

    Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).

  4. Mechanisms flown on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1992-01-01

    A wide variety of mechanisms were flown on the Long Duration Exposure Facility (LDEF). These include canisters, valves, gears, drive train assemblies, and motors. This report will provide the status of the Systems SIG effort into documenting, integrating, and developing 'lessons learned' for the variety of mechanisms flown on the LDEF. Results will include both testing data developed by the various experimenters and data acquired by testing of hardware at Boeing.

  5. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1992-01-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Background Facilities. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit, and radionuclides present initially as 'contaminants' in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment-related monitor foils and tomato seeds, and such spacecraft materials as aluminum, stainless steel, and titanium. In the second category are aluminum, beryllium, titanium, vanadium, and some special glasses.

  6. LDEF Materials Workshop 1991, part 2

    NASA Technical Reports Server (NTRS)

    Stein, Bland A. (Compiler); Young, Philip R. (Compiler)

    1992-01-01

    The LDEF Materials Workshop 1991 was a follow-on to the Materials Sessions at the First LDEF Post-Retrieval Symposium held in Kissimmee, Florida, June 1991. The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coating and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit to investigate the effects of LEO exposure on materials which were not originally planned to be test specimens. Papers from the technical sessions are presented.

  7. Radiation sensitivity of quartz crystal oscillators experiment for the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Ahearn, J. S.; Venables, J. D.

    1992-01-01

    Factors determining the radiation sensitivity of quartz crystal oscillators were studied on NASA's LDEF. Quartz materials were examined in the transmission electron microscope (TEM) and classified as to their sensitivity to radiation damage by establishing the rate of damage caused by the electron beam in the microscope. Two types of materials, i.e., swept premium Q quartz and natural quartz were chosen because clear differences were observed in their response to the electron beam in the TEM studies. Quartz resonators were then fabricated from them, tested for frequency stability over a greater than 6 mo. period and flown on the LDEF satellite. After retrieval (more than 7 yrs in space) the stability of the resonators was again determined. All of the space exposed resonators fabricated with swept premium Q material exhibited a frequency shift above that of the control resonators: none of the resonators fabricated from the natural quartz materials exhibited such a shift. The significant differences observed between the two types of materials in both the ground-based TEM studies and the space radiation induced frequency changes suggest that there may be a correlation between the two observations.

  8. LDEF data correlation to existing NASA debris environment models

    NASA Technical Reports Server (NTRS)

    Atkinson, Dale R.; Allbrooks, Martha K.; Watts, Alan J.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was recovered in January 1990, following 5.75 years exposure of about 130 sq. m to low-Earth orbit. About 25 sq. m of this surface area was aluminum 6061 T-6 exposed in every direction. In addition, about 17 sq. m of Scheldahl G411500 silver-Teflon thermal control blankets were exposed in 9 of the 12 directions. Since the LDEF was gravity gradient stabilized and did not rotate, the directional dependence of the flux can be easily distinguished. During the disintegration of the LDEF, all impact features larger than 0.5 mm into aluminum were documented for diameters and locations. In addition, the diameters and locations of all impact features larger than 0.3 mm into Scheldahl G411500 thermal control blankets were also documented. This data, along with additional information collected from LDEF materials will be compared with current meteoroid and debris models. This comparison will provide a validation of the models and will identify discrepancies between the models and the data.

  9. Gamma radiation survey of the LDEF spacecraft

    NASA Astrophysics Data System (ADS)

    Phillips, G. W.; King, S. E.; August, R. A.; Ritter, J. C.; Cutchin, J. H.; Haskins, P. S.; McKisson, J. E.; Ely, D. W.; Weisenberger, A. G.; Piercey, R. B.

    1991-06-01

    The retrieval of the Long Duration Exposure Facility (LDEF) spacecraft after nearly 6 years in orbit offered a unique opportunity to study the long term buildup of induced radioactivity in the variety of materials on board. The first complete gamma ray survey was conducted of a large spacecraft on LDEF shortly after its return to Earth. A surprising observation was the large Be-7 activity which was seen primarily on the leading edge of the satellite, implying that it was picked up by LDEF in orbit. This is the first known evidence for accretion of a radioactive isotope onto an orbiting spacecraft. Other isotopes seen during the survey, the strongest being Na-22 and Mn-54, are all attributed to activation of spacecraft components in orbit. Be-7 is a spallation product of cosmic rays on nitrogen and oxygen in the upper atmosphere. However, the observed density is much greater than expected due to cosmic ray production in situ. This implies transport of Be-7 from much lower altitudes up to the LDEF orbit.

  10. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  11. The impact of LDEF results on the space application of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Steckel, Gary L.; Le, Tuyen D.

    1993-01-01

    Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.

  12. Effects of the LDEF orbital environment on the reflectance of optical mirror materials

    NASA Technical Reports Server (NTRS)

    Herzig, Howard; Fleetwood, Charles, Jr.

    1995-01-01

    Specimens of eight different optical mirror materials were flown in low earth orbit as part of the Long Duration Exposure Facility (LDEF) manifest to determine their ability to withstand exposure to the residual atomic oxygen and other environmental effects at those altitudes. Optical thin films of aluminum, gold, iridium, osmium, platinum, magnesium fluoride-overcoated aluminum and reactively deposited, silicon monoxide-protected aluminum, all of which were vacuum deposited on polished fused silica substrates, were included as part of Experiment S0010, Exposure of Spacecraft Coatings. Two specimens of polished, chemical vapor deposited (CVD) silicon carbide were installed in sites available in Experiment A0114, Interaction of Atomic Oxygen with Solid Surfaces at Orbital Altitudes, which included trays in two of the spacecraft bays, one on the leading edge and the other on the trailing edge. One of the silicon carbide samples was located in each of these trays. This paper will compare specular reflectance data from the preflight and postflight measurements made on each of these samples and attempt to explain the changes in light of the specific environments to which the experiments were exposed.

  13. Cosmogenic radionuclides on LDEF: An unexpected Be-10 result

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.; Dezfouly-Arjomandy, B.; Harmon, B. A.

    1993-01-01

    Following the discovery of the atmospheric derived cosmogenic radionuclide Be-7 on the Long Duration Exposure Facility (LDEF), a search began for other known nuclides produced by similar mechanisms. None of the others have the narrow gamma-ray line emission of Be-7 decay which enabled its rapid detection and quantification. A search for Be-10 atoms on LDEF clamp plates using accelerator mass spectrometry is described. An unexpected result was obtained.

  14. Vacuum Ultraviolet (VUV) radiation-induced degradation of Fluorinated Ethylene Propylene (FEP) Teflon aboard the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Stiegman, A. E.; Staszak, Paul R.; Laue, Eric G.; Liang, Ranty H.

    1992-01-01

    Examination of fluorinated ethylene propylene (FEP) copolymer specimens recovered from the Long Duration Exposure Facility (LDEF) provides evidence for degradation attributed to extended solar vacuum ultraviolet (VUV) irradiation. Scanning electron microscope (SEM) images of sheared FEP film edges reveal the presence of a highly embrittled layer on the exposed surface of specimens obtained from the trailing edge of the LDEF. Similar images obtained for leading edge and control FEP films do not exhibit evidence for such an embrittled layer. Laboratory VUV irradiation of FEP films is found to produce a damage layer similar to that witnessed in the LDEF trailing edge films. Spectroscopic analyses of irradiated films provide data to advance a photochemical mechanism for degradation.

  15. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiment (A0056)

    NASA Technical Reports Server (NTRS)

    Hawkins, Gary J.; Seeley, John S.; Hunneman, Roger

    1992-01-01

    Infrared optical multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. The effects are summarized of that environment on the physical and optical properties of the filters and materials flown.

  16. Effects of the LDEF environment on the Ag/FEP thermal blankets

    NASA Technical Reports Server (NTRS)

    Levadou, Francois; Pippin, H. Gary

    1992-01-01

    This presentation was made by Francois Levadou at the NASA Langley Research Center LDEF materials workshop, November 19-22, 1991. It represents the results to date on the examination of silvered teflon thermal blankets primarily from the Ultra-heavy Cosmic Ray Experiment and also from the blanket from the Park Seed Company experiment. ESA/ESTEC and Boeing conducted a number of independent measurements on the blankets and in particular on the exposed fluorinated ethylene-propylene (FEP) layer of the blankets. Mass loss, thickness, and thickness profile measurements have been used by ESA, Boeing, and NASA LeRC to determine recession and average erosion yield under atomic oxygen exposure. Tensile strength and percent elongation to failure data, surface characterization by ESCA, and SEM images are presented. The Jet Propulsion Laboratory analysis of vacuum radiation effects is also presented. The results obtained by the laboratories mentioned and additional results from the Aerospace Corporation on samples provided by Boeing are quite similar and give confidence in the validity of the data.

  17. Thermal control materials on EOIM-3

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Linton, Roger C.; Kamenetzky, Rachel R.; Vaughn, Jason A.

    1995-01-01

    Thermal control paints, anodized aluminum, and beta cloth samples were flown on STS-46 as part of the Evaluation of Oxygen Interaction with Materials Experiment (EOIM-3). The thermal control paints flown on EOIM-3 include ceramic and polyurethane-based paints. Passively exposed samples are compared to actively heated samples and controlled exposure samples. Optical property measurements of absorptivity, emissivity, and spectrofluorescence are presented for each paint. Several variations of anodized aluminum, including chromic acid anodize, sulfuric acid anodize, and boric/sulfuric acid anodize were flown on the actively heated trays and the passive exposure trays. The post-flight optical properties are within tolerances for these materials. Also flown were two samples of yellow anodized aluminum. The yellow anodized aluminum samples darkened noticeably. Samples of aluminized and unaluminized beta cloth, a fiberglass woven mat impregnated with TFE Teflon, were flown with passive exposure to the space environment. Data from this part of the experiment is correlated to observations from LDEF and erosion of the Teflon thin film samples also flown on EOIM-3 and LDEF.

  18. Large craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1992-01-01

    Examination of 29.37 sq m of thick aluminum plates from the LDEF, which were exposed to the meteoroid and man-made orbital debris environments for 5.8 years, revealed 606 craters that were 0.5 mm in diameter or larger. Most were nearly hemispherical. There was a large variation in the number density of craters around the three axis gravity gradient stabilized spacecraft. A new model of the near-Earth meteoroid environment gives good agreement with the crater fluxes measured on the fourteen faces of the LDEF. The man-made orbital debris model of Kessler, which predicts that 16 pct. of the craters would be caused by man-made debris, is plausible. No chemical analyses of impactor residue that will distinguish between meteoroids and man-made debris is yet available.

  19. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  20. LDEF's contribution to the selection of thermal control coatings for the Space Station

    NASA Technical Reports Server (NTRS)

    Babel, Henry W.

    1995-01-01

    The design of the Space Station presented new challenges in the selection and qualification of thermal control materials that would survive in low Earth orbit for a duration of up to 30 years. Prior to LDEF, flight data were obtained from Orbiting Solar Observatory (OSO) satellites, a number of Orbiter flights, and limited ground tests. The excellent data obtained from the OSO satellites were based on calorimetry and temperature measurements which were transmitted to Earth; these satellites were not recovered. For some of these flight experiments it was difficult to distinguish between changes due to contamination, atomic oxygen (AO), ultraviolet radiation (UV), particle radiation and the synergistic effects between them. The data from Shuttle flights were primarily focused on developing a better understanding of atomic oxygen (AO) effects. Although UV and AO were present, the relatively short duration of the Orbiter flights, about one week, was viewed as too short to show the effects from UV or possible synergistic interactions with AO and contamination. At the beginning of the program in 1989 there was no established design data base for AO resistant thermal control coatings for the Space Station. Then came the Long Duration Exposure Facility (LDEF). It provided the first long life data for materials exposed and recovered from space with a characterized environment. Post flight analysis proved data on the effects of contamination on optical properties in the ram (velocity) and wake directions and the erosion of Teflon and multilayer insulation (MLI) covers. The results from LDEF confirmed and, in some cases, modified the approach used for the Space Station, as well as helped to focus our development activities. These development activities resulted in a number of new technical solutions which are applicable to many spacecraft surfaces and missions. LDEF also showed the detrimental effects that could occur from silicone contamination, an issue that has not been completely resolved. An investigation was initiated in 1993 on the effects of silicone contamination and was continuing at the time this paper was prepared.

  1. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  2. LDEF materials data analysis: Representative examples

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    Part of the philosophy which guided the examination of hardware from the Long Duration Exposure Facility (LDEF) was that materials present at multiple locations should have fairly high priority for investigation. Properties of such materials were characterized as a function of exposure conditions to obtain as much data as possible for predicting performance lifetimes. Results from examination of several materials from interior locations of LDEF, selected measurements on silverized teflon blanket specimens, and detailed measurements on the copper grounding strap from tray D11 are summarized. Visual observations of interior locations of LDEF made during deintegration at KSC showed apparent changes in particular specimens. This inspection lead to testing of selected nylon clamps, fiberglass shims, and heat shrink tubing from wire harness clamps, and visually discolored silver coated hex nuts.

  3. Long duration exposure facility solar illumination data package

    NASA Technical Reports Server (NTRS)

    Berrios, William M.; Sampair, Thomas

    1990-01-01

    A post flight solar illumination data package was created by the LDEF thermal analysis data group in support of the LDEF science office data group. The data presented was prepared with the Thermal Radiation Analysis System (TRASYS) program. Ground tracking data was used to calculate daily orbital beta angles for the calculation of resultant fluxes. This data package will be useful in calculation of solar illumination fluent for a variety of beta angle orbital conditions encountered during the LDEF mission.

  4. LDEF grappled by remote manipulator system (RMS) during STS-32 retrieval

    NASA Image and Video Library

    1990-01-20

    This view taken through overhead window W7 on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck shows the Long Duration Exposure Facility (LDEF) in the grasp of the remote manipulator system (RMS) during STS-32 retrieval activities. Other cameras at eye level were documenting the bus-sized spacecraft at various angles as the RMS manipulated LDEF for a lengthy photo survey. The glaring celestial body in the upper left is the sun with the Earth's surface visible below.

  5. Debris and meteoroid proportions deduced from impact crater residue analysis

    NASA Technical Reports Server (NTRS)

    Berthoud, Lucinda; Mandeville, Jean-Claude; Durin, Christian; Borg, Janet

    1995-01-01

    This study is a further investigation of space-exposed samples recovered from the LDEF satellite and the Franco-Russian 'Aragatz' dust collection experiment on the Mir Space Station. Impact craters with diameters ranging from 1 to 900 micron were found on the retrieved samples. Elemental analysis of residues found in the impact craters was carried out using Energy Dispersive X-ray spectrometry (EDX). The analyses show evidence of micrometeoroid and orbital debris origins for the impacts. The proportions of these two components vary according to particle size and experimental position with respect to the leading edge of the spacecraft. On the LDEF leading edge 17 percent of the impacts were apparently caused by micrometeoroids and 11 percent by debris; on the LDEF trailing edge 23 percent of the impacts are apparently caused by micrometeoroids and 4 percent consist of debris particles - mostly larger than 3 micron in diameter - in elliptical orbits around the Earth. For Mir, the analyses indicate that micrometeoroids form 23 percent of impacts and debris 9 percent. However, we note that 60-70 percent of the craters are unidentifiable, so the definitive proportions of natural v. man-made particles are yet to be determined. Experiments carried out using a light gas gun to accelerate glass spheres and fragments demonstrate the influence of particle shape on crater morphology. The experiments also show that it is more difficult to analyze the residues produced by an irregular fragment than those produced by a spherical projectile. If the particle is travelling above a certain velocity, it vaporizes upon impact and no residues are left. Simulation experiments carried out with an electrostatic accelerator indicate that this limit is about 14 km/s for Fe particles impacting Al targets. This chemical analysis cut-off may bias interpretations of the relative populations of meteoroid and orbital debris. Oblique impacts and multiple foil detectors provide a higher likelihood of detection of residues as the velocities involved are lower.

  6. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Simon, Charles G.; Swan, P.; Walker, R. M.; Zinner, E.; Jessberger, E. K.; Lange, G.; Stadermann, F.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Experiment AO187-2 consisted of 237 capture cells, 120 on the leading edge and 117 on the trailing edge. Each cell was made of polished Ge plates covered with 2.5 micron thick mylar foil at 200 microns from the Ge. Although all leading edge cells and 105 trailing edge cells had lost their plastic covers during flight, optical and electron microscope examination revealed extended impacts in bare cells from either edge that apparently were produced by high velocity projectiles while the plastic foils were still in place. Detailed optical scanning yielded 53 extended impacts on 100 bare cells from the trailing edge that were selected for SIMS chemical analysis. Lateral multi-element ion probe profiles were obtained on 40 of these impacts. Material that can be attributed to the incoming projectiles was found in all analyzed extended compact features and most seem to be associated with cosmic dust particles. However, LDEF deposits are systematically enriched in the refractory elements Al, Ca, and Ti relative to Mg and Fe when compared to IDP's collected in the stratosphere and to chondritic compositions. These differences are most likely due to elemental fractionation effects during the high velocity impact but real differences between interplanetary particles captured on LDEF and stratospheric IDP's cannot be excluded. Recently we extended our studies to cells from the leading edge and the covered cells from the trailing edge. The 12 covered cells contain 20 extended impact candidates. Ion probe analysis of 3 yielded results similar to those obtained for impacts on the bare cells from the trailing edge. Optical scanning of the bare leading edge cell also reveals many extended impacts (42 on 22 cells scanned to date), demonstrating that the cover foils remained intact at least for some time. However, SIMS analysis showed elements that can reasonably be attributed to micrometeoroids in only 2 out of 11 impacts. Eight impacts have residues dominated by Al and one dominated by Ti, indicating a preponderance of orbital debris in leading edge impacts.

  7. Origin of orbital debris impacts on LDEF's trailing surfaces

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1993-01-01

    A model was developed to determine the origin of orbital impacts measured on the training surfaces of LDEF. The model calculates the expected debris impact crater distribution around LDEF as a function of debris orbital parameters. The results show that only highly elliptical, low inclination orbits could be responsible for these impacts. The most common objects left in this type of orbit are orbital transfer stages used by the U.S. and ESA to place payloads into geosynchronous orbit. Objects in this type of orbit are difficult to catalog by the U.S. Space Command; consequently there are independent reasons to believe that the catalog does not adequately represent this population. This analysis concludes that the relative number of cataloged objects with highly elliptical, low inclination orbits must be increased by a factor of 20 to be consistent with the LDEF data.

  8. Long Duration Exposure Facility post-flight data as it influences the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Straka, Sharon A.

    1995-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is an earth observing satellite that will be in a low earth orbit (350 kilometers) during the next period of maximum solar activity. The TRMM observatory is expected to experience an atomic oxygen fluence of 8.9 x 10(exp 22) atoms per square centimeter. This fluence is ten times higher than the atomic oxygen impingement incident to the Long Duration Exposure Facility (LDEF). Other environmental concerns on TRMM include: spacecraft glow, silicon oxide contaminant build-up, severe spacecraft material degradation, and contamination deposition resulting from molecular interactions with the dense ambient atmosphere. Because of TRMM's predicted harsh environment, TRMM faces many unique material concerns and subsystem design issues. The LDEF data has influenced the design of TRMM and the TRMM material selection process.

  9. LDEF data: Comparisons with existing models

    NASA Astrophysics Data System (ADS)

    Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.

    1993-04-01

    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.

  10. LDEF data: Comparisons with existing models

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.

    1993-01-01

    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.

  11. Further Analysis of Micrometeoroid Remnants

    NASA Astrophysics Data System (ADS)

    Borg, J.; Bibring, J.-P.; Bunch, T. E.; Radicati di Brozolo, F.; Vassent, B.

    1992-07-01

    Experiments dedicated to the detection of interplanetary dust particles (IDPs) have been exposed on various collectors, since our first experiment COMET-1, exposed in October 1986 to the Giacobini-Zinner meteor stream, on the Saliout 7 spacecraft (Bibring et al. 1988). These collectors are pure metallic targets, in which the impacting particles leave a typical crater, where particle remnants, possibly mixed with the melted target, may be found. We are mainly interested in the analysis of hypervelocity impact features of sizes <=10 micrometers. Up to now, these features have been looked for either in the gold collectors of the COMET-1 experiment or in Al targets of the FRECOPA experiment, loaned to us by J.C. Mandeville, P.I. of the FRECOPA experiment (LDEF west trailing direction). We have recently started the examination or Al samples exposed on the leading face of LDEF, loaned to us by J.A.M. McDonnell, P.I. of the "MAP" experiment, and F. Horz, P.I. of the A0187-1 experiment. The distribution of the impact features leads to the evaluation of the microparticle flux in the near Earth environment. We found for the number of impact features <=10 micrometer in diameter a cumulative flux ~8x10^-2 m^-2 s^-1 for COMET-1 and 2x10^-4 m^-2 s^-1 for FRECOPA. A first estimation for the flux on LDEF leading face would be a factor of 10 higher than on the trailing face, mainly due to orbital debris events. The flux measured for COMET- 1 consists of ~90% orbital debris, while for FRECOPA, the flux value is attributed to extraterrestrial particles, as confirmed by chemical analysis. This value fits with the previous estimations of the micrometeroid particle mass distribution, while for COMET-1, we find a large enhancement. We attribute this enhancement to the fact that the collection occurred during the encounter of the Giacobini-Zinner meteor stream (Borg et al. 1991). In addition, we have obtained composition of impact residues for nontypical orbital debris. These compositions suggest an extraterrestrial origin for the impacting particles. The main elements we identified are usually referred to as "chondritic" elements (Na, Mg, Si, S, Ca, and Fe); intrinsic Al is masked by the Al target and Ni is not observed. Furthermore, C and O are present in 90% of the cases, the C/O peak height ratio varying from 0.1 to 3. These extraterrestrial events are now being subjected to an imagery and analytical protocol that includes FESEM (field emission scanning electron microscopy) for high resolution imagery and LIMS (laser ionization mass spectrometry) for molecular identification. Our first results clearly indicate that such small events show crater features analogous to what is observed at larger sizes; they suggest that N can be present in the IDP remnants in which C and O have been identified by EDS analysis (Borg et al. 1992). More results concerning FRECOPA and COMET-1 analysis will be presented, that could imply that the existence of CHON particles could be a general characteristic of cometary material present in the solar cavity, as this signature is found in the environment of P/Halley (PUMA and PIA experiments), in remnants identified on LDEF collectors and in grains from the Giacobinni-Zinner meteor stream. References Bibring J.-P., Borg J., Katchanov A., Langevin Y., Salvetat P., Surkhov Y.A., and Vassent B. (1988) Lunar Planet. Sci. 19, 73-74. Borg J., Bibring J.-P., and Vassent B. (1991) Meteoritics, 26, 4,321. Borg J., Bunch T. and Radicati di Brozolo F. (1992) To be presented at the LDEF 2 meeting.

  12. LDEF satellite radiation study

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1994-01-01

    Some early results are summarized from a program under way to utilize LDEF satellite data for evaluating and improving current models of the space radiation environment in low earth orbit. Reported here are predictions and comparisons with some of the LDEF dose and induced radioactivity data, which are used to check the accuracy of current models describing the magnitude and directionality of the trapped proton environment. Preliminary findings are that the environment models underestimate both dose and activation from trapped protons by a factor of about two, and the observed anisotropy is higher than predicted.

  13. Analysis of Systems Hardware Flown on LDEF-Results of the Systems Special Investigation Group

    DTIC Science & Technology

    1992-04-01

    applied, should bring calculations and data into closer agreement. A few dosimeters were placed on LDEF at shallow enough shielding locations to...SHIELDING THICKNESS (g/cm2) Radiation absorbed dose (RAD) measurements with thermoluminescent dosimeters (TLD) from leading and trailing sides of LDEF...oxide In^ OsL aluminum oxide, Au plated Al [2024-T351], Au plated Al [6003] Au on Si02, Ir on Si02, Nb on Si02, Os on Si02, Pt on Si02, Cu on Si02, Ag

  14. LDEF meteoroid and debris database

    NASA Technical Reports Server (NTRS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photodocumented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  15. Investigation of Teflon FEP Embrittlement on Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Smith, Daniela C.

    1997-01-01

    Teflon(registered trademark) FEP (fluorinated ethylene-propylene) is commonly used on exterior spacecraft surfaces in the low Earth orbit (LEO) environment for thermal control. Silverized or aluminized FEP is used for the outer layer of thermal control blankets because of its low solar absorptance and high thermal emittance. FEP is also preferred over other spacecraft polymers because of its relatively high resistance to atomic oxygen erosion. Because of its low atomic oxygen erosion yield, FEP has not been protected in the space environment. Recent, long term space exposures such as on the Long Duration Exposure Facility (LDEF, 5.8 years in space), and the Hubble Space Telescope (HST, after 3.6 years in space) have provided evidence of LEO environmental degradation of FEP. These exposures provide unique opportunities for studying environmental degradation because of the long durations and the different conditions (such as differences in altitude) of the exposures. Samples of FEP from LDEF and from HST (retrieved during its first servicing mission) have been evaluated for solar induced embrittlement and for synergistic effects of solar degradation and atomic oxygen. Micro-indenter results indicate that the surface hardness increased as the ratio of atomic oxygen fluence to solar fluence decreased for the LDEF samples. FEP multilayer insulation (MLI) retrieved from HST provided evidence of severe embrittlement on solar facing surfaces. Micro-indenter measurements indicated higher surface hardness values for these samples than LDEF samples, but the solar exposures were higher. Cracks induced during bend testing were significantly deeper for the HST samples with the highest solar exposure than for LDEF samples with similar atomic oxygen fluence to solar fluence ratios. If solar fluences are compared, the LDEF samples appear as damaged as HST samples, except that HST had deeper induced cracks. The results illustrate difficulties in comparing LEO exposed materials from different missions. Because the HST FEP appears more damaged than LDEF FEP based on depth of embrittlement, other causes for FEP embrittlement in addition to atomic oxygen and ultraviolet (UV) radiation, such as thermal effects and the possible role of soft x-ray radiation, need to be considered. FEP that was exposed to soft x-rays in a ground test facility, showed embrittlement similar to that witnessed in LEO, which indicates that the observed differences between LDEF and HST FEP might be attributed to the different soft x-ray fluences during these two missions.

  16. Hypervelocity impact microfoil perforations in the LEO space environment (LDEF, MAP AO-023 experiment)

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Stevenson, T. J.

    1992-01-01

    The Microabrasion Foil Experiment comprises arrays of frames, each supporting two layers of closely spaced metallic foils and a back-stop plate. The arrays, deploying aluminum and brass foil ranging from 1.5 to some 30 microns were exposed for 5.78 years on NASA's LDEF at a mean altitude of 458 km. They were deployed on the North, South, East, West, and Space pointing faces; results presented comprise the perforation rates for each location as a function of foil thickness. Initial results refer primarily to aluminum of 5 microns thickness or greater. This penetration distribution, comprising 2,342 perforations in total, shows significantly differing characteristics for each detector face. The anisotropy confirms, incorporating the dynamics of particulate orbital mechanics, the dominance of incorporating extraterrestrial particulates penetrating thicknesses greater than 20 microns in Al foil, yielding fluxes compatible with hyperbolic geocentric velocities. For thinner foils, a disproportionate increase in flux of particles on the East, North, and South faces shows the presence of orbital particulates which exceed the extraterrestrial component perforation rate at 5 micron foil thickness by a factor of approx. 4.

  17. The magnitude of impact damage on LDEF materials

    NASA Technical Reports Server (NTRS)

    Allbrooks, Martha; Atkinson, Dale

    1992-01-01

    The purpose of this report is to document the magnitude and types of impact damage to materials and systems on the LDEF. This report will provide insights which permit NASA and industry space-systems designers to more rapidly identify potential problems and hazards in placing a spacecraft in low-Earth orbit (LEO). This report is structured to provide (1) a background on LDEF, (2) an introduction to the LEO meteoroid and debris environments, and (3) descriptions of the types of damage caused by impacts into structural materials, and contamination caused by spallation and ejecta from impact events.

  18. An overview of the on-orbit contamination of the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Stuckey, W. K.

    1993-01-01

    Contamination that leads to degradation of critical surfaces becomes a vital design issue for many spacecraft programs. One of the processes that must be considered is the on-orbit accumulation of contaminants. The Long Duration Exposure Facility (LDEF) has presented an opportunity to examine the deposits on surfaces returned from orbit in order to help in understanding the deposition processes and the current models used to predict spacecraft contamination levels. The results from various investigators on the contamination of LDEF have implications for material selection, contamination models, and contamination control plans for the design of future spacecraft.

  19. Evaluation of seals and lubricants used on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Dursch, H. W.; Keough, B. K.; Pippin, H. G.

    1994-01-01

    This report described results from testing and analysis of seals and lubricants subsequent to the 69-month low-earth-orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF). Results show that if the materials were shielded from exposure to LDEF's external environment, the 69-month exposure to LEO resulted in minimal changes to material properties. However, if the materials were exposed to LDEF's exterior environments (atomic oxygen, solar radiation, meteoroids, and/or space debris), a variety of events occurred, ranging from no material change, to changes in properties, to significant erosion of the material.

  20. Systems special investigation group overview

    NASA Technical Reports Server (NTRS)

    Mason, James B.; Dursch, Harry; Edelman, Joel

    1992-01-01

    The Systems Special Investigation Group (SIG) has undertaken investigations in the four major engineering disciplines represented by LDEF hardware: electrical, mechanical, thermal, and optical systems. Testing was planned for the highest possible level of assembly, and top level system tests for nearly all systems were performed at this time. Testing to date was performed on a mix of LDEF and individual experimenter systems. No electrical or mechanical system level failures attributed to the spaceflight environment were detected by the Systems SIG. Some low cost electrical components were used successfully, although relays were a continuing problem. Extensive mechanical galling was observed, but no evidence of coldwelding was identified. A working index of observed systems anomalies was created and will be used to support the tracking and resolution of these effects. LDEF hardware currently available to the Systems SIG includes most of the LDEF facility systems hardware, and some significant experimenter hardware as well. A series of work packages was developed for each of several subsystem types where further testing is of critical interest. The Systems SIG is distributing a regular newsletter to the greater LDEF community in order to maintain coherence in an investigation which is widely scattered both in subject matter and in geography. Circulation of this informal document has quadrupled in its first year.

  1. Systems special investigation group overview

    NASA Technical Reports Server (NTRS)

    Mason, James B.; Dursch, Harry; Edelman, Joel

    1991-01-01

    The Systems Special Investigation Group (SIG) has undertaken investigations in the four major engineering disciplines represented in the Long Duration Exposure Facility (LDEF) hardware: electrical, mechanical, thermal, and optical systems. Testing was planned for the highest possible level of assembly, and top level system tests for nearly all systems were performed at this time. To date, testing was performed on a mix of LDEF and individual experimenter systems. No electrical or mechanical system level failures attributed to the spaceflight environment have yet been detected. Some low cost electrical components were used successfully, although relays were a continuing problem. Mechanical galling was observed unexpectedly, but no evidence of cold welding was identified yet. A working index of observed systems anomalies was created and will be used to support the tracking and resolution of these effects. The LDEF hardware currently available to the Systems SIG includes most of the LDEF systems hardware, and some significant experimenter hardware as well. A series of work packages was developed for each of several subsystem types where further testing is of critical interest. The System SIG is distributing a regular newsletter to the greater LDEF community in order to maintain coherence in an investigation which is widely scattered both in subject matter and in geography. Circulation of this informal document has quadrupled in its first year.

  2. Evaluation of adhesive materials used on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Dursch, H. W.; Keough, B. K.; Pippin, H. G.

    1995-01-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIG investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.

  3. The heavy ions in space experiment

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Beahm, L. P.; Stiller, B.

    1985-01-01

    The Heavy Ions in Space (HIIS) experiment was developed and is currently in orbit onboard the long duration facility (LDEF). The HIIS will record relativistic cosmic ray nuclei heavier than magnesium and stopping nuclei down to helium. The experiment uses plastic track detectors that have a charge resolution of 0.15 charge units at krypton and 0.10 charge units, or better, for nuclei lighter than cobalt. The HIIS has a collecting power of 2 square meter steradians and it has already collected more than a year's data.

  4. Observation of fullerenes (C60-C70) associated with LDEF crater number 31

    NASA Technical Reports Server (NTRS)

    Radicatidibrozolo, Filippo; Fleming, R. H.; Bunch, T. E.

    1992-01-01

    The presence of fullerenes in and around the LDEF crater number 31 is reported. This crater has a high C level associated with it, and is interpreted as having been produced by the impact of a C-rich micrometeoroid. Fullerenes are large 3-D C structures, among which the species C sub 60 (MW 720) and C sub 70 (MW 840) are preeminent. Fullerenes have several UV absorption bands, hence fullerenes should be detectable using UV laser ionization time-of-flight mass spectrometry. We use a LIMA-2A instrument with pulsed UV laser (266 nm) to search for high mass C species associated with LDEF crater number 31. The mass range was 0 to 1200 amu. Low ablating laser power levels were used (less than or = 5 x 10 exp 7 W/sq. cm); 200 mass spectra were acquired and summed. We observed high mass signals near m/z 720, exhibiting 24 amu separation, which is characteristic of fullerenes. Alkali ion signals were also observed. Little or no C clusters of intermediate mass were observed. We interpret the signals around m/z 720 as fullerenes, mainly C sub 60+ with lower levels of C sub 70+. We propose that the mechanism that produces these signals is resonant multiphoton ionization (REMPI). This selective mechanism explains why low mass C cluster ions are not observed along with the fullerenes, since they have much higher ionization potentials. This finding is unexpected, since up to now the search for fullerenes in extraterrestrial materials has not been successful. We conclude that the fullerenes became associated with crater number 31 in space. Two alternative (and exciting) scenarios are being considered at this time: either the fullerenes were carried by the C-rich projectile that formed crater number 31, or the fullerenes formed upon impact with the LDEF. We show the results of experiments at the ARC Vertical Gun Facility, which may establish some constraints on the origin of the fullerenes.

  5. Small craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1995-01-01

    Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.

  6. Anodized aluminum on LDEF

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  7. Revised prediction of LDEF exposure to trapped protons

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 319.4 to 478.7 km. For this orbital altitude and inclination, two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic field models and the solar conditions were used to obtain the trapped electron and proton omnidirectional fluences reported previously. Results for directional proton spectra using the MSFC anisotropy model for solar minimum and 463 km altitude (representative for the LDEF mission) were also reported. The directional trapped proton flux as a function of mission time is presented considering altitude and solar activity variation during the mission. These additional results represent an extension of previous calculations to provide a more definitive description of the LDEF trapped proton exposure.

  8. Effects of ultra-vacuum and space environment on contact ohmic resistance: LDEF experiment AO 138-11

    NASA Technical Reports Server (NTRS)

    Assie, Jean-Pierre; Perotto, Alfred

    1992-01-01

    The FRECOPA experimentation of chemical resistance of electrical connector contacts, as described, has evidenced the detrimental time variations of nickel plated conductors and gilded copper contacts, irrespective of crimping storage or metal peening conditions. With a view to reorient aluminum technology a silvered aluminum conductor/gilded aluminum contact solution was evaluated.

  9. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1992-01-01

    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes.

  10. Results of the examination of LDEF polyurethane thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1994-01-01

    This report summarizes the condition of polyurethane thermal control coatings subjected to 69 months of low earth orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF) mission. Specimens representing all environmental aspects obtainable by LDEF were analyzed. Widely varying changes in the thermo-optical and mechanical properties of these materials were observed, depending on atomic oxygen and ultraviolet radiation fluences. High atomic oxygen fluences, regardless of ultraviolet radiation exposure levels, resulted in near original optical properties for these coatings but with a degradation in their mechanical condition. A trend in solar absorptance increase with ultraviolet radiation fluence was observed. Contamination, though observed, exhibited minimal effects.

  11. Study of activation of metal samples from LDEF-1 and Spacelab-2

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    The activation of metal samples and other material orbited onboard the Long Duration Exposure Facility (LDEF) and Spacelab-2 were studied. Measurements of the radioactivities of spacecraft materials were made, and corrections for self-absorption and efficiency were calculated. Activation cross sections for specific metal samples were updated while cross sections for other materials were tabulated from the scientific literature. Activation cross sections for 200 MeV neutrons were experimentally determined. Linear absorption coefficients, half lives, branching ratios and other pertinent technical data needed for LDEF sample analyses were tabulated. The status of the sample counting at low background facilities at national laboratories is reported.

  12. Microwelding of various metallic materials under ultravacuum (AO 138-10)

    NASA Technical Reports Server (NTRS)

    Assie, Jean Pierre; Conde, Eric

    1991-01-01

    The first finding from the AO 138-10 is that cold welding never occurred, and that microwelds didn't even affect the reference (presumably microweld prone) pairs of metals consisting of gold, silver, and chromium. The scientific disappointment from these results must be tempered by the notion of a static AO 138-10 experiment, reflecting the passive character of the global Long Duration Exposure Facility (LDEF) flight. Thus far, it has been theorized that cold welding results from the peeling of the oxide layer, that is formed in an earth environment, by the space environment since such a layer no longer grows in space. In fact, such stripping of the oxide layer supposes relative motion of the contacting materials. In the absence of such motion, as in this experiment, oxidation will preserve its integrity and continue to prevent microwelding. More bewildering is that there was no microwelding of the reference pairs. Even though AO 138-10 failed scientific expectations, as did the LDEF structure with cold welding, the positive, functional aspect to keep in mind is the safe operation of single-shot (appendage releasing and/or latching) mechanisms, unhindered by microwelding in a space vacuum, as now demonstrated by the statically representative pairs of materials. Other aspects of the experiment are discussed.

  13. Effects of long-term exposure on LDEF fastener assemblies

    NASA Astrophysics Data System (ADS)

    Spear, Steve; Dursch, Harry

    1992-09-01

    This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.

  14. Interim Report of the Meteoroid and Debris Special Investigation Group

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Zook, Herbert A.; Horz, Fred; Atkinson, Dale R.; Coombs, Cassandra R.; Watts, Alan J.; Dardano, Claire B.; See, Thomas H.; Simon, Charles G.; Kinard, William H.

    1992-01-01

    The LDEF Meteoroid and Debris Special Investigation Group (hereafter M&D SIG) was formed to maximize the data harvest from LDEF by permitting the characterization of the meteoroid and space debris impact record of the entire satellite. Thus, our work is complementary to that of the various M&D PIs, all of whom are members of the SIG. This presentation will summarize recent results and discussions concerning five critical SIG goals: (1) Classification of impactors based upon composition of residues; (2) Small impact (microimpact) features; (3) Impact cratering and penetration data to derive projectile sizes and masses; (4) Particulate flux estimates in low-Earth orbit; (5) The LDEF Meteoroid and Debris database.

  15. Report of the Meteoroid and Debris Special Investigation Group

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Zook, Herbert A.; Horz, Fred; Atkinson, Dale R.; Coombs, Cassandra R.; Watts, Alan J.; Dardano, Claire B.; See, Thomas H.; Simon, Charles G.; Kinard, William H.

    1993-01-01

    The LDEF Meteoroid and Debris Special Investigation Group (hereafter M&D SIG) was formed to maximize the data harvest from LDEF by permitting the characterization of the meteoroid and space debris impact record of the entire satellite. Thus, our work is complementary to that of the various M&D PI's, all of whom are members of the SIG. This presentation will summarize recent results and discussions concerning five critical SIG goals: (1) classification of impactors based upon composition of residues, (2) small impact (microimpact) features, (3) impact cratering and penetration data to derive projectile sizes and masses, (4) particulate flux estimates in low-Earth orbit, and (5) the LDEF Meteoroid and Debris database.

  16. Effects of long-term exposure on LDEF fastener assemblies

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry

    1992-01-01

    This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.

  17. Composite materials flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    George, Pete E.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    Organic composite test specimens were flown on several LDEF experiments. Both bare and coated composites were flown. Atomic oxygen eroded bare composite material, with the resins being recessed at a greater rate than the fibers. Selected coating techniques protected the composite substrate in each case. Tensile and optical properties are reported for numerous specimens. Fiberglass and metal matrix composites were also flown.

  18. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1993-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seed were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The tray was in the F-2 position. The seed were germinated and the germination rates and the development of the resulting plants were compared to the performance of the control seed that stayed in Park Seed's seed storage facility. The initial results were presented in a paper at the First LDEF Post-Retrieval Symposium. There was a better survival rate of the seed in the sealed canister in space than in the storage facility at Park Seed. At least some of the seed in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutations and obtain second generation seed. These small seeded crops have now been grown for evaluation and second generation seed collected.

  19. Definition study for an advanced cosmic ray experiment utilizing the long duration exposure facility

    NASA Astrophysics Data System (ADS)

    Price, P. B.

    1982-06-01

    To achieve the goals of cosmic ray astrophysics, an ultraheavy cosmic ray experiment on an LDEF reflight should be in an orbit with high inclination (approximately 57 deg) at approximately 230 nm for approximately 2 years near solar minimum (approximately 1986). It should fill 61 trays. Each tray should contain 4 modules of total active area 0.7 sq m, with a thermal blanket, thermal labyrinth mounts, aluminum honeycomb mechanical support, and total weight approximately 100 kg. Each module should contain interleaved CR39, Lexan, and thin copper sheets plus one event-thermometer canned in a thin metal cannister sealed with approximately 0.2 atm dry O2. The CR39 and Lexan should be manufactured to specifications and the sheet copper rolled to specifications. The event-thermometer should be a stiffened CR39 sheet that slides via bimetal strips relative to fixed CR39 sheet so that stack temperature can be read out for each event. The metal cannister can be collapsed at launch and landing, capturing the sliding assembly to prevent damage. An engineering study should be made of a prototype LDEF tray; this will include thermal and mechanical tests of detectors and the event thermometer.

  20. Changes in oxidation state of chromium during LDEF exposure

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    The solar collector used for the McDonnell-Douglas Cascade Variable Heat Pipe, Experiment A0076 (Michael Grote - Principal Investigator) was finished with black chromium plating as a thermal control coating. The coating is metallic for low emittance, and is finely microcrystalline to a dimension which yields its high absorptivity. An underplate of nickel was applied to the aluminum absorber plate in order to achieve optimal absorptance characteristics from the black chromium plate surface. Experiment A0076 was located at tray position F9, receiving a projected 8.7 x 10 exp 21 atomic oxygen atoms/sq cm and 11,200 ESH solar radiation. During retrieval, it was observed that the aluminized kapton thermal blankets covering most of the tray were severely eroded by atomic oxygen, and that a 'flap' of aluminum foil was overlaying a roughly triangular shaped portion of the absorber panel. The aluminum foil 'flap' was lost sometime between the Long Duration Exposure Facility (LDEF) retrieval and deintegration. At deintegration, the black chromium was observed to have discolored where it had been covered by the foil 'flap'. A summary of the investigation into the cause of the discoloration is presented.

  1. Definition study for an advanced cosmic ray experiment utilizing the long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1982-01-01

    To achieve the goals of cosmic ray astrophysics, an ultraheavy cosmic ray experiment on an LDEF reflight should be in an orbit with high inclination (approximately 57 deg) at approximately 230 nm for approximately 2 years near solar minimum (approximately 1986). It should fill 61 trays. Each tray should contain 4 modules of total active area 0.7 sq m, with a thermal blanket, thermal labyrinth mounts, aluminum honeycomb mechanical support, and total weight approximately 100 kg. Each module should contain interleaved CR39, Lexan, and thin copper sheets plus one event-thermometer canned in a thin metal cannister sealed with approximately 0.2 atm dry O2. The CR39 and Lexan should be manufactured to specifications and the sheet copper rolled to specifications. The event-thermometer should be a stiffened CR39 sheet that slides via bimetal strips relative to fixed CR39 sheet so that stack temperature can be read out for each event. The metal cannister can be collapsed at launch and landing, capturing the sliding assembly to prevent damage. An engineering study should be made of a prototype LDEF tray; this will include thermal and mechanical tests of detectors and the event thermometer.

  2. Photo from Space Shuttle Mission 41-C of the Long Duration Exposure

    NASA Image and Video Library

    1989-12-06

    Photo from Space Shuttle Mission 41-C of the Long Duration Exposure Facility (LDEF) deploy by CHALLENGER and a Langley Research Center (LRC) supplied art concept of the LDEF recovery by COLUMBIA during Space Shuttle Mission STS-32. LRC # L-89-11-720 for JSC # S89-50779

  3. Calculated values of atomic oxygen fluences and solar exposure on selected surfaces of LDEF

    NASA Technical Reports Server (NTRS)

    Gillis, J. R.; Pippin, H. G.; Bourassa, R. J.; Gruenbaum, P. E.

    1995-01-01

    Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.

  4. Holographic data storage crystals for the LDEF

    NASA Technical Reports Server (NTRS)

    Callen, W. Russell; Gaylord, Thomas K.

    1993-01-01

    Crystals of lithium niobate were passively exposed to the space environment of the Long Duration Exposure Facility (LDEF). Three of the four crystals contained volume holograms. Although the crystals suffered the surface damage characteristic of that suffered by other components on the Georgia Tech tray, the crystals remained suitable for the formation of volume holograms.

  5. Compositional analysis and classification of projectile residues in LDEF impact craters

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, Ronald P.

    1992-01-01

    This catalog contains preliminary analyses of residues of hypervelocity projectiles that encountered gold substrates exposed by instrument A0187-1 on the Long Duration Exposure Facility (LDEF). This instrument was on LDEF's trailing edge where relative encounter speeds should be lowest for any non-spinning platform in low Earth orbit (LEO). Approximately 0.6 m(exp 2) of Au substrates yielded 198 impact craters greater than 20 micrometers in diameter. Some 30 percent of the craters were made by natural cosmic dust particles and some 15 percent by man-made objects. Some 50 percent of all features, however, have residues, if any, that are beyond the detection threshold of the SEM-EDXA method used. The purpose of this catalog is to provide detailed evidence and criteria that may be used to arrive at specific particle types on a case-by-case basis and to group such particles into compositional classes. Clearly this is a somewhat interpretative undertaking. For that reason, we encourage and solicit critique and comments from those interested in the systematic analysis of all impact features on LDEF.

  6. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  7. Meteoroid/space debris impacts on MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria

    1992-01-01

    The many meteoroid and space debris impacts found on A0171, A0034, S1005, and other MSFC experiments are considered. In addition to those impacts found by the meteoroid and debris studies, numerous impacts less than 0.5 mm were found and photographed. The flux and size distribution of impacts is presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.

  8. Meteoroid/space debris impacts on MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria

    1991-01-01

    The numerous meteoroid and space debris impacts found on AO171, AO034, S0069, and other MSFC experiments are examined. Besides those impacts found by the Meteoroid and Debris Special Investigative Group at KSC, numerous impacts of less than 0.5 mm were found and photographed. The flux and size distribution of impacts are presented as well as EDS analysis of impact residue. Emphasis is on morphology of impacts in the various materials, including graphite/epoxy composites, polymeric materials, optical coatings, thin films, and solar cells.

  9. Thermoluminescent dosimetry for LDEF experiment M0006

    NASA Technical Reports Server (NTRS)

    Chang, J. Y.; Giangano, D.; Kantorcik, T.; Stauber, M.; Snead, L.

    1992-01-01

    Experiment M0006 on the Long Duration Exposure Facility had as its objective the investigation of space radiation effects on various electronic and optical components, as well as on seed germination. The Grumman Corporate Research Center provided the radiation dosimetric measurements for M0006, comprising the preparation of thermoluminescent dosimeters (TLD) and the subsequent measurement and analysis of flight exposed and control samples. In addition, various laboratory exposures of TLD's with gamma rays and protons were performed to obtain a better understanding of the flight exposures.

  10. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1991-01-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low background Ge semiconductor detector gamma ray spectrometry. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit and radionuclides present initially as contaminants in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment related monitor foils and tomato seeds, and such spacecraft materials as Al, stainless steel, and Ti. In the second category are Al, Be, Ti, Va, and some special glasses. Consider that measured peak-area count rates from both categories range from a high value of about 1 count per minute down to less than 0.001 count per minute. Successful measurement of count rates toward the low end of this range can be achieved only through low background techniques, such as used to obtain the results presented here.

  11. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Astrophysics Data System (ADS)

    Smith, Alan R.; Hurley, Donna L.

    1991-06-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low background Ge semiconductor detector gamma ray spectrometry. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit and radionuclides present initially as contaminants in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment related monitor foils and tomato seeds, and such spacecraft materials as Al, stainless steel, and Ti. In the second category are Al, Be, Ti, Va, and some special glasses. Consider that measured peak-area count rates from both categories range from a high value of about 1 count per minute down to less than 0.001 count per minute. Successful measurement of count rates toward the low end of this range can be achieved only through low background techniques, such as used to obtain the results presented here.

  12. Orbital debris and meteoroids: Results from retrieved spacecraft surfaces

    NASA Astrophysics Data System (ADS)

    Mandeville, J. C.

    1993-08-01

    Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.

  13. Surface Analysis of LDEF Materials

    NASA Technical Reports Server (NTRS)

    Wightman, J. P. (Principal Investigator)

    1996-01-01

    The abstract to the M.S. thesis included as appendix to this report contains the details of the research performed under this grant. Presentations and publications resulting from the research are listed as the main content of the report itself. The thesis describes the surface characterization procedures and analysis of materials flown in the NASA Long Duration Exposure Facility (LDEF).

  14. Effects of space exposure on metals flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary; Bourassa, R. J.

    1995-01-01

    This report includes measurements on copper, aluminum, and stainless steel from the Long Duration Exposure Facility (LDEF). Summaries of the performance of a variety of metals flown on LDEF are presented. An extensive list of references directs the reader to other detailed investigations. The influence of contamination on a number of measurements is documented.

  15. LDEF Materials Workshop 1991, part 1

    NASA Technical Reports Server (NTRS)

    Stein, Bland A. (Compiler); Young, Philip R. (Compiler)

    1992-01-01

    The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coatings and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This report contains most of the papers presented at the technical sessions. It also contains theme panel reports and visual aids. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit of its charter to investigate the effects of LEO exposure on materials which where not originally planned to be test specimens and to integrate this information with data generated by principal investigators into an LDEF materials data base.

  16. Chemical characterization of selected LDEF polymeric materials

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.

    1991-01-01

    Chemical characterization of selected polymeric materials which received exposure on the Long Duration Exposure Facility (LDEF) is reported. The specimens examined include silvered fluorinated ethylene propylene Teflon thermal blanket material, polysulfone, epoxy, polyimide matrix resin/graphite fiber reinforced composites, and several high performance polymer films. These specimens came from numerous LDEF locations, and thus received different environmental exposures. The results to date show no significant change at the molecular level in the polymer that survived exposure. Scanning electron and scanning tunneling microscopes show resin loss and a texturing of some specimens which resulted in a change in optical properties. The potential effect of a silicon-containing molecular contamination on these materials is addressed. The possibility of continued post-exposure degradation of some polymeric films is also proposed.

  17. Analysis of LDEF experiment AO187-2 chemical and isotopic measurements of micrometeoroids by secondary ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1995-01-01

    #Experiment AO187-2, that was flown on board the Long Duration Exposure Facility(LDEF), was designed to measure the chemical and isotopic compositions of interplanetary dust impinging on the spacecraft from outer space. Information on the nature and composition of orbital debris was also anticipated. The spacecraft maintained a constant orientation with respect to its velocity vector thereby defining leading and trailing edges that faced respectively into and away from the direction of motion. Arrays of individual capture cells each 80.8 sq cm in size and totaling 237 in number were exposed on both the leading and trailing edges of LDEF. Each cell consisted of a pure Ge target surface slightly separated from a thin (2.5 micrometers) metallized plastic 'entrance foil.' The basic concept was that incoming projectiles would penetrate the foil, strike the Ge target plate at high velocity producing a vapor-liquid cloud that would re-deposit material on the underside of the plastic foil. This material would then be analyzed using the sensitive surface analysis technique of Secondary Ion Mass Spectrometry (SIMS). In practice, most of the plastic entrance foils failed during the extended period of orbital exposure probably due to a combination of UV embrittlement, large densities of impact events and (for the leading edge) the effects of atomic oxygen erosion in orbit. However the foils failed gradually and most remained in place on the capture cells for a significant fraction of the duration of the flight . Because most of the impactors were small (less than 10 micrometers) they were heated and dispersed in traversing the entrance foils producing clouds of molten droplets and vapor that produced easily identifiable 'extended impacts' on the Ge target plates. Fortunately, it proved possible to make ion probe measurements of projectile compositions from material deposited on the Ge in the extended impact structures.

  18. Fullerenes in an impact crater on the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Radicati di Brozolo, F.; Bunch, T. E.; Fleming, R. H.; Macklin, J.

    1994-01-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  19. Duplication and analysis of meteoroid damage on LDEF and advanced spacecraft materials

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1995-01-01

    The analysis of exposed surfaces on LDEF since its retrieval in 1990 has revealed a wide range of meteoroid and debris (M&D) impact features in the sub-micron to millimeter size range, ranging from quasi-infinite target cratering in LDEF metallic structural members (e.g. inter-costals, tray clamps, etc.) to non-marginal perforations in metallic experimental surfaces (e.g. thin foil detectors, etc.). Approximately 34,000 impact features are estimated to exist on the exposed surfaces of LDEF. The vast majority of impact craters in metal substrates exhibit circular footprints, with approximately 50 percent retaining impactor residues in varying states of shock processing. The fundamental goals of this project were to duplicate and analyze meteoroid impact damage on spacecraft metallic materials with a view to quantifying the residue retention and oblique impact morphology characteristics. Using the hypervelocity impact test facility established at Auburn University a series of impact tests (normal and oblique incidence) were executed producing consistently high (11-12 km/s) peak impact velocities, the results of which were subsequently analyzed using Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS) facilities at Auburn University.

  20. An LDEF 2 dust instrument for discrimination between orbital debris and natural particles in near-Earth space

    NASA Technical Reports Server (NTRS)

    Tuzzolino, A. J.; Simpson, J. A.; Mckibben, R. B.; Voss, H. D.; Gursky, H.

    1993-01-01

    The characteristics of a space dust instrument which would be ideally suited to carry out near-Earth dust measurements on a possible Long Duraction Exposure Facility reflight mission (LDEF 2) is discussed. As a model for the trajectory portion of the instrument proposed for LDEF 2, the characteristics of a SPAce DUSt instrument (SPADUS) currently under development for flight on the USA ARGOS mission to measure the flux, mass, velocity, and trajectory of near-Earth dust is summarized. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. The SPADUS measurements will cover the dust mass range approximately 5 x 10(exp -12) g (2 microns diameter) to approximately 1 x 10(exp -5) g (200 microns diameter), with an expected mean error in particle trajectory of approximately 7 deg (isotropic flux). Arrays of capture cell devices positioned behind the trajectory instrumentation would provide for Earth-based chemical and isotopic analysis of captured dust. The SPADUS measurement principles, characteristics, its role in the ARGOS mission, and its application to an LDEF 2 mission are summarized.

  1. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  2. Measurement of trapped proton fluences in main stack of P0006 experiment

    NASA Technical Reports Server (NTRS)

    Nefedov, N.; Csige, I.; Benton, E. V.; Henke, R. P.; Benton, E. R.; Frigo, L. A.

    1995-01-01

    We have measured directional distribution and Eastward directed mission fluence of trapped protons at two different energies with plastic nuclear track detectors (CR-39 with DOP) in the main stack of the P0006 experiment on LDEF. Results show arriving directions of trapped protons have very high anisotropy with most protons arriving from the West direction. Selecting these particles we have determined the mission fluence of Eastward directed trapped protons. We found experimental fluences are slightly higher than results of the model calculations of Armstrong and Colborn.

  3. Prediction of LDEF exposure to the ionizing radiation environment

    NASA Technical Reports Server (NTRS)

    Watts, J. W.; Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Predictions of the LDEF mission's trapped proton and electron and galactic cosmic ray proton exposures have been made using the currently accepted models with improved resolution near mission end and better modeling of solar cycle effects. An extension of previous calculations, to provide a more definitive description of the LDEF exposure to ionizing radiation, is represented by trapped proton and electron flux as a function of mission time, presented considering altitude and solar activity variation during the mission and the change in galactic cosmic ray proton flux over the mission. Modifications of the AP8MAX and AP8MIN fluence led to a reduction of fluence by 20%. A modified interpolation model developed by Daly and Evans resulted in 30% higher dose and activation levels, which better agreed with measured values than results predicted using the Vette model.

  4. Induced radioactivity of LDEF materials and structural components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Laird, C. E.; Fishman, G. J.; Parnell, T. A.; Camp, D. C.; Frederick, C. E.; Hurley, D. L.; Lindstrom, D. J.; Moss, C. E.; Reedy, R. C.; hide

    1996-01-01

    We present an overview of the Long Duration Exposure Facility (LDEF) induced activation measurements. The LDEF, which was gravity-gradient stabilized, was exposed to the low Earth orbit (LEO) radiation environment over a 5.8 year period. Retrieved activation samples and structural components from the spacecraft were analyzed with low and ultra-low background HPGe gamma spectrometry at several national facilities. This allowed a very sensitive measurement of long-lived radionuclides produced by proton- and neutron-induced reactions in the time-dependent, non-isotropic LEO environment. A summary of major findings from this study is given that consists of directionally dependent activation, depth profiles, thermal neutron activation, and surface beryllium-7 deposition from the upper atmosphere. We also describe a database of these measurements that has been prepared for use in testing radiation environmental models and spacecraft design.

  5. Materials And Processes Technical Information System (MAPTIS) LDEF materials database

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Strickland, John W.

    1992-01-01

    The Materials and Processes Technical Information System (MAPTIS) is a collection of materials data which was computerized and is available to engineers in the aerospace community involved in the design and development of spacecraft and related hardware. Consisting of various database segments, MAPTIS provides the user with information such as material properties, test data derived from tests specifically conducted for qualification of materials for use in space, verification and control, project management, material information, and various administrative requirements. A recent addition to the project management segment consists of materials data derived from the LDEF flight. This tremendous quantity of data consists of both pre-flight and post-flight data in such diverse areas as optical/thermal, mechanical and electrical properties, atomic concentration surface analysis data, as well as general data such as sample placement on the satellite, A-O flux, equivalent sun hours, etc. Each data point is referenced to the primary investigator(s) and the published paper from which the data was taken. The MAPTIS system is envisioned to become the central location for all LDEF materials data. This paper consists of multiple parts, comprising a general overview of the MAPTIS System and the types of data contained within, and the specific LDEF data element and the data contained in that segment.

  6. Effects of orbital exposure on Halar during the LDEF mission

    NASA Technical Reports Server (NTRS)

    Brower, William E., Jr.; Holla, Harish; Bauer, Robert A.

    1992-01-01

    Thermomechanical Analysis (TMA), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) were performed on samples of Halar exposed on the LDEF Mission for 6 years in orbit and unexposed Halar control samples. Sections 10-100 microns thick were removed from the exposed surface down to a depth of 1,000 microns through the 3 mm thick samples. The TMA and DSC results, which arise from the entire slice and not just its surface, showed no differences between the LDEF and the control samples. TMA scans were run from ambient to 300 C; results were compared by a tabulation of the glass transition temperatures. DSC scans were run from ambient to 700 C; the enthalpy of melting was compared for the samples as a function of section depth with the sample. The TGA results, which arise from the surface of the sample initially, showed a sharp increase in the topmost 50 micron section (the exposed, discolored side) in the weight loss of 170 C in oxygen. This weight loss dropped to bulk values in the range of depth of 50-200 microns. The control sample showed only a slight increase in weight loss as the top surface was approached. The LDEF Halar sample appears to be mechanically undamaged, with a surface layer which oxidizes faster as a result of orbital exposure.

  7. An investigation of the degradation of Fluorinated Ethylene Propylene (FEP) copolymer thermal blanketing materials aboard LDEF in the laboratory

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Brinza, David E.; Anderson, Mark S.; Minton, Timothy K.; Laue, Eric G.; Liang, Ranty H.

    1991-01-01

    Samples of fluorinated ethylene propylene copolymer thermal blanketing material, recovered from the Long Duration Exposure Facility (LDEF), were investigated to determine the nature and the extent of degradation due to exposure to the low-Earth-orbit environment. Samples recovered from the ram-facing direction of LDEF, which received vacuum-ultraviolet (VUV) radiation and atomic-oxygen impingement, and samples from the trailing edge, which received almost exclusively VUV exposure, were investigated by scanning electron microscopy and atomic force microscopy. The most significant result of this investigation was found on samples that received only VUV exposure. These samples possessed a hard, embrittled surface layer that was absent from the atomic-oxygen exposed sample and from unexposed control samples. This surface layer is believed to be responsible for the 'synergistic' effect between VUV and atomic oxygen. Overall, the investigation revealed dramatically different morphologies for the two samples. The sample receiving both atomic-oxygen and VUV exposure was deeply eroded and had a characteristic 'rolling' surface morphology, while the sample that received only VUV exposure showed mild erosion and a surface morphology characterized by sharp high-frequency peaks. The morphologies observed in the LDEF samples, including the embrittled surface layer, were successfully duplicated in the laboratory.

  8. Follow-up on the effects of the space environment on UHCRE thermal blankets

    NASA Technical Reports Server (NTRS)

    Levadou, Francois; Vaneesbeek, Marc

    1993-01-01

    An overview of the effects of the space environment on the thermal blanket of the UHCRE experiment is presented with an emphasis on atomic oxygen (AO) erosion. A more accurate value for FEP Teflon reaction efficiency is given and corresponds, at normal incidence, to 3.24 10(exp -25) cu cm/atomic, therefore, the FEP Teflon erosion corresponding to the Long Duration Exposure Facility (LDEF) total mission is 29.5 microns. A power 1.44 of the cosine of the incident angle of the oxygen atoms is found. It is shown that this value is not far from the power found using Fergusson's relationship between efficiency and energy of the O-atoms. An hypothesis concerning the effect of oxygen ions (O(+)) is also presented. The presence of oxygen ions may explain the different results obtained from different flights and from laboratory tests. Finally an XPS analysis of Chemglaze Z306(tm) black paint demonstrates the presence of silicone in the paint which may explain part of the contamination found on LDEF.

  9. Analyses of space environment effects on active fiber optic links orbited aboard the LDEF

    NASA Technical Reports Server (NTRS)

    Taylor, Edward W.; Monarski, T. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1993-01-01

    The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.

  10. Analysis of Silverized Teflon Thermal Control Material Flown on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary

    1995-01-01

    Silver backed teflon (Ag/FEP) material used for thermal control on the Long Duration Exposure Facility (LDEF) has been examined in detail. Optical, mechanical, and chemical properties were characterized for specimens exposed to a variety of space environmental conditions. Recession rates were determined for this material. Samples were obtained from virtually every LDEF location except the Earth-end. Atomic oxygen exposed regions changed from specular to diffusely reflective.

  11. Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.

    1992-01-01

    Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.

  12. Collection, analysis, and archival of LDEF activation data

    NASA Technical Reports Server (NTRS)

    Laird, C. E.; Harmon, B. A.; Fishman, G. J.; Parnell, T. A.

    1993-01-01

    The study of the induced radioactivity of samples intentionally placed aboard the Long Duration Exposure Facility (LDEF) and samples obtained from the LDEF structure is reviewed. The eight laboratories involved in the gamma-ray counting are listed and the scientists and the associated counting facilities are described. Presently, most of the gamma-ray counting has been completed and the spectra are being analyzed and corrected for efficiency and self absorption. The acquired spectra are being collected at Eastern Kentucky University for future reference. The results of these analyses are being compiled and reviewed for possible inconsistencies as well as for comparison with model calculations. These model calculations are being revised to include the changes in trapped-proton flux caused by the onset of the period of maximum solar activity and the rapidly decreasing spacecraft orbit. Tentative plans are given for the storage of the approximately 1000 gamma-ray spectra acquired in this study and the related experimental data.

  13. LDEF materials special investigation group's data bases

    NASA Technical Reports Server (NTRS)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  14. Materials SIG quantification and characterization of surface contaminants

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ

    1992-01-01

    When LDEF entered orbit its cleanliness was approximately a MIL-STD-1246B Level 2000C. Its burden of contaminants included particles from every part of its history including a relatively small contribution from the shuttle bay itself. Although this satellite was far from what is normally considered clean in the aerospace industry, contaminating events in orbit and from processing after recovery were easily detected. The molecular contaminants carried into orbit were dwarfed by the heavy deposition of UV polymerized films from outgassing urethane paints and silicone based materials. Impacts by relatively small objects in orbit could create particulate contaminants that easily dominated the particle counts within a centimeter of the impact site. During the recovery activities LDEF was 'sprayed' with a liquid high in organics and water soluble salts. With reentry turbulence, vibration, and gravitational loading particulate contaminants were redistributed about LDEF and the shuttle bay.

  15. Be-10 in terrestrial bauxite and industrial aluminum: An LDEF fallout

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.; Harmon, B. A.; Parnell, T. A.

    1995-01-01

    Work has continued on the search for Be-10 on metals other than aluminum flown on LDEF. Much time-consuming extractive chemistry has been performed at Rutgers University on turnings obtained from the ends of two stainless steel trunnions from LDEF and the prepared samples will be run on the University of Pennsylvania accelerator mass spectrometer. We have continued to investigate our discovery of naturally-occurring Be-10 contamination in bauxite and industrial aluminums from different sources. Measurements of Be-10 in ores from three different sites, and from four different samples of commercial aluminum have been made. Our investigators indicate that the contamination in commercial aluminum metal originates in its principal ore, bauxite. The levels in some bauxite samples were much greater than the maximum possible for in situ production by cosmic ray secondaries. Absorption of atmospheric Be-10 by surface ores exposed to rainfall is a reasonable explanation.

  16. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, Tuyen D.; Steckel, Gary L.

    1993-01-01

    The thermal expansion behavior of Long Duration Exposure Facility (LDEF) metal matrix composite materials was studied by (1) analyzing the flight data that was recorded on orbit to determine the effects of orbital time and heating/cooling rates on the performance of the composite materials, and (2) characterizing and comparing the thermal expansion behavior of post-flight LDEF and lab-control samples. The flight data revealed that structures in space are subjected to nonuniform temperature distributions, and thermal conductivity of a material is an important factor in establishing a uniform temperature distribution and avoiding thermal distortion. The flight and laboratory data showed that both Gr/Al and Gr/Mg composites were stabilized after prolonged thermal cycling on orbit. However, Gr/Al composites showed more stable thermal expansion behavior than Gr/Mg composites and offer advantages for space structures particularly where very tight thermal stability requirements in addition to high material performance must be met.

  17. LDEF positioned by RMS over OV-102's payload during STS-32 retrieval

    NASA Image and Video Library

    1990-01-20

    STS032-541-018 (12 Jan 1990) --- One of a number of frames photographed by the STS-32 crew as part of a detailed supplementary objective on documentary still photography. The DSO was monitored by Astronaut Marsha S. Ivins, mission specialist. STS032-541-018 Kodak Ektar 25 negative film. 35mm frame of LDEF suspended just over its resting place in cargo bay. White clouds and blue ocean in foreground.

  18. Capabilities of the LDEF-2 heavy nuclei collection

    NASA Technical Reports Server (NTRS)

    Drach, J.; Price, P. B.; Salamon, M. H.; Tarle, G.; Ahlen, S. P.

    1985-01-01

    To take the next big step beyond High Energy Astronomy Observatory (HEAO-3) the Heavy Nuclei Collector (HNC), to be carried on an LDEF reflight, has the goals of greatly increased collecting power ( 30 actinides) and charge resolution sigma sub Z or = 0.25 E for Z up to approximately 100, which will provide abundances of all the charges 40 or Z or = 96 and permit sensitive searches for hypothetical particles such as monopoles, superheavy elements, and quark nuggets.

  19. Analysis of selected specimens from the STS-46 Energetic Oxygen Interaction with Materials-3 experiment

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Bourassa, Roger J.; Dursch, Harry W.; Pippin, H. Gary

    1995-01-01

    The Energetic Oxygen Interaction with Materials 3 (EOIM-3) experiment was flown on the STS-46 mission, which was launched on 31 Jul. 1992 and returned 8 Aug. 1992. Boeing specimens were located on both the NASA Marshall Space Flight Center (MSFC) tray and the Ballistic Missile Defense Organization (BMDO) tray integrated by the Jet Propulsion Laboratory (JPL). The EOIM-3 pallet was mounted in the Space Shuttle payload bay near the aft bulkhead. During the mission, the atomic oxygen (AO) exposure levels of specimens in these passive sample trays was about 2.3 x 10(exp 20) atoms/sq cm. The specimens also received an estimated 22 equivalent sun hours of solar exposure. In addition, it appears that the EOIM-3 pallet was exposed to a silicone contamination source and many specimens had a thin layer of silicon based deposit on their surfaces after the flight. The specimens on the MSFC tray included seven solid film lubricants, a selection of butyl rubber (B612) and silicone (S383) o-rings, three indirect scatter surfaces, and Silver/Fluorinated Ethylene Propylene (Ag/FEP) and Chemglaze A276 specimens which had previously flown on trailing edge locations of the Long Duration Exposure Facility (LDEF). The specimens on the JPL tray included composites previously flown on LDEF and two indirect scattering surfaces.

  20. The LDCE Particle Impact Experiment as flown on STS-46. [limited duration space environment candidate materials exposure (LDCE)

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Tanner, William G.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.

    1992-01-01

    Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO). Though regular in-site sampling of the flux in LEO the materials and techniques have produced data which compliment the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Orbital debris models have not been able to describe the flux of particles with d sub p less than or = 0.05 cm, because of the lack of data. Even though LDEF will provide a much needed baseline flux measurement, the continuous monitoring of micron and sub-micron size particles must be carried out. A flight experiment was conducted on the Space Shuttle as part of the LDCE payload to develop an understanding of the Spatial Density (concentration) as a function of size (mass) for particle sizes 1 x 10(exp 6) cm and larger. In addition to the enumeration of particle impacts, it is the intent of the experiment that hypervelocity particles be captured and returned intact. Measurements will be performed post flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the Particle Impact Experiment (PIE) also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g., thermal cycling, and atomic oxygen, etc. The experiment will measure the optical property changes of mirrors and will provide the fluence of the ambient atomic oxygen environment to other payload experimenters. In order to augment the amount of material returned in a form which can be analyzed, the survivability of the experiment as well as the captured particles will be assessed. Using Sandia National Laboratory's hydrodynamic computer code CTH, hypervelocity impacts on the materials which comprise the experiments have been investigated and the progress of these studies are reported.

  1. Long Duration Exposure Facility (LDEF) experiment M0003 meteoroid and debris survey

    NASA Technical Reports Server (NTRS)

    Meshishnek, M. J.; Gyetvay, S. R.; Paschen, K. W.; Coggi, J. M.

    1993-01-01

    A survey of the meteoroid and space debris impacts on LDEF experiment M0003 was performed. The purpose of this survey was to document significant impact phenomenology and to obtain impact crater data for comparison to current space debris and micrometeoroid models. The survey consists of the following: photomicrographs of significant impacts in a variety of material types; accurate measurements of impact crater coordinates and dimensions for selected experiment surfaces; and databasing of the crater data for reduction, manipulation, and comparison to models. Large area surfaces that were studied include the experiment power and data system (EPDS) sunshields, environment exposure control canister (EECC) sunshields, and the M0003 signal conditioning unit (SCU) covers. Crater diameters down to 25 microns were measured and cataloged. Both leading (D8) and trailing (D4) edge surfaces were studied and compared. The EPDS sunshields are aluminum panels painted with Chemglaze A-276 white thermal control paint, the EECC sunshields are chromic acid-anodized aluminum, and the SCU covers are aluminum painted with S13GLO white thermal control paint. Typical materials that have documented impacts are metals, glasses and ceramics, composites, polymers, electronic materials, and paints. The results of this survey demonstrate the different response of materials to hypervelocity impacts. Comparison of the survey data to curves derived from the Kessler debris model and the Cour-Palais micrometeoroid model indicates that these models overpredict small impacts (less than 100 micron) and may underpredict large impacts (greater than 1000 micron) while having fair to good agreement for the intermediate impacts. Comparison of the impact distributions among the various surfaces indicates significant variations, which may be a function of material response effects, or in some cases surface roughness. Representative photographs and summary graphs of the impact data are presented.

  2. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.

    1976-01-01

    Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

  3. Performance of silvered Teflon thermal control blankets on spacecraft

    NASA Astrophysics Data System (ADS)

    Pippin, G.; Stuckey, W. K.; Hemminger, C. S.

    1993-03-01

    Silver-backed fluorinated ethylene propylene Teflon (Ag/FEP) thin film material was used for thermal control in many locations on the Long Duration Exposure Facility (LDEF). The Ag/FEP registered the effects of atomic oxygen, solar ultraviolet radiation, meteoroid and debris impacts, thermal cycling, and contamination. This report summarizes the post-flight condition of the Ag/FEP, compares the results with performance on other spacecraft, and presents lifetime estimates for use under a variety of environmental exposures. Measurements of optical property and mechanical property and surface chemistry changes with exposure conditions, and their significance for design considerations and expected performance lifetimes, are reported for material flown on LDEF. The LDEF based data provides detailed information performance of Ag/FEP under relatively long term exposure in low Earth orbit. Comparison of this data with results from short term shuttle flights, Solar Max, SCATHA, other satellites, and ground based measurements is made to present a comprehensive summary of the use of this material for spacecraft applications.

  4. Durability of reflector materials in the space environment

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Finckenor, Miria M.; Edwards, David; Kamenetzky, Rachel R.; Linton, Roger C.

    1995-01-01

    Various reflector configurations were flown as part of the Long Duration Exposure Facility (LDEF) A0171 experiment. These reflectors consisted of nickel substrates with aluminum, enhanced aluminum (multiple layers of aluminum and silver), silver, and silver alloy coatings with glassy ceramic overcoatings. These samples have been evaluated for changes in reflectance due to 5.8 years in the space environment. The reflector materials have also been evaluated using angstrometer, Rutherford backscattering (RBS), and electron spectroscopy for chemical analysis (ESCA) techniques.

  5. LDEF-space environmental effects on materials: Composites and silicone coatings

    NASA Technical Reports Server (NTRS)

    Petrie, Brian C.

    1991-01-01

    The objective of the Lockheed experiment is to evaluate the effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites. Two diverse categories are reported: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, CTE, and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicon coatings.

  6. System related testing and analysis of FRECOPA

    NASA Technical Reports Server (NTRS)

    Durin, Christian

    1992-01-01

    Results from the French Cooperative Payload (FRECOPA) system analysis are presented. It was one of the numerous experiments which were flown on the Long Duration Exposure Facility (LDEF) satellite. In our flight configuration (LEO orbit, trailing edge), the environment was a better vacuum than the leading edge, with many thermal cycles (32000) and a large amount of UV radiation (11100 equivalent sun hours). Also, the satellite was mainly bombarded by micro-particles. It saw a low atomic flux and minor doses of protons and electrons.

  7. LDEF - 69 Months in Space: First Post-Retrieval Symposium, Part 1,

    DTIC Science & Technology

    1991-01-01

    Whitaker and Leighton E. Young EXPERIMENT M0003-4 ADVANCED SOLAR CELL AND COVERGLASS ANALYSIS AN OVERVIEW ’ 19,<- TerryM.Trumble PRELIMINARY ANALYSES...this effort. Much of the surveying work was performed by Jack Warren, Miria Finckenor, Frank Cardenas, Eric Christiansen , Samantha Lapin, Lt. Mike...Cour-Palais (ref. 14) and as amended by E. Christiansen (personal communications, 1991) for all aluminum surfaces: P=5.24Dp 19/18H-°-25(dp/d,)0-5

  8. Space environmental effects observed on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Edelman, Joel E.; Mason, James B.

    1995-01-01

    The Hubble Space Telescope (HST) Repair Mission of December, 1993, was first and foremost a mission to improve the performance of the observatory. But for a specialized segment of the aerospace industry, the primary interest is in the return to Earth of numerous pieces of the HST hardware, pieces which have been replaced, repaired, improved, or superseded. The returned hardware is of interest because of the information it potentially carries about the effects of exposure to the space environment for three and a half years. Like the LDEF retrieval mission four years ago, the HST repair mission is of interest to many engineering disciplines, including all of the disciplines represented by the LDEF Special Investigation Groups (SIG's). There is particular interest in the evaluation of specific materials and systems in the returned components. Some coated surfaces have been processed with materials which are newer and still in use by, or under consideration for, other spacecraft in a variety of stages of development. Several of the systems are being returned because a specific failure or anomaly has been observed and thus there is, at the outset, a specific investigative trail that needs to be followed. These systems are much more complex than those flown on LDEF and, in two instances, comprised state-of-the-art science instruments. Further, the parts used in these systems generally were characterized more rigorously prior to flight than were those in the LDEF systems, and thus post flight testing may yield more significant results.

  9. Space environmental effects observed on the Hubble Space Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelman, J.E.; Mason, J.B.

    1995-02-01

    The Hubble Space Telescope (HST) Repair Mission of December, 1993, was first and foremost a mission to improve the performance of the observatory. But for a specialized segment of the aerospace industry, the primary interest is in the return to Earth of numerous pieces of the HST hardware, pieces which have been replaced, repaired, improved, or superseded. The returned hardware is of interest because of the information it potentially carries about the effects of exposure to the space environment for three and a half years. Like the LDEF retrieval mission four years ago, the HST repair mission is of interestmore » to many engineering disciplines, including all of the disciplines represented by the LDEF Special Investigation Groups (SIG`s). There is particular interest in the evaluation of specific materials and systems in the returned components. Some coated surfaces have been processed with materials which are newer and still in use by, or under consideration for, other spacecraft in a variety of stages of development. Several of the systems are being returned because a specific failure or anomaly has been observed and thus there is, at the outset, a specific investigative trail that needs to be followed. These systems are much more complex than those flown on LDEF and, in two instances, comprised state-of-the-art science instruments. Further, the parts used in these systems generally were characterized more rigorously prior to flight than were those in the LDEF systems, and thus post flight testing may yield more significant results.« less

  10. Final results of the Space Exposed Experiment Developed for Students (SEEDS) P-0004-2

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1992-01-01

    Space Exposed Experiment Developed for Students (SEEDS), resulted in the distribution of over 132,000 SEED kits in 1990. The kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF) as well as seeds that had been stored in a climate controlled warehouse for the same period of time. Students compared germination and growth rate characteristics of the two seeds groups and returned data to NASA for analysis. The scientific information gained was valuable as students shared the excitement of taking part in a national project. Of greater importance was the subsequent interest generated in science education.

  11. Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique

    NASA Technical Reports Server (NTRS)

    Wiedlocher, D. E.; Kinser, D. L.

    1992-01-01

    Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic.

  12. Effects of LDEF flight exposure on selected polymer matrix resin composite materials

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.; Young, Philip R.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy and polysulfone matrix resin composites which received exposure to the LEO environment on the LDEF is reported. The changes in mechanical properties of ultimate tensile strength and tensile modulus for exposed flight specimens are compared to the three sets of control specimens. Marked changes in surface appearance are discussed, and resin loss is reported. The chemical characterization including IR, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure.

  13. Preliminary analysis of WL experiment number 701: Space environment effects on operating fiber optic systems

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Padden, R. J.; Berry, J. N.; Sanchez, A. D.; Chapman, S. P.

    1991-01-01

    A brief overview of the analysis performed on WL Experiment number 701 is presented, highlighting the successful operation of the first know active fiber optic links orbited in space. Four operating fiber optic links were exposed to the space environment for a period exceeding five years, situated aboard and external to the Long Duration Exposure Facility (LDEF). Despite the prolonged space exposure to radiation, wide temperature extremums, atomic oxygen interactions, and micrometeorite and debris impacts, the optical data links performed well within specification limits. Early Phillips Laboratory tests and analyses performed on the experiment and its recovered magnetic tape data strongly indicate that fiber optic application in space will have a high success rate.

  14. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  15. Orbital debris and meteoroid population as estimated from LDEF impact data

    NASA Technical Reports Server (NTRS)

    Zhang, Jingchang; Kessler, Donald J.

    1995-01-01

    Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.

  16. The effects of long-duration space exposure on the mechanical properties of some carbon-reinforced resin matrix composites

    NASA Technical Reports Server (NTRS)

    Vyhnal, Richard F.

    1993-01-01

    Long Duration Exposure Facility (LDEF) Experiment A0175 involved the non-instrumented exposure of seven carbon-fiber reinforced resin-matrix advanced composite panels contained in two trays - A7 and A1. These two trays were located, respectively, on the leading and trailing faces of LDEF, obliquely oriented to the RAM (Row 9) and WAKE (Row 3) directions. The identity and location of the seven panels, which consisted of six flat laminates of the following material systems are shown: carbon/epoxy (T300/934), carbon/bismaleimide (T300/F178), and carbon/polyimide (C6000/LARC-160 and C6000/PMR-15), plus one bonded honeycomb sandwich panel (T300/934 face sheets and Nomex core) patterned after the Space Shuttle payload bay door construction. These material systems were selected to represent a range of then-available matrix resins which, by virtue of their differing polymer chemistry, could conceivably exhibit differing susceptibility to the low-earth orbit (LEO) environment. The principal exposure conditions of the LDEF environment at these tray locations are shown. Noteworthy to some of the observations discussed is the four-orders-of magnitude difference in the atomic oxygen (AO) fluence, which made a shallow incidence angle (approximately 22 deg) to Tray A7, while Tray A1 on the trailing face was essentially shielded from AO exposure. This evaluation focused on determining the individual and relative suitability of a variety of resin-matrix composite systems for long-term space structural applications. This was accomplished primarily by measuring and comparing a range of engineering mechanical properties on over 300 test coupons sectioned from the flight panels and from identical control panels, and tested at ambient and elevated temperatures. This testing was supported by limited physical characterization, involving visual examination of flight panel surface features, measurements of weight loss and warpage, and examination for changes in internal integrity (micro cracking, delamination) by ultrasonic c-scan and polished cross-sections.

  17. Neutron dosimetry in low-earth orbit using passive detectors

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.; Frank, A. L.

    2001-01-01

    This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies <1 MeV. Fission foil neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons <1 MeV ranged from 0.80 microSv/d on the low altitude, low inclination STS-41B mission to 22.0 microSv/d measured in the Shuttle's cargo bay on the highly inclined STS-51F Spacelab-2 mission. In one particular instance a detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the 6 year LDEF mission. Thermal neutrons (<0.3 eV) were observed to make a negligible contribution to neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission. c2001 Elsevier Science Ltd. All rights reserved.

  18. Prediction of LDEF ionizing radiation environment

    NASA Astrophysics Data System (ADS)

    Watts, John W.; Parnell, T. A.; Derrickson, James H.; Armstrong, T. W.; Benton, E. V.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements.

  19. Surface analyses of composites exposed to the space environment on LDEF

    NASA Technical Reports Server (NTRS)

    Mallon, Joseph J.; Uht, Joseph C.; Hemminger, Carol S.

    1993-01-01

    A series of surface analyses on carbon fiber/poly(arylacetylene) (PAA) matrix composites that were exposed to the space environment on the Long Duration Exposure Facility (LDEF) satellite were conducted. These composite panels were arranged in pairs on both the leading edge and trailing edge of LDEF. None of the composites were catastrophically damaged by nearly six years of exposure to the space environment. Composites on the leading edge exhibited from 25 to 125 microns of surface erosion, but trailing edge panels exhibited no physical appearance changes due to exposure. Scanning electron microscopy (SEM) was used to show that the erosion morphology on the leading edge samples was dominated by crevasses parallel to the fibers with triangular cross sections 10 to 100 microns in depth. The edges of the crevasses were well defined and penetrated through both matrix and fiber. The data suggest that the carbon fibers are playing an important role in crevasse initiation and/or enlargement, and in the overall erosion rate of the composite. X-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDS) results showed contamination from in-flight sources of silicone.

  20. Detailed examination of LDEF's frame and the A0178 thermal blankets by the meteoroid and debris special investigations group

    NASA Astrophysics Data System (ADS)

    See, Thomas H.; Warren, Jack L.; Mack, Kimberly S.; Zolensky, Michael E.

    1992-06-01

    A responsibility of the group is to define the hypervelocity particle environment encountered by LDEF during its stay in low Earth orbit. LDEF's 6061-T6 aluminum frame and the 'Teflon silver-inconel paint' thermal blankets represent large surface areas that were widely distributed around the spacecraft. The results are reported of high resolution scans of approx. 0.36 and approx. 0.31 sq m for the intercostals and thermal blankets, respectively. The findings are in qualitative agreement with existing model predictions that suggest high differential bombardment histories for surfaces pointing into specific directions relative to the velocity vector of a non-spinning platform in LEO. The production rate for craters greater than or = 50 microns in diameter in aluminum and penetration holes greater than or = 100 microns in diameter in thin foil materials differ by more than a factor of 10 between forward and rearward facing surfaces. These are substantial differences that must be considered during the design of future long duration space platforms in LEO.

  1. Detailed examination of LDEF's frame and the A0178 thermal blankets by the meteoroid and debris special investigations group

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Warren, Jack L.; Mack, Kimberly S.; Zolensky, Michael E.

    1992-01-01

    A responsibility of the group is to define the hypervelocity particle environment encountered by LDEF during its stay in low Earth orbit. LDEF's 6061-T6 aluminum frame and the 'Teflon silver-inconel paint' thermal blankets represent large surface areas that were widely distributed around the spacecraft. The results are reported of high resolution scans of approx. 0.36 and approx. 0.31 sq m for the intercostals and thermal blankets, respectively. The findings are in qualitative agreement with existing model predictions that suggest high differential bombardment histories for surfaces pointing into specific directions relative to the velocity vector of a non-spinning platform in LEO. The production rate for craters greater than or = 50 microns in diameter in aluminum and penetration holes greater than or = 100 microns in diameter in thin foil materials differ by more than a factor of 10 between forward and rearward facing surfaces. These are substantial differences that must be considered during the design of future long duration space platforms in LEO.

  2. Characterization of a space orbited incoherent fiber optic bundle

    NASA Technical Reports Server (NTRS)

    Dewalt, Stephen A.; Taylor, Edward W.

    1993-01-01

    The results of a study performed to determine the effects of adverse space environments on a bundle of over 1800 optical fibers orbited for 69 months are reported. Experimental results are presented on an incoherent fiber optic bundle oriented in low Earth orbit aboard the Long Duration Exposure Facility (LDEF) satellite as part of the Space Environment Effects Experiment (M0006). Measurements were performed to determine if space induced radiation effects changed the fiber bundle characteristics. Data demonstrating the success of light transmitting fibers to withstand the adverse space environment are presented.

  3. LDEF Retrieval over the Namib Desert, Namibia, Africa

    NASA Image and Video Library

    1990-01-20

    STS032-85-029 (12 Jan. 1990) --- (ORIENT PHOTO WITH COLUMBIA'S CARGO BAY IN LOWER CENTER). This 70mm frame was taken during a battery of documentary photographs of the recently-recaptured Long Duration Exposure Facility (LEDF). The Atlantic Coast of Namibia serves as a backdrop for the colorful scene. After five-and-one half years orbiting Earth, LDEF was retrieved by STS-32 crewmembers and brought back home at the end of the eleven-day mission for scientific observation. The bus-sized spacecraft was held in the grasp of Columbia's remote manipulator system (RMS) end effector during the survey.

  4. LDEF materials data analysis: Representative examples

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary; Crutcher, E. R.

    1992-01-01

    Results of measurements on silverized teflon, heat shrink tubing and nylon tie downs on the wire harness clamps, silvered hex nuts, and contamination deposits are presented. We interpret the results in terms of our microenvironments exposure model and locations on the Long Duration Exposure Facility (LDEF). Distinct changes in the surface properties of FEP were observed as a function of UV exposure. Significant differences in outgassing characteristics were detected for hardware on the interior row 3 relative to identical hardware on the interior row 3 relative to identical hardware on nearby rows. The implications for in service performance are reviewed.

  5. Dosimetric results on EURECA

    NASA Technical Reports Server (NTRS)

    Reitz, G.

    1995-01-01

    Detector packages were exposed on the European Retrievable Carrier (EURECA) as part of the Biostack experiment inside the Exobiology and Radiation Assembly (ERA) and at several locations around EURECA. The packages consist of different plastic nuclear track detectors, nuclear emulsions and thermoluminescence dosimeters (TLD's). Evaluation of these detectors yields data on absorbed dose and particle and LET spectra. Preliminary results of absorbed dose measurements in the EURECA dosimeter packages are reported and compared to results of the LDEF experiments. The highest dose rate measured on EURECA is 63.3 plus or minus 0.4 mGy d(exp -1) behind a shielding thickness of 0.09 g cm(exp -2) in front of the detector package.

  6. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was the most significant factor for all the contaminants generally detected at less than 1 atom percent, or detected only occasionally (i.e., all but Si, O, and C). Flight control surfaces, including sample backsides not exposed to space radiation or atomic oxygen flux, have accumulated some contamination on flight (compared to laboratory controls), but experimentally, the LDEF exposed surface contamination levels are generally higher for the contaminants Si and O. For most materials analyzed, Si contamination levels were higher on the leading edge surfaces than on the trailing edge surfaces. This was true even for the composite samples where considerable atomic oxygen erosion of the leading edge surfaces was observed by SEM. It is probable that the return flux associated with atmospheric backscatter resulted in enhanced deposition of silicones and other contaminants on the leading edge flight surfaces relative to the trailing edge. Although the Si concentration data suggested greater on-flight deposition of contaminants on the leading edge surfaces, the XPS analyses did not conclusively show different relative total thicknesses of flight deposited contamination for leading and trailing edge surfaces. It is possible that atomic oxygen reactions on the leading edge resulted in greater volatilization of the carbon component of the deposited silicones, effectively 'thinning' the leading edge deposited overlayer. Unlike other materials, exposed polymers such as Kapton and FEP-type Teflon had very low contamination on the leading edge surfaces. SEM evidence showed that undercutting of the contaminant overlayer and damaged polymer layers occurred during atomic oxygen erosion, which would enhance loss of material from the exposed surface.

  7. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.

    1992-01-01

    This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.

  8. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    NASA Technical Reports Server (NTRS)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  9. Morphology of meteoroid and space debris craters on LDEF metal targets

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-01-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  10. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  11. Transmittance measurements of ultra violet and visible wavelength interference filters flown aboard LDEF

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.; Smajkiewicz, Ali

    1991-01-01

    A set of ten interference filters for the UV and VIS spectral region were flown on the surface of the Long Duration Exposure Facility (LDEF) Tray B-8 along with earth radiation budget (ERB) components from the Eppley Laboratory. Transmittance changes and other degradation observed after the return of the filters to Barr are reported. Substrates, coatings, and (where applicable) cement materials are identified. In general, all filters except those containing lead compounds survived well. Metal dielectric filters for the UV developed large numbers of pinholes which caused an increase in transmittance. Band shapes and spectral positioning, however, did not change.

  12. Surface characterization of selected LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromer, T. F.; Grammer, H. L.; Wightman, J. P.; Young, Philip R.; Slemp, Wayne S.

    1993-01-01

    The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected.

  13. FNAS/LDEF Radiation Data Analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John

    1998-01-01

    The radioactive isotope Be-7 was discovered on the forward-facing side of the LDEF satellite in amounts far exceeding that expected from direct cosmic ray activation of the spacecraft material. This prompted an examination of the production of cosmogenic isotopes in the atmosphere and of the processes by which they may be transported to orbital altitudes and absorbed by a spacecraft. Be-7 is only one of several atmospheric cosmogenic isotopes which might be detectable at orbital altitudes and which might prove to be as useful as tracers of atmospheric circulation processes in the mesosphere and thermosphere, as they have been in the lower layers of the atmosphere.

  14. Image and compositional characteristics of the LDEF Big Guy impact crater

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Zolensky, Michael

    1995-01-01

    A 5.2 mm crater in Al-metal represents the largest found on LDEF. We have examined this crater by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS) in order to determine if there is any evidence of impactor residue. Droplet and dome-shaped columns, along with flow features, are evidence of melting. EDS from the crater cavity and rim show Mg, C, O and variable amounts of Si, in addition to Al. No evidence for a chondritic impactor was found, and it hypothesized that the crater may be the result of impact with space debris.

  15. The effect of the low Earth orbit environment on space solar cells: Results of the advanced photovoltaic experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1992-01-01

    The Advanced Photovoltaic Experiment (APEX), containing over 150 solar cells and sensors, was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. Located on the leading edge of the Long Duration Exposure Facility (LDEF), APEX received the maximum possible dosage of atomic oxygen and ultraviolet radiation, as well as enormous numbers of impacts from micrometeoroids and debris. The effect of the low earth orbital (LEO) environment on the solar cells and materials of APEX will be discussed in this paper. The on-orbit performance of the solar cells, as well as a comparison of pre- and postflight laboratory performance measurements, will be presented.

  16. Investigation of the effects of long duration space exposure on active optical system components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1994-01-01

    This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.

  17. Effect of space exposure on pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.; Clark, Ivan O.

    1991-01-01

    Twenty pyroelectric type infrared detectors were flown onboard the Long Duration Exposure Facility (LDEF). The detector chips were of three different pyroelectric materials: lithium-tantalate, strontium-barium-niobate, and triglycine-sulfide. The experiment was passive; no measurements were taken during the flight. Performance of the detectors was measured before and after flight. Postflight measurements revealed that detectors made of lithium-tantalate and strontium-barium-niobate suffered no measureable loss in performance. Detectors made of triglycine-sulfide suffered complete loss of performance, but so did the control samples of the same material. Repoling of the triglycine-sulfide failed to revive the detectors.

  18. P0004-1 quick look

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The P0004-1 'Seeds in Space' experiment consisted of six sealed aluminum canisters which contained tomato seeds and a variety of other seeds for the study of space radiation effects on the seeds. The seeds were contained in cloth bags. Interspersed among the bags of seeds were ten dosimeter packets to monitor the accumulated ionizing radiation exposure of the seeds. In addition to the ten flight dosimeter packets, four ground control packets and one ground movement packet were also included as part of the experiment. The P0004-1 experiment was mounted on the F2 tray, near the trailing edge of the LDEF orbiter. The results indicate that the neutron fluences were higher in the P0004 canisters than in that of P0006. The difference was much greater for thermal neutrons than resonance neutrons. This is consistent with shielding.

  19. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, T. D.; Steckel, G. L.

    1992-01-01

    The effects of the space environment on the thermal expansion stability of metal matrix composites (graphite/Al and graphite/Mg) will be presented. A sample from each category of metal matrix composites mounted on the leading and trailing edge was chosen for analysis of the temperature-time-thermal strain histories. Typical thermal expansion curves over the same range of temperature were selected at the beginning, mid, and end of the recording duration. The thermal expansion of selected post-flight LDEF samples were measured over the same range of temperature in the laboratory using a Michelson laser interferometer. The thermal strains were monitored concurrently with a laser interferometer and a mounted strain gage.

  20. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  1. Holographic data storage crystals for the LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Callen, W. Russell; Gaylord, Thomas K.

    1992-01-01

    Lithium niobate is a significant electro-optic material, with potential applications in ultra high capacity storage and processing systems. Lithium niobate is the material of choice for many integrated optical devices and holographic mass memory systems. For crystals of lithium niobate were passively exposed to the space environment of the Long Duration Exposure Facility (LDEF). Three of these crystals contained volume holograms. Although the crystals suffered the surface damage characteristics of most of the other optical components on the Georgia Tech tray, the crystals were recovered intact. The holograms were severely degraded because of the lengthy exposure, but the bulk properties are being investigated to determine the spaceworthiness for space data storage and retrieval systems.

  2. Modelling the near-Earth space environment using LDEF data

    NASA Technical Reports Server (NTRS)

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is overpredicted by Kessler and underpredicted by Cour-Palais. This divergence may be a result of beta-meteoroid fluxes, elliptical orbits or a combination of the two. The results of this study illustrate the definite need for more intensive study of the near-Earth space environment, particularly the small particle regime, as it is the most degrading to spacecraft in LEO.

  3. Retrievable payload carrier, next generation Long Duration Exposure Facility: Update 1992

    NASA Technical Reports Server (NTRS)

    Perry, A. T.; Cagle, J. A.; Newman, S. C.

    1993-01-01

    Access to space and cost have been two major inhibitors of low Earth orbit research. The Retrievable Payload Carrier (RPC) Program is a commercial space program which strives to overcome these two barriers to space experimentation. The RPC Program's fleet of spacecraft, ground communications station, payload processing facility, and experienced integration and operations team will provide a convenient 'one-stop shop' for investigators seeking to use the unique vantage point and environment of low Earth orbit for research. The RPC is a regularly launched and retrieved, free-flying spacecraft providing resources adequate to meet modest payload/experiment requirements, and presenting ample surface area, volume, mass, and growth capacity for investigator usage. Enhanced capabilities of ground communications, solar-array-supplied electrical power, central computing, and on-board data storage pick up on the path where NASA's Long Duration Exposure Facility (LDEF) blazed the original technology trail. Mission lengths of 6-18 months, or longer, are envisioned. The year 1992 was designated as the 'International Space Year' and coincides with the 500th anniversary of Christopher Columbus's voyage to the New World. This is a fitting year in which to launch the full scale development of our unique shop of discovery whose intent is to facilitate retrieving technological rewards from another new world: space. Presented is an update on progress made on the RPC Program's development since the November 1991 LDEF Materials Workshop.

  4. Long-term particle flux variability indicated by comparison of Interplanetary Dust Experiment (IDE) timed impacts for LDEF's first year in orbit with impact data for the entire 5.75-year orbital lifetime

    NASA Technical Reports Server (NTRS)

    Mulholland, J. Derral; Simon, Charles G.; Cooke, William J.; Oliver, John P.; Misra, V.

    1992-01-01

    The electronic sensors of the Interplanetary Dust Experiment (IDE) recorded precise impact times and approximate directions for submicron to approximately 100-micron size particles on all six primary sides of the spacecraft for the first 346 days of the Long Duration Exposure Facility (LDEF) orbital mission. Previously-reported analyses of the timed impact data have established their spatio-temporal features, including the demonstration that a preponderance of the particles in this regime are orbital debris and that a large fraction of the debris particles are encountered as megameter-size clouds, some of which persist for long times. Short-term fluxes within such clouds can rise several orders of magnitude above the long-term average. These finding are consistent with the results of the first catastrophic hypervelocity laboratory impacts on a real satellite, recently reported in the press. Analysis continues on the geometric and evolutionary characteristics of these clouds, as well as on the isolation and characterization of the natural micrometeoroid component in the IDE data, but the unexpectedly large short-term variations in debris flux raises the question of how representative an indication of the multi-year average flux is given by the nearly one year of timed data. It has, therefore, always been one of the goals of IDE to conduct an optical survey of the craters on the IDE detectors, to obtain full-mission fluxes for comparisons with the timed data. This work is underway, and the results presently in hand are significant. Optical scanning of the ram and wake (East and West) panels is complete, and it is clear that the first year was in some respects not representative of the subsequent years. The 5.75-year average flux on East panel was 90 percent of the value predicted by the average flux recorded during the first year, while it was only 34 percent on West panel. This suggests that western hemisphere spacecraft launches are a major contributor to the long-term flux and that their contribution is primarily in the smaller end of the size distribution. This conclusion follows from the fact that a closely-spaced series of launch failures (Titan, Delta, Ariane, and Challenger) caused a virtual hiatus in launch activity during a large part of the later years of the LDEF mission. We hope to provide a quantification of the particle size distribution function in this case.

  5. Analysis of LDEF experiment AO187-2: Chemically and isotopic measurements of micrometeoroids by secondary ion mass spectrometry

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells have been successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data have been obtained from the trailing edge cells where 45 of 58 impacts have been classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultra-violet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noticed in simulation experiment but is more pronounced in the Long Duration Exposure Facility (LDEF) capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si but also containing Mg and Al provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  6. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Swan, P.; Walker, R. M.; Zinner, E.; Lange, G.

    1993-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  7. Progress report on the ultra heavy cosmic ray experiment (AO178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Jansen, F.; Domingo, C.

    1993-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side-viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels employing sixteen peripheral Long Duration Exposure Facility (LDEF) trays. The extended duration of the LDEF mission has resulted in a greatly enhanced scientific yield from the UHCRE. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m-sr, giving a total exposure factor of 170 sq m-sr-y at an orbital inclination of 28.4 degrees. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide (Z greater than 88) cosmic rays. Results to date are presented including details of ultra-heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of +/- 0.8 e for uranium and +/- 0.6 e for the platinum-lead group. The precision of charge assignment as a function of energy is derived and evidence for remarkably good charge resolution achieved in the UHCRE is considered. Astrophysical implications of the UHCRE charge spectrum are discussed.

  8. Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Rutledge, Sharon K.; Banks, Bruce A.; Devries, Christopher; Merrow, James E.

    1993-01-01

    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years.

  9. Instellar Gas Experiment (IGE): Testing interstellar gas particles to provide information on the processes of nucleosynthesis in the big bang stars and supernova

    NASA Technical Reports Server (NTRS)

    Lind, Don

    1985-01-01

    The Interstellar Gas Experiment (IGE) is designed to collect particles of the interstellar gas - a wind of interstellar media particles moving in the vicinity of the solar system. These particles will be returned to earth where the isotopic ratios of the noble gases among these particles will be measured. IGE was designed and programmed to expose 7 sets of six copper-beryllium metallic collecting foils to the flux of neutral interstellar gas particles which penetrate the heliosphere to the vicinity of the earth's orbit. These particles are trapped in the collecting foils and will be returned to earth for mass-spectrographic analysis when Long Duration Exposure Facility (LDEF) on which IGE was launched, is recovered.

  10. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    NASA Technical Reports Server (NTRS)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  11. Analysis, review, and documentation of the activation data from LDEF material

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1992-01-01

    Samples removed from Long Duration Exposure Facility (LDEF-1) are being studied at various laboratories to determine the specific activity(pCi/kg) produced in orbit by exposure to protons and neutrons in near-Earth orbit. These activities are being corrected for efficiency, self-attenuation, and background. The activities and associated gamma-ray spectra are being collected, analyzed, documented and reviewed by faculty and graduate students at Eastern Kentucky University. The currently available activation results have been tabulated and reviewed in this report. Approximately 500 spectra have been accumulated for future archival and analysis. The effect of the changing satellite orbit on the activation is reported herein and was calculated using more recent estimates of the flux of Van Allen belt protons.

  12. Meteoroid and debris special investigation group data acquisition procedures

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Allbrooks, Martha K.; Atkinson, Dale R.; Sapp, Clyde A.; Simon, Charles G.; Zolensky, Mike E.

    1992-01-01

    The entire LDEF spacecraft was examined by M&D SIG for impact (i.e., craters greater than or = 0.5 mm and penetrations greater than or = 0.3 mm in diameter) and related features (e.g., debris, secondaries). During the various detailed surveys conducted at NASA Kennedy, approx. 5,000 impact related features were photodocumented, and their locations measured and recorded; an additional approx. 30,000 smaller features were counted. The equipment and techniques used by the M&D SIG permitted the determination and recording of the locations and diameters of the 5,000 imaged features. A variety of experimental and LDEF structural hardware was acquired by the M&D SIG and is presently being examined and curated at NASA Johnson.

  13. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1991-01-01

    Cumulative space environment effects on Ag/fluorinated ethylene propylene (FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition and chemistry were observed. Researchers hypothesize that the FEP surfaces on LDEF were degraded by ultraviolet radiation exposure at all orientations, but that the damaged material had been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage on trays flanking the trailing edge.

  14. Results of the TTF-TCNQ and the calcium carbonate crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1992-01-01

    Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.

  15. Final results of space exposed experiment developed for students

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.

    1993-01-01

    SEEDS was a cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company. Approximately 132,000 SEEDS kits containing Rutger's tomato seeds that had flown on LDEF, as well as similar seeds that had been stored in a climate-controlled warehouse for the same time period, were sent to schools in every state and 30 foreign countries. Student researchers from kindergarten through university compared germination and growth characteristics of the space-exposed and Earth-based seeds and returned data to NASA for analysis. Important scientific information was gained as students reported very little difference between the two seed groups.

  16. Surface analyses of composites exposed to the space environment on LDEF

    NASA Technical Reports Server (NTRS)

    Mallon, Joseph J.; Uht, Joseph C.; Hemminger, Carol S.

    1992-01-01

    We have conducted a series of surface analyses on carbon fiber/polyarylacetylene matrix composites that were exposed to the space environment on the LDEF satellite. None of the composites were catastrophically damaged by nearly six years of exposure to the space environment. Composites on the leading edge exhibited about 5 mils of surface erosion, but trailing edge panels exhibited no physical appearance changes due to exposure. Scanning electron microscopy (SEM) was used to show that the erosion morphology on the leading edge samples was dominated by crevasses parallel to the fibers with triangular cross sections 10 to 100 microns in depth. The edges of the crevasses were well defined and penetrated through both matrix and fiber. The data suggest that the carbon fibers are playing a significant role in crevasse initiation and/or enlargement, and in the overall erosion rate of the composite. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS) results showed the presence of silicone and hydrocarbon contamination from in-flight sources. The role of contamination in crevasse initiation and enlargement is unknown at this time. These LDEF results demonstrate that the prediction of long term atomic oxygen erosion morphology for composite materials from erosion data obtained on short Space Shuttle missions is difficult. A better understanding of other factors such as thermal cycling and UV exposure which may influence erosion is necessary to improve the accuracy of the predictions.

  17. LDEF polymeric materials: A summary of Langley characterization

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Whitley, Karen S.; Kalil, Carol R.; Siochi, Emilie J.; Shen, James Y.; Chang, A. C.

    1995-01-01

    The NASA Long Duration Exposure Facility (LDEF) enabled the exposure of a wide variety of materials to the low earth orbit (LEO) environment. This paper provides a summary of research conducted at the Langley Research Center into the response of selected LDEF polymers to this environment. Materials examined include graphite fiber reinforced epoxy, polysulfone, and additional polyimide matrix composites, films of FEP Teflon, Kapton, several experimental high performance polyimides, and films of more traditional polymers such as poly(vinyl toluene) and polystyrene. Exposure duration was either 10 months or 5.8 years. Flight and control specimens were characterized by a number of analytical techniques including ultraviolet-visible and infrared spectroscopy, thermal analysis, scanning electron and scanning tunneling microscopy, x-ray photoelectron spectroscopy, and, in some instances, selected solution property measurements. Characterized effects were found to be primarily surface phenomena. These effects included atomic oxygen-induced erosion of unprotected surfaces and ultraviolet-induced discoloration and changes in selected molecular level parameters. No gross changes in molecular structure or glass transition temperature were noted. The intent of this characterization is to increase our fundamental knowledge of space environmental effects as an aid in developing new and improved polymers for space application. A secondary objective is to develop benchmarks to enhance our methodology for the ground-based simulation of environmental effects so that polymer performance in space can be more reliably predicted.

  18. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1992-01-01

    Cumulative space environmental effects on silver/fluorinated ethylene propylene (Ag/FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition, and chemistry were observed. We hypothesize that the FEP surfaces on the LDEF are degraded by UV radiation at all orientations, but that the damaged material has been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage in some areas on the trays flanking the trailing edge.

  19. New meteoroid model predictions for directional impacts on LDEF

    NASA Technical Reports Server (NTRS)

    Divine, Neil; Agueero, Rene C.

    1993-01-01

    An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (Helios, Pioneer, Galileo, Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space. For a spacecraft in geocentric orbit the effects of gravitational focussing and shielding by the Earth have been newly derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on LDEF.

  20. The interaction of atomic oxygen with copper: An XPS, AES, XRD, optical transmission, and stylus profilometry study

    NASA Technical Reports Server (NTRS)

    Raikar, Ganesh N.; Gregory, John C.; Christl, Ligia C.; Peters, Palmer N.

    1993-01-01

    The University of Alabama in Huntsville (UAH) experiment A-0114 was designed to study the reaction of material surfaces with low earth orbits (LEO) atmospheric oxygen. The experiment contained 128 one-inch circular samples; metals, polymers, carbons, and semiconductors. Half of these samples were exposed on the front of the Long Duration Exposure Facility (LDEF) and remaining on the rear. Among metal samples, copper has shown some interesting new results. There were two forms of copper samples: a thin film sputter-coated on fused silica and a solid piece of OFHC copper. They were characterized by x-ray and Auger electron spectroscopies, x-ray diffraction, and high resolution profilometry. Cu 2p core level spectra were used to demonstrate the presence of Cu2O and CuO and to determine the oxidation states.

  1. Seeds in space experiment results

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1991-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the space exposed experiment developed for students (SEEDS) tray in sealed canister number six and in two small vented canisters. The tray was in the F-2 position. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in Park Seed's seed storage facility. The initial results are presented. There was a better survival rate in the sealed canister in space than in the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  2. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3 (Trailing (wake), or West, side), 12 from tray B-12 (North side), 4 from tray D-6 (South side), 3 from tray H-11 (Space end), and 6 from tray G-10 (Earth end). Residue from manmade debris was identified in craters on all trays. (Aluminum oxide particle residues were not detectable on the Al/Si substrates.) These results were consistent with the IDE impact record which showed highly variable long term microparticle impact flux rates on the West, Space and Earth sides of the LDEF which could not be ascribed to astronomical variability of micrometeorite density. The IDE record also showed episodic bursts of microparticle impacts on the East, North, and South sides of the satellite, denoting passage through orbital debris clouds or rings.

  3. Elemental Analyses of Hypervelocity Microparticle Impact Sites on Interplanetary Dust Experiment Sensor Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, J. J.; Brownlee, D. E.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to breakdown the 0.4 or 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results classification resulted from the particles' origins as 'manmade', 'natural', or 'indeterminate'. The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. Thus far, a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF were analyzed: 36 from tray C-9 (Leading (ram), or east, side), 18 from tray C-3 (Trailing (wake), or west, side), 12 from tray B-12 (north side), 4 from tray D-6 (south side), 3 from tray H-11 (space end), and 6 from tray G-10 (earth end). Residue from manmade debris was identified in craters on all trays (aluminum oxide particle residues were not detectable on the Al/Si substrates). These results were consistent with the IDE impact record which showed highly variable long term microparticle impact flux rates on the west, space, and Earth sides of the LDEF which could not be ascribed to astronomical variability of micrometeorite density. The IDE record also showed episodic bursts of microparticle impacts on the east, north, and south sides of the satellite, denoting passage through orbital debris clouds or rings.

  4. Natural and orbital debris particles on LDEF's trailing and forward-facing surfaces

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; See, Thomas H.; Bernhard, Ronald P.; Brownlee, Donald E.

    1995-01-01

    Approximately 1000 impact craters on the Chemistry of Meteoroid Experiment (CME) have been analyzed by means of Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA) to determine the compositional make-up of projectile residues. This report completes our systematic survey of gold and aluminum surfaces exposed at the trailing-edge (A03) and forward-facing (A11) LDEF sites, respectively. The major categories for the projectile residues were (1) natural, with diverse subgroups such as chondritic, monomineralic silicates, and sulfides, and (2) man made, that were classified into aluminum (metallic or oxide) and miscellaneous materials (such as stainless steel, paint flakes, etc). On CME gold collectors on LDEF's trailing edge approximately 11 percent of all craters greater than 100 micron in diameter were due to man-made debris, the majority (8.6 percent) caused by pure aluminum, approximately 31.4 percent were due to cosmic dust, while the remaining 58 percent were indeterminate via the analytical techniques utilized in this study. The aluminum surfaces located at the A11 forward-facing site did not permit analysis of aluminum impactors, but approximately 9.4 percent of all craters were demonstratably caused by miscellaneous debris materials and approximately 39.2 percent were the result of natural particles, leaving approximately 50 percent which were indeterminate. Model considerations and calculations are presented that focus on the crater-production rates for features greater than 100 micron in diameter, and on assigning the intermediate crater population to man-made or natural particles. An enhancement factor of 6 in the crater-production rate of natural impactors for the 'forward-facing' versus the 'trailing-edge' CME collectors was found to best explain all observations (i.e., total crater number(s), as well as their computational characteristics). Enhancement factors of 10 and 4 are either too high or too low. It is also suggested that approximately 45 percent of all craters greater than 100 micron in diameter are caused by man-made impactors on the A11 surfaces. This makes the production rate for craters greater than 100 micron in diameter, resulting from orbital debris, a factor of 40 higher on the forward-facing sides as opposed to the trailing-edge direction.

  5. EURECA 11 months in orbit: Initial post flight investigation results

    NASA Technical Reports Server (NTRS)

    Dover, Alan; Aceti, Roberto; Drolshagen, Gerhard

    1995-01-01

    This paper gives a brief overview of the European free flying spacecraft 'EURECA' and the initial post flight investigations following its retrieval in June 1993. EURECA was in low earth orbit for 11 months commencing in August 1992, and is the first spacecraft to be retrieved and returned to Earth since the recovery of LDEF. The primary mission objective of EURECA was the investigation of materials and fluids in a very low micro-gravity environment. In addition other experiments were conducted in space science, technology and space environment disciplines. The European Space Agency (ESA) has taken the initiative in conducting a detailed post-flight investigation to ensure the full exploitation of this unique opportunity.

  6. SIMS analysis of extended impact features on LDEF experiment

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Jessberger, E. K.; Simon, C.; Stadermann, F. J.; Swan, P.; Walker, R.; Zinner, E.

    1991-01-01

    Discussed here are the first Secondary Ion Mass Spectroscopy (SIMS) analysis of projectile material deposited in extended impact features on Ge wafers from the trailing edge. Although most capture cells lost their plastic film covers, they contain extended impact features that apparently were produced by high velocity impacts when the plastic foils were still intact. Detailed optical scanning of all bare capture cells from the trailing edge revealed more than 100 impacts. Fifty-eight were selected by scanning electron microscope (SEM) inspection as prime candidates for SIMS analysis. Preliminary SIMS measurements were made on 15 impacts. More than half showed substantial enhancements of Mg, Al, Si, Ca, and Fe in the impact region, indicating micrometeorites as the projectiles.

  7. Effects of LDEF flight exposure on selected polymer matrix resin composite materials

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.; Young, Philip R.; Witte, William G., Jr.; Shen, James Y.

    1992-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composites materials which received over five years and nine months of exposure to the low earth orbit (LEO) environment in experiment AO134 on the Long Duration Exposure Facility is reported. The changes in mechanical properties of ultimate tensile strength and tensile modulus for exposed flight specimens are compared to the three sets of control specimens. Marked changes in surface appearance are discussed, and resin loss is reported. The chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymetric matrix had not changed significantly in response to this exposure.

  8. Patterns of discoloration and oxidation by direct and scattered fluxes on LDEF, including oxygen on silicon

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Filz, R. C.; Rich, F. J.; Sagalyn, P. L.

    1992-01-01

    A number of interesting discoloration patterns are clearly evident on MOOO2-1 which resides on the three faces of the Long Duration Exposure Facility (LDEF). Most interesting is the pattern of blue oxidation on polished single crystal silicon apparently produced by scattered or direct ram oxygen atoms along the earth face. A complete explanation for the patterns has not yet been obtained. All honeycomb outgassing holes have a small discoloration ring around them that varies in color. The shadow cast by a suspended wire on the earth face surface is not easily explained by either solar photons or by ram flux. The shadows and the dark/light regions cannot be explained consistently by the process of solar ultraviolet paint-darkening modulated by ram flux oxygen bleaching of the paint.

  9. New meteoroid model predictions for directional impacts on LDEF

    NASA Technical Reports Server (NTRS)

    Divine, Neil; Aguero, Rene C.

    1992-01-01

    An extensive body of data, from meteors, zodiacal light, spacecraft-borne impact detectors (helios, Pioneer, Galileo, and Ulysses), and other sources, forms the basis of a new numerical model for the distributions of interplanetary meteoroids. For each of the five populations in this model it is possible to evaluate meteoroid concentration and flux for oriented surfaces or detectors having arbitrary position and velocity in interplanetary space (Divine, 1992, in preparation). For a spacecraft in geocentric orbit, the effects of gravitational focusing and shielding by the Earth were derived with full attention to the directionality of the particles, both on approach (i.e., relative to a massless Earth) and at the target. This modeling approach was exercised to provide an estimate of meteoroid fluence for each of several oriented surfaces on the Long Duration Exposure Facility (LDEF).

  10. Ground-based simulation of LEO environment: Investigations of a select LDEF material: FEP Teflon (trademark)

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) has produced a wealth of data on materials degradation in the low earth orbit (LEO) space environment and has conclusively shown that surface chemistry (as opposed to surface physics-sputtering) is the key to understanding and predicting the degradation of materials in the LEO environment. It is also clear that materials degradation and spacecraft contamination are closely linked and that the fundamental mechanisms responsible for this linking are in general not well understood especially in the area of synergistic effects. The study of the fundamental mechanisms underlying materials degradation in LEO is hampered by the fact that the degradation process itself is not observed during the actual exposure to the environment. Rather the aftermath of the degradation process is studied, i.e., the material that remains after exposure is observed and mechanisms are proposed to explain the observed results. The EOIM-3 flight experiment is an attempt to bring sophisticated diagnostic equipment into the space environment and monitor the degradation process in real time through the use of mass spectrometry. More experiments of this nature which would include surface sensitive diagnostics (Auger and photoelectron spectroscopes) are needed to truly unravel the basic chemical mechanisms involved in the materials degradation process. Since these in-space capabilities will most likely not be available in the near future, ground-based LEO simulation facilities employing sophisticated diagnostics are needed to further advance the basic understanding of the materials degradation mechanisms. The LEO simulation facility developed at Los Alamos National Laboratory has been used to investigate the atomic oxygen/vacuum ultraviolet (AO/VUV) enhanced degradation of FEP Teflon. The results show that photo-ejection of polymer fragments occur at elevated temperature (200 C), that VUV synergistic rare gas sputtering of polymer fragments occur even at 25 C, and that combined OA/VUV interaction produces a wide variety of gas phase reaction products.

  11. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.

    1992-01-01

    The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed above, is also discussed. Wherever possible, these results are compared to those obtained by LDEF investigators and future experiments suggested which could help to explain unique features associated with LDEF impacts.

  12. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Astrophysics Data System (ADS)

    Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.

    1992-06-01

    The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed above, is also discussed. Wherever possible, these results are compared to those obtained by LDEF investigators and future experiments suggested which could help to explain unique features associated with LDEF impacts.

  13. Comparison of the Results of MISSE 6 Atomic Oxygen Erosion Yields of Layered Kapton H Films with Monte Carlo Computational Predictions

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Groh, Kim De; Kneubel, Christian A.

    2014-01-01

    A space experiment flown as part of the Materials International Space Station Experiment 6B (MISSE 6B) was designed to compare the atomic oxygen erosion yield (Ey) of layers of Kapton H polyimide with no spacers between layers with that of layers of Kapton H with spacers between layers. The results were compared to a solid Kapton H (DuPont, Wilmington, DE) sample. Monte Carlo computational modeling was performed to optimize atomic oxygen interaction parameter values to match the results of both the MISSE 6B multilayer experiment and the undercut erosion profile from a crack defect in an aluminized Kapton H sample flown on the Long Duration Exposure Facility (LDEF). The Monte Carlo modeling produced credible agreement with space results of increased Ey for all samples with spacers as well as predicting the space-observed enhancement in erosion near the edges of samples due to scattering from the beveled edges of the sample holders.

  14. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in the storage facility. There was a better survival rate in the sealed canister in space than in the storage facility. At least some of the seed in the vented canisters survived the exposure to vacuum for almost six years. The number of observed mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutation and obtain a second generation seed. These small seeded crops are now being grown for evaluation.

  15. Preliminary results of the Artemia salina experiments in biostack on LDEF

    NASA Technical Reports Server (NTRS)

    Graul, E. H.; Ruether, W.; Hiendl, C. O.

    1992-01-01

    The mosaic egg of the brine shrimp, Artemia salina, resting in blastula or gastrula state represents a system that during further development, proceeds without any further development to the larval stage, the free swimming nauplius. Therefore, injury to a single cell of the egg will be manifest in the larvae. In several experiments, it was shown that the passage of a single heavy ion through the shrimp egg damaged a cellular area large enough to disturb either embryogenesis or further development of the larvae, or the integrity of the adult individual. Emergence from the egg shell was heavily disturbed by the heavy ions as was hatching. Additional late effects, due to a hit by a heavy ion, are delayed of growth and of sexual maturity, and reduced fertility. Anomalies in the body and the extremities could be observed more frequently for the nauplii which had developed from eggs hit by heavy ions.

  16. IDE spatio-temporal impact fluxes and high time-resolution studies of multi-impact events and long-lived debris clouds

    NASA Technical Reports Server (NTRS)

    Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Montague, Nancy L.; Wortman, Jim J.; Kassel, Phillip C.; Kinard, William H.

    1992-01-01

    The purpose of the Interplanetary Dust Experiment (IDE) on the Long Duration Exposure Facility (LDEF) was to sample the cosmic dust environment and to use the spatio-temporal aspect of the experiment to distinguish between the various components of the environment: zodiacal cloud, beta meteoroids, meteor streams, interstellar dust, and orbital debris. It was found that the introduction of precise time and even rudimentary directionality as co-lateral observables in sampling the particulate environment in near-Earth space produces an enormous qualitative improvement in the information content of the impact data. The orbital debris population is extremely clumpy, being dominated by persistent clouds in which the fluxes may rise orders of magnitude above the background. The IDE data suggest a strategy to minimize the damage to sensitive spacecraft components, using the observed characteristics of cloud encounters.

  17. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.

    1993-01-01

    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.

  18. Mutational effects of space flight on Zea mays seeds

    NASA Technical Reports Server (NTRS)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-01-01

    The growth and development of more than 500 Zea mays seeds flown on Long Duration Exposure Facility (LDEF) were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  19. Laser-induced fluorescence of space-exposed polyurethane

    NASA Technical Reports Server (NTRS)

    Hill, Ralph H., Jr.

    1993-01-01

    The object of this work was to utilize laser-induced fluorescence technique to characterize several samples of space-exposed polyurethane. These samples were flown on the Long Duration Exposure Facility (LDEF), which was in a shuttle-like orbit for nearly 6 years. Because of our present work to develop laser-induced-fluorescence inspection techniques for polymers, space-exposed samples and controls were lent to us for evaluation. These samples had been attached to the outer surface of LDEF; therefore, they were subjected to thermal cycling, solar ultraviolet radiation, vacuum, and atomic oxygen. It is well documented that atomic oxygen and ultraviolet exposure have detrimental effects on many polymers. This was a unique opportunity to make measurements on material that had been naturally degraded by an unusual environment. During our past work, data have come from artificially degraded samples and generally have demonstrated a correlation between laser-induced fluorescence and tensile strength or elasticity.

  20. Vacuum ultraviolet radiation/atomic oxygen synergism in fluorinated ethylene propylene Teflon erosion

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Brinza, David E.; Laue, Eric G.; Anderson, Mark S.; Liang, Ranty H.

    1992-01-01

    A micrographic investigation is reported of samples of the fluorinated ethylene propylene (FEP) Teflon thermal-blanketing materials recovered from the Long-Duration Exposure Facility (LDEF) satellite. The samples are taken from the trailing edge and row 8 which correspond to exposures to vacuum UV (VUV) and VUV + atomic O, respectively. Data are taken from SEM and IR-spectra observations, and the LDEF leading-edge FEP shows a high degree of erosion, roughening, and sharp peaks angled in the direction of the flow of atomic O. The trailing edge sample influenced primarily by VUV shows a hard brittle layer and some cracked mosaic patterns. Comparisons to a reference sample suggest that the brittle layer is related to exposure to VUV and is removed by atomic-O impingement. Polymers that are stable to VUV radiation appear to be more stable in terms of atomic oxygen.

  1. The Influence of Solid Rocket Motor Retro-Burns on the Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Stabroth, S.; Homeister, M.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.

    The ESA space debris population model MASTER Meteoroid and Space Debris Terrestrial Environment Reference considers firings of solid rocket motors SRM as a debris source with the associated generation of slag and dust particles The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit The current model version MASTER-2005 is based on the simulation of 1 076 orbital SRM firings which contributed to the long-term debris environment A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope HST solar array measurements very well However the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility LDEF surfaces This points into the direction of some past SRM firings not included in the current event database The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere Thus they produce no long-term effect on the debris environment However a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces In this paper the influence of SRM retro-burns on the short- and long-term debris environment is analysed The existing firing database is updated with gathered

  2. Seeds in space experiment. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed in one sealed canister and in two small vented canisters. After being returned to earth, the seeds were germinated and the germination rates and development of the resulting plants were compared to the performance of the control seeds that stayed in the Park Seed's seed storage facility. There was a better survival rate in the sealed canister in space than at the storage facility at Park Seed. At least some of the seeds in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low.

  3. Study of meteoroid impact craters on various materials (AO 138-1). Attempt at dust debris collection with stacked detectors (AO 138-2)

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean Claude

    1991-01-01

    Part of the Long Duration Exposure Facility (LDEF) tray allocated to French experiments, known as FRECOPA payload, was devoted to the study of dust particles. Two passive experiments were flown: one composed of a set of glass and metallic samples and one composed of multilayer thin foils detectors. In addition to these experiments, a broad variety of materials were exposed to the bombardment of microparticles and provide more data. Thick target experiment comprises selected metallic (Al, Au, Cu, W, Stainless Steel) 250 microns thick and glass surfaces 1.5 mm thick. Crater size distribution from these thick target experiments enable, with the aid of lab calibrations by solid particle accelerators, the evaluation of the incident microparticle flux in the near earth environment. The aim of the multiple foil penetration and collection experiment is primarily to study the feasibility of multilayer thin film detectors acting as energy sorters in order to collect micrometeoroids, if not in their original shape, at least as 'breakup' fragments suitable for chemical analysis. Foil thicknesses range from 0.75 to 5 microns of Al.

  4. Consequences of Atomic Oxygen Interaction With Silicone and Silicone Contamination on Surfaces in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon K.; Haytas, Christy A.

    1999-01-01

    The exposure of silicones to atomic oxygen in low Earth orbit causes oxidation of the surface, resulting in conversion of silicone to silica. This chemical conversion increases the elastic modulus of the surface and initiates the development of a tensile strain. Ultimately, with sufficient exposure, tensile strain leads to cracking of the surface enabling the underlying unexposed silicone to be converted to silica resulting in additional depth and extent of cracking. The use of silicone coatings for the protection of materials from atomic oxygen attack is limited because of the eventual exposure of underlying unprotected polymeric material due to deep tensile stress cracking of the oxidized silicone. The use of moderate to high volatility silicones in low Earth orbit has resulted in a silicone contamination arrival at surfaces which are simultaneously being bombarded with atomic oxygen, thus leading to conversion of the silicone contaminant to silica. As a result of these processes, a gradual accumulation of contamination occurs leading to deposits which at times have been up to several microns thick (as in the case of a Mir solar array after 10 years in space). The contamination species typically consist of silicon, oxygen and carbon. which in the synergistic environment of atomic oxygen and UV radiation leads to increased solar absorptance and reduced solar transmittance. A comparison of the results of atomic oxygen interaction with silicones and silicone contamination will be presented based on the LDEF, EOIM-111, Offeq-3 spacecraft and Mir solar array in-space results. The design of a contamination pin-hole camera space experiment which uses atomic oxygen to produce an image of the sources of silicone contamination will also be presented.

  5. LDEF- 69 Months in Space: Second Post-Retrieval Symposium, Part 1

    DTIC Science & Technology

    1993-01-01

    accounts for orbit altitude, atmospheric conditions, mission duration, surface orientation and other factors that define the macroenvironment . The... macroenvironment become inputs for the microenvironments model. The calculation of average conditions from fluences to plane surfaces on a vehicle is very

  6. Measurements of the radiation dose to LDEF by means of passive dosimetry

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Imamoto, S. S.

    1992-06-01

    A very simple experiment was fielded on LDEF to measure the energetic radiation dose by means of passive dosimetry. It consisted of two identical packets of 16 LiF thermoluminescent dosimeters (TLD) arranged in planar arrays. One array was placed on the leading edge of the spacecraft, the other on the trailing edge. These arrays were installed in opaque packets of 1 mil Al foil and Kapton tape mounted behind an Al plate of 30 mils thickness. The nominal energy thresholds were 14 MeV for protons and 650 keV for electrons. In addition to the flight arrays, two control arrays were prepared which were kept with the flight arrays as long as possible during experimental integration and then stored in the lab. The flight and control arrays were read out alternating in groups of four; it was found that the control dose was negligible. The flight and control detectors were exposed to a 55 MeV proton beam in order to provide a recalibration of the detectors. It was found that the post-flight and pre-flight calibrations were in good agreement. A comparison of results with the prediction shows that the measured dose was a factor of 4 to 5 low. It is possible that there was in-flight annealing of the TLDs as a result of the long mission and perhaps temperature excursions of the sensors. The East-West effect was larger than expected. The ratio of 1.65 is approximately what was expected for the protons alone. Electrons should reduce the dose ratio since electrons add equally to the leading and trailing edge dose. A possible explanation is that the electron dose was negligible compared to the proton dose.

  7. Measurements of the radiation dose to LDEF by means of passive dosimetry

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Imamoto, S. S.

    1992-01-01

    A very simple experiment was fielded on LDEF to measure the energetic radiation dose by means of passive dosimetry. It consisted of two identical packets of 16 LiF thermoluminescent dosimeters (TLD) arranged in planar arrays. One array was placed on the leading edge of the spacecraft, the other on the trailing edge. These arrays were installed in opaque packets of 1 mil Al foil and Kapton tape mounted behind an Al plate of 30 mils thickness. The nominal energy thresholds were 14 MeV for protons and 650 keV for electrons. In addition to the flight arrays, two control arrays were prepared which were kept with the flight arrays as long as possible during experimental integration and then stored in the lab. The flight and control arrays were read out alternating in groups of four; it was found that the control dose was negligible. The flight and control detectors were exposed to a 55 MeV proton beam in order to provide a recalibration of the detectors. It was found that the post-flight and pre-flight calibrations were in good agreement. A comparison of results with the prediction shows that the measured dose was a factor of 4 to 5 low. It is possible that there was in-flight annealing of the TLDs as a result of the long mission and perhaps temperature excursions of the sensors. The East-West effect was larger than expected. The ratio of 1.65 is approximately what was expected for the protons alone. Electrons should reduce the dose ratio since electrons add equally to the leading and trailing edge dose. A possible explanation is that the electron dose was negligible compared to the proton dose.

  8. Analysis of Cometary Dust Impact Residues in the Aluminum Foil Craters of Stardust

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Kearsley, A. T.; Vicenzi, E. P.; Teslich, N.; Dai, Z. R.; Rost, D.; Horz, F.; Bradley, J. P.

    2007-01-01

    In January 2006, the sample return capsule from NASA s Stardust spacecraft successfully returned to Earth after its seven year mission to comet Wild-2. While the principal capture medium for comet dust was low-density graded silica aerogel, the 1100 series aluminum foil (approximately 100 m thick) which wrapped around the T6064 aluminum frame of the sample tray assembly (STA) contains micro-craters that constitute an additional repository for Wild-2 dust. Previous studies of similar craters on spacecraft surfaces, e.g. the Long Duration Exposure Facility (LDEF), have shown that impactor material can be preserved for elemental and mineralogical characterization, although the quantity of impact residue in Stardust craters far exceeds previous missions. The degree of shock-induced alteration experienced by the Wild-2 particles impacting on foil will generally be greater than for those captured in the low-density aerogel. However, even some of the residues found in LDEF craters showed not only survival of crystalline silicates but even their solar flare tracks, which are extremely fragile structures and anneal at around 600 C. Laboratory hypervelocity experiments, using analogues of Wild-2 particles accelerated into flight-grade foils under conditions close to those of the actual encounter, showed retention of abundant projectile residues at the Stardust encounter velocity of 6.1 km/s. During the preliminary examination (PE) of the returned foils, using optical and electron microscopy studies, a diverse range in size and morphologies of micro-craters was identified. In this abstract we consider the state of residue preservation in a diverse range of craters with respect to their elemental composition and inferred mineralogy of the original projectiles.

  9. Atomic oxygen interaction at defect sights in protective coatings on polymers flown on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Lamoreaux, Cynthia

    1993-01-01

    Although the Long Duration Exposure Facility (LDEF) has exposed materials with a fixed orientation relative to the ambient low-Earth-orbital environment, arrival of atomic oxygen is angularly distributed as a result of the atomic oxygen's high temperature Maxwellian velocity distribution and the LDEF's orbital inclination. Thus, atomic oxygen entering defects in protective coatings on polymeric surfaces can cause wider undercut cavities than the size of the defect in the protective coating. Because only a small fraction of atomic oxygen reacts upon first impact with most polymeric materials, secondary reactions with lower energy thermally accommodated atomic oxygen can occur. The secondary reactions of scattered and/or thermally accommodated atomic oxygen also contribute to widening the undercut cavity beneath the protective coating defect. As the undercut cavity enlarges, exposing more polymer, the probability of atomic oxygen reacting with underlying polymeric material increases because of multiple opportunities for reaction. Thus, the effective atomic oxygen erosion yield for atoms entering defects increases above that of the unprotected material. Based on the results of analytical modeling and computational modeling, aluminized Kapton multilayer insulation exposed to atomic oxygen on row 9 lost the entire externally exposed layer of polyimide Kapton, yet based on the results of this investigation, the bottom surface aluminum film must have remained in place, but crazed. Atomic oxygen undercutting at defect sites in protective coatings on graphite epoxy composites indicates that between 40 to 100 percent of the atomic oxygen thermally accommodates upon impact, and that the reaction probability of thermally accommodated atomic oxygen may range from 7.7 x 10(exp -6) to 2.1 x 10(exp -3), depending upon the degree of thermal accommodation upon each impact.

  10. The influence of solid rocket motor retro-burns on the space debris environment

    NASA Astrophysics Data System (ADS)

    Stabroth, Sebastian; Homeister, Maren; Oswald, Michael; Wiedemann, Carsten; Klinkrad, Heiner; Vörsmann, Peter

    The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers firings of solid rocket motors (SRM) as a debris source with the associated generation of slag and dust particles. The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit. The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which contributed to the long-term debris environment. A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility (LDEF) surfaces. This points into the direction of some past SRM firings not included in the current event database. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere. Thus, they produce no long-term effect on the debris environment. However, a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces. In this paper, the influence of SRM retro-burns on the short- and long-term debris environment is analysed. The existing firing database is updated with gathered information of some 800 Russian retro-firings. Each firing is simulated with the MASTER population generation module. The resulting population is compared against the existing background population of SRM slag and dust particles in terms of spatial density and flux predictions.

  11. Correlation of Upper-Atmospheric 7-Be with Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Phillips, G. W.; Share, G. H.; King, S. E.; August, R. A.; Tylka, A. J.; Adams, J. H., Jr.; Panasyuk, M. I.; Nymmik, R. A.; Kuzhevskij, B. M.; Kulikauskas, V. S.; hide

    2001-01-01

    A surprisingly large concentration of radioactive 7-Be was observed in the upper atmosphere at altitudes above 320 km on the LDEF satellite that was recovered in January 1990. We report on follow-up experiments on Russian spacecraft at altitudes of 167 to 370 km during the period of 1996 to 1999, specifically designed to measure 7-Be concentrations in low earth orbit. Our data show a significant correlation between the 7-Be concentration and the solar energetic proton fluence at Earth, but not with the overall solar activity. During periods of low solar proton fluence, the concentration is correlated with the galactic cosmic ray fluence. This indicates that spallation of atmospheric N by both solar energetic particles and cosmic rays is the primary source of 7-Be in the ionosphere.

  12. Electron microscope observations of impact crater debris amongst contaminating particulates on materials surfaces exposed in space in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Rivas, J. M.; Quinones, S.; Niou, C.-S.; Advani, A. H.; Marquez, B.

    1993-01-01

    Debris particles extracted from a small sampling region on the leading edge of the Long Duration Exposure Facility (LDEF) spacecraft have been examined by analytical transmission electron microscopy and the elemental frequency observed by energy-dispersive X-ray spectrometry and compared with upper atmosphere (Earth) particle elemental frequency and the average elemental compositions of interplanetary dust particles. A much broader elemental distribution was observed for the exposed spacecraft surface debris milieu. Numerous metal microfragment analyses, particularly aluminum and stainless steel, were compared with scanning electron microscope observations-of impact crater features, and the corresponding elemental spectra on selected LDEF aluminium tray clamps and stainless steel bolts. The compositions and melt features for these impact craters and ejecta have been shown to be consistent with microcrystalline debris fragments in the case of aluminum, and these observations suggest an ever changing debris milieu on exposed surfaces for space craft and space system materials.

  13. Continued investigation of LDEF's structural frame and thermal blankets by the Meteoroid and Debris Special Investigation Group

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Mack, Kimberly S.; Warren, Jack L.; Zolensky, Michael E.; Zook, Herbert A.

    1993-01-01

    This report focuses on the data acquired by detailed examination of LDEF intercostals, 68 of which are now in possession of the Meteoroid and Debris Special Investigation Group (M&D SIG) at JSC. In addition, limited data will be presented for several small sections from the A0178 thermal control blankets that were examined/counted prior to being shipped to Principal Investigators (PI's) for scientific study. The data presented here are limited to measurements of crater and penetration-hole diameters and their frequency of occurrence which permits, yet also constrains, more model-dependent, interpretative efforts. Such efforts will focus on the conversion of crater and penetration-hole sizes to projectile diameters (and masses), on absolute particle fluxes, and on the distribution of particle-encounter velocities. These are all complex issues that presently cannot be pursued without making various assumptions which relate, in part, to crater-scaling relationships, and to assumed trajectories of natural and man-made particle populations in LEO that control the initial impact conditions.

  14. LDEF microenvironments, observed and predicted

    NASA Astrophysics Data System (ADS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-04-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  15. LDEF microenvironments, observed and predicted

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-01-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  16. Silver Teflon blanket: LDEF tray C-08

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1992-01-01

    A study of the Teflon blanket surface at the edge of tray C-08 illustrates the complexity of the microenvironments on the Long Duration Exposure Facility (LDEF). The distribution of particulate contaminants varied dramatically over a distance of half a centimeter (quarter of an inch) near the edge of the blanket. The geometry and optical effects of the atomic oxygen erosion varied significantly over the few centimeters where the blanket folded over the edge of the tray resulting in a variety of orientations to the atomic oxygen flux. A very complex region of combined mechanical and atomic oxygen damage occurred where the blanket contacted the edge of the tray. A brown film deposit apparently fixed by ultraviolet light traveling by reflection through the Teflon film was conspicuous beyond the tray contract zone. Chemical and structural analysis of the surface of the brown film and beyond toward the protected edge of the blanket indicated some penetration of energetic atomic oxygen at least five millimeters past the blanket-tray contact interface.

  17. Fluorescence observations of LDEF exposed materials as an indicator of induced material reactions

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    Observations and measurements of induced changes in the fluorescent emission of materials exposed to the space environment on the Long Duration Exposure Facility (LDEF) have revealed systematic patterns of material-dependent behavior. These results have been supplemented by inspection of similar materials exposed on previous Space Shuttle Missions and in laboratory testing. The space environmental factors affecting the fluorescence of exposed materials have been found to include (but are not necessarily limited to) solar ultraviolet (UV) radiation, atomic oxygen (AO), thermal vacuum exposure, and synergistic combinations of these factors. Observed changes in material fluorescent behavior include stimulation, quenching, and spectral band shifts of emission. For example, the intrinsic yellow fluorescence of zinc oxide pigmented thermal control coatings undergoes quenching as a result of exposure, while coloration is stimulated in the fluorescent emission of several polyurethane coating materials. The changes in fluorescent behavior of these materials are shown to be a revealing indicator of induced material reactions as a result of space environmental exposure.

  18. Long Duration Exposure Facility (LDEF) low-temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1992-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a n-Heptane Phase Change Material (PCM) canister. A total of 388 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe of axially grooved stainless steel heat pipe diode was demonstrated before the EDS batteries lost power. The inability of the HEPP's radiator to cool below 190 K in flight prevented freezing of the PCM and the opportunity to conduct transport tests with the heat pipes. Post flight tests showed that the heat pipes and the PCM are still functioning. This paper presents a summary of the flight data analysis for the HEPP and its related support systems. Pre and post-flight thermal vacuum tests results are presented for the HEPP thermal control system along with individual heat pipe performance and PCM behavior. Appropriate SIG related systems data will also be included along with a 'lessons learned' summary.

  19. Preliminary results from the heavy ions in space experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Beahm, Lorraine P.; Tylka, Allan J.

    1992-01-01

    The Heavy Ions In Space (HIIS) experiment has two primary objectives: (1) to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table; and (2) to study heavy ions which arrive at LDEF below the geomagnetic cutoff, either because they are not fully stripped of electrons or because their source is within the magnetosphere. Both of these objectives have practical as well as astrophysical consequences. In particular, the high atomic number of the ultraheavy galactic cosmic rays puts them among the most intensely ionizing particles in Nature. They are therefore capable of upsetting electronic components normally considered immune to such effects. The below cutoff heavy ions are intensely ionizing because of their low velocity. They can be a significant source of microelectronic anomalies in low inclination orbits, where Earth's magnetic field protects satellites from most particles from interplanetary space. The HIIS results will lead to significantly improved estimates of the intensely ionizing radiation environment.

  20. Partial analysis of experiment LDEF A-0114

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1986-01-01

    Due to delays in manifesting the return of the Long Duration Exposure Facility from space, attention was concentrated on extracting the maximum information from the EIOM-2 (oxygen interaction with materials experiment) flown on STS-8 in September 1983. An analysis was made of the optical surfaces exposed during that flight and an assessment made of the effect of the 5 eV atomic oxygen upon their physical and chemical properties. The surfaces studied were of two types: high-purity thin films sputtered or evaporated onto 2.54-cm diam lambda/20 fused silica optical flats, and highly polished bulk samples. Rapid etching of carbon and carbonaceous surfaces was observed with polycarbonate CR-39 showing the largest etch of any substrate flown and measured. Of the metals tested, only osmium and silver showed large effects, the former being heavily etched and the later forming a very thick layer of oxide. The first measurable effects on iridium, aluminum, nickel, tungsten and niobium thin films are reported.

  1. First biological and dosimetric results of the free flyer biostack experiment AO015 on LDEF

    NASA Technical Reports Server (NTRS)

    Reitz, G.; Buecker, H.; Facius, R.; Horneck, G.; Schaeffer, M.; Schott, J. U.; Bayonove, J.; Beaujean, R.; Benton, E. V.; Delpoux, M.

    1991-01-01

    The main objectives of the Biostack Experiment are to study the effectiveness of the structured components of the cosmic radiation to bacterial spores, plant seeds, and animal cysts for a long duration spaceflight and to get dosimetric data such as particle fluences and spectra and total doses for the Long Duration Exposure Facility orbit. The configuration of the experiment packages allows the localization of the trajectory of the particles in each biological layer and to correlate the potential biological impairment or injury with the physical characteristics of the responsible particle. Although the Biostack Experiment was designed for a long duration flight of only nine months, most of the biological systems show a high hatching or germination rate. Some of the first observations are an increase of the mutation rate of embryonic lethals in the second generation of Arabidopsis seeds, somatic mutations, and a reduction of growth rates of corn plants and a reduction of life span of Artemia salina shrimps. The different passive detector systems are also in a good shape and give access to a proper dosimetric analysis. The results are summarized, and some aspects of future analysis are shown.

  2. Determining orbital particle parameters of impacts into germanium using morphology analysis and calibration data from hypervelocity impact experiments in the laboratory

    NASA Technical Reports Server (NTRS)

    Paul, Klaus G.

    1995-01-01

    This paper describes the work that is done at the Lehrstuhl fur Raumfahrttechnik (lrt) at the Technische Universitat Munchen to examine particle impacts into germanium surfaces which were flown on board the LDEF satellite. Besides the description of the processing of the samples, a brief overview of the particle launchers at our institute is given together with descriptions of impact morphology of high- and hypervelocity particles into germanium. Since germanium is a brittle, almost glass-like material, the impact morphology may also be interesting for anyone dealing with materials such as optics and solar cells. The main focus of our investigations is to learn about the impacting particle's properties, for example mass, velocity and direction. This is done by examining the morphology, various geometry parameters, crater obliqueness and crater volume.

  3. Outgassing and dimensional changes of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    A thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites is described. Experimental results derived from a 'control' sample are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples.

  4. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  5. Proposed test program and data base for LDEF polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; George, Pete; Steckel, Gary L.; Zimcik, D. G.

    1992-01-01

    A survey of the polymer matrix composite materials that were flown on Long Duration Exposure Facility (LDEF) is presented with particular attention to the effect of circumferential location (alpha) on the measured degradation and property changes. Specifically, it is known that atomic oxygen fluence (AO), VUV radiation dose, and number of impacts by micrometeoroids/debris vary with alpha. Thus, it is possible to assess material degradation and property damage changes with alpha for those materials that are common to three or more locations. Once the alpha-dependence functions were defined, other material samples will provide data that can readily be used to predict damage and property changes as a function of alpha as well. What data can be realistically obtained from these materials, how this data can be obtained, and the scientific/design value of the data to the user community is summarized. Finally, a proposed test plan is presented with recommended characterization methodologies that should be employed by all investigators to ensure consistency in the data base that will result from this exercise.

  6. Characterization of polymer decomposition products by laser desorption mass spectrometry

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Lincoln, Kenneth A.; Miglionico, Charles J.; Roybal, Robert E.; Stein, Charles; Shively, Jon H.

    1993-01-01

    Laser desorption mass spectrometry has been used to characterize the ash-like substances formed on the surfaces of polymer matrix composites (PMC's) during exposure on LDEF. In an effort to minimize fragmentation, material was removed from the sample surfaces by laser desorption and desorbed neutrals were ionized by electron impact. Ions were detected in a time-of-flight mass analyzer which allows the entire mass spectrum to be collected for each laser shot. The method is ideal for these studies because only a small amount of ash is available for analysis. Three sets of samples were studied including C/polysulfone, C/polyimide and C/phenolic. Each set contains leading and trailing edge LDEF samples and their respective controls. In each case, the mass spectrum of the ash shows a number of high mass peaks which can be assigned to fragments of the associated polymer. These high mass peaks are not observed in the spectra of the control samples. In general, the results indicate that the ash is formed from decomposition of the polymer matrix.

  7. Ellipsometric study of oxide films formed on LDEF metal samples

    NASA Technical Reports Server (NTRS)

    Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.

    1992-01-01

    The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.

  8. Asteroidal versus cometary meteoroid impacts on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Zook, Herbert A.

    1993-01-01

    Meteoroids that enter the Earth's atmosphere at low velocities will tend to impact the apex side (that surface facing the spacecraft direction of motion) of a spacecraft at a very high rate compared to the rate with which they will impact an antapex-facing surface. This ratio--apex to antapex impact rates--will become less as meteoroid entry velocities increase. The measured ration, apex to antapex, for 500 micron diameter impact craters in 6061-T6 aluminum on LDEF seems to be about 20 from the work of the meteoroid SIG group and others, that was presented at the first LDEF symposium. Such a ratio is more consistent with the meteoroid velocity distributions derived by Erickson and by Kessler, than it is with others that have been tested. These meteoroid velocity distributions have mean entry velocities into the Earth's atmosphere of 16.5 to 16.9 km/s. Others have numerically simulated the orbital evolution of small dust grains emitted from asteroids and comets. For those asteroidal grains small enough (below about 100 microns diameter) to drift from the asteroid belt to the orbit of the Earth, under P-R and solar wind drag, without suffering collisional destruction, the following results are found: as the ascending or descending nodes cross the Earth's orbit, their orbital eccentricities and inclinations are quite low (e less than 0.3, i less than 20 deg), and their mean velocity with respect to the Earth is about 5 or 6 km/s. When gravitational acceleration of the Earth is taken into account, the corresponding mean velocities relative to the top of the Earth's atmosphere are 12 to 13 km/s. This means that, at best, these small asteroidal particles cannot comprise more than 50 percent of the particles entering the Earth's atmosphere. When gravitational focusing is considered, they cannot comprise more than a few percent of those in heliocentric orbit at 1 AU. The rest are presumably of cometary origin.

  9. Four space application material coatings on the Long-Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Clatterbuck, Carroll

    1995-01-01

    Four material coatings of different thicknesses were flown on the LDEF to determine their ability to perform in the harsh space environment. The coatings, located in the ram direction of the spacecraft, were exposed for 10 months to the low-Earth orbit (LEO) environments experienced by the LDEF at an orbit of 260 nautical miles. They consisted of indium oxide (In2O3), silicon oxide (SiO(x)), clear RTV silicone, and silicone with silicate-treated zinc oxide (ZnO). These coatings were flown to assess their behavior when exposed to atomic oxygen and to confirm their good radiative properties, stability, electrical conductivity, and resistance to UV exposure. The flown samples were checked and compared with the reference unflown samples using high-magnification optical inspection, ESCA analysis, weight changes, and dimensional changes. These comparisons indicated the following. The 1000 A SiO(x) coating eroded uniformly, with minor changes in its radiative properties. The 100 A In2O3 coating eroded completely down to the Kapton backing, with resultant losses of reflectance. The RTV-615 showed erosion, with carbon (C) content losses, while the Si remained constant, with a doubling of the oxygen (O) concentration. The RTV-615 silicone with K2SiO3-treated ZnO changed from flat to glossy white in appearance. It lost C, was etched, and increased its O content. The upper layers showed no remaining Zn or K. Losses of reflectance occurred within certain wavelength bands. It was not possible to evaluate the experimental oxygen reaction rate using the calculated atomic oxygen fluence of 2.6 x 10(exp 20) atoms/cm(exp 2) for the exposure of these coatings during the flight. The bakeout of the coatings was not carried out prior to the flight. Hence, the coating weight and dimensional losses included losses by outgassing products.

  10. Progress report on the Heavy Ions in Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Beahm, Lorraine P.; Boberg, Paul R.; Tylka, Allan J.

    1993-01-01

    One of the objectives of the Heavy Ions In Space (HIIS) experiment is to investigate heavy ions which appear at Long Duration Exposure Facility (LDEF) below the geomagnetic cutoff for fully-ionized galactic cosmic rays. Possible sources of such 'below-cutoff' particles are partially-ionized solar energetic particles, the anomalous component of cosmic rays, and magnetospherically-trapped particles. In recent years, there have also been reports of below-cutoff ions which do not appear to be from any known source. Although most of these observations are based on only a handful of ions, they have led to speculation about 'partially-ionized galactic cosmic rays' and 'near-by cosmic ray sources'. The collecting power of HIIS is order of magnitude larger than that of the instruments which reported these results, so HIIS should be able to confirm these observations and perhaps discover the source of these particles. Preliminary results on below-cutoff heavy-ions are reported. Observations to possible known sources of such ions are compared. A second objective of the HIIS experiment is to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table. A report on the status of this analysis is presented.

  11. Orbital atomic oxygen effects on materials: An overview of MSFC experiments on the STS-46 EOIM-3

    NASA Astrophysics Data System (ADS)

    Linton, Roger C.; Vaughn, Jason A.; Finckenor, Miria M.; Kamenetzky, Rachel R.; Dehaye, Robert F.; Whitaker, Ann F.

    1995-02-01

    The third Evaluation of Oxygen Interaction with Materials experiment was flown on Space Shuttle Mission STS-46 (July 31 - August 8, 1992), representing a joint effort of several NASA centers, universities, and contractors. This array of active instrumentation and material exposure sub-assemblies was integrated as a Shuttle cargo bay pallet experiment for investigating the effects of orbital atomic oxygen on candidate space materials. Marshall Space Flight Center contributed several passive exposure trays of material specimens, uniform stress and static stress material exposure fixtures, the Atomic Oxygen Resistance Monitor (AORM), and specimens of thermal coatings for the EOIM-3 variable exposure mechanisms. As a result of 42 hours of spacecraft velocity vector-oriented exposure during the later phases of the STS-46 mission in LEO, EOIM-3 materials were exposed to an atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm. In this paper, an overview is presented of the technical approaches and results from analyses of the MSFC flight specimens, fixtures, and the AORM. More detailed results from earlier EOIM missions, the LDEF, and from laboratory testing are included in associated papers of this conference session.

  12. Orbital atomic oxygen effects on materials: An overview of MSFC experiments on the STS-46 EOIM-3

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Vaughn, Jason A.; Finckenor, Miria M.; Kamenetzky, Rachel R.; Dehaye, Robert F.; Whitaker, Ann F.

    1995-01-01

    The third Evaluation of Oxygen Interaction with Materials experiment was flown on Space Shuttle Mission STS-46 (July 31 - August 8, 1992), representing a joint effort of several NASA centers, universities, and contractors. This array of active instrumentation and material exposure sub-assemblies was integrated as a Shuttle cargo bay pallet experiment for investigating the effects of orbital atomic oxygen on candidate space materials. Marshall Space Flight Center contributed several passive exposure trays of material specimens, uniform stress and static stress material exposure fixtures, the Atomic Oxygen Resistance Monitor (AORM), and specimens of thermal coatings for the EOIM-3 variable exposure mechanisms. As a result of 42 hours of spacecraft velocity vector-oriented exposure during the later phases of the STS-46 mission in LEO, EOIM-3 materials were exposed to an atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm. In this paper, an overview is presented of the technical approaches and results from analyses of the MSFC flight specimens, fixtures, and the AORM. More detailed results from earlier EOIM missions, the LDEF, and from laboratory testing are included in associated papers of this conference session.

  13. Post-flight analyses of the crystals from the M0003-14 quartz crystal microbalance experiment

    NASA Technical Reports Server (NTRS)

    Stuckey, W. K.; Radhakrishnan, G.; Wallace, D.

    1993-01-01

    Quartz Crystal Microbalances constructed by QCM Research were flown on the leading and trailing edges of LDEF as one of the sub-experiments of M0003. Response of the crystals coated with 150 A of In2O3 was recorded during the first 424 days of the mission. A second QCM with crystals coated with 150 A of ZnS was also flown but not monitored. After the flight, the QCM's were disassembled and analyzed in The Aerospace Corporation laboratories. The samples included the crystals from the leading and trailing edge samples of both types of coatings along with the reference crystals, which were inside the QCM housing. Analyses were performed by scanning electron microscopy, energy dispersive x-ray analyses, x-ray photoelectron spectroscopy, ion microprobe mass analysis, and reflectance spectroscopy in the infrared and UV/visible regions. The crystals are contaminated predominantly with silicone compounds. The contamination is higher on the leading edge than on the trailing edge and higher on the exposed crystals than on the reference crystals.

  14. Survival of epiphytic bacteria from seed stored on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Norman, Bret L.; Angelo, Joseph A., Jr.

    1992-01-01

    Microbial contamination in American spacecraft has previously been documented, however, potential risks to plants and humans in future space based controlled ecological life support systems (CELSS) have yet to be addressed directly. The current study was designed to determine the survival of microorganisms exposed to the relatively harsh conditions found in low Earth orbit (LEO). Total mean dosage for flight and ground control seeds were 210.2 and 0.9 rads, respectively. Bacteria were isolated by plating samples of seedwashings onto dilute tryptic soy agar. Pure isolates of morphologically distinct bacteria were obtained by standard microbiological procedures. Bacteria were grouped according to colony type and preliminary identification was completed using a fatty acid analysis system. Bacillus spp. were the primary microorganisms that survived on seed during the experiment. Results support the hypothesis that terrestrial microorganisms can survive long periods of time in relatively harsh LEO environments.

  15. Science requirements for Heavy Nuclei Collection (HNC) experiment on NASA Long Duration Exposure Facility (LDEF) Mission 2

    NASA Technical Reports Server (NTRS)

    Price, P. Buford

    1991-01-01

    The Heavy Nuclei Collection (HNC) is a passive array of stacks of a special glass, 14 sheets thick, that record tracks of ultraheavy cosmic rays for later readout by automated systems on Earth. The primary goal is to determine the relative abundances of both the odd- and even-Z cosmic rays with Z equal to or greater than 50 with statistics a factor at least 60 greater than obtained in HEAO-3 and to obtain charge resolution at least as good as 0.25 charge unit. The secondary goal is to search for hypothetical particles such as superheavy elements. The HNC detector array will have a cumulative collection power equivalent to flying 32 sq m of detectors in space for 4 years. The array will be flown as a free-flight spacecraft and/or attached to Space Station Freedom.

  16. Low Earth orbit thermal control coatings exposure flight tests: A comparison of U.S. and Russian results

    NASA Technical Reports Server (NTRS)

    Tribble, A. C.; Lukins, R.; Watts, E.; Naumov, S. F.; Sergeev, V. K.

    1995-01-01

    Both the United States (US) and Russia have conducted a variety of space environment effects on materials (SEEM) flight experiments in recent years. A prime US example was the Long Duration Exposure Facility (LDEF), which spent 5 years and 9 months in low Earth orbit (LEO) from April 1984 to January 1990. A key Russian experiment was the Removable Cassette Container experiment, (RCC-1), flown on the Mir Orbital Station from 11 January 1990 to 26 April 1991. This paper evaluates the thermal control coating materials data generated by these two missions by comparing: environmental exposure conditions, functionality and chemistry of thermal control coating materials, and pre- and post-flight analysis of absorptance, emittance, and mass loss due to atomic oxygen erosion. It will be seen that there are noticeable differences in the US and Russian space environment measurements and models, which complicates comparisons of environments. The results of both flight experiments confirm that zinc oxide and zinc oxide orthotitanate white thermal control paints in metasilicate binders (Z93, YB71, TP-co-2, TP-co-11, and TP-co-12), are the most stable upon exposure to the space environment. It is also seen that Russian flight materials experience broadens to the use of silicone and acrylic resin binders while the US relies more heavily on polyurethane.

  17. Further analysis of LDEF FRECOPA micrometeroid remnants

    NASA Technical Reports Server (NTRS)

    Borg, J.; Bunch, T. E.; Radicatidibrozolo, Filippo

    1992-01-01

    Experiments dedicated to the detection of interplanetary dust particles (IDP's) were exposed within the FRECOPA payload, installed on the face of the LDEF directly opposed to the velocity vector (west facing direction, location B3). We were mainly interested in the analysis of hypervelocity impact features of sizes less than or = 10 microns, found in thick Al targets devoted to the research of impact features. In the 15 craters found in the scanned area (approximately 4 sq. cm), the chemical analysis suggests an extraterrestrial origin for the impacting particles. The main elements we identified are usually refered to as chondrite elements: Na, Mg, Si, S, Ca, and Fe are found in various proportions, intrinsic Al being masked by the Al target; we notice a strong depletion in Ni, never observed in our samples. Furthermore, C and O are present in 90 percent of the cases; the C/O peak height ratio varies from 0.1 to 3. Impactor simulations by light gas gun hypervelocity impact experiments have shown that meaningful biogenic element and compound information maybe obtained from IDP residues below impacts of critical velocities, that are less than or = 4 km/sec for particles larger than 100 microns in diameter. Our results obtained for the smaller size fraction IDP's suggest that at such sizes, the critical velocity could be higher by a factor of 2 or 3, as chemical analysis of the remnants were possible in all the identified impact craters, performed on targets possibly hit at velocities greater than or = 7.5 km/s, which is the spacecraft velocity. These samples are now subjected to an imagery and analytical protocol that includes FESEM (field emission scanning electron microscopy) and LIMS (laser ionization mass spectrometry). The LIMS analyses were performed using the LIMA-ZA instrument. Results are presented, clearly indicating that such small events show crater features analogous to what is observed at larger sizes; our first analytical results, obtained for 2 events (P6 and P10) suggest that N is present in the IDP's remnants in which C and O were identified by EDX analysis. In one case (P6), enrichment in K and P is observed. Surface contamination by NaCl is evident on the FRECOPA surfaces.

  18. LDEF - 69 Months in Space. First Post-Retrieval Symposium. Proceeding of a symposium held in Kissimmee, Florida, 2-8 June 1991.

    DTIC Science & Technology

    1992-01-01

    LIST OF SEED Astilbe x Arendsii, ’Spiraea Mix’ Calceolaria crenatiflora Capsicum annuum , ’Midnight’ Lycopersicon Lycopersicum, Tomato ’Better...8217 Verbena x hybrida, ’Amethyst’ Viola Wittrockiana, Pansy Antirrhinum majas, ’Kolibra Mix’ Capsicum annuum , ’Early Thickset’ Capsicum annuum , ’Sweet

  19. EnviroNET: An on-line environment data base for LDEF data

    NASA Technical Reports Server (NTRS)

    Lauriente, Michael

    1992-01-01

    EnviroNET is an on-line, free form data base intended to provide a centralized depository for a wide range of technical information on environmentally induced interactions of use to Space Shuttle customers and spacecraft designers. It provides a user friendly, menu driven format on networks that are connected globally and is available twenty-four hours a day, every day. The information updated regularly, includes expository text, tabular numerical data, charts and graphs, and models. The system pools space data collected over the years by NASA, USAF, other government facilities, industry, universities, and ESA. The models accept parameter input from the user and calculate and display the derived values corresponding to that input. In addition to the archive, interactive graphics programs are also available on space debris, the neutral atmosphere, radiation, magnetic field, and ionosphere. A user friendly informative interface is standard for all the models with a pop-up window, help window with information on inputs, outputs, and caveats. The system will eventually simplify mission analysis with analytical tools and deliver solution for computational intense graphical applications to do 'What if' scenarios. A proposed plan for developing a repository of LDEF information for a user group concludes the presentation.

  20. From LDEF to a national Space Environment and Effects (SEE) program: A natural progression

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Calloway, Robert L.; Funk, Joan G.; Kinard, William H.; Levine, Arlene S.

    1995-01-01

    As the LDEF program draws to a close, it leaves in place the fundamental building blocks for a Space Environment and Effects (SEE) program. Results from LDEF data analyses and investigations now form a substantial core of knowledge on the long term effects of the space environment on materials, system and structures. In addition, these investigations form the basic structure of a critically-needed SEE archive and database system. An agency-wide effort is required to capture all elements of a SEE program to provide a more comprehensive and focused approach to understanding the space environment, determining the best techniques for both flight and ground-based experimentation, updating the models which predict both the environments and those effects on subsystems and spacecraft, and, finally, ensuring that this multitudinous information is properly maintained, and inserted into spacecraft design programs. Many parts and pieces of a SEE program already exist at various locations to fulfill specific needs. The primary purpose of this program, under the direction of the Office of Advanced Concepts and Technology (OACT) in NASA Headquarters, is to take advantage of these parts; apply synergisms where possible; identify and when possible fill-in gaps; coordinate and advocate a comprehensive SEE program. The SEE program must coordinate and support the efforts of well-established technical communities wherein the bulk of the work will continue to be done. The SEE program will consist of a NASA-led SEE Steering Committee, consisting of government and industry users, with the responsibility for coordination between technology developers and NASA customers; and Technical Working Groups with primary responsibility for program technical content in response to user needs. The Technical Working Groups are as follows: Materials and Processes; Plasma and Fields; Ionizing Radiation; Meteoroids and Orbital Debris; Neutral External Contamination; Thermosphere, Thermal, and Solar Conditions; Electromagnetic Effects; Integrated Assessments and Databases. Specific technology development tasks will be solicited through a NASA Research Announcement to be released in May of 1994. The areas in which tasks are solicited include: (1) engineering environment definitions, (2) environments and effects design guidelines, (3) environments and effects assessment models and databases, and (4) flight/ground simulation/technology assessment data.

  1. Asteroidal versus cometary meteoroid impacts on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Zook, Herbert A.

    1992-01-01

    Meteoroids that enter the Earth's atmosphere at low velocities will tend to impact the apex side (that surface facing the spacecraft direction of motion) of a spacecraft at a very high rate compared to the rate with which they will impact an antapex-facing surface. This ratio -- apex to antapex impact rates -- will become less as meteoroid entry velocities increase. The measured ratio, apex to antapex, for 500 micron diameter impact craters in 6061-T6 aluminum on LDEF seems to be about 20 from the work of the meteoroid SIG group and from the work of Humes that was presented at the first LDEF symposium. Such a ratio is more consistent with the meteoroid velocity distributions derived by Erickson and by Kessler, than it is with others that have been tested. These meteoroid velocity distributions have mean entry velocities into the Earth's atmosphere of 16.5 to 16.9 km/s. Jackson and Zook (in a paper submitted to Icarus) have numerically simulated the orbital evolution of small dust grains emitted from asteroids and comets. For those asteroidal grains small enough (below about 100 microns diameter) to drift from the asteroid belt to the orbit of the Earth, under P-R and solar wind drag, without suffering collisional destruction, the following results are found: as their ascending or descending nodes cross the Earth's orbit (and when they might collide with the Earth), their orbital eccentricities and inclinations are quite low (e less than 0.3, i less than 20 degrees), and their mean velocity with respect to the Earth is about 5 or 6 km/s. When gravitational acceleration of the Earth is taken into account, the corresponding mean velocities relative to the top of the Earth's atmosphere are 12 to 13 km/s. This means that, at best, these small asteroidal particles can not comprise more than 50 percent of the particles entering the Earth's atmosphere. And when gravitational focusing is considered, they cannot comprise more than a few percent of those in heliocentric orbit at 1 AU. The rest are presumably of cometary origin.

  2. From LDEF to a national Space Environment and Effects (SEE) program: A natural progression

    NASA Astrophysics Data System (ADS)

    Bowles, David E.; Calloway, Robert L.; Funk, Joan G.; Kinard, William H.; Levine, Arlene S.

    1995-02-01

    As the LDEF program draws to a close, it leaves in place the fundamental building blocks for a Space Environment and Effects (SEE) program. Results from LDEF data analyses and investigations now form a substantial core of knowledge on the long term effects of the space environment on materials, system and structures. In addition, these investigations form the basic structure of a critically-needed SEE archive and database system. An agency-wide effort is required to capture all elements of a SEE program to provide a more comprehensive and focused approach to understanding the space environment, determining the best techniques for both flight and ground-based experimentation, updating the models which predict both the environments and those effects on subsystems and spacecraft, and, finally, ensuring that this multitudinous information is properly maintained, and inserted into spacecraft design programs. Many parts and pieces of a SEE program already exist at various locations to fulfill specific needs. The primary purpose of this program, under the direction of the Office of Advanced Concepts and Technology (OACT) in NASA Headquarters, is to take advantage of these parts; apply synergisms where possible; identify and when possible fill-in gaps; coordinate and advocate a comprehensive SEE program. The SEE program must coordinate and support the efforts of well-established technical communities wherein the bulk of the work will continue to be done. The SEE program will consist of a NASA-led SEE Steering Committee, consisting of government and industry users, with the responsibility for coordination between technology developers and NASA customers; and Technical Working Groups with primary responsibility for program technical content in response to user needs. The Technical Working Groups are as follows: Materials and Processes; Plasma and Fields; Ionizing Radiation; Meteoroids and Orbital Debris; Neutral External Contamination; Thermosphere, Thermal, and Solar Conditions; Electromagnetic Effects; Integrated Assessments and Databases. Specific technology development tasks will be solicited through a NASA Research Announcement to be released in May of 1994. The areas in which tasks are solicited include: (1) engineering environment definitions, (2) environments and effects design guidelines, (3) environments and effects assessment models and databases, and (4) flight/ground simulation/technology assessment data.

  3. Comparison of Spacecraft Contamination Models with Well-Defined Flight Experiment

    NASA Technical Reports Server (NTRS)

    Pippin, G. H.

    1998-01-01

    The report presents analyzed surface areas on particular experiment trays from the Long Duration Exposure Facility (LDEF) for silicone-based molecular contamination. The trays for examination were part of the Ultra-Heavy Cosmic Ray Experiment (UHCRE). These particular trays were chosen because each tray was identical to the others in construction, and the materials on each tray were well known, documented, and characterized. In particular, a known specific source of silicone contamination was present on each tray. Only the exposure conditions varied from tray to tray. The results of post-flight analyses of surfaces of three trays were compared with the predictions of the three different spacecraft molecular contamination models. Phase one tasks included: 1) documenting the detailed geometry of the hardware; 2) determining essential properties of the anodized aluminum, Velcro(Tm), silverized Teflon(Tm), silicone gaskets, and DC6-1104(Tm) silicone adhesive materials used to make the trays, tray covers, and thermal control blankets; 3) selecting and removing areas from each tray; and 4) beginning surface analysis of the selected tray walls. Phase two tasks included: 1) completion of surface analysis measurements of the selected tray surface, 2) obtaining auger depth profiles at selected locations, and 3) running versions of the ISEM, MOFLUX, and PLIMP (Plume Impingement) contamination prediction models and making comparisons with experimental results.

  4. Preliminary analyses of WL experiment No. 701, space environment effects on operating fiber optic systems

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1992-01-01

    A brief overview of the analyses performed to date on WL Experiment-701 is presented. Four active digital fiber optic links were directly exposed to the space environment for a period of 2114 days. The links were situated aboard the Long Duration Exposure Facility (LDEF) with the cabled, single fiber windings atop an experimental tray containing instrumentation for exercising the experiment in orbit. Despite the unplanned and prolonged exposure to trapped and galactic radiation, wide temperature extremes, atomic oxygen interactions, and micro-meteorite and debris impacts, in most instances the optical data links performed well within the experimental limits. Analysis of the recorded orbital data clearly indicates that fiber optic applications in space will meet with success. Ongoing tests and analysis of the experiment at the Phillips Laboratory's Optoelectronics Laboratory will expand this premise, and establish the first known and extensive database of active fiber optic link performance during prolonged space exposure. WL Exp-701 was designed as a feasibility demonstration for fiber optic technology in space applications, and to study the performance of operating fiber systems exposed to space environmental factors such as galactic radiation, and wide temperature cycling. WL Exp-701 is widely acknowledged as a benchmark accomplishment that clearly demonstrates, for the first time, that fiber optic technology can be successfully used in a variety of space applications.

  5. Enhanced Experience Replay for Deep Reinforcement Learning

    DTIC Science & Technology

    2015-11-01

    ARL-TR-7538 ● NOV 2015 US Army Research Laboratory Enhanced Experience Replay for Deep Reinforcement Learning by David Doria...Experience Replay for Deep Reinforcement Learning by David Doria, Bryan Dawson, and Manuel Vindiola Computational and Information Sciences Directorate...

  6. Space Shuttle Projects

    NASA Image and Video Library

    1990-01-08

    Five astronauts launched aboard the Space Shuttle Columbia on January 9, 1990 at 7:35:00am (EST) for the STS-32 mission. The crew included David C. Brandenstein, commander; James D. Weatherbee, pilot; and mission specialists Marsha S. Ivins, G. David Low, and Bonnie J. Dunbar. Primary objectives of the mission were the deployment of the SYNCOM IV-F5 defense communications satellite and the retrieval of NASA’s Long Duration Exposure Facility (LDEF).

  7. Damage areas on selected LDEF aluminum surfaces

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.; Atkinson, Dale R.; Allbrooks, Martha K.; Watts, Alan J.; Hennessy, Corey J.; Wagner, John D.

    1993-01-01

    With the U.S. about to embark on a new space age, the effects of the space environment on a spacecraft during its mission lifetime become more relevant. Included among these potential effects are degradation and erosion due to micrometeoroid and debris impacts, atomic oxygen and ultraviolet light exposure as well as material alteration from thermal cycling, and electron and proton exposure. This paper focuses on the effects caused by micrometeoroid and debris impacts on several LDEF aluminum plates from four different bay locations: C-12, C-10, C-01, and E-09. Each plate was coated with either a white, black, or gray thermal paint. Since the plates were located at different orientations on the satellite, their responses to the hypervelocity impacts varied. Crater morphologies range from a series of craters, spall zones, domes, spaces, and rings to simple craters with little or no spall zones. In addition, each of these crater morphologies is associated with varying damage areas, which appear to be related to their respective bay locations and thus exposure angles. More than 5% of the exposed surface area examined was damaged by impact cratering and its coincident effects (i.e., spallation, delamination and blow-off). Thus, results from this analysis may be significant for mission and spacecraft planners and designers.

  8. EnviroNET: On-line information for LDEF

    NASA Technical Reports Server (NTRS)

    Lauriente, Michael

    1993-01-01

    EnviroNET is an on-line, free-form database intended to provide a centralized repository for a wide range of technical information on environmentally induced interactions of use to Space Shuttle customers and spacecraft designers. It provides a user-friendly, menu-driven format on networks that are connected globally and is available twenty-four hours a day - every day. The information, updated regularly, includes expository text, tabular numerical data, charts and graphs, and models. The system pools space data collected over the years by NASA, USAF, other government research facilities, industry, universities, and the European Space Agency. The models accept parameter input from the user, then calculate and display the derived values corresponding to that input. In addition to the archive, interactive graphics programs are also available on space debris, the neutral atmosphere, radiation, magnetic fields, and the ionosphere. A user-friendly, informative interface is standard for all the models and includes a pop-up help window with information on inputs, outputs, and caveats. The system will eventually simplify mission analysis with analytical tools and deliver solutions for computationally intense graphical applications to do 'What if...' scenarios. A proposed plan for developing a repository of information from the Long Duration Exposure Facility (LDEF) for a user group is presented.

  9. Orbital debris and near-Earth environmental management: A chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Loftus, Joseph P., Jr.

    1993-01-01

    This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.

  10. IDE spatio-temporal impact fluxes and high time-resolution studies of multi-impact events and long-lived debris clouds

    NASA Technical Reports Server (NTRS)

    Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Kassel, Philip C.; Wortman, Jim J.; Montague, Nancy L.; Kinard, William H.

    1991-01-01

    During the first 12 months of the Long Duration Exposure Facility (LDEF) mission, the Interplanetary Dust Experiment (IDE) recorded over 15,000 total impacts on six orthogonal faces with a time resolution on the order of 15 to 20 seconds. When combined with the orbital data and the stabilized configuration of the spacecraft, this permits a detailed analysis of the micro-particulate environment. The functional status of each of the 459 detectors was monitored every 2.4 hours, and post-flight analyses of these data has now permitted an evaluation of the effective active detection area as a function of time, panel by panel and separately for the two sensitivity levels. Thus, total impacts were transformed into areal fluxes, and are presented here for the first time. Also discussed are possible effects of these fluxes on previously announced results: apparent debris events, meteor stream detections, and beta meteoroids in observationally significant numbers.

  11. Analysis of leading edge and trailing edge cover glass samples before and after treatment with advanced satellite contamination removal techniques

    NASA Technical Reports Server (NTRS)

    Hotaling, S. P.

    1993-01-01

    Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.

  12. Long-term survival of bacterial spores in space

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Bucker, H.; Reitz, G.

    1994-01-01

    On board of the NASA Long Duration Exposure Facility (LDEF), spores of Bacillus subtilis in monolayers (10(exp 6)/sample) or multilayers (10(exp 8)/sample) were exposed to the space environment for nearly six years and their survival was analyzed after retrieval. The response to space parameters, such as vacuum (10(exp -6) Pa), solar electromagnetic radiation up to the highly energetic vacuum-ultraviolet range 10(exp 9) J/sq m) and/or cosmic radiation (4.8 Gy), was studied and compared to the results of a simultaneously running ground control experiment. If shielded against solar ultraviolet (UV)-radiation, up to 80% of spores in multilayers survive in space. Solar UV-radiation, being the most deleterious parameter of space, reduces survival by 4 orders of magnitude or more. However, up to 10(exp 4) viable spores were still recovered, even in completely unprotected samples. Substances, such as glucose or buffer salts serve as chemical protectants. With this 6 year study in space, experimental data are provided to the discussion on the likelihood of 'Panspermia'.

  13. Development of cryogenic thermal control heat pipes. [of stainless steels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development of thermal control heat pipes that are applicable to the low temperature to cryogenic range was investigated. A previous effort demonstrated that stainless steel axially grooved tubing which met performance requirements could be fabricated. Three heat pipe designs utilizing stainless steel axially grooved tubing were fabricated and tested. One is a liquid trap diode heat pipe which conforms to the configuration and performance requirements of the Heat Pipe Experiment Package (HEPP). The HEPP is scheduled for flight aboard the Long Duration Flight Exposure Facility (LDEF). Another is a thermal switch heat pipe which is designed to permit energy transfer at the cooler of the two identical legs. The third thermal component is a hybrid variable conductance heat pipe (VCHP). The design incorporates both a conventional VCHP system and a liquid trap diode. The design, fabrication and thermal testing of these heat pipes is described. The demonstrated heat pipe behavior including start-up, forward mode transport, recovery after evaporator dry-out, diode performance and variable conductance control are discussed.

  14. Environmental Durability Issues for Solar Power Systems in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.; Smith, Daniela C.

    1994-01-01

    Space solar power systems for use in the low Earth orbit (LEO) environment experience a variety of harsh environmental conditions. Materials used for solar power generation in LEO need to be durable to environmental threats such as atomic oxygen, ultraviolet (UV) radiation, thermal cycling, and micrometeoroid and debris impact. Another threat to LEO solar power performance is due to contamination from other spacecraft components. This paper gives an overview of these LEO environmental issues as they relate to space solar power system materials. Issues addressed include atomic oxygen erosion of organic materials, atomic oxygen undercutting of protective coatings, UV darkening of ceramics, UV embrittlement of Teflon, effects of thermal cycling on organic composites, and contamination due to silicone and organic materials. Specific examples of samples from the Long Duration Exposure Facility (LDEF) and materials returned from the first servicing mission of the Hubble Space Telescope (HST) are presented. Issues concerning ground laboratory facilities which simulate the LEO environment are discussed along with ground-to-space correlation issues.

  15. On the linearity of fast atomic oxygen effects

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1993-01-01

    The effect of bombardment of 8 km per second atomic oxygen (AO) experienced by exposed surfaces of satellites in low Earth orbit must be considered in the selection of materials to be used in instruments and functional systems on these satellites. The degree of importance of the effects varies widely depending on the material, the application, and the exposure (fluence of atoms) to which it is to be subjected. Some highly erodible thin polymer film materials might be considered unacceptable on a long-lived space station, but may be perfectly serviceable on a normal shuttle flight. In order to determine the acceptability of a material for a particular environment, a designer must know the relationship between the magnitude of the effect (for example, mass-loss) and the magnitude of the fluence. To determine this relationship, we need data over a useful range of fluence. Until the return of the Long Duration Exposure Facility (LDEF), the bulk of the data on materials effects was obtained from a few shuttle flights, and the bulk of that data from the flight of experiment Evaluation of Oxygen Interaction with Materials (EOIM-2) on STS-8 in 1983. EOIM-2 obtained a fluence of 3.5 x 10(exp 20) atoms cm(exp -2), while the LDEF fluence approached 10(exp 22) atoms cm(exp -2), or about 30 times greater. Although other flight exposures had been obtained with lower fluences, considerable uncertainty was attached to these results because of the possibility of large relative systematic errors and of other factors such as sweeping angle of attack. In the future, it is hoped that simulation facilities in the laboratory will allow testing of materials without the necessity of flying them in space. In addition, if the relationship of effect with oxygen fluence is well determined, it should not be necessary to expose a material for an entire mission fluence. In this paper, we shall avoid a comparison of flight data with results from simulators, though that comparison is important for the materials community. The present discussion is limited to flight data only.

  16. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  17. Impact of Subsurface Temperature Variability on Meteorological Variability: An AGCM Study

    NASA Astrophysics Data System (ADS)

    Mahanama, S. P.; Koster, R. D.; Liu, P.

    2006-05-01

    Anomalous atmospheric conditions can lead to surface temperature anomalies, which in turn can lead to temperature anomalies deep in the soil. The deep soil temperature (and the associated ground heat content) has significant memory -- the dissipation of a temperature anomaly may take weeks to months -- and thus deep soil temperature may contribute to the low frequency variability of energy and water variables elsewhere in the system. The memory may even provide some skill to subseasonal and seasonal forecasts. This study uses two long-term AGCM experiments to isolate the contribution of deep soil temperature variability to variability elsewhere in the climate system. The first experiment consists of a standard ensemble of AMIP-type simulations, simulations in which the deep soil temperature variable is allowed to interact with the rest of the system. In the second experiment, the coupling of the deep soil temperature to the rest of the climate system is disabled -- at each grid cell, the local climatological seasonal cycle of deep soil temperature (as determined from the first experiment) is prescribed. By comparing the variability of various atmospheric quantities as generated in the two experiments, we isolate the contribution of interactive deep soil temperature to that variability. The results show that interactive deep soil temperature contributes significantly to surface temperature variability. Interactive deep soil temperature, however, reduces the variability of the hydrological cycle (evaporation and precipitation), largely because it allows for a negative feedback between evaporation and temperature.

  18. Long Duration Exposure Facility (LDEF) low temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1993-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a low-temperature (182 K) phase change material. A total of 390 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe and an axially grooved stainless steel heat pipe diode was demonstrated before the data acquisition system's batteries lost power. Each heat pipe had approximately 1 watt applied throughout this period. The HEPP was not able to cool below 188.6 K during the mission. As a result, the preprogrammed transport test sequence which initiates when the PCM temperature drops below 180 K was never exercised, and transport tests with both pipes and the diode reverse mode test could not be run in flight. Also, because the melt temperature of the n-heptane PCM is 182 K, its freeze/thaw behavior could not be tested. Post-flight thermal vacuum tests and thermal analyses have indicated that there was an apparent error in the original thermal analyses that led to this unfortunate result. Post-flight tests have demonstrated that the performance of both heat pipes and the PCM has not changed since being fabricated more than 14 years ago. A summary of HEPP's flight data and post-flight test results are presented.

  19. Implementation Experience with Deep Discount Fares

    DOT National Transportation Integrated Search

    1994-09-01

    This report reviews the experiences of transit agencies across the country with Deep Discount fares, a new public transit pricing strategy, between 1988 and 1993. Based on new market research findings, Deep Discounting has shown that it is possible t...

  20. Abstracts for the 54th Annual Meeting of the Meteoritical Society

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Abstracts of the papers presented at 54th Annual Meeting of the Meteoritic Society are compiled. The following subject areas are covered: Antarctic meteorites; nebula and parent body processing; primary and secondary SNC parent planet processes; enstatite chondrites and aubrites; achondrite stew; refractory inclusions; meteorite exposure ages and sizes; interstellar/meteorite connections; lunar origins, processes and meteorites; craters, cratering and tektites; cretaceous-tertiary impact(s); IDPs (LDEF, stratosphere, Greenland and Antarctica); chondrules; and chondrites.

  1. Activation calculations for trapped protons below 200 MeV: Appendix

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    Tables are given displaying of the results of the activation calculations of metal samples and other material aboard the Long Duration Exposure Facility-1 (LDEF-1) and Spacelab-2 with the computer program, PTRAP4. The computer printouts give the reaction, the reactant product, the proton reaction cross sections as a function of the energy of the incident protons, and the activation as a function of distance into the sample from the exposed surface.

  2. Recent Results of NASA's Space Environments and Effects Program

    NASA Technical Reports Server (NTRS)

    Minor, Jody L.; Brewer, Dana S.

    1998-01-01

    The Space Environments and Effects (SEE) Program is a multi-center multi-agency program managed by the NASA Marshall Space Flight Center. The program evolved from the Long Duration Exposure Facility (LDEF), analysis of LDEF data, and recognition of the importance of the environments and environmental effects on future space missions. It is a very comprehensive and focused approach to understanding the space environments, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. Formal funding of the SEE Program began initially in FY95. A NASA Research Announcement (NRA) solicited research proposals in the following categories: 1) Engineering environment definitions; 2) Environments and effects design guidelines; 3) Environments and effects assessment models and databases; and, 4) Flight/ground simulation/technology assessment data. This solicitation resulted in funding for eighteen technology development activities (TDA's). This paper will present and describe technical results rom the first set of TDA's of the SEE Program. It will also describe the second set of technology development activities which are expected to begin in January 1998. These new technology development activities will enable the SEE Program to start numerous new development activities in support of mission customer needs.

  3. Radioactivities induced in some LDEF samples

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.; Moss, Calvin E.

    1992-01-01

    Final activities are reported for gamma ray emitting isotopes measured in 35 samples from LDEF. In 26 steel trunnion samples, activities of Mn-54 and Co-57 were measured and limits set on other isotopes. In five Al end support retainer plates and two Al keel plate samples, Na-22 was measured. In two Ti clip samples, Na-22 was measured, limits for Sc-46 were obtained, and high activities for impurity Uranium and daughter isotopes were observed. Four sets of depth vs activity profiles were measured for the D sections of the trunnion. For all 4 profiles, the activities first decreased with increasing distance from the surface of the trunnion but were fairly flat near the center. These profiles are consistent with production by both the lower energy (approx. 100 MeV) trapped particles and high energy (approx. 10 GeV) galactic-cosmic ray particles. For the near surface samples, the earth quadrant had more Mn-54 than the space quadrant. For the D sections, there was less Mn-54 in the east trunnion than in the west trunnion. Comparisons are made among the samples and with activities measured by others. The limit for Sc-46 in the Ti clips is compared with the activities of Mn-54 produced in the steel pieces by similar reactions. Activities predicted by several models are compared with the measured activities.

  4. Numerical investigation of deep-crust behavior under lithospheric extension

    NASA Astrophysics Data System (ADS)

    Korchinski, Megan; Rey, Patrice F.; Mondy, Luke; Teyssier, Christian; Whitney, Donna L.

    2018-02-01

    What are the conditions under which lithospheric extension drives exhumation of the deep orogenic crust during the formation of gneiss domes? The mechanical link between extension of shallow crust and flow of deep crust is investigated using two-dimensional numerical experiments of lithospheric extension in which the crust is 60 km thick and the deep-crust viscosity and density parameter space is explored. Results indicate that the style of extension of the shallow crust and the path, magnitude, and rate of flow of deep crust are dynamically linked through the deep-crust viscosity, with density playing an important role in experiments with a high-viscosity deep crust. Three main groups of domes are defined based on their mechanisms of exhumation across the viscosity-density parameter space. In the first group (low-viscosity, low-density deep crust), domes develop by lateral and upward flow of the deep crust at km m.y-1 velocity rates (i.e. rate of experiment boundary extension). In this case, extension in the shallow crust is localized on a single interface, and the deep crust traverses the entire thickness of the crust to the Earth's near-surface in 5 m.y. This high exhuming power relies on the dynamic feedback between the flow of deep crust and the localization of extension in the shallow crust. The second group (intermediate-viscosity, low-density deep crust) has less exhuming power because the stronger deep crust flows less readily and instead accommodates more uniform extension, which imparts distributed extension to the shallow crust. The third group represents the upper limits of viscosity and density for the deep crust; in this case the low buoyancy of the deep crust results in localized thinning of the crust with large upward motion of the Moho and lithosphere-asthenosphere boundary. These numerical experiments test the exhuming power of the deep crust in the formation of extensional gneiss domes.

  5. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration

    NASA Astrophysics Data System (ADS)

    Barry, J. P.; Buck, K. R.; Lovera, C.; Brewer, P. G.; Seibel, B. A.; Drazen, J. C.; Tamburri, M. N.; Whaling, P. J.; Kuhnz, L.; Pane, E. F.

    2013-08-01

    The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30-42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached -0.3 pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. -0.3 pH units during 30-42 day-long experiments.

  6. Space Station-based deep-space optical communication experiments

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Schwartz, Jon A.

    1988-01-01

    A series of three experiments proposed for advanced optical deep-space communications is described. These proposed experiments would be carried out aboard the Space Station to test and evaluate the capability of optical instruments to conduct data communication and spacecraft navigation for deep-space missions. Techniques for effective data communication, precision spacecraft ranging, and accurate angular measurements will be developed and evaluated in a spaceborne environment.

  7. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  8. Matroshka AstroRad Radiation Experiment (MARE) on the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Gaza, R.; Hussein, H.; Murrow, D.; Hopkins, J.; Waterman, G.; Milstein, O.; Berger, T.; Przybyla, B.; Aeckerlein, J.; Marsalek, K.; Matthiae, D.; Rutczynska, A.

    2018-02-01

    The Matroshka AstroRad Radiation Experiment is a science payload on Orion EM-1 flight. A research platform derived from MARE is proposed for the Deep Space Gateway. Feedback is invited on desired Deep Space Gateway design features to maximize its science potential.

  9. Solar radiation effects on glasses

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.

    1994-01-01

    This work was begun in 1978 under NASA grant NAS8-32695 which prepared the samples that were included in the assemblage of samples on LDEF which was placed in earth orbit by Challenger crew members during mission 41C on April 1984. Those samples, recovered in February 1990, were exposed to earth orbit environment for a total of approximately 5.8 years. Following their recovery the optical and mechanical properties were characterized and sample surfaces were examined so as to characterize micrometeorite impact sites.

  10. Sources and transport of silicone NVR

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1992-01-01

    The retrieved LDEF had varying amounts of visible contamination films (brown stains) at many locations. FTIR spectra of heavy film deposits at vents and of optical windows from tray E5 indicated methyl silicone and silica in the contaminant films. Two possible sources of the methyl silicone are DC-710 phenyl methyl silicone in the shuttle-bay-liner beta cloth, and the shuttle tile waterproofing silane. It is concluded that much of the silicon and silica contamination came from ground operations and the orbiter.

  11. LDEF-space environmental effects on materials: Composites and silicone coatings

    NASA Technical Reports Server (NTRS)

    Petrie, Brian C.

    1992-01-01

    The effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites are discussed. Two diverse categories are reported here: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, coefficient of thermal expansion (CTE), and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicone coatings.

  12. Thermal-vacuum response of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    This report describes a thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites. Experimental results derived from 'control' samples are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples. Coefficient of thermal expansion (CTE) data are also presented. In addition, an example is given illustrating the dimensional change of a 'zero' CTE laminate due to moisture outgassing.

  13. In orbit degradation of EUV optical components in the wavelength range 10-40 nm AO 138-3

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Carabetian, C.; Hochedez, J. F.

    1993-01-01

    A complement of EUV optical components, including mirrors and thin film filters, was flown as part of the Long Duration Exposure Facility (LDEF) AO 138-3. The most original amongst these components were multilayered interference reflectors for the 10-40 nm wavelength range. Very moderate degradation was observed for those components which were exposed to the sun. The degradation is compatible with the deposition of a few nanometers of absorbing material on the surface of the samples.

  14. Mineralogy of chondritic interplanetary dust particle impact residues from LDEF

    NASA Technical Reports Server (NTRS)

    Barrett, R. A.; Zolensky, M. E.; Bernhard, R.

    1993-01-01

    A detailed structural and compositional analysis of several impactor residues was performed utilizing transmission electron microscopy, energy dispersive spectroscopy, and electron diffraction. Residues from the interior of several craters in gold surfaces were removed with a tungsten needle, mounted in EMBED-812 epoxy, and ultramicrotomed. The presence in these residues of equilibrated ferromagnesian minerals, recrystallization textures, glass, and melted metal and sulfide bodies decorating grain boundaries is indicative of varying degrees of shock metamorphism in all impact residues we have characterized.

  15. Systems special investigation group

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An interim report concerning the Long Duration Exposure Facility (LDEF) is presented by a Boeing Systems special investigation group (SIG). The SIG activities were divided into five engineering disciplines: electrical, mechanical, optics, thermal, and batteries/solar cells. The responsibilities of the SIG included the following areas: support de-integration at Kennedy Space Center (KSC); testing of hardware at Boeing; review of principal investigator (PI) test plans and test results; support of test activities at PI labs; and collation of all test results into the SIG database.

  16. Rising to the challenge: Deep acting is more beneficial when tasks are appraised as challenging.

    PubMed

    Huang, Jason L; Chiaburu, Dan S; Zhang, Xin-an; Li, Ning; Grandey, Alicia A

    2015-09-01

    Cumulative research indicates that deep acting has a nonsignificant relationship with employee exhaustion, despite arguments that deep acting can be beneficial. To illuminate when deep acting leads to more positive employee outcomes, we draw on the resource conservation perspective to propose a within-individual model of deep acting that focuses on service employees' daily fluctuation of emotional labor and emotional exhaustion. Specifically, we propose that the ongoing experience of felt challenge is a within-person boundary condition that moderates deep acting's relationship with emotional exhaustion, and model emotional exhaustion as a mediating mechanism that subsequently predicts momentary job satisfaction and daily customer conflict handling. Using an experience sampling design, we collected data from 84 service employees over a 3-week period. Deep acting was less emotionally exhausting for service providers when they saw their tasks as more challenging. Furthermore, emotional exhaustion mediated the deep acting by felt challenge interaction effect on momentary job satisfaction and daily customer conflict handling. The findings contribute to a better understanding of the deep acting experience at work, while highlighting customer conflict handling as a key behavioral outcome of emotional labor. (c) 2015 APA, all rights reserved).

  17. Low Gravity Issues of Deep Space Refueling

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2005-01-01

    This paper discusses the technologies required to develop deep space refueling of cryogenic propellants and low cost flight experiments to develop them. Key technologies include long term storage, pressure control, mass gauging, liquid acquisition, and fluid transfer. Prior flight experiments used to mature technologies are discussed. A plan is presented to systematically study the deep space refueling problem and devise low-cost experiments to further mature technologies and prepare for full scale flight demonstrations.

  18. Space Exposed Experiment Developed for Students (SEEDS) (P0004-2)

    NASA Technical Reports Server (NTRS)

    Grigsby, Doris K.; Ehrlich, Nelson J.

    1992-01-01

    SEEDS, a cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution of approximately 132,000 SEEDS kits to 3.3 million students. Kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF), as well as seeds that had been stored in a climate controlled warehouse for the same time period. Preliminary data indicates the germination rate for space exposed seeds was 73.8 percent while Earth based seeds germinated at a rate of 70.3 percent. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while Earth based seeds' average germination time was 8.3 days. Some mutations (assumed to be radiation induced) include plants that added a leaf instead of the usual flower at the end of the flower frond. Also, fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds producing green plants.

  19. The Near-Earth Meteoroid Flux, Speed Distribution, and Uncertainty

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea; Cooke, William J.; Brown, Peter G.; Campbell-Brown, Margaret; Moser, Danielle E.

    2016-01-01

    Meteoroids are known to pose a threat to spacecraft; they can puncture components, disturb spacecraft attitude, and possibly create secondary electrical effects. Accurate environment models are therefore critical for mitigating meteoroid-related risks. While there are several meteoroid environment models available for assessing spacecraft risk, the uncertainties associated with these models are not well understood. Because meteoroid properties are derived from indirect observations such as meteors and impact craters, the uncertainty in the meteoroid flux is potentially quite large. We combine existing meteoroid flux measurements with new radar and optical meteor data to improve our characterization of the meteoroid flux onto the Earth and its velocity distribution. We use data extracted from the NASA all-sky network, the Canadian Automated Meteor Observatory, and the Canadian Meteor Orbit Radar. We improve our characterization of the observed meteoroid speed distribution by incorporating modern descriptions of the ionization efficiency (e.g., Thomas et al., 2016). We also present estimates of the uncertainties associated with our meteoroid flux distribution. Finally, we discuss the implications for spacecraft. Our model is constrained by the cratering rate on the space-facing surface of LDEF, and thus the risk posed to spacecraft by meteoroid-induced physical damage is the least uncertain component of our model. Other sources of risk, however, may vary. For instance, a lower average meteoroid speed would require a higher meteoroid mass flux in order to match the LDEF crater counts, leading to higher predicted rates of attitude disturbances.

  20. Small swimmers and sinkers structure the microenvironment by deforming ambient chemical gradients

    NASA Astrophysics Data System (ADS)

    Inman, B.; Franks, P. J. S.; Torres, C.

    2016-02-01

    Chemical gradients in the microscale environment determine the rates of fundamental planktonic processes such as signaling and sensing, grazing, predation, mating, infection, nutrient uptake, and primary production. We show that bodies swimming or sinking at low Reynolds number can deform and intensify ambient scalar gradients on the order of 10-1000 times. Over time, this restructuring of the microenvironment in the wake of a moving particle results in elevated diffusive fluxes of ecologically relevant tracers. We use diffusive Stokes flow to model the time evolution of planes of tracer particles that represent a gradient being deformed by a sinking sphere. Ultimately, the degree of gradient intensification and the corresponding diffusive flux enhancement depend on how far a moving body deforms a plane of tracer before it punches through. We derive a scaling for this distance, Ldef, as a function of the Péclet number and describe its importance in the microscale planktonic environment. We then test the modeled gradient deformation, diffusive flux enhancement, and Ldef using an experimental tank apparatus in which the marine copepod, Calanus pacificus, is induced to swim through a layer of tracer dye. We show that the gradient deformation due to the copepod swimming can enhance the apparent tracer diffusivity by 500% over 10 minutes, drawing the tracer out into centimeters-long tendrils. These swimming-induced gradient deformations may be an important source of structure in the microscale environment of the plankton.

  1. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Becker, Luann; Vedder, James F.; Erlichman, Jozef

    1995-01-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  2. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Robert J.

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  3. Deep ECGNet: An Optimal Deep Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals.

    PubMed

    Hwang, Bosun; You, Jiwoo; Vaessen, Thomas; Myin-Germeys, Inez; Park, Cheolsoo; Zhang, Byoung-Tak

    2018-02-08

    Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.

  4. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  5. The role of the Long Duration Exposure Facility in the development of space systems

    NASA Technical Reports Server (NTRS)

    Little, Sally A.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) presents the international, aerospace community with an unprecedented opportunity to examine the synergistic, long term, space environmental effects on systems and materials. The analysis of the data within appropriate environmental contexts is essential to the overall process of advancing the understanding of space environmental effects needed for the continuing development of strategies to improve the reliability and durability of space systems and to effectively deal with the future challenges that new space initiatives will likely present.

  6. Analysis of Orbital Elements and Atmospheric Activity to Ascertain Possible Presence of an Ion Propulsion Capability Aboard Salyut 7/Cosmos 1686

    DTIC Science & Technology

    1991-12-01

    7, Cosmos 1686, and LDEF), although two of them (Salyut 7 and Cosmos 1686) were assumed to act as one as far as orbital behavior . The study covered...solar and geomagnetic activity were chosen to represent overall behavior . These included sunspot number, R, 10.7-cm solar radio flux, F10.7, and the...wide spectrum of wavelengths and behavior at different wavelengths varies greatly. As an example, F10.7 does not necessarily depict activity in the

  7. LDEF- 69 Months in Space. Second Post-Retrieval Symposium, Part 2

    DTIC Science & Technology

    1992-06-01

    is the crater diameter at the foil surface. While no 5.77 year flux data is available for the IDE 0.4 gtm MOS sensors (due to power loss ), a first...velocity each ray with given direction and velocity is then weighted by a factor: k = v2 v*) with : v* = (v - V2sin 2 a)0. where v is the impact...space debris. This relative weight is the same for any debris size. Penetration Analysis To calculate the number of holes in the blankets a design or

  8. An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong

    2018-03-01

    An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.

  9. Summer School in Deep Ecology.

    ERIC Educational Resources Information Center

    Macmillan, Catherine Hume

    1995-01-01

    Describes one teacher's experiences at the Institute for Deep Ecology Education (IDEE) Summer School in Applied Deep Ecology. Reviews the program offered and the focus on interactive, experiential activities. (LZ)

  10. Craters in aluminum 1100 targets using glass projectiles at 1-7 km/s

    NASA Technical Reports Server (NTRS)

    Bernhard, R. P.; See, T. H.; Hoerz, F.; Cintala, M. J.

    1994-01-01

    We report on impact experiments using soda-lime glass spheres of 3.2 mm diameter and aluminum targets (1100 series). The purpose is to assist in the interpretation of LDEF instruments and in the development of future cosmic-dust collectors in low-Earth orbit. Because such instruments demand understanding of both the cratering and penetration process, we typically employ targets with thicknesses that range from massive, infinite half-space targets, to ultrathin films. This report addresses a subset of cratering experiments that were conducted to fine-tune our understanding of crater morphology as a function of impact velocity. Also, little empirical insight exists about the physical distribution and shock-metamorphism of the impactor residues as a function of encounter speed, despite their recognized significance in the analysis of space-exposed surfaces. Soda-lime glass spheres were chosen as a reasonable analog to extraterrestrial silicates, and aluminum 1100 was chosen for targets, which among the common Al-alloys, best represents the physical properties of high-purity aluminum. These materials complement existing impact studies that typically employed metallic impactors and less ductile Al-alloys. We have completed dimensional analyses of the resulting craters and are in the process of investigating the detailed distribution of the unmelted and melted impactor residues via SEM methods, as well as potential compositional modifications of the projectile melts via electron microprobe.

  11. Penetration experiments in aluminum and Teflon targets of widely variable thickness

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Cintala, Mark J.; Bernhard, R. P.; See, T. H.

    1994-01-01

    The morphologies and detailed dimensions of hypervelocity craters and penetration holes on space-exposed surfaces faithfully reflect the initial impact conditions. However, current understanding of this postmortem evidence and its relation to such first-order parameters as impact velocity or projectile size and mass is incomplete. While considerable progress is being made in the numerical simulation of impact events, continued impact simulations in the laboratory are needed to obtain empirical constraints and insights. This contribution summarizes such experiments with Al and Teflon targets that were carried out in order to provide a better understanding of the crater and penetration holes reported from the Solar Maximum Mission (SMM) and the Long Duration Exposure Facility (LDEF) satellites. A 5-mm light gas gun was used to fire spherical soda-lime glass projectiles from 50 to 3175 microns in diameter (D(sub P)), at a nominal 6 km/s, into Al (1100 series; annealed) and Teflon (Teflon(sup TFE)) targets. Targets ranged in thickness (T) from infinite halfspace targets (T approx. equals cm) to ultrathin foils (T approx. equals micron), yielding up to 3 degrees of magnitude variation in absolute and relative (D(sub P)/T) target thickness. This experimental matrix simulates the wide range in D(sub P)/T experienced by a space-exposed membrane of constant T that is being impacted by projectiles of widely varying sizes.

  12. Vacuum deposited optical coatings experiment (AO 138-4)

    NASA Technical Reports Server (NTRS)

    Charlier, Jean

    1991-01-01

    The aim of this experiment was to test the optical behavior of 20 components and coatings subjected to space exposure. Most of them are commonly used for their reflective or transmittive properties in spaceborne optics. They consist in several kind of metallic and dielectric mirrors designed for the 0.12 to 10 microns spectrum, UV, and NIR bandpass filters, visible, and IR antireflecting coatings, visible/IR dichroic beam splitters, and visible beam splitter. The coatings were deposited on various substrates such as glasses, germanium, magnesium fluoride, quartz, zinc selenide, and kanigened aluminum. Several coating materials were used such as Al, Ag, Au, MgF2, LaF3, ThF3, ThF4, SiO2, TiO2, ZrO2, Al2O3, MgO, Ge, and ZnSe. Five samples of each component were manufactured. Two flight samples were mounted in such a way that one was directly exposed to space and the other looking backwards. The same arrangement was used for the spare samples stored on ground in a box identical to the flight one and they were kept under vacuum during the LDEF mission. Finally, one set of reference components was stocked in a sealed box under a dry nitrogen atmosphere. By comparing the preflight and postflight optical performances of the five samples of each component, it is possible to detect the degradations due to the space exposure.

  13. Alvin Overboard!

    ERIC Educational Resources Information Center

    Nelson, John A.

    1988-01-01

    Describes the experiences and involvement of a public school teacher with deep sea exploration involving the deep submersible submarine "Alvin" from the Woods Hole Oceanographic Institute. Details some of the teacher's responsibilities in the project. Discusses what he learned through this experience. (CW)

  14. The Experience of Deep Learning by Accounting Students

    ERIC Educational Resources Information Center

    Turner, Martin; Baskerville, Rachel

    2013-01-01

    This study examines how to support accounting students to experience deep learning. A sample of 81 students in a third-year undergraduate accounting course was studied employing a phenomenographic research approach, using ten assessed learning tasks for each student (as well as a focus group and student surveys) to measure their experience of how…

  15. Molecular films associated with LDEF

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.; Warner, K. J.

    1992-01-01

    The molecular films deposited on the surface of the Long Duration Exposure Facility (LDEF) originated from the paints and room-temperature-vulcanized (RTV) silicone materials intentionally used on the satellite and not from residual contaminants. The high silicone content of most of the films and the uniformity of the films indicates a homogenization process in the molecular deposition and suggests a chemically most favored composition for the final film. The deposition on interior surfaces and vents indicated multiple bounce trajectories or repeated deposition-reemission cycles. Exterior surface deposits indicated a significant return flux. Ultraviolet light exposure was required to fix the deposited film as is indicated by the distribution of the films on interior surfaces and the thickness of films at the vent locations. Thermal conditions at the time of exposure to ultraviolet light seems to be an important factor in the thickness of the deposit. Sunrise facing (ram direction) surfaces always had the thicker film. These were the coldest surfaces at the time of their exposure to ultraviolet light. The films have a layered structure suggesting cyclic deposition. As many as 34 distinct layers were seen in the films. The cyclic nature of the deposition and the chemical uniformity of the film one layer to the next suggest an early deposition of the films though there is evidence for the deposition of molecular films throughout the nearly six year exposure of the satellite. A final 'spray' of an organic material associated with water soluble salts occurred very late in the mission. This may have been the result of one of the shuttle dump activities.

  16. Effects of low earth orbit on the optical performance of multi-layer enhanced high reflectance mirrors

    NASA Technical Reports Server (NTRS)

    Donovan, Terence; Johnson, Linda; Klemm, Karl; Scheri, Rick; Bennett, Jean; Erickson, Jon; Dibrozolo, Filippo

    1995-01-01

    Two mirror designs developed for space applications were flown along with a standard mid-infrared design on the leading and trailing edges of the Long Duration Exposure Facility (LDEF). Preliminary observations of induced changes in optical performance of ZnS-coated mirrors and impact-related microstructural and microchemical effects are described in the proceedings of the First LDEF Post-Retrieval Symposium. In this paper, effects of the induced environment and meteoroid/debris impacts on mirror performance are described in more detail. Also, an analysis of reflectance spectra using the results of Auger and secondary ion mass spectroscopy (SIMS) profiling measurements are used to identify an optical-degradation mechanism for the ZnS-coated mirrors. Structural damage associated with a high-velocity impact on a (Si/Al2O3)-coated mirror was imaged optically and with scanning electron and atomic force microscopy (SEM and AFM). Scanning Auger and SIMS analysis provided chemical mapping of selected impact sites. The impact data suggest design and fabrication modifications for obtaining improved mechanical performance using a design variation identified in preflight laboratory simulations. Auger surface profile and SIMS imaging data verified the conclusion that secondary impacts are the source of contamination associated with the dendrites grown on the leading-edge ZnS-coated test samples. It was also found that dendrites can be grown in the laboratory by irradiating contaminated sites on a trailing-edge ZnS-coated sample with a rastered electron beam. These results suggest a mechanism for dendrite growth.

  17. Laser-Assisted Wire Additive Manufacturing System for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Foster, B. D.; Matthews, B.

    2018-02-01

    Investigation on the Deep Space Gateway will involve experiments/operations inside pressurized modules. Support for those experiments may necessitate a means to fabricate and repair required articles. This capability can be provided through an additive manufacturing (AM) system.

  18. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  19. A new technique for ground simulation of hypervelocity debris

    NASA Astrophysics Data System (ADS)

    Roybal, R.; Shively, J.; Stein, C.; Miglionico, C.; Robertson, R.

    1995-02-01

    A series of hypervelocity damage experiments were preformed on spacecraft materials. These experiments employed a technique which accelerates micro flyer plates simulating space debris traveling at 3 to 8 km/sec. The apparatus used to propel the micro flyer plates was compact and fit well into a space environmental chamber equipped with instrumentation capable of analyzing the vapor ejected from the sample. Mechanical damage to the sample was also characterized using optical and scanning electron microscpopy. Data for this work was obtained from hypervelocity impacts on a polysulfone resin and a graphite polysulfone composite. Polysulfone was selected because it was flown on the Long Duration Exposure Facility (LDEF) which spent several years in low earth orbit (LEO). Chemistry of the vapor produced by the impact was analyzed with a time of flight mass spectrometer, (TOFMS). This represents the first time that ejected vapors from hypervelocity collisions were trapped and analyzed with a mass spectrometer. With this approach we are able to study changes in the vapor chemistry as a function of time after impact, obtain a velocity measurement of the vapor, and estimate a temperature of the surface at time of impact using dynamic gas equations. Samples of the vapor plume may be captured and examined by transmission electron microscopy. Studies were also conducted to determine mechanical damage to a graphite polysulfone composite and a polysulfone resin. Impact craters were examined under optical and scanning electron microscopes. The collision craters in the matrix were typical of those shown in conventional shock experiments. However, the hypervelocity collisions with the graphite polysulfone composite were remarkably different than those with the resin.

  20. Numerical experiments of volcanic dominated rifts and passive margins

    NASA Astrophysics Data System (ADS)

    Korchinski, Megan; Teyssier, Christian; Rey, Patrice; Whitney, Donna; Mondy, Luke

    2017-04-01

    Continental rifting is driven by plate tectonic forces (passive rifting), thermal thinning of the lithosphere over a hotspot (active rifting), or a combination of the two. Successful rifts develop into passive margins where pre-drift stretching is accompanied by normal faulting, clastic sedimentation, and various degrees of magmatism. The structure of volcanic passive margins (VPM) differs substantially from margins that are dominated by sedimentation. VPMs are typically narrow, with a lower continental crust that is intruded by magma and can flow as a low-viscosity layer. To investigate the role of the deep crust in the early development of VPMs, we have developed a suite of 2D thermomechanical numerical experiments (Underworld code) in which the density and viscosity of the deep crust and the density of the rift basin fill are systematically varied. Our experiments show that, for a given rifting velocity, the viscosity of the deep crust and the density of the rift basin fill exert primary controls on early VPM development. The viscosity of the deep crust controls the degree to which the shallow crust undergoes localised faulting or distributed thinning. A weak deep crust localises rifting and is efficiently exhumed to the near-surface, whereas a strong deep crust distributes shallow crust extension and remains buried. A high density rift basin fill results in gravitational loading and increased subsidence rate in cases in which the viscosity of the deep crust is sufficiently low to allow that layer to be displaced by the sinking basin fill. At the limit, a low viscosity deep crust overlain by a thick basalt-dominated fill generates a gravitational instability, with a drip of cool basalt that sinks and ponds at the Moho. Experiment results indicate that the deep crust plays a critical role in the dynamic development of volcanic dominated rifts and passive margins. During rifting, the deep continental crust is heated and readily responds to solicitations of the shallow crust (rooting of normal faults, exhumation of the deep crust in normal fault footwalls). Gravitational instabilities caused by high density rift infill similar to those observed in our numerical experiments may be present in the Mesoproterozoic ( 1100 Ma) North American Midcontinent Rift System (MRS). The MRS is a failed rift that is filled with >20 km of dominantly basaltic volcanic deposits, and therefore represents an end member VPM (high density basin fill) where the initial structure of a pre-drift VPM is preserved. Magmatism occurred in two pulses over <15 Ma involving deep mantle melting first (>150 km), then shallow melting (40-70 km). Post-rift subsidence accumulated up to 10 km of clastic sediments in the center of the basin. Evidence of cool, dense rocks sinking into a low-viscosity deep crust as predicted in our numerical experiments may be present in the western arm of the MRS, where crustal density analyses suggest the presence of dense bodies (eclogite) at the base of the crust.

  1. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    NASA Astrophysics Data System (ADS)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients during the Pliocene could have supported deep water formation in the subarctic Pacific and a strong PMOC.

  2. Deep imitation learning for 3D navigation tasks.

    PubMed

    Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina

    2018-01-01

    Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.

  3. The interactions of atmospheric cosmogenic radionuclides with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Fishman, G. J.; Harmon, A.; Parnell, T. A.; Herzog, G.; Klein, J.; Jull, A. J. T.

    1991-01-01

    The discovery of the cosmogenic radionuclide Be-7 on the front surface of the Long Duration Exposure Facility (LDEF) has opened new opportunities to study several unexplored regions of space science. The experiments have shown that the Be-7 found was concentrated in a thin surface layer of spacecraft material. The only reasonable source of the isotope is the atmosphere through which the spacecraft passed. It is expected that the uptake of Be in such circumstances will depend on the chemical form of the Be and the chemical nature of the substrate. It was found that the observed concentration of Be-7 does differ between metal surfaces and organic surfaces such as PTFE (Teflon). It is noted however, that (1) organic surfaces are etched by the atomic oxygen found under these orbital conditions, and (2) the relative velocity of the species is 8 km/s relative to the surface and the interaction chemistry and physics may differ from the norm. Be-7 is formed by disintegration of O and N nuclei under cosmic ray proton bombardment. Many other isotopes are produced by cosmic ray reactions, and some of these are suited to measurement by the extremely sensitive methods of accelerator mass spectrometry.

  4. Experimental investigation of the relationship between impact crater morphology and impacting particle velocity and direction

    NASA Technical Reports Server (NTRS)

    Mackay, N. G.; Green, S. F.; Gardner, D. J.; Mcdonnell, J. A. M.

    1995-01-01

    Interpretation of the wealth of impact data available from the Long Duration Exposure Facility, in terms of the absolute and relative populations of space debris and natural micrometeoroids, requires three dimensional models of the distribution of impact directions, velocities and masses of such particles, as well as understanding of the impact processes. Although the stabilized orbit of LDEF provides limited directional information, it is possible to determine more accurate impact directions from detailed crater morphology. The applicability of this technique has already been demonstrated but the relationship between crater shape and impactor direction and velocity has not been derived in detail. We present the results of impact experiments and simulations: (1) impacts at micron dimensions using the Unit's 2MV Van de Graaff accelerator; (2) impacts at mm dimensions using a Light Gas Gun; and (3) computer simulations using AUTODYN-3D from which an empirical relationship between crater shape and impactor velocity, direction and particle properties we aim to derive. Such a relationship can be applied to any surface exposed to space debris or micrometeoroid particles for which a detailed pointing history is available.

  5. Heavy Nucleus Collector (HNC) project for the NASA Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory

    1990-01-01

    The primary goal of the heavy nucleus collector (HNC) experiment was to obtain high resolution composition measurements for cosmic ray nuclei in the platinum-lead and actinide region of the periodic table. Secondary objectives include studies of selected groups of elements of lower charge. These goals were to be realized by orbiting a large area array of dielectric nuclear track detectors in space for several years. In this time sufficient actinide nuclei would be collected to determine the nucleosynthetic age of the cosmic radiation and the relative mix of r- and s-process elements in the cosmic ray source. The detector consists of approximately 50 trays assembled in pressurized canisters. Each tray would contain 8 half-stacks (4 stacks total) and an event thermometer which would record the temperature of each event at the time of exposure. Each stack would contain 7 layers of Rodyne-P, CR-39 and Cronar plastic track detectors interleaved with copper stripping foils. Upon return to Earth, detectors would be removed for analysis. Ultraheavy nuclei would have left tracks through the detector sheets that would be made visible after etching in a hot sodium hydroxide solution.

  6. National Space Transportation Systems Program mission report

    NASA Technical Reports Server (NTRS)

    Collins, M. A., Jr.; Aldrich, A. D.; Lunney, G. S.

    1984-01-01

    The STS 41-C National Space Transportation Systems Program Mission Report contains a summary of the major activities and accomplishments of the eleventh Shuttle flight and fifth flight of the OV-099 vehicle, Challenger. Also summarized are the significant problems that occurred during STS 41-C, and a problem tracking list that is a complete list of all problems that occurred during the flight. The major objectives of flight STS 41-C were to successfully deploy the LDEF (long duration exposure facility) and retrieve, repair and redeploy the SMM (Solar Maximum Mission) spacecraft, and perform functions of IMAX and Cinema 360 cameras.

  7. Characterization of selected LDEF polymer matrix resin composite materials

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  8. French Cooperative Passive Payload (FRECOPA)

    NASA Technical Reports Server (NTRS)

    Durin, Christian

    1992-01-01

    The fact that the LDEF satellite mission was extended resulted in a study of FRECOPA system elements. These tests were run on materials, electronics, wiring, and motor drives. It is worthwhile studying these elements as they have been exposed to the low earth orbit for nearly six years, whereas the experimental specimens were exposed for ten months. No functional damage was observed which was induced by impacts or erosion. A decrease in thermal, optical, and mechanical properties for DELRIN and teflon glass fabric induced by erosion and thermal environment was observed. The most important damage parameters are UV radiation and thermal cycling.

  9. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.

    2018-02-01

    Life science research on the Deep Space Gateway platform is an important precursor for long term human exploration of deep space. Ideas for utilizing flight hardware and well characterized model organisms will be discussed.

  10. Deep space optical communications experiment

    NASA Technical Reports Server (NTRS)

    Kinman, P.; Katz, J.; Gagliardi, R.

    1983-01-01

    An optical communications experiment between a deep space vehicle and an earth terminal is under consideration for later in this decade. The experimental link would be incoherent (direct detection) and would employ two-way cooperative pointing. The deep space optical transceiver would ride piggyback on a spacecraft with an independent scientific objective. Thus, this optical transceiver is being designed for minimum spacecraft impact - specifically, low mass and low power. The choices of laser transmitter, coding/modulation scheme, and pointing mechanization are discussed. A representative telemetry link budget is presented.

  11. Shifting the Perspective: Artists in the Ocean

    NASA Astrophysics Data System (ADS)

    Van Dover, C. L.

    2014-12-01

    The deep ocean is to most of us a place unknown. Few of us experience the sea far from shore, fewer still dive to the seafloor at great depths. When scientists report on the outcome of deep-ocean exploration, their technical prose captures facts and insights, but fails to capture the emotional power of place and process. Through batik, watercolor illustrations, music, digital art, cartoon, and experimental video, six artists have created a portfolio of work that communicates the human experience of the deep ocean.

  12. Deep Learning as an Individual, Conditional, and Contextual Influence on First-Year Student Outcomes

    ERIC Educational Resources Information Center

    Reason, Robert D.; Cox, Bradley E.; McIntosh, Kadian; Terenzini, Patrick T.

    2010-01-01

    For years, educators have drawn a distinction between deep cognitive processing and surface-level cognitive processing, with the former resulting in greater learning. In recent years, researchers at NSSE have created DEEP Learning scales, which consist of items related to students' experiences which are believed to encourage deep processing. In…

  13. From miracle to reconciliation: a hermeneutic phenomenological study exploring the experience of living with Parkinson's disease following deep brain stimulation.

    PubMed

    Haahr, Anita; Kirkevold, Marit; Hall, Elisabeth O C; Ostergaard, Karen

    2010-10-01

    Deep Brain Stimulation for Parkinson's disease is a promising treatment for patients who can no longer be treated satisfactorily with L-dopa. Deep Brain Stimulation is known to relieve motor symptoms of Parkinson's disease and improve quality of life. Focusing on how patients experience life when treated with Deep Brain Stimulation can provide essential information on the process patients go through when receiving a treatment that alters the body and changes the illness trajectory. The aim of this study was to explore and describe the experience of living with Parkinson's disease when treated with Deep Brain Stimulation. The study was designed as a longitudinal study and data were gathered through qualitative in-depth interviews three times during the first year of treatment. Nine patients participated in the study. They were included when they had accepted treatment with Deep Brain Stimulation for Parkinson's disease. Data collection and data analysis were inspired by the hermeneutic phenomenological methodology of Van Manen. The treatment had a major impact on the body. Participants experienced great bodily changes and went through a process of adjustment in three phases during the first year of treatment with Deep Brain Stimulation. These stages were; being liberated: a kind of miracle, changes as a challenge: decline or opportunity and reconciliation: re-defining life with Parkinson's disease. The course of the process was unique for each participant, but dominant was that difficulties during the adjustment of stimulation and medication did affect the re-defining process. Patients go through a dramatic process of change following Deep Brain Stimulation. A changing body affects their entire lifeworld. Some adjust smoothly to changes while others are affected by loss of control, uncertainty and loss of everyday life as they knew it. These experiences affect the process of adjusting to life with Deep Brain Stimulation and re-define life with Parkinson's disease. It is of significant importance that health care professionals are aware of these dramatic changes in the patients' life and offer support during the adjustment process following Deep Brain Stimulation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    NASA Technical Reports Server (NTRS)

    Bhattacharya, S.

    2018-01-01

    Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.

  15. Subthalamic nucleus deep brain stimulation for Parkinson's disease: evidence for effectiveness and limitations from 12 years' experience.

    PubMed

    Chan, Anne Y Y; Yeung, Jonas H M; Mok, Vincent C T; Ip, Vincent H L; Wong, Adrian; Kuo, S H; Chan, Danny T M; Zhu, X L; Wong, Edith; Lau, Claire K Y; Wong, Rosanna K M; Tang, Venus; Lau, Christine; Poon, W S

    2014-12-01

    To present the result and experience of subthalamic nucleus deep brain stimulation for Parkinson's disease. Case series. Prince of Wales Hospital, Hong Kong. A cohort of patients with Parkinson's disease received subthalamic nucleus deep brain stimulation from September 1998 to January 2010. Patient assessment data before and after the operation were collected prospectively. Forty-one patients (21 male and 20 female) with Parkinson's disease underwent bilateral subthalamic nucleus deep brain stimulation and were followed up for a median interval of 12 months. For the whole group, the mean improvements of Unified Parkinson's Disease Rating Scale (UPDRS) parts II and III were 32.5% and 31.5%, respectively (P<0.001). Throughout the years, a multidisciplinary team was gradually built. The deep brain stimulation protocol evolved and was substantiated by updated patient selection criteria and outcome assessment, integrated imaging and neurophysiological targeting, refinement of surgical technique as well as the accumulation of experience in deep brain stimulation programming. Most of the structural improvement occurred before mid-2005. Patients receiving the operation before June 2005 (19 cases) and after (22 cases) were compared; the improvements in UPDRS part III were 13.2% and 55.2%, respectively (P<0.001). There were three operative complications (one lead migration, one cerebral haematoma, and one infection) in the group operated on before 2005. There was no operative mortality. The functional state of Parkinson's disease patients with motor disabilities refractory to best medical treatment improved significantly after subthalamic nucleus deep brain stimulation. A dedicated multidisciplinary team building, refined protocol for patient selection and assessment, improvement of targeting methods, meticulous surgical technique, and experience in programming are the key factors contributing to the improved outcome.

  16. Additional historical solid rocket motor burns

    NASA Astrophysics Data System (ADS)

    Wiedemann, Carsten; Homeister, Maren; Oswald, Michael; Stabroth, Sebastian; Klinkrad, Heiner; Vörsmann, Peter

    2009-06-01

    The use of orbital solid rocket motors (SRM) is responsible for the release of a high number of slag and Al 2O 3 dust particles which contribute to the space debris environment. This contribution has been modeled for the ESA space debris model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference). The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which mainly contributed to the long-term debris environment. SRM firings on very low earth orbits which produce only short living particles are not considered. A comparison of the modeled flux with impact data from returned surfaces shows that the shape and quantity of the modeled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analyzed Long Duration Exposure Facility (LDEF) surfaces. This indicates that some past SRM firings are not included in the current event database. Thus it is necessary to investigate, if additional historical SRM burns, like the retro-burn of low orbiting re-entry capsules, may be responsible for these dust impacts. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. This paper focuses on the SRM retro-burns of Russian photoreconnaissance satellites, which were used in high numbers during the time of the LDEF mission. It is discussed which types of satellites and motors may have been responsible for this historical contribution. Altogether, 870 additional SRM retro-burns have been identified. An important task is the identification of such missions to complete the current event data base. Different types of motors have been used to de-orbit both large satellites and small film return capsules. The results of simulation runs are presented.

  17. Visualization experiences and issues in Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Wright, John; Burleigh, Scott; Maruya, Makoto; Maxwell, Scott; Pischel, Rene

    2003-01-01

    The panelists will discuss their experiences in collecting data in deep space, transmitting it to Earth, processing and visualizing it here, and using the visualization to drive the continued mission. This closes the loop, making missions more responsive to their environment, particularly in-situ operations on planetary surfaces and within planetary atmospheres.

  18. Primary Science Teaching--Is It Integral and Deep Experience for Students?

    ERIC Educational Resources Information Center

    Timoštšuk, Inge

    2016-01-01

    Integral and deep pedagogical content knowledge can support future primary teachers' ability to follow ideas of education for sustainability in science class. Initial teacher education provides opportunity to learn what and how to teach but still the practical experiences of teaching can reveal uneven development of student teachers'…

  19. Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks

    DOE PAGES

    Racah, Evan; Ko, Seyoon; Sadowski, Peter; ...

    2017-02-02

    Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. Here in this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networksmore » can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.« less

  20. Active semi-supervised learning method with hybrid deep belief networks.

    PubMed

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

Top