The effects of deep level traps on the electrical properties of semi-insulating CdZnTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zha, Gangqiang; Yang, Jian; Xu, Lingyan
2014-01-28
Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance canmore » be explained using the deep trap model.« less
NASA Technical Reports Server (NTRS)
Dhar, S.; Das, U.; Bhattacharya, P. K.
1986-01-01
Trap levels in about 2-micron In(0.2)Ga(0.8)As(94 A)/GaAs(25 A) strained-layer superlattices, suitable for optical waveguides, have been identified and characterized by deep-level transient spectroscopy and optical deep-level transient spectroscopy measurements. Several dominant electron and hole traps with concentrations of approximately 10 to the 14th/cu cm, and thermal ionization energies Delta-E(T) varying from 0.20 to 0.75 eV have been detected. Except for a 0.20-eV electron trap, which might be present in the In(0.2)Ga(0.8)As well regions, all the other traps have characteristics similar to those identified in molecular-beam epitaxial GaAs. Of these, a 0.42-eV hole trap is believed to originate from Cu impurities, and the others are probably related to native defects. Upon Si implantation and halogen lamp annealing, new deep centers are created. These are electron traps with Delta-E(T) = 0.81 eV and hole traps with Delta-E(T) = 0.46 eV. Traps occurring at room temperature may present limitations for optical devices.
Nonvolatile memories using deep traps formed in HfO2 by Nb ion implantation
NASA Astrophysics Data System (ADS)
Choul Kim, Min; Oh Kim, Chang; Taek Oh, Houng; Choi, Suk-Ho; Belay, K.; Elliman, R. G.; Russo, S. P.
2011-03-01
We report nonvolatile memories (NVMs) based on deep-energy trap levels formed in HfO2 by metal ion implantation. A comparison of Nb- and Ta-implanted samples shows that suitable charge-trapping centers are formed in Nb-implanted samples, but not in Ta-implanted samples. This is consistent with density-functional theory calculations which predict that only Nb will form deep-energy levels in the bandgap of HfO2. Photocurrent spectroscopy exhibits characteristics consistent with one of the trap levels predicted in these calculations. Nb-implanted samples showing memory windows in capacitance-voltage (V) curves always exhibit current (I) peaks in I-V curves, indicating that NVM effects result from deep traps in HfO2. In contrast, Ta-implanted samples show dielectric breakdowns during the I-V sweeps between 5 and 11 V, consistent with the fact that no trap levels are present. For a sample implanted with a fluence of 1013 Nb cm-2, the charge losses after 104 s are ˜9.8 and ˜25.5% at room temperature (RT) and 85°C, respectively, and the expected charge loss after 10 years is ˜34% at RT, very promising for commercial NVMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelczuk, Ł., E-mail: lukasz.gelczuk@pwr.edu.pl; Kudrawiec, R., E-mail: robert.kudrawiec@pwr.edu.pl; Henini, M.
2014-07-07
Deep level traps in as-grown and annealed n-GaNAs layers (doped with Si) of various nitrogen concentrations (N=0.2%, 0.4%, 0.8%, and 1.2%) were investigated by deep level transient spectroscopy. In addition, optical properties of GaNAs layers were studied by photoluminescence and contactless electroreflectance. The identification of N- and host-related traps has been performed on the basis of band gap diagram [Kudrawiec, Appl. Phys. Lett. 101, 082109 (2012)], which assumes that the activation energy of electron traps of the same microscopic nature decreases with the rise of nitrogen concentration in accordance with the N-related shift of the conduction band towards trap levels.more » The application of this diagram has allowed to investigate the evolution of donor traps in GaNAs upon annealing. In general, it was observed that the concentration of N- and host-related traps decreases after annealing and PL improves very significantly. However, it was also observed that some traps are generated due to annealing. It explains why the annealing conditions have to be carefully optimized for this material system.« less
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
2018-03-13
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
NASA Astrophysics Data System (ADS)
Jana, Dipankar; Porwal, S.; Sharma, T. K.
2017-12-01
Spatial and spectral origin of deep level defects in molecular beam epitaxy grown AlGaN/GaN heterostructures are investigated by using surface photovoltage spectroscopy (SPS) and pump-probe SPS techniques. A deep trap center ∼1 eV above the valence band is observed in SPS measurements which is correlated with the yellow luminescence feature in GaN. Capture of electrons and holes is resolved by performing temperature dependent SPS and pump-probe SPS measurements. It is found that the deep trap states are distributed throughout the sample while their dominance in SPS spectra depends on the density, occupation probability of deep trap states and the background electron density of GaN channel layer. Dynamics of deep trap states associated with GaN channel layer is investigated by performing frequency dependent photoluminescence (PL) and SPS measurements. A time constant of few millisecond is estimated for the deep defects which might limit the dynamic performance of AlGaN/GaN based devices.
NASA Astrophysics Data System (ADS)
Wakimoto, Hiroki; Nakazawa, Haruo; Matsumoto, Takashi; Nabetani, Yoichi
2018-04-01
For P-i-N diodes implanted and activated with boron ions into a highly-resistive n-type Si substrate, it is found that there is a large difference in the leakage current between relatively low temperature furnace annealing (FA) and high temperature laser annealing (LA) for activation of the p-layer. Since electron trap levels in the n-type Si substrate is supposed to be affected, we report on Deep Level Transient Spectroscopy (DLTS) measurement results investigating what kinds of trap levels are formed. As a result, three kinds of electron trap levels are confirmed in the region of 1-4 μm from the p-n junction. Each DLTS peak intensity of the LA sample is smaller than that of the FA sample. In particular, with respect to the trap level which is the closest to the silicon band gap center most affecting the reverse leakage current, it was not detected in LA. It is considered that the electron trap levels are decreased due to the thermal energy of LA. On the other hand, four kinds of trap levels are confirmed in the region of 38-44 μm from the p-n junction and the DLTS peak intensities of FA and LA are almost the same, considering that the thermal energy of LA has not reached this area. The large difference between the reverse leakage current of FA and LA is considered to be affected by the deep trap level estimated to be the interstitial boron.
NASA Astrophysics Data System (ADS)
Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Shimizu, Mitsuaki; Hashizume, Tamotsu
2018-04-01
In this study, GaN MOS capacitance-voltage device simulations considering various interface and bulk traps are performed in the transient mode. The simulations explain various features of capacitance-voltage curves, such as plateau, hysteresis, and frequency dispersions, which are commonly observed in measurements of GaN MOS capacitors and arise from complicated combinations of interface and bulk deep-level traps. The objective of the present study is to provide a good theoretical tool to understand the physics of various nonideal measured curves.
Quenched-in defects in flashlamp-annealed silicon
NASA Technical Reports Server (NTRS)
Borenstein, J. T.; Jones, J. T.; Corbett, J. W.; Oehrlein, G. S.; Kleinhenz, R. L.
1986-01-01
Deep levels introduced in boron-doped silicon by heat-pulse annealing with a tungsten-halogen flashlamp are investigated using deep-level transient spectroscopy. Two majority-carrier trapping levels in the band gap, at Ev + 0.32 eV and at Ev + 0.45 eV, are observed. These results are compared to those obtained by furnace-quenching and laser-annealing studies. Both the position in the gap and the annealing kinetics of the hole trap at Ev + 0.45 eV suggest that this center is due to an interstitial iron impurity in the lattice. The deep levels are not consistently observed in all flashlamp-annealed Si crystals utilized.
Defect levels of semi-insulating CdMnTe:In crystals
NASA Astrophysics Data System (ADS)
Kim, K. H.; Bolotinikov, A. E.; Camarda, G. S.; Hossain, A.; Gul, R.; Yang, G.; Cui, Y.; Prochazka, J.; Franc, J.; Hong, J.; James, R. B.
2011-06-01
Using photoluminescence (PL) and current deep-level transient spectroscopy (I-DLTS), we investigated the electronic defects of indium-doped detector-grade CdMnTe:In (CMT:In) crystals grown by the vertical Bridgman method. We similarly analyzed CdZnTe:In (CZT:In) and undoped CdMnTe (CMT) crystals grown under the amount of same level of excess Te and/or indium doping level to detail the fundamental properties of the electronic defect structure more readily. Extended defects, existing in all the samples, were revealed by synchrotron white beam x-ray diffraction topography and scanning electron microscopy. The electronic structure of CMT is very similar to that of CZT, with shallow traps, A-centers, Cd vacancies, deep levels, and Te antisites. The 1.1-eV deep level, revealed by PL in earlier studies of CZT and CdTe, were attributed to dislocation-induced defects. In our I-DLTS measurements, the 1.1-eV traps showed different activation energies with applied bias voltage and an exponential dependence on the trap-filling time, which are typical characteristics of dislocation-induced defects. We propose a new defect-trap model for indium-doped CMT crystals.
NASA Astrophysics Data System (ADS)
Duc, Tran Thien; Pozina, Galia; Amano, Hiroshi; Monemar, Bo; Janzén, Erik; Hemmingsson, Carl
2016-07-01
Deep levels in Mg-doped GaN grown by metal organic chemical vapor deposition (MOCVD), undoped GaN grown by MOCVD, and halide vapor phase epitaxy (HVPE)-grown GaN have been studied using deep level transient spectroscopy and minority charge carrier transient spectroscopy on Schottky diodes. One hole trap, labeled HT1, was detected in the Mg-doped sample. It is observed that the hole emission rate of the trap is enhanced by increasing electric field. By fitting four different theoretical models for field-assisted carrier emission processes, the three-dimensional Coulombic Poole-Frenkel (PF) effect, three-dimensional square well PF effect, phonon-assisted tunneling, and one-dimensional Coulombic PF effect including phonon-assisted tunneling, it is found that the one-dimensional Coulombic PF model, including phonon-assisted tunneling, is consistent with the experimental data. Since the trap exhibits the PF effect, we suggest it is acceptorlike. From the theoretical model, the zero field ionization energy of the trap and an estimate of the hole capture cross section have been determined. Depending on whether the charge state is -1 or -2 after hole emission, the zero field activation energy Ei 0 is 0.57 eV or 0.60 eV, respectively, and the hole capture cross section σp is 1.3 ×10-15c m2 or 1.6 ×10-16c m2 , respectively. Since the level was not observed in undoped GaN, it is suggested that the trap is associated with an Mg related defect.
Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids.
Bozyigit, Deniz; Jakob, Michael; Yarema, Olesya; Wood, Vanessa
2013-04-24
We demonstrate current-based, deep level transient spectroscopy (DLTS) on semiconductor nanocrystal solids to obtain quantitative information on deep-lying trap states, which play an important role in the electronic transport properties of these novel solids and impact optoelectronic device performance. Here, we apply this purely electrical measurement to an ethanedithiol-treated, PbS nanocrystal solid and find a deep trap with an activation energy of 0.40 eV and a density of NT = 1.7 × 10(17) cm(-3). We use these findings to draw and interpret band structure models to gain insight into charge transport in PbS nanocrystal solids and the operation of PbS nanocrystal-based solar cells.
Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.
Kang, Byungkyun; Biswas, Koushik
2017-10-18
There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.
NASA Astrophysics Data System (ADS)
Alfieri, G.; Knoll, L.; Kranz, L.; Sundaramoorthy, V.
2018-05-01
High-purity semi-insulating 4H-SiC can find a variety of applications, ranging from power electronics to quantum computing applications. However, data on the electronic properties of deep levels in this material are scarce. For this reason, we present a deep level transient spectroscopy study on HPSI 4H-SiC substrates, both as-grown and irradiated with low-energy electrons (to displace only C-atoms). Our investigation reveals the presence of four deep levels with activation energies in the 0.4-0.9 eV range. The concentrations of three of these levels increase by at least one order of magnitude after irradiation. Furthermore, we analyzed the behavior of these traps under sub- and above-band gap illumination. The nature of the traps is discussed in the light of the present data and results reported in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, A. E.; Lund, E. A.; Kosyak, V.
2016-11-21
Cu2ZnSn(S, Se)4 (CZTSe) is an earth-abundant semiconductor with potential for economical thin-film photovoltaic devices. Short minority carrier lifetimes contribute to low open circuit voltage and efficiency. Deep level defects that may contribute to lower minority carrier lifetimes in kesterites have been theoretically predicted, however very little experimental characterization of these deep defects exists. In this work we use admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS) to characterize devices built using CZTSSe absorber layers deposited via both coevaporation and solution processing. AS reveals a band of widely-distributed activation energies for traps or energy barriers for transport, especially in themore » solution deposited case. DLTS reveals signatures of deep majority and minority traps within both types of samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia
2016-03-07
Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less
NASA Technical Reports Server (NTRS)
Li, S. B.; Choi, C. G.; Loo, R. Y.
1985-01-01
The radiation-induced deep-level defects in one-MeV electron-irradiated germanium and AlxGal-xAs solar cell materials using the deep-level transient spectroscopy (DLTS) and C-V techniques were investigated. Defect and recombination parameters such as defect density and energy levels, capture cross sections and lifetimes for both electron and hole traps were determined. The germanium and AlGaAs p/n junction cells were irradiated by one-MeV electrons. The DLTS, I-V, and C-V measurements were performed on these cells. The results are summarized as follows: (1) for the irradiated germanium samples, the dominant electron trap was due to the E sub - 0.24 eV level with density around 4x10 to the 14th power 1/cu cm, independent of electron fluence, its origin is attributed to the vacancy-donor complex defect formed during the electron irradiation; (2) in the one-MeV electron irradiated Al0.17Ga0.83 as sample, two dominant electron traps with energies of Ec-0.19 and -0.29 eV were observed, the density for both electron traps remained nearly constant, independent of electron fluence. It is shown that one-MeV electron irradiation creates very few or no new deep-level traps in both the germanium and AlxGa1-xAs cells, and are suitable for fabricating the radiation-hard high efficiency multijunction solar cells for space applications.
Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagnelund, D.; Huang, Y. Q.; Buyanova, I. A.
2015-01-07
By employing photoluminescence (PL) spectroscopy under dual-wavelength optical excitation, we uncover the presence of deep-level hole traps in Ga(In)NP alloys grown by molecular beam epitaxy (MBE). The energy level positions of the traps are determined to be at 0.56 eV and 0.78 eV above the top of the valance band. We show that photo-excitation of the holes from the traps, by a secondary light source with a photon energy below the bandgap energy, can lead to a strong enhancement (up to 25%) of the PL emissions from the alloys under a primary optical excitation above the bandgap energy. We further demonstrate thatmore » the same hole traps can be found in various MBE-grown Ga(In)NP alloys, regardless of their growth temperatures, chemical compositions, and strain. The extent of the PL enhancement induced by the hole de-trapping is shown to vary between different alloys, however, likely reflecting their different trap concentrations. The absence of theses traps in the GaNP alloy grown by vapor phase epitaxy suggests that their incorporation could be associated with a contaminant accompanied by the N plasma source employed in the MBE growth, possibly a Cu impurity.« less
Zhuang, Yixi; Lv, Ying; Wang, Le; Chen, Wenwei; Zhou, Tian-Liang; Takeda, Takashi; Hirosaki, Naoto; Xie, Rong-Jun
2018-01-17
Deep-trap persistent luminescence materials exhibit unique properties of energy storage and controllable photon release under additional stimulation, allowing for both wavelength and intensity multiplexing to realize high-capacity storage in the next-generation information storage system. However, the lack of suitable persistent luminescence materials with deep traps is the bottleneck of such storage technologies. In this study, we successfully developed a series of novel deep-trap persistent luminescence materials in the Ln 2+ /Ln 3+ -doped SrSi 2 O 2 N 2 system (Ln 2+ = Yb, Eu; Ln 3+ = Dy, Ho, Er) by applying the strategy of trap depth engineering. Interestingly, the trap depth can be tailored by selecting different codopants, and it monotonically increases from 0.90 to 1.18 eV in the order of Er, Ho, and Dy. This is well explained by the energy levels indicated in the host-referred binding energy scheme. The orange-red-emitting SrSi 2 O 2 N 2 :Yb,Dy and green-emitting SrSi 2 O 2 N 2 :Eu,Dy phosphors are demonstrated to be good candidates of information storage materials, which are attributed to their deep traps, narrow thermoluminescence glow bands, high emission efficiency, and excellent chemical stability. This work not only validates the suitability of deep-trap persistent luminescence materials in the information storage applications, but also broadens the avenue to explore such kinds of new materials for applications in anticounterfeiting and advanced displays.
Deep-level stereoscopic multiple traps of acoustic vortices
NASA Astrophysics Data System (ADS)
Li, Yuzhi; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong
2017-04-01
Based on the radiation pattern of a planar piston transducer, the mechanisms underlying the generation of axially controllable deep-level stereoscopic multiple traps of acoustic vortices (AV) using sparse directional sources were proposed with explicit formulae. Numerical simulations for the axial and cross-sectional distributions of acoustic pressure and phase were conducted for various ka (product of the wave number and the radius of transducer) values at the frequency of 1 MHz. It was demonstrated that, for bigger ka, besides the main-AV (M-AV) generated by the main lobes of the sources, cone-shaped side-AV (S-AV) produced by the side lobes were closer to the source plane at a relatively lower pressure. Corresponding to the radiation angles of pressure nulls between the main lobe and the side lobes of the sources, vortex valleys with nearly pressure zero could be generated on the central axis to form multiple traps, based on Gor'kov potential theory. The number and locations of vortex valleys could be controlled accurately by the adjustment of ka. With the established eight-source AV generation system, the existence of the axially controllable multiple traps was verified by the measured M-AV and S-AVs as well as the corresponding vortex valleys. The favorable results provided the feasibility of deep-level stereoscopic control of AV and suggested potential application of multiple traps for particle manipulation in the area of biomedical engineering.
NASA Astrophysics Data System (ADS)
Jiang, Xiongwei; Sun, Potao; Peng, Qingjun; Sima, Wenxia
2018-01-01
In this study, to understand the effect of thermal aging on polymer films degradation, specimens of polyester films impregnated by epoxy resin with different thermal aging temperatures (80 and 130 °C) and aging times (500, 1600, 2400 and 3000 h) are prepared, then charge de-trapping properties of specimens are investigated via the isothermal relaxation current (IRC) measurement, the distributions of trap level and its corresponding density are obtained based on the modified IRC model. It is found that the deep trap density increases remarkably at the beginning of thermal aging (before 1600 h), but it decreases obviously as the aging degree increases. At elevated aging temperature and, in particular considering the presence of air gap between two-layer insulation, the peak densities of deep traps decrease more significant in the late period of aging. It can be concluded that it is the released energy from de-trapping process leads to the fast degradation of insulation. Moreover, after thermal aging, the microstructure changes of crystallinity and molecular structures are analyzed via the x-ray diffraction experiment and Fourier transform infrared spectrometer. The results indicate that the variation of the deep trap density is closely linked with the changes of microstructure, a larger interface of crystalline/amorphous phase, more defects and broken chains caused by thermal aging form higher deep trap density stored in the samples.
Electrical and Optical Studies of Deep Levels in Nominally Undoped Thallium Bromide
NASA Astrophysics Data System (ADS)
Smith, Holland M.; Haegel, Nancy M.; Phillips, David J.; Cirignano, Leonard; Ciampi, Guido; Kim, Hadong; Chrzan, Daryl C.; Haller, Eugene E.
2014-02-01
Photo-induced conductivity transient spectroscopy (PICTS) and cathodoluminescence (CL) measurements were performed on nominally undoped detector grade samples of TlBr. In PICTS measurements, nine traps were detected in the temperature range 80-250 K using four-gate analysis. Five of the traps are tentatively identified as electron traps, and four as hole traps. CL measurements yielded two broad peaks common to all samples and most likely associated with defects. Correlations between the optically and electrically detected deep levels are considered. Above 250 K, the photoconductivity transients measured in the PICTS experiments exhibited anomalous transient behavior, indicated by non-monotonic slope variations as a function of time. The origin of the transients is under further investigation, but their presence precludes the accurate determination of trap parameters in TlBr above 250 K with traditional PICTS analysis. Their discovery was made possible by the use of a PICTS system that records whole photoconductivity transients, as opposed to reduced and processed signals.
The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Nan, Ruihua; Jian, Zengyun
2017-06-01
The deep-level defects of CdZnTe (CZT) crystals grown by the modified vertical Bridgman (MVB) method act as trapping centers or recombination centers in the band gap, which have significant effects on its electrical properties. The resistivity and electron mobility-lifetime product of high resistivity Cd0.9Zn0.1Te wafer marked CZT1 and low resistivity Cd0.9Zn0.1Te wafer marked CZT2 were tested respectively. Their deep-level defects were identified by thermally stimulated current (TSC) spectroscopy and thermoelectric effect spectroscopy (TEES) respectively. Then the trap-related parameters were characterized by the simultaneous multiple peak analysis (SIMPA) method. The deep donor level ({E}{{DD}}) dominating dark current was calculated by the relationship between dark current and temperature. The Fermi-level was characterized by current-voltage measurements of temperature dependence. The width of the band gap was characterized by ultraviolet-visible-infrared transmittance spectroscopy. The results show the traps concentration and capture cross section of CZT1 are lower than CZT2, so its electron mobility-lifetime product is greater than CZT2. The Fermi-level of CZT1 is closer to the middle gap than CZT2. The degree of Fermi-level pinned by {E}{{DD}} of CZT1 is larger than CZT2. It can be concluded that the resistivity of CZT crystals increases as the degree of Fermi-level pinned near the middle gap by the deep donor level enlarges. Project supported by the National Natural Science Foundation of China (No. 51502234) and the Scientific Research Plan Projects of Shaanxi Provincial Department of Education of China (No. 15JS040).
NASA Astrophysics Data System (ADS)
Omura, Yasuhisa; Mori, Yoshiaki; Sato, Shingo; Mallik, Abhijit
2018-04-01
This paper discusses the role of trap-assisted-tunneling process in controlling the ON- and OFF-state current levels and its impacts on the current-voltage characteristics of a tunnel field-effect transistor. Significant impacts of high-density traps in the source region are observed that are discussed in detail. With regard to recent studies on isoelectronic traps, it has been discovered that deep level density must be minimized to suppress the OFF-state leakage current, as is well known, whereas shallow levels can be utilized to control the ON-state current level. A possible mechanism is discussed based on simulation results.
Spectroscopic analysis of electron trapping levels in pentacene field-effect transistors
NASA Astrophysics Data System (ADS)
Park, Chang Bum
2014-08-01
Electron trapping phenomena have been investigated with respect to the energy levels of localized trap states and bias-induced device instability effects in pentacene field-effect transistors. The mechanism of the photoinduced threshold voltage shift (ΔVT) is presented by providing a ΔVT model governed by the electron trapping. The trap-and-release behaviour functionalized by photo-irradiation also shows that the trap state for electrons is associated with the energy levels in different positions in the forbidden gap of pentacene. Spectroscopic analysis identifies two kinds of electron trap states distributed above and below the energy of 2.5 eV in the band gap of the pentacene crystal. The study of photocurrent spectra shows the specific trap levels of electrons in energy space that play a substantial role in causing device instability. The shallow and deep trapping states are distributed at two centroidal energy levels of ˜1.8 and ˜2.67 eV in the pentacene band gap. Moreover, we present a systematic energy profile of electron trap states in the pentacene crystal for the first time.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Arehart, A. R.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Ringel, S. A.
2015-01-01
The impact of proton irradiation on the deep level states throughout the Mg-doped p-type GaN bandgap is investigated using deep level transient and optical spectroscopies. Exposure to 1.8 MeV protons of 1 × 1013 cm-2 and 3 × 1013 cm-2 fluences not only introduces a trap with an EV + 1.02 eV activation energy but also brings monotonic increases in concentration for as-grown deep states at EV + 0.48 eV, EV + 2.42 eV, EV + 3.00 eV, and EV + 3.28 eV. The non-uniform sensitivities for individual states suggest different physical sources and/or defect generation mechanisms. Comparing with prior theoretical calculations reveals that several traps are consistent with associations to nitrogen vacancy, nitrogen interstitial, and gallium vacancy origins, and thus are likely generated through displacing nitrogen and gallium atoms from the crystal lattice in proton irradiation environment.
Bozyigit, Deniz; Volk, Sebastian; Yarema, Olesya; Wood, Vanessa
2013-11-13
We implement three complementary techniques to quantify the number, energy, and electronic properties of trap states in nanocrystal (NC)-based devices. We demonstrate that, for a given technique, the ability to observe traps depends on the Fermi level position, highlighting the importance of a multitechnique approach that probes trap coupling to both the conduction and the valence bands. We then apply our protocol for characterizing traps to quantitatively explain the measured performances of PbS NC-based solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Mikailzade, Faik A.
2015-06-14
Lanthanum-doped high quality TlInS{sub 2} (TlInS{sub 2}:La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS{sub 2}:La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. Themore » TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS{sub 2}:La. Thermal treatments of TlInS{sub 2}:La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10{sup −14} cm{sup 2}, corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS{sub 2}:La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10{sup −16} cm{sup 2} were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles, which are originated from the charged B5 deep level defects, are aligned in the direction of the applied electric field and the equilibrium polarization can be reached in a relatively short time. When the polarization field is maintained, while cooling the temperature of sample to a sufficiently low degrees, the relaxation times of the aligned dipoles drastically increases. Practically, frozen internal electric field or electrets states remain inside the TlInS{sub 2}:La when the applied bias field is switched off. The influence of deep level defects on TSDC spectra of TlInS{sub 2}:La has been revealed for the first time.« less
NASA Technical Reports Server (NTRS)
Lagowski, J.; Lin, D. G.; Chen, T.-P.; Skowronski, M.; Gatos, H. C.
1985-01-01
A dominant hole trap has been identified in p-type bulk GaAs employing deep level transient and photocapacitance spectroscopies. The trap is present at a concentration up to about 4 x 10 to the 16th per cu cm, and it has two charge states with energies 0.54 + or - 0.02 and 0.77 + or - 0.02 eV above the top of the valence band (at 77 K). From the upper level the trap can be photoexcited to a persistent metastable state just as the dominant midgap level, EL2. Impurity analysis and the photoionization characteristics rule out association of the trap with impurities Fe, Cu, or Mn. Taking into consideration theoretical results, it appears most likely that the two charge states of the trap are the single and double donor levels of the arsenic antisite As(Ga) defect.
Surface acceptor states in MBE-grown CdTe layers
NASA Astrophysics Data System (ADS)
Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz
2018-04-01
A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.
NASA Astrophysics Data System (ADS)
Gul, R.; Roy, U. N.; Camarda, G. S.; Hossain, A.; Yang, G.; Vanier, P.; Lordi, V.; Varley, J.; James, R. B.
2017-03-01
In this paper, the properties of point defects in Cd1-xZnxTe1-ySey (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the VCd- concentration. In Travelling Heater Method (THM) and Bridgman Method (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of VCd- and two additional traps (attributed to Tei- and TeCd++ appearing at around Ev + 0.26 eV and Ec - 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.
Traps in AlGaN /GaN/SiC heterostructures studied by deep level transient spectroscopy
NASA Astrophysics Data System (ADS)
Fang, Z.-Q.; Look, D. C.; Kim, D. H.; Adesida, I.
2005-10-01
AlGaN /GaN/SiC Schottky barrier diodes (SBDs), with and without Si3N4 passivation, have been characterized by temperature-dependent current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy (DLTS). A dominant trap A1, with activation energy of 1.0 eV and apparent capture cross section of 2×10-12cm2, has been observed in both unpassivated and passivated SBDs. Based on the well-known logarithmic dependence of DLTS peak height with filling pulse width for a line-defect related trap, A1, which is commonly observed in thin GaN layers grown by various techniques, is believed to be associated with threading dislocations. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.
Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes
NASA Astrophysics Data System (ADS)
Vigneshwara Raja, P.; Narasimha Murty, N. V. L.
2018-04-01
Deep level defects in 4H-SiC Schottky barrier diodes (SBDs) fabricated on n-type epitaxial 4H-SiC have been identified by thermally stimulated capacitance (TSCAP) spectroscopy prior to and after 60Co-gamma irradiation. The TSCAP measurements on the non-irradiated SBDs reveal two electron traps at Ec-0.63 eV (˜250 K) and Ec-1.13 eV (˜525 K), whereas only one trap at Ec-0.63 eV is identified by conventional thermally stimulated current (TSC) measurements. Hence, TSCAP spectroscopy is more effective in identifying deep level defects in epitaxial 4 H-SiC SBDs as compared to the TSC spectroscopy. Upon exposure to 60Co-gamma rays up to a dose of 100 Mrad, significant changes in the concentration of the traps at Ec-0.63 eV, Ec-1.13 eV, and one new trap at Ec-0.89 eV (˜420 K) are observed. The electrical characteristics of the SBDs are considerably changed after gamma irradiation. The dominant mechanisms responsible for the irradiation induced changes in the SBD electrical characteristics are analyzed by incorporating the trap signatures in the commercial Silvaco® TCAD device simulator. The extracted trap parameters of the irradiated SBDs may be helpful in predicting the survival of 4H-SiC SBD detectors at higher irradiation levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondarenko, Anton; Vyvenko, Oleg
2014-02-21
Dislocation network (DN) at hydrophilically bonded Si wafers interface is placed in space charge region (SCR) of a Schottky diode at a depth of about 150 nm from Schottky electrode for simultaneous investigation of its electrical and luminescent properties. Our recently proposed pulsed traps refilling enhanced luminescence (Pulsed-TREL) technique based on the effect of transient luminescence induced by refilling of charge carrier traps with electrical pulses is further developed and used as a tool to establish DN energy levels responsible for D1 band of dislocation-related luminescence in Si (DRL). In present work we do theoretical analysis and simulation of trapsmore » refilling kinetics dependence on refilling pulse magnitude (Vp) in two levels model: shallow and deep. The influence of initial charge state of deep level on shallow level occupation-Vp dependence is discussed. Characteristic features predicted by simulations are used for Pulsed-TREL experimental results interpretation. We conclude that only shallow (∼0.1 eV from conduction and valence band) energetic levels in the band gap participate in D1 DRL.« less
Metastable self-trapping of positrons in MgO
NASA Astrophysics Data System (ADS)
Monge, M. A.; Pareja, R.; González, R.; Chen, Y.
1997-01-01
Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Katharria, Y. S.; Kumar, Sugam; Kanjilal, D.
2007-12-01
In situ deep level transient spectroscopy has been applied to investigate the influence of 100MeV Si7+ ion irradiation on the deep levels present in Au/n-Si (100) Schottky structure in a wide fluence range from 5×109to1×1012ions cm-2. The swift heavy ion irradiation introduces a deep level at Ec-0.32eV. It is found that initially, trap level concentration of the energy level at Ec-0.40eV increases with irradiation up to a fluence value of 1×1010cm-2 while the deep level concentration decreases as irradiation fluence increases beyond the fluence value of 5×1010cm-2. These results are discussed, taking into account the role of energy transfer mechanism of high energy ions in material.
Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites.
Li, Zhonglei; Du, Boxue; Han, Chenlei; Xu, Hang
2017-06-21
The role of trap characteristics in modulating charge transport properties is attracting much attentions in electrical and electronic engineering, which has an important effect on the electrical properties of dielectrics. This paper focuses on the electrical properties of Low-density Polyethylene (LDPE)/graphene nanocomposites (NCs), as well as the corresponding trap level characteristics. The dc conductivity, breakdown strength and space charge behaviors of NCs with the filler content of 0 wt%, 0.005 wt%, 0.01 wt%, 0.1 wt% and 0.5 wt% are studied, and their trap level distributions are characterized by isothermal discharge current (IDC) tests. The experimental results show that the 0.005 wt% LDPE/graphene NCs have a lower dc conductivity, a higher breakdown strength and a much smaller amount of space charge accumulation than the neat LDPE. It is indicated that the graphene addition with a filler content of 0.005 wt% introduces large quantities of deep carrier traps that reduce charge carrier mobility and result in the homocharge accumulation near the electrodes. The deep trap modulated charge carrier transport attributes to reduce the dc conductivity, suppress the injection of space charges into polymer bulks and enhance the breakdown strength, which is of great significance in improving electrical properties of polymer dielectrics.
Gul, R.; Roy, U. N.; Camarda, G. S.; ...
2017-03-28
In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gul, R.; Roy, U. N.; Camarda, G. S.
In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less
Deep centers in AlGaN-based light emitting diode structures
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Mil'vidskii, M. G.; Usikov, A. S.; Pushnyi, B. V.; Lundin, W. V.
1999-10-01
Deep traps were studied in GaN homojunction and AlGaN/GaN heterojunction light emitting diode (LED) p-i-n structures by means of deep levels transient spectroscopy (DLTS), admittance and electroluminescence (EL) spectra measurements. It is shown that, in homojunction LED structures, the EL spectra comes from recombination involving Mg acceptors in-diffusing into the active i-layer. This Mg in-diffusion is strongly suppressed in heterostructures with the upper p-type layer containing about 5% of Al. As a result the main peak in the EL spectra of heterostructures is shifted toward higher energy compared to homojunctions. Joint doping of the i-layer with Zn and Si allows to shift the main EL peak to longer wavelength. The dominant electron traps observed in the studied LED structures had ionization energies of 0.55 and 0.85 eV. The dominant hole traps had apparent ionization energies of 0.85 and 0.4 eV. The latter traps were shown to be metastable and it is argued that they could be at least in part responsible for the persistent photoconductivity observed in p-GaN.
Effects of Plasma Hydrogenation on Trapping Properties of Dislocations in Heteroepitaxial InP/GaAs
NASA Technical Reports Server (NTRS)
Ringel, S. A.; Chatterjee, B.
1994-01-01
In previous work, we have demonstrated the effectiveness of a post-growth hydrogen plasma treatment for passivating the electrical activity of dislocations in metalorganic chemical vapor deposition (MOCVD) grown InP on GaAs substrates by a more than two order of magnitude reduction in deep level concentration and an improvement in reverse bias leakage current by a factor of approx. 20. These results make plasma hydrogenation an extremely promising technique for achieving high efficiency large area and light weight heteroepitaxial InP solar cells for space applications. In this work we investigate the carrier trapping process by dislocations in heteroepitaxial InP/GaAs and the role of hydrogen passivation on this process. It is shown that the charge trapping kinetics of dislocations after hydrogen passivation are significantly altered, approaching point defect-like behavior consistent with a transformation from a high concentration of dislocation-related defect bands within the InP bandgap to a low concentration of individual deep levels after hydrogen passivation. It is further shown that the "apparent" activation energies of dislocation related deep levels, before and after passivation, reduce by approx. 70 meV as DLTS fill pulse times are increased from 1 usec. to 1 msec. A model is proposed which explains these effects based on a reduction of Coulombic interaction between individual core sites along the dislocation cores by hydrogen incorporation. Knowledge of the trapping properties in these specific structures is important to develop optimum, low loss heteroepitaxial InP cells.
NASA Astrophysics Data System (ADS)
Yamamoto, Norio; Uwai, Kunihiko; Takahei, Kenichiro
1989-04-01
Deep levels in high-purity InP crystal grown by metalorganic chemical vapor deposition (MOCVD) have been measured by deep level transient spectroscopy. While no electron traps are observed in the samples grown at 600 °C with a [PH3]/[In(C2H5)3] of 170, three electron traps with activation energies of 0.80, 0.44, and 0.24 eV were observed in the samples grown at 500 °C with the same [PH3]/[In(C2H5)3]. The 0.44-eV trap, whose capture cross section is 1.5×10-18 cm2, observed at a low [PH3]/[In(C2H5)3] shows a decrease in concentration as [PH3]/[In(C2H5)3] is increased, and becomes less than 5×1012 cm-3 at a [PH3]/[In(C2H5)3] of more than 170. The comparison of annealing behavior of this trap in MOCVD InP and that in liquid-encapsulated Czochralski InP suggests that the 0.44-eV trap is related to a complex formed from residual impurities and native defects related to a phosphorus deficiency such as phosphorus vacancies or indium interstitials. This trap is found to show configurational bistability similar to that observed for the trap in an Fe-doped InP, MFe center.
NASA Astrophysics Data System (ADS)
PŁaczek-Popko, E.; Trzmiel, J.; Zielony, E.; Grzanka, S.; Czernecki, R.; Suski, T.
2009-12-01
In this study, we present the results of investigation on p-n GaN diodes by means of deep level transient spectroscopy (DLTS) within the temperature range of 77-350 K. Si-doped GaN layers were grown by metal-organic vapor-phase epitaxy technique (MOVPE) on the free-standing GaN substrates. Subsequently Mg-doped GaN layers were grown. To perform DLTS measurements Ni/Au contacts to p-type material and Ti/Au contacts to n-type material were processed. DLTS signal spectra revealed the presence of two majority traps of activation energies obtained from Arrhenius plots equal to E1=0.22 eV and E2=0.65 eV. In present work we show that the trap E1 is linked with the extended defects whereas the trap E2 is the point defect related. Its capture cross section is thermally activated with energy barrier for capture equal to 0.2 eV.
Effect of antimony on the deep-level traps in GaInNAsSb thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Muhammad Monirul, E-mail: islam.monir.ke@u.tsukuba.ac.jp; Miyashita, Naoya; Ahsan, Nazmul
2014-09-15
Admittance spectroscopy has been performed to investigate the effect of antimony (Sb) on GaInNAs material in relation to the deep-level defects in this material. Two electron traps, E1 and E2 at an energy level 0.12 and 0.41 eV below the conduction band (E{sub C}), respectively, were found in undoped GaInNAs. Bias-voltage dependent admittance confirmed that E1 is an interface-type defect being spatially localized at the GaInNAs/GaAs interface, while E2 is a bulk-type defect located around mid-gap of GaInNAs layer. Introduction of Sb improved the material quality which was evident from the reduction of both the interface and bulk-type defects.
Deep-level traps in lightly Si-doped n-GaN on free-standing m-oriented GaN substrates
NASA Astrophysics Data System (ADS)
Yamada, H.; Chonan, H.; Takahashi, T.; Yamada, T.; Shimizu, M.
2018-04-01
In this study, we investigated the deep-level traps in Si-doped GaN epitaxial layers by metal-organic chemical vapor deposition on c-oriented and m-oriented free-standing GaN substrates. The c-oriented and m-oriented epitaxial layers, grown at a temperature of 1000 °C and V/III ratio of 1000, contained carbon atomic concentrations of 1.7×1016 and 4.0×1015 cm-3, respectively. A hole trap was observed at about 0.89 eV above the valence band maximum by minority carrier transient spectroscopy. The trap concentrations in the c-oriented and m-oriented GaN epitaxial layers were consistent with the carbon atomic concentrations from secondary ion mass spectroscopy and the yellow luminescence intensity at 2.21 eV from photoluminescence. The trap concentrations in the m-oriented GaN epitaxial layers were lower than those in the c-oriented GaN. Two electron traps, 0.24 and 0.61 eV below the conduction band (EC) minimum, were observed in the c-oriented GaN epitaxial layer. In contrast, the m-oriented GaN epitaxial layer was free from the electron trap at EC - 0.24 eV, and the trap concentration at EC - 0.61 eV in the m-oriented GaN epitaxial layer was lower than that in the c-oriented GaN epitaxial layer. The m-oriented GaN epitaxial layer exhibited fewer hole and electron traps compared to the c-oriented GaN epitaxial layers.
Ng, Annie; Ren, Zhiwei; Shen, Qian; Cheung, Sin Hang; Gokkaya, Huseyin Cem; So, Shu Kong; Djurišić, Aleksandra B; Wan, Yangyang; Wu, Xiaojun; Surya, Charles
2016-12-07
Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH 3 NH 3 PbI 3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O 2 /N 2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.
Effects of plasma hydrogenation on trapping properties of dislocations in heteroepitaxial InP/GaAs
NASA Technical Reports Server (NTRS)
Ringel, S. A.; Chatterjee, B.
1994-01-01
In previous work, we have demonstrated the effectiveness of a post-growth hydrogen plasma treatment for passivating the electrical activity of dislocations in metalorganic chemical vapor deposition (MOCVD) grown InP on GaAs substrates by a more than two order of magnitude reduction in deep level concentration and an improvement in reverse bias leakage current by a factor of approximately 20. These results make plasma hydrogenation an extremely promising technique for achieving high efficiency large area and light weight heteroepitaxial InP solar cells for space applications. In this work we investigate the carrier trapping process by dislocations in heteroepitaxial InP/GaAs and the role of hydrogen passivation on this process. It is shown that the charge trapping kinetics of dislocations after hydrogen passivation are significantly altered, approaching point defect-like behavior consistent with a transformation from a high concentration of dislocation-related defect bands within the InP bandgap to a low concentration of individual dislocation related deep levels, before and after passivation. It is further shown that the 'apparent' activation energies of dislocation related deep levels, before and after passivation, reduce by approximately 70 meV as DLTS fill pulse times are increased from 1 microsecond to 1 millisecond. A model is proposed which explains these effects based on a reduction of Coulombic interaction between individual core sites along the dislocation cores by hydrogen incorporation. Knowledge of the trapping properties in these specific structures is important to develop optimum, low loss heteroepitaxial InP cells.
Hydride vapor phase GaN films with reduced density of residual electrons and deep traps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, A. Y., E-mail: aypolyakov@gmail.com; Smirnov, N. B.; Govorkov, A. V.
2014-05-14
Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versusmore » 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.« less
Optoelectronically probing the density of nanowire surface trap states to the single state limit
NASA Astrophysics Data System (ADS)
Dan, Yaping
2015-02-01
Surface trap states play a dominant role in the optoelectronic properties of nanoscale devices. Understanding the surface trap states allows us to properly engineer the device surfaces for better performance. But characterization of surface trap states at nanoscale has been a formidable challenge using the traditional capacitive techniques. Here, we demonstrate a simple but powerful optoelectronic method to probe the density of nanowire surface trap states to the single state limit. In this method, we choose to tune the quasi-Fermi level across the bandgap of a silicon nanowire photoconductor, allowing for capture and emission of photogenerated charge carriers by surface trap states. The experimental data show that the energy density of nanowire surface trap states is in a range from 109 cm-2/eV at deep levels to 1012 cm-2/eV near the conduction band edge. This optoelectronic method allows us to conveniently probe trap states of ultra-scaled nano/quantum devices at extremely high precision.
NASA Astrophysics Data System (ADS)
Tsia, J. M.; Ling, C. C.; Beling, C. D.; Fung, S.
2002-09-01
A plus-or-minus100 V square wave applied to a Au/semi-insulating SI-GaAs interface was used to bring about electron emission from and capture into deep level defects in the region adjacent to the interface. The electric field transient resulting from deep level emission was studied by monitoring the positron drift velocity in the region. A deep level transient spectrum was obtained by computing the trap emission rate as a function of temperature and two peaks corresponding to EL2 (Ea=0.81plus-or-minus0.15 eV) and EL6 (Ea=0.30plus-or-minus0.12 eV) have been identified.
Fleming, R. M.; Seager, C. H.; Lang, D. V.; ...
2015-07-02
In this study, an improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy(DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V 2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range ofmore » capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.« less
2011-01-01
The growth of high mobility two-dimensional hole gases (2DHGs) using GaAs-GaAlAs heterostructures has been the subject of many investigations. However, despite many efforts hole mobilities in Be-doped structures grown on (100) GaAs substrate remained considerably lower than those obtained by growing on (311)A oriented surface using silicon as p-type dopant. In this study we will report on the properties of hole traps in a set of p-type Be-doped Al0.29Ga0.71As samples grown by molecular beam epitaxy on (100) and (311)A GaAs substrates using deep level transient spectroscopy (DLTS) technique. In addition, the effect of the level of Be-doping concentration on the hole deep traps is investigated. It was observed that with increasing the Be-doping concentration from 1 × 1016 to 1 × 1017 cm-3 the number of detected electrically active defects decreases for samples grown on (311)A substrate, whereas, it increases for (100) orientated samples. The DLTS measurements also reveal that the activation energies of traps detected in (311)A are lower than those in (100). From these findings it is expected that mobilities of 2DHGs in Be-doped GaAs-GaAlAs devices grown on (311)A should be higher than those on (100). PMID:21711687
Charge carriers' trapping states in pentacene films studied by modulated photocurrent
NASA Astrophysics Data System (ADS)
Gorgolis, S.; Giannopoulou, A.; Kounavis, P.
2013-03-01
The modulated photocurrent (MPC) technique is employed to study the charge carriers' trapping states of pentacene films. The characteristics of the experimental MPC spectra were found to be compatible with trapping-detrapping process of holes in gap states in which their occupancy can be modified by the bias illumination. A demarcation energy level separating empty from partially occupied traps was deduced from the MPC spectra, which can be used to monitor bias-light induced changes in the quasi Fermi level. An exponential trap distribution from structural disorder and a deep metastable gaussian trap distribution from adsorbed environmental impurities were extracted by means of the MPC spectroscopy. An attempt to escape frequency of the order of 1010s-1 was deduced for the gap sates. The derived trap distributions agree with those found before by means of other techniques. The present results indicate that the MPC technique can be used as a valuable tool for pentacene films characterization since it can be also applied to field effect samples.
Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong
2017-05-01
We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ∼6nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.
NASA Astrophysics Data System (ADS)
Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong
2017-05-01
We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.
Origin of reduced efficiency in high Ga concentration Cu(In,Ga)Se2 solar cell
NASA Astrophysics Data System (ADS)
Wei, S.-H.; Huang, B.; Deng, H.; Contreras, M. A.; Noufi, R.; Chen, S.; Wang, L. W.
2014-03-01
CuInSe2 (CIS) is one of the most attractive thin-film materials for solar cells. It is well know that alloying Ga into CIS forming Cu(In,Ga)Se2 (CIGS) alloy is crucial to achieve the high efficiency, but adding too much Ga will lead to a decline of the solar cell efficiency. The exact origin of this puzzling phenomenon is currently still under debate. Using first-principles method, we have systemically studied the structural and electronic properties of CIGS alloys. Our phase diagram calculations suggest that increasing growth temperature may not be a critical factor in enhancing the cell performance of CIGS under equilibrium growth condition. On the other hand, our defect calculations identify that high concentration of antisite defects MCu(M =In, Ga) rather than anion defects are the key deep-trap centers in CIGS. The more the Ga concentration in CIGS, the more harmful the deep-trap is. Self-compensation in CIGS, which forms 2VCu + MCudefect complexes, is found to be beneficial to quench the deep-trap levels induced by MCu in CIGS, especially at low Ga concentration. Unfortunately, the density of isolated MCu is quite high and cannot be largely converted into 2VCu + MCu complexes under thermal equilibrium condition. Thus, nonequilibrium growth conditions or low growth temperature that can suppress the formation of the deep-trap centers MCu may be necessary for improving the efficiency of CIGS solar cells with high Ga concentrations.
NASA Astrophysics Data System (ADS)
Khim, Boo-Keun; Otosaka, Shigeyoshi; Park, Kyung-Ae; Noriki, Shinichiro
2018-03-01
Investigation of sediment-trap deployments in the East/Japan Sea (EJS) showed that distinct seasonal variations in particulate organic carbon (POC) fluxes of intermediate-water sediment-traps clearly corresponded to changes in chlorophyll a concentrations estimated from SeaWiFS data. The prominent high POC flux periods (e.g., March) were strongly correlated with the enhanced surface-water phytoplankton blooms. Deep-water sedimenttraps exhibited similar variation patterns to intermediate-water sediment-traps. However, their total flux and POC flux were higher than those of intermediate-water sediment-traps during some months (e.g., April and May), indicating the lateral delivery of some particles to the deep-water sediment-traps. Distinct seasonal δ13C and δ15N variations in settling particles of the intermediate-water sediment-traps were observed, strongly supporting the notion of seasonal primary production. Seasonal variations in δ13C and δ15N values from the deep-water sediment-traps were similar to those of the intermediate-water sediment-traps. However, the difference in δ13C and δ15N values between the intermediate-water and the deepwater sediment-traps may be attributed to degradation of organic matter as it sank through the water column. Comparison of fluxweighted δ13C and δ15N mean values between the deep-water sediment-traps and the core-top sediments showed that strong selective loss of organic matter components (lipids) depleted in 13C and 15N occurred during sediment burial. Nonetheless, the results of our study indicate that particles in the deep-water sediment-trap deposited as surface sediments on the seafloor preserve the record of surface-water conditions, highlighting the usefulness of sedimentary δ13C and δ15N values as a paleoceanographic application in the EJS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn; School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ
Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loadingmore » concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.« less
Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs
NASA Technical Reports Server (NTRS)
Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.
1979-01-01
The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.
Minority Carrier Electron Traps in CZTSSe Solar Cells Characterized by DLTS and DLOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kheraj, V.; Lund, E. A.; Caruso, A. E.
2016-11-21
We report observations of minority carrier interactions with deep levels in 6-8% efficient Cu2ZnSn(S, Se)4 (CZTSSe) devices using conventional and minority deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS). Directly observing defect interactions with minority carriers is critical to understanding the recombination impact of deep levels. In devices with Cu2ZnSn(S, Se)4 nanoparticle ink absorber layers we identify a mid-gap state capturing and emitting minority electrons. It is 590+/-50 meV from the conduction band mobility edge, has a concentration near 1015/cm3, and has an apparent electron capture cross section ~10-14 cm2. We conclude that, while energetically positioned nearly-ideallymore » to be a recombination center, these defects instead act as electron traps because of a smaller hole cross-section. In CZTSe devices produced using coevaporation, we used minority carrier DLTS on traditional samples as well as ones with transparent Ohmic back contacts. These experiments demonstrate methods for unambiguously probing minority carrier/defect interactions in solar cells in order to establish direct links between defect energy level observations and minority carrier lifetimes. Furthermore, we demonstrate the use of steady-state device simulation to aid in the interpretation of DLTS results e.g. to put bounds on the complimentary carrier cross section even in the absence its direct measurement. This combined experimental and theoretical approach establishes rigorous bounds on the impact on carrier lifetime and Voc of defects observed with DLTS as opposed to, for example, assuming that all deep states act as strong recombination centers.« less
Effect of retrapping on the persistent luminescence in strontium silicate orange–yellow phosphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xuhui; Yu, Xue, E-mail: yuyu6593@126.com; Zhou, Dacheng
2013-10-15
The orange–yellow long persistent luminescence in Sr{sub 3}SiO{sub 5}:Eu{sup 2+}, Er{sup 3+} with the chromaticity coordination of (0.48, 0.49) can persist for over 20 h above the recognizable intensity level (≥0.32 mcd/m{sup 2}) because of retrapping carriers by the deep traps. The incorporation of Er{sup 3+} into Sr{sub 3}SiO{sub 5}:Eu{sup 2+} generates a large number of shallow traps responsible for the fast decay component as well as deep traps responsible for the decay tail of the LPL. It demonstrates that the retrapping of the carrier released from a trap plays an important role in the persistent luminescence process. - Graphicalmore » abstract: LPL decay curves of Sr{sub 3−x−y}SiO{sub 5}:xEu{sup 2+}, yEr{sup 3+} (x=0.0025, y=0, 0.0025). Inset: Orange–yellow emission images recorded using a classic Reflex digital camera with exposure times varying with the persistent luminescence times. Display Omitted - Highlights: • The persistence time of Sr{sub 3}SiO{sub 5}:Eu{sup 2+}, Er{sup 3+} lasts over 20 h above the recognizable intensity level. • The incorporation of Er{sup 3+} into Sr{sub 3}SiO{sub 5}:Eu{sup 2+} generates a large number of shallow traps. • The experimental results provide an evidence for the retrapping process in LPL processes.« less
Characterisation of retention properties of charge-trapping memory cells at low temperatures
NASA Astrophysics Data System (ADS)
Yurchuk, E.; Bollmann, J.; Mikolajick, T.
2009-09-01
The density of states of deep level centers in silicon oxynitride layer of SONOS memory cells are calculated from temperature dependent retention measurement. The dominating charge loss mechanisms are direct trap-to-band tunneling (TB) and thermally stimulated emission (TE). Retention measurements at low temperatures (80 - 300K) will be dominated by TE from more "shallow" traps with energies below 1eV and by TB. Taking into account both independent and rival processes the density of states could be calculated self consisting. The results are in excellent agreement with elsewhere published data.
Two stages of deformation and fluid migration in the central Brooks Range fold-and-thrust belt
Moore, Thomas E.; Potter, Christopher J.; O'Sullivan, Paul B.; Shelton, Kevin L.; Underwood, Michael B.
2004-01-01
We conclude that hydrocarbon generation from Triassic and Jurassic source strata and migration into stratigraphic traps occurred primarily by sedimentary burial principally at 100-90 Ma, between the times of the two major episodes of deformation. Subsequent sedimentary burial caused deep stratigraphic traps to become overmature, cracking oil to gas, and initiated some new hydrocarbon generation progressively higher in the section. Structural disruption of the traps in the early Tertiary released sequestered hydrocarbons. The hydrocarbons remigrated into newly formed structural traps, which formed at higher structural levels or were lost to the surface. Because of the generally high maturation of the Colville basin at the time of the deformation and remigration, most of the hydrocarbons available to fill traps were gas.
The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate
NASA Astrophysics Data System (ADS)
Narita, Tetsuo; Tokuda, Yutaka; Kogiso, Tatsuya; Tomita, Kazuyoshi; Kachi, Tetsu
2018-04-01
We investigated traps in lightly Mg-doped (2 × 1017 cm-3) p-GaN fabricated by metalorganic vapor phase epitaxy (MOVPE) on a freestanding GaN substrate and the subsequent post-growth annealing, using deep level transient spectroscopy. We identified four hole traps with energy levels of EV + 0.46, 0.88, 1.0, and 1.3 eV and one electron trap at EC - 0.57 eV in a p-type GaN layer uniformly doped with magnesium (Mg). The Arrhenius plot of hole traps with the highest concentration (˜3 × 1016 cm-3) located at EV + 0.88 eV corresponded to those of hole traps ascribed to carbon on nitrogen sites in n-type GaN samples grown by MOVPE. In fact, the range of the hole trap concentrations at EV + 0.88 eV was close to the carbon concentration detected by secondary ion mass spectroscopy. Moreover, the electron trap at EC - 0.57 eV was also identical to the dominant electron traps commonly observed in n-type GaN. Together, these results suggest that the trap states in the lightly Mg-doped GaN grown by MOVPE show a strong similarity to those in n-type GaN, which can be explained by the Fermi level close to the conduction band minimum in pristine MOVPE grown samples due to existing residual donors and Mg-hydrogen complexes.
Interface Si donor control to improve dynamic performance of AlGaN/GaN MIS-HEMTs
NASA Astrophysics Data System (ADS)
Song, Liang; Fu, Kai; Zhang, Zhili; Sun, Shichuang; Li, Weiyi; Yu, Guohao; Hao, Ronghui; Fan, Yaming; Shi, Wenhua; Cai, Yong; Zhang, Baoshun
2017-12-01
In this letter, we have studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) with different interface Si donor incorporation which is tuned during the deposition process of LPCVD-SiNx which is adopted as gate dielectric and passivation layer. Current collapse of the MIS-HEMTs without field plate is suppressed more effectively by increasing the SiH2Cl2/NH3 flow ratio and the normalized dynamic on-resistance (RON) is reduced two orders magnitude after off-state VDS stress of 600 V for 10 ms. Through interface characterization, we have found that the interface deep-level traps distribution with high Si donor incorporation by increasing the SiH2Cl2/NH3 flow ratio is lowered. It's indicated that the Si donors are most likely to fill and screen the deep-level traps at the interface resulting in the suppression of slow trapping process and the virtual gate effect. Although the Si donor incorporation brings about the increase of gate leakage current (IGS), no clear degradation of breakdown voltage can be seen by choosing appropriate SiH2Cl2/NH3 flow ratio.
Charge Trapping Properties of Ge Nanocrystals Grown via Solid-State Dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Jadli, I.; Aouassa, M.
2018-05-04
In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affectsmore » the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.« less
Interconversion of intrinsic defects in SrTi O3(001 )
NASA Astrophysics Data System (ADS)
Chambers, S. A.; Du, Y.; Zhu, Z.; Wang, J.; Wahila, M. J.; Piper, L. F. J.; Prakash, A.; Yue, J.; Jalan, B.; Spurgeon, S. R.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Sushko, P. V.
2018-06-01
Photoemission features associated with states deep in the band gap of n -SrTi O3(001 ) are found to be ubiquitous in bulk crystals and epitaxial films. These features are present even when there is little signal near the Fermi level. Analysis reveals that these states are deep-level traps associated with defects. The commonly investigated defects—O vacancies, Sr vacancies, and aliovalent impurity cations on the Ti sites—cannot account for these features. Rather, ab initio modeling points to these states resulting from interstitial oxygen and its interaction with donor electrons.
Deep levels in H-irradiated GaAs1-xNx (x < 0.01) grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Shafi, M.; Mari, R. H.; Khatab, A.; Henini, M.; Polimeni, A.; Capizzi, M.; Hopkinson, M.
2011-12-01
Dilute nitride GaAs1-xNx layers have been grown by molecular beam epitaxy with nitrogen concentration ranging from 0.2% to 0.8%. These samples have been studied before and after hydrogen irradiation by using standard deep level transient spectroscopy (DLTS) and high resolution Laplace DLTS techniques. The activation energy, capture cross section and density of the electron traps have been estimated and compared with results obtained in N-free as-grown and H-irradiated bulk GaAs.
Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.
2018-01-01
Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.
NASA Astrophysics Data System (ADS)
Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min
2016-11-01
Polypropylene (PP) has become one promising material to potentially replace the cross-link polyethylene used for high voltage direct current cables. Besides the isotactic polypropylene, the block polypropylene (b-PP) and random polypropylene (r-PP) can be synthesized through the copolymerization of ethylene and propylene molecules. In this letter, the effect of morphology and crystalline phases on the insulating electrical properties of PP was investigated. It was found that the introduction of polyethylene monomer resulted in the formation of β and γ phases in b-PP and r-PP. The results from the characteristic trap energy levels indicated that the β and γ phases could induce deep electron traps which enable to capture the carriers. And the space charge accumulation was obviously suppressed. Besides, the decreased electrical conductivity was observed in b-PP and r-PP. It is attributed to the existence of deep traps which can effectively reduce the carrier mobility and density in materials.
Poole-Frenkel effect in sputter-deposited CuAlO2+x nanocrystals
NASA Astrophysics Data System (ADS)
Narayan Banerjee, Arghya; Joo, Sang Woo
2013-04-01
Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 1018 cm-3. Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K-1. This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks.
Poole-Frenkel effect in sputter-deposited CuAlO(2+x) nanocrystals.
Banerjee, Arghya Narayan; Joo, Sang Woo
2013-04-26
Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 10(18) cm(-3). Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K(-1). This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks.
Garris, Rebekah L.; Johnston, Steven; Li, Jian V.; ...
2017-08-31
In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garris, Rebekah L.; Johnston, Steven; Li, Jian V.
In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less
Measurement of Deep Levels at InGaAs(P)/InP Heterojunctions
1990-04-01
by write Eq. (10) to obtain (for shallow or deep donor traps): VD(O) = VDK + q/K f. N, (x*)(x* -x)dx* -qAx/ o, - + J N,(x)dx J-* +_N,, F(x)dx KFc . N...8217T, P. Andre, 1. N. Patillon, J. L. Gentler, E. P. Menu , D. Moroni, and G. Case 2: Bias sweep frequency large (e,, <Wf~ccw) M. Martin, Int. Symp. GaAs
Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities
Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra
2016-01-01
Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.
Understanding Trap Effects on Electrical Treeing Phenomena in EPDM/POSS Composites.
Du, Boxue; Su, Jingang; Tian, Meng; Han, Tao; Li, Jin
2018-05-31
POSS (polyhedral oligomeric silsesquioxane) provides an interesting alternative nano-silica and has the potential of superior dielectric properties to restrain electrical degradation. By incorporating POSS into EPDM to suppress electrical tree, one of precursors to dielectric failure, is promising to improve the lifetime of insulation materials. This paper focuses on the electrical treeing phenomena in EPDM/OVPOSS (ethylene propylene diene monomer/octavinyl-POSS) composites based on their physicochemical properties and trap distributions. ATR-IR and SEM characteristics are investigated to observe the chemical structure and physical dispersion of EPDM/OVPOSS composites. Electrical treeing characteristics are studied by the needle-plane electrode, and the trap level distributions are characterized by surface potential decay (SPD) tests. The results show that the 3 wt% EPDM/OVPOSS is more effective to restrain the electrical tree growth than the neat EPDM in this paper. It is indicated that the EPDM/OVPOSS with a filler content of 3 wt% introduces the largest energy level and trap density of deep trapped charges, which suppress the transportation of charge carriers injected from the needle tip and further prevent the degradation of polymer molecules. The polarity effects are obvious during the electrical treeing process, which is dependent on the trap level differences between positive and negative voltage.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer
NASA Astrophysics Data System (ADS)
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-01
Crystalline ZrTiO4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N2O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 105 program/erase cycles and 81.8% charge retention after 104 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer.
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-08
Crystalline ZrTiO 4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF 4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N 2 O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 10 5 program/erase cycles and 81.8% charge retention after 10 4 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
Optical characterization of wide-gap detector-grade semiconductors
NASA Astrophysics Data System (ADS)
Elshazly, Ezzat S.
Wide bandgap semiconductors are being widely investigated because they have the potential to satisfy the stringent material requirements of high resolution, room temperature gamma-ray spectrometers. In particular, Cadmium Zinc Telluride (Cd1-xZnxTe, x˜0.1) and Thallium Bromide (TlBr), due to their combination of high resistivity, high atomic number and good electron mobility, have became very promising candidates for use in X- and gamma-ray detectors operating at room temperature. In this study, carrier trapping times were measured in CZT and TlBr as a function of temperature and material quality. Carrier lifetimes and tellurium inclusion densities were measured in detector-grade Cadmium Zinc Telluride (CZT) crystals grown by the High Pressure Bridgman method and Modified Bridgman method. Excess carriers were produced in the material using a pulsed YAG laser with a 1064nm wavelength and 7ns pulse width. Infrared microscopy was used to measure the tellurium defect densities in CZT crystals. The electronic decay was optically measured at room temperature. Spatial mapping of lifetimes and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. A significant and strong correlation was found between the volume fraction of tellurium inclusions and the carrier trapping time. Carrier trapping times and tellurium inclusions were measured in CZT in the temperature range from 300K to 110K and the results were analyzed using a theoretical trapping model. Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. While a strong correlation between trapping time and defect density of tellurium inclusions was observed, there was no significant change in the trap energy. Carrier trapping times were measured in detector grade thallium bromide (TlBr) and compared with the results for cadmium zinc telluride (CZT) in a temperature range from 300K to 110K. The experimental data was analyzed using a trapping model. In CZT, because the majority carrier concentration is close to the intrinsic carrier concentration, the trapping time increases exponentially as the temperature decreases below about 160K. While, in TlBr, the majority carrier concentration is many orders of magnitude greater than the intrinsic carrier concentration and the trapping time followed a 1T temperature dependence over the range of temperatures studied. The results of the model suggest that a moderately deep compensation center, located approximately 200 meV from the middle of the bandgap, could be used to significantly increase the room temperature trapping time in TlBr. The results of this model demonstrate that the room temperature trapping time in TlBr can, in principle, approach 0.1ms through the introduction of a moderately deep compensation level but without decreasing the overall trap concentration. This strategy is not possible in CZT, because the band gap is too small to use a moderately deep compensation level while still maintaining high material resistivity. Carrier trapping times were measured in three polycrystalline TlBr samples produced by melting commercial TlBr beads in a sealed quartz ampoule for two hours at three different temperatures near the melting point. The trapping time decreased with increasing melting temperature, presumably due to the thermal generation of a trap state.
The tropopause cold trap in the Australian Monsoon during STEP/AMEX 1987
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.
1993-01-01
The relationship between deep convection and tropopause cold trap conditions is examined for the tropical northern Australia region during the 1986-87 summer monsoon season, emphasizing the Australia Monsoon Experiment (AMEX) period when the NASA Stratosphere-Troposphere Exchange Project (STEP) was being conducted. The factors related to the spatial and temporal variability of the cold point potential temperature (CPPT) are investigated. A framework is developed for describing the relationships among surface average equivalent potential temperature in the surface layer (AEPTSL) the height of deep convection, and stratosphere-troposphere exchange. The time-mean pattern of convection, large-scale circulation, and surface AEPTSL in the Australian monsoon and the evolution of the convective environment during the monsoon period and the extended transition season which preceded it are described. The time-mean fields of cold point level variables are examined and the statistical relationships between mean CPPT, surface AEPTSL, and deep convection are described. Day-to-day variations of CPPT are examined in terms of these time mean relationships.
NASA Astrophysics Data System (ADS)
Matsubara, Masahiko; Bellotti, Enrico
2017-05-01
Various forms of carbon based complexes in GaN are studied with first-principles calculations employing Heyd-Scuseria-Ernzerhof hybrid functionals within the framework of the density functional theory. We consider carbon complexes made of the combinations of single impurities, i.e., CN-CGa, CI-CN , and CI-CGa , where CN, CGa , and CI denote C substituting nitrogen, C substituting gallium, and interstitial C, respectively, and of neighboring gallium/nitrogen vacancies ( VGa / VN ), i.e., CN-VGa and CGa-VN . Formation energies are computed for all these configurations with different charge states after full geometry optimizations. From our calculated formation energies, thermodynamic transition levels are evaluated, which are related to the thermal activation energies observed in experimental techniques such as deep level transient spectroscopy. Furthermore, the lattice relaxation energies (Franck-Condon shift) are computed to obtain optical activation energies, which are observed in experimental techniques such as deep level optical spectroscopy. We compare our calculated values of activation energies with the energies of experimentally observed C-related trap levels and identify the physical origins of these traps, which were unknown before.
Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition
NASA Astrophysics Data System (ADS)
Bollmann, Joachim; Venter, Andre
2018-04-01
A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.
NASA Astrophysics Data System (ADS)
Wang, Buguo; Anders, Jason; Leedy, Kevin; Schuette, Michael; Look, David
2018-02-01
InGaZnO (IGZO) is a promising semiconductor material for thin-film transistors (TFTs) used in DC and RF switching applications, especially since it can be grown at low temperatures on a wide variety of substrates. Enhancement-mode TFTs based on IGZO thin films grown by pulsed laser deposition (PLD) have been recently fabricated and these transistors show excellent performance; however, compositional variations and defects can adversely affect film quality, especially in regard to electrical properties. In this study, we use thermally stimulated current (TSC) spectroscopy to characterize the electrical properties and the deep traps in PLD-grown IGZO thin films. It was found that the as-grown sample has a DC activation energy of 0.62 eV, and two major traps with activation energies at 0.16-0.26 eV and at 0.90 eV. However, a strong persistent photocurrent (PPC) sometimes exists in the as-grown sample, so we carry out post-growth annealing in an attempt to mitigate the effect. It was found that annealing in argon increases the conduction, produces more PPC and also makes more traps observable. Annealing in air makes the film more resistive, and removes PPC and all traps but one. This work demonstrates that current-based trap emission, such as that associated with the TSC, can effectively reveal electronic defects in highlyresistive semiconductor materials, especially those are not amenable to capacitance-based techniques, such as deeplevel transient spectroscopy (DLTS).
NASA Astrophysics Data System (ADS)
Zhang, Z.; Cardwell, D.; Sasikumar, A.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.
2016-04-01
The impact of proton irradiation on the threshold voltage (VT) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of VT was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 1014 cm-2. Silvaco Atlas simulations of VT shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different VT dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed VT shifts. The proton irradiation induced VT shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.
Carrier removal and defect behavior in p-type InP
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.
1992-01-01
A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.
Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films
Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.
2015-01-01
Amorphous WO3 thin films are of keen interest as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility upon extended Li+-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping, i.e., WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion-trapping occurs when x exceeds ~0.65 in LixWO3 during ion insertion. We find two main kinds of Li+-ion trapping sites (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li+-ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices. PMID:26259104
Photoionization of radiation-induced traps in quartz and alkali feldspars.
Hütt, G; Jaek, I; Vasilchenko, V
2001-01-01
For the optimization of luminescence dating and dosimetry techniques on the basis of the optically stimulated luminescence, the stimulation spectra of quartz and alkali feldspars were measured in the spectral region of 250-1100 nm using optically stimulated afterglow. Optically stimulated luminescence in all studied spectral regions is induced by the same kind of deep traps, that produce thermoluminescence in the regions of palaeodosimetric peaks for both minerals. The mechanism for photoionization of deep traps was proposed as being due to delocalization of the excited state of the corresponding lattice defects. The excited state overlaps the zone states; i.e. is situated in the conduction band. Because of the high quantum yield of deep electron trap ionization in the UV spectral region, the present aim was to study the possibility of using UV-stimulation for palaeodose reconstruction.
Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response
NASA Astrophysics Data System (ADS)
Pahner, Paul; Kleemann, Hans; Burtone, Lorenzo; Tietze, Max L.; Fischer, Janine; Leo, Karl; Lüssem, Björn
2013-11-01
We study doping properties and charge carrier trap distributions in pentacene Schottky diodes doped by the fluorinated fullerene derivate C60F36 and 2,2'-(perdiylidene)dimalononitrile (F6-TCNNQ) upon small signal excitation. We show that the charge carrier depletion zones present in these Schottky diodes are tunable by the applied bias and temperature. Mott-Schottky evaluations yield reduced doping efficiencies and dopant activation energies between 19 and 54 meV. In the low-frequency regime, we resolve additional capacitive contributions from inherent charge carrier traps. A Gaussian distributed trap center 0.6 eV above the hole transport level with a density in the range of 1016 cm-3 depending on the material purity is found to be an intrinsic feature of the pentacene matrix. Upon doping, the deep Gaussian trap center saturates in density and broad exponentially tailing trap distributions arise. Subsequent ultraviolet photoelectron spectroscopy measurements are conducted to inspect for energetic broadening due to doping.
Wako, A H; Dejene, F B; Swart, H C
2016-11-01
The structural and optical properties of commercially obtained Y 3 Al 5 O 12 :Ce 3 + phosphor were investigated by replacing Al 3 + with Ga 3 + and Y 3 + with Gd 3 + in the Y 3 Al 5 O 12 :Ce 3 + structure to form Y 3 (Al,Ga) 5 O 12 :Ce 3 + and (Y,Gd) 3 Al 5 O 12 :Ce 3 + . X-Ray diffraction (XRD) results showed slight 2-theta peak shifts to lower angles when Ga 3 + was used and to higher angles when Gd 3 + was used, with respect to peaks from Y 3 Al 5 O 12 :Ce 3 + and JCPDS card no. 73-1370. This could be attributed to induced crystal-field effects due to the different ionic sizes of Ga 3 + and Gd 3 + compared with Al 3 + and Y 3 + . The photoluminescence (PL) spectra showed broad excitation from 350 to 550 nm with a maximum at 472 nm, and broad emission bands from 500 to 650 nm, centred at 578 nm for Y 3 Al 5 O 12 :Ce 3 + arising from the 5d → 4f transition of Ce 3 + . PL revealed a blue shift for Ga 3 + substitution and a red shift for Gd 3 + substitution. UV-Vis showed two absorption peaks at 357 and 457 nm for Y 3 Al 5 O 12 :Ce 3 + , with peaks shifting to 432 nm for Ga 3 + and 460 nm for Gd 3 + substitutions. Changes in the trap levels or in the depth and number of traps due to Ce 3 + were analysed using thermoluminescence (TL) spectroscopy. This revealed the existence of shallow and deep traps. It was observed that Ga 3 + substitution contributes to the shallowest traps at 74 °C and fewer deep traps at 163 °C, followed by Gd 3 + with shallow traps at 87 °C and deep traps at 146 °C. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Effects of antimony (Sb) on electron trapping near SiO{sub 2}/4H-SiC interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, P. M.; Jiang, Zenan; Basile, A. F.
To investigate the mechanism by which Sb at the SiO{sub 2}/SiC interface improves the channel mobility of 4H-SiC MOSFETs, 1 MHz capacitance measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements were performed on Sb-implanted 4H-SiC MOS capacitors. The measurements reveal a significant concentration of Sb donors near the SiO{sub 2}/SiC interface. Two Sb donor related CCDLTS peaks corresponding to shallow energy levels in SiC were observed close to the SiO{sub 2}/SiC interface. Furthermore, CCDLTS measurements show that the same type of near-interface traps found in conventional dry oxide or NO-annealed capacitors are present in the Sb implanted samples. Thesemore » are O1 traps, suggested to be carbon dimers substituted for O dimers in SiO{sub 2}, and O2 traps, suggested to be interstitial Si in SiO{sub 2}. However, electron trapping is reduced by a factor of ∼2 in Sb-implanted samples compared with samples with no Sb, primarily at energy levels within 0.2 eV of the SiC conduction band edge. This trap passivation effect is relatively small compared with the Sb-induced counter-doping effect on the MOSFET channel surface, which results in improved channel transport.« less
NASA Astrophysics Data System (ADS)
Romano, C.; Flexas, M. M.; Segura, M.; Román, S.; Bahamon, N.; Gili, J. M.; Sanchez-Vidal, A.; Martin, D.
2017-11-01
Numerous organisms, including both passive sinkers and active migrators, are captured in sediment traps together with sediments. By capturing these "swimmers", the traps become an extraordinarily tool to obtain relevant information on the biodiversity and dynamics of deep-sea organisms. Here we analyze near-bottom swimmers larger than 500 μm and their fluxes collected from eight near-bottom sediment traps installed on instrumented moorings deployed nearby Blanes Canyon (BC). Our data, obtained from November 2008 to October 2009 with a sampling rate of 15 days, constitutes the first year-long, continuous time series of the whole swimmers' community collected at different traps and bottom depths (from 300 m to 1800 m) inside a submarine canyon and on its adjacent open slope (OS). The traps captured 2155 specimens belonging to 70 taxa, with Crustacea (mainly Copepoda) and Annelida Polychaeta accounting for more than 90% of the total abundance. Almost half of the identified taxa (33) were only present in BC traps, where mean annual swimmer fluxes per trap were almost one order of magnitude higher than in the OS ones. Temporal variability in swimmer fluxes was more evident in BC than in OS. Fluxes dropped in winter (in coincidence with the stormy period in the region) and remained low until the following spring. In spring, there was a switch in taxa composition, including an increase of planktonic organisms. Additionally, we report drastic effects of extreme events, such as major storms, on deep-sea fauna. The impact of such extreme events along submarine canyon systems calls to rethink the influence of climate-driven phenomena on deep-sea ecosystems and, consequently, on their living resources.
Anomalous photoluminescence in InP1−xBix
Wu, Xiaoyan; Chen, Xiren; Pan, Wenwu; Wang, Peng; Zhang, Liyao; Li, Yaoyao; Wang, Hailong; Wang, Kai; Shao, Jun; Wang, Shumin
2016-01-01
Low temperature photoluminescence (PL) from InP1−xBix thin films with Bi concentrations in the 0–2.49% range reveals anomalous spectral features with strong and very broad (linewidth of 700 nm) PL signals compared to other bismide alloys. Multiple transitions are observed and their energy levels are found much smaller than the band-gap measured from absorption measurements. These transitions are related to deep levels confirmed by deep level transient spectroscopy, which effectively trap free holes and enhance radiative recombination. The broad luminescence feature is beneficial for making super-luminescence diodes, which can theoretically enhance spatial resolution beyond 1 μm in optical coherent tomography (OCT). PMID:27291823
NASA Astrophysics Data System (ADS)
Kim, Youngjun; Cho, Seongeun; Park, Byoungnam
2018-03-01
We report ultraviolet (UV)-induced optical gating in a Zn1-x Mg x O nanocrystal solid solution (NCSS) field effect transistor (FET) through a systematic study in which UV-induced charge transport properties are probed as a function of Mg composition. Change in the electrical properties of Zn1-x Mg x O NCSS associated with electronic traps is investigated by field effect-modulated current-voltage characteristic curves in the dark and under illumination. Under UV illumination, significant threshold voltage shift to a more negative value in an n-channel Zn1-x Mg x O NCSS FET is observed. Importantly, as the Mg composition increases, the effect of UV illumination on the threshold voltage shift is alleviated. We found that threshold voltage shift as a function of Mg composition in the dark and under illumination is due to difference in the deep trap density in the Zn1-x Mg x O NCSS. This is supported by Mg composition dependent photoluminescence intensity in the visible range and reduced FET mobility with Mg addition. The presence of the deep traps and the corresponding trap energy levels in the Zn1-x Mg x O NCSS are ensured by photoelectron spectroscopy in air.
NASA Technical Reports Server (NTRS)
Messenger, S. R.; Walters, R. J.; Summers, G. P.
1993-01-01
Deep level transient spectroscopy was used to monitor thermal annealing of trapping centers in electron irradiated n(+)p InP junctions grown by metalorganic chemical vapor deposition, at temperatures ranging from 500 up to 650K. Special emphasis is given to the behavior of the minority carrier (electron) traps EA (0.24 eV), EC (0.12 eV), and ED (0.31 eV) which have received considerably less attention than the majority carrier (hole) traps H3, H4, and H5, although this work does extend the annealing behavior of the hole traps to higher temperatures than previously reported. It is found that H5 begins to anneal above 500K and is completely removed by 630K. The electron traps begin to anneal above 540K and are reduced to about half intensity by 630K. Although they each have slightly different annealing temperatures, EA, EC, and ED are all removed by 650K. A new hole trap called H3'(0.33 eV) grows as the other traps anneal and is the only trap remaining at 650K. This annealing behavior is much different than that reported for diffused junctions.
Hot, deep origin of petroleum: deep basin evidence and application
Price, Leigh C.
1978-01-01
Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.
Quantum Simulation of the Quantum Rabi Model in a Trapped Ion
NASA Astrophysics Data System (ADS)
Lv, Dingshun; An, Shuoming; Liu, Zhenyu; Zhang, Jing-Ning; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique; Kim, Kihwan
2018-04-01
The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.
Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices
Song, Younggul; Jeong, Hyunhak; Chung, Seungjun; Ahn, Geun Ho; Kim, Tae-Young; Jang, Jingon; Yoo, Daekyoung; Jeong, Heejun; Javey, Ali; Lee, Takhee
2016-01-01
The origin of negative differential resistance (NDR) and its derivative intermediate resistive states (IRSs) of nanocomposite memory systems have not been clearly analyzed for the past decade. To address this issue, we investigate the current fluctuations of organic nanocomposite memory devices with NDR and the IRSs under various temperature conditions. The 1/f noise scaling behaviors at various temperature conditions in the IRSs and telegraphic noise in NDR indicate the localized current pathways in the organic nanocomposite layers for each IRS. The clearly observed telegraphic noise with a long characteristic time in NDR at low temperature indicates that the localized current pathways for the IRSs are attributed to trapping/de-trapping at the deep trap levels in NDR. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems. PMID:27659298
Bond-center hydrogen in dilute Si1-xGex alloys: Laplace deep-level transient spectroscopy
NASA Astrophysics Data System (ADS)
Bonde Nielsen, K.; Dobaczewski, L.; Peaker, A. R.; Abrosimov, N. V.
2003-07-01
We apply Laplace deep-level transient spectroscopy in situ after low-temperature proton implantation into dilute Si1-xGex alloys and identify the deep donor state of hydrogen occupying a strained Si-Si bond-center site next to Ge. The activation energy of the electron emission from the donor is ˜158 meV when extrapolated to zero electrical field. We construct a configuration diagram of the Ge-strained site from formation and annealing data and deduce that alloying with ˜1% Ge does not significantly influence the low-temperature migration of hydrogen as compared to elemental Si. We observe two bond-center-type carbon-hydrogen centers and conclude that carbon impurities act as much stronger traps for hydrogen than the alloy Ge atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baly, L.; Otazo, M. R.; Molina, D.
2006-09-08
A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.
MIS capacitor studies on silicon carbide single crystals
NASA Technical Reports Server (NTRS)
Kopanski, J. J.
1990-01-01
Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).
Investigation of defect properties in Cu(In,Ga)Se 2 solar cells by deep-level transient spectroscopy
NASA Astrophysics Data System (ADS)
Kerr, L. L.; Li, Sheng S.; Johnston, S. W.; Anderson, T. J.; Crisalle, O. D.; Kim, W. K.; Abushama, J.; Noufi, R. N.
2004-09-01
The performance of the chalcopyrite material Cu(In,Ga)Se 2 (CIGS) used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. The deep-level transient spectroscopy (DLTS) technique is used in this work to characterize the defect properties, yielding relevant information about the defect types, their capture cross-sections, and energy levels and densities in the CIGS cells. Three solar cells developed using different absorber growth technologies were analyzed using DLTS, capacitance-voltage ( C- V), and capacitance-temperature ( C- T) techniques. It was found that CIS cells grown at the University of Florida exhibits a middle-gap defect level that may relate to the cell's low fill factor and open-circuit voltage values observed. A high efficiency ( ηc>18%) CIGS cell produced by the National Renewable Energy Laboratory (NREL) was found to contain three minority-carrier (electron) traps and a 13% CIGS cell produced by the Energy Photovoltaics Inc. (EPV) exhibited one majority (hole) trap. The approach followed using the DLTS technique serves as a paradigm for revealing the presence of significant defect levels in absorber materials, and may be used to support the identification of remedial processing operations.
NASA Technical Reports Server (NTRS)
Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.
1984-01-01
Deep level transient spectroscopy reveals that the main electron traps for one-MeV electron irradiated GaAs cells are E9c)-0.31, E(c)-0.90 eV, and the main hole trap is due to the level. Electron trap density was found to vary from 3/tens-trillion ccm for 2/one quadrillion cm 3/3.7 quadrillion cm for 21 sextillion cm electron fluence for electron fluence; a similar result was also obtained for the hole trap density. As for the grown-in defects in the Al(x)Ga(1-x)As p-n junciton cells, only two electron traps with energies of E(c)-0.20 and E(c)-0.34 eV were observed in samples with x = 0.17, and none was found for x 0.05. Auger analysis on the Al(x)Ga(1-x) As window layer of the GaAs solar cell showed a large amount of oxygen and carbon contaminants near the surface of the AlGaAs epilayer. Thermal annealing experiment performed at 250 C for up to 100 min. showed a reduction in the density of both electron traps.
Simply actuated closure for a pressure vessel - Design for use to trap deep-sea animals
NASA Technical Reports Server (NTRS)
Yayanos, A. A.
1977-01-01
A pressure vessel is described that can be closed by a single translational motion within 1 sec. The vessel is a key component of a trap for small marine animals and operates automatically on the sea floor. As the vessel descends to the sea floor, it is subjected both internally and externally to the high pressures of the deep sea. The mechanism for closing the pressure vessel on the sea floor is activated by the timed release of the ballast which was used to sink the trap. As it rises to the sea surface, the internal pressure of the vessel remains near the value present on the sea floor. The pressure vessel has been used in simulated ocean deployments and in the deep ocean (9500 m) with a 75%-85% retention of the deep-sea pressure. Nearly 100% retention of pressure can be achieved by using an accumulator filled with a gas.
NASA Astrophysics Data System (ADS)
Du, Mao-Hua; Biswas, Koushik; Singh, David J.
2012-10-01
In this paper, we report theoretical studies of native defects and dopants in a number of room-temperature semiconductor radiation detection materials, i.e., CdTe, TlBr, and Tl6SeI4. We address several important questions, such as what causes high resistivity in these materials, what explains good μτ product (carrier mobility-lifetime product) in soft-lattice ionic compounds that have high defect density, and how to obtain high resistivity and low carrier trapping simultaneously. Our main results are: (1) shallow donors rather than deep ones are responsible for high resistivity in high-quality detectorgrade CdTe; (2) large dielectric screening and the lack of deep levels from low-energy native defects may contribute to the good μτ products for both electrons and holes in TlBr; (3) the polarization phenomenon in Tl6SeI4 is expected to be much reduced compared to that in TlBr.
Lifetime degradation of n-type Czochralski silicon after hydrogenation
NASA Astrophysics Data System (ADS)
Vaqueiro-Contreras, M.; Markevich, V. P.; Mullins, J.; Halsall, M. P.; Murin, L. I.; Falster, R.; Binns, J.; Coutinho, J.; Peaker, A. R.
2018-04-01
Hydrogen plays an important role in the passivation of interface states in silicon-based metal-oxide semiconductor technologies and passivation of surface and interface states in solar silicon. We have shown recently [Vaqueiro-Contreras et al., Phys. Status Solidi RRL 11, 1700133 (2017)] that hydrogenation of n-type silicon slices containing relatively large concentrations of carbon and oxygen impurity atoms {[Cs] ≥ 1 × 1016 cm-3 and [Oi] ≥ 1017 cm-3} can produce a family of C-O-H defects, which act as powerful recombination centres reducing the minority carrier lifetime. In this work, evidence of the silicon's lifetime deterioration after hydrogen injection from SiNx coating, which is widely used in solar cell manufacturing, has been obtained from microwave photoconductance decay measurements. We have characterised the hydrogenation induced deep level defects in n-type Czochralski-grown Si samples through a series of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), and high-resolution Laplace DLTS/MCTS measurements. It has been found that along with the hydrogen-related hole traps, H1 and H2, in the lower half of the gap reported by us previously, hydrogenation gives rise to two electron traps, E1 and E2, in the upper half of the gap. The activation energies for electron emission from the E1 and E2 trap levels have been determined as 0.12, and 0.14 eV, respectively. We argue that the E1/H1 and E2/H2 pairs of electron/hole traps are related to two energy levels of two complexes, each incorporating carbon, oxygen, and hydrogen atoms. Our results show that the detrimental effect of the C-O-H defects on the minority carrier lifetime in n-type Si:O + C materials can be very significant, and the carbon concentration in Czochralski-grown silicon is a key parameter in the formation of the recombination centers.
Metastable defect response in CZTSSe from admittance spectroscopy
Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; ...
2017-10-02
Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se) 4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the devicemore » measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.« less
Origin of High Electronic Quality in Solar Cell Absorber CH3NH3PbI3
NASA Astrophysics Data System (ADS)
Yin, Wanjian; Shi, Tingting; Wei, Suhua; Yan, Yanfa
Thin-film solar cells based on CH3NH3PbI3 halide perovskites have recently shown remarkable performance. First-principle calculations and molecular dynamic simulations show that the structure of pristine CH3NH3PbI3 is much more disordered than the inorganic archetypal thin-film semiconductor CdTe. However, the structural disorders from thermal fluctuation, point defects and grain boundaries introduce rare deep defect states within the bandgaps; therefore, the material has high electronic quality. We have further shown that this unusually high electronic quality is attributed to the unique electronic structures of halide perovskite: the strong coupling between cation lone-pair Pb s orbitals and anion p orbitals and the large atomic size of constitute cation atoms. We further found that although CH3NH3PbI3 GBs do not introduce a deep gap state, the defect level close to the VBM can still act as a shallow hole trap state. Cl and O can spontaneously segregate into GBs and passivate those defect levels and deactivate the trap state.
Nitrided SrTiO3 as charge-trapping layer for nonvolatile memory applications
NASA Astrophysics Data System (ADS)
Huang, X. D.; Lai, P. T.; Liu, L.; Xu, J. P.
2011-06-01
Charge-trapping characteristics of SrTiO3 with and without nitrogen incorporation were investigated based on Al/Al2O3/SrTiO3/SiO2/Si (MONOS) capacitors. A Ti-silicate interlayer at the SrTiO3/SiO2 interface was confirmed by x-ray photoelectron spectroscopy and transmission electron microscopy. Compared with the MONOS capacitor with SrTiO3 as charge-trapping layer (CTL), the one with nitrided SrTiO3 showed a larger memory window (8.4 V at ±10 V sweeping voltage), higher P/E speeds (1.8 V at 1 ms +8 V) and better retention properties (charge loss of 38% after 104 s), due to the nitrided SrTiO3 film exhibiting higher dielectric constant, higher deep-level traps induced by nitrogen incorporation, and suppressed formation of Ti silicate between the CTL and SiO2 by nitrogen passivation.
Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.
2018-03-01
The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.
Organic Compounds Complexify Transport in the Amargosa Desert—The Case for Phytotritiation
NASA Astrophysics Data System (ADS)
Stonestrom, D. A.; Luo, W.; Andraski, B. J.; Baker, R. J.; Maples, S.; Mayers, C. J.; Young, M. B.
2014-12-01
Civilian low-level radioactive waste containing organic compounds was disposed in 2- to 15-m deep unlined trenches in a 110-m deep unsaturated zone at the present-day USGS Amargosa Desert Research Site. Tritium represents the plurality of disposed activity. A plume of gas-phase contaminants surrounds the disposal area, with 60 distinct volatile organic compounds (VOCs) identified to date. The distribution of tritiated water in the unsaturated zone surrounding the disposal area is highly enigmatic, with orders of magnitude separating observed levels from those predicted by multiphase models of mass and energy transport. Peaks of tritium and VOCs are coincidently located in sediments tens of meters below the root zone, suggesting abiotic stratigraphic control on lateral transport at depth. Surprisingly, the highest observed levels of tritium occur at a depth of about 1.5 m, the base of the creosote-bush plant-community root zone, where levels of waste-derived VOCs are low (approaching atmospheric levels). Bulk water-vapor samples from shallow and deep unsaturated-zone profile hot spots were trapped as water ice in cold fingers immersed in dry ice-isopropyl alcohol filled Dewar flasks, then melted and sequentially extracted by purge-and-trap VOC degassing followed by elution through activated carbon solid-phase extraction (SPE) cartridges. Analysis of tritium activities and mass spectrometer results indicate that over 98% of tritium activity at depth is present as water, whereas about 15% of basal root zone tritium activity is present as organic compounds trapped with the water. Of these, the less-volatile compound group removed by SPE accounted for about 85% of the organic tritium activity, with mass spectrometry identifying 2-ethyl-1-hexanol as the principal compound removed. This plant-produced fatty alcohol is ubiquitous in the root zone of creosote-bush communities and represents a family of hydroxyl-containing plant produced compounds that give the plants their pungency. These findings suggest that tritiated hydroxyl groups on plant-produced organic compounds provide an important reservoir and pathway for tritium transport.
NASA Astrophysics Data System (ADS)
Liu, L.; Xu, J. P.; Ji, F.; Chen, J. X.; Lai, P. T.
2012-07-01
Charge-trapping memory capacitor with nitrided gadolinium oxide (GdO) as charge storage layer (CSL) is fabricated, and the influence of post-deposition annealing in NH3 on its memory characteristics is investigated. Transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction are used to analyze the cross-section and interface quality, composition, and crystallinity of the stack gate dielectric, respectively. It is found that nitrogen incorporation can improve the memory window and achieve a good trade-off among the memory properties due to NH3-annealing-induced reasonable distribution profile of a large quantity of deep-level bulk traps created in the nitrided GdO film and reduction of shallow traps near the CSL/SiO2 interface.
Complete erasing of ghost images on computed radiography plates and role of deeply trapped electrons
NASA Astrophysics Data System (ADS)
Ohuchi-Yoshida, Hiroko; Kondo, Yasuhiro
2011-12-01
Computed radiography (CR) plates made of europium-doped Ba(Sr)FBr(I) were simultaneously exposed to filtered ultraviolet light and visible light in order to erase ghost images, i.e., latent image that is unerasable with visible light (LIunVL) and reappearing one, which are particularly observed in plates irradiated with a high dose and/or cumulatively over-irradiated. CR samples showing LIunVLs were prepared by irradiating three different types of CR plates (Agfa ADC MD10, Kodak Directview Mammo EHRM2, and Fuji ST-VI) with 50 kV X-ray beams in the dose range 8.1 mGy-8.0 Gy. After the sixth round of simultaneous 6 h exposures to filtered ultraviolet light and visible light, all the LIunVLs in the three types of CR plates were erased to the same level as in an unirradiated plate and no latent images reappeared after storage at 0 °C for 14 days. With conventional exposure to visible light, LIunVLs consistently remained in all types of CR plates irradiated with higher doses of X-rays and latent images reappeared in the Agfa M10 plates after storage at 0 °C. Electrons trapped in deep centers cause LIunVLs and they can be erased by simultaneous exposures to filtered ultraviolet light and visible light. To study electrons in deep centers, the absorption spectra were examined in all types of irradiated CR plates by using polychromatic ultraviolet light from a deep-ultraviolet lamp. It was found that deep centers showed a dominant peak in the absorption spectra at around 324 nm for the Agfa M10 and Kodak EHRM2 plates, and at around 320 nm for the Fuji ST-VI plate, in each case followed by a few small peaks. The peak heights were dose-dependent for all types of CR samples, suggesting that the number of electrons trapped in deep centers increases with the irradiation dose.
NASA Technical Reports Server (NTRS)
Hallberg, Robert; Inamdar, Anand K.
1993-01-01
Greenhouse trapping is examined theoretically using a version of the radiative transfer equations that demonstrates how atmospheric greenhouse trapping can vary. Satellite observations of atmospheric greenhouse trapping are examined for four months representing the various seasons. The cause of the super greenhouse effect at the highest SSTs is examined, and four processes are found to contribute. The middle and upper troposphere must be particularly moist and the temperature lapse rate must be increasingly unstable over the warmest regions to explain the observed distribution of atmospheric greenhouse trapping. Since the highest SSTs are generally associated with deep convection, this suggests that deep convection acts to moisten the middle and upper troposphere in regions of the highest SSTs relative to other regions. The tropical atmospheric circulation acts to both increase the temperature lapse rate and greatly increase the atmospheric water vapor concentration with spatially increasing SST.
Jing, Ziang; Li, Changming; Zhao, Hong; Zhang, Guiling; Han, Baozhong
2016-01-01
The doping effect of graphene nanoplatelets (GNPs) on electrical insulation properties of polyethylene (PE) was studied by combining experimental and theoretical methods. The electric conduction properties and trap characteristics were tested for pure PE and PE/GNPs composites by using a direct measurement method and a thermal stimulated current (TSC) method. It was found that doping smaller GNPs is more beneficial to decrease the conductivity of PE/GNPs. The PE/GNPs composite with smaller size GNPs mainly introduces deep energy traps, while with increasing GNPs size, besides deep energy traps, shallow energy traps are also introduced. These results were also confirmed by density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) method calculations. Therefore, doping small size GNPs is favorable for trapping charge carriers and enhancing insulation ability, which is suggested as an effective strategy in exploring powerful insulation materials. PMID:28773802
Deep level defects in dilute GaAsBi alloys grown under intense UV illumination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, P. M.; Tarun, Marianne; Beaton, D. A.
2016-07-21
Dilute GaAs1-xBix alloys exhibiting narrow band edge photoluminescence (PL) were recently grown by molecular beam epitaxy (MBE) with the growth surface illuminated by intense UV radiation. To investigate whether the improved optical quality of these films results from a reduction in the concentration of deep level defects, p+/n and n+/p junction diodes were fabricated on both the illuminated and dark areas of several samples. Deep Level Transient Spectroscopy (DLTS) measurements show that the illuminated and dark areas of both the n- and p-type GaAs1-xBix epi-layers have similar concentrations of near mid-gap electron and hole traps, in the 1015 cm-3 range.more » Thus the improved PL spectra cannot be explained by a reduction in non-radiative recombination at deep level defects. We note that carrier freeze-out above 35 K is significantly reduced in the illuminated areas of the p-type GaAs1-xBix layers compared to the dark areas, allowing the first DLTS measurements of defect energy levels close to the valence band edge. These defect levels may account for differences in the PL spectra from the illuminated and dark areas of un-doped layers with a similar Bi fraction.« less
NASA Astrophysics Data System (ADS)
Hu, Lilei; Mandelis, Andreas; Melnikov, Alexander; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H.
2017-01-01
Solution-processed colloidal quantum dots (CQDs) are promising materials for realizing low-cost, large-area, and flexible photovoltaic devices. The study of charge carrier transport in quantum dot solids is essential for understanding energy conversion mechanisms. Recently, solution-processed two-layer oleic-acid-capped PbS CQD solar cells with one layer treated with tetrabutylammonium iodide (TBAI) serving as the main light-absorbing layer and the other treated with 1,2-ethanedithiol (EDT) acting as an electron-blocking/hole-extraction layer were reported. These solar cells demonstrated a significant improvement in power conversion efficiency of 8.55% and long-term air stability. Coupled with photocarrier radiometry measurements, this work used a new trap-state mediated exciton hopping transport model, specifically for CQD thin films, to unveil and quantify exciton transport mechanisms through the extraction of hopping transport parameters including exciton lifetimes, hopping diffusivity, exciton detrapping time, and trap-state density. It is shown that PbS-TBAI has higher trap-state density than PbS-EDT that results in higher PbS-EDT exciton lifetimes. Hopping diffusivities of both CQD thin film types show similar temperature dependence, particularly higher temperatures yield higher hopping diffusivity. The higher diffusivity of PbS-TBAI compared with PbS-EDT indicates that PbS-TBAI is a much better photovoltaic material than PbS-EDT. Furthermore, PCR temperature spectra and deep-level photothermal spectroscopy provided additional insights to CQD surface trap states: PbS-TBAI thin films exhibit a single dominant trap level, while PbS-EDT films with lower trap-state densities show multiple trap levels.
Strategic Partnership for Research in Nanotechnology
2008-07-21
Journal of Applied Physics, 2007. 101(5). 44. Leong, W.L., et al., Charging phenomena in pentacene -gold nanoparticle memory device. Applied Physics Letters...Agreement between experimental data and simulations strongly supports the presence of deep traps in the studied nanoparticles and highlights the ability...of SMS-EC to study energetics and dynamics of deep traps in organic materials at the nanoscale.[2] Other recent research has focused on how the
Philippine microplate tectonics and hydrocarbon exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, J.J. Jr.
1986-07-01
Hydrocarbon traps in the Philippine Islands developed during a long, complex history of microplate tectonics. Carbonate and clastic stratigraphic traps formed during Mesozoic and early Cenozoic rifting and drifting. Hydrocarbons, generated in deep rift basins, migrated to the traps during drifting. Later Cenozoic compressional tectonic activity and concomitant faulting enhanced some traps and destroyed others. Seismic data offshore from Palawan Island reveal the early trap histories. Later trap histories can be interpreted from seismic, outcrop, and remote-sensing data. Understanding the microplate tectonic history of the Philippines is the key to interpreting trap histories.
Sustained climate warming drives declining marine biological productivity
NASA Astrophysics Data System (ADS)
Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.
2018-03-01
Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.
A dominant electron trap in molecular beam epitaxial InAlN lattice-matched to GaN
NASA Astrophysics Data System (ADS)
Pandey, Ayush; Bhattacharya, Aniruddha; Cheng, Shaobo; Botton, Gianluigi A.; Mi, Zetian; Bhattacharya, Pallab
2018-04-01
Deep levels in lattice-matched undoped and Si-doped InAlN/GaN grown by plasma-assisted molecular beam epitaxy have been identified and characterized by capacitance and photocapacitance measurements. From x-ray diffraction, reflectance measurements, electron energy loss spectroscopy and high-resolution transmission electron microscopy it is evident that the material has two distinct phases with different compositions. These correspond to In compositions of 18.1% and 25.8%, with corresponding bandgaps of 4.6 eV and 4.1 eV, respectively. The lower bandgap material is present as columnar microstructures in the form of quantum wires. A dominant electron trap with an activation energy of 0.293 ± 0.01 eV, a small capture cross-section of (1.54 ± 0.25) × 10-18 cm2, and density increasing linearly with Si doping density is identified in all the samples. The characteristics of the electron trap and variation of diode capacitance are discussed in the context of carrier dynamics involving the dominant trap level and the quantum wires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Cardwell, D.; Sasikumar, A.
2016-04-28
The impact of proton irradiation on the threshold voltage (V{sub T}) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of V{sub T} was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 10{sup 14} cm{sup −2}. Silvaco Atlas simulations of V{sub T} shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different V{sub T} dependences on protonmore » irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed V{sub T} shifts. The proton irradiation induced V{sub T} shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.« less
NASA Technical Reports Server (NTRS)
Li, S. S.; Chiu, T. T.; Loo, R. Y.
1981-01-01
The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.
Impurity-induced deep centers in Tl 6SI 4
Shi, Hongliang; Lin, Wenwen; Kanatzidis, Mercouri G.; ...
2017-04-13
Tl 6SI 4 is a promising material for room-temperature semiconductor radiation detection applications. The history of the development of semiconductor radiation detection materials has demonstrated that impurities strongly affect the carrier transport and that material purification is a critically important step in improving the carrier transport and thereby the detector performance. Here, we report combined experimental and theoretical studies of impurities in Tl 6SI 4. Impurity concentrations in Tl 6SI 4 were analyzed by glow discharge mass spectrometry. Purification of the raw material by multi-pass vertical narrow zone refining was found to be effective in reducing the concentrations of mostmore » impurities. Density functional theory calculations were also performed to study the trapping levels introduced by the main impurities detected in experiments. We show that, among dozens of detected impurities, most are either electrically inactive or shallow. In the purified Tl 6SI 4 sample, only Bi has a significant concentration (0.2 ppm wt) and introduces deep electron trapping levels in the band gap. Lastly, improvement of the purification processes is expected to further reduce the impurity concentrations and their impact on carrier transport in Tl 6SI 4, leading to improved detector performance.« less
NASA Astrophysics Data System (ADS)
Puebla, Ricardo; Casanova, Jorge; Plenio, Martin B.
2018-03-01
The dynamics of the quantum Rabi model (QRM) in the deep strong coupling regime is theoretically analyzed in a trapped-ion set-up. Recognizably, the main hallmark of this regime is the emergence of collapses and revivals, whose faithful observation is hindered under realistic magnetic dephasing noise. Here, we discuss how to attain a faithful implementation of the QRM in the deep strong coupling regime which is robust against magnetic field fluctuations and at the same time provides a large tunability of the simulated parameters. This is achieved by combining standing wave laser configuration with continuous dynamical decoupling. In addition, we study the role that amplitude fluctuations play to correctly attain the QRM using the proposed method. In this manner, the present work further supports the suitability of continuous dynamical decoupling techniques in trapped-ion settings to faithfully realize different interacting dynamics.
NASA Astrophysics Data System (ADS)
Lim, Jae-Gab; Yang, Seung-Dong; Yun, Ho-Jin; Jung, Jun-Kyo; Park, Jung-Hyun; Lim, Chan; Cho, Gyu-seok; Park, Seong-gye; Huh, Chul; Lee, Hi-Deok; Lee, Ga-Won
2018-02-01
In this paper, SONOS-type flash memory device with highly improved charge-trapping efficiency is suggested by using silicon nanocrystals (Si-NCs) embedded in silicon nitride (SiNX) charge trapping layer. The Si-NCs were in-situ grown by PECVD without additional post annealing process. The fabricated device shows high program/erase speed and retention property which is suitable for multi-level cell (MLC) application. Excellent performance and reliability for MLC are demonstrated with large memory window of ∼8.5 V and superior retention characteristics of 7% charge loss for 10 years. High resolution transmission electron microscopy image confirms the Si-NC formation and the size is around 1-2 nm which can be verified again in X-ray photoelectron spectroscopy (XPS) where pure Si bonds increase. Besides, XPS analysis implies that more nitrogen atoms make stable bonds at the regular lattice point. Photoluminescence spectra results also illustrate that Si-NCs formation in SiNx is an effective method to form deep trap states.
NASA Astrophysics Data System (ADS)
Jayawardena, Asanka; Shen, X.; Mooney, P. M.; Dhar, Sarit
2018-06-01
Interfacial charge trapping in 4H–SiC MOS capacitors with P doped SiO2 or phospho-silicate glass (PSG) as a gate dielectric has been investigated with temperature dependent capacitance–voltage measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements. The measurements indicate that P doping in the dielectric results in significant reduction of near-interface electron traps that have energy levels within 0.5 eV of the 4H–SiC conduction band edge. Extracted trap densities confirm that the phosphorus induced near-interface trap reduction is significantly more effective than interfacial nitridation, which is typically used for 4H–SiC MOSFET processing. The CCDLTS measurements reveal that the two broad near-interface trap peaks, named ‘O1’ and ‘O2’, with activation energies around 0.15 eV and 0.4 eV below the 4H–SiC conduction band that are typically observed in thermal oxides on 4H–SiC, are also present in PSG devices. Previous atomic scale ab initio calculations suggested these O1 and O2 traps to be carbon dimers substituted for oxygen dimers (CO=CO) and interstitial Si (Sii) in SiO2, respectively. Theoretical considerations in this work suggest that the presence of P in the near-interfacial region reduces the stability of the CO=CO defects and reduces the density of Sii defects through the network restructuring. Qualitative comparison of results in this work and reported work suggest that the O1 and O2 traps in SiO2/4H–SiC MOS system negatively impact channel mobility in 4H–SiC MOSFETs.
I-V-T analysis of radiation damage in high efficiency Si solar cells
NASA Technical Reports Server (NTRS)
Banerjee, S.; Anderson, W. A.; Rao, B. B.
1985-01-01
A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved.
Cheng, Ta-Chun; Roffler, Steve R; Tzou, Shey-Cherng; Chuang, Kuo-Hsiang; Su, Yu-Cheng; Chuang, Chih-Hung; Kao, Chien-Han; Chen, Chien-Shu; Harn, I-Hong; Liu, Kuan-Yi; Cheng, Tian-Lu; Leu, Yu-Ling
2012-02-15
β-glucuronidase is an attractive reporter and prodrug-converting enzyme. The development of near-IR (NIR) probes for imaging of β-glucuronidase activity would be ideal to allow estimation of reporter expression and for personalized glucuronide prodrug cancer therapy in preclinical studies. However, NIR glucuronide probes are not yet available. In this work, we developed two fluorescent probes for detection of β-glucuronidase activity, one for the NIR range (containing IR-820 dye) and the other for the visible range [containing fluorescein isothiocyanate (FITC)], by utilizing a difluoromethylphenol-glucuronide moiety (TrapG) to trap the fluorochromes in the vicinity of the active enzyme. β-glucuronidase-mediated hydrolysis of the glucuronyl bond of TrapG generates a highly reactive alkylating group that facilitates the attachment of the fluorochrome to nucleophilic moieties located near β-glucuronidase-expressing sites. FITC-TrapG was selectively trapped on purified β-glucuronidase or β-glucuronidase-expressing CT26 cells (CT26/mβG) but not on bovine serum albumin or non-β-glucuronidase-expressing CT26 cells used as controls. β-glucuronidase-activated FITC-TrapG did not interfere with β-glucuronidase activity and could label bystander proteins near β-glucuronidase. Both FITC-TrapG and NIR-TrapG specifically imaged subcutaneous CT26/mβG tumors, but only NIR-TrapG could image CT26/mβG tumors transplanted deep in the liver. Thus NIR-TrapG may provide a valuable tool for visualizing β-glucuronidase activity in vivo.
NASA Astrophysics Data System (ADS)
Asano, Tetsuya
Self-assembled quantum dots (SAQDs) formed by lattice-mismatch strain-driven epitaxy are currently the most advanced nanostructure-based platform for high performance optoelectronic applications such as lasers and photodetectors. While the QD lasers have realized the best performance in terms of threshold current and temperature stability, the performance of QD photodetectors (QDIPs) has not surpassed that of quantum well (QW) photodetectors. This is because the requirement of maximal photon absorption for photodetectors poses the challenge of forming an appropriately-doped large number of uniform multiple SAQD (MQD) layers with acceptable structural defect (dislocation etc.) density. This dissertation addresses this challenge and, through a combination of innovative approach to control of defects in MQD growth and judicious placement of SAQDs in a resonant cavity, shows that SAQD based quantum dot infrared photodetectors (QDIPs) can be made competitive with their quantum well counterparts. Specifically, the following major elements were accomplished: (i) the molecular beam epitaxy (MBE) growth of dislocation-free and uniform InAs/InAlGaAs/GaAs MQD strained structures up to 20-period, (ii) temperature-dependent photo- and dark-current based analysis of the electron density distribution inside the MQD structures for various doping schemes, (iii) deep level transient spectroscopy based identification of growth procedure dependent deleterious deep traps in SAQD structures and their reduction, and (iv) the use of an appropriately designed resonant cavity (RC) and judicious placement of the SAQD layers for maximal enhancement of photon absorption to realize over an order of magnitude enhancement in QDIP detectivity. The lattermost demonstration indicates that implementation of the growth approach and resonant cavity strategy developed here while utilizing the currently demonstrated MIR and LWIR QDIPs with detectivities > 10 10 cmHz1/2/W at ˜ 77 K will enable RC-QDIP with detectivites > 1011 cmHz1/2/W that become competitive with other photodetector technologies in the mid IR (3 -- 5 mum) and long wavelength IR (8 -- 12 mum) ranges with the added advantage of materials stability and normal incidence sensitivity. Extended defect-free and size-uniform MQD structures of shallow InAs on GaAs (001) SAQDs capped with In0.15Ga0.85As strain relief layers and separated by GaAs spacer layer were grown up to 20 periods employing a judicious combination of MBE and migration enhanced epitaxy (MEE) techniques and examined by detailed transmission electron microscopy studies to reveal the absence of detectable extended defects (dislocation density < ˜ 107 /cm2). Photoluminescence studies revealed high optical quality. As our focus was on mid-infrared detectors, the MQD structures were grown in n (GaAs) -- i (MQD) -- n (GaAs) structures providing electron occupancy in at least the quantum confined ground energy states of the SAQDs and thus photodetection based upon transitions to electron excited states. Bias and temperature-dependent dark and photocurrent measurements were carried out for a variety of doping profiles and the electron density spatial distribution was determined from the resulting band bending profiles. It is revealed that almost no free electrons are present in the middle SAQD layers in the 10-period and 20-period n--i--n QDIP structures, indicating the existence of a high density (˜1015/cm3) of negative charges which can be attributed to electrons trapped in deep levels. To examine the nature of these deep traps, samples suitable for deep level transient spectroscopy measurement were synthesized and examined. These studies, carried out for the first time for SAQDs, revealed that the deep traps are dominantly present in the GaAs overgrowth layers grown at 500°C by MBE. For structures involving GaAs overgrowths using MEE at temperatures as low as 350°C, the deep trap density in the GaAs overgrowth layer was found to be significantly reduced by factor of ˜ 20. Thus, employing MEE growth for GaAs spacer layers in n--i(20-period MQD)-- n QDIP structures, electrons could be provided to all the SAQDs owing to the significantly reduced deep trap density. Finally, for enhancement of the incident photon absorption, we designed and fabricated asymmetric Fabry-Perot resonant cavity-enhanced QDIPs. For effective enhancement, SAQDs with a narrow photoresponse in the 3 -- 5 mum infrared regime were realized utilizing [(AlAs)1(GaAs)4]4 short-period superlattices as the confining barrier layers. Incorporating such SAQDs in RC-QDIPs, we successfully demonstrated ˜ 10 times enhancement of the QDIP detectivity. As stated above, this makes RC-QDIPs containing QDIPs with the currently demonstrated detectivities of ˜ 1010 cmHz 1/2/W at ˜ 77 K competitive with other IR photodetector technologies.
Thermal stability of deep level defects induced by high energy proton irradiation in n-type GaN
NASA Astrophysics Data System (ADS)
Zhang, Z.; Farzana, E.; Sun, W. Y.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Kyle, E. C. H.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.
2015-10-01
The impact of annealing of proton irradiation-induced defects in n-type GaN devices has been systematically investigated using deep level transient and optical spectroscopies. Moderate temperature annealing (>200-250 °C) causes significant reduction in the concentration of nearly all irradiation-induced traps. While the decreased concentration of previously identified N and Ga vacancy related levels at EC - 0.13 eV, 0.16 eV, and 2.50 eV generally followed a first-order reaction model with activation energies matching theoretical values for NI and VGa diffusion, irradiation-induced traps at EC - 0.72 eV, 1.25 eV, and 3.28 eV all decrease in concentration in a gradual manner, suggesting a more complex reduction mechanism. Slight increases in concentration are observed for the N-vacancy related levels at EC - 0.20 eV and 0.25 eV, which may be due to the reconfiguration of other N-vacancy related defects. Finally, the observed reduction in concentrations of the states at EC - 1.25 and EC - 3.28 eV as a function of annealing temperature closely tracks the detailed recovery behavior of the background carrier concentration as a function of annealing temperature. As a result, it is suggested that these two levels are likely to be responsible for the underlying carrier compensation effect that causes the observation of carrier removal in proton-irradiated n-GaN.
Thermally-assisted optically stimulated luminescence from deep electron traps in α-Al2O3:C,Mg
NASA Astrophysics Data System (ADS)
Kalita, J. M.; Chithambo, M. L.; Polymeris, G. S.
2017-07-01
We report thermally-assisted optically stimulated luminescence (TA-OSL) in α-Al2O3:C,Mg. The OSL was measured at elevated temperatures between 50 and 240 °C from a sample preheated to 500 °C after irradiation to 100 Gy. That OSL could be measured even after the preheating is direct evidence of the existence of deep electron traps in α-Al2O3:C,Mg. The TA-OSL intensity goes through a peak with measurement temperature. The initial increase is ascribed to thermal assistance to optical stimulation whereas the subsequent decrease in intensity is deduced to reflect increasing incidences of non-radiative recombination, that is, thermal quenching. The activation energy for thermal assistance corresponding to a deep electron trap was estimated as 0.667 ± 0.006 eV whereas the activation energy for thermal quenching was calculated as 0.90 ± 0.04 eV. The intensity of the TA-OSL was also found to increase with irradiation dose. The dose response is sublinear from 25 to 150 Gy but saturates with further increase of dose. The TA-OSL dose response has been discussed by considering the competition for charges at the deep traps. This study incidentally shows that TA-OSL can be effectively used in dosimetry involving large doses.
Sustained climate warming drives declining marine biological productivity
Moore, J. Keith; Fu, Weiwei; Primeau, Francois; ...
2018-03-01
Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less
Sustained climate warming drives declining marine biological productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, J. Keith; Fu, Weiwei; Primeau, Francois
Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less
NASA Astrophysics Data System (ADS)
Dong, Xiaofei; Xu, Jianping; Shi, Shaobo; Zhang, Xiaosong; Li, Lan; Yin, Shougen
2017-05-01
We report tunable electroluminescence (EL) from solution-processed ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs)/poly(9-vinlycarbazole) multilayer films. The EL spectra exhibit a red shift as the QD layer thickness increases. By analyzing the dependence of the applied voltage and the ZCIS/ZnS QD layer thickness on the EL spectra, the origin of the red shift is associated with the increased trap density of QDs that induces the injected electrons to be trapped in the deep donor level. The current conduction mechanism based on the current density-voltage curves at different voltage regions was discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua
2015-01-28
The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measuredmore » carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.« less
NASA Astrophysics Data System (ADS)
Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.
2015-08-01
The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.
NASA Astrophysics Data System (ADS)
Shashank, N.; Singh, Vikram; Gupta, Sanjeev K.; Madhu, K. V.; Akhtar, J.; Damle, R.
2011-04-01
Ni/SiO2/Si MOS structures were fabricated on n-type Si wafers and were irradiated with 50 MeV Li3+ ions with fluences ranging from 1×1010 to 1×1012 ions/cm2. High frequency C-V characteristics are studied in situ to estimate the build-up of fixed and oxide charges. The nature of the charge build-up with ion fluence is analyzed. Defect levels in bulk Si and its properties such as activation energy, capture cross-section, trap concentration and carrier lifetimes are studied using deep-level transient spectroscopy. Electron traps with energies ranging from 0.069 to 0.523 eV are observed in Li ion-irradiated devices. The dependence of series resistance, substrate doping and accumulation capacitance on Li ion fluence are clearly explained. The study of dielectric properties (tan δ and quality factor) confirms the degradation of the oxide layer to a greater extent due to ion irradiation.
Effects of oxygen vacancy on the photoconductivity in BaSnO3
NASA Astrophysics Data System (ADS)
Park, Jisung; Char, Kookrin; Institute of Applied Physics, Department of Physics; Astronomy, Seoul National University Team
We have found the photoconductive behavior of BaSnO3, especially their magnitude and time dependence, is very sensitive to the oxygen vacancy concentration. We made epitaxial BaSnO3 film with BaHfO3 buffer layer by pulsed laser deposition. As we had reported before, MgO substrate with its large band gap size about 7.8 eV was used to exclude any photoconductance from the substrate. BaHfO3 layer was used to reduce the threading dislocation density in BaSnO3 film. To control the oxygen vacancy concentration in the BaSnO3 film, we annealed the sample in Ar or O2 atmosphere with varying annealing conditions. After each annealing process, photoconductivity of BaSnO3 was measured during illumination of UV light. The result showed that the magnitude of photoconductivity of BaSnO3 increased after annealing at higher temperature in Ar atmosphere, while the changes in the dark current remains minimal. The result can be explained by a hole trap mechanism. Higher Fermi level due to the increased oxygen vacancy concentration can cause occupation of deep acceptor levels in dislocations of the BaSnO3 film. These occupied deep acceptor levels in turn trap photo-generated holes so that the recombination of electron-hole pair is deterred. Samsung Science and Technology Foundation.
Antimatter plasmas in a multipole trap for antihydrogen.
Andresen, G; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y
2007-01-12
We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.
NASA Astrophysics Data System (ADS)
Arehart, A. R.; Sasikumar, A.; Rajan, S.; Via, G. D.; Poling, B.; Winningham, B.; Heller, E. R.; Brown, D.; Pei, Y.; Recht, F.; Mishra, U. K.; Ringel, S. A.
2013-02-01
This paper reports direct evidence for trap-related RF output power loss in GaN high electron mobility transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) through increased concentration of a specific electron trap at EC-0.57 eV that is located in the drain access region, as a function of accelerated life testing (ALT). The trap is detected by constant drain current deep level transient spectroscopy (CID-DLTS) and the CID-DLTS thermal emission time constant precisely matches the measured drain lag. Both drain lag and CID-DLTS measurements show this state to already exist in pre-stressed devices, which coupled with its strong increase in concentration as a function of stress in the absence of significant increases in concentrations of other detected traps, imply its role in causing degradation, in particular knee walkout. This study reveals EC-0.57 eV trap concentration tracks degradation induced by ALT for MOCVD-grown HEMTs supplied by several commercial and university sources. The results suggest this defect has a common source and may be a key degradation pathway in AlGaN/GaN HEMTs and/or an indicator to predict device lifetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shu; Zhou, Chunhua; Jiang, Qimeng
2014-01-06
Thermally stimulated current (TSC) spectroscopy and high-voltage back-gating measurement are utilized to study GaN buffer traps specific to AlGaN/GaN lateral heterojunction structures grown on a low-resistivity Si substrate. Three dominating deep-level traps in GaN buffer with activation energies of ΔE{sub T1} ∼ 0.54 eV, ΔE{sub T2} ∼ 0.65 eV, and ΔE{sub T3} ∼ 0.75 eV are extracted from TSC spectroscopy in a vertical GaN-on-Si structure. High back-gate bias applied to the Si substrate could influence the drain current in an AlGaN/GaN-on-Si high-electron-mobility transistor in a way that cannot be explained with a simple field-effect model. By correlating the trap states identified in TSC with the back-gating measurement results, itmore » is proposed that the ionization/deionization of both donor and acceptor traps are responsible for the generation of buffer space charges, which impose additional modulation to the 2DEG channel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Shin-ichiro, E-mail: sato.shinichiro@jaea.go.jp; Optoelectronics and Radiation Effects Branch, U.S. Naval Research Laboratory, Washington, DC 20375; Schmieder, Kenneth J.
2016-05-14
In order to expand the technology of III-V semiconductor devices with quantum structures to both terrestrial and space use, radiation induced defects as well as native defects generated in the quantum structures should be clarified. Electrically active defects in GaAs p{sup +}n diodes with embedded ten layers of InAs quantum dots (QDs) are investigated using Deep Level Transient Fourier Spectroscopy. Both majority carrier (electron) and minority carrier (hole) traps are characterized. In the devices of this study, GaP layers are embedded in between the QD layers to offset the compressive stress introduced during growth of InAs QDs. Devices are irradiatedmore » with high energy protons for three different fluences at room temperature in order to characterize radiation induced defects. Seven majority electron traps and one minority hole trap are found after proton irradiation. It is shown that four electron traps induced by proton irradiation increase in proportion to the fluence, whereas the EL2 trap, which appears before irradiation, is not affected by irradiation. These defects correspond to electron traps previously identified in GaAs. In addition, a 0.53 eV electron trap and a 0.14 eV hole trap are found in the QD layers before proton irradiation. It is shown that these native traps are also unaffected by irradiation. The nature of the 0.14 eV hole trap is thought to be Ga-vacancies in the GaP strain balancing layers.« less
Modifications of traps to reduce bycatch of freshwater turtles
Bury, R. Bruce
2011-01-01
Mortality of freshwater turtles varies among types and deployments of traps. There are few or no losses in hoop or fyke traps set where turtles may reach air, including placement in shallows, addition of floats on traps, and tying traps securely to a stake or to shore. Turtle mortality occurs when traps are set deep, traps are checked at intervals >1 day, and when turtles are captured as bycatch. Devices are available that exclude turtles from traps set for crab or game fish harvest. Slotted gates in front of the trap mouth reduce turtle entry, but small individuals still may be trapped. Incidental take of turtles is preventable by integrating several designs into aquatic traps, such as adding floats to the top of traps so turtles may reach air or an extension tube (chimney, ramp) that creates an escape route.
NASA Astrophysics Data System (ADS)
Chatbouri, S.; Troudi, M.; Kalboussi, A.; Souifi, A.
2018-02-01
The transport phenomena in metal-oxide-semiconductor (MOS) structures having silicon nanocrystals (Si-NCs) inside the dielectric layer have been investigated, in dark condition and under visible illumination. At first, using deep-level transient spectroscopy (DLTS), we find the presence of series electron traps having very close energy levels (comprised between 0.28 and 0.45 eV) for ours devices (with/without Si-NCs). And a single peak appears at low temperature only for MOS with Si-NCs related to Si-NCs DLTS response. In dark condition, the conduction mechanism is dominated by the thermionic fast emission/capture of charge carriers from the highly doped polysilicon layer to Si-substrate through interface trap states for MOS without Si-NCs. The tunneling of charge carriers from highly poly-Si to Si substrate trough the trapping/detrapping mechanism in the Si-NCs, at low temperature, contributed to the conduction mechanism for MOS with Si-NCs. The light effect on transport mechanisms has been investigated using current-voltage ( I- V), and high frequency capacitance-voltage ( C- V) methods. We have been marked the photoactive trap effect in inversion zone at room temperature in I- V characteristics, which confirm the contribution of photo-generated charge on the transport mechanisms from highly poly-Si to Si substrate trough the photo-trapping/detrapping mechanism in the Si-NCs and interfaces traps levels. These results have been confirmed by an increasing about 10 pF in capacity's values for the C- V characteristics of MOS with Si-NCs, in the inversion region for inverse high voltage applied under photoexcitation at low temperature. These results are helpful to understand the principle of charge transport in dark condition and under illumination, of MOS structures having Si-NCs in the SiO x = 1.5 oxide matrix.
ac aging and space-charge characteristics in low-density polyethylene polymeric insulation
NASA Astrophysics Data System (ADS)
Chen, G.; Fu, M.; Liu, X. Z.; Zhong, L. S.
2005-04-01
In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene (LDPE). LDPE films with 200 μm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.
Tracer constraints on organic particle transfer efficiency to the deep ocean
NASA Astrophysics Data System (ADS)
Weber, T. S.; Cram, J. A.; Deutsch, C. A.
2016-02-01
The "transfer efficiency" of sinking organic particles through the mesopelagic zone is a critical determinant of ocean carbon sequestration timescales, and the atmosphere-ocean partition of CO2. Our ability to detect large-scale variations in transfer efficiency is limited by the paucity of particle flux data from the deep ocean, and the potential biases of bottom-moored sediment traps used to collect it. Here we show that deep-ocean particle fluxes can be reconstructed by diagnosing the rate of phosphate accumulation and oxygen disappearance along deep circulation pathways in an observationally constrained Ocean General Circulation Model (OGCM). Combined with satellite and model estimates of carbon export from the surface ocean, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1000m and 2000m that is high ( 20%) at high latitudes and negligible (<5%) throughout subtropical gyres, with intermediate values in the tropics. This pattern is at odds with previous estimates of deep transfer efficiency derived from bottom-moored sediment traps, but is consistent with upper-ocean flux profiles measured by neutrally buoyant sediment traps, which show strong attenuation of low latitude particle fluxes over the top 500m. Mechanistically, the pattern can be explained by spatial variations in particle size distributions, and the temperature-dependence of remineralization. We demonstrate the biogeochemical significance of our findings by comparing estimates of deep-ocean carbon sequestration in a scenario with spatially varying transfer efficiency to one with a globally uniform "Martin-curve" particle flux profile.
Intrinsic charge trapping in amorphous oxide films: status and challenges
NASA Astrophysics Data System (ADS)
Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.
2018-06-01
We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.
NASA Astrophysics Data System (ADS)
Prado-Pérez, A. J.; Aracil, E.; Pérez del Villar, L.
2014-06-01
Currently, carbon deep geological storage is one of the most accepted methods for CO2 sequestration, being the long-term behaviour assessment of these artificial systems absolutely essential to guarantee the safety of the CO2 storage. In this sense, hydrogeochemical modelling is being used for evaluating any artificial CO2 deep geological storage as a potential CO2 sinkhole and to assess the leakage processes that are usually associated with these engineered systems. Carbonate precipitation, as travertines or speleothems, is a common feature in the CO2 leakage scenarios and, therefore, is of the utmost importance to quantify the total C content trapped as a stable mineral phase in these carbonate formations. A methodology combining three classical techniques such as: electrical resistivity tomography, geostatistical analysis and mercury porosimetry is described in this work, which was developed for calculating the total amount of C trapped as CaCO3 associated with the CO2 leakages in Alicún de las Torres natural analogue (Granada, Spain). The proposed methodology has allowed estimating the amount of C trapped as calcite, as more than 1.7 Mt. This last parameter, focussed on an artificial CO2 deep geological storage, is essential for hydrogeochemical modellers when evaluating whether CO2 storages constitute or not CO2 sinkholes. This finding is extremely important when assessing the long-term behaviour and safety of any artificial CO2 deep geological storage.
Van Oosten, John; Hile, Ralph; Jobes, Frank W.
1946-01-01
This study of the whitefish fishery of Lakes Huron and Michigan includes: (1) a review of the available statistics of production, 1879-1942; (2) a detailed analysis of the annual fluctuations in the production and abundance of whitefish and in the intensity of the whitefish fishery in the State of Michigan waters of the lakes, 1929-1942, with special reference to the effects of fishing with deep trap nets; (3) an account of the bathymetric distribution and vertical movements of whitefish and certain other species; and (4) a report of field observations made in 1931 and 1932, as related particularly to the destruction of undersized whitefish by pound nets and deep trap nets. The main body of the manuscript and appendices A, B, and C, completed in March 1942, contain statistics through the year 1939. Since that time, records for the years 1940-1942 have become available. Because these additional data did not alter any of the conclusions of the manuscript but actually strengthened them, it was not deemed justifiable to expend the considerable amount of time and money that would be required to revise the study. The 1940-1942 records are therefore presented in appendix D. From a relatively high production in the earlier years of the period, 1879 to 1942, the yield of whitefish declined to a lower level about which the catch fluctuated until the late 1920's and early 1930's when a general increase in production occurred. This recent increase was higher and the subsequent decline more severe in the Michigan waters of Lake Huron than in other areas.
Charge carrier relaxation in InGaAs-GaAs quantum wire modulation-doped heterostructures
NASA Astrophysics Data System (ADS)
Kondratenko, S. V.; Iliash, S. A.; Mazur, Yu I.; Kunets, V. P.; Benamara, M.; Salamo, G. J.
2017-09-01
The time dependencies of the carrier relaxation in modulation-doped InGaAs-GaAs low-dimensional structures with quantum wires have been studied as functions of temperature and light excitation levels. The photoconductivity (PC) relaxation follows a stretched exponent with decay constant, which depends on the morphology of InGaAs epitaxial layers, presence of deep traps, and energy disorder due to inhomogeneous distribution of size and composition. A hopping model, where electron tunnels between bands of localized states, gives appropriate interpretation for temperature-independent PC decay across the temperature range 150-290 K. At low temperatures (T < 150 K), multiple trapping-retrapping via 1D states of InGaAs quantum wires (QWRs), sub-bands of two-dimensional electron gas of modulation-doped n-GaAs spacers, as well as defect states in the GaAs environment are the dominant relaxation mechanism. The PC and photoluminescence transients for samples with different morphologies of the InGaAs nanostructures are compared. The relaxation rates are found to be largely dependent on energy disorder due to inhomogeneous distribution of strain, nanostructure size and composition, and piezoelectric fields in and around nanostructures, which have a strong impact on efficiency of carrier exchange between bands of the InGaAs QWRs, GaAs spacers, or wetting layers; presence of local electric fields; and deep traps.
Electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP
NASA Astrophysics Data System (ADS)
Ferrandis, Philippe; Billaud, Mathilde; Duvernay, Julien; Martin, Mickael; Arnoult, Alexandre; Grampeix, Helen; Cassé, Mikael; Boutry, Hervé; Baron, Thierry; Vinet, Maud; Reimbold, Gilles
2018-04-01
To overcome the Fermi-level pinning in III-V metal-oxide-semiconductor capacitors, attention is usually focused on the choice of dielectric and surface chemical treatments prior to oxide deposition. In this work, we examined the influence of the III-V material surface cleaning and the semiconductor growth technique on the electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP(100) substrates. By means of the capacitance-voltage measurements, we demonstrated that samples do not have the same total oxide charge density depending on the cleaning solution used [(NH4)2S or NH4OH] prior to oxide deposition. The determination of the interface trap density revealed that a Fermi-level pinning occurs for samples grown by metalorganic chemical vapor deposition but not for similar samples grown by molecular beam epitaxy. Deep level transient spectroscopy analysis explained the Fermi-level pinning by an additional signal for samples grown by metalorganic chemical vapor deposition, attributed to the tunneling effect of carriers trapped in oxide toward interface states. This work emphasizes that the choice of appropriate oxide and cleaning treatment is not enough to prevent a Fermi-level pinning in III-V metal-oxide-semiconductor capacitors. The semiconductor growth technique needs to be taken into account because it impacts the trapping properties of the oxide.
Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...
2015-04-15
We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.
Polymeric and Molecular Materials for Advanced Organic Electronics
2011-07-25
printable variants. All have excellent dielectric and insulating properties, a remarkable ability to minimize trapped charge between thin film transistor... trapped charge density, and hence the corresponding OTFT device performance. Under this program we first discovered that OTFT performance is...deep, high- density charge traps must be overcome for efficient FET operation, it has been postulated that in most OFETs, shallow lower-density (~10
CO2 Capillary-Trapping Processes in Deep Saline Aquifers
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Soltanian, Mohamadreza; Ritzi, Robert W., Jr.; Dominic, David F.
2014-05-01
The idea of reducing the Earth's greenhouse effect by sequestration of CO2 into the Earth's crust has been discussed and evaluated for more than two decades. Deep saline aquifers are the primary candidate formations for realization of this idea. Evaluation of reservoir capacity and the risk of CO2 leakage require a detailed modeling of the migration and distribution of CO2 in the subsurface structure. There is a finite risk that structural (or hydrodynamic) trapping by caprock may be compromised (e.g. by improperly abandoned wells, stratigraphic discontinuities, faults, etc.). Therefore, other trapping mechanisms (capillary trapping, dissolution, and mineralization) must be considered. Capillary trapping may be very important in providing a "secondary-seal", and is the focus of our investigation. The physical mechanism of CO2 trapping in porous media by capillary trapping incorporates three related processes, i.e. residual trapping, trapping due to hysteresis of the relative permeability, and trapping due to hysteresis of the capillary pressure. Additionally CO2 may be trapped in heterogeneous media due to difference in capillary pressure entry points for different materials. The amount of CO2 trapped by these processes is a complicated nonlinear function of the spatial distribution of permeability, permeability anisotropy, capillary pressure, relative permeability of brine and CO2, permeability hysteresis and residual gas saturation (as well as the rate, total amount and placement of injected CO2). Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. We investigated how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs. The results strongly suggest that representing these small scales features, and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. References [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515.
2006-09-01
actually seen. A. Hierro , … S. A. Ringel et al., Phys. Stat. Sol (b) 228, 937 (2001). Ohio State U. Use DLTS and DLOS (Deep Level Optical Spectroscopy...to threading dislocations. Also see A. Hierro et al., APL 76, 3064 (2000), where traps at EC-ET=0.58-0.62, 1.35, 2.57-2.64, 3.22eV are seen in GaN
Raman gas self-organizing into deep nano-trap lattice
Alharbi, M.; Husakou, A.; Chafer, M.; Debord, B.; Gérôme, F.; Benabid, F.
2016-01-01
Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb–Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing. PMID:27677451
NASA Astrophysics Data System (ADS)
Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai
2017-10-01
A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.
NASA Astrophysics Data System (ADS)
Chen, Zhuoying; Bird, Matthew; Lemaur, Vincent; Radtke, Guillaume; Cornil, Jérôme; Heeney, Martin; McCulloch, Iain; Sirringhaus, Henning
2011-09-01
Understanding the mechanisms limiting ambipolar transport in conjugated polymer field-effect transistors (FETs) is of both fundamental and practical interest. Here, we present a systematic study comparing hole and electron charge transport in an ambipolar conjugated polymer, semicrystalline poly(3,3''-di-n-decylterselenophene) (PSSS). Starting from a detailed analysis of the device characteristics and temperature/charge-density dependence of the mobility, we interpret the difference between hole and electron transport through both the Vissenberg-Matters and the mobility-edge model. To obtain microscopic insight into the quantum mechanical wave function of the charges at a molecular level, we combine charge modulation spectroscopy (CMS) measuring the charge-induced absorption signatures from positive and negative polarons in these ambipolar FETs with corresponding density functional theory (DFT) calculations. We observe a significantly higher switch-on voltage for electrons than for holes due to deep electron trap states, but also a higher activation energy of the mobility for mobile electrons. The CMS spectra reveal that the electrons that remain mobile and contribute to the FET current have a wave function that is more localized onto a single polymer chain than that of holes, which is extended over several polymer chains. We interpret this as evidence that the transport properties of the mobile electrons in PSSS are still affected by the presence of deep electron traps. The more localized electron state could be due to the mobile electrons interacting with shallow trap states in the vicinity of a chemical, potentially water-related, impurity that might precede the capture of the electron into a deeply trapped state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Futao, E-mail: dongft@sina.com; Du, Linxiu; Liu, Xianghua
2013-10-15
The influence of Mn,S and B contents on microstructural characteristics, mechanical properties and hydrogen trapping ability of low-carbon Al-killed enamel steel was investigated. The materials were produced and processed in a laboratory and the ultra-fast continuous annealing processing was performed using a continuous annealing simulator. It was found that increasing Mn,S contents in steel can improve its hydrogen trapping ability which is attributed by refined ferrite grains, more dispersed cementite and added MnS inclusions. Nevertheless, it deteriorates mechanical properties of steel sheet. Addition of trace boron results in both good mechanical properties and significantly improved hydrogen trapping ability. The boronmore » combined with nitrogen segregating at grain boundaries, cementite and MnS inclusions, provides higher amount of attractive hydrogen trapping sites and raises the activation energy for hydrogen desorption from them. - Highlights: • We study microstructures and properties in low-carbon Al-killed enamel steel. • Hydrogen diffusion coefficients are measured to reflect fish-scale resistance. • Manganese improves hydrogen trapping ability but decrease deep-drawing ability. • Boron improves both hydrogen trapping ability and deep-drawing ability. • Both excellent mechanical properties and fish-scale resistance can be matched.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.
2006-07-08
The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock composition and mineral assemblages on the reaction rates. This study numerically investigates the injection, migration and sequestration of supercritical carbon dioxide in deep Columbia River basalt formations using the multifluid subsurface flow and reactive transport simulator STOMP-CO2 with its ECKEChem module. Simulations are executed on high resolution multiple stochastic realizations of the layered basalt systems and demonstrate the migration behavior through layered basalt formations and the mineralization of dissolved carbon dioxide. Reported results include images of the migration behavior, distribution of carbonate formation, quantities of injected and sequestered carbon dioxide, and percentages of the carbon dioxide sequestered by different mechanisms over time.« less
76 FR 36511 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
...-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3 AGENCY... the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP) (Amendment 3), incorporating a draft... current trap limit regulations state that red crab may not be harvested from gear other than a marked red...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrakchi, G.; Barbier, D.; Guillot, G.
Electrical and deep level transient spectroscopy measurements on Schottky barriers were performed in order to characterize electrically active defects in n-type GaAs (Bridgman substrates or liquid-phase epitaxial layers) after pulsed electron beam annealing. Both surface damage and bulk defects were observed in the Bridgman substrates depending on the pulse energy density. No electron traps were detected in the liquid-phase epitaxial layers before and after annealing for an energy density of 0.4 J/cm/sup 2/. The existence of an interfacial insulating layer at the metal-semiconductor interface, associated with As out-diffusion during the pulsed electron irradiation, was revealed by the abnormally high valuesmore » of the Schottky barrier diffusion potential. Moreover, two new electron traps with activation energy of 0.35 and 0.43 eV, called EP1 and EP2, were introduced in the Bridgman substrates after pulsed electron beam annealing. The presence of these traps, related to the As evaporation, was tentatively attributed to the decrease of the EL2 electron trap signal after 0.4-J/cm/sup 2/ annealing. It is proposed that these new defects states are due to the decomposition of the As/sub Ga/-As/sub i/ complex recently considered as the most probable defect configuration for the dominant EL2 electron trap usually detected in as-grown GaAs substrates.« less
Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Manisha; Tomar, Monika; Gupta, Vinay, E-mail: drguptavinay@gmail.com
2015-06-15
Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V)more » characteristics with good rectifying behaviour (rectification ratio ≈ 10{sup 4} at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements.« less
Production of large Bose-Einstein condensates in a magnetic-shield-compatible hybrid trap
NASA Astrophysics Data System (ADS)
Colzi, Giacomo; Fava, Eleonora; Barbiero, Matteo; Mordini, Carmelo; Lamporesi, Giacomo; Ferrari, Gabriele
2018-05-01
We describe the production of large 23Na Bose-Einstein condensates in a hybrid trap characterized by a weak magnetic field quadrupole and a tightly focused infrared beam. The use of small magnetic field gradients makes the trap compatible with the state-of-the-art magnetic shields. By taking advantage of the deep cooling and high efficiency of gray molasses to improve the initial trap loading conditions, we produce condensates composed of as many as 7 million atoms in less than 30 s .
On the deep-mantle origin of the Deccan Traps
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro M.
2017-02-01
The Deccan Traps in west-central India constitute one of Earth’s largest continental flood basalt provinces, whose eruption played a role in the Cretaceous-Paleogene extinction event. The unknown mantle structure under the Indian Ocean at the start of the Cenozoic presents a challenge for connecting the event to a deep mantle origin. We used a back-and-forth iterative method for time-reversed convection modeling, which incorporates tomography-based, present-day mantle heterogeneity to reconstruct mantle structure at the start of the Cenozoic. We show a very low-density, deep-seated upwelling that ascends beneath the Réunion hot spot at the time of the Deccan eruptions. We found a second active upwelling below the Comores hot spot that likely contributed to the region of partial melt feeding the massive eruption.
NASA Astrophysics Data System (ADS)
Xiao, H. B.; Yang, C. P.; Huang, C.; Xu, L. F.; Shi, D. W.; Marchenkov, V. V.; Medvedeva, I. V.; Bärner, K.
2012-03-01
The electronic structure, formation energy, and transition energy levels of intrinsic defects have been studied using the density-functional method within the generalized gradient approximation for neutral and charged oxygen vacancy in CaCu3Ti4O12 (CCTO). It is found that oxygen vacancies with different charge states can be formed in CCTO under both oxygen-rich and poor conditions for nonequilibrium and higher-energy sintering processes; especially, a lower formation energy is obtained for poor oxygen environment. The charge transition level (0/1+) of the oxygen vacancy in CCTO is located at 0.53 eV below the conduction-band edge. The (1+/2+) transition occurs at 1.06 eV below the conduction-band edge. Oxygen vacancies of Vo1+ and Vo2+ are positive stable charge states in most gap regions and can act as a moderately deep donor for Vo1+ and a borderline deep for Vo2+, respectively. The polarization and dielectric constant are considerably enhanced by oxygen vacancy dipoles, due to the off-center Ti and Cu ions in CCTO.
Dubey, Vikas; Kaur, Jagjeet; Parganiha, Yogita; Suryanarayana, N S; Murthy, K V R
2016-04-01
This paper reports the thermoluminescence properties of Eu(3+) doped different host matrix phosphors (SrY2O4 and Y4Al2O9). The phosphor is prepared by high temperature solid state reaction method. The method is suitable for large scale production and fixed concentration of boric acid using as a flux. The prepared samples were characterized by X-ray diffraction technique and the crystallite size calculated by Scherer's formula. The prepared phosphor characterized by Scanning Electron Microscopic (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive X-ray analysis (EDX), thermoluminescence (TL) and Transmission Electron Microscopic (TEM) techniques. The prepared phosphors for different concentration of Eu(3+) ions were examined by TL glow curve for UV, beta and gamma irradiation. The UV 254nm source used for UV irradiation, Sr(90) source was used for beta irradiation and Co(60) source used for gamma irradiation. SrY2O4:Eu(3+)and Y4Al2O9:Eu(3+) phosphors which shows both higher temperature peaks and lower temperature peaks for UV, beta and gamma irradiation. Here UV irradiated sample shows the formation of shallow trap (surface trapping) and the gamma irradiated sample shows the formation of deep trapping. The estimation of trap formation was evaluated by knowledge of trapping parameters. The trapping parameters such as activation energy, order of kinetics and frequency factor were calculated by peak shape method. Here most of the peak shows second order of kinetics. The effect of gamma, beta and UV exposure on TL studies was also examined and it shows linear response with dose which indicate that the samples may be useful for TL dosimetry. Formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors is discussed in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Danovaro, R.; Carugati, L.; Boldrin, A.; Calafat, A.; Canals, M.; Fabres, J.; Finlay, K.; Heussner, S.; Miserocchi, S.; Sanchez-Vidal, A.
2017-08-01
Information on the dynamics of deep-sea biota is extremely scant particularly for long-term time series on deep-sea zooplankton. Here, we present the results of a deep-sea zooplankton investigation over one annual cycle based on samples from sediment trap moorings in three sub-basins along the Mediterranean Sea. Deep-sea zooplankton assemblages were dominated by copepods, as in shallow waters, only in the Adriatic Sea (>60% of total abundance), but not in the deep Ionian Sea, where ostracods represented >80%, neither in the deep Alboran Sea, where polychaetes were >70%. We found that deep-sea zooplankton assemblages: i) are subjected to changes in their abundance and structure over time, ii) are characterized by different dominant taxa in different basins, and iii) display clear taxonomic segregation between shallow and near-bottom waters. Zooplankton biodiversity decreases with increasing water depth, but the equitability increases. We suggest here that variations of zooplankton abundance and assemblage structure are likely influenced by the trophic condition characterizing the basins. Our findings provide new insights on this largely unknown component of the deep ocean, and suggest that changes in the export of organic matter from the photic zone, such as those expected as a consequence of global change, can significantly influence zooplankton assemblages in the largest biome on Earth.
CdTe X-ray detectors under strong optical irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cola, Adriano; Farella, Isabella
2014-11-17
The perturbation behaviour of Ohmic and Schottky CdTe detectors under strong optical pulses is investigated. To this scope, the electric field profiles and the induced charge transients are measured, thus simultaneously addressing fixed and free charges properties, interrelated by one-carrier trapping. The results elucidate the different roles of the contacts and deep levels, both under dark and strong irradiation conditions, and pave the way for the improvement of detector performance control under high X-ray fluxes.
Picosecond Electronic Relaxations In Amorphous Semiconductors
NASA Astrophysics Data System (ADS)
Tauc, Jan
1983-11-01
Using the pump and probe technique the relaxation processes of photogenerated carriers in amorphous tetrahedral semiconductors and chalcogenide glasses in the time domain from 0.5 Ps to 1.4 ns have been studied. The results obtained on the following phenomena are reviewed: hot carrier thermalization in amorphous silicon; trapping of carriers in undoped a-Si:H; trapping of carriers in deep traps produced by doping; geminate recombination in As2S3-xSex glasses.
NASA Astrophysics Data System (ADS)
Harmatha, Ladislav; Mikolášek, Miroslav; Stuchlíková, L'ubica; Kósa, Arpád; Žiška, Milan; Hrubčín, Ladislav; Skuratov, Vladimir A.
2015-11-01
The contribution is focused on the diagnostics of structures with a heterojunction between amorphous and crystalline silicon prepared by HIT (Heterojunction with an Intrinsic Thin layer) technology. The samples were irradiated by Xe ions with energy 167 MeV and doses from 5 × 108 cm-2 to 5 × 1010 cm-2. Radiation defects induced in the bulk of Si and at the hydrogenated amorphous silicon and crystalline silicon (a-Si:H/c-Si) interface were identified by Deep Level Transient Spectroscopy (DLTS). Radiation induced A-centre traps, boron vacancy traps and different types of divacancies with a high value of activation energy were observed. With an increased fluence of heavy ions the nature and density of the radiation induced defects was changed.
Electronic effects of Se and Pb dopants in TlBr
NASA Astrophysics Data System (ADS)
Smith, Holland M.; Phillips, David J.; Sharp, Ian D.; Beeman, Jeffrey W.; Chrzan, Daryl C.; Haegel, Nancy M.; Haller, Eugene E.; Ciampi, Guido; Kim, Hadong; Shah, Kanai S.
2012-05-01
Deep levels in Se- and Pb-doped bulk TlBr detectors were characterized with photo-induced conductivity transient spectroscopy (PICTS) and cathodoluminescence (CL). Se-doped TlBr revealed two traps with energies of 0.35 and 0.45 eV in PICTS spectra. The Pb-doped material revealed three levels with energies of 0.11, 0.45, and 0.75 eV. CL measurements in both materials correlate with optical transitions involving some of the identified levels. The ambipolar carrier lifetimes of Se-doped and Pb-doped TlBr were measured with microwave reflectivity transients and found to be significantly lower than the lifetime of undoped TlBr.
76 FR 60379 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
.... 100903433-1531-02] RIN 0648-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab... approved in Amendment 3 to the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP). The New England... range and/or witness the at-sea retrieval of the traps to determine compliance. 2. Prohibition on...
Radioactivities induced in some LDEF samples
NASA Technical Reports Server (NTRS)
Reedy, Robert C.; Moss, Calvin E.; Bobias, S. George; Masarik, Jozef
1993-01-01
Radioactivities induced in several Long Duration Exposure Facilities (LDEF) samples were measured by low-level counting at Los Alamos and elsewhere. These radionuclides have activities similar to those observed in meteorites and lunar samples. Some trends were observed in these measurements in terms of profiles in trunnion layers and as a function of radionuclide half-life. Several existing computer codes were used to model the production by the protons trapped in the Earth's radiation belts and by the galactic cosmic rays of some of these radionuclides, Mn-54 and Co-57 in steel, Sc-46 in titanium, and Na-22 in alloys of titanium and aluminum. Production rates were also calculated for radionuclides possibly implanted in LDEF, Be-7, Be-10, and C-14. Enhanced concentrations of induced isotopes in the surfaces of trunnion sections relative to their concentrations in the center are caused by the lower-energy protons in the trapped radiation. Secondary neutrons made by high-energy trapped protons and by galactic cosmic rays produce much of the observed radioactivities, especially deep in an object. Comparisons of the observed to calculated activities of several radionuclides with different half-lives indicate that the flux of trapped protons at LDEF decreased significantly at the end of the mission.
Norouzzadeh, Mohammad Sadegh; Nguyen, Anh; Kosmala, Margaret; Swanson, Alexandra; Palmer, Meredith S; Packer, Craig; Clune, Jeff
2018-06-19
Having accurate, detailed, and up-to-date information about the location and behavior of animals in the wild would improve our ability to study and conserve ecosystems. We investigate the ability to automatically, accurately, and inexpensively collect such data, which could help catalyze the transformation of many fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior into "big data" sciences. Motion-sensor "camera traps" enable collecting wildlife pictures inexpensively, unobtrusively, and frequently. However, extracting information from these pictures remains an expensive, time-consuming, manual task. We demonstrate that such information can be automatically extracted by deep learning, a cutting-edge type of artificial intelligence. We train deep convolutional neural networks to identify, count, and describe the behaviors of 48 species in the 3.2 million-image Snapshot Serengeti dataset. Our deep neural networks automatically identify animals with >93.8% accuracy, and we expect that number to improve rapidly in years to come. More importantly, if our system classifies only images it is confident about, our system can automate animal identification for 99.3% of the data while still performing at the same 96.6% accuracy as that of crowdsourced teams of human volunteers, saving >8.4 y (i.e., >17,000 h at 40 h/wk) of human labeling effort on this 3.2 million-image dataset. Those efficiency gains highlight the importance of using deep neural networks to automate data extraction from camera-trap images, reducing a roadblock for this widely used technology. Our results suggest that deep learning could enable the inexpensive, unobtrusive, high-volume, and even real-time collection of a wealth of information about vast numbers of animals in the wild. Copyright © 2018 the Author(s). Published by PNAS.
Neutron radiation tolerance of Au-activated silicon
NASA Technical Reports Server (NTRS)
Joyner, W. T.
1987-01-01
Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.
Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells
NASA Technical Reports Server (NTRS)
Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.
1982-01-01
The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.
Photocurrent Suppression of Transparent Organic Thin Film Transistors
NASA Astrophysics Data System (ADS)
Chuang, Chiao-Shun; Tsai, Shu-Ting; Lin, Yung-Sheng; Chen, Fang-Chung; Shieh, Hang-Ping D.
2007-12-01
Organic thin-film transistors (OTFTs) with high transmittance and low photosensitivity have been demonstrated. By using titanium dioxide nanoparticles as the additives in the polymer gate insulators, the level of device photoresponse has been reduced. The device shows simultaneously a high transparence and a minimal threshold voltage shift under white light illumination. It is inferred that the localized energy levels deep in the energy gap of pentacene behave as the recombination centers, enhancing substantially the recombination process in the conducting channel of the OTFTs. Therefore, the electron trapping is relieved and the shift of threshold voltage is reduced upon illumination.
NASA Astrophysics Data System (ADS)
Elshazly, Ezzat S.; Tepper, Gary; Burger, Arnold
2010-08-01
Carrier trapping times were measured in detector grade thallium bromide (TlBr) and cadmium zinc telluride (CZT) from 300 to 110 K and the experimental data were analyzed using a trapping model. In CZT, because the majority carrier concentration is close to the intrinsic carrier concentration, the trapping time increases exponentially as the temperature decreases below about 160 K. In TlBr, the majority carrier concentration is many orders of magnitude greater than the intrinsic carrier concentration and the trapping time followed a (1/ T) 1/2 temperature dependence over the range of temperatures studied. The results of the model suggest that a moderately deep compensation center could be used to significantly increase the room temperature trapping time in TlBr.
Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors
NASA Astrophysics Data System (ADS)
Peaker, A. R.; Markevich, V. P.; Coutinho, J.
2018-04-01
The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.
The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less
Tin Oxide Nanowires: The Influence of Trap States on Ultrafast Carrier Relaxation
2009-01-01
We have studied the optical properties and carrier dynamics in SnO2nanowires (NWs) with an average radius of 50 nm that were grown via the vapor–liquid solid method. Transient differential absorption measurements have been employed to investigate the ultrafast relaxation dynamics of photogenerated carriers in the SnO2NWs. Steady state transmission measurements revealed that the band gap of these NWs is 3.77 eV and contains two broad absorption bands. The first is located below the band edge (shallow traps) and the second near the center of the band gap (deep traps). Both of these absorption bands seem to play a crucial role in the relaxation of the photogenerated carriers. Time resolved measurements suggest that the photogenerated carriers take a few picoseconds to move into the shallow trap states whereas they take ~70 ps to move from the shallow to the deep trap states. Furthermore the recombination process of electrons in these trap states with holes in the valence band takes ~2 ns. Auger recombination appears to be important at the highest fluence used in this study (500 μJ/cm2); however, it has negligible effect for fluences below 50 μJ/cm2. The Auger coefficient for the SnO2NWs was estimated to be 7.5 ± 2.5 × 10−31 cm6/s. PMID:20596473
Investigation of hydrogen interaction with defects in zirconia
NASA Astrophysics Data System (ADS)
Melikhova, O.; Kuriplach, J.; Čížek, J.; Procházka, I.; Brauer, G.; Anwand, W.
2010-04-01
Defect studies of a ZrO2 + 9 mol. % Y2O3 single crystal were performed in this work using a high resolution positron lifetime spectroscopy combined with slow positron implantation spectroscopy. In order to elucidate the nature of positron trapping sites observed experimentally, the structural relaxations of several types of vacancy-like defects in zirconia were performed and positron characteristics for them were calculated. Relaxed atomic configurations of studied defects were obtained by means of ab initio pseudopotential method within the supercell approach. Theoretical calculations indicated that neither oxygen vacancies nor their neutral complexes with substitute yttrium atoms are capable of positron trapping. On the other hand, zirconium vacancies are deep positron traps and are most probably responsible for the saturated positron trapping observed in yttria stabilized zirconia single crystals. However, the calculated positron lifetime for zirconium vacancy is apparently longer than the experimental value corresponding to a single-component spectrum measured for the cubic ZrO2 + 9 mol. % Y2O3 single crystal. It was demonstrated that this effect can be explained by hydrogen trapped in zirconium vacancies. On the basis of structure relaxations, we found that zirconium vacancy - hydrogen complexes represent deep positron traps with the calculated lifetime close to the experimental one. In zirconium vacancy - hydrogen complexes the hydrogen atom forms an O-H bond with one of the nearest neighbour oxygen atoms. The calculated bond length is close to 1 Å.
On the deep-mantle origin of the Deccan Traps.
Glišović, Petar; Forte, Alessandro M
2017-02-10
The Deccan Traps in west-central India constitute one of Earth's largest continental flood basalt provinces, whose eruption played a role in the Cretaceous-Paleogene extinction event. The unknown mantle structure under the Indian Ocean at the start of the Cenozoic presents a challenge for connecting the event to a deep mantle origin. We used a back-and-forth iterative method for time-reversed convection modeling, which incorporates tomography-based, present-day mantle heterogeneity to reconstruct mantle structure at the start of the Cenozoic. We show a very low-density, deep-seated upwelling that ascends beneath the Réunion hot spot at the time of the Deccan eruptions. We found a second active upwelling below the Comores hot spot that likely contributed to the region of partial melt feeding the massive eruption. Copyright © 2017, American Association for the Advancement of Science.
Model for determination of mid-gap states in amorphous metal oxides from thin film transistors
NASA Astrophysics Data System (ADS)
Bubel, S.; Chabinyc, M. L.
2013-06-01
The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.
Donors, Acceptors, and Traps in AlGaN and AlGaN/GaN Epitaxial Layers
2006-07-31
the background. 3.3 Positron annihilation spectroscopy (PAS): acceptor-type defects Positrons injected into defect-free GaN are annihilated by electrons...electron concentration n, and the average Ga-vacancy VGa concentration deduced from positron annihilation spectroscopy . 0.09 3.47 3.46 - 3.45 •ŗ.47225...of this paper, are often investigated by deep level transient spectroscopy (DLTS), and the usual analysis of DLTS data is based on the assumption that
Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea
2015-09-28
Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.
Zang, Huidong; Cristea, Mihail; Shen, Xuan; ...
2015-08-05
Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.
Xu, Jian; Murata, Daisuke; Ueda, Jumpei; Viana, Bruno; Tanabe, Setsuhisa
2018-05-07
Persistent luminescence (PersL) imaging without real-time external excitation has been regarded as the next generation of autofluorescence-free optical imaging technology. However, to achieve improved imaging resolution and deep tissue penetration, developing new near-infrared (NIR) persistent phosphors with intense and long duration PersL over 1000 nm is still a challenging but urgent task in this field. Herein, making use of the persistent energy transfer process from Cr 3+ to Er 3+ , we report a novel garnet persistent phosphor of Y 3 Al 2 Ga 3 O 12 codoped with Er 3+ and Cr 3+ (YAG G:Er-Cr), which shows intense Cr 3+ PersL (∼690 nm) in the deep red region matching well with the first biological window (NIR-I, 650-950 nm) and Er 3+ PersL (∼1532 nm) in the NIR region matching well with the third biological window (NIR-III, 1500-1800 nm). The optical imaging through raw-pork tissues (thickness of 1 cm) suggests that the emission band of Er 3+ can achieve higher spatial resolution and more accurate signal location than that of Cr 3+ due to the reduced light scattering at longer wavelengths. Furthermore, by utilizing two independent electron traps with two different trap depths in YAG G:Er-Cr, the Cr 3+ /Er 3+ PersL can even be recharged in situ by photostimulation with 660 nm LED thanks to the redistribution of trapped electrons from the deep trap to the shallow one. Our results serve as a guide in developing promising NIR (>1000 nm) persistent phosphors for long-term optical imaging.
NASA Astrophysics Data System (ADS)
Ortel, Marlis; Kalinovich, Nataliya; Röschenthaler, Gerd-Volker; Wagner, Veit
2013-09-01
Surface functionalization of solution processed zinc oxide layers was studied in transistors with bottom-gate bottom-contact configuration aiming at suppression of trapping processes to increase device stability. Saturation of electrically active surface sites and formation of a moisture barrier to decrease the impact of humid atmosphere was successfully shown by binding hexafluoropropylene oxide (HFPO) on the metal oxide semiconductor. Deep trap level related electrical parameters, i.e., stability, hysteresis, and on-set voltage, improved rapidly within 60 s of exposure which was attributed to occupation of sites characterized by low adsorption energies, e.g., at edges. In contrast, shallow trap level related parameters, i.e., mobility, showed a much slower process of improvement. Identical behavior was determined for the contact angle. A physical model is presented by applying first order reaction kinetics equation to Young's law and multiple trapping and release model which relates the dependence of the contact angle and the mobility to the hexafluoropropylene oxide deposition time. Consistent time constants of τ = ≪1 min, 2 min, and 250 min were extracted for mobility and contact angle which implies a direct dependence on the surface coverage. Mobility decreased at short deposition times, recovered at medium deposition times and improved strongly by 2.4 cm2 V-1 s-1 for long deposition times of 1400 min. A microscopic model of these phenomena is given with interpretation of the different time constants found in the experiment.
Zarifi, Mohammad H; Wiltshire, Benjamin Daniel; Mahdi, Najia; Shankar, Karthik; Daneshmand, Mojgan
2018-05-16
A large signal DC bias and a small signal microwave bias were simultaneously applied to TiO2 nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO2 nanotubes, and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time. The DC bias stimulated Poole-Frenkel type trap-mediated electrical injection of excess carriers into TiO2 nanotubes which resulted in a near constant resonant frequency but a pronounced decrease in the microwave amplitude due to free electron absorption. When ultraviolet illumination and DC bias were both present and then step-wise removed, the resonant frequency shifted due to trapping -mediated change in the dielectric constant of the nanotube membranes. Characteristic lifetimes of 60-80 s, 300-800 s and ~3000 s were present regardless of whether light or bias was applied and are also observed in the presence of a hole scavenger, which we attribute to oxygen adsorption and deep electron traps while another characteristic lifetime > 9000 s was only present when illumination was applied, and is attributed to the presence of hole traps.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
Antimatter Transport Processes
NASA Astrophysics Data System (ADS)
van der Werf, D. P.; Andresen G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration
2010-07-01
The comparison of the 1S-2S energy levels of hydrogen and antihydrogen will yield a stringent test of CPT conservation. Necessarily, the antihydrogen atoms need to be trapped to perform high precision spectroscopy measurements. Therefore, an approximately 1 T deep neutral trap, about 0.7 K for ground state (anti)hydrogen atoms, has been superimposed on a Penning-Malmberg trap in which the antiatoms are formed. The antihydrogen atoms, which are required to have a low enough kinetic energy to be trapped, are produced following a number of steps. A bunch of antiprotons from the CERN Antiproton Decelerator are caught in a Penning-Malmberg trap and subsequently sympathetically cooled down and then compressed using rotating wall electric fields. A positron plasma, formed in a separate accumulator, is transported to the main system and also compressed. Antihydrogen atoms are then formed by mixing the antiprotons and positrons. The velocity of the antiatoms, and their binding energies, will strongly depend on the initial conditions of the constituent particles, for example their temperatures and densities, and on the details of the mixing process. In this talk the complete lifecycle of antihydrogen atoms will be presented, starting with the production of the constituent particles and the description of the manipulations necessary to prepare positrons and antiprotons appropriately for antihydrogen formation. The latter will also be described, as will the possible fates of the antiatoms.
A simple technique for trapping Siren lacertina, Amphiuma means, and other aquatic vertebrates
Johnson, S.A.; Barichivich, W.J.
2004-01-01
We describe a commercially-available funnel trap for sampling aquatic vertebrates. The traps can be used in heavily vegetated wetlands and can be set in water up to 60 cm deep without concern for drowning the animals. They were especially useful for capturing the aquatic salamanders Siren lacertina and Amphiuma means, which have been difficult to capture with traditional sampling methods. They also were effective for sampling small fishes, particularly centrarchids, and larval anurans. In total, 14 species of amphibians, nine species of aquatic reptiles, and at least 32 fish species were captured. The trap we describe differs significantly from traditional funnel traps (e.g., minnow traps) and holds great promise for studies of small, aquatic vertebrates, in particular Siren and Amphiuma species.
Band-Like Behavior of Localized States of Metal Silicide Precipitate in Silicon
NASA Astrophysics Data System (ADS)
Bondarenko, Anton; Vyvenko, Oleg
2018-03-01
Deep-level transient spectroscopy (DLTS) investigations of energy levels of charge-carrier traps associated with precipitates of metal silicide often show that they behave not like localized monoenergetic traps but as a continuous density of allowed states in the bandgap with fast carrier exchange between these states, so-called band-like behavior. This kind of behavior was ascribed to the dislocation loop bounding the platelet, which in addition exhibits an attractive potential caused by long-range elastic strain. In previous works, the presence of the dislocation-related deformation potential in combination with the external electric field of the Schottky diode was included to obtain a reasonable fit of the proposed model to experimental data. Another well-known particular property of extended defects—the presence of their own strong electric field in their vicinity that is manifested in the logarithmic kinetics of electron capture—was not taken into account. We derive herein a theoretical model that takes into account both the external electric field and the intrinsic electric field of dislocation self-charge as well as its deformation potential, which leads to strong temporal variation of the activation energy during charge-carrier emission. We performed numerical simulations of the DLTS spectra based on such a model for a monoenergetic trap, finding excellent agreement with available experimental data.
Gul, R.; Roy, U. N.; James, R. B.
2017-03-15
In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less
NASA Astrophysics Data System (ADS)
Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.
2017-03-01
Thermal aging of cross-linked polyethylene (XLPE) can cause serious concerns in the safety operation in high voltage system. To get a more detailed picture on the effect of thermal aging on the trapping and detrapping process of XLPE in the melting temperature range, Thermal Stimulated Current (TSC) have been implemented in a Scanning Electron Microscope (SEM) with a specific arrangement. The XLPE specimens are molded and aged at two temperatures (120 °C and 140 °C) situated close to the melting temperature of the material. The use of SEM allows us to measure both leakage and displacement currents induced in samples under electron irradiation. The first represents the conduction process of XLPE and the second gives information on the trapping of charges in the bulk of the material. TSC associated to the SEM leads to show spectra of XLPE discharge under thermal stimulation using both currents measured after electron irradiation. It was found that leakage current in the charging process may be related to the physical defects resulting in crystallinity variation under thermal aging. However the trapped charge can be affected by the carbonyl groups resulting from the thermo-oxidation degradation and the disorder in the material. It is evidenced from the TSC spectra of unaged XLPE that there is no detrapping charge under heat stimulation. Whereas the presence of peaks in the TSC spectra of thermally aged samples indicates that there is some amount of trapped charge released by heating. The detrapping behavior of aged XLPE is supported by the supposition of the existence of two trap levels: shallow traps and deep traps. Overall, physico-chemical reactions under thermal aging at high temperatures leads to the enhancement of shallow traps density and changes in range of traps depth. These changes induce degradation of electrical properties of XLPE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gul, R.; Roy, U. N.; James, R. B.
In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less
Electron Correlation in Oxygen Vacancy in SrTiO3
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Demkov, Alexander A.
2014-03-01
Oxygen vacancies are an important type of defect in transition metal oxides. In SrTiO3 they are believed to be the main donors in an otherwise intrinsic crystal. At the same time, a relatively deep gap state associated with the vacancy is widely reported. To explain this inconsistency we investigate the effect of electron correlation in an oxygen vacancy (OV) in SrTiO3. When taking correlation into account, we find that the OV-induced localized level can at most trap one electron, while the second electron occupies the conduction band. Our results offer a natural explanation of how the OV in SrTiO3 can produce a deep in-gap level (about 1 eV below the conduction band bottom) in photoemission, and at the same time be an electron donor. Our analysis implies an OV in SrTiO3 should be fundamentally regarded as a magnetic impurity, whose deep level is always partially occupied due to the strong Coulomb repulsion. An OV-based Anderson impurity model is derived, and its implications are discussed. This work was supported by Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences under award number DESC0008877.
NASA Astrophysics Data System (ADS)
Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.
2014-03-01
Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.
NASA Astrophysics Data System (ADS)
Yamashita, Yudai; Yachi, Suguru; Takabe, Ryota; Sato, Takuma; Emha Bayu, Miftahullatif; Toko, Kaoru; Suemasu, Takashi
2018-02-01
We have investigated defects that occurred at the interface of p-BaSi2/n-Si heterojunction solar cells that were fabricated by molecular beam epitaxy. X-ray diffraction measurements indicated that BaSi2 (a-axis-oriented) was subjected to in-plane compressive strain, which relaxed when the thickness of the p-BaSi2 layer exceeded 50 nm. Additionally, transmission electron microscopy revealed defects in the Si layer near steps that were present on the Si(111) substrate. Deep level transient spectroscopy revealed two different electron traps in the n-Si layer that were located at 0.33 eV (E1) and 0.19 eV (E2) below the conduction band edge. The densities of E1 and E2 levels in the region close to the heterointerface were approximately 1014 cm-3. The density of these electron traps decreased below the limits of detection following Si pretreatment to remove the oxide layers from the n-Si substrate, which involved heating the substrate to 800 °C for 30 min under ultrahigh vacuum while depositing a layer of Si (1 nm). The remaining traps in the n-Si layer were hole traps located at 0.65 eV (H1) and 0.38 eV (H2) above the valence band edge. Their densities were as low as 1010 cm-3. Following pretreatment, the current versus voltage characteristics of the p-BaSi2/n-Si solar cells under AM1.5 illumination were reproducible with conversion efficiencies beyond 5% when using a p-BaSi2 layer thickness of 100 nm. The origin of the H2 level is discussed.
DOE R&D Accomplishments Database
Heeger, A. J.; MacDiarmid, A. G.
1980-06-05
Despite great theoretical and technological interest in polyacetylene, (CH){sub x}, the basic features of its band structure have not been unambiguously resolved. Since photoconductivity and optical absorption data have frequently been used to infer information on the band structure of semiconductors, such measurements were carried out on (CH){sub x}. The main results of an extensive study of the photoconductivity (..delta.. sigma{sub ph}) and absorption coefficient (..cap alpha..) in (CH){sub x} are presented. The absence of photoconductivity in cis-(CH){sub x}, despite the similarity in optical properties indicates that ..delta.. sigma/sub ph/ in trans-(CH){sub x} is induced by isomerization. It is found that isomerization generates states deep inside the gap that act as safe traps for minority carriers and thereby enhance the photoconductivity. Compensation of trans-(CH){sub x} with ammonia appears to decrease the number of safe traps, whereas acceptor doping increases their number. Thus, chemical doping can be used to control the photoconductive response. The energy of safe traps inside the gap is independent of the process used to generate them; indicative of an intrinsic localized defect level in trans-(CH){sub x}. A coherent picture based on the soliton model can explain these results, including the safe trapping.
Wide Bandgap Extrinsic Photoconductive Switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, James S.
2013-07-03
Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductivemore » switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.« less
Variability of Secchi disk readings in an exceptionally clear and deep caldera lake
Larson, Gary L.; Buktenica, M.W.
1998-01-01
SUMMARY: The Peromyscus leucopus on a 17-acre study area were live-trapped, marked, and released over a seven-day period. On the three following nights intensive snap-trapping was done on the central acre of the study plot. The animals caught by snap traps in the central acre represented the population of the central acre and several surrounding acres. By the currently accepted methods of interpreting snap-trap data, the population per acre would be considered to be 23 adults. The live-trap data show that the true population was between six and seven adults per acre. Modern methods of live-trapping are shown to be valid for population studies. Two methods are presented for the conversion of live-trap data into per acre figures. Errors involved in the current use of snap-trap data are discussed and snap-trap methods are shown to be invalid for determining actual population numbers. It should be practical to use a snap-trap quadrant technique to obtain a relative measure or index figure for small mammal populations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... crab vessels may not deploy parlor traps/pots in water depths greater than 400 meters (219 fathoms... water deeper than 400 m; prohibit a limited access red crab vessel from harvesting red crab in water shallower than 400 m; and prohibit parlor traps from being deployed at water shallower than 400 m. This...
Grußmayer, Kristin S; Steiner, Florian; Lupton, John M; Herten, Dirk-Peter; Vogelsang, Jan
2015-12-01
Blinking of the photoluminescence (PL) emitted from individual conjugated polymer chains is one of the central observations made by single-molecule spectroscopy (SMS). Important information, for example regarding excitation energy transfer, can be extracted by evaluating dynamic quenching. However, the nature of trap states, which are responsible for PL quenching, often remains obscured. We present a detailed investigation of the photon statistics of single poly(3-hexylthiophene) (P3HT) chains obtained by SMS. The photon statistics provide a measure of the number and brightness of independently emitting areas on a single chain. These observables can be followed during blinking. A decrease in PL intensity is shown to be correlated with either 1) a decrease in the average brightness of the emitting sites; or 2) a decrease in the number of emitting regions. We attribute these phenomena to the formation of 1) shallow charge traps, which can weakly affect all emitting areas of a single chain at once; and 2) deep traps, which have a strong effect on small regions within the single chains. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.
2018-04-01
Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.
Long charged macromolecule in an entropic trap with rough surfaces.
Mamasakhlisov, Yevgeni Sh; Hayryan, Shura; Hu, Chin-Kun
2012-11-01
The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and shallow slits known as an "entropic trap" is used to represent the environment. The flux is supported by the external electrostatic field. The "wormlike chain" model is used for the macromolecule (dsDNA in the present study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface roughness. The scope of the accuracy of the proposed model is discussed.
NASA Astrophysics Data System (ADS)
Gupta, Harsh; Purnachandra Rao, N.; Roy, Sukanta; Arora, Kusumita; Tiwari, V. M.; Patro, Prasanta K.; Satyanarayana, H. V. S.; Shashidhar, D.; Mallika, K.; Akkiraju, Vyasulu V.; Goswami, Deepjyoti; Vyas, Digant; Ravi, G.; Srinivas, K. N. S. S. S.; Srihari, M.; Mishra, S.; Dubey, C. P.; Raju, D. Ch. V.; Borah, Ujjal; Chinna Reddy, K.; Babu, Narendra; Rohilla, Sunil; Dhar, Upasana; Sen, Mrinal; Bhaskar Rao, Y. J.; Bansal, B. K.; Nayak, Shailesh
2015-09-01
Artificial water reservoir-triggered earthquakes have continued at Koyna in the Deccan Traps province, India, since the impoundment of the Shivaji Sagar reservoir in 1962. Existing models, to comprehend the genesis of triggered earthquakes, suffer from lack of observations in the near field. To investigate further, scientific deep drilling and setting up a fault zone observatory at depth of 5-7 km is planned in the Koyna area. Prior to undertaking deep drilling, an exploratory phase of investigations has been launched to constrain subsurface geology, structure and heat flow regime in the area that provide critical inputs for the design of the deep borehole observatory. Two core boreholes drilled to depths of 1,522 and 1,196 m have penetrated the Deccan Traps and sampled the granitic basement in the region for the first time. Studies on cores provide new and direct information regarding the thickness of the Deccan Traps, the absence of infra-Trappean sediments and the nature of the underlying basement rocks. Temperatures estimated at a depth of 6 km in the area, made on the basis of heat flow and thermal properties data sets, do not exceed 150 °C. Low-elevation airborne gravity gradient and magnetic data sets covering 5,012 line km, together with high-quality magnetotelluric data at 100 stations, provide both regional information about the thickness of the Deccan Traps and the occurrence of localized density heterogeneities and anomalous conductive zones in the vicinity of the hypocentral zone. Acquisition of airborne LiDAR data to obtain a high-resolution topographic model of the region has been completed over an area of 1,064 km2 centred on the Koyna seismic zone. Seismometers have been deployed in the granitic basement inside two boreholes and are planned in another set of six boreholes to obtain accurate hypocentral locations and constrain the disposition of fault zones.
Kwon, Se Hwan; Park, So Hyun; Oh, Joo Hyeong; Song, Myung Gyu; Seo, Tae-Seok
2016-05-01
To evaluate the effect of an inferior vena cava (IVC) filter during aspiration thrombectomy for acute deep vein thrombosis (DVT) in the lower extremity. From July 2004 to December 2013, a retrospective analysis of 106 patients with acute DVT was performed. All patients received an IVC filter and were treated initially with aspiration thrombectomy. Among the 106 patients, DVT extension into the IVC was noted in 27 but was not evident in 79. We evaluated the presence of trapped thrombi in the filters after the procedure. The sizes of the trapped thrombi were classified into 2 grades based on the ratio of the maximum transverse length of the trapped thrombus to the diameter of the IVC (Grades I [≤ 50%] and II [> 50%]). A trapped thrombus in the filter was detected in 46 (43%) of 106 patients on final venograms. The sizes of the trapped thrombi were grade I in 12 (26.1%) patients and grade II in 34 (73.9%). Among the 27 patients with DVT extension into the IVC, 20 (74.1%) showed a trapped thrombus in the filter, 75% (15 of 20) of which were grade II. Among the 79 patients without DVT extension into the IVC, 26 (32.9%) showed a trapped thrombus in the IVC filter, 73% (19 of 26) of which were grade II. Thrombus migration occurred frequently during aspiration thrombectomy of patients with acute DVT in the lower extremity. However, further studies are needed to establish a standard protocol for the prophylactic placement of an IVC filter during aspiration thrombectomy. © The Author(s) 2016.
Sheng, Xia; Chen, Liping; Xu, Tao; Zhu, Kai; Feng, Xinjian
2016-03-01
Charge transport within electrode materials plays a key role in determining the optoelectronic device performance. Aligned single-crystal TiO 2 nanowire arrays offer an ideal electron transport path and are expected to have higher electron mobility. Unfortunately, their transport is found not to be superior to that in nanoparticle films. Here we show that the low electron transport in rutile TiO 2 nanowires is mainly caused by surface traps in relatively deep energy levels, which cannot be removed by conventional approaches, such as oxygen annealing treatment. Moreover, we demonstrate an effective wet-chemistry approach to minimize these trap states, leading to over 20-fold enhancement in electron diffusion coefficient and 62% improvement in solar cell performance. On the basis of our results, the potential of TiO 2 NWs can be developed and well-utilized, which is significantly important for their practical applications.
Hydrogen passivation of N(+)-P and P(+)-N heteroepitaxial InP solar cell structures
NASA Technical Reports Server (NTRS)
Chatterjee, Basab; Davis, William C.; Ringel, Steve A.; Hoffman, Richard, Jr.
1996-01-01
Dislocations and related point defect complexes caused by lattice mismatch currently limit the performance of heteroepitaxial InP cells by introducing shunting paths across the active junction and by the formation of deep traps within the base region. We have previously demonstrated that plasma hydrogenation is an effective and stable means to passivate the electrical activity of such defects in specially designed heteroepitaxial InP test structures to probe hydrogen passivation at typical base depths within a cell structure. In this work, we present our results on the hydrogen passivation of actual heteroepitaxial n-p and p-n InP cell structures grown on GaAs substrates by metalorganic chemical vapor deposition (MOCVD). We have found that a 2 hour exposure to a 13.56 MHz hydrogen plasma at 275 C reduces the deep level concentration in the base regions of both n(+)-p and p(+)-n heteroepitaxial InP cell structures from as-grown values of 5-7 x 10(exp 14) cm(exp -3), down to 3-5 x 10(exp 12) cm(exp -3). All dopants were successfully reactivated by a 400 C, 5 minute anneal with no detectable activation of deep levels. One to five analysis indicated a subsequent approximately 100 fold decrease in reverse leakage current at -1 volt reverse bias, and an improved built in voltage for the p(+)-n structures. In addition to being passivated, dislocations are also shown to participate in secondary interactions during hydrogenation. We find that the presence of dislocations enhances hydrogen diffusion into the cell structure, and lowers the apparent dissociation energy of Zn-H complexes from 1.19 eV for homoepitaxial Zn-doped InP to 1.12 eV for heteroepitaxial Zn-doped InP. This is explained by additional hydrogen trapping at dislocations subsequent to the reactivation of Zn dopants after hydrogenation.
Hydrogen Passivation of N(+)P and P(+)N Heteroepitaxial InP Solar Cell Structures
NASA Technical Reports Server (NTRS)
Chatterjee, B.; Davis, W. C.; Ringel, S. A.; Hoffman, R., Jr.
1995-01-01
Dislocations and related point defect complexes caused by lattice mismatch currently limit the performance of heteroepitaxial InP cells by introducing shunting paths across the active junction and by the formation of deep traps within the base region. We have previously demonstrated that plasma hydrogenation is an effective and stable means to passivate the electrical activity of such defects in specially designed heteroepitaxial InP test structures to probe hydrogen passivation at typical base depths within a cell structure. In this work, we present our results on the hydrogen passivation of actual heteroepitaxial n(+)p and p(+)n InP cell structures grown on GaAs substrates by metalorganic chemical vapor deposition (MOCVD). We have found that a 2 hour exposure to a 13.56 MHz hydrogen plasma at 275 C reduces the deep level concentration in the base regions of both n(+)p and p(+)n heteroepitaxial InP cell structures from as-grown values of 5 - 7 x 10(exp 14)/cc, down to 3 - 5 x 10(exp 12)/cc. All dopants were successfully reactivated by a 400 C, 5 minute anneal With no detectable activation of deep levels. I-V analysis indicated a subsequent approx. 100 fold decrease In reverse leakage current at -1 volt reverse bias, and an improved built in voltage for the p(+)n structures. ln addition to being passivated,dislocations are also shown to participate in secondary interactions during hydrogenation. We find that the presence of dislocations enhances hydrogen diffusion into the cell structure, and lowers the apparent dissociation energy of Zn-H complexes from 1.19 eV for homoepitaxial Zn-doped InP to 1.12 eV for heteroepitaxial Zn-doped InP. This is explained by additional hydrogen trapping at dislocations subsequent to the reactivation of Zn dopants after hydrogenation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soininen, E.; Schwab, A.; Lynn, K.G.
1991-05-01
Positron-annihilation-induced Auger-electron spectroscopy (PAES) was used to study the effects of oxygen, residual gases, and temperature on a Ge(100) surface. Three low-energy Auger peaks were detected at 50, 90, and 100--150 eV, attributed to {ital M}{sub 2,3}{ital M4}{ital M4}, {ital M}{sub 2,3}{ital M4}{ital V}, and {ital M}{sub 1}{ital M4}{ital M4} Auger transitions, respectively. An estimated (4{plus minus}1)% of the surface-trapped positrons annihilate with Ge 3{ital p}--level electrons. The sensitivity of PAES to the surface condition is demonstrated. The PAES yield from a Ge(100) surface is reduced at elevated temperatures, in accord with an activation process earlier found in several positroniummore » (Ps) -fraction experiments. A desorption model adopted from these studies does not describe accurately the PAES results at higher temperatures ({gt}500 {degree}C), where the PAES intensity levels off to 5% of the room-temperature value. Possible sources for the discrepancy are discussed and models for positron trapping to deep surface traps are introduced. On the Ge(100) surface, an upper limit for Ps emission near the melting point is 97%. The error in calibration parameters due to the earlier assumption of 100% Ps emission seems to introduce only small errors into the Ps-fraction measurements.« less
GaAs-oxide interface states - Gigantic photoionization via Auger-like process
NASA Technical Reports Server (NTRS)
Lagowski, J.; Kazior, T. E.; Gatos, H. C.; Walukiewicz, W.; Siejka, J.
1981-01-01
Spectral and transient responses of photostimulated current in MOS structures were employed for the study of GaAs-anodic oxide interface states. Discrete deep traps at 0.7 and 0.85 eV below the conduction band were found with concentrations of 5 x 10 to the 12th/sq cm and 7 x 10 to the 11th/sq cm, respectively. These traps coincide with interface states induced on clean GaAs surfaces by oxygen and/or metal adatoms (submonolayer coverage). In contrast to surfaces with low oxygen coverage, the GaAs-thick oxide interfaces exhibited a high density (about 10 to the 14th/sq cm) of shallow donors and acceptors. Photoexcitation of these donor-acceptor pairs led to a gigantic photoionization of deep interface states with rates 1000 times greater than direct transitions into the conduction band. The gigantic photoionization is explained on the basis of energy transfer from excited donor-acceptor pairs to deep states.
Effect of alpha-particle irradiation on the electrical properties of n-type Ge
NASA Astrophysics Data System (ADS)
Roro, K. T.; Janse van Rensburg, P. J.; Auret, F. D.; Coelho, S.
2009-12-01
Deep-level transient spectroscopy was used to investigate the effect of alpha particle irradiation on the electrical properties of n-type Ge. The samples were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radionuclide source. The main defects introduced were found to be electron traps with energy levels at EC-0.38, EC-0.21, EC-0.20, EC-0.15, and EC-0.10 eV, respectively. The main defects in alpha particle irradiation are similar to those introduced by MeV electron irradiation, where the main defect is the E-center. A quadratic increase in concentration as a function of dose is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musolino, M.; Treeck, D. van, E-mail: treeck@pdi-berlin.de; Tahraoui, A.
2016-01-28
We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n junction. These band gap states are located at energies of 570 ± 20 and 840 ± 30 meV below the conduction band minimum. The physical origin of these deep level states is discussed. Themore » temperature-dependent I-V characteristics, acquired between 83 and 403 K, show that different conduction mechanisms cause the observed leakage current. On the basis of all these results, we developed a quantitative physical model for charge transport in the reverse bias regime. By taking into account the mutual interaction of variable range hopping and electron emission from Coulombic trap states, with the latter being described by phonon-assisted tunnelling and the Poole-Frenkel effect, we can model the experimental I-V curves in the entire range of temperatures with a consistent set of parameters. Our model should be applicable to planar GaN-based LEDs as well. Furthermore, possible approaches to decrease the leakage current in NW-LEDs are proposed.« less
1982-06-01
pore pressures are dissipating. 232. The question of deep fluid communication is unresolved. Koyna is situated in flow basalt known as the Deccan Traps ...The trap rock formation is about 1200 m thick near Koyna. The basalt flows are irregular and at the damsite seven flows have been mapped. Some of the...ranges from 0 to about 30 km but is generally 2 to 8 km in depth. This places the bulk of the seismicity below the trap rock in a basement rock of unknown
Intrinsic electron traps in atomic-layer deposited HfO{sub 2} insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerbu, F.; Madia, O.; Afanas'ev, V. V.
2016-05-30
Analysis of photodepopulation of electron traps in HfO{sub 2} films grown by atomic layer deposition is shown to provide the trap energy distribution across the entire oxide bandgap. The presence is revealed of two kinds of deep electron traps energetically distributed at around E{sub t} ≈ 2.0 eV and E{sub t} ≈ 3.0 eV below the oxide conduction band. Comparison of the trapped electron energy distributions in HfO{sub 2} layers prepared using different precursors or subjected to thermal treatment suggests that these centers are intrinsic in origin. However, the common assumption that these would implicate O vacancies cannot explain the charging behaviormore » of HfO{sub 2}, suggesting that alternative defect models should be considered.« less
Optical transitions of the silicon vacancy in 6H-SiC studied by positron annihilation spectroscopy
NASA Astrophysics Data System (ADS)
Arpiainen, S.; Saarinen, K.; Hautojärvi, P.; Henry, L.; Barthe, M.-F.; Corbel, C.
2002-08-01
Positron annihilation spectroscopy has been applied to identify Si and C vacancies as irradiation-induced defects in 6H-SiC. Si vacancies are shown to have ionization levels at EC-0.6 eV and EC-1.1 eV below the conduction-band edge EC by detecting changes of positron trapping under monochromatic illumination. These levels are attributed to (2-/1-) and (1-/0) ionizations of the isolated Si vacancy. In as-grown n-type 6H-SiC, a native defect complex involving VSi is shown to have an ionization level slightly closer to conduction band at roughly EC-0.3 eV. These results are used further to present microscopic interpretations to effects seen in optical-absorption spectra and to electrical levels observed previously by deep-level transient spectroscopy.
Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; Wang, Mengyi; Kang, Qinjun
Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less
Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping
Chen, Li; Wang, Mengyi; Kang, Qinjun; ...
2018-04-26
Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less
Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan
2018-06-01
Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.
Reciprocal capacitance transients?
NASA Astrophysics Data System (ADS)
Gfroerer, Tim; Simov, Peter; Wanlass, Mark
2007-03-01
When the reverse bias across a semiconductor diode is changed, charge carriers move to accommodate the appropriate depletion thickness, producing a simultaneous change in the device capacitance. Transient capacitance measurements can reveal inhibited carrier motion due to trapping, where the depth of the trap can be evaluated using the temperature-dependent escape rate. However, when we employ this technique on a GaAs0.72P0.28 n+/p diode (which is a candidate for incorporation in multi-junction solar cells), we observe a highly non-exponential response under a broad range of experimental conditions. Double exponential functions give good fits, but lead to non-physical results. The deduced rates depend on the observation time window and fast and slow rates, which presumably correspond to deep and shallow levels, have identical activation energies. Meanwhile, we have discovered a universal linear relationship between the inverse of the capacitance and time. An Arrhenius plot of the slope of the reciprocal of the transient yields an activation energy of approximately 0.4 eV, independent of the observation window and other experimental conditions. The reciprocal behavior leads us to hypothesize that hopping, rather than escape into high-mobility bands, may govern the transport of trapped holes in this system.
Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures
NASA Astrophysics Data System (ADS)
Ťapajna, M.; Paskaleva, A.; Atanassova, E.; Dobročka, E.; Hušeková, K.; Fröhlich, K.
2010-07-01
Leakage conduction mechanisms in Ru/Ta2O5/SiON/Si structures with rf-sputtered Ta2O5 with thicknesses ranging from 13.5 to 1.8 nm were systematically studied. Notable reaction at the Ru/Ta2O5 interface was revealed by capacitance-voltage measurements. Temperature-dependent current-voltage characteristics suggest the bulk-limited conduction mechanism in all metal-oxide-semiconductor structures. Under gate injection, Poole-Frenkel emission was identified as a dominant mechanism for 13.5 nm thick Ta2O5. With an oxide thickness decreasing down to 3.5 nm, the conduction mechanism transforms to thermionic trap-assisted tunnelling through the triangular barrier. Under substrate injection, the dominant mechanism gradually changes with decreasing thickness from thermionic trap-assisted tunnelling to trap-assisted tunnelling through the triangular barrier; Poole-Frenkel emission was not observed at all. A 0.7 eV deep defect level distributed over Ta2O5 is assumed to be responsible for bulk-limited conduction mechanisms and is attributed to H-related defects or oxygen vacancies in Ta2O5.
CO2 storage capacity estimation: Methodology and gaps
Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.
2007-01-01
Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales-in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Storlazzi, C. D.; Field, M. E.; Bothner, M. H.
2011-03-01
Sediment traps are commonly used as standard tools for monitoring "sedimentation" in coral reef environments. In much of the literature where sediment traps were used to measure the effects of "sedimentation" on corals, it is clear from deployment descriptions and interpretations of the resulting data that information derived from sediment traps has frequently been misinterpreted or misapplied. Despite their widespread use in this setting, sediment traps do not provide quantitative information about "sedimentation" on coral surfaces. Traps can provide useful information about the relative magnitude of sediment dynamics if trap deployment standards are used. This conclusion is based first on a brief review of the state of knowledge of sediment trap dynamics, which has primarily focused on traps deployed high above the seabed in relatively deep water, followed by our understanding of near-bed sediment dynamics in shallow-water environments that characterize coral reefs. This overview is followed by the first synthesis of near-bed sediment trap data collected with concurrent hydrodynamic information in coral reef environments. This collective information is utilized to develop nine protocols for using sediment traps in coral reef environments, which focus on trap parameters that researchers can control such as trap height ( H), trap mouth diameter ( D), the height of the trap mouth above the substrate ( z o ), and the spacing between traps. The hydrodynamic behavior of sediment traps and the limitations of data derived from these traps should be forefront when interpreting sediment trap data to infer sediment transport processes in coral reef environments.
Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.
2011-01-01
Sediment traps are commonly used as standard tools for monitoring “sedimentation” in coral reef environments. In much of the literature where sediment traps were used to measure the effects of “sedimentation” on corals, it is clear from deployment descriptions and interpretations of the resulting data that information derived from sediment traps has frequently been misinterpreted or misapplied. Despite their widespread use in this setting, sediment traps do not provide quantitative information about “sedimentation” on coral surfaces. Traps can provide useful information about the relative magnitude of sediment dynamics if trap deployment standards are used. This conclusion is based first on a brief review of the state of knowledge of sediment trap dynamics, which has primarily focused on traps deployed high above the seabed in relatively deep water, followed by our understanding of near-bed sediment dynamics in shallow-water environments that characterize coral reefs. This overview is followed by the first synthesis of near-bed sediment trap data collected with concurrent hydrodynamic information in coral reef environments. This collective information is utilized to develop nine protocols for using sediment traps in coral reef environments, which focus on trap parameters that researchers can control such as trap height (H), trap mouth diameter (D), the height of the trap mouth above the substrate (z o ), and the spacing between traps. The hydrodynamic behavior of sediment traps and the limitations of data derived from these traps should be forefront when interpreting sediment trap data to infer sediment transport processes in coral reef environments.
Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks
NASA Technical Reports Server (NTRS)
Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.
2013-01-01
We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piri, Mohammad
2014-03-31
Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account themore » underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-based dynamic core-scale pore network model; (4) Development of new, improved high-performance modules for the UW-team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore- and core-scale models were rigorously validated against well-characterized core- flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin; Xie, Guohua
2014-03-21
An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2′})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy tomore » balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.« less
NASA Astrophysics Data System (ADS)
Boyd, P. W.; Wong, C. S.; Merrill, J.; Whitney, F.; Snow, J.; Harrison, P. J.; Gower, J.
1998-09-01
Recent studies have confirmed the relationship between iron supply and phytoplankton growth rates in all three high-nitrate low-chlorophyll (HNLC) oceanic provinces. However, there is little evidence, so far, of the role of iron in altering the efficiency of the biological pump via increased downward export of particulate organic carbon (POC). The NE subarctic Pacific is unique among HNLC regions in that long time series pelagic observations and deep-moored sediment trap records exist which may provide the best opportunity thus far to test aspects of the iron hypothesis. Episodic elevated levels of chlorophyll a (> 2.0 μg L-1) were observed 6 times between 1964 and 1976 at the former site of Ocean Station Papa (OSP). In addition, between 1984 and 1990 on at least three occasions, concurrent pulses of POC and biogenic silica were recorded in deep-moored traps at OSP. Possible explanations for these events, such as lateral advection of more productive waters, iron-mediated blooms, or grazing by salp swarms are discussed and tested using an existing downward POC flux model. Owing to the episodic nature of such events, no available data are sufficiently comprehensive to unequivocally rule out any of these explanations. Nevertheless, from the data available, the occurrence of pelagic or deep water pulses, approximately once every 3 years, are most consistent with iron-mediated diatom blooms, and of the sinking of POC and biogenic silica (from such a bloom) to depth, respectively. A comparison of the timing of these iron-mediated pulses with that of the transport probabilities of atmospheric dust supply from Asia and Alaska provides an opportunity to assess the likelihood of a coupling between the atmosphere and the ocean.
Functional Sub-states by High-pressure Macromolecular Crystallography.
Dhaussy, Anne-Claire; Girard, Eric
2015-01-01
At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.
Phosphorus ionization in silicon doped by self-assembled macromolecular monolayers
NASA Astrophysics Data System (ADS)
Wu, Haigang; Li, Ke; Gao, Xuejiao; Dan, Yaping
2017-10-01
Individual dopant atoms can be potentially controlled at large scale by the self-assembly of macromolecular dopant carriers. However, low concentration phosphorus dopants often suffer from a low ionization rate due to defects and impurities introduced by the carrier molecules. In this work, we demonstrated a nitrogen-free macromolecule doping technique and investigated the phosphorus ionization process by low temperature Hall effect measurements. It was found that the phosphorus dopants diffused into the silicon bulk are in nearly full ionization. However, the electrons ionized from the phosphorus dopants are mostly trapped by deep level defects that are likely carbon interstitials.
An approach for in situ studies of deep-sea amphipods and their microbial gut flora
NASA Astrophysics Data System (ADS)
Jannasch, H. W.; Cuhel, R. L.; Wirsen, C. O.; Taylor, C. D.
1980-10-01
A technique has been developed and field-tested for the trapping, feeding, and timed incubation of amphipods on the deep-sea floor. Data obtained from experiments using radiolabeled foodstuffs indicate that shifts within the labeled fractions of the major biological polymers make it possible to distinguish between the metabolism of the amphipods and that of their intestinal microflora.
NASA Astrophysics Data System (ADS)
Trevisan, L.; Illangasekare, T. H.; Rodriguez, D.; Sakaki, T.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.
2011-12-01
Geological storage of carbon dioxide in deep geologic formations is being considered as a technical option to reduce greenhouse gas loading to the atmosphere. The processes associated with the movement and stable trapping are complex in deep naturally heterogeneous formations. Three primary mechanisms contribute to trapping; capillary entrapment due to immobilization of the supercritical fluid CO2 within soil pores, liquid CO2 dissolving in the formation water and mineralization. Natural heterogeneity in the formation is expected to affect all three mechanisms. A research project is in progress with the primary goal to improve our understanding of capillary and dissolution trapping during injection and post-injection process, focusing on formation heterogeneity. It is expected that this improved knowledge will help to develop site characterization methods targeting on obtaining the most critical parameters that capture the heterogeneity to design strategies and schemes to maximize trapping. This research combines experiments at the laboratory scale with multiphase modeling to upscale relevant trapping processes to the field scale. This paper presents the results from a set of experiments that were conducted in an intermediate scale test tanks. Intermediate scale testing provides an attractive alternative to investigate these processes under controlled conditions in the laboratory. Conducting these types of experiments is highly challenging as methods have to be developed to extrapolate the data from experiments that are conducted under ambient laboratory conditions to high temperatures and pressures settings in deep geologic formations. We explored the use of a combination of surrogate fluids that have similar density, viscosity contrasts and analogous solubility and interfacial tension as supercritical CO2-brine in deep formations. The extrapolation approach involves the use of dimensionless numbers such as Capillary number (Ca) and the Bond number (Bo). A set of experiments that captures some of the complexities of the geologic heterogeneity and injection scenarios are planned in a 4.8 m long tank. To test the experimental methods and instrumentation, a set of preliminary experiments were conducted in a smaller tank with dimensions 90 cm x 60 cm. The tank was packed to represent both homogeneous and heterogeneous conditions. Using the surrogate fluids, different injection scenarios were tested. Images of the migration plume showed the critical role that heterogeneity plays in stable entrapment. Destructive sampling done at the end of the experiments provided data on the final saturation distributions. Preliminary analysis suggests the entrapment configuration is controlled by the large-scale heterogeneities as well as the pore-scale entrapment mechanisms. The data was used in modeling analysis that is presented in a companion abstract.
Electrical characterisation of defects in wide bandgap semiconductors
NASA Astrophysics Data System (ADS)
Elsherif, Osama S.
Defects usually have a very large influence on the semiconductor material properties and hence on fabricated electronic devices. The nature and properties of defects in semiconducting materials can be investigated by applying electrical characterization techniques such as thermal admittance spectroscopy (TAS), deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS measurements. This dissertation presents the electrical characterisation of two different wide bandgap semiconducting materials (polycrystalline diamond and GaN) which have both recently attracted a great deal of attention because of their potential applications in the fields of power electronics and optoelectronics. Raman spectroscopy, I-V and C-V measurements were carried out as supporting experiments for the above investigations. The first part of this work focuses on studying the effect of B concentration on the electronic states in polycrystalline diamond thin films grown on silicon by the hot filament chemical vapour deposition method. A combination of high-resolution LDLTS and direct-capture cross-section measurements was used to investigate whether the deep electronic states present in the layers originated from point or extended defects. There was good agreement between data on deep electronic levels obtained from DLTS and TAS experiments. A number of hole traps have been detected; the majority of these levels show an unusual dependence of the DLTS signal on the fill pulse duration which is interpreted as possibly the levels are part of extended defects within the grain boundaries. In contrast, a defect level found in a more highly doped film, with an activation energy of -0.37 eV, exhibited behaviour characteristic of an isolated point defect, which we attribute to B-related centres in the bulk diamond, away from the dislocations. The second part of this thesis presents electrical measurements carried out at temperatures up to 450 K in order to study the electronic states associated with Mg in Mg-doped GaN films grown on sapphire by metalorganic vapour phase epitaxy, and to determine how these are affected by the threading dislocation density (TDD). Two different buffer layer schemes between the film and the sapphire substrate were used, giving rise to different TDDs in the GaN. Admittance spectroscopy of the films finds a single impurity-related acceptor level. It is observed in theses experiments that admittance spectroscopy detects no traps that can be attributed to extended defects, despite the fact that the dislocations are well-known to be active recombination centres. This unexpected finding is discussed in detail.
Electrical characterisation of defects in wide bandgap semiconductors
NASA Astrophysics Data System (ADS)
Elsherif, Osama S.
Defects usually have a very large influence on the semiconductor material properties and hence on fabricated electronic devices. The nature and properties of defects in semiconducting materials can be investigated by applying electrical characterization techniques such as thermal admittance spectroscopy (TAS), deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS measurements. This dissertation presents the electrical characterisation of two different wide bandgap semiconducting materials (polycrystalline diamond and GaN) which have both recently attracted a great deal of attention because of their potential applications in the fields of power electronics and optoelectronics. Raman spectroscopy, I-V and C-V measurements were carried out as supporting experiments for the above investigations.The first part of this work focuses on studying the effect of B concentration on the electronic states in polycrystalline diamond thin films grown on silicon by the hot filament chemical vapour deposition method. A combination of high-resolution LDLTS and direct-capture cross-section measurements was used to investigate whether the deep electronic states present in the layers originated from point or extended defects. There was good agreement between data on deep electronic levels obtained from DLTS and TAS experiments. A number of hole traps have been detected; the majority of these levels show an unusual dependence of the DLTS signal on the fill pulse duration which is interpreted as possibly the levels are part of extended defects within the grain boundaries. In contrast, a defect level found in a more highly doped film, with an activation energy of -0.37 eV, exhibited behaviour characteristic of an isolated point defect, which we attribute to B-related centres in the bulk diamond, away from the dislocations.The second part of this thesis presents electrical measurements carried out at temperatures up to 450 K in order to study the electronic states associated with Mg in Mg-doped GaN films grown on sapphire by metalorganic vapour phase epitaxy, and to determine how these are affected by the threading dislocation density (TDD). Two different buffer layer schemes between the film and the sapphire substrate were used, giving rise to different TDDs in the GaN. Admittance spectroscopy of the films finds a single impurity-related acceptor level. It is observed in theses experiments that admittance spectroscopy detects no traps that can be attributed to extended defects, despite the fact that the dislocations are well-known to be active recombination centres. This unexpected finding is discussed in detail.
Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua
2016-01-01
Here we report that many metal halides that contain cations with the ns 2 electronic configuration have recently been discovered as high-performance optoelectronic materials. In particular, solar cells based on lead halide perovskites have shown great promise as evidenced by the rapid increase of the power conversion efficiency. In this paper, we show density functional theory calculations of electronic structure and dielectric and defect properties of CsGeI 3 (a lead-free halide perovskite material). The potential of CsGeI 3 as a solar cell material is assessed based on its intrinsic properties. We find anomalously large Born effective charges and a largemore » static dielectric constant dominated by lattice polarization, which should reduce carrier scattering, trapping, and recombination by screening charged defects and impurities. Defect calculations show that CsGeI 3 is a p-type semiconductor and its hole density can be modified by varying the chemical potentials of the constituent elements. Despite the reduction of long-range Coulomb attraction by strong screening, the iodine vacancy in CsGeI3 is found to be a deep electron trap due to the short-range potential, i.e., strong Ge–Ge covalent bonding, which should limit electron transport efficiency in p-type CsGeI 3. This is in contrast to the shallow iodine vacancies found in several Pb and Sn halide perovskites (e.g., CH 3NH 3PbI 3, CH 3NH 3SnI 3, and CsSnI 3). The low-hole-density CsGeI 3 may be a useful solar absorber material but the presence of the low-energy deep iodine vacancy may significantly reduce the open circuit voltage of the solar cell. Still, on the other hand, CsGeI 3 may be used as an efficient hole transport material in solar cells due to its small hole effective mass, the absence of low-energy deep hole traps, and the favorable band offset with solar absorber materials such as dye molecules and CH 3NH 3PbI 3.« less
Photostimulated luminescence properties of Eu2+ -doped barium aluminate phosphor.
He, Quanlong; Qiu, Guangyu; Xu, Xuhui; Qiu, Jianbei; Yu, Xue
2015-03-01
An intense green photostimulated luminescence in BaAl2 O4 :Eu(2+) phosphor was prepared. The thermoluminescence results indicate that there are at least three types of traps (T1 , T2 , T3 ) with different trap depths in BaAl2 O4 :Eu(2+) phosphor according to the bands located at 327, 361 and 555 K, respectively, which are closely associated with the phosphor's long persistent luminescence and photostimulated luminescence properties. In addition, as a novel optical read-out form, a photostimulated persistent luminescence signal can be repeatedly obtained in BaAl2 O4 :Eu(2+) phosphor. This shows that re-trapping of the electron released from a deep trap plays an important role in photostimulated persistent luminescence. Copyright © 2014 John Wiley & Sons, Ltd.
Fundamental limit of nanophotonic light trapping in solar cells.
Yu, Zongfu; Raman, Aaswath; Fan, Shanhui
2010-10-12
Establishing the fundamental limit of nanophotonic light-trapping schemes is of paramount importance and is becoming increasingly urgent for current solar cell research. The standard theory of light trapping demonstrated that absorption enhancement in a medium cannot exceed a factor of 4n(2)/sin(2)θ, where n is the refractive index of the active layer, and θ is the angle of the emission cone in the medium surrounding the cell. This theory, however, is not applicable in the nanophotonic regime. Here we develop a statistical temporal coupled-mode theory of light trapping based on a rigorous electromagnetic approach. Our theory reveals that the conventional limit can be substantially surpassed when optical modes exhibit deep-subwavelength-scale field confinement, opening new avenues for highly efficient next-generation solar cells.
NASA Astrophysics Data System (ADS)
Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight
2018-04-01
We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk
2015-03-02
In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes ofmore » both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.« less
[Effects of sediment on the early settlement stage of Sargassum horneri on rocky subtidal reefs].
Bi, Yuan-Xin; Zhang, Shou-Yu; Wu, Zu-Li
2013-05-01
By using sediment trap and suction pump to measure the relative sediment levels across different sites and water depths, and through the in situ measurements of Sargassum horneri density, this paper assessed the relationships between the distribution of S. horneri and the sediment levels and wave exposure on the rocky subtidal platforms around Gouqi Island, China. The laboratory-based experiments were also conducted to test the effects of different sediment levels on the attachment of S. horneri zygote and the survival rate of S. horneri germling after the attachment. S. horneri predominated at the sites with lesser sediment and wave exposure, but less distributed in the sites with high level sediment and wave-exposure. At different water depths, the distribution of S. horneri was negatively correlated with the amount of sediment. A medium dusting (dry mass 10.47 mg x cm(-2), approximate 0.543 mm deep) of sediment on the plate reduced the percentage of S. horneri zygotes attached to the substratum by 4.4%, and a heavy dusting (dry mass 13.96 mg x cm(-2), approximate 0.724 mm deep) of sediment on the plate completely prevented the attachment. One week after the settlement of the zygotes, there were 24% of the germlings still survived when the dry mass sediment coverage was 13.96 mg x cm(-2). However, when the dry mass sediment coverage was up to 34.9 mg x cm(-2) (approximate 1.81 mm deep), 100% of the germlings died. Overall, the distribution of S. horneri was not only related to sediment level, but also restricted by wave exposure to some extent. Sediment level was a critical factor affecting the distribution of S. horneri, particularly at its zygote attachment stage.
Ma, Junhao; Li, Xinxi; Wang, Yang; Yang, Zhenwei; Luo, Jun
2017-01-01
Anticoagulant therapy is commonly used for the prevention and treatment of patients with deep venous thrombus. Evidence has shown that rivaroxaban is a potential oral anticoagulant drug for the acute treatment of venous thromboembolism. However, the rivaroxaban-mediated molecular mechanism involved in the progression of deep venous thrombosis has not been investigated. In the present study, we investigated the efficacy of rivaroxaban and the underlying signaling pathways in the prevention and treatment of rats with deep venous thrombosis. A rat model with deep vein thrombus formation was established and received treatment with rivaroxaban or PBS as control. The thrombin-activatable fibrinolysis inhibitor (TAFI) and plasminogen activator inhibitor-1 (PAI-1) were analyzed both in vitro and in vivo. The progression of thrombosis and stroke was evaluated after treatment with rivaroxaban or PBS. Nuclear factor-κB (NF-κB) signaling pathway in venous endothelial cells and in the rat model of deep venous thrombus was assessed. The therapeutic effects of rivaroxaban were evaluated as determined by changes in deep venous thrombosis in the rat model. Our results showed that rivaroxaban markedly inhibited TAFI and PAI-1 expression levels, neutrophils, tissue factor, neutrophil extracellular traps (NETs), myeloperoxidase and macrophages in venous endothelial cells and in the rat model of deep venous thrombus. Expression levels of ADP, PAIs, von Willebrand factor (vWF) and thromboxane were downregulated in vein endothelial cells and in serum from the experimental rats. Importantly, the incidences of inferior vena cava filter thrombus were protected by rivaroxaban during heparin-induced thrombolysis deep venous thrombosis in the rat model. We observed that activity of the NF-κB signaling pathway was inhibited by rivaroxaban in vein endothelial cells both in vitro and in vivo. Notably, immunohistology indicated that rivaroxaban attenuated deep venous thrombosis and the accumulation of inflammatory factors in the lesions in venous thrombus. Matrix metalloproteinase (MMP) expression and activity were downregulated in rivaroxaban-treated rats with deep venous thrombus. Rivaroxaban inhibited the elasticity of the extracellular matrix and collagen-elastin fibers. On the whole, these results indicate that rivaroxaban attenuates deep venous thrombus through MMP-9-mediated NF-κB signaling pathway. PMID:29039441
Ma, Junhao; Li, Xinxi; Wang, Yang; Yang, Zhenwei; Luo, Jun
2017-12-01
Anticoagulant therapy is commonly used for the prevention and treatment of patients with deep venous thrombus. Evidence has shown that rivaroxaban is a potential oral anticoagulant drug for the acute treatment of venous thromboembolism. However, the rivaroxaban-mediated molecular mechanism involved in the progression of deep venous thrombosis has not been investigated. In the present study, we investigated the efficacy of rivaroxaban and the underlying signaling pathways in the prevention and treatment of rats with deep venous thrombosis. A rat model with deep vein thrombus formation was established and received treatment with rivaroxaban or PBS as control. The thrombin-activatable fibrinolysis inhibitor (TAFI) and plasminogen activator inhibitor-1 (PAI-1) were analyzed both in vitro and in vivo. The progression of thrombosis and stroke was evaluated after treatment with rivaroxaban or PBS. Nuclear factor-κB (NF-κB) signaling pathway in venous endothelial cells and in the rat model of deep venous thrombus was assessed. The therapeutic effects of rivaroxaban were evaluated as determined by changes in deep venous thrombosis in the rat model. Our results showed that rivaroxaban markedly inhibited TAFI and PAI-1 expression levels, neutrophils, tissue factor, neutrophil extracellular traps (NETs), myeloperoxidase and macrophages in venous endothelial cells and in the rat model of deep venous thrombus. Expression levels of ADP, PAIs, von Willebrand factor (vWF) and thromboxane were downregulated in vein endothelial cells and in serum from the experimental rats. Importantly, the incidences of inferior vena cava filter thrombus were protected by rivaroxaban during heparin-induced thrombolysis deep venous thrombosis in the rat model. We observed that activity of the NF-κB signaling pathway was inhibited by rivaroxaban in vein endothelial cells both in vitro and in vivo. Notably, immunohistology indicated that rivaroxaban attenuated deep venous thrombosis and the accumulation of inflammatory factors in the lesions in venous thrombus. Matrix metalloproteinase (MMP) expression and activity were downregulated in rivaroxaban-treated rats with deep venous thrombus. Rivaroxaban inhibited the elasticity of the extracellular matrix and collagen-elastin fibers. On the whole, these results indicate that rivaroxaban attenuates deep venous thrombus through MMP-9-mediated NF-κB signaling pathway.
Electronic defects in the halide antiperovskite semiconductor Hg3Se2I2
NASA Astrophysics Data System (ADS)
Kim, Joon-Il; Peters, John A.; He, Yihui; Liu, Zhifu; Das, Sanjib; Kontsevoi, Oleg Y.; Kanatzidis, Mercouri G.; Wessels, Bruce W.
2017-10-01
Halide perovskites have emerged as a potential photoconducting material for photovoltaics and hard radiation detection. We investigate the nature of charge transport in the semi-insulating chalcohalide Hg3Se2I2 compound using the temperature dependence of dark current, thermally stimulated current (TSC) spectroscopy, and photoconductivity measurements as well as first-principles density functional theory (DFT) calculations. Dark conductivity measurements and TSC spectroscopy indicate the presence of multiple shallow and deep level traps that have relatively low concentrations of the order of 1013-1015c m-3 and capture cross sections of ˜10-16c m2 . A distinct persistent photoconductivity is observed at both low temperatures (<170 K ) and high temperatures (>230 K), with major implications for room-temperature compound semiconductor radiation detection. From preliminary DFT calculations, the origin of the traps is attributed to intrinsic vacancy defects (VHg, VSe, and VI) and interstitials (Seint) or other extrinsic impurities. The results point the way for future improvements in crystal quality and detector performance.
Light-activated photocurrent degradation and self-healing in perovskite solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J.
Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. But, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. We show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely preventedmore » by operating the devices at 0 °C. Here, we investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.« less
Study of defects in TlBr, InI as potential semiconductor radiation detectors
NASA Astrophysics Data System (ADS)
Biswas, Koushik; Du, Mao-Hua
2011-03-01
Group III-halides such as TlBr and InI are receiving considerable attention for application in room temperature radiation detector devices. It is however, essential that these detector materials have favorable defect properties which enable good carrier transport when operating under an external bias voltage. We have studied the properties of native defects of InI and Tlbr and several important results emerge: (1) Schottky defects are the dominant low-energy defects in both materials that can potentially pin the Fermi level close to midgap, leading to high resistivity; (2) native defects in TlBr are benign in terms of electron trapping. However, anion-vacancy in InI induces a deep electron trap similar to the F -centers in alkali halides. This can reduce electron mobility-lifetime product in InI; (3) low diffusion barriers of vacancies and ionic conductivity could be responsible for the observed polarization phenomenon in both materials at room temperature. U.S. DOE Office of Nonproliferation Research and Development NA22.
Light-activated photocurrent degradation and self-healing in perovskite solar cells
Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda J.; ...
2016-05-16
Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. But, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. We show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely preventedmore » by operating the devices at 0 °C. Here, we investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.« less
Nikiforov, S V; Kortov, V S
2014-11-01
The main thermoluminescent (TL) and dosimetric properties of the detectors based on anion-defective crystalline and nanostructured aluminium oxide after exposure to a high-current pulse electron beam are studied. TL peaks associated with deep-trapping centres are registered. It is shown that the use of deep-trap TL at 200-600°С allows registering absorbed doses up to 750 kGy for single-crystalline detectors and those up to 6 kGy for nanostructured ones. A wide range of the doses registered, high reproducibility of the TL signal and low fading contribute to a possibility of using single-crystalline and nanostructured aluminium oxide for the dosimetry of high-current pulse electron beams. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rudershausen, Paul J.; Buckel, Jeffrey A.; Hightower, Joseph E.
2013-01-01
We estimated survival rates of discarded black sea bass (Centropristis striata) in various release conditions using tag–recapture data. Fish were captured with traps and hook and line from waters 29–34 m deep off coastal North Carolina, USA, marked with internal anchor tags, and observed for release condition. Fish tagged on the bottom using SCUBA served as a control group. Relative return rates for trap-caught fish released at the surface versus bottom provided an estimated survival rate of 0.87 (95% credible interval 0.67–1.18) for surface-released fish. Adjusted for results from the underwater tagging experiment, fish with evidence of external barotrauma had a median survival rate of 0.91 (0.69–1.26) compared with 0.36 (0.17–0.67) for fish with hook trauma and 0.16 (0.08–0.30) for floating or presumably dead fish. Applying these condition-specific estimates of survival to non-tagging fishery data, we estimated a discard survival rate of 0.81 (0.62–1.11) for 11 hook and line data sets from waters 20–35 m deep and 0.86 (0.67–1.17) for 10 trap data sets from waters 11–29 m deep. The tag-return approach using a control group with no fishery-associated trauma represents a method to accurately estimate absolute discard survival of physoclistous reef species.
NASA Astrophysics Data System (ADS)
Gershenzon, Naum; Soltanian, Mohamadreza; Ritzi, Robert, Jr.; Dominic, David
2015-04-01
Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. Previously we showed how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs [3]. The results strongly suggest that representing these small scales (few cm in vertical direction and few meters in horizontal direction) features and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. The results also demonstrated the importance of using separate capillary pressure and relative permeability relationships for different textural facies types. Here we present the result of simulation of CO2 trapping in deep saline aquifers using two different conventional approaches, i.e. Brooks-Corey and van Genuchten, to capillary pressure. We showed that capillary trapping as well as dissolution rates are very different for the Brooks-Corey and van Genuchten approaches if reservoir consists from various species with different capillary pressure and relative permeability curves. We also found a dramatic difference in simulation time; using the van Genuchten approach improves convergence and thus reduces calculation time by one-two orders of magnitude. [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515. [3] Gershenzon N.I., M. Soltanian, R.W. Ritzi Jr., and D.F. Dominic (2014) Influence of small scale heterogeneity on CO2 trapping processes in deep saline aquifers, Energy Procedia, 59, 166 - 173.
NASA Astrophysics Data System (ADS)
Nour, Mohamed
Constructing an effective statistical model and a simulation tool that can predict the phenomenon of random telegraph signals (RTS) is the objective of this work. The continuous scaling down of metal oxide -- semiconductor field effect transistors (MOSFETs) makes charging/discharging traps(s) located at the silicon/silicon dioxide interface or deep in the oxide bulk by mobile charge(s) a more pronounced problem for both analog and digital applications. The intent of this work is to develop an RTS statistical model and a simulation tool based on first principles and supported by extensive experimental data. The newly developed RTS statistical model and its simulation tool should be able to replicate and predict the RTS in time and frequency domains. First, room temperature RTS measurements are performed which provide limited information about the trap. They yield the extraction of some trap and RTS characteristics such as average capture and emission times associated with RTS traces, trap position in the oxide with respect to the Si/SiO 2 interface and along the channel with respect to the source, capture cross section, and trap energies in the Si and SiO2 band -- gaps. Variable temperature measurements, on the other hand, yield much more valuable information. Variable temperature RTS measurements from room temperature down to 80 K were performed, with the MOSFET biased from threshold voltage to strong inversion, in the linear and saturation regions. Variable temperature RTS measurements yield the extraction of trap characteristics such as capture cross -- section prefactor, capture and emission activation energies, change in entropy and enthalpy, and relaxation energy associated with a trap from which the nature and origin of a defect center can be identified. The newly developed Random Telegraph Signals Simulation (RTSSIM) is based on several physical principles and mechanisms e.g. (1) capturing and emitting a mobile charge from and to the channel is governed by phonon- assisted- tunneling, (2) traps only within a few kBT of the Fermi energy level are considered electrically active, (3) trap density is taken as U -- shaped in energy in the silicon band-gap, (4) device scalability is accounted for, (5) and temperature dependence of all parameters is considered. RTSSIM reconstructs the RTS traces in time domain from which the power spectral density (PSD) is evaluated. If there is 20 or more active traps, RTSSIM evaluates the PSD from the superposition of the RTS spectra. RTSSIM extracts RTS and trap characteristics from the simulated RTS data and outputs them to MS Excel files for further analyses and study. The novelty of this work is: (1) it is the first time quantum trap states have been accurately assigned to each switching level in a complex RTS corresponding to dependently and independently interacting traps, (2) new physics-based measurement-driven model and simulation tool has been developed for RTS phenomenon in a MOSFET, (3) and it is the first time a species in SiO2 responsible for RTS has been identified through time-domain measurements and extensive analysis using four trap characteristics at the same time.
NASA Astrophysics Data System (ADS)
Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo
2014-10-01
We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.
Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorenko, Y. G., E-mail: y.fedorenko@liverpool.ac.uk; Major, J. D.; Pressman, A.
2015-10-28
By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gapmore » states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.« less
Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106
Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.
1994-01-01
Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.
Titanium in silicon as a deep level impurity
NASA Technical Reports Server (NTRS)
Chen, J.-W.; Milnes, A. G.; Rohatgi, A.
1979-01-01
Titanium inserted in silicon by diffusion or during Czochralski ingot growth is electrically active to a concentration level of about 4 x 10 to the 14th per cu cm. It is reported that Hall measurements after diffusion show conversion of lightly doped p-type Si to n-type due to a Ti donor level at E sub c -0.22 eV. In addition, in DLTS measurements of n(+)p structures this level shows as an electron (minority carrier) trap at E sub c -0.26 eV with an electron capture cross section of about 3 x 10 to the -15th per sq cm at 300 K. Finally, a Ti electrically active concentration of about 1.35 x 10 to the 13th per cu cm in p type Si results in a minority carrier (electron) lifetime of 50 nsec at 300 K.
Cavity-enhanced optical bottle beam as a mechanical amplifier
NASA Astrophysics Data System (ADS)
Freegarde, Tim; Dholakia, Kishan
2002-07-01
We analyze the resonant cavity enhancement of a hollow ``optical bottle beam'' for the dipole-force trapping of dark-field-seeking species. We first improve upon the basic bottle beam by adding further Laguerre-Gaussian components to deepen the confining potential. Each of these components itself corresponds to a superposition of transverse cavity modes, which are then enhanced simultaneously in a confocal cavity to produce a deep optical trap needing only a modest incident power. The response of the trapping field to displacement of the cavity mirrors offers an unusual form of mechanical amplifier in which the Gouy phase shift produces an optical Vernier scale between the Laguerre-Gaussian beam components.
Nonlinear quantum Rabi model in trapped ions
NASA Astrophysics Data System (ADS)
Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique
2018-02-01
We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.
Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation
NASA Astrophysics Data System (ADS)
Huang, Yin; Min, Daomin; Li, Shengtao; Li, Zhen; Xie, Dongri; Wang, Xuan; Lin, Shengjun
2017-06-01
The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al2O3 microcomposite was investigated. Epoxy resin/Al2O3 microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.
Defect annealing in electron-irradiated boron-doped silicon
NASA Astrophysics Data System (ADS)
Awadelkarim, O. O.; Chen, W. M.; Weman, H.; Monemar, B.
1990-01-01
Defects introduced by room-temperature electron irradiation and subsequent annealing in boron-doped silicon are studied by means of deep-level transient spectroscopy, photoluminescence, and optical detection of magnetic resonance (ODMR) techniques. ODMR reveals a thermally induced paramagnetic (S=(1/2) defect center that is produced following annealing at 400 °C. The center possesses a C3v point-group symmetry with the trigonal axis along <111>. Detailed analysis of the ODMR line shapes indicates the involvement of a silicon atom in the defect center. It appears from the results that boron is either another possible defect component or an essential catalyst for the defect formation. The occurrence of the ODMR signal together with a luminescence band peaking at 0.80 eV is independent of oxygen or carbon contents in the samples. The band does not belong to the center observed by ODMR; however, a decrease in its intensity, under resonance conditions in the ODMR center, is explained in terms of carrier recombination, capture, or energy-transfer processes involving this center. Annealing studies on a metastable hole trap observed at Ev+0.12 eV (Ev being the top of the valence band) establish the trap assignment to a carbon-interstitial-carbon-substitutional pair. The introduction of postannealing traps observed at Ev+0.07 eV, Ev+0.45 eV, and Ec-0.59 eV (Ec being the conduction-band edge) is found to be boron dependent. Isothermal formation of the centers responsible for these traps are observed, and none of the traps appears to be related to either the center observed by ODMR or the 0.80-eV band.
NASA Astrophysics Data System (ADS)
Yachi, Suguru; Takabe, Ryota; Deng, Tianguo; Toko, Kaoru; Suemasu, Takashi
2018-04-01
We investigated the effect of BaSi2 template growth duration (t RDE = 0-20 min) on the defect generation and performance of p-BaSi2/n-Si heterojunction solar cells. The p-BaSi2 layer grown by molecular beam epitaxy (MBE) was 15 nm thick with a hole concentration of 2 × 1018 cm-3. The conversion efficiency η increased for films grown at long t RDE, owing to improvements of the open-circuit voltage (V OC) and fill factor (FF), reaching a maximum of η = 8.9% at t RDE = 7.5 min. However, η decreased at longer and shorter t RDE owing to lower V OC and FF. Using deep-level transient spectroscopy, we detected a hole trap level 190 meV above the valence band maximum for the sample grown without the template (t RDE = 0 min). An electron trap level 106 meV below the conduction band minimum was detected for a sample grown with t RDE = 20 min. The trap densities for both films were (1-2) × 1013 cm-3. The former originated from the diffusion of Ba into the n-Si region; the latter originated from defects in the template layer. The crystalline qualities of the template and MBE-grown layers were discussed. The root-mean-square surface roughness of the template reached a minimum of 0.51 nm at t RDE = 7.5 min. The a-axis orientation of p-BaSi2 thin films degraded as t RDE exceeded 10 min. In terms of p-BaSi2 crystalline quality and solar cell performance, the optimum t RDE was determined to be 7.5 min, corresponding to approximately 4 nm in thickness.
NASA Astrophysics Data System (ADS)
Brylevskiy, Viktor; Smirnova, Irina; Gutkin, Andrej; Brunkov, Pavel; Rodin, Pavel; Grekhov, Igor
2017-11-01
We present a comparative study of silicon high-voltage diodes exhibiting the effect of delayed superfast impact-ionization breakdown. The effect manifests itself in a sustainable picosecond-range transient from the blocking to the conducting state and occurs when a steep voltage ramp is applied to the p+-n-n+ diode in the reverse direction. Nine groups of diodes with graded and abrupt pn-junctions have been specially fabricated for this study by different techniques from different Si substrates. Additionally, in two groups of these structures, the lifetime of nonequilibrium carriers was intentionally reduced by electron irradiation. All diodes have identical geometrical parameters and similar stationary breakdown voltages. Our experimental setup allows measuring both device voltage and current during the kilovolt switching with time resolution better than 50 ps. Although all devices are capable of forming a front with kilovolt amplitude and 100 ps risetime in the in-series load, the structures with graded pn-junctions have anomalously large residual voltage. The Deep Level Transient Spectroscopy study of all diode structures has been performed in order to evaluate the effect of deep centers on device performance. It was found that the presence of deep-level electron traps negatively correlates with parameters of superfast switching, whereas a large concentration of recombination centers created by electron irradiation has virtually no influence on switching characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Joung-min, E-mail: cho.j.ad@m.titech.ac.jp; Akiyama, Yuto; Kakinuma, Tomoyuki
2013-10-15
We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on N,N ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulatedmore » characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical V{sub G} above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge.« less
Effect of high-dose irradiation on the optically stimulated luminescence of Al2O3:C
NASA Technical Reports Server (NTRS)
Yukihara, E. G.; Whitley, V. H.; McKeever, S. W. S.; Akselrod, A. E.; Akselrod, M. S.
2004-01-01
This paper examines the effect of high-dose irradiation on the optically stimulated luminescence (OSL) of Al2O3:C, principally on the shape of the OSL decay curve and on the OSL sensitivity. The effect of the degree of deep trap filling on the OSL was also studied by monitoring the sensitivity changes after doses of beta irradiation and after step-annealing of samples previously irradiated with high doses. The OSL response to dose shows a linear-supralinear-saturation behavior, with a decrease in the response for doses higher than those required for saturation. This behavior correlates with the sensitivity changes observed in the samples annealed only to 773 K, which show sensitization for doses up to 20-50 Gy and desensitization for higher doses. Data from the step-annealing study leads to the suggestion that the sensitization is caused by the filling of deep electron traps, which become thermally unstable at 1100-1200 K, whereas the desensitization is caused by the filling of deep hole traps, which become thermally unstable at 800-875 K, along with a concomitant decrease in the concentration of recombination centers (F+ -centers). Changes in the shape of the OSL decay curves are also observed at high doses, the decay becoming faster as the dose increases. These changes in the OSL decay curves are discussed in terms of multiple overlapping components, each characterized by different photoionization cross-sections. However, using numerical solutions of the rate equations for a simple model consisting of a main trap and a recombination center, it is shown that the kinetics of OSL process may also be partially responsible for the changes in the OSL curves at high doses in Al2O3:C. Finally, the implication of these results for the dosimetry of heavy charged particles is discussed. c2004 Elsevier Ltd. All rights reserved.
Bee (Hymenoptera: Apoidea) Diversity and Sampling Methodology in a Midwestern USA Deciduous Forest.
McCravy, Kenneth W; Ruholl, Jared D
2017-08-04
Forests provide potentially important bee habitat, but little research has been done on forest bee diversity and the relative effectiveness of bee sampling methods in this environment. Bee diversity and sampling methodology were studied in an Illinois, USA upland oak-hickory forest using elevated and ground-level pan traps, malaise traps, and vane traps. 854 bees and 55 bee species were collected. Elevated pan traps collected the greatest number of bees (473), but ground-level pan traps collected greater species diversity (based on Simpson's diversity index) than did elevated pan traps. Elevated and ground-level pan traps collected the greatest bee species richness, with 43 and 39 species, respectively. An estimated sample size increase of over 18-fold would be required to approach minimum asymptotic richness using ground-level pan traps. Among pan trap colors/elevations, elevated yellow pan traps collected the greatest number of bees (266) but the lowest diversity. Malaise traps were relatively ineffective, collecting only 17 bees. Vane traps collected relatively low species richness (14 species), and Chao1 and abundance coverage estimators suggested that minimum asymptotic species richness was approached for that method. Bee species composition differed significantly between elevated pan traps, ground-level pan traps, and vane traps. Indicator species were significantly associated with each of these trap types, as well as with particular pan trap colors/elevations. These results indicate that Midwestern deciduous forests provide important bee habitat, and that the performance of common bee sampling methods varies substantially in this environment.
NASA Astrophysics Data System (ADS)
Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.
2016-08-01
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.; Wu, Ke
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to havemore » the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.« less
NASA Astrophysics Data System (ADS)
Şahiner, Eren; Meriç, Niyazi; Polymeris, George S.
2017-02-01
Equivalent dose estimation (De) constitutes the most important part of either trap-charge dating techniques or dosimetry applications. In the present work, multiple, independent equivalent dose estimation approaches were adopted, using both luminescence and ESR techniques; two different minerals were studied, namely quartz as well as feldspathic polymineral samples. The work is divided into three independent parts, depending on the type of signal employed. Firstly, different De estimation approaches were carried out on both polymineral and contaminated quartz, using single aliquot regenerative dose protocols employing conventional OSL and IRSL signals, acquired at different temperatures. Secondly, ESR equivalent dose estimations using the additive dose procedure both at room temperature and at 90 K were discussed. Lastly, for the first time in the literature, a single aliquot regenerative protocol employing a thermally assisted OSL signal originating from Very Deep Traps was applied for natural minerals. Rejection criteria such as recycling and recovery ratios are also presented. The SAR protocol, whenever applied, provided with compatible De estimations with great accuracy, independent on either the type of mineral or the stimulation temperature. Low temperature ESR signals resulting from Al and Ti centers indicate very large De values due to bleaching in-ability, associated with large uncertainty values. Additionally, dose saturation of different approaches was investigated. For the signal arising from Very Deep Traps in quartz saturation is extended almost by one order of magnitude. It is interesting that most of De values yielded using different luminescence signals agree with each other and ESR Ge center has very large D0 values. The results presented above highly support the argument that the stability and the initial ESR signal of the Ge center is highly sample-dependent, without any instability problems for the cases of quartz resulting from fault gouge.
Fluorescence characteristics in the deep waters of South Gulf of México.
Schifter, I; Sánchez-Reyna, G; González-Macías, C; Salazar-Coria, L; González-Lozano, C
2017-10-15
Vertical profiles of deep-water fluorescence determined by the chlorophyll sensor, polycyclic aromatic hydrocarbons, biomarkers, and other miscellaneous parameters measured in the southern Gulf of Mexico are reported. In the course of the survey, unexpected deep fluorescences were recorded (>1100m depth) in half of the 40 stations studied, a novel finding in this area of the Gulf. Currently, the deep-water fluorescence phenomenon is not completely understood, however we observe linear correlation between the fluorescence intensity and chlorophyll-α concentrations and coincidence of higher number of hydrocarbonoclastic bacteria in samples collected precisely in the deep-water fluorescence. This information is particularly interesting in relation to the Deepwater Horizon oil spill in 2010, in view that the aftermaths of the spill can be observed till today as oil plumes trapped in deep water layers that may disturb the natural water ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kalita, J M; Chithambo, M L
2018-06-15
We report the effect of pre-dose on the thermoluminescence (TL) and optically stimulated luminescence (OSL) dose response of α-Al 2 O 3 :C,Mg and α-Al 2 O 3 :C. Before any luminescence measurement, the samples were irradiated with different doses, namely 100, 500 and 1000 Gy to populate the deep electron traps. This is the pre-dose. The results from TL and OSL studies are compared with results from samples used without any pre-measurement dose. The TL glow curves and OSL decay curves of α-Al 2 O 3 :C,Mg recorded after pre-doses of 100, 500 and 1000 Gy are identical to those from a sample used without any pre-dose. Further, the TL and OSL dose response of all α-Al 2 O 3 :C,Mg samples are similar regardless of pre-dose. In comparison, the TL glow curves and OSL decay curves of α-Al 2 O 3 :C are influenced by pre-dose. We conclude that the differences in the TL and OSL dose response of various pre-dosed samples of α-Al 2 O 3 :C are due to the concentration of charge in the deep traps. On the other hand, owing to the lower concentration of such deep traps in α-Al 2 O 3 :C,Mg, the TL or OSL dose responses are not affected by pre-dose in this material. Copyright © 2018 Elsevier Ltd. All rights reserved.
Subinertial Slope-Trapped Waves in the Northeastern Gulf of Mexico
2009-06-01
describe low-frequency varia- bility in the GOM and its interaction with the topo- graphy. Oey and Lee (2002) describe modeled deep eddy kinetic...deep energy can penetrate onto the upper part of the slope in this region; Oey and Lee (2002) state that their model cannot adequately resolve...slope topography in the NE GOM is described by Cames et al. (2008), Hamilton and Lee (2005), and Wang et al. (2003). Hamilton and Lee (2005) found
Trapping cold ground state argon atoms.
Edmunds, P D; Barker, P F
2014-10-31
We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39) C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10) cm(3) s(-1).
Transient photocurrent responses in amorphous Zn-Sn-O thin films
NASA Astrophysics Data System (ADS)
Kim, Ju-Yeon; Oh, Sang-A.; Yu, Kyeong Min; Bae, Byung Seong; Yun, Eui-Jung
2015-04-01
In this study we characterized the transient photocurrent responses in solution-processed amorphous zinc-tin-oxide (a-ZTO) thin films measured under light illumination with a wavelength of 400 nm at different temperatures. By using the temperature-dependent photoconductivities of a-ZTO thin films, we extracted the activation energies (E ac ) of photo-excitation and dark relaxation through an extended stretched exponential analysis (SEA). The SEA was found to describe well the dark relaxation characteristics as well as the photo-excitation processes. The SEA also indicates that the dark relaxation process reveals a dispersive transient photoconductivity with a broader distribution of the E ac while the photo-excitation process shows non-dispersive characteristics. Samples exposed by light at temperatures less than 373 K possess the fast processes of photo-excitation and dark relaxation. This suggests that a fast process, for example, a generation/recombination of charged carriers related to a band-to-band transition and/or shallow/deep oxygen-vacancy (V o ) sub-gap donor states, is dominant in the case of light illumination at low temperatures of less than 373 K. The SEA indicates, however, that a much slower process due mainly to the delay of the onset of ionization/neutralization of the deep V o states by multiple-trapping is dominant for samples under light illumination at a high temperature of 373 K. Based on the experimental results, for the dark relaxation process, we conclude that the process transitions from a fast recombination of electrons through band-to-band transitions and/or shallow/deep V o donor states to a slow neutralization of the ionized V o states occurs due to enhanced carrier multiple-trapping by relatively deep V o trap states when the temperature becomes greater than 363 K. An energy band diagram of a-ZTO thin films was proposed in terms of the temperature and the E ac distribution to explain these observed results.
Is the extent of glaciation limited by marine gas-hydrates?
Paull, Charles K.; Ussler, William; Dillon, William P.
1991-01-01
Methane may have been released to the atmosphere during the Quaternary from Arctic shelf gas-hydrates as a result of thermal decomposition caused by climatic warming and rising sea-level; this release of methane (a greenhouse gas) may represent a positive feedback on global warming [Revelle, 1983; Kvenvolden, 1988a; Nisbet, 1990]. We consider the response to sea-level changes by the immense amount of gas-hydrate that exists in continental rise sediments, and suggest that the reverse situation may apply—that release of methane trapped in the deep-sea sediments as gas-hydrates may provide a negative feedback to advancing glaciation. Methane is likely to be released from deep-sea gas-hydrates as sea-level falls because methane gas-hydrates decompose with pressure decrease. Methane would be released to sediment pore space at shallow sub-bottom depths (100's of meters beneath the seafloor, commonly at water depths of 500 to 4,000 m) producing zones of markedly decreased sediment strength, leading to slumping [Carpenter, 1981; Kayen, 1988] and abrupt release of the gas. Methane is likely to be released to the atmosphere in spikes that become larger and more frequent as glaciation progresses. Because addition of methane to the atmosphere warms the planet, this process provides a negative feedback to glaciation, and could trigger deglaciation.
Polycrystalline CVD diamond device level modeling for particle detection applications
NASA Astrophysics Data System (ADS)
Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.
2016-12-01
Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.
Poland, Therese M; Mccullough, Deborah G
2014-02-01
Results of numerous trials to evaluate artificial trap designs and lures for detection of Agrilus planipennis Fairmaire, the emerald ash borer, have yielded inconsistent results, possibly because of different A. planipennis population densities in the field sites. In 2010 and 2011, we compared 1) green canopy traps, 2) purple canopy traps, 3) green double-decker traps, and 4) purple double-decker traps in sites representing a range of A. planipennis infestation levels. Traps were baited with cis-3-hexenol in both years, plus an 80:20 mixture of Manuka and Phoebe oil (2010) or Manuka oil alone (2011). Condition of trees bearing canopy traps, A. planipennis infestation level of trees in the vicinity of traps, and number of A. planipennis captured per trap differed among sites in both years. Overall in both years, more females, males, and beetles of both sexes were captured on double-decker traps than canopy traps, and more beetles of both sexes (2010) or females (2011) were captured on purple traps than green traps. In 2010, detection rates were higher for purple (100%) and green double-decker traps (100%) than for purple (82%) or green canopy traps (64%) at sites with very low to low A. planipennis infestation levels. Captures of A. planipennis on canopy traps consistently increased with the infestation level of the canopy trap-bearing trees. Differences among trap types were most pronounced at sites with low A. planipennis densities, where more beetles were captured on purple double-decker traps than on green canopy traps in both years.
NASA Astrophysics Data System (ADS)
Cox, S. F. J.
2003-11-01
The structure and electrical activity of monatomic hydrogen defect centres are inferred from the spectroscopy and charge-state transitions of muonium, the light pseudo-isotope of hydrogen. Introductions are given to all these topics. Special attention is paid to the shallow-donor behaviour recently established in a number of II VI compounds and one III nitride. This contrasts with trapped-atom states suggestive of an acceptor function in other members of the II VI family as well as with the deep-level amphoteric behaviour which has long been known in the elemental group-IV semiconductors and certain III V compounds. The systematics of this remarkable shallow-to-deep instability are examined in terms of simple chemical considerations, as well as current theoretical and computational models. The muonium data appear to confirm predictions that the switch from shallow to deep behaviour is governed primarily by the depth of the conduction-band minimum below the vacuum continuum. The threshold electron affinity is around 3.5 eV, which compares favourably with computational estimates of a so-called pinning level for hydrogen (+/-) charge-state transitions of between -3 and -4.5 eV. A purely ionic model gives some intuitive understanding of this behaviour as well as the invariance of the threshold. Another current description applies equally to covalent materials and relates the threshold to the origin of the electrochemical scale. At the present level of approximation, zero-point energy corrections to the transition levels are small, so that muonium data should provide a reliable guide to the behaviour of hydrogen. Muonium spectroscopy proves to be more sensitive to the (0/+) donor level than to the (+/-) pinning level but, as a tool which does not rely on favourable hydrogen solubility, it looks set to test further predictions of these models in a large number of other materials, notably oxides. Certain candidate thin-film insulators and high-permittivity gate dielectrics appear to be uncomfortably close to conditions in which hydrogen impurity may cause electronic conduction.
Dopant incorporation in Al0.9Ga0.1As0.06Sb0.94 grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Patra, Saroj Kumar; Tran, Thanh-Nam; Vines, Lasse; Kolevatov, Ilia; Monakhov, Edouard; Fimland, Bjørn-Ove
2017-04-01
Incorporation of beryllium (Be) and tellurium (Te) dopants in epitaxially grown Al0.9Ga0.1As0.06Sb0.94 layers was investigated. Carrier concentrations and mobilities of the doped layers were obtained from room temperature Hall effect measurements, and dopant densities from secondary ion mass spectrometry depth profiling. An undoped Al0.3Ga0.7As cap layer and side wall passivation were used to reduce oxidation and improve accuracy in Hall effect measurements. The measurements on Be-doped samples revealed high doping efficiency and the carrier concentration varied linearly with dopant density up to the highest Be dopant density of 2.9 × 1019 cm-3, whereas for Te doped samples the doping efficiency was in general low and the carrier concentration saturated for Te-dopant densities above 8.0 × 1018 cm-3. The low doping efficiency in Te-doped Al0.9Ga0.1As0.06Sb0.94 layer was studied by deep-level transient spectroscopy, revealing existence of deep trap levels and related DX-centers which explains the low doping efficiency.
Experimental evidence of trap level modulation in silicon nitride thin films by hydrogen annealing
NASA Astrophysics Data System (ADS)
Seki, Harumi; Kamimuta, Yuuichi; Mitani, Yuichiro
2018-06-01
The energy level of electron traps in silicon nitride (SiN x ) thin films was investigated by discharging current transient spectroscopy (DCTS). Results indicate that the trap level of the SiN x thin films becomes deeper with decreasing composition (N/Si) and shallower after hydrogen annealing. The dependence of the trap level on the SiN x composition and the modulation of the trap level by hydrogen annealing are possibly related to the change in the number of Si–H bonds in the SiN x thin films.
Electrically active defects in p-type silicon after alpha-particle irradiation
NASA Astrophysics Data System (ADS)
Danga, Helga T.; Auret, F. Danie; Tunhuma, Shandirai M.; Omotoso, Ezekiel; Igumbor, Emmanuel; Meyer, Walter E.
2018-04-01
In this work, we investigated the defects introduced when boron (B) doped silicon (Si) was irradiated by making use of a 5.4 MeV americium (Am) 241 foil radioactive source with a fluence rate of 7×106 cm-2 s-1 at room temperature. Deep level transient spectroscopy (DLTS) and Laplace-DLTS measurements were used to investigate the electronic properties of the introduced defects. After exposure at a fluence of 5.1×1010 cm-2, the energy levels of the hole traps measured were: H(0.10), H(0.16), H(0.33) and H(0.52) The defect level H(0.10) was tri-vacancy related. H(0.33) was identified as the interstitial carbon (Ci) related defect which was a result of radiation induced damage. H(0.52) was a B-related defect. Explicit deductions about the origin of H(0.16) have not yet been achieved.
NASA Astrophysics Data System (ADS)
Blasius, Bernd
2014-09-01
Since the beginnings of agriculture the production of crops is characterized by an ongoing battle between farmers and pests [1]. Already during biblical times swarms of the desert locust, Schistocerca gregaria, were known as major pest that can devour a field of corn within an hour. Even today, harmful organisms have the potential to threaten food production worldwide. It is estimated that about 37% of all potential crops are destroyed by pests. Harmful insects alone destroy 13%, causing financial losses in the agricultural industry of millions of dollars each year [2-4]. These numbers emphasize the importance of pest insect monitoring as a crucial step of integrated pest management [1]. The main approach to gain information about infestation levels is based on trapping, which leads to the question of how to extrapolate the sparse population counts at singularly disposed traps to a spatial representation of the pest species distribution. In their review Petrovskii et al. provide a mathematical framework to tackle this problem [5]. Their analysis reveals that this seemingly inconspicuous problem gives rise to surprisingly deep mathematical challenges that touch several modern contemporary concepts of statistical physics and complex systems theory. The review does not aim for a collection of numerical recipes to support crop growers in the analysis of their trapping data. Instead the review identifies the relevant biological and physical processes that are involved in pest insect monitoring and it presents the mathematical techniques that are required to capture these processes.
NASA Astrophysics Data System (ADS)
Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.
A study of trap and recombination centers in MAPbI3 perovskites.
Gordillo, G; Otálora, C A; Ramirez, A A
2016-12-07
Trapping and recombination processes in thin films of CH 3 NH 3 PbI 3 (MAPbI 3 ) were studied by means of transient photoconductivity measurements and theoretical simulations of the relaxation curves resulting from the photocurrent measurements; in particular, the influence of temperature as well as of the sample temperature and intensity of illumination and pressure inside the measurement system on the photoconductivity response, were studied. The experimental curves of photocurrent were analyzed using the real part of the Fourier transform. The study revealed that the photocurrent of the MAPbI 3 films, measured at atmospheric pressure, is mainly governed by surface related processes induced by chemisorption and desorption of oxygen, whereas the photocurrent resulting from measurements performed in a vacuum is mainly governed by bulk related processes. It was found that, in general, the photocurrent response is affected by both trap assisted fast recombination processes and traps whose activation process is delayed, with the contribution in the intensity of the photocurrent of the first process being greater that of the second one. Evidence that the MAPbI 3 film exhibits a deep trap state at around 459 meV attributed to trap assisted recombination was found; furthermore, the MAPbI 3 films present shallow trap states at 129 and 24 meV that correspond to trap states whose activation process is delayed.
Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo
2015-09-01
We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.
South Sumatra Basin Province, Indonesia; the Lahat/Talang Akar-Cenozoic total petroleum system
Bishop, Michele G.
2000-01-01
Oil and gas are produced from the onshore South Sumatra Basin Province. The province consists of Tertiary half-graben basins infilled with carbonate and clastic sedimentary rocks unconformably overlying pre-Tertiary metamorphic and igneous rocks. Eocene through lower Oligocene lacustrine shales and Oligocene through lower Miocene lacustrine and deltaic coaly shales are the mature source rocks. Reserves of 4.3 billion barrels of oil equivalent have been discovered in reservoirs that range from pre-Tertiary basement through upper Miocene sandstones and carbonates deposited as synrift strata and as marine shoreline, deltaic-fluvial, and deep-water strata. Carbonate and sandstone reservoirs produce oil and gas primarily from anticlinal traps of Plio-Pleistocene age. Stratigraphic trapping and faulting are important locally. Production is compartmentalized due to numerous intraformational seals. The regional marine shale seal, deposited by a maximum sea level highstand in early middle Miocene time, was faulted during post-depositional folding allowing migration of hydrocarbons to reservoirs above the seal. The province contains the Lahat/Talang Akar-Cenozoic total petroleum system with one assessment unit, South Sumatra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.
2016-06-17
AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less
NASA Technical Reports Server (NTRS)
Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.
1992-01-01
The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.
Characterization and modeling of radiation effects NASA/MSFC semiconductor devices
NASA Technical Reports Server (NTRS)
Kerns, D. V., Jr.; Cook, K. B., Jr.
1978-01-01
A literature review of the near-Earth trapped radiation of the Van Allen Belts, the radiation within the solar system resulting from the solar wind, and the cosmic radiation levels of deep space showed that a reasonable simulation of space radiation, particularly the Earth orbital environment, could be simulated in the laboratory by proton bombardment. A 3 MeV proton accelerator was used to irradiate CMOS integrated circuits fabricated from three different processes. The drain current and output voltage for three inverters was recorded as the input voltage was swept from zero to ten volts after each successive irradiation. Device parameters were extracted. Possible damage mechanisms are discussed and recommendations for improved radiation hardness are suggested.
The Deep Space Atomic Clock Mission
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill
2012-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.
Advancing an In situ Laser Spectrometer for Carbon Isotope Analyses in the Deep Ocean
NASA Astrophysics Data System (ADS)
Michel, A.; Wankel, S. D.; Kapit, J.; Girguis, P. R.
2016-02-01
Development of in situ chemical sensors is critical for improving our understanding of deep-ocean biogeochemistry and recent advances in chemical sensors are already expanding the breadth and depth of deep sea/seafloor exploration and research. Although initially developed for high sensitivity measurements of atmospheric gases, laser-based spectroscopic sensors are now being developed for research in the deep sea by incorporating the use of semi-permeable membranes. Here we present on recent deep-sea deployments of an in situ laser-based analyzer of carbon isotopes of methane (δ13CH4), highlighting several advances including a new capability for also measuring δ13C of DIC or CO2 by incorporating a second laser and an in line acidification module. A bubble trapping approach was designed and implemented for the collection and analysis of both CH4 and CO2 from deep-sea bubbles. The newly advanced laser spectrometer was deployed at both Kick `Em Jenny volcano off of the island of Grenada and in a brine pool in the western Gulf of Mexico ("The Jacuzzi of Despair") using the E/V Nautilus and the ROV Hercules. At Kick `Em Jenny, seafloor measurements were made of both emanating fluids and bubbles from within and around the crater - revealing high levels of magmatic CO2 with minor amounts of CH4 and hydrogen sulfide. At the brine pool, spot measurements and depth profile measurements into the brine pool were made for chemical mapping, revealing fluids that were saturated with respect to methane. New technologies such as the laser spectrometer will enable us to obtain high resolution and near real-time, in situ chemical and isotopic data and to make geochemical maps over a range of spatial and temporal scales.
Ueda, Jumpei; Miyano, Shun; Tanabe, Setsuhisa
2018-05-23
The Y 3 Al 2 Ga 3 O 12 :Ce 3+ -Cr 3+ compound is one of the brightest persistent phosphors, but its persistent luminescence (PersL) duration is not so long due to the relatively shallow Cr 3+ electron trap. Comparing the vacuum referred binding energy of the electron trapping state by Cr 3+ and those by lanthanide ions, we selected Yb 3+ as a deeper electron trapping center. The Y 3 Al 2 Ga 3 O 12 :Ce 3+ -Yb 3+ phosphors show Ce 3+ :5d→4f green persistent luminescence after ceasing blue light excitation. The formation of Yb 2+ was confirmed by the increased intensity of absorption at 585 nm during the charging process. This result indicates that the Yb 3+ ions act as electron traps by capturing an electron. From the thermoluminescence glow curves, it was found the Yb 3+ trap makes much deeper electron trap with 1.01 eV depth than the Cr 3+ electron trap with 0.81 eV depth. This deeper Yb 3+ trap provides much slower detrapping rate of filled electron traps than the Cr 3+ -codoped persistent phosphor. In addition, by preparing transparent ceramics and optimizing Ce 3+ and Yb 3+ concentrations, the Y 3 Al 2 Ga 3 O 12 :Ce 3+ (0.2%)-Yb 3+ (0.1%) as-made transparent ceramic phosphor showed super long persistent luminescence for over 138.8 hours after ceasing blue light charging.
Neutrophil extracellular traps promote deep vein thrombosis in mice
Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D.
2011-01-01
Summary Background Upon activation, neutrophils can release nuclear material known as neutrophil extracellular traps (NETs), which were initially described as a part of antimicrobial defense. Extracellular chromatin was recently reported to be pro-thrombotic in vitro and to accumulate in plasma and thrombi of baboons with experimental deep vein thrombosis (DVT). Objective To explore the source and role of extracellular chromatin in DVT. Methods We used an established murine model of DVT induced by flow restriction (stenosis) in the inferior vena cava (IVC). Results We demonstrate that the levels of extracellular DNA increase in plasma after 6 h IVC stenosis, compared to sham-operated mice. Immunohistochemical staining revealed the presence of Gr-1-positive neutrophils in both red (RBC-rich) and white (platelet-rich) parts of thrombi. Citrullinated histone H3 (CitH3), an element of NETs’ structure, was present only in the red part of thrombi and was frequently associated with the Gr-1 antigen. Immunofluorescent staining of thrombi showed proximity of extracellular CitH3 and von Willebrand factor (VWF), a platelet adhesion molecule crucial for thrombus development in this model. Infusion of Deoxyribonuclease 1 (DNase 1) protected mice from DVT after 6 h and also 48 h IVC stenosis. Infusion of an unfractionated mixture of calf thymus histones increased plasma VWF and promoted DVT early after stenosis application. Conclusions Extracellular chromatin, likely originating from neutrophils, is a structural part of a venous thrombus and both the DNA scaffold and histones appear to contribute to the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug development. PMID:22044575
Nanophotonic light-trapping theory for solar cells
NASA Astrophysics Data System (ADS)
Yu, Zongfu; Raman, Aaswath; Fan, Shanhui
2011-11-01
Conventional light-trapping theory, based on a ray-optics approach, was developed for standard thick photovoltaic cells. The classical theory established an upper limit for possible absorption enhancement in this context and provided a design strategy for reaching this limit. This theory has become the foundation for light management in bulk silicon PV cells, and has had enormous influence on the optical design of solar cells in general. This theory, however, is not applicable in the nanophotonic regime. Here we develop a statistical temporal coupled-mode theory of light trapping based on a rigorous electromagnetic approach. Our theory reveals that the standard limit can be substantially surpassed when optical modes in the active layer are confined to deep-subwavelength scale, opening new avenues for highly efficient next-generation solar cells.
NASA Astrophysics Data System (ADS)
Zander, T.; Berndt, C.; Haeckel, M.; Klaucke, I.; Bialas, J.; Klaeschen, D.
2015-12-01
The sedimentary succession of the anoxic, deep Black Sea Basin is an ideal location for organic matter preservation and microbial methane generation. In the depth range of the gas hydrate stability zone (GHSZ) methane gas forms methane hydrates and presumably large accumulations of gas hydrate exist in porous sediments, such as those encountered on the Danube deep-sea fan. High-resolution P-Cable 3D seismic data reveals the character and distribution of up to four stacked bottom simulating reflectors (BSR) within the channel-levee systems of the Danube deep-sea fan. These anomalous BSRs were first described by Popescu et al. (2006). The geological processes that lead to multiple BSRs are still poorly understood. The theoretical base of the GHSZ calculated from regional temperature gradients and salinity data is in agreement with the shallowest BSR in the area. We have tested two hypotheses that may explain the formation of the lower BSRs. The first hypothesis is that the lower BSRs are formed by overpressure compartments. Large amounts of free gas below the BSRs are trapped in the pore space increasing the pressure above hydrostatic condition up to a level where gas hydrates are stable again. The second hypothesis is that the lower BSRs are linked to the growth of the Danube fan. Sediment deposits from the outer levee of the youngest channel cover the area hosting multiple BSRs. The youngest channel developed during the last sea level lowstand that is correlated with the Neo-Euxinian that started 23,000 yrs. BP. We propose that the rapid sediment loading during sea level lowstands is a key factor for the preservation of paleo-BSRs in the study area. References Popescu, I., De Batist, M., Lericolais, G., Nouzé, H., Poort, J., Panin, N., Versteeg, W., Gillet, H., 2006. Multiple bottom-simulating reflections in the Black Sea: Potential proxies of past climate conditions. Marine Geology 227, 163-176.
NASA Astrophysics Data System (ADS)
Koppelmann, Rolf; Weikert, Horst; Lahajnar, Niko
2003-09-01
Mesozooplankton samples were collected throughout the water column in the 4270 m deep Ierapetra basin, 30 nm SE off Crete, in April 1999. Information on trophic relationships within mesozooplankton size classes (<0.5, 0.5-1, 1-2, and 2-5 mm) and the sources of diet were obtained by measuring the composition of stable nitrogen isotopes of size-fractionated zooplankton and particles collected by sediment traps. Compared to data from the Arabian Sea, the δ15N values of zooplankton were markedly lower in the Levantine Sea. Data from the upper 250 m (2-3‰) suggest that N2 from the atmosphere was used by diazotroph cyanophycea as a nitrogen source for primary production. A loop system is hypothesized by which isotopically light NH4+ is recycled and used by phytoplankton. In the deep mesopelagic zone, an increase in δ15N with increasing depth was observed. In the deep bathypelagic zone, the δ15N values were more or less stable and indicate a trophic level of ˜2.5. A first zooplankton analysis revealed that juveniles of the calanoid copepod Lucicutia longiserrata, one of the rare true deep-sea species in the Levantine basin, were predominant in this zone. The taxonomic composition as well as the vertical distribution of zooplankton in the large habitat zones resembled that in January 1987, before the onset of a hydrological shift in the eastern Mediterranean. We therefore suggest that the situation in April 1999 does not characterize the mode of nitrogen transfer during the EMT.
Hydrostatic Adjustment in Vertically Stratified Atmospheres
NASA Technical Reports Server (NTRS)
Duffy, Dean G.
2000-01-01
Hydrostatic adjustment due to diabatic heat in two nonisothermal atmospheres is examined. In the first case the temperature stratification is continuous; in the second case the atmosphere is composed of a warm, isothermal troposphere and a colder, isothermal semi-infinitely deep stratosphere.In both cases hydrostatic adjustment, to a good approximation, follows the pattern found in the Lamb problem (semi-infinitely deep. isothermal atmosphere): Initially we have acoustic waves with the kinetic energy increasing or decreasing at the expense of available elastic energy. After this initial period the acoustic waves evolve into acoustic-gravity waves with the kinetic, available potential and available elastic energies interacting with each other. Relaxation to hydrostatic balance occurs within a few oscillations. Stratification in an atmosphere with a continuous temperature profile affects primarily the shape and amplitude of the disturbances. In the two-layer atmosphere, a certain amount of energy is trapped in the tropospheric waveguide as disturbances reflect off the tropopause and back into the troposphere. With each internal reflection a portion of this trapped energy escapes and radiates to infinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haller, E.E.; Hubbard, G.S.; Hansen, W.L.
1976-09-01
A defect center with a single acceptor level at E/sub v/ + 0.08 eV appears in H/sub 2/-grown dislocation-free high-purity germanium. Its concentration changes reversibly upon annealing up to 650 K. By means of Hall-effect and conductivity measurements over a large temperature range the temperature dependence of the steady-state concentration between 450 and 720 K as well as the transients following changes in temperature were determined. The observed acceptor level is attributed to the divacancy-hydrogen complex V/sub 2/H. The complex reacts with hydrogen, dissolved in the Ge lattice or stored in traps, according to V/sub 2/H + H reversible V/submore » 2/H/sub 2/. An energy level associated with the divacancy-dihydrogen complex was not observed. These results are in good agreement with the idea that hydrogen in germanium forms a ''very deep donor'' (i.e., the energy level lies inside the valence band).« less
Bakhtavar, Khadijeh; Sedighi, Nahid; Moradi, Zahra
2008-03-01
Chemical warfare agents (CWA) including sulfur mustard (SM) were commonly used in Iran-Iraq war. Respiratory problems are the greatest cause of long-term disability among people who had combat exposure to SM. High-resolution computed tomography (HRCT) has been accepted as the imaging modality of choice in these patients. We used expiratory HRCT findings in comparison to inspiratory HRCT for demonstration of pulmonary damage in these patients. HRCT in deep inspiration as well as full expiration was performed in 473 patients with a history of chemical gas exposure during the war and the results were compared. The study was prospective during 1 yr. Of 473 patients, 366 (77.38%) showed normal HRCT in deep inspiration; however, on corresponding expiratory cuts, 263 (71.86%) had abnormalities. The most frequent abnormal finding in expiration was patchy air trapping (77.77%). We conclude that exposure to SM causes pulmonary complications resulting in disability in the affected patients; however, HRCT in inspiration is normal in most of the affected patients. Expiratory HRCT showed patchy air trapping as the most common finding, which is suggestive of small air way diseases such as bronchiolitis obliterans; therefore it is recommended to do HRCT both in deep inspiration and full expiration in patients with a history of CWA exposure.
Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai
2016-04-14
Energetic fluctuations with periods of 9-14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography.
Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai
2016-01-01
Energetic fluctuations with periods of 9–14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography. PMID:27075644
The GOL-NB program: further steps in multiple-mirror confinement research
NASA Astrophysics Data System (ADS)
Postupaev, V. V.; Batkin, V. I.; Beklemishev, A. D.; Burdakov, A. V.; Burmasov, V. S.; Chernoshtanov, I. S.; Gorbovsky, A. I.; Ivanov, I. A.; Kuklin, K. N.; Mekler, K. I.; Rovenskikh, A. F.; Sidorov, E. N.; Yurov, D. V.
2017-03-01
Physical and technical details of the GOL-NB project are presented. GOL-NB is a medium-scale multiple-mirror trap that is under development in the Budker Institute, Novosibirsk, Russia. This device will be created in several years as a deep conversion of the existing GOL-3 facility. It will consist of a central trap with two 0.75 MW neutral beams, two multiple-mirror solenoids, two expander tanks and a plasma gun that creates the start plasma. The central trap with the neutral beam injection-heated plasma is a compact gas-dynamic system. The multiple-mirror sections should decrease the power and particle losses along the magnetic field. The confinement improvement factor depends on plasma parameters and on the magnetic configuration in the multiple mirrors. The main physical task of GOL-NB is direct demonstration of the performance of multiple-mirror sections that will change equilibrium plasma parameters in the central trap. In this paper we discuss results of the scenario modeling and progress in the hardware.
Complete erasing of ghost images caused by deeply trapped electrons on computed radiography plates
NASA Astrophysics Data System (ADS)
Ohuchi, H.; Kondo, Y.
2011-03-01
The ghost images, i.e., latent image that is unerasable with visible light (LIunVL) and reappearing image appeared on computed radiography (CR) plates were completely erased by simultaneous exposing them to filtered ultraviolet light and visible light. Three different types of CR plates (Agfa, Kodak, and Fuji) were irradiated with 50 kV X-ray beams in the dose range 8.1 mGy to 8.0 Gy, and then conventionally erased for 2 h with visible light. The remaining LIunVL could be erased by repeating 6 h simultaneous exposures to filtered ultraviolet light and visible light. After the sixth round of exposure, all the LIunVL in the three types of CR plates were erased to the same level as in an unirradiated plate and no latent images reappeared after storage at 0°C for 14 days. The absorption spectra of deep centers were specified using polychromatic ultraviolet light from a deep-ultraviolet lamp. It was found that deep centers showed a dominant peak in the absorption spectra at around 324 nm for the Agfa and Kodak plates, and at around 320 nm for the Fuji plate, in each case followed by a few small peaks. After completely erasing CR plates, these peaks were no longer observed.
Trapping of a microsphere pendulum resonator in an optical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, J. M.; Photonics Centre, Tyndall National Institute, Prospect Row, Cork; Wu, Y.
We propose a method to spatially confine or corral the movements of a micropendulum via the optical forces produced by two simultaneously excited optical modes of a photonic molecule comprising two microspherical cavities. We discuss how the cavity-enhanced optical force generated in the photonic molecule can create an optomechanical potential of about 10 eV deep and 30 pm wide, which can be used to trap the pendulum at any given equilibrium position by a simple choice of laser frequencies. This result presents opportunities for very precise all-optical self-alignment of microsystems.
The X-ARAPUCA: an improvement of the ARAPUCA device
NASA Astrophysics Data System (ADS)
Machado, A. A.; Segreto, E.; Warner, D.; Fauth, A.; Gelli, B.; Máximo, R.; Pissolatti, A.; Paulucci, L.; Marinho, F.
2018-04-01
The ARAPUCA is a novel technology for the detection of liquid argon scintillation light, which has been proposed for the far detector of the Deep Underground Neutrino Experiment. The X-ARAPUCA is an improvement to the original ARAPUCA design, retaining the original ARAPUCA concept of photon trapping inside a highly reflective box while using a wavelength shifting slab inside the box to increase the probability of collecting trapped photons onto a silicon photomultiplier array. The X-ARAPUCA concept is presented and its performances are compared to those of a standard ARAPUCA by means of analytical calculations and Monte Carlo simulations.
Stimulated Scattering and Phase Conjugation in Photorefractive Materials
1992-01-31
than the grating in the deep traps. Bal’iO3 . 2 -15 Recently Brost et al. explained the intensity We predict that if the shallow traps can accumulate a...BSO and BaTiO 3 and induced transparency for Sr < so. Brost et al." ob- for I < 101 V/cm,. served that optical absorption of their BaTiO3 sample at A...flop crystal). Brost et al.’ showed 0 < 71 -< 1. In addition the Debye screening wave vector, that ko increased by -50%,’c between I = 2 x 10 - 3 W/cm
Coleman, J D; Coleman, M C; Warburton, B
2006-04-01
To determine the trap-catch index (an estimate of abundance) of brushtail possum (Trichosurus vulpecula) populations infected with bovine tuberculosis (Tb; Mycobacterium bovis) that must be achieved, and the length of time such an index must be maintained, for Tb to be eliminated from possum populations and adjacent livestock. Between 1997-1998 and 2000-2001, trap-catch surveys of possum populations naturally infected with Tb and subjected to population-control measures were undertaken at four forest sites and two farmland sites. At the same time, possum carcasses were collected at these sites and their Tb status determined, and all contiguous cattle and deer herds were Tb tested and abattoir slaughter data for these herds were interrogated. Trap-catch surveys indicated that numbers of possums on the farmland sites surveyed were usually very low and well below the control targets set (i.e. a 5% trap catch or approximately 0.5-1 possum/ha) for the study. In contrast, trap-catch surveys undertaken in forest sites indicated possum numbers were more variable, and often recovered rapidly from control operations to exceed control targets within 1-3 years. The annual rate of recovery of possum populations in half of the forest population surveys undertaken exceeded published intrinsic rates of increase for possums. The overall prevalence of Tb in possum populations was < or =1.9% at 5/6 sites, and was 6.5% at the sixth site. Juvenile possums infected with Tb were trapped within but near the edge of control zones and appeared to represent an immigrant source of infection. Mature infected possums survived control operations apparently by having home ranges in uncontrolled patches within control areas. Infection in possums appeared to be eliminated from one study site by the intensive control undertaken, but elimination at other sites appeared less likely. Levels of Tb in livestock on or adjacent to the study sites fell by at least 50% during the study, and cattle in one area tested clear for the first time in 20 years. Initial control of possums in forest appeared to achieve national control targets set by the Animal Health Board (AHB), despite trap-catch data often providing misleading population estimates. Such targets were often exceeded within 1-3 years. By comparison, possum control on farmland appeared to maintain populations at very low levels, while control on forest margins maintained populations at intermediate levels. Control was least effective in deep forest where human access was most difficult. Intensive population control measures appeared to have led to a reduced incidence of Tb in livestock at 3/4 sites, and elimination of Tb in livestock at one site. This result supports modelling studies that predict the eradication of Tb from possums through ongoing intensive control and may explain the lower success achieved with earlier less-intensive possum control.
Competing reaction processes on a lattice as a paradigm for catalyst deactivation
NASA Astrophysics Data System (ADS)
Abad, E.; Kozak, J. J.
2015-02-01
We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N -1 partially absorbing traps (absorption probability 0
Moore, Thomas E.; Potter, Christopher J.
2003-01-01
Reservoirs in deformed rocks of the Ellesmerian sequence in southern NPRA are assigned to two hydrocarbon plays, the Thrust-Belt play and the Ellesmerian Structural play. The two plays differ in that the Thrust-Belt play consists of reservoirs located in allochthonous strata in the frontal part of the Brooks Range fold-and-thrust belt, whereas those of the Ellesmerian Structural play are located in autochthonous or parautochthonous strata at deeper structural levels north of the Thrust-Belt play. Together, these structural plays are expected to contain about 3.5 TCF of gas but less than 6 million barrels of oil. These two plays are analyzed using a two-stage deformational model. The first stage of deformation occurred during the Neocomian, when distal strata of the Ellesmerian sequence were imbricated and assembled into deformational wedges emplaced northward onto regionally south-dipping authochon at 140-120 Ma. In the mid-Cretaceous following cessation of the deformation, the Colville basin, the foreland basin to the orogen, was filled with a thick clastic succession. During the second stage of deformation at about 60 Ma (early Tertiary), the combined older orogenic belt-foreland basin system was involved in another episode of north-vergent contractional deformation that deformed pre-existing stratigraphic and structurally trapped reservoir units, formed new structural traps, and caused significant amounts of uplift, although the amount of shortening was relatively small in comparison to the first episode of deformation. Hydrocarbon generation from source strata (Shublik Formation, Kingak Shale, and Otuk Formation) and migration into stratigraphic traps occurred primarily by sedimentary burial principally between 100-90 Ma, between the times of the two episodes of deformation. Subsequent burial caused deep stratigraphic traps to become overmature, cracking oil to gas, and some new generation to begin progressively higher in the section. Structural disruption of the traps in the Early Tertiary is hypothesized to have released sequestered hydrocarbons and caused remigration into newly formed structural traps formed at higher structural levels. Because of the generally high maturation of the Colville basin at the time of the deformation and remigration, most of the hydrocarbons available to fill traps were gas. In the the Thrust-Belt play, the primary reservoir lithology is expected to be dolomitic carbonate rocks of the Lisburne Group, which contain up to 15% porosity. Antiformal stacks of imbricated Lisburne Group strata form the primary trapping configuration, with chert and shale of the overlying Etivluk Group forming seals on closures. Traps are expected to have been charged primarily with remigrated gas, but oil generated from local sources in the Otuk Formation may have filled some traps at high structural levels. The timing for migration of gas into traps is excellent, but only moderate for oil because peak oil generation for the play as a whole occurred 30 to 40 m.y. before trap formation. Reservoir and seal quality in the play are questionable, reducing the likelyhood of hydrocarbon accumulations being present in the play. Our analysis suggests that the play will hold 5.7 million barrels of technically recoverable oil and 1.5 TCF gas (mean values). In the Ellesmerian Stuctural play, the primary reservoir lithologies will be dolomitic carbonate rocks of the Lisburne Group and, less likely, clastic units in the Ellesmerian sequence. Traps in the play are anticlinal closures caused by small amounts of strain in the footwall below the basal detachment for most early Tertiary thrusting. Because these traps lie beneath the main source rock units (Shublik, Kingak, lower Brookian sequence), reservoirs that are juxtaposed by faulting against source-rock units are expected to have the most favorable migration pathways. The charge will be primarily remigrated gas; no oil is expected because of the great depths (15,000 to 26,000 ft) and consequent high thermal maturity of this play. Although the the probability of charge and timeliness of trap formation and gas remigration are excellent, seal and reservoir qualities are anticipated to be poor. Our analysis suggests that about 2.0 TCF of techncially recoverable gas can be expected in the play.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yapeng; Fu, Li, E-mail: fuli@nwpu.edu.cn; Sun, Jie
2015-02-28
The temperature-dependent electrical characteristics of the Au/n-Hg{sub 3}In{sub 2}Te{sub 6} Schottky contact have been studied at the temperature range of 140 K–315 K. Based on the thermionic emission theory, the ideality factor and Schottky barrier height were calculated to decrease and increase from 3.18 to 1.88 and 0.39 eV to 0.5 eV, respectively, when the temperature rose from 140 K to 315 K. This behavior was interpreted by the lateral inhomogeneities of Schottky barrier height at the interface of Au/n-Hg{sub 3}In{sub 2}Te{sub 6} contact, which was shown by the plot of zero-bias barrier heights Φ{sub bo} versus q/2kT. Meanwhile, it was found that the Schottky barriermore » height with a Gaussian distribution was 0.67 eV and the standard deviation σ{sub 0} was about 0.092 eV, indicating that the uneven distribution of barrier height at the interface region. In addition, the mean value of Φ{sup ¯}{sub b0} and modified Richardson constant was determined to be 0.723 eV and 62.8 A/cm{sup 2}K{sup 2} from the slope and intercept of the ln(I{sub o}/T{sup 2}) – (qσ{sub 0}{sup 2}/2k{sup 2}T{sup 2}) versus q/kT plot, respectively. Finally, two electron trap centers were observed at the interface of Au/n-Hg{sub 3}In{sub 2}Te{sub 6} Schottky contact by means of deep level transient spectroscopy.« less
NASA Astrophysics Data System (ADS)
Mekonnen, Mulatie; Keesstra, Saskia; Baartman, Jantiene; Ritsema, Coen
2014-05-01
Gully erosion is a prime problem in Ethiopia. This study assessed the severity of gully erosion and the role of sediment storage dams (SSD) in restoring gullies and preventing further gully development, its sediment trapping efficacy (STE) and its capacity in converting degraded gully lands to productive land. On average 2.5 m deep, 6.6 m wide and 28.3 m long gullies were formed in Minizr watershed, northwest Ethiopia, in 2013. Concentrated surface runoff, traditional ditches, graded terraces without suitable water ways and road construction are the main causes of such serious gully erosion. Over grazing, tunnel flow and lack of proper immediate gully treatment actions after gully initiation are found to be additional causes of the problem. Gully erosion was also found as the major source of sediment for downstream rivers and water reservoirs. The annual volume of soil eroded from only four gullies was 1941.3 m3. To control gully erosion, SSDs were found to be important physical structures, which can trap significant amount of sediment within gullies and they can convert unproductive gully land to productive agricultural land for fruit and crop production. Eight SSDs trapped about 44*103 m3 of sediment within 2 to 8 years. Two representative SSDs constructed using gabion and stone were tested for their STE. Results showed that their efficacy was 74.1% and 66.4% for the gabion and stone SSDs, respectively. Six of the older SSDs were already full of sediment and created 0.75 ha of productive land within 2 to 8 years. SSDs best fits to treat large size and deep gullies where other gully control measures, check dams, could not function well. To prevent gully formation, controlling its causes that is avoiding traditional ditches, practicing grassed water ways to safely remove runoff water from graded terraces, integrated watershed and road side management practices are important solutions. KEY WORDS: Sediment storage dam, gully erosion, sediment trapping efficacy, productive land, Ethiopia
Localised states in organic semiconductors and their detection
NASA Astrophysics Data System (ADS)
Imperia, Paolo
2002-06-01
New polymers and low molecular compounds, suitable for organic light emitting devices and organic electronic applications, have been synthesised in this years in order to obtain electron transport characteristics compatible with requirements for applications in real plastic devices. However, despite of the technological importance and of the relevant progress in devices manufacture, fundamental physical properties of such class of materials are still not enough studied. In particular extensive presence of distributions of localised states inside the band gap has a deep impact on their electronic properties. Such presence of shallow traps as well as the influence of the sample preparation conditions on deep and shallow localised states have not been, until now, systematically explored. The thermal techniques are powerful tools in order to study localised levels in inorganic and organic materials. Thermally stimulated luminescence (TSL), thermally stimulated currents (TSC) and thermally stimulated depolarisation currents (TSDC) allow to deeply look to shallow and deep trap levels as well as they permit to study, in synergy with dielectric spectroscopy (DES), polarisation and depolarisation effects. We studied, by means of numerical simulations, the first and the second order kinetic equations characterised by negligible and strong re-trapping respectively. We included in the equations Gaussian, exponential and quasi-continuous distributions of localised states. The shapes of the theoretical peaks have been investigated by means of systematic variation of the two main parameters of the equations, i. e. the energy trap depth E and the frequency factor a and of the parameters regulating the distributions, in particular for a Gaussian distribution the distribution width s and the integration limits. The theoretical findings have been applied to experimental glow curves. Thin films of polymers and low molecular compounds. Polyphenylquinoxalines, trisphenylquinoxalines and oxadiazoles, studied because of their technological relevance, show complex thermograms, having several levels of localised states and depolarisation peaks. In particular well ordered films of an amphiphilic substituted 2-(p-nitrophenyl)-5-(p-undecylamidophenyl)-1,3,4-oxadiazole (NADPO) are characterised by rich TSL thermograms. A wide region of shallow traps, localised at Em = 4 meV, has been successfully fit by means of a first order kinetic equation having a Gaussian distribution of localised states. Two further peaks, having a different origin, have been characterised. The peaks at Tm = 221.5 K and Tm = 254.2 have activation energy of Em= 0.63 eV and Em = 0.66 eV, frequency factor s = 2.4x1012 s-1 and s = 1.85x1011 s-1, distribution width s = 0.045 eV and s = 0.088 eV respectively. Increasing the number of thermal cycle, a peak, probably connected with structural defects, appears at Tm = 197.7 K. The numerical analysis of this peak was performed by means of a first order equation containing a Gaussian distribution of traps. The activation energy of the trap level is centred at Em = 0.55 eV. The distribution is perfectly symmetric with a quite small width s = 0.028 eV. The frequency factor is s = 1.15 x 1012 s-1, resulting of the same order of magnitude of its neighbour peak at Tm = 221.5 K, having both, probably, the same origin. Furthermore the work demonstrates that the shape of the glow curves is strongly influenced by the excitation temperature and by the thermal cycles. For that reason Gaussian distributions of localised states can be confused with exponential distributions if the previous thermal history of the samples is not adequately considered. In den letzten Jahren ist eine Vielzahl neuer organischer Polymere und niedermolekularer Verbindungen synthetisiert worden, die sich als aktive Komponente für Elektrolumineszenz-Bauelemente und andere elektronische Anwendungen eignen. Trotz der großen technologischen Bedeutung und des erheblichen Fortschrittes, der bei der Herstellung solcher Materialien erzielt worden ist, sind grundlegende physikalische Eigenschaften dieser Materialklassen noch nicht ausreichend erforscht. Insbesondere das Auftreten lokalisierter Zustände innerhalb der Bandlücke hat besondere Bedeutung für ihre elektronischen Eigenschaften. Sowohl die Präsenz dieser flachen traps (Fallen, Löcher) als auch der Einfluß der Herstellungsbedingungen auf die tiefen und flachen lokalisierten Zustände wurden bisher nicht systematisch untersucht. Thermische Techniken sind wichtige Methoden, um lokalisierte Niveaus in organischen und anorganischen Materialien zu erforschen. Themisch-Stimulierte Lumineszenz (TSL), Thermisch-Stimulierte Ströme (TSC) und Thermisch-Stimulierte Depolarisierte Ströme (TSDC) ermöglichen die Untersuchung flacher und tiefer traps; in Verbindung mit DiElektrischer Spektroskopie (DES) können außerdem Polarisations- und Depolarisationseffekte studiert werden. Mit Hilfe numerischer Simulationen haben wir die kinetischen Gleichungen erster und zweiter Ordnung untersucht, die sich durch schwaches bzw. starkes Wieder-Fangen beschreiben lassen. In diesen Gleichungen haben wir Gaussian-, exponentielle und quasi-kontinuierliche Verteilungen von lokalisierten Zustände berücksichtigt. Durch Veränderung der beiden wichtigsten Parameter (Tiefe der traps E und Häufigkeit) konnte die Form der thermischen Maxima untersucht werden. Auch die die Gaussian-Verteilung bestimmenden Faktoren wurden verändert. Diese theoretischen Ergebnisse wurden auf die experimentellen Glow-Kurven angewandt. Dünne Filme aus polymeren und niedermolekularen Verbindungen (Polyphenylquinoxaline, Trisphenylquinoxaline und Oxadiazole), die wegen ihrer technologischen Bedeutung ausgewählt wurden, zeigen komplexes thermisches Verhalten. Insbesondere hoch geordnete Filme eines amphiphil substituierten 2-(p-nitrophenyl)-5-(p-undecylamidophenyl)-1,3,4-oxadiazols (NADPO) zeichnen sich durch komplexe TSL-Diagramme aus. Im Bereich von Em = 4 meV wurde eine Region flacher traps gefunden. Zwei weitere TSL-Maxima treten bei Tm = 221.5 K bzw. Tm = 254.2 K auf. Sie besitzen Aktivierungsenergien von Em= 0.63 eV bzw. Em = 0.66 eV, ihre Frequenzfaktoren betragen s = 2.4x1012 s-1 bzw. s = 1.85x1011 s-1, sie zeigen Breiten der Verteilung von s = 0.045 eV bzw. s = 0.088 eV. Des weiteren zeigt diese Arbeit, daß die Form der Glow-Kurven stark von der Anregungstemperatur und vom thermischen Kreislauf beeinflußt wird.
Commercial helium reserves, continental rifting and volcanism
NASA Astrophysics Data System (ADS)
Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.
2017-12-01
Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is dominantly N2 with trace levels of hydrocarbons, H2, CO2 and Ar. [1] http://www.aps.org/policy/reports/popareports/upload/HeliumReport.pdf [2] T.C. James (1966) Transactions London Institution of Mining and Metallurgy 168-174, B1-18 [3] Danabalan et al. (2016), Goldschmidt Abstract, 4150
NASA Astrophysics Data System (ADS)
Scheinert, Susanne; Pernstich, Kurt P.; Batlogg, Bertram; Paasch, Gernot
2007-11-01
It has been demonstrated [K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004)] that a controllable shift of the threshold voltage in pentacene thin film transistors is caused by the use of organosilanes with different functional groups forming a self-assembled monolayer (SAM) on the gate oxide. The observed broadening of the subthreshold region indicates that the SAM creates additional trap states. Indeed, it is well known that traps strongly influence the behavior of organic field-effect transistors (OFETs). Therefore, the so-called "amorphous silicon (a-Si) model" has been suggested to be an appropriate model to describe OFETs. The main specifics of this model are transport of carriers above a mobility edge obeying Boltzmann statistics and exponentially distributed tail states and deep trap states. Here, approximate trap distributions are determined by adjusting two-dimensional numerical simulations to the experimental data. It follows from a systematic variation of parameters describing the trap distributions that the existence of both donorlike and acceptorlike trap distributions near the valence band, respectively, and a fixed negative interface charge have to be assumed. For two typical devices with different organosilanes the electrical characteristics can be described well with a donorlike bulk trap distribution, an acceptorlike interface distribution, and/or a fixed negative interface charge. As expected, the density of the fixed or trapped interface charge depends strongly on the surface treatment of the dielectric. There are some limitations in determining the trap distributions caused by either slow time-dependent processes resulting in differences between transfer and output characteristics, or in the uncertainty of the effective mobility.
NASA Astrophysics Data System (ADS)
Denis, G.; Akselrod, M. S.; Yukihara, E. G.
2011-05-01
The objective of this paper is to investigate the influence of shallow traps on the signals from Al2O3:C,Mg obtained using time-resolved optically stimulated luminescence (TR-OSL) measurements through experiments and numerical simulations. TR-OSL measurements of Al2O3:C,Mg were carried out and the resulting optically stimulated luminescence (OSL) curves were investigated as a function of the temperature. The numerical simulations were carried out using the rate-equations for a simplified model of Al2O3:C,Mg containing two types of luminescence centers with different luminescence lifetimes and three types of electron traps (a shallow trap, a main dosimetric trap, and a thermally disconnected deep trap). Both experimental results and simulations show that the OSL signals during and between the stimulation pulses are affected by the presence of shallow traps. However, with an appropriate choice of timing parameters, the influence of shallow traps can be reduced by calculating the difference between the signals during and between stimulation pulses. Therefore, TR-OSL can be useful in dosimetry using materials having a large concentration of shallow traps and OSL components with short luminescence lifetimes, for example Al2O3:C,Mg and BeO. Our results also show that the presence of shallow traps has to be taken into account when using the TR-OSL for discrimination between luminescence centers with different luminescence lifetimes, or separation between the OSL from different materials based on their characteristic luminescence lifetimes. The experimental results also show evidence of thermal assistance in the OSL process of Al2O3:C,Mg.
Activated aging dynamics and effective trap model description in the random energy model
NASA Astrophysics Data System (ADS)
Baity-Jesi, M.; Biroli, G.; Cammarota, C.
2018-01-01
We study the out-of-equilibrium aging dynamics of the random energy model (REM) ruled by a single spin-flip Metropolis dynamics. We focus on the dynamical evolution taking place on time-scales diverging with the system size. Our aim is to show to what extent the activated dynamics displayed by the REM can be described in terms of an effective trap model. We identify two time regimes: the first one corresponds to the process of escaping from a basin in the energy landscape and to the subsequent exploration of high energy configurations, whereas the second one corresponds to the evolution from a deep basin to the other. By combining numerical simulations with analytical arguments we show why the trap model description does not hold in the former but becomes exact in the second.
High-k shallow traps observed by charge pumping with varying discharging times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen
2013-11-07
In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are inmore » fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.« less
NASA Astrophysics Data System (ADS)
Fan, Caiwei; Jiang, Tao; Liu, Kun; Tan, Jiancai; Li, Hu; Li, Anqi
2018-12-01
In recent years, several large gas fields have been discovered in western Qiongdongnan Basin. It is important and necessary to illustrate their sedimentary characteristics and hydrocarbon migration so that more gas fields could be discovered in the future. Previous regional tectonic-sedimentary researchers show that large-scale source rock of the Yacheng Formation developed in the Ledong and Lingshui sags due to the Red River Fault pull-apart strike slip in early Oligocene. The main targets for hydrocarbon exploration in this area are the Miocene deep water reservoirs. In late Miocene, the Huangliu Formation reservoirs are composed of the early channels which were sourced by river systems in Hainan uplift and the consequent channels were sourced by Qiupen River in Kunsong uplift. Both axial channels exhibit unique spatial distribution patterns and geometries. The other kind of reservoir developed in the middle Miocene Meishan Formation, which compose of slope break-controlled submarine fan. They can be further classified into three types—slope channelized fan, basin floor fan, and bottom current reworked fan. The various fans have different reservoir quality. These two kinds of reservoirs contribute to four types of litho-stratigraphic traps under the actions of sedimentation and subsidence. The overpressure caused by hydrocarbon generation can fracture deeper strata and result in regional fractured network for hydrocarbon migration. Therefore, free gas driven by overpressure and buoyancy force can be migrated into Miocene litho-stratigraphic traps to accumulate. The revealed genesis of Miocene lithologic trap and hydrocarbon accumulation in the Qiongdongnan Basin would greatly contribute to the further hydrocarbon exploration in northern South China Sea and can be helpful for other deep water areas around the world.
NASA Astrophysics Data System (ADS)
Dong, Peng; Yu, Xuegong; Ma, Yao; Xie, Meng; Li, Yun; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian
2017-08-01
Plasma-enhanced chemical vapor deposited silicon nitride (SiNx) films are extensively used as passivation material in the solar cell industry. Such SiNx passivation layers are the most sensitive part to gamma-ray irradiation in solar cells. In this work, deep-level transient spectroscopy has been applied to analyse the influence of gamma-ray irradiation on the passivation properties of SiNx layer on silicon. It is shown that the effective carrier lifetime decreases with the irradiation dose. At the same time, the interface state density is significantly increased after irradiation, and its energy distribution is broadened and shifts deeper with respect to the conduction band edge, which makes the interface states becoming more efficient recombination centers for carriers. Besides, C-V characteristics show a progressive negative shift with increasing dose, indicating the generation of effective positive charges in SiNx films. Such positive charges are beneficial for shielding holes from the n-type silicon substrates, i. e. the field-effect passivation. However, based on the reduced carrier lifetime after irradiation, it can be inferred that the irradiation induced interface defects play a dominant role over the trapped positive charges, and therefore lead to the degradation of passivation properties of SiNx on silicon.
Costa, Neide Tomimura; Scavuzzi, Bruna Miglioranza; Iriyoda, Tatiana Mayumi Veiga; Lozovoy, Marcell Alysson Batisti; Alfieri, Daniela Frizon; de Medeiros, Fabiano Aparecido; de Sá, Marcelo Cândido; Micheletti, Pâmela Lonardoni; Sekiguchi, Bruno Alexandre; Reiche, Edna Maria Vissoci; Maes, Michael; Simão, Andréa Name Colado; Dichi, Isaias
2018-04-11
Oxidative stress plays a role in the pathophysiology of rheumatoid arthritis (RA). The aim of the present study was to verify the influence of metabolic syndrome (MetS) and disease-modifying antirheumatic drugs on nitrosative and oxidative biomarkers in patients with RA. A total of 177 patients with RA and 150 healthy volunteers participated in this study, which measured lipid hydroperoxides, advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), carbonyl protein, total radical-trapping antioxidant parameter (TRAP), uric acid (UA), and C-reactive protein (CRP). NOx and the NOx/TRAP ratio were significantly increased in RA, while no significant differences in lipid hydroperoxides, AOPP, UA, and TRAP levels were found between both groups. Treatment with leflunomide was associated with increased levels of carbonyl protein, and lowered levels in TRAP and UA, while the NOx/TRAP ratio further increased. NOx and the NOx/TRAP ratio were significantly higher in women than in men, while TRAP and UA were significantly lower in women. MetS was accompanied by increased AOPP and UA levels. RA was best predicted by increased NOx/TRAP ratio, CRP, and BMI. In conclusion, our data demonstrated that NOx and NOx/TRAP are strongly associated with RA physiopathology. Our findings suggest that inhibition of iNOS may become an interesting therapeutic approach for the treatment of RA. In addition, the presence of MetS and a decrease in levels of UA by leflunomide favor redox imbalance in RA patients. More studies are needed to evaluate the impact of antioxidant capacity reduction on RA progression.
NASA Astrophysics Data System (ADS)
Glowacki, Ireneusz; Szamel, Zbigniew
2010-07-01
Two electroluminescent polymer matrices poly(N-vinylcarbazole) (PVK) and PVK with 40 wt% of 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) were studied using spectrally resolved thermoluminescence (SRTL) in the temperature range 15-325 K. The comparison of the SRTL results with the electroluminescence (EL) spectra has allowed identification of the localized (trapping) sites and the radiative recombination centres present in the investigated matrices. In the neat PVK films deep traps with a depth about 200 meV, related to triplet excimers dominate, while in the PVK-PBD (40 wt%) blend films the traps that are related to triplet exciplexes formed by the carbazole groups and the PBD molecules dominate. Depth of the traps in the PVK-PBD blend is somewhat lower than that in the neat PVK. An analysis of the EL spectra shows that in the PVK and in the PVK-PBD blend the dominant radiative centres are singlet excimers and singlet exciplexes, respectively. However, in the neat PVK some contributions of the triplet monomer and the triplet excimer states in the EL were also detected.
NASA Astrophysics Data System (ADS)
Vagenas, N.; Giannopoulou, A.; Kounavis, P.
2015-01-01
This study demonstrates that the effect of light excitation on the density and the mobility of the majority carriers can be explored in organic semiconductors by modulated photocurrent spectroscopy. The spectra of phase and amplitude of the modulated photocurrent of pentacene films indicate a significant increase in the density of the photogenerated mobile holes (majority carriers). This increase is accompanied by a comparatively much smaller increase of the steady state photocurrent response which can be reconciled with a decrease in the mobility (μ) of holes. The decrease of μ is supported from an unusual increase of the Y/μ ratio of the out-of-phase modulated photocurrent (Y) signal to the mobility under light excitation. It is proposed that the mobile holes, which are generated from the dissociation of the light-created excitons more likely near the pentacene-substrate interface by electron trapping, populate grain boundaries charging them and producing a downward band bending. As a result, potential energy barriers are build up which limit the transport of holes interacting through trapping-detrapping with deep partially occupied traps in the charged grain boundaries. On the other hand, the transport of holes interacting through trapping-detrapping with empty traps is found unaffected.
NASA Astrophysics Data System (ADS)
Zanoni, Enrico; Meneghesso, Gaudenzio; Menozzi, Roberto
2000-03-01
Hot electron in III-V FETs can be indirectly monitored by measuring the current coming out from the gate when the device is biased at high electric fields. This negative current is due to the collection of holes generated by impact ionization in the gate-to drain region. Electroluminescence represents a powerful tool in order to characterize not only hot electrons but also material properties. By using spatially resolved emission microscopy it is possible to show that the light due to cold electron/hole recombination is emitted between the gate and the source (low electric field region), while the contribution due to hot electrons is emitted between the gate and the drain (high electric field region). Deep-traps created in the device by hot carriers can be analysed by means of drain current deep level transient spectroscopy and by transconductance frequency dispersion. Cathodoluminescence, optical beam induced current, X-ray spectroscopy, electron energy loss spectroscopy in combination with a transmission electron microscopy are powerful tools in order to identify and localize surface modification following hot-electron stress tests.
NASA Technical Reports Server (NTRS)
Wang, Y. X.; Holloway, P. H.
1984-01-01
Auger and electron photoelectron spectroscopy were used to measure the extent of As depletion during 1 keV to 5 keV argon sputtering of GaAs surfaces. This depletion was correlated with a general decrease in the barrier height of the rectifying Au contact deposited in situ. However, nondestructive angle resolved XPS measurements showed As was depleted at the outer surface more by 1 keV than 3 keV argon. These effects are explained based on a combined work effective work function model and creation of a donor like surface damage layer. The donor layer was correlated with As depletion by sputtering. Deep level trap formation and annealing of sputtering effects were studied.
Current-phase relations in low carrier density graphene Josephson junctions
NASA Astrophysics Data System (ADS)
Kratz, Philip; Amet, Francois; Watson, Christopher; Moler, Kathryn; Ke, Chung; Borzenets, Ivan; Watanabe, Kenji; Taniguchi, Takashi; Deacon, Russell; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb
Ideal Dirac semimetals have the unique property of being gate tunable to arbitrarily low electron and hole carrier concentrations near the Dirac point, without suffering from conduction channel pinch-off or Fermi level pinning to band edges and deep-level charge traps, which are common in typical semiconductors. SNS junctions, where N is a Dirac semimetal, can provide a versatile platform for studying few-mode superconducting weak links, with potential device applications for superconducting logic and qubits. We will use an inductive readout technique, scanning superconducting quantum interference device (SQUID) magnetometry, to measure the current-phase relations of high-mobility graphene SNS junctions as a function of temperature and carrier density, complementing magnetic Fraunhofer diffraction analysis from transport measurements which previously have assumed sinusoidal current-phase relations for junction Andreev modes. Deviations from sinusoidal behavior convey information about resonant scattering processes, dissipation, and ballistic modes in few-mode superconducting weak links.
NASA Astrophysics Data System (ADS)
Mohammadpour, Raheleh
2017-12-01
Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.
Pteropods are Undervalued Contributors to Aragonite Flux in Tropical Gyres
NASA Astrophysics Data System (ADS)
Pebody, C. A.; Lampitt, R. S.
2016-02-01
Pteropods are a large component of the animals routinely caught in sediment traps at 3000m at the NOG observatory in the North Atlantic Oligotrophic Gyre and at the SOG observatory in the South Atlantic Oligotrophic Gyre. Sediment traps have been used to collect downward settling material at NOG and SOG since 2008. Pteropods have been identified and removed from the samples during processing in line with best practice. Some of these animals maybe opportunistic swimmers, but some are most definitely broken and should be considered as a component of the downward particle flux. Samples from both locations demonstrate a sustained and sometimes seasonal flux of pteropods to the deep ocean interior. In gyre regions with low levels of particle flux compared to temperate regions, the additional mostly inorganic material supplied in the form of pteropod shells represents a large proportional increase. Our data set from both northern and southern Atlantic gyres demonstrates due consideration should be given to the importance of pteropod flux and the contribution this makes to the biological carbon pump. These observatories at 23°N 41°W and 18°S 25°W, are part of the FixO3 open observatory network and are supported by NOC and NERC. Analysis of the first three years of each observatory are now yielding new insight on these large and poorly sampled areas of the open ocean. Key words: pteropods; aragonite; sediment traps; NOG SOG; FixO3; biological carbon pump; biogeochemical cycles; Tropical Atlantic Gyres.
New electron trap in p-type Czochralski silicon
NASA Technical Reports Server (NTRS)
Mao, B.-Y.; Lagowski, J.; Gatos, H. C.
1984-01-01
A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.
Deep-Sea Trench Microbiology Down to 10.9 Kilometers Below the Surface
NASA Astrophysics Data System (ADS)
Bartlett, D. H.
2012-12-01
Deep-sea trenches, extending to more than 10.9 km below the sea surface, are among the most remote and infrequently sampled habitats. As a result a global perspective of microbial diversity and adaptation is lacking in these extreme settings. I will present the results of studies of deep-sea trench microbes collected in the Puerto Rico Trench (PRT), Tonga Trench, New Britain Trench and Mariana Trench. The samples collected include sediment, seawater and animals in baited traps. The analyses to be described include microbial community activity and viability measurements as a function of hydrostatic pressure, microbial culturing at high pressure under various physiological conditions, phylogenetics and metagenome and single-cell genome characterizations. Most of the results to date stem from samples recovered from the PRT. The deep-sea PRT Trench microbes have more in common at the species level with other deep-sea microbial communities previously characterized in the Pacific Ocean and the Mediterranean Sea than with the microbial populations above them in shallow waters. They also harbor larger genomes with more genes assigned to signal transduction, transcription, replication, recombination and repair and inorganic ion transport. The overrepresented transporters in the PRT metagenome include di- and tri-carboxylate transporters that correspond to the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. But, perhaps the most dramatic adaptational feature of the PRT microbes is heavy metal resistance, as reflected in the high numbers of metal efflux systems present. Single-cell genomics approaches have proven particularly useful for placing PRT metagenomic data into context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.
Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less
Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; ...
2015-05-19
Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Illera, S., E-mail: sillera@el.ub.edu; Prades, J. D.; Cirera, A.
The role of different charge transport mechanisms in Si/SiO{sub 2} structures has been studied. A theoretical model based on the Transfer Hamiltonian Formalism has been developed to explain experimental current trends in terms of three different elastic tunneling processes: (1) trap assisted tunneling; (2) transport through an intermediate quantum dot; and (3) direct tunneling between leads. In general, at low fields carrier transport is dominated by the quantum dots whereas, for moderate and high fields, transport through deep traps inherent to the SiO{sub 2} is the most relevant process. Besides, current trends in Si/SiO{sub 2} superlattice structure have been properlymore » reproduced.« less
Localized Rapid Warming of West Antarctic Subsurface Waters by Remote Winds
NASA Astrophysics Data System (ADS)
Griffies, S. M.; Spence, P.; Holmes, R.; Hogg, A. M.; Stewart, K. D.; England, M. H.
2017-12-01
The largest rates of Antarctic glacial ice mass loss are occurring tothe west of the Antarctica Peninsula in regions where warming ofsubsurface continental shelf waters is also largest. However, thephysical mechanisms responsible for this warming remain unknown. Herewe show how localized changes in coastal winds off East Antarctica canproduce significant subsurface temperature anomalies (>2C) around theentire continent. We demonstrate how coastal-trapped Kelvin wavescommunicate the wind disturbance around the Antarctic coastline. Thewarming is focused on the western flank of the Antarctic Peninsulabecause the anomalous circulation induced by the coastal-trapped wavesis intensified by the steep continental slope there, and because ofthe presence of pre-existing warm subsurface water. Thecoastal-trapped waves leads to an adjustment of the flow that shoalsisotherms and brings warm deep water upwards onto the continentalshelf and closer to the coast. This result demonstrates the uniquevulnerability of the West Antarctic region to a changing climate.
Design and Preliminary Testing of a High Performance Antiproton Trap (HiPAT)
NASA Technical Reports Server (NTRS)
Martin, James; Meyer, Kirby; Kramer, Kevin; Smith, Gerald; Lewis, Raymond; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
Antimatter represents the pinnacle of energy density, offering the potential to enhance current fusion/fission concepts enabling various classes of deep space missions. Current production rates are sufficient to support proof-of-concept evaluation of many key technologies associated with antimatter-derived propulsion. Storage has been identified as a key enabling technology for all antimatter-related operations, and as such is the current focus of this NASA-MSFC effort to design and fabricate a portable device capable of holding up to 10(exp 12) particles. Hardware has been assembled and initial tests are underway to evaluate the trap behavior using electron gun generated, positive hydrogen ions. Ions have been stored for tens of minutes, limited by observed interaction with background gas. Additionally, radio frequency manipulation is being tested to increase lifetime by stabilizing the stored particles, potentially reducing their interaction with background gas, easing requirements on ultimate trap vacuum and precision mechanical alignment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.
The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by amore » Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.« less
Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma
NASA Astrophysics Data System (ADS)
Yeung, Laurence Y.
2017-12-01
The evolution of Earth's atmosphere on >106-yr timescales is tied to that of the deep Earth. Volcanic degassing, weathering, and burial of volatile elements regulates their abundance at the surface, setting a boundary condition for the biogeochemical cycles that modulate Earth's atmosphere and climate. The atmosphere expresses this interaction through its composition; however, direct measurements of the ancient atmosphere's composition more than a million years ago are notoriously difficult to obtain. Gases trapped in ancient minerals represent a potential archive of the ancient atmosphere, but their fidelity has not been thoroughly evaluated. Both trapping and preservation artifacts may be relevant. Here, I use a multi-element approach to reanalyze recently collected fluid-inclusion data from halites purportedly containing snapshots of the ancient atmosphere as old as 815 Ma. I argue that those samples were affected by the concomitant trapping of air dissolved in brines and contaminations associated with modern air. These artifacts lead to an apparent excess in O2 and Ar. The samples may also contain signals of mass-dependent fractionation and biogeochemical cycling within the fluid inclusions. After consideration of these artifacts, this new analysis suggests that the Tonian atmosphere was likely low in O2, containing ≤10% present atmospheric levels (PAL), not ∼50% PAL as the data would suggest at face value. Low concentrations of O2 are consistent with other geochemical constraints for this time period and further imply that the majority of Neoproterozoic atmospheric oxygenation occurred after 815 Ma. In addition, the analysis reveals a surprisingly low Tonian Ar inventory-≤60% PAL-which, if accurate, challenges our understanding of the solid Earth's degassing history. When placed in context with other empirical estimates of paleo-atmospheric Ar, the data imply a period of relatively slow atmospheric Ar accumulation in the Paleo- and Meso-Proterozoic, followed by extensive degassing in the late Neoproterozoic or early Cambrian, before returning to a relatively quiescent state by the Devonian. This two-step structure resembles that for the evolution of atmospheric O2, hinting at a common driving force from the deep Earth. Some caution is warranted, however, because still more enigmatic contaminations than the ones presented here may be relevant. Gases trapped in minerals may offer important constraints on the evolution of Earth's surface, climate, and atmosphere, but potential contaminations and other confounding factors need to be considered carefully before these records can be considered quantitative.
NASA Astrophysics Data System (ADS)
Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.
2015-09-01
The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Lee, In-Hwan; Ju, Jin-Woo; Pearton, S. J.
2009-10-01
The electrical properties, admittance spectra, microcathodoluminescence, and deep trap spectra of p-AlGaN films with an Al mole fraction up to 45% grown by both metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were compared. The ionization energy of Mg increases from 0.15 to 0.17 eV in p-GaN to 0.3 eV in 45% Al p-AlGaN. In p-GaN films grown by MBE and MOCVD and in MOCVD grown p-AlGaN, we observed additional acceptors with a concentration an order lower than that of Mg acceptors, with a higher hole capture cross section and an ionization energy close to that of Mg. For some of the MBE grown p-AlGaN, we also detected the presence of additional acceptor centers, but in that case the centers were located near the p-AlGaN layer interface with the semi-insulating AlGaN buffer and showed activation energies considerably lower than those of Mg.
An integrated laser trap/flow control video microscope for the study of single biomolecules.
Wuite, G J; Davenport, R J; Rappaport, A; Bustamante, C
2000-01-01
We have developed an integrated laser trap/flow control video microscope for mechanical manipulation of single biopolymers. The instrument is automated to maximize experimental throughput. A single-beam optical trap capable of trapping micron-scale polystyrene beads in the middle of a 200-microm-deep microchamber is used, making it possible to insert a micropipette inside this chamber to hold a second bead by suction. Together, these beads function as easily exchangeable surfaces between which macromolecules of interest can be attached. A computer-controlled flow system is used to exchange the liquid in the chamber and to establish a flow rate with high precision. The flow and the optical trap can be used to exert forces on the beads, the displacements of which can be measured either by video microscopy or by laser deflection. To test the performance of this instrument, individual biotinylated DNA molecules were assembled between two streptavidin beads, and the DNA elasticity was characterized using both laser trap and flow forces. DNA extension under varying forces was measured by video microscopy. The combination of the flow system and video microscopy is a versatile design that is particularly useful for the study of systems susceptible to laser-induced damage. This capability was demonstrated by following the translocation of transcribing RNA polymerase up to 650 s. PMID:10920045
NASA Technical Reports Server (NTRS)
Oldham, Timothy R.
2003-01-01
We consider radiation-induced charge trapping in SiO2 dielectric layers, primarily from the point of view of CMOS devices. However, SiO2 insulators are used in many other ways, and the same defects occur in other contexts. The key studies, which determined the nature of the oxide charge traps, were done primarily on gate oxides in CMOS devices, because that was the main radiation problem in CMOS at one time. There are two major reviews of radiation-induced oxide charge trapping already in the literature, which discuss the subject in far greater detail than is possible here. The first of these was by McLean et al. in 1989, and the second, ten years later, was intended as an update, because of additional, new work that had been reported. Basically, the picture that has emerged is that ionizing radiation creates electron-hole pairs in the oxide, and the electrons have much higher mobility than the holes. Therefore, the electrons are swept out of the oxide very rapidly by any field that is present, leaving behind any holes that escape the initial recombination process. These holes then undergo a polaron hopping transport toward the Si/SiO2 interface (under positive bias). Near the interface, some fraction of them fall into deep, relatively stable, long-lived hole traps. The nature and annealing behavior of these hole traps is the main focus of this paper.
Gao, Changlu; Sun, Xiuhua; Gillis, Kevin D.
2016-01-01
The design, fabrication and test of a microfluidic cell trapping device to measure single cell exocytosis were reported. Research on the patterning of double layer template based on repetitive standard photolithography of AZ photoresist was investigated. The replicated poly(dimethyl siloxane) devices with 2.5 μm deep channels were proved to be efficient for stopping cells. Quantal exocytosis measurement can be achieved by targeting single or small clumps of chromaffin cells on top of the 10 μm ×10 μm indium tin oxide microelectrodes arrays with the developed microdevice. And about 72% of the trapping sites can be occupied by cells with hydrodynamic trapping method and the recorded amperometric signals are comparable to the results with traditional carbon fiber microelectrodes. The method of manufacturing the microdevices is simple, low-cost and easy to perform. The manufactured device offers a platform for the high throughput detection of quantal catecholamine exocytosis from chromaffin cells with sufficient sensitivity and broad application. PMID:23329291
Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu
2016-01-01
It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380
Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu
2016-05-14
It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9-25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25-50 µm), large aggregates (50-70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.
NASA Astrophysics Data System (ADS)
Mukherjee, A. K.; Kavala, A. K.
2014-04-01
Shallow traps play a significant role in influencing charge dynamics through organic molecular thin films, such as pentacene. Sandwich cells of pentacene capped by gold electrodes are an excellent specimen to study the nature of underlying charge dynamics. In this paper, self-consistent numerical simulation of I-V characteristics is performed at various temperatures. The results have revealed negative value of Poole Frenkel coefficient. The location of trap energy level is found to be located at 0.24 eV above the highest occupied molecular orbit (HOMO) level of pentacene. Other physical parameters related to trap levels, such as density of states due to traps and effective carrier density due to traps, have also been estimated in this study.
Zortea, Karine; Fernandes, Brisa Simões; Guimarães, Lísia Rejane; Francesconi, Lenise Petter; Lersch, Camila; Gama, Clarissa Severino; Schroeder, Rafael; Zanotto-Filho, Alfeu; Moreira, José Claudio; Lobato, Maria Inês Rodrigues; Belmonte-de-Abreu, Paulo Silva
2012-03-14
Growing evidence suggests that oxidative stress (OS) may be associated with the pathophysiology underlying schizophrenia (SZ). Some studies indicate that nutritional supplements offer protection from OS, but there is no data about the effect of a hypocaloric diet on OS in this population. Therefore, we aimed to study the effect of a hypocaloric dietary intervention on OS in subjects with SZ. A cross-sectional study of 96 participants in outpatient treatment for SZ comprised patients separated into two groups: one group of subjects followed a hypocaloric diet (HD) program (n=42), while the other group followed a regular diet (RD) with no nutritional restrictions (n=54). The serum total radical-trapping antioxidant parameter (TRAP), total antioxidant reactivity (TAR) and thiobarbituric acid reactive species (TBARS) levels were assessed. TRAP levels were lower and TBARS levels were higher in the HD group than in the RD group (p=0.022 and p=0.023, respectively). There were no differences in TAR levels between the groups. Additionally, there was a positive correlation between TRAP and TBARS levels after adjusting for BMI and clozapine dose (partial correlation=0.42, p<0.001). There were no correlations among the length of illness or diet and the levels of TRAP, TBARS, and TAR. Subjects with SZ on a hypocaloric diet displayed different OS parameters than those not following a HD. Serum TRAP levels were lower and TBARS levels were higher among SZ subjects with HD compared to SZ subjects without HD. Lower TRAP levels may reflect decreased oxidative stress, whereas higher TBARS levels most likely reflect a biochemical reaction to the decreased TRAP levels. Additionally, TAR levels were similar between groups, suggesting a similar quality of antioxidant defenses, despite quantitative differences between the two dietary protocols in SZ patients under outpatient care. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Li-Wei; Ding, Xiaodong; Liu, James T.; Li, Dawei; Lee, Tsung-Yu; Zheng, Xufeng; Zheng, Zhenzhen; Xu, Min Nina; Dai, Minhan; Kao, Shuh-Ji
2017-05-01
Export of biospheric organic carbon from land masses to the ocean plays an important role in regulating the global carbon cycle. High-relief islands in the western Pacific are hotspots for such land-to-ocean carbon transport due to frequent floods and active tectonics. Submarine canyon systems serve as a major conduit to convey terrestrial organics into the deep sea, particularly during episodic floods, though the nature of ephemeral sediment transportation through such canyons remains unclear. In this study, we deployed a sediment trap in southwestern Taiwan's Gaoping submarine canyon during summer 2008, during which Typhoon Kalmaegi impacted the study area. We investigated sources of particulate organic carbon and quantified the content of fossil organic carbon (OCf) and biospheric non-fossil carbon (OCnf) during typhoon and non-typhoon periods, based on relations between total organic carbon (TOC), isotopic composition (δ13 C, 14C), and nitrogen to carbon ratios (N/C) of newly and previously reported source materials. During typhoons, flooding connected terrestrial rivers to the submarine canyon. Fresh plant debris was not found in the trap except in the hyperpycnal layer, suggesting that only hyperpycnal flow is capable of entraining plant debris, while segregation had occurred during non-hyperpycnal periods. The OCnf components in typhoon flood and trapped samples were likely sourced from aged organics buried in ancient landslides. During non-typhoon periods, the canyon is more connected to the shelf, where waves and tides cause reworking, thus allowing abiotic and biotic processes to generate isotopically uniform and similarly aged OCnf for transport into the canyon. Therefore, extreme events coupled with the submarine canyon system created an efficient method for deep-sea burial of freshly produced organic-rich material. Our results shed light on the ephemeral transport of organics within a submarine canyon system on an active tectonic margin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, K.; Hasegawa, T.
2010-03-15
Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. Themore » analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.« less
CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.
Iglauer, Stefan
2017-05-16
Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the ability to quantitatively predict it are currently limited although recent advances have been made. Moreover, data for real storage rock and real injection gas (which contains impurities) is scarce and it is an open question how realistic subsurface conditions can be reproduced in laboratory experiments. In conclusion, however, it is clear that in principal CO 2 -wettability can vary drastically from completely water-wet to almost completely CO 2 -wet, and this possible variation introduces a large uncertainty into trapping capacity and containment security predictions.
NASA Astrophysics Data System (ADS)
Almogi-Labin, A.; Hemleben, Ch.; Deuser, W. G.
1988-03-01
A 4-year series of sediment trap samples from a depth of 3.2 km in the Sargasso Sea (32°05'N, 64°15'W) has revealed seasonal variations in the flux of euthecosomatous pteropods. Total pteropod flux is related to seasonal variations of the total particulate and organic carbon flux with a lag of 1-1.5 months. High flux of pteropods (>200 specimens m -2 day -1) occurs in late winter to mid-summer. Shells of individual pteropod species arrive in deep water in a seasonal succession similar to that in the living assemblage. Peak fluxes of Styliola subula, Clio pyramidata and Limacina bulimoides were recorded from February to May. Limacina inflata, Limacina lesueuri and Cuvierina columnella entered the trap in maximum numbers from April to mid-August. Creseis virgula conica and C. acicula were most abundant from June to late August. The latter two are non-migrating, epipelagic pteropods and comprise <10% of the assemblage. Diel migrators dominate the pteropod assemblage (92%). During the summer months they appear to migrate at greater depth, without reaching the surface water. Although many young are produced, only a small fraction, about 4% in the case of L. inflata and L. bulimoides, survives and reaches maturity. Adult shell size of L. inflata and L. bulimoides varies seasonally, reaching maximum size during spring, probably in response to increasing food availability.
The origin of volatiles in the Earth's mantle
NASA Astrophysics Data System (ADS)
Hier-Majumder, Saswata; Hirschmann, Marc M.
2017-08-01
The Earth's deep interior contains significant reservoirs of volatiles such as H, C, and N. Due to the incompatible nature of these volatile species, it has been difficult to reconcile their storage in the residual mantle immediately following crystallization of the terrestrial magma ocean (MO). As the magma ocean freezes, it is commonly assumed that very small amounts of melt are retained in the residual mantle, limiting the trapped volatile concentration in the primordial mantle. In this article, we show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere. Using a two-phase flow model, we demonstrate that compaction within the moving freezing front is inefficient over time scales characteristic of magma ocean solidification. We employ a scaling relation between the trapped melt fraction, the rate of compaction, and the rate of freezing in our magma ocean evolution model. For cosmochemically plausible fractions of volatiles delivered during the later stages of accretion, our calculations suggest that up to 77% of total H2O and 12% of CO2 could have been trapped in the mantle during magma ocean crystallization. The assumption of a constant trapped melt fraction underestimates the mass of volatiles in the residual mantle by more than an order of magnitude.
Towards testing quantum physics in deep space
NASA Astrophysics Data System (ADS)
Kaltenbaek, Rainer
2016-07-01
MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.
Bone resorptive activity in symptomatic and asymptomatic apical lesions of endodontic origin.
Salinas-Muñoz, M; Garrido-Flores, M; Baeza, M; Huamán-Chipana, P; García-Sesnich, J; Bologna, R; Vernal, R; Hernández, M
2017-11-01
The aim of this study is to assess the levels and diagnostic accuracy of a set of bone resorption biomarkers, including TRAP-5, RANKL, and OPG in symptomatic and asymptomatic apical lesions and controls. Apical tissues from symptomatic and asymptomatic apical periodontitis patients and periodontal ligaments from healthy teeth extracted for orthodontic reasons were processed for tissue homogenization and the levels of TRAP-5, RANKL, and OPG were determined by multiplex assay. Marker levels were analyzed by Kruskal Wallis test, and diagnostic accuracy was analyzed with ROC curves. Higher levels of RANKL, OPG, and RANKL/OPG ratio were determined in both types of apical lesions compared to healthy periodontal ligament, whereas higher TRAP-5 levels were found only in symptomatic apical lesions (p < 0.05). OPG, RANKL, and RANKL/OPG ratio showed diagnostic potential to identify apical lesions versus healthy controls (AUC = 0.69, p < 0.05); while TRAP-5 showed a potential to discriminate symptomatic versus asymptomatic apical periodontitis (AUC = 0.71, p < 0.05) and healthy controls (AUC = 0.83, p < 0.05). Apical lesions showed higher RANKL and OPG levels than healthy tissues. TRAP-5 levels were the highest in symptomatic apical lesions, suggesting that these represent a progressive state, and showed diagnostic potential. Clinically symptomatic apical periodontitis might represent biologically progressive apical lesions based on TRAP5 levels. TRAP5 has diagnostic potential to identify these lesions, representing a candidate prognostic biomarker.
Hydrogen passivation of titanium impurities in silicon: Effect of doping conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, P.; Coutinho, J., E-mail: jose.coutinho@ua.pt; Torres, V. J. B.
2014-07-21
While the contamination of solar silicon by fast diffusing transition metals can be now limited through gettering, much attention has been drawn to the slow diffusing species, especially the early 3d and 4d elements. To some extent, hydrogen passivation has been successful in healing many deep centers, including transition metals in Si. Recent deep-level transient spectroscopy (DLTS) measurements concerning hydrogen passivation of Ti revealed the existence of at least four electrical levels related to Ti{sub i}H{sub n} in the upper-half of the gap. These findings challenge the existing models regarding both the current level assignment as well as the structure/speciesmore » involved in the defects. We revisit this problem by means of density functional calculations and find that progressive hydrogenation of interstitial Ti is thermodynamically stable in intrinsic and n-doped Si. Full passivation may not be possible to attain in p-type Si as Ti{sub i}H{sub 3} and Ti{sub i}H{sub 4} are metastable against dissociation and release of bond-centered protons. All DLTS electron traps are assigned, namely, E40′ to Ti{sub i}H(-/0), E170′ to Ti{sub i}H{sub 3}(0/+), E(270) to Ti{sub i}H{sub 2}(0/+), and E170 to Ti{sub i}H(0/+) transitions. Ti{sub i}H{sub 4} is confirmed to be electrically inert.« less
Lasa, R; Herrera, F; Miranda, E; Gómez, E; Antonio, S; Aluja, M
2015-08-01
Monitoring population levels of the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), at the orchard level prior and during the fruit ripening period can result in significant savings in the costs of managing this pestiferous insect. Unfortunately, to date, no highly effective and economically viable trap is available to growers. To move toward this goal, trap-lure combinations were evaluated in trials performed in citrus orchards in Veracruz, Mexico. CeraTrap, an enzymatic hydrolyzed protein from pig intestinal mucose, was 3.6 times more attractive to A. ludens than the most commonly used bait of Captor (hydrolyzed protein and borax) when using Multilure traps. When several commercial traps were evaluated, the efficacy of a simple and inexpensive transparent polyethylene (PET) bottle with 10-mm lateral holes was similar to that of the costly Multilure trap when baited with CeraTrap and significantly more effective than a Multilure trap baited with Captor. PET bottles filled with Cera Trap, rebaited at 8-wk intervals, and tested in trials encompassing 72 ha of citrus groves, were significantly more effective than Multilure traps baited with Captor that need to be serviced weekly. In addition to this relevant finding, CeraTrap baited traps detected A. ludens at lower population densities and attracted a significantly higher number of flies at all densities when compared with Captor-baited traps. We conclude that CeraTrap represents a cost-effective and highly efficient bait that will enable us to pursue the goal of developing economic thresholds, a badly needed management tool for A. ludens. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Häusermann, Roger; Chauvin, Sophie; Facchetti, Antonio; Chen, Zhihua; Takeya, Jun; Batlogg, Bertram
2018-04-01
The number of trap states in the band gap of organic semiconductors directly influences the charge transport as well as the threshold and turn-on voltage. Direct charge transport measurements have been used until now to probe the trap states rather close to the transport level, whereas their number in the middle of the band gap has been elusive. In this study, we use PDIF-CN2, a well known n-type semiconductor, together with vanadium pentoxide electrodes to build ambipolar field-effect transistors. Employing three different methods, we study the density of trap states in the band gap of the semiconductor. These methods give consistent results, and no pool of defect states was found. Additionally, we show first evidence that the number of trap states close to the transport level is correlated with the number of traps in the middle of the band-gap, meaning that a high number of trap states close to the transport level also implies a high number of trap states in the middle of the band gap. This points to a common origin of the trap states over a wide energy range.
Review: Groundwater development and management in the Deccan Traps (basalts) of western India
NASA Astrophysics Data System (ADS)
Limaye, Shrikant Daji
2010-05-01
The Deccan Traps or the basalts of western India are the largest exposure of basic lava flows covering about 500,000 km2. Groundwater occurrence in the Deccan Traps is in phreatic condition in the weathered zone above the hard rock and in semi-confined condition in the fissures, fractures, joints, cooling cracks, lava flow junctions and in the inter-trappean beds between successive lava flows, within the hard rock. Dug wells, dug-cum-bored wells and boreholes or bore wells are commonly used for obtaining groundwater. The yield is small, usually in the range of 1-100 m3/day. The average land holding per farming family is only around 2 ha. Recently, due to the ever increasing number of dug wells and deep bore wells, the water table has been falling in several watersheds, especially in those lying in the semi-arid region of the traps, so that now the emphasis has shifted from development to sustainable management. Issues like climatic change, poverty mitigation in villages, sustainable development, rapid urbanization of the population, and resource pollution have invited the attention of politicians, policy makers, government agencies and non-governmental organizations towards watershed management, forestation, soil and water conservation, recharge augmentation and, above all, the voluntary control of groundwater abstraction in the Deccan Traps terrain.
Evaluating shading bias in malaise and intercept traps
Irvine, Kathryn M.; Woods, Stephen A.
2007-01-01
Foresters are increasingly focusing on landscape level management regimes. At the landscape level, managed acreage may differ substantially in structure and micro-climatic conditions. Trapping is a commonly used method to evaluate changes in insect communities across landscapes. Among those trapping techniques, Malaise and window-pane traps are conveniently deployed to collect large numbers of insects for relative estimates of density. However, the catch within traps may be affected by a wide range of environmental variables including trap location, height, and factors such as exposure to sunlight and temperature. Seven experiments were conducted from 1996 through 2000 to evaluate the effects of shading on trap catch of a variety of Malaise trap designs and one window-pane trap design. Overall, differences in shading effects on trap catch were detected across different traps and taxa and suggested that, in general, more insects are collected in traps that were in direct sunlight. The effect of shading varied from a reduction in trap catch of 10 % to an increase of 7%, the results depended on trap color. Diptera, Coleoptera, and Homoptera were most likely to exhibit this bias. In contrast, trap catch of the Hymenoptera was the most variable and appeared to be sensitive to factors that might interact with sun/shade conditions
Wide Bandgap Extrinsic Photoconductive Switches
NASA Astrophysics Data System (ADS)
Sullivan, James Stephen
Wide Bandgap Extrinsic Photoconductive Switches Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6H-SiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators. The successful development of a vanadium compensated, 6H-SiC extrinsic photoconductive switch for use as a closing switch for compact accelerator applications was realized by improvements made to the vanadium, nitrogen and boron impurity densities. The changes made to the impurity densities were based on the physical intuition outlined and simple rate equation models. The final 6H-SiC impurity 'recipe' calls for vanadium, nitrogen and boron densities of 2.5 e17 cm-3, 1.25e17 cm-3 and ≤ 1e16 cm-3, respectively. This recipe was originally developed to maximize the quantum efficiency of the vanadium compensated 6H-SiC, while maintaining a thermally stable semi-insulating material. The rate equation models indicate that, besides increasing the quantum efficiency, the impurity recipe should be expected to also increase the carrier recombination time. Three generations of 6H-SiC materials were tested. The third generation vanadium compensated 6H-SiC has average impurity densities close to the recipe values. Extrinsic photoconductive switches constructed from the third generation vanadium compensated, 6H-SiC, 1 mm thick, 1 cm2, substrates have achieved high power operation at 16 kV with pulsed currents exceeding 1400 Amperes and a minimum on resistance of 1 ohm. The extrinsic photoconductive switch performance of the third generation 6H-SiC material was improved by a factor of up to 50 for excitation at the 532 nm wavelength compared to the initial 6H-SiC material. Switches based on this material have been incorporated into a prototype compact proton medical accelerator being developed by the Compact Particle Acceleration Corporation (CPAC). The vanadium compensated, 6H-SiC, extrinsic photoconductive switch operates differently when excited by 1064, or 532 nm, wavelength light. The 6H-SiC extrinsic photoconductive switch is a unipolar device when excited with 1064 nm light. The carriers are electrons excited from filled vanadium acceptor levels and other electron traps located within 1.17 eV of the conduction band. The switch is bipolar at 532 nm since the carriers consist of holes, as well as electrons. The holes are primarily generated by the excitation of valence band electrons into empty trap/acceptor levels and by two-photon absorption. Carrier generation by two-photon absorption becomes more important at high applied optical intensity at 532 nm and contributes to the supralinear behavior of switch conductance as a function of optical power. The 6H-SiC switch material is trap dominated at low nitrogen to vanadium ratios. The trap dominated vanadium compensated 6H-SiC exhibits low quantum efficiency when excited with 1064 and 532 nm light and has a carrier recombination time of ˜ 150 - 300 ps. The vanadium compensated 6H-SiC transitions to an impurity dominated material as the ratio of nitrogen to vanadium is increased to 0.5. The increased nitrogen doping produces a material with much higher quantum efficiency and carrier recombination time of 0.9 to 1.0 ns. The iron compensated 2H-GaN did not perform well as an extrinsic photoconductive switch. The density of carriers generated at 1064 nm was, low indicating that there were very few electrons trapped in the iron acceptor level located at 0.5 - 0.6 eV below the conduction band. Carrier generation at 532 nm was dominated by two photon absorption resulting in the switch conductance increasing as the square of applied optical intensity. A minimum switch resistance of 0.8 ohms was calculated for the 400 nm thick, 1.2 by 1.2 cm, 2H-GaN switch for an applied optical intensity of 41.25 MW/cm2. An optical intensity of ˜ 70 MW/cm2 at 532 nm would be required to achieve a 0.8 ohm on resistance for a 1 mm thick, 1 cm2, 2H-GaN switch.
Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madni, I.; Umana-Membreno, G. A.; Lei, W.
2015-11-02
The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{supmore » −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.« less
NASA Astrophysics Data System (ADS)
Wang, J.; Ju, J.; Daut, G.; Wang, Y.; Maeusbacher, R.; Zhu, L.
2013-12-01
As a big and deep lake in high altitude environment, Nam Co has played an important role in the past decade concerning paleoenvironmental change study. However, the modern process monitoring research is still insufficient in this lake to understand the variations in the modern sedimentation patterns. Sediment traps are widely used in lakes monitoring and research, providing the modern sedimentation rates (SR) and flux information as well as the materials for multidisciplinary studies. Here we present the first and preliminary result of spatio-temporal variability of SR in Nam Co based on one-year sediment traps data. Three integrated self-made traps mooring were deployed in different areas in Nam Co, which were eastern area (T1, ~57m depth), middle area (T2, ~93m depth) and western area (T3, ~62m depth). There were three layers traps in T1 and T3 station while four layers in T2 station. Additionally, a time-series automatic samples changing trap (Technicap PPS 3/3, France) was set up in the bottom (~90m depth) of T2 station with a sampling interval of two weeks. All traps were established in late May, 2012 and collected in Mid-September, 2012 for the first time. Then after winter time, samples were again collected in late May, 2013. Therefore, we got results for two periods, namely summer half year (May-September) and winter half year (September-next May). The results showed remarkable variation of SR vertically in all three stations, the bottom layers received much more materials than the up and middle layers. This fact could be attributed to the distinct influence of high density flows occurring at the lake bottom. This is also supported by multiprobe measurements showing high turbidity in the water body close to the bottom. In shallow areas (T1 and T3) the SR were higher than that of deep area (T2), which could probably reflect the different distance from the terrestrial source to the sites where the traps were deployed. In T1 and T2 stations, SR of winter half year (calculated as mg/cm2/day) was much higher than summer half year and this trend was also partly detected in the time-series sediment trap (T2), which showed higher SR in October, November and early June (no data from December to May). From early June to mid-November, the average SR of T2 station (~90m depth) ranged 0.09-0.95 mg/cm2/day, showed a remarkable temporal variation. More data and detailed analysis are still needed to elucidate the variability of modern SR in Nam Co and the influencing factors, including some internal mechanisms and outside driving related to climate change.
Influence of electron irradiation on hydrothermally grown zinc oxide single crystals
NASA Astrophysics Data System (ADS)
Lu, L. W.; So, C. K.; Zhu, C. Y.; Gu, Q. L.; Li, C. J.; Fung, S.; Brauer, G.; Anwand, W.; Skorupa, W.; Ling, C. C.
2008-09-01
The resistivity of hydrothermally grown ZnO single crystals increased from ~103 Ω cm to ~106 Ω cm after 1.8 MeV electron irradiation with a fluence of ~1016 cm-2, and to ~109 Ω cm as the fluence increased to ~1018 cm-2. Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 1018 cm-2, the normalized TSC signal increased by a factor of ~100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 °C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jinmei; Wang Xuefeng; Xi Zhiqin
2006-10-06
Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in themore » temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures.« less
Deep-subwavelength waveguiding via inhomogeneous second-harmonic generation.
Roppo, Vito; Vincenti, Maria Antonietta; de Ceglia, Domenico; Scalora, Michael
2012-08-01
We theoretically investigate second-harmonic generation in extremely narrow, subwavelength semiconductor and dielectric waveguides. We discuss a guiding mechanism characterized by the inhibition of diffraction and the suppression of cutoff limits in the context of a light trapping phenomenon that sets in under conditions of general phase and group velocity mismatch between the fundamental and the generated harmonic.
NASA Astrophysics Data System (ADS)
Wong, Y. M.; Moore, P. G.
1996-02-01
The activity and life history of the cirolanid isopod Natatolana borealisLilljeborg has been studied using (primarily) fish-baited traps deployed at a deep-water station (190 m) in Loch Fyne, Scotland. A voracious scavenger, it burrows into soft mud, emerging to feed when suitable food odours are detected in the water. Isopods were attracted significantly to baited vs. non-baited traps. Underwater video observations revealed that most animals were active in the vicinity of traps, that capture efficiency was low, but retention complete. Only traps on the sea-bed captured mancas or juveniles in any numbers. Any seasonal pattern in catch rate through the year was confounded by high variability. Only one (manca-)brooding female was ever caught in a trap (in April). It is assumed that brooding females desist from feeding. The sex ratio of isopods in most trap collections was thus significantly male dominated. Mancas were trapped during February to August. Growth rate was slowest in adults and was similar for males and females. The maximum growth rate occurred during autumn associated with the seasonal cycle in bottom water temperatures. Longevity was estimated (by following peaks in the size-frequency distributions with time) to be c. 2·5 years, with sexual maturity (based on oostegites/spurred appendix masculinae) achieved after c. 19 months. Semelparity is suggested. A low incidence of an unnamed epicaridean parasite is reported from the Clyde population. Natatolana borealisalso carried peritrich ciliate epizoites on their antennae. Possible predators are swimming crabs and gadid fish, e.g. whiting and cod.
Electromagnetic micropores: fabrication and operation.
Basore, Joseph R; Lavrik, Nickolay V; Baker, Lane A
2010-12-21
We describe the fabrication and characterization of electromagnetic micropores. These devices consist of a micropore encompassed by a microelectromagnetic trap. Fabrication of the device involves multiple photolithographic steps, combined with deep reactive ion etching and subsequent insulation steps. When immersed in an electrolyte solution, application of a constant potential across the micropore results in an ionic current. Energizing the electromagnetic trap surrounding the micropore produces regions of high magnetic field gradients in the vicinity of the micropore that can direct motion of a ferrofluid onto or off of the micropore. This results in dynamic gating of the ion current through the micropore structure. In this report, we detail fabrication and characterize the electrical and ionic properties of the prepared electromagnetic micropores.
NASA Astrophysics Data System (ADS)
Bauerfeind, E.; Nöthig, E.-M.; Pauls, B.; Kraft, A.; Beszczynska-Möller, A.
2014-04-01
Pteropods are an important component of the zooplankton community and hence of the food web in the Fram Strait. They have a calcareous (aragonite) shell and are thus sensitive in particular to the effects of the increasing CO2 concentration in the atmosphere and the associated changes of pH and temperature in the ocean. In the eastern Fram Strait, two species of thecosome pteropods occur, the cold water-adapted Limacina helicina and the subarctic boreal species Limacina retroversa. Both species were regularly observed in year-round moored sediment traps at ~ 200-300 m depth in the deep-sea long-term observatory HAUSGARTEN (79°N, 4°E). The flux of all pteropods found in the trap samples varied from < 20 to ~ 870 specimen m- 2 d- 1 in the years 2000-2009, being lower during the period 2000-2006. At the beginning of the time series, pteropods were dominated by the cold-water-adapted L. helicina, whereas the subarctic boreal L. retroversa was only occasionally found in large quantities (> 50 m- 2 d- 1). This picture completely changed after 2005/6 when L. retroversa became dominant and total pteropod numbers in the trap samples increased significantly. Concomitant to this shift in species composition, a warming event occurred in 2005/6 and persisted until the end of the study in 2009, despite a slight cooling in the upper water layer after 2007/8. Sedimentation of pteropods showed a strong seasonality, with elevated fluxes of L. helicina from August to November. Numbers of L. retroversa usually increased later, during September/October, with a maximum at the end of the season during December/January. In terms of carbonate export, aragonite shells of pteropods contributed with 11-77% to the annual total CaCO3 flux in Fram Strait. The highest share was found in the period 2007 to 2009, predominantly during sedimentation events at the end of the year. Results obtained by sediment traps occasionally installed on a benthic lander revealed that pteropods also arrive at the seafloor (~ 2550 m) almost simultaneous with their occurrence in the shallower traps. This indicates a rapid downward transport of calcareous shells, which provides food particles for the deep-sea benthos during winter when other production in the upper water column is shut down. The results of our study highlight the great importance of pteropods for the biological carbon pump as well as for the carbonate system in Fram Strait at present, and indicate modifications within the zooplankton community. The results further emphasize the importance of long-term investigation to disclose such changes.
Huang, Bolong
2016-05-11
We investigated the mechanism of the intrinsic persistent luminescence of Er2O3 in the A-type lattice based on first-principles calculations. We found that the native point defects were engaged in mutual subtle interactions in the form of chemical reactions between different charge states. The release of energy related to lattice distortion facilitates the conversion of energy for electrons to be transported between the valence band and the trap levels or even between the deep trap levels so as to generate persistent luminescence. The defect transitions that take place along the zero-phonon line release energy to enable optical transitions, with the exact amount of negative effective correlation energy determined by the lattice distortions. Our calculations on the thermodynamic transition levels confirm that both the visible and NIR experimentally observed intrinsic persistent luminescence (phosphor or afterglow) are related to the thermodynamic transition levels of oxygen-related defects, and the thermodynamic transition levels within different charge states for these defects are independent of the chemical potentials of the given species. Lattice distortion defects such as anion Frenkel (a-Fr) pair defects play an important role in transporting O-related defects between different lattice sites. To obtain red persistent luminescence that matches the biological therapeutic window, it is suggested to increase the electron transition levels between high-coordinated O vacancies and related metastable a-Fr defects; a close-packed core-shell structure is required to quench low-coordinated O-related defects so as to reduce the green band luminescence. We further established a conversed chain reaction (CCR) model to interpret the energy conversion process of persistent luminescence in terms of the inter-reactions of native point defects between different charge states. It is advantageous to use the study of defect levels combined with formation energies to suggest limits to doping energy and explain photostimulated luminescence in terms of native point defects.
Interface investigation of solution processed high- κ ZrO2/Si MOS structure by DLTS
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Mondal, Sandip; Rao, Ksr Koteswara
The interfacial region is dominating due to the continuous downscaling and integration of high- k oxides in CMOS applications. The accurate characterization of high- k oxides/semiconductor interface has the significant importance towards its usage in memory and thin film devices. The interface traps at the high - k /semiconductor interface can be quantified by deep level transient spectroscopy (DLTS) with better accuracy in contrast to capacitance-voltage (CV) and conductance technique. We report the fabrication of high- k ZrO2 films on p-Si substrate by a simple and inexpensive sol-gel spin-coating technique. Further, the ZrO2/Si interface is characterized through DLTS. The flat-band voltage (VFB) and the density of slow interface states (oxide trapped charges) extracted from CV characteristics are 0.37 V and 2x10- 11 C/cm2, respectively. The activation energy, interface state density and capture cross-section quantified by DLTS are EV + 0.42 eV, 3.4x1011 eV- 1 cm- 2 and 5.8x10- 18 cm2, respectively. The high quality ZrO2 films own high dielectric constant 15 with low leakage current density might be an appropriate insulating layer in future electronic application. The low value of interface state density and capture cross-section are the indication of high quality interface and the defect present at the interface may not affect the device performance to a great extent. The DLTS study provides a broad understanding about the traps present at the interface of spin-coated ZrO2/Si.
Kootenai River Fisheries Investigations : Rainbow Trout Recruitment : Period Covered: 1997.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downs, Chris
1999-02-02
The objective of this study was to determine if juvenile production is limiting the population of rainbow trout Oncorbynchus mykiss in the Idaho reach of the Kootenai River. We used snorkeling and electrofishing techniques to estimate juvenile rainbow trout abundance in, and outmigration from, the Deep, Boulder, and Myrtle creek drainages in Idaho. The total population estimates for the three drainages estimated in 1997 were 30,023; 763; and 235; respectively. A rotary-screw trap was utilized to capture juvenile outmigrants for quantification of age at outmigration and total outmigration from the Deep Creek drainage to the Kootenai River. The total outmigrantmore » estimate for 1997 from the Deep Creek drainage was 38,206 juvenile rainbow trout. Age determination based largely on scales suggests that most juvenile rainbow trout outmigration from the Deep Creek drainage occurs at age-l, during the spring runoff period. Forty-three adult rainbow trout captured in the Deep Creek drainage were tagged with $10.00 reward T-bar anchor tags in 1997. A total of three of these fish were harvested, all in Kootenay Lake, British Columbia. This suggests the possibility of an adfluvial component in the spawning population of the Deep Creek drainage.« less
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Mondal, Sandip; Koteswara Rao, K. S. R.
2018-02-01
In this work, we have fabricated low-temperature sol-gel spin-coated and oxygen (O2) plasma treated ZrO2 thin film-based metal-insulator-semiconductor devices. To understand the impact of plasma treatment on the Si/ZrO2 interface, deep level transient spectroscopy measurements were performed. It is reported that the interface state density ( D it) comes down to 7.1 × 1010 eV-1 cm-2 from 4 × 1011 eV-1 cm-2, after plasma treatment. The reduction in D it is around five times and can be attributed to the passivation of oxygen vacancies near the Si/ZrO2 interface, as they try to relocate near the interface. The energy level position ( E T) of interfacial traps is estimated to be 0.36 eV below the conduction band edge. The untreated ZrO2 film displayed poor leakage behavior due to the presence of several traps within the film and at the interface; O2 plasma treated films show improved leakage current density as they have been reduced from 5.4 × 10-8 A/cm2 to 1.98 × 10-9 A/cm2 for gate injection mode and 6.4 × 10-8 A/cm2 to 6.3 × 10-10 A/cm2 for substrate injection mode at 1 V. Hence, we suggest that plasma treatment might be useful in future device fabrication technology.
Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo
2012-08-01
Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.
Experiments on the transportation of a magnetized plasma stream in the GOL-3 facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Batkin, V. I.; Burdakov, A. V.
2016-04-15
The program of the deep upgrade of the GOL-3 multiple-mirror trap is presented. The upgrade is aimed at creating a new GOL-NB open trap located at the GOL-3 site and intended to directly demonstrate the efficiency of using multiple-mirror magnetic cells to improve longitudinal plasma confinement in a gasdynamic open trap. The GOL-NB device will consist of a new central trap, adjoint cells with a multiple-mirror magnetic field, and end tanks (magnetic flux expanders). Plasma in the central trap will be heated by neutral beam injection with a power of up to 1.5 MW and duration of 1 ms. Atmore » present, physical experiments directed at developing plasma technologies that are novel for this facility are being carried out using the 6-m-long autonomous part of the GOL-3 solenoid. The aim of this work was to develop a method for filling the central trap with a low-temperature start plasma. Transportation of a plasma stream from an arc source over a distance of 3 m in a uniform magnetic field with an induction of 0.5–4.5 T is demonstrated. In these experiments, the axial plasma density was (1–4) × 10{sup 20} m{sup –3} and the mirror ratio varied from 5 to 60. In general, the experiments confirmed the correctness of the adopted decisions for the start plasma source of the GOL-NB device.« less
Photo annealing effect on p-doped inverted organic solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafalce, Evan; Toglia, Patrick; Lewis, Jason E.
2014-06-28
We report the transient positive photo annealing effect in which over 600% boost of power conversion efficiency was observed in inverted organic photovoltaic devices (OPV) made from P3HT/PCBM by spray method, after 2 hrs of constant solar AM 1.5 irradiation at low temperature. This is opposite to usual photodegradation of OPV, and cannot be explained by thermal activation alone since the mere temperature effect could only account for 30% of the enhancement. We have investigated the temperature dependence, cell geometry, oxygen influence, and conclude that, for p-doped active layer at room temperature, the predominant mechanism is photo-desorption of O{sub 2}, whichmore » eliminates electron traps and reduces space charge screening. As temperature decreases, thermal activation and deep trap-state filling start to show noticeable effect on the enhancement of photocurrent at intermediate low temperature (T = 125 K). At very low temperature, the dominant mechanism for photo annealing is trap-filling, which significantly reduces recombination between free and trapped carriers. At all temperature, photo annealing effect depends on illumination direction from cathode or anode. We also explained the large fluctuation of photocurrent by the capture/reemit of trapped electrons from shallow electron traps of O{sub 2}{sup -} generated by photo-doping. Our study has demonstrated the dynamic process of photo-doping and photo-desorption, and shown that photo annealing in vacuum can be an efficient method to improve OPV device efficiency.« less
Biosynthesis of coelenterazine in the deep-sea copepod, Metridia pacifica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oba, Yuichi; Kato, Shin-ichi; Ojika, Makoto
Coelenterazine is an imidazopyrazinone compound (3,7-dihydroimidazopyrazin-3-one structure) that is widely distributed in marine organisms and used as a luciferin for various bioluminescence reactions. We have used electrospray ionization-ion trap-mass spectrometry to investigate whether the deep-sea luminous copepod Metridia pacifica is able to synthesize coelenterazine. By feeding experiments using deuterium labeled amino acids of L-tyrosine and L-phenylalanine, we have shown that coelenterazine can be synthesized from two molecules of L-tyrosine and one molecule of L-phenylalanine in M. pacifica. This is the first demonstration that coelenterazine is biosynthesized from free L-amino acids in a marine organism.
The biomass of the deep-sea benthopelagic plankton
NASA Astrophysics Data System (ADS)
Wishner, K. F.
1980-04-01
Deep-sea benthopelagic plankton samples were collected with a specially designed opening-closing net system 10 to 100 m above the bottom in five different oceanic regions at depths from 1000 to 4700 m. Benthopelagic plankton biomasses decrease exponentially with depth. At 1000 m the biomass is about 1% that of the surface zooplankton, at 5000 m about 0.1%. Effects of differences in surface primary productivity on deep-sea plankton biomass are much less than the effect of depth and are detectable only in a few comparisons of extreme oceanic regions. The biomass at 10 m above the bottom is greater than that at 100 m above the bottom (in a three-sample comparison), which could be a consequence of an enriched near-bottom environment. The deep-sea plankton biomass in the Red Sea is anomalously low. This may be due to increased decomposition rates in the warm (22°C) deep Red Sea water, which prevent much detritus from reaching the deep sea. A model of organic carbon utilization in the benthic boundary layer (bottom 100 m), incorporating results from deep-sea sediment trap and respiration studies, indicates that the benthopelagic plankton use only a small amount of the organic carbon flux. A large fraction of the flux is unaccounted for by present estimates of benthic and benthopelagic respiration.
Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip
2016-04-26
We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.
Vacas, S; Primo, J; Navarro-Llopis, V
2013-08-01
Given the social importance related to the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), efforts are being made to develop new control methods, such as the deployment of trapping systems. In this work, the efficacy of a new black pyramidal trap design (Picusan) has been verified in comparison with white and black buckets. In addition, the attractant and synergistic effect of ethyl acetate (EtAc) at different release levels has been evaluated under field conditions. The results show that Picusan traps captured 45% more weevils than bucket-type traps, offering significantly better trapping efficacy. The addition of water to traps baited with palm tissues was found to be essential, with catches increasing more than threefold compared with dry traps. EtAc alone does not offer attractant power under field conditions, and the release levels from 57 mg/d to 1 g/d have no synergistic effect with ferrugineol. Furthermore, significantly fewer females were captured when EtAc was released at 2 g/d. The implications of using EtAc dispensers in trapping systems are discussed.
Can activity traps assess aquatic insect abundance at the landscape level?
Boobar, L.R.; Gibbs, K.E.; Longcore, J.R.
1994-01-01
We used activity traps as designed by Riley and Bookhout (1990. Wetlands) to sample aquatic invertebrates as part of a study to characterize wetlands on a forested and an agricultural landscape (ca. 1,000 mi'2) in northern. Maine. Eight wetlands (5 from agricultural and 3 from forested landscapes) were sampled at random from 50 wetlands surveyed for waterfowl broods. At the landscape level, insect abundance (mean no./ trap), fish abundance (mean no./trap), percent vegetation, and water chemistry variables (pH, ANC, SPCOND, Ca, Mg, K, Na, Cl) were different between landscapes. Furthermore, nearly as many fish (2,112) were caught as were insects (2,443); 47% of the 332 traps contained fish, but 84 traps accounted for 94% of the fish caught. When >4 fish were in a trap fewer insects were in the trap. Differences in water temperature among wetlands and differences in rates of escape among insect orders affected the number of different taxa caught. Until capture success of activity traps is better understood, results from activity traps should be used with care.
Dynamics of particle export on the Northwest Atlantic margin
NASA Astrophysics Data System (ADS)
Hwang, Jeomshik; Manganini, Steven J.; Montluçon, Daniel B.; Eglinton, Timothy I.
2009-10-01
The Northwest Atlantic margin is characterized by high biological productivity in shelf and slope surface waters. In addition to carbon supply to underlying sediments, the persistent, intermediate depth nepheloid layers emanating from the continental shelves, and bottom nepheloid layers maintained by strong bottom currents associated with the southward flowing Deep Western Boundary Current (DWBC), provide conduits for export of organic carbon over the margin and/or to the interior ocean. As a part of a project to understand dynamics of particulate organic carbon (POC) cycling in this region, we examined the bulk and molecular properties of time-series sediment trap samples obtained at 968 m, 1976 m, and 2938 m depths from a bottom-tethered mooring on the New England slope (water depth, 2988 m). Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low Δ 14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radiocarbon mass balance, about 30% (±10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of resuspended sediment. A strong correlation between Δ 14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles. Our results suggest that lateral transport of organic matter, particularly that resulting from sediment resuspension, should be considered in addition to vertical supply of organic matter derived from primary production, in order to understand carbon cycling and export over continental margins.
NASA Astrophysics Data System (ADS)
Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi
2018-03-01
Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.
Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.
Kühn, S; Phillips, B S; Lunt, E J; Hawkins, A R; Schmidt, H
2010-01-21
The development of on-chip methods to manipulate particles is receiving rapidly increasing attention. All-optical traps offer numerous advantages, but are plagued by large required power levels on the order of hundreds of milliwatts and the inability to act exclusively on individual particles. Here, we demonstrate a fully integrated electro-optical trap for single particles with optical excitation power levels that are five orders of magnitude lower than in conventional optical force traps. The trap is based on spatio-temporal light modulation that is implemented using networks of antiresonant reflecting optical waveguides. We demonstrate the combination of on-chip trapping and fluorescence detection of single microorganisms by studying the photobleaching dynamics of stained DNA in E. coli bacteria. The favorable size scaling facilitates the trapping of single nanoparticles on integrated optofluidic chips.
Enabling Exploration of Deep Space: High Density Storage of Antimatter
NASA Technical Reports Server (NTRS)
Smith, Gerald A.; Kramer, Kevin J.
1999-01-01
Portable electromagnetic antiproton traps are now in a state of realization. This allows facilities like NASA Marshall Space Flight Center to conduct antimatter research remote to production sites. MSFC is currently developing a trap to store 10(exp 12) antiprotons for a twenty-day half-life period to be used in future experiments including antimatter plasma guns, antimatter-initiated microfusion, and the synthesis of antihydrogen for space propulsion applications. In 1998, issues including design, safety and transportation were considered for the MSFC High Performance Antimatter Trap (HiPAT). Radial diffusion and annihilation losses of antiprotons prompted the use of a 4 Tesla superconducting magnet and a 20 KV electrostatic potential at 10(exp -12) Torr pressure. Cryogenic fluids used to maintain a trap temperature of 4K were sized accordingly to provide twenty days of stand-alone storage time (half-life). Procurement of the superconducting magnet with associated cryostat has been completed. The inner, ultra-high vacuum system with electrode structures has been fabricated, tested and delivered to MSFC along with the magnet and cryostat. Assembly of these systems is currently in progress. Testing under high vacuum conditions, using electrons and hydrogen ions will follow in the months ahead.
Small polarons and point defects in LaFeO3
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.
The proton-conductive perovskite-type LaFeO3 is a promising negative-electrode material for Ni/metal-hydride (Ni-MH) batteries. It has a discharge capacity up to 530 mAhg-1 at 333 K, which is significantly higher than commercialized AB5-type alloys. To elucidate the underlying mechanism of this performance, we have investigated the structural and electronic properties of bulk LaFeO3, as well as the effect of point defects, using hybrid density functional methods. LaFeO3 is antiferromagnetic in the ground state with a band gap of 3.54 eV. Small hole and electron polarons can form through self- or point-defect-assisted trapping. We find that La vacancies and Sr substitutional on La sites are shallow acceptors with the induced holes trapped as small polarons, while O and Fe vacancies are deep defect centers. Hydrogen interstitials behave like shallow donors, with the donor electrons localized on nearby iron sites as electron polarons. With a large trapping energy, these polarons can act as electron or hole traps and affect the electrical performance of LaFeO3 as the negative electrode for Ni-MH batteries. We acknowledge DOE for financial support.
The JPL trapped mercury ion frequency standard
NASA Technical Reports Server (NTRS)
Prestage, J. D.; Dick, G. J.; Maleki, L.
1988-01-01
In order to provide frequency standards for the Deep Space Network (DSN) which are more stable than present-day hydrogen masers, a research task was established under the Advanced Systems Program of the TDA to develop a Hg-199(+) trapped ion frequency standard. The first closed-loop operation of this kind is described. Mercury-199 ions are confined in an RF trap and are state-selected through the use of optical pumping with 194 nm UV light from a Hg-202 discharge lamp. Absorption of microwave radiation at the hyperfine frequency (40.5 GHz) is signaled by atomic fluorescence of the UV light. The frequency of a 40.5 GHz oscillator is locked to a 1.6 Hz wide atomic absorption line of the trapped ions. The measured Allan variance of this locked oscillator is currently gamma sub y (pi) = 4.4 x 10 to the minus 12th/square root of pi for 20 is less than pi is less than 320 seconds, which is better stability than the best commercial cesium standards by almost a factor of 2. This initial result was achieved without magnetic shielding and without regulation of ion number.
Screening the Hanford tanks for trapped gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, P.
1995-10-01
The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology ismore » not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.« less
NASA Astrophysics Data System (ADS)
Guo, Bing; Qiu, Z. R.; Wong, K. S.
2003-04-01
We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.
The plasmasheet H+ and O+ contribution on the storm time ring current
NASA Astrophysics Data System (ADS)
Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.
2015-12-01
The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.
Protection of MOS capacitors during anodic bonding
NASA Astrophysics Data System (ADS)
Schjølberg-Henriksen, K.; Plaza, J. A.; Rafí, J. M.; Esteve, J.; Campabadal, F.; Santander, J.; Jensen, G. U.; Hanneborg, A.
2002-07-01
We have investigated the electrical damage by anodic bonding on CMOS-quality gate oxide and methods to prevent this damage. n-type and p-type MOS capacitors were characterized by quasi-static and high-frequency CV-curves before and after anodic bonding. Capacitors that were bonded to a Pyrex wafer with 10 μm deep cavities enclosing the capacitors exhibited increased leakage current and interface trap density after bonding. Two different methods were successful in protecting the capacitors from such damage. Our first approach was to increase the cavity depth from 10 μm to 50 μm, thus reducing the electric field across the gate oxide during bonding from approximately 2 × 105 V cm-1 to 4 × 104 V cm-1. The second protection method was to coat the inside of a 10 μm deep Pyrex glass cavity with aluminium, forming a Faraday cage that removed the electric field across the cavity during anodic bonding. Both methods resulted in capacitors with decreased interface trap density and unchanged leakage current after bonding. No change in effective oxide charge or mobile ion contamination was observed on any of the capacitors in the study.
A correlation between the defect states and yellow luminescence in AlGaN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Jana, Dipankar; Sharma, T. K.
2017-07-01
AlGaN/GaN heterostructures are investigated by performing complementary spectroscopic measurements under novel experimental configurations. Distinct features related to the band edge of AlGaN and GaN layers are clearly observed in surface photovoltage spectroscopy (SPS) spectra. A few more SPS features, which are associated with defects in GaN, are also identified by performing the pump-probe SPS measurements. SPS results are strongly corroborated by the complementary photoluminescence and photoluminescence excitation (PLE) measurements. A correlation between the defect assisted SPS features and yellow luminescence (YL) peak is established by performing pump-probe SPS and PLE measurements. It is found that CN-ON donor complex is responsible for the generation of YL peak in our sample. Further, the deep trap states are found to be present throughout the entire GaN epilayer. It is also noticed that the deep trap states lying at the GaN/Fe-GaN interface make a strong contribution to the YL feature. A phenomenological model is proposed to explain the intensity dependence of the YL feature and the corresponding SPS features in a pump-probe configuration, where a reasonable agreement between the numerical simulations and experimental results is achieved.
Durophagous Predation by King Crabs on the Continental Slope off Antarctica
NASA Astrophysics Data System (ADS)
Smith, K.; Aronson, R. B.; Steffel, B. V.; McClintock, J. B.; Amsler, M.; Thatje, S.
2016-02-01
For perhaps tens of millions of years, marine communities in Antarctica have been essentially devoid of durophagous (shell-crushing) predators, which have been excluded by low temperatures. In their absence, the resident species have evolved in isolation and are slow-moving with limited defenses. Rapidly rising sea temperatures around Antarctica are now relaxing the cold-thermal barrier and appear to be allowing deep-water king crabs (Lithodidae) to move up the continental slope, into shallower water. Their potential to emerge on the continental shelf could drastically restructure the endemic communities that live there; in other areas of the world, lithodids are typically generalist predators of invertebrates. Their diet in Antarctic waters remains unknown and it has been speculated that they are opportunistic scavengers. We report the findings of a trapping study conducted in deep water off the western Antarctic Peninsula in 2015. Stomach contents were analyzed for 18 adult Paralomis birsteini trapped on the continental slope. P. birsteini feed primarily on invertebrates such as echinoderms, gastropods and polychaetes. By understanding the prey species targeted by slope-dwelling lithodids, we can begin to project the future impact of an expansion of king crabs onto the Antarctic continental shelf.
Sampling small mammals in southeastern forests: the importance of trapping in trees
Susan C. Loeb; Gregg L. Chapman; Theodore R. Ridley
2001-01-01
Because estimates of small mammal species richness and diversity are strongly influenced by sampling methodology, 2 or more trap types are often used in studies of small mammal communities. However, in most cases, all traps are placed at ground level. In contrast, we used Sherman live traps placed at 1.5 m in trees in addition to Sherman live traps and Mosby box traps...
Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK
NASA Astrophysics Data System (ADS)
Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David
2017-04-01
Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures
On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2
NASA Astrophysics Data System (ADS)
Fengler, F. P. G.; Hoffmann, M.; Slesazeck, S.; Mikolajick, T.; Schroeder, U.
2018-05-01
Manifold research has been done to understand the detailed mechanisms behind the performance instabilities of ferroelectric capacitors based on hafnia. The wake-up together with the imprint might be the most controversially discussed phenomena so far. Among crystallographic phase change contributions and oxygen vacancy diffusion, electron trapping as the origin has been discussed recently. In this publication, we provide evidence that the imprint is indeed caused by electron trapping into deep states at oxygen vacancies. This impedes the ferroelectric switching and causes a shift of the hysteresis. Moreover, we show that the wake-up mechanism can be caused by a local imprint of the domains in the pristine state by the very same root cause. The various domain orientations together with an electron trapping can cause a constriction of the hysteresis and an internal bias field in the pristine state. Additionally, we show that this local imprint can even cause almost anti-ferroelectric like behavior in ferroelectric films.
Localized rapid warming of West Antarctic subsurface waters by remote winds
NASA Astrophysics Data System (ADS)
Spence, Paul; Holmes, Ryan M.; Hogg, Andrew Mcc.; Griffies, Stephen M.; Stewart, Kial D.; England, Matthew H.
2017-08-01
The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.
Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL
Obara, Yuki; Ito, Hironori; Ito, Terumasa; Kurahashi, Naoya; Thürmer, Stephan; Tanaka, Hiroki; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yamamoto, Yo-ichi; Karashima, Shutaro; Nishitani, Junichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko
2017-01-01
The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300–400 fs, which we assign to the structural distortion dynamics near the surface. PMID:28713842
Analog quantum simulation of generalized Dicke models in trapped ions
NASA Astrophysics Data System (ADS)
Aedo, Ibai; Lamata, Lucas
2018-04-01
We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.
NASA Astrophysics Data System (ADS)
Eyles, Nicholas; Mullins, Henry T.; Hine, Albert C.
1991-09-01
This paper presents the first detailed data regarding the newly discovered deep infill of Okanagan Lake. Okanagan Lake (50°00'N, 119°30'W) is 120 km long, ˜ 3-5 km wide and occupies a glacially overdeepened bedrock basin in the southern interior of British Columbia. This basin, and other elongate lakes of the region (e.g. Shuswap, Kootenay, Kalamalka, Canim and Mahood lakes), mark the site of westward flowing ice streams within successive Cordilleran ice sheets. An air gun seismic survey of Okanagan Lake shows that the bedrock floor is nearly 650 m below sea-level, more than 2000 m below the rim of the surrounding plateau. The maximum thickness of Pleistocene sediment in Okanagan Lake basin approaches 800 m. Forty-six seismic reflection traverses and an axial profile show a relatively simple stratigraphy composed of three seismic sequences argued to be no older than the last glacial cycle (< 30 ka). A discontinuous basal unit (sequence I) characterized by large-scale diffractions, and up to 460 m thick, infills the narrow, V-shaped bedrock floor of the basin and is interpreted as a boulder gravel deposited by subglacial meltwaters. Overlying seismic sequence II is composed of two sub-sequences. Sub-sequence IIa is a chaotic to massive facies up to 736 m thick. Lakeshore exposures close to where this unit reaches lake level show deformed and chaotically-bedded glaciolacustrine silts containing gravel lens and large ice-rafted boulders. The surface topography of this sub-sequence is irregular and in general mimics the form of the underlying bedrock as a result of compaction. This sequence passes laterally into stratified facies (sub-sequence IIb) at the northern end of the basin. Seismic sequence II appears to record rapid ice-proximal dumping of glaciolacustrine silt as the Okanagan glacier backwasted upvalley in a deep lake. A thin (60 m max.) laminated seismic sequence (III) drapes the hummocky surface of sequence II and represents postglacial sedimentation from fan-deltas. The extreme thickness of sequences I and II in Okanagan Lake reflects the focussing of large volumes of meltwater and sediment into the basin during deglaciation; pre-existing sediments that pre-date the last glacial cycle appear to have been completely eroded. Glaciological conditions during sedimentation may have been similar to marine-based outlet glaciers calving in deep water in fiord basins. In contrast to marine settings where ice bergs are free to disperse, large volumes of dead ice were trapped within the basin; structural evidence for sedimentation around dead ice blocks has been previously used to argue that the Cordilleran Ice Sheet downwasted in situ. We emphasize in contrast, the trapping of dead ice left behind by rapidly calving lake-based outlet glaciers.
Propagation of thrombosis by neutrophils and extracellular nucleosome networks
Pfeiler, Susanne; Stark, Konstantin; Massberg, Steffen; Engelmann, Bernd
2017-01-01
Neutrophils, early mediators of the innate immune defense, are recruited to developing thrombi in different types of thrombosis. They amplify intravascular coagulation by stimulating the tissue factor-dependent extrinsic pathway via inactivation of endogenous anticoagulants, enhancing factor XII activation or decreasing plasmin generation. Neutrophil-dependent prothrombotic mechanisms are supported by the externalization of decondensed nucleosomes and granule proteins that together form neutrophil extracellular traps. These traps, either in intact or fragmented form, are causally involved in various forms of experimental thrombosis as first indicated by their role in the enhancement of both microvascular thrombosis during bacterial infection and carotid artery thrombosis. Neutrophil extracellular traps can be induced by interactions of neutrophils with activated platelets; vice versa, these traps enhance adhesion of platelets via von Willebrand factor. Neutrophil-induced microvascular thrombus formation can restrict the dissemination and survival of blood-borne bacteria and thereby sustain intravascular immunity. Dysregulation of this innate immune pathway may support sepsis-associated coagulopathies. Notably, neutrophils and extracellular nucleosomes, together with platelets, critically promote fibrin formation during flow restriction-induced deep vein thrombosis. Neutrophil extracellular traps/extracellular nucleosomes are increased in thrombi and in the blood of patients with different vaso-occlusive pathologies and could be therapeutically targeted for the prevention of thrombosis. Thus, during infections and in response to blood vessel damage, neutrophils and externalized nucleosomes are major promoters of intravascular blood coagulation and thrombosis. PMID:27927771
NASA Astrophysics Data System (ADS)
Jia, Xinlei; Yan, Xiaobing; Wang, Hong; Yang, Tao; Zhou, Zhenyu; Zhao, Jianhui
2018-06-01
In this work, we have investigated two kinds of charge trapping memory devices with Pd/Al2O3/ZnO/SiO2/p-Si and Pd/Al2O3/ZnO/graphene oxide quantum-dots (GOQDs)/ZnO/SiO2/p-Si structure. Compared with the single ZnO sample, the memory window of the ZnO-GOQDs-ZnO sample reaches a larger value (more than doubled) of 2.7 V under the sweeping gate voltage ± 7 V, indicating a better charge storage capability and the significant charge trapping effects by embedding the GOQDs trapping layer. The ZnO-GOQDs-ZnO devices have better date retention properties with the high and low capacitances loss of ˜ 1.1 and ˜ 6.9%, respectively, as well as planar density of the trapped charges of 1.48 × 1012 cm- 2. It is proposed that the GOQDs play an important role in the outstanding memory characteristics due to the deep quantum potential wells and the discrete distribution of the GOQDs. The long date retention time might have resulted from the high potential barrier which suppressed both the back tunneling and the leakage current. Intercalating GOQDs in the memory device is a promising method to realize large memory window, low-power consumption and excellent retention properties.
Liu, Hsiao-Chuan; Li, Ying; Chen, Ruimin; Jung, Hayong; Shung, K Kirk
2017-04-01
Single-beam acoustic tweezers (SBATs) represent a new technology for particle and cell trapping. The advantages of SBATs are their deep penetration into tissues, reduction of tissue damage and ease of application to in vivo studies. The use of these tools for applications in drug delivery in vivo must meet the following conditions: large penetration depth, strong trapping force and tissue safety. A reasonable penetration depth for SBATs in the development of in vivo applications was established in a previous study conducted in water with zero velocity. However, capturing objects in flowing fluid can provide more meaningful results. In this study, we investigated the capability of SBATs to trap red blood cells (RBCs) and polystyrene microspheres in flowing RBC suspensions. Two different types of RBC suspension were prepared in this work: an RBC phosphate-buffered saline (PBS) suspension and an RBC plasma suspension. The results indicated that SBATs successfully trapped RBCs and polystyrene microspheres in a flowing RBC PBS suspension with an average steady velocity of 1.6 cm/s in a 2-mm-diameter polyimide. Furthermore, SBATs were found able to trap RBCs in a flowing RBC PBS suspension at speeds as high as 7.9 cm/s in a polyimide tube, which is higher than the velocity in capillaries (0.03 cm/s) and approaches the velocity in arterioles and venules. Moreover, the results also indicated that polystyrene microspheres can be trapped in an RBC plasma suspension, where aggregation is observed. This work represents a step forward in using this tool in actual in vivo experimentation. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Perroud, Thomas D; Meagher, Robert J; Kanouff, Michael P; Renzi, Ronald F; Wu, Meiye; Singh, Anup K; Patel, Kamlesh D
2009-02-21
To enable several on-chip cell handling operations in a fused-silica substrate, small shallow micropores are radially embedded in larger deeper microchannels using an adaptation of single-level isotropic wet etching. By varying the distance between features on the photolithographic mask (mask distance), we can precisely control the overlap between two etch fronts and create a zero-thickness semi-elliptical micropore (e.g. 20 microm wide, 6 microm deep). Geometrical models derived from a hemispherical etch front show that micropore width and depth can be expressed as a function of mask distance and etch depth. These models are experimentally validated at different etch depths (25.03 and 29.78 microm) and for different configurations (point-to-point and point-to-edge). Good reproducibility confirms the validity of this approach to fabricate micropores with a desired size. To illustrate the wide range of cell handling operations enabled by micropores, we present three on-chip functionalities: continuous-flow particle concentration, immobilization of single cells, and picoliter droplet generation. (1) Using pressure differentials, particles are concentrated by removing the carrier fluid successively through a series of 44 shunts terminated by 31 microm wide, 5 microm deep micropores. Theoretical values for the concentration factor determined by a flow circuit model in conjunction with finite volume modeling are experimentally validated. (2) Flowing macrophages are individually trapped in 20 microm wide, 6 microm deep micropores by hydrodynamic confinement. The translocation of transcription factor NF-kappaB into the nucleus upon lipopolysaccharide stimulation is imaged by fluorescence microscopy. (3) Picoliter-sized droplets are generated at a 20 microm wide, 7 microm deep micropore T-junction in an oil stream for the encapsulation of individual E. coli bacteria cells.
Understanding Democracy and Development Traps Using a Data-Driven Approach.
Ranganathan, Shyam; Nicolis, Stamatios C; Spaiser, Viktoria; Sumpter, David J T
2015-03-01
Methods from machine learning and data science are becoming increasingly important in the social sciences, providing powerful new ways of identifying statistical relationships in large data sets. However, these relationships do not necessarily offer an understanding of the processes underlying the data. To address this problem, we have developed a method for fitting nonlinear dynamical systems models to data related to social change. Here, we use this method to investigate how countries become trapped at low levels of socioeconomic development. We identify two types of traps. The first is a democracy trap, where countries with low levels of economic growth and/or citizen education fail to develop democracy. The second trap is in terms of cultural values, where countries with low levels of democracy and/or life expectancy fail to develop emancipative values. We show that many key developing countries, including India and Egypt, lie near the border of these development traps, and we investigate the time taken for these nations to transition toward higher democracy and socioeconomic well-being.
Understanding Democracy and Development Traps Using a Data-Driven Approach
Ranganathan, Shyam; Nicolis, Stamatios C.; Spaiser, Viktoria; Sumpter, David J.T.
2015-01-01
Abstract Methods from machine learning and data science are becoming increasingly important in the social sciences, providing powerful new ways of identifying statistical relationships in large data sets. However, these relationships do not necessarily offer an understanding of the processes underlying the data. To address this problem, we have developed a method for fitting nonlinear dynamical systems models to data related to social change. Here, we use this method to investigate how countries become trapped at low levels of socioeconomic development. We identify two types of traps. The first is a democracy trap, where countries with low levels of economic growth and/or citizen education fail to develop democracy. The second trap is in terms of cultural values, where countries with low levels of democracy and/or life expectancy fail to develop emancipative values. We show that many key developing countries, including India and Egypt, lie near the border of these development traps, and we investigate the time taken for these nations to transition toward higher democracy and socioeconomic well-being. PMID:26487983
Kim, Sun-A; Lee, So-Yeong; Kimura, Junpei
2011-01-01
The purpose of this study was to evaluate the effect of alprazolam on the stress that Korean raccoon dogs (Nyctereutes procyonoides koreensis) may experience while caught in a live trap by measuring their serum cortisol response. The animals were placed in a live trap with or without being pretreated with oral doses of alprazolam. In both groups, pre-trap blood samples were initially collected without anesthesia before the animals were positioned in the live trap; then post-trap blood samples were collected after the animals had remained in the live trap for 2 h. Changes in cortisol levels were observed using a chemiluminescent immunoassay. The level of cortisol increased in the control group and decreased in the alprazolam-pretreatment group (p < 0.05). In this study, we demonstrated that alprazolam pretreatment reduced stress during live trap capture. PMID:21368571
Kim, Sun-A; Lee, So-Yeong; Kimura, Junpei; Shin, Nam-Shik
2011-03-01
The purpose of this study was to evaluate the effect of alprazolam on the stress that Korean raccoon dogs (Nyctereutes procyonoides koreensis) may experience while caught in a live trap by measuring their serum cortisol response. The animals were placed in a live trap with or without being pretreated with oral doses of alprazolam. In both groups, pre-trap blood samples were initially collected without anesthesia before the animals were positioned in the live trap; then post-trap blood samples were collected after the animals had remained in the live trap for 2 h. Changes in cortisol levels were observed using a chemiluminescent immunoassay. The level of cortisol increased in the control group and decreased in the alprazolam-pretreatment group (p < 0.05). In this study, we demonstrated that alprazolam pretreatment reduced stress during live trap capture.
Integration of quantum cascade lasers and passive waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish
2015-07-20
We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in themore » mid-infrared (λ ∼ 3–16 μm)« less
Variable N-type negative resistance in an injection-gated double-injection diode
NASA Technical Reports Server (NTRS)
Kapoor, A. K.; Henderson, H. T.
1981-01-01
Double-injection (DI) switching devices consist of p+ and n+ contacts (for hole and electron injection, respectively), separated by a near intrinsic semiconductor region containing deep traps. Under proper conditions, these devices exhibit S-type differential negative resistance (DNR) similar to silicon-controlled rectifiers. With the added influence of a p+ gate appropriately placed between the anode (p+) and cathode (n+), the current-voltage characteristic of the device has been manipulated for the first time to exhibit a variable N-type DNR. The anode current and the anode-to-cathode voltage levels at which this N-type DNR is observed can be varied by changing the gate-to-cathode bias. In essence, the classical S-type DI diode can be electronically transformed into an N-type diode. A first-order phenomenological model is proposed for the N-type DNR.
The initial rise method extended to multiple trapping levels in thermoluminescent materials.
Furetta, C; Guzmán, S; Ruiz, B; Cruz-Zaragoza, E
2011-02-01
The well known Initial Rise Method (IR) is commonly used to determine the activation energy when only one glow peak is presented and analysed in the phosphor materials. However, when the glow peak is more complex, a wide peak and some holders appear in the structure. The application of the Initial Rise Method is not valid because multiple trapping levels are considered and then the thermoluminescent analysis becomes difficult to perform. This paper shows the case of a complex glow curve structure as an example and shows that the calculation is also possible using the IR method. The aim of the paper is to extend the well known Initial Rise Method (IR) to the case of multiple trapping levels. The IR method is applied to minerals extracted from Nopal cactus and Oregano spices because the thermoluminescent glow curve's shape suggests a trap distribution instead of a single trapping level. Copyright © 2010 Elsevier Ltd. All rights reserved.
Navigating aerial transects with a laptop computer
Anthony, R. Michael; Stehn, R.A.
1994-01-01
SUMMARY: A comparison is made of different methods of determining size of home range from grid trapping data. Studies of artificial populations show that a boundary strip method of measuring area and an adjusted range length give sizes closer to the true range than do minimum area or observed range length methods. In simulated trapping of artificial populations, the known range size increases with successive captures until a level is reached that approximates the true range. The same general pattern is followed whether traps are visited at random or traps nearer the center of the range are favored; but when central traps are favored the curve levels more slowly. Range size is revealed with fewer captures when traps are far apart than when they are close together. The curve levels more slowly for oblong ranges than for circular ranges of the same area. Fewer captures are required to determine range length than to determine range area. Other examples of simulated trapping in artificial populations are used to provide measurements of distances from the center of activity and distances between successive captures. These are compared with similar measurements taken from Peromyscus trapping data. The similarity of range sizes found in certain field comparisons of area trapping, colored scat collections, and trailing is cited. A comparison of home range data obtained by area trapping and nest box studies is discussed. It is shown that when traps are set too far apart to include two or more in the range of each animal, calculation of average range size gives biased results. The smaller ranges are not expressed and cannot be included in the averages. The result is that range estimates are smaller at closer spacings and greater at wider spacings, purely as a result of these erroneous calculations and not reflecting any varying behavior of the animals. The problem of variation in apparent home range with variation in trap spacing is considered further by trapping in an artificial population. It is found that trap spacing can alter the apparent size of range even when biological factors are excluded and trap visiting is random. The desirability of excluding travels outside the normal range from home range calculations is discussed. Effects of varying the trapping plan by setting alternate rows of traps, or setting two traps per site, are discussed briefly.
A comparison of certain methods of measuring ranges of small mammals
Stickel, L.F.
1954-01-01
SUMMARY: A comparison is made of different methods of determining size of home range from grid trapping data. Studies of artificial populations show that a boundary strip method of measuring area and an adjusted range length give sizes closer to the true range than do minimum area or observed range length methods. In simulated trapping of artificial populations, the known range size increases with successive captures until a level is reached that approximates the true range. The same general pattern is followed whether traps are visited at random or traps nearer the center of the range are favored; but when central traps are favored the curve levels more slowly. Range size is revealed with fewer captures when traps are far apart than when they are close together. The curve levels more slowly for oblong ranges than for circular ranges of the same area. Fewer captures are required to determine range length than to determine range area. Other examples of simulated trapping in artificial populations are used to provide measurements of distances from the center of activity and distances between successive captures. These are compared with similar measurements taken from Peromyscus trapping data. The similarity of range sizes found in certain field comparisons of area trapping, colored scat collections, and trailing is cited. A comparison of home range data obtained by area trapping and nest box studies is discussed. It is shown that when traps are set too far apart to include two or more in the range of each animal, calculation of average range size gives biased results. The smaller ranges are not expressed and cannot be included in the averages. The result is that range estimates are smaller at closer spacings and greater at wider spacings, purely as a result of these erroneous calculations and not reflecting any varying behavior of the animals. The problem of variation in apparent home range with variation in trap spacing is considered further by trapping in an artificial population. It is found that trap spacing can alter the apparent size of range even when biological factors are excluded and trap visiting is random. The desirability of excluding travels outside the normal range from home range calculations is discussed. Effects of varying the trapping plan by setting alternate rows of traps, or setting two traps per site, are discussed briefly.
Jankus, Vygintas; Chiang, Chien-Jung; Dias, Fernando; Monkman, Andrew P
2013-03-13
Simple trilayer, deep blue, fluorescent exciplex organic light-emitting diodes (OLEDs) are reported. These OLEDs emit from an exciplex state formed between the highest occupied molecular orbital (HOMO) of N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) and lowest unoccupied molecular orbital (LUMO) of 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBi) and the NPB singlet manifold, yielding 2.7% external quantum efficiency at 450 nm. It is shown that the majority of the delayed emission in electroluminescence arises from P-type triplet fusion at NPB sites not E-type reverse intersystem crossing because of the presence of the NPB triplet state acting as a deep trap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rembauville, M.; Salter, I.; Leblond, N.; Gueneugues, A.; Blain, S.
2015-06-01
A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s-1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m-2 d-1), although two episodic export events (< 14 days) of 1.5 mmol m-2 d-1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m-2 yr-1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.
Li, Linqiu; Long, Run; Prezhdo, Oleg V
2018-06-13
Two-dimensional transition metal dichalcogenides (TMDs) have drawn strong attention due to their unique properties and diverse applications. However, TMD performance depends strongly on material quality and defect morphology. Experiments show that samples grown by chemical vapor deposition (CVD) outperform those obtained by physical vapor deposition (PVD). Experiments also show that CVD samples exhibit vacancy defects, while antisite defects are frequently observed in PVD samples. Our time-domain ab initio study demonstrates that both antisites and vacancies accelerate trapping and nonradiative recombination of charge carriers, but antisites are much more detrimental than vacancies. Antisites create deep traps for both electrons and holes, reducing energy gaps for recombination, while vacancies trap primarily holes. Antisites also perturb band-edge states, creating significant overlap with the trap states. In comparison, vacancy defects overlap much less with the band-edge states. Finally, antisites can create pairs of electron and hole traps close to the Fermi energy, allowing trapping by thermal activation from the ground state and strongly contributing to charge scattering. As a result, antisites accelerate charge recombination by more than a factor of 8, while vacancies enhance the recombination by less than a factor of 2. Our simulations demonstrate a general principle that missing atoms are significantly more benign than misplaced atoms, such as antisites and adatoms. The study rationalizes the existing experimental data, provides theoretical insights into the diverse behavior of different classes of defects, and generates guidelines for defect engineering to achieve high-performance electronic, optoelectronic, and solar-cell devices.
Origin of large dark current increase in InGaAs/InP avalanche photodiode
NASA Astrophysics Data System (ADS)
Wen, J.; Wang, W. J.; Chen, X. R.; Li, N.; Chen, X. S.; Lu, W.
2018-04-01
The large dark current increase near the breakdown voltage of an InGaAs/InP avalanche photodiode is observed and analyzed from the aspect of bulk defects in the device materials. The trap level information is extracted from the temperature-dependent electrical characteristics of the device and the low temperature photoluminescence spectrum of the materials. Simulation results with the extracted trap level taken into consideration show that the trap is in the InP multiplication layer and the trap assisted tunneling current induced by the trap is the main cause of the large dark current increase with the bias from the punch-through voltage to 95% breakdown voltage.
Circuit model for single-energy-level trap centers in FETs
NASA Astrophysics Data System (ADS)
Albahrani, Sayed Ali; Parker, Anthony; Heimlich, Michael
2016-12-01
A circuit implementation of a single-energy-level trap center in an FET is presented. When included in transistor models it explains the temperature-potential-dependent time constants seen in the circuit manifestations of charge trapping, being gate lag and drain overshoot. The implementation is suitable for both time-domain and harmonic-balance simulations. The proposed model is based on the Shockley-Read-Hall (SRH) statistics of the trapping process. The results of isothermal pulse measurements performed on a GaN HEMT are presented. These measurement allow characterizing charge trapping in isolation from the effect of self-heating. These results are used to obtain the parameters of the proposed model.
Many-body Study of Core-valence Partitioning and Correlation in Systems with Large-Z Element
NASA Astrophysics Data System (ADS)
Zehtabi-Oskuie, Ana
This thesis presents optical trapping of various single nanoparticles, and the method for integrating the optical trap system into a microfluidic channel to examine the trapping stiffness and to study binding at the single molecule level. Optical trapping is the capability to immobilize, move, and manipulate small objects in a gentle way. Conventional trapping methods are able to trap dielectric particles with size greater than 100 nm. Optical trapping using nanostructures has overcome this limitation so that it has been of interest to trap nanoparticles for bio-analytical studies. In particular, aperture optical trapping allows for trapping at low powers, and easy detection of the trapping events by noting abrupt jumps in the transmission intensity of the trapping beam through the aperture. Improved trapping efficiency has been achieved by changing the aperture shape from a circle; for example, to a rectangle, double nanohole (DNH), or coaxial aperture. The DNH has the advantage of a well-defined trapping region between the two cusps where the nanoholes overlap, which typically allows only single particle trapping due to steric hindrance. Trapping of 21 nm encapsulated quantum dot has been achieved which shows optical trapping can be used in technologies that seek to place a quantum dot at a specific location in a plasmonic or nanophotonic structure. The DNH has been used to trap and unfold a single protein. The high signal-to-noise ratio of 33 in monitoring single protein trapping and unfolding shows a tremendous potential for using the double nanohole as a sensor for protein binding events at a single molecule level. The DNH integrated in a microfluidic chip with flow to show that stable trapping can be achieved under reasonable flow rates of a few microL/min. With such stable trapping under flow, it is possible to envision co-trapping of proteins to study their interactions. Co-trapping is achieved for the case where we flow in a protein (bovine serum albumin -- BSA) and co-trap its antibody (anti-BSA).
Current Collapse Induced in AlGaN/GaN High-Electron-Mobility Transistors by Bias Stress
2003-08-25
structure where the traps causing current collapse can be passivated by forming H-defect complexes. Hierro et al.7 have shown, for example, that deep...Lett. 75, 4016 ~1999!. 7 A. Hierro , S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 77, 1499 ~2000!. 8 S. J
Reithmeier, Anja; Panizza, Elena; Krumpel, Michael; Orre, Lukas M; Branca, Rui M M; Lehtiö, Janne; Ek-Rylander, Barbro; Andersson, Göran
2017-09-15
Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFβ) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFβ isoform 2 (TGFβ2), TGFβ receptor type 1 (TβR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical inhibition demonstrated that TRAP-dependent migration and proliferation is regulated via TGFβ2/TβR, whereas proliferation beyond basal levels is regulated through CD44. Altogether, TRAP promotes metastasis-related cell properties in MDA-MB-231 breast cancer cells via TGFβ2/TβR and CD44, thereby identifying a potential signaling mechanism associated to TRAP action in breast cancer cells.
Interaction of rare earth elements and components of the Horonobe deep groundwater.
Kirishima, Akira; Kuno, Atsushi; Amamiya, Hiroshi; Kubota, Takumi; Kimuro, Shingo; Amano, Yuki; Miyakawa, Kazuya; Iwatsuki, Teruki; Mizuno, Takashi; Sasaki, Takayuki; Sato, Nobuaki
2017-02-01
To better understand the migration behavior of minor actinides in deep groundwater, the interactions between doped rare earth elements (REEs) and components of Horonobe deep groundwater were investigated. Approximately 10 ppb of the REEs, i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb were doped into a groundwater sample collected from a packed section in a borehole drilled at 140 m depth in the experiment drift of Horonobe Underground Research Laboratory in Hokkaido, Japan. The groundwater sample was sequentially filtered with a 0.2 μm pore filter, and 10 kDa, 3 kDa and 1 kDa nominal molecular weight limit (NMWL) ultrafilters with conditions kept inert. Next, the filtrate solutions were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to determine the concentrations of the REEs retained in solution at each filtration step, while the used filters were analyzed through neutron activation analysis (NAA) and TOF-SIMS element mapping to determine the amounts and chemical species of the trapped fractions of REEs on each filter. A strong relationship between the ratios of REEs retained in the filtrate solutions and the ionic radii of the associated REEs was observed; i.e. smaller REEs occur in larger proportions dissolved in the solution phase under the conditions of the Horonobe groundwater. The NAA and TOF-SIMS analyses revealed that portions of the REEs were trapped by the 0.2 μm pore filter as REE phosphates, which correspond to the species predicted to be predominant by chemical equilibrium calculations for the conditions of the Horonobe groundwater. Additionally, small portions of colloidal REEs were trapped by the 10 kDa and 3 kDa NMWL ultrafilters. These results suggest that phosphate anions play an important role in the chemical behavior of REEs in saline (seawater-based) groundwater, which may be useful for predicting the migration behavior of trivalent actinides released from radioactive waste repositories in the far future. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Polymeris, George S.; Şahiner, Eren; Meriç, Niyazi; Kitis, George
2015-04-01
The access to the OSL signals from very deep traps is achieved by an alternative experimental method which comprises combined action of thermal and optical stimulation, termed as thermally assisted OSL (TA-OSL). This experimental technique was suggested in order to not only measure the signal of the deep traps without heating the sample to temperatures greater than 500 °C, but also use the former for dosimetry purposes as well, due to exhibiting a number of interesting properties which could be effectively used towards dosimetry purposes, especially for large accumulated artificial doses. The present study provides for the first time in the literature with preliminary results towards the feasibility study of the naturally occurring TA-OSL signal in coarse grains of natural quartz towards its effective application to geological dating. The samples subjected to the present study were collected from fault lines in Kütahya-Simav, Western Anatolia Region, Turkey; independent luminescence approaches yielded an equivalent dose larger than 100 Gy. Several experimental luminescence features were studied, such as sensitivity, reproducibility, TA-OSL curve shape as well as the correlation between NTA-OSL and NTL/NOSL. Nevertheless, special emphasis was addressed towards optimizing the measuring conditions of the TA-OSL signal. The high intensity of the OSL signal confirms the existence of a transfer phenomenon from deep electron traps. The increase of the integrated TA-OSL signal as a function of temperature is monitored for temperatures up to 180 °C, indicating the later as the most effective stimulation temperature. At all temperatures of the studied temperature range between 75 and 260 °C, the shape of the signal resembles much the shape of a typical CW-OSL curve. However, a long-lived, residual NTA-OSL component was monitored after the primary, initial NTA-OSL measured at 180 °C; the intensity of this component increases with increasing stimulation temperature. The prevalence of these luminescent features was investigated, while the implications on dating applications of these features were also discussed.
Solórzano Kraemer, Mónica M.; Kraemer, Atahualpa S.; Stebner, Frauke; Bickel, Daniel J.; Rust, Jes
2015-01-01
All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measurements of the trapped arthropods, and guild distribution, that the amber trap is a complex entomological trap not comparable with a single artificial trap. At the order level, the most similar trap to amber is the sticky trap. However, in the case of Diptera, at the family level, the Malaise trap is also very similar to amber. Amber captured a higher diversity of arthropods than each of the artificial traps, based on our study of Mexican amber from the Middle Miocene, a time of climate optimum, where temperature and humidity were probably higher than in modern Central America. We conclude that the size bias is qualitatively independent of the kind of trap for non–extreme values. We suggest that frequent specimens in amber were not necessarily the most frequent arthropods in the former amber forest. Selected taxa with higher numbers of specimens appear in amber because of their ecology and behavior, usually closely related with a tree–inhabiting life. Finally, changes of diversity from the Middle Miocene to Recent time in Central and South America can be analyzed by comparing the rich amber faunas from Mexico and the Dominican Republic with the fauna trapped using sticky and Malaise traps in Central America. PMID:25785584
Nucleosomes and neutrophil activation in sickle cell disease painful crisis
Schimmel, Marein; Nur, Erfan; Biemond, Bart J.; van Mierlo, Gerard J.; Solati, Shabnam; Brandjes, Dees P.; Otten, Hans-Martin; Schnog, John-John; Zeerleder, Sacha
2013-01-01
Activated polymorphonuclear neutrophils play an important role in the pathogenesis of vaso-occlusive painful sickle cell crisis. Upon activation, polymorphonuclear neutrophils can form neutrophil extracellular traps. Neutrophil extracellular traps consist of a meshwork of extracellular DNA, nucleosomes, histones and neutrophil proteases. Neutrophil extracellular traps have been demonstrated to be toxic to endothelial and parenchymal cells. This prospective cohort study was conducted to determine neutrophil extracellular trap formation in sickle cell patients during steady state and painful crisis. As a measure of neutrophil extracellular traps, plasma nucleosomes levels were determined and polymorphonuclear neutrophil activation was assessed measuring plasma levels of elastase-α1-antitrypsin complexes in 74 patients in steady state, 70 patients during painful crisis, and 24 race-matched controls using Enzyme Linked Immunosorbent Assay. Nucleosome levels in steady state sickle cell patients were significantly higher than levels in controls. During painful crisis levels of both nucleosomes and elastase-α1-antitrypsin complexes increased significantly. Levels of nucleosomes correlated significantly to elastase-α1-antitrypsin complex levels during painful crisis, (Sr = 0.654, P<0.001). This was seen in both HbSS/HbSβ0-thalassemia (Sr=0.55, P<0.001) and HbSC/HbSβ+-thalassemia patients (Sr=0.90, P<0.001) during painful crisis. Levels of nucleosomes showed a correlation with length of hospital stay and were highest in patients with acute chest syndrome. These data support the concept that neutrophil extracellular trap formation and neutrophil activation may play a role in the pathogenesis of painful sickle cell crisis and acute chest syndrome. PMID:23911704
Dinoflagellate Cyst Contribution to Settling Organic Matter in the Coastal Ocean
NASA Astrophysics Data System (ADS)
Bringue, M.; Thunell, R.; Pospelova, V.; Tappa, E.; Johannessen, S.; Macdonald, R. W.
2016-12-01
The coastal ocean hosts much of the global primary production, with an estimated 40% of carbon sequestration occurring along continental margins alone. This study characterizes the variability in organic-walled dinoflagellate cyst fluxes and assemblage composition during sedimentation through the water column, in the context of bulk organic and inorganic particulate matter export, in three different coastal settings: the Cariaco Basin (off Venezuela), the Santa Barbara Basin (Southern California) and the Strait of Georgia (western Canada). At each site, moorings of 2-5 sediment traps positioned at different depths collected settling particles over intervals of 7-14 days. The contribution of dinoflagellate cysts to particulate matter fluxes, and their fate as they are being exported to the seafloor, is investigated by comparing cyst fluxes and assemblages in samples collected simultaneously from discrete depths at each location. Preliminary results from the 1,400 m deep Cariaco Basin sediment trap time series indicate that dinoflagellate cyst fluxes during the upwelling season are high (average of 117,000 cyst m-2 day-1 in January-February 2006) and highly consistent between depths. The only notable exception is the record from the shallowest trap (Trap Z, 150 m bsl) which shows marked variations in cyst fluxes (from 7,700 to 240,000 cyst m-2 day-1) that are not reflected in the other four trap records. Dinoflagellate cyst assemblages from each interval along the five traps are statistically identical, indicating that cysts produced in the upper water column are rapidly transported to the seafloor, and that no selective degradation/preservation has altered the cyst assemblages within the water column. Excluding the Trap Z record, the ratio of dinoflagellate cyst to organic carbon fluxes shows an 35% increase from the top to bottom traps, suggesting a dinoflagellate cyst "enrichment" relative to other organic particles in settling material.
Resonant tunneling through electronic trapping states in thin MgO magnetic junctions.
Teixeira, J M; Ventura, J; Araujo, J P; Sousa, J B; Wisniowski, P; Cardoso, S; Freitas, P P
2011-05-13
We report an inelastic electron tunneling spectroscopy study on MgO magnetic junctions with thin barriers (0.85-1.35 nm). Inelastic electron tunneling spectroscopy reveals resonant electronic trapping within the barrier for voltages V>0.15 V. These trapping features are associated with defects in the barrier crystalline structure, as confirmed by high-resolution transmission electron microscopy. Such defects are responsible for resonant tunneling due to energy levels that are formed in the barrier. A model was applied to determine the average location and energy level of the traps, indicating that they are mostly located in the middle of the MgO barrier, in accordance with the high-resolution transmission electron microscopy data and trap-assisted tunneling conductance theory. Evidence of the influence of trapping on the voltage dependence of tunnel magnetoresistance is shown.
Marniemi, J; Hakala, P; Mäki, J; Ahotupa, M
2000-12-01
The health-promoting effects of fruit- and vegetable-based diets are known to be associated with their antioxidative components. We found in our preliminary in vitro laboratory tests that extracts of many common Finnish edible berries are potent scavengers of peroxyl radicals and inhibitors of lipid peroxidation. We therefore designed the current study to evaluate both the long-term (8 weeks) and short-term (5 hours) effects of increased intake of three berries on antioxidant potential and lipid peroxidation. Healthy 60-year-old men were randomized to berry, supplement and control groups (20 men in each group). The berry group ate, in addition to their normal diet, a 100 g portion of deep-frozen berries (bilberries, lingonberries, or black currants) daily for 8 weeks. The other groups ingested daily 100 mg of alpha-tocopherol and 500 mg of ascorbic acid (supplement group) or 500 mg of calcium gluconate (control group). In the short-term experiment 6 men ate 80 g of each of the three berries in one go. Serum ascorbate concentrations increased significantly in both the berry and the supplement group. Serum alpha-tocopherol levels and the antioxidant potential (TRAP) in low density lipoprotein (LDL) increased in the supplement group only. In the berry group, slightly lowered LDL diene conjugation (p = 0.074) and slightly increased total serum TRAP (p = 0.084) values were observed. No changes were found in these measures in the supplement or the control group. In the short-term experiment, LDL TRAP showed a small increase (about 10%, p = 0.039) during five hours after the intake of 240 g berries. The effects of consumption of berries on antioxidant potential and diene conjugation in LDL particles in vivo appear to be small.
NASA Astrophysics Data System (ADS)
Underwood, David Frederick
Femtosecond fluorescence upconversion spectroscopy is a technique that allows the unambiguous determination of the excited state dynamics of an analyte. Combining this method with the use of tunable laser excitation, the exciton dynamics in semiconducting nanocrystals (NC's) of cadmium selenide (CdSe) have been determined, devoid of the complications arising from more common spectroscopic methods such as pump-probe. The results of this investigation were used to construct a model to fully describe the three-level system comprising of the valence and conduction bands and surface states, which have been calculated by others to lie mid-gap in energy. Smaller NC's showed faster decay components due to increased interaction between the exciton and surface states. The deep trap emission, which has never before been measured by ultrafast fluorescence techniques, shows a rapid rise time (˜2 ps), which is attributed to surface selenium dangling bonds relaxing to the valence band and radiatively combining with the photo-generated hole. The band edge fluorescence decays as the deep trap emission grows in, inherently coupling the two processes. An experiment which measured the dependence of the excitation energy showed that increased energy imparted to the NC's resulted in increased rise times, yielding the timescales for exciton relaxation through the valence and conduction band states to the lowest emitting state. Surface-oxidized and normally-passivated NC's display the same decay dynamics in time but differ in relative amplitude; the latter point agrees with steady-state measurements. The rotational anisotrophy of the NC's was measured and agrees with previous pump-probe data. Upconversion on the red and blue sides of the static fluorescence spectrum showed no discernable differences, which is either and inherent limitation of the experimental apparatus, or the possibility that lower-lying triplet states are populated on a timescale below the instrument resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatbouri, S., E-mail: Samir.chatbouri@yahoo.com; Troudi, M.; Sghaier, N.
2016-09-15
In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO{sub x} = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) wemore » show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.« less
NASA Astrophysics Data System (ADS)
Salama, E.; Soliman, H. A.
2018-07-01
In this paper, thermoluminescence glow curves of gamma irradiated magnesium borate glass doped with dysprosium were studied. The number of interfering peaks and in turn the number of electron trap levels are determined using the Repeated Initial Rise (RIR) method. At different heating rates (β), the glow curves were deconvoluted into two interfering peaks based on the results of RIR method. Kinetic parameters such as trap depth, kinetic order (b) and frequency factor (s) for each electron trap level is determined using the Peak Shape (PS) method. The obtained results indicated that, the magnesium borate glass doped with dysprosium has two electron trap levels with the average depth energies of 0.63 and 0.79 eV respectively. These two traps have second order kinetic and are formed at low temperature region. The obtained results due to the glow curve analysis could be used to explain some observed properties such as, high thermal fading and light sensitivity for such thermoluminescence material. In this work, systematic procedures to determine the kinetic parameters of any thermoluminescence material are successfully introduced.
The K1 internal tide simulated by a 1/10° OGCM
NASA Astrophysics Data System (ADS)
Li, Zhuhua; von Storch, Jin-Song; Müller, Malte
2017-05-01
This paper quantifies the K1 internal tide simulated by the 1/10° STORMTIDE model, which simultaneously resolves the eddying general circulation and tides. An evident feature of the K1 internal tide is the critical latitude φc at 30°, which in the STORMTIDE model is characterized by variations from a high energy level equatorward of 30° to a low energy level poleward of 30°. This critical latitude separates the internal tide dynamics into bottom-trapped (at latitudes |φ| > |φc|) and freely propagating (at |φ| < |φc|) motions, respectively. Both types of motions are examined. The bottom-trapping process reveals a gradual vertical decrease of wave energy away from the bottom. The vertical scale, over which the wave energy decrease occurs, is smaller in shallow than in deep water regions. For the freely propagating K1 internal tides, the STORMTIDE model is able to simulate the first three low modes, with the wavelengths ranging from 200-400 km, 100-200 km, to 60-120 km. These wavelength distributions reveal not only a zonal asymmetry but also a poleward increase up to φc, in particular in the Pacific. Such distributions indicate the impact of stratification N and the Coriolis frequency f on the wavelengths. The large wavelength gradient near φc is caused by the wavelength increase from finite values at subcritical latitudes to infinity at φc. Compared to the M2 internal tide, the lower K1 tidal frequency leads to a stronger role of f, hence a weaker effect of N, for the K1 internal tide.
Khafajeh, R; Molaei, M; Karimipour, M
2017-06-01
In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na 2 SeO 3 as the Se source by a rapid and room temperature photochemical (UV-assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR), and energy dispersive X-ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round-shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2 T 2 acceptor levels of Cu 2 + . The emission was increased by increasing the Cu 2 + ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%. Copyright © 2016 John Wiley & Sons, Ltd.
Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene.
Jaquith, Michael; Muller, Erik M; Marohn, John A
2007-07-12
Here we introduce time-resolved electric force microscopy measurements to directly and locally probe the kinetics of charge trap formation in a polycrystalline pentacene thin-film transistor. We find that the trapping rate depends strongly on the initial concentration of free holes and that trapped charge is highly localized. The observed dependence of trapping rate on the hole chemical potential suggests that the trapping process should not be viewed as a filling of midgap energy levels, but instead as a process in which the very creation of trapped states requires the presence of free holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jie, E-mail: jie.yang@yale.edu; Cui, Sharon; Ma, T. P.
2013-11-25
We investigate the energy levels of electron traps in AlGaN/GaN high electron mobility transistors by the use of electron tunneling spectroscopy. Detailed analysis of a typical spectrum, obtained in a wide gate bias range and with both bias polarities, suggests the existence of electron traps both in the bulk of AlGaN and at the AlGaN/GaN interface. The energy levels of the electron traps have been determined to lie within a 0.5 eV band below the conduction band minimum of AlGaN, and there is strong evidence suggesting that these traps contribute to Frenkel-Poole conduction through the AlGaN barrier.
Bulk and export production fluxes from sediment traps in the Gulf of Aqaba, north Red Sea
NASA Astrophysics Data System (ADS)
Torfstein, A.; Kienast, S.; Shaked, Y.
2016-12-01
Real time observations of the dynamics between dust input, primary production, and export production in deep oligotrophic waters are extremely rare. This is especially true in the context of the direct response and lag time between nutrient supply (e.g., dust), the oceanic biogeochemical response and the signal transfer from the water to sedimentary record. Here, we present the first direct measurments of bulk and export production fluxes in the deep oligotrophic Gulf of Aqaba (GOA), northern Red Sea, located between the hyper-arid Sahara and Arabia Deserts. This study is based on a coupled sediment trap array that provides daily- and monthly- resolution since January 2014. This coupled configuration allows for a unique collection of marine particulates, whereby the annual and seasonal patterns can be evaluated in the context of discrete (daily-timescale) events such as abrupt dust storms, floods and biological blooms. The marine organic C and N fluxes range annually between 0.02-0.25 and 0.001-0.1 g d-1 m-2, respectively. Both show a sharp decay with depth, corresponding to the "Martin curve" (Martin et al., 1987, Deep-Sea Research, 34, 267-285). Importantly, the daily-resolution sampling provides insights to the seasonal increase in export production during the winter and early spring. Rather than a smooth seasonal cycle, this increase is driven by only very few short events, lasting no more than a few days, during which export production increases by an order of magnitude above the baseline. Yet, the nature of these export production "spikes" is non-unique because they reflect different "trigger" events such as dust storms or water column mixing. Accordingly, we present a quantitative evaluation of the observations in the context of coeval dust flux records and the physical and chemical configuration of the GOA over the time of sampling period, and present and quantitative mass balance of particle fluxes in this deep yet land-locked marine setting.
Role of bond adaptability in the passivation of colloidal quantum dot solids.
Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H
2013-09-24
Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.
Oscillation Responses to an Extreme Weather Event from a Deep Moored Observing System
NASA Astrophysics Data System (ADS)
Wang, Z.; Dimarco, S. F.; Stoessel, M. M.; Zhang, X.; Ingle, S.
2011-12-01
In June 2007 tropical Cyclone Gonu passed directly over an ocean observing system consisting of four, deep autonomous mooring stations along the 3000 m isobath in the northern Arabian Sea. Gonu was the largest cyclone known to have occurred in the Arabian Sea or to strike the Arabian Peninsula. The mooring system was designed by Lighthouse R & D Enterprises, Inc. and installed in cooperation with the Oman Ministry of Agriculture and Fisheries Wealth. The instruments on the moorings continuously recorded water velocities, temperature, conductivity, pressure, dissolved oxygen and turbidity at multiple depths and at hourly intervals during the storm. Near-inertial oscillations at all moorings from thermocline to seafloor are coincident with the arrival of Gonu. Sub-inertial oscillations with periods of 2-10 days are recorded at the post-storm relaxation stage of Gonu, primarily in the thermocline. These oscillations consist of warm, saline water masses, likely originating from the Persian Gulf. Prominent 12.7-day sub-inertial waves, measured at a station ~300 km offshore, are bottom-intensified and have characteristics of baroclinic, topographically-trapped waves. Theoretical results from a topographically-trapped wave model are in a good agreement with the observed 12.7-day waves. The wavelength of the 12.7-day waves is about 590 km calculated from the dispersion relationship. Further analysis suggests that a resonant standing wave is responsible for trapping the 12.7-day wave energy inside the Sea of Oman basin. The observational results reported here are the first measurements of deepwater responses to a tropical cyclone in the Sea of Oman/Arabian Sea. Our study demonstrates the utility of sustained monitoring for studying the impact of extreme weather events on the ocean.
NASA Astrophysics Data System (ADS)
Benedetti, Marcello; Realpe-Gómez, John; Perdomo-Ortiz, Alejandro
2018-07-01
Machine learning has been presented as one of the key applications for near-term quantum technologies, given its high commercial value and wide range of applicability. In this work, we introduce the quantum-assisted Helmholtz machine:a hybrid quantum–classical framework with the potential of tackling high-dimensional real-world machine learning datasets on continuous variables. Instead of using quantum computers only to assist deep learning, as previous approaches have suggested, we use deep learning to extract a low-dimensional binary representation of data, suitable for processing on relatively small quantum computers. Then, the quantum hardware and deep learning architecture work together to train an unsupervised generative model. We demonstrate this concept using 1644 quantum bits of a D-Wave 2000Q quantum device to model a sub-sampled version of the MNIST handwritten digit dataset with 16 × 16 continuous valued pixels. Although we illustrate this concept on a quantum annealer, adaptations to other quantum platforms, such as ion-trap technologies or superconducting gate-model architectures, could be explored within this flexible framework.
Extreme Event impacts on Seafloor Ecosystems
NASA Astrophysics Data System (ADS)
Canals, Miquel; Sanchez-Vidal, Anna; Calafat, Antoni; Pedrosa-Pàmies, Rut; Lastras, Galderic
2013-04-01
The Mediterranean region is among those presenting the highest concentration of cyclogenesis during the northern hemisphere winter, thus is frequently subjected to sudden events of extreme weather. The highest frequency of storm winds occur in its northwestern basin, and is associated to NE and NW storms. The occurrence of such extreme climatic events represents an opportunity of high scientific value to investigate how natural processes at their peaks of activity transfer matter and energy, as well as how impact ecosystems. Due to the approximately NE-SW orientation of the western Mediterranean coast, windforced motion coming from eastern storms generate the most intense waves and with very long fetch in the continental shelf and the coast, causing beach erosion, overwash and inundation of low-lying areas, and damage to infrastructures and coastal resources. On December 26, 2008 a huge storm afforded us the opportunity to understand the effect of storms on the deep sea ecosystems, as impacted violently an area of the Catalan coast covered by a dense network of monitoring devices including sediment traps and currentmeters. The storm, with measured wind gusts of more than 70 km h-1 and associated storm surge reaching 8 m, lead to the remobilisation of a shallow water large reservoir of marine organic carbon associated to fine particles and to its redistribution across the deep basin, and also ignited the motion of large amounts of coarse shelf sediment resulting in the abrasion and burial of benthic communities. In addition to eastern storms, increasing evidence has accumulated during the last few years showing the significance of Dense Shelf Water Cascading (DSWC), a type of marine current driven exclusively by seawater density contrast caused by strong and persistent NW winds, as a key driver of the deep Mediterranean Sea in many aspects. A network of mooring lines with sediment traps and currentmeters deployed in the Cap de Creus canyon in winter 2005-06 recorded a major DSWC event, the latest to date. Data show that DSWC modifies the properties of intermediate and deep waters, carries massive amounts of organic carbon to the basin thus fuelling the deep ecosystem, transports huge quantities of coarse and fine sedimentary particles that abrade canyon floors and rise the load of suspended particles, and also exports pollutants from the coastal area to deeper compartment. Our findings demonstrate that both types of climate-driven extreme events (coastal storms and DSWC) are highly efficient in transporting organic carbon from shallow to deep, thus contributing to its sequestration, and have the potential to tremendously impact the deep-sea ecosystems.
Arend, Thomas R; Wimmer, Andreas; Schweicher, Guillaume; Chattopadhyay, Basab; Geerts, Yves H; Kersting, Roland
2017-11-02
Terahertz electromodulation spectroscopy provides insight into the material-inherent transport properties of charge carriers in organic semiconductors. Experiments on didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C 12 -BTBT-C 12 ) devices yield for holes an intraband mobility of 9 cm 2 V -1 s -1 . The short duration of the THz pulses advances the understanding of the hole transport on the molecular scale. The efficient screening of Coulomb potentials leads to a collective response of the hole gas to external fields, which can be well described by the Drude model. Bias stress of the devices generates deep traps that capture mobile holes. Although the resulting polarization across the device hinders the injection of mobile holes, the hole mobilities are not affected.
How far does the CO2 travel beyond a leaky point?
NASA Astrophysics Data System (ADS)
Kong, X.; Delshad, M.; Wheeler, M.
2012-12-01
Xianhui Kong, Mojdeh Delshad, Mary F. Wheeler The University of Texas at Austin Numerous research studies have been carried out to investigate the long term feasibility of safe storage of large volumes of CO2 in subsurface saline aquifers. The injected CO2 will undergo complex petrophysical and geochemical processes. During these processes, part of CO2 will be trapped while some will remain as a mobile phase, causing a leakage risk. The comprehensive and accurate characterizations of the trapping and leakage mechanisms are critical for accessing the safety of sequestration, and are challenges in this research area. We have studied different leakage scenarios using realistic aquifer properties including heterogeneity and put forward a comprehensive trapping model for CO2 in deep saline aquifer. The reservoir models include several geological layers and caprocks up to the near surface. Leakage scenarios, such as fracture, high permeability pathways, abandoned wells, are studied. In order to accurately model the fractures, very fine grids are needed near the fracture. Considering that the aquifer usually has a large volume and reservoir model needs large number of grid blocks, simulation would be computational expensive. To deal with this challenge, we carried out the simulations using our in-house parallel reservoir simulator. Our study shows the significance of capillary pressure and permeability-porosity variations on CO2 trapping and leakage. The improved understanding on trapping and leakage will provide confidence in future implementation of sequestration projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagodova, T.Ya.
2005-06-15
Specific features of the coherent population trapping effect are considered in the generalized {lambda} system whose lower levels are the magnetic sublevels of the fine structure levels of the thallium atom. Numerical experiments were performed aimed at examination of the coherent population trapping for the case of nontrivial, but feasible, initial populations of the upper metastable fine structure level. Such populations may be obtained, for example, due to the photodissociation of TlBr molecules. The possibility of reducing the number of resonances of the coherent population trapping in a multilevel system, which may be useful for high-resolution spectroscopy, is demonstrated. Itmore » is shown that the magnitude and shape of the resonances can be controlled by varying the orientation of the polarization vectors of the light field components with respect to each other and to a magnetic field. In addition, studying the shape of the coherent population trapping resonances for the atoms obtained by photodissociation of molecules may provide information about these molecules.« less
Aycock, Kenneth I; Campbell, Robert L; Manning, Keefe B; Craven, Brent A
2017-06-01
Inferior vena cava (IVC) filters are medical devices designed to provide a mechanical barrier to the passage of emboli from the deep veins of the legs to the heart and lungs. Despite decades of development and clinical use, IVC filters still fail to prevent the passage of all hazardous emboli. The objective of this study is to (1) develop a resolved two-way computational model of embolus transport, (2) provide verification and validation evidence for the model, and (3) demonstrate the ability of the model to predict the embolus-trapping efficiency of an IVC filter. Our model couples computational fluid dynamics simulations of blood flow to six-degree-of-freedom simulations of embolus transport and resolves the interactions between rigid, spherical emboli and the blood flow using an immersed boundary method. Following model development and numerical verification and validation of the computational approach against benchmark data from the literature, embolus transport simulations are performed in an idealized IVC geometry. Centered and tilted filter orientations are considered using a nonlinear finite element-based virtual filter placement procedure. A total of 2048 coupled CFD/6-DOF simulations are performed to predict the embolus-trapping statistics of the filter. The simulations predict that the embolus-trapping efficiency of the IVC filter increases with increasing embolus diameter and increasing embolus-to-blood density ratio. Tilted filter placement is found to decrease the embolus-trapping efficiency compared with centered filter placement. Multiple embolus-trapping locations are predicted for the IVC filter, and the trapping locations are predicted to shift upstream and toward the vessel wall with increasing embolus diameter. Simulations of the injection of successive emboli into the IVC are also performed and reveal that the embolus-trapping efficiency decreases with increasing thrombus load in the IVC filter. In future work, the computational tool could be used to investigate IVC filter design improvements, the effect of patient anatomy on embolus transport and IVC filter embolus-trapping efficiency, and, with further development and validation, optimal filter selection and placement on a patient-specific basis.
Craig, Jaquelyn M.; Mifsud, David A.; Briggs, Andrew S.; Boase, James C.; Kennedy, Gregory W.
2015-01-01
Mudpuppy (Necturus maculosus maculosus) populations have been declining in the Great Lakes region of North America. However, during fisheries assessments in the Detroit River, we documented Mudpuppy reproduction when we collected all life stages from egg through adult as by-catch in fisheries assessments. Ten years of fisheries sampling resulted in two occurrences of Mudpuppy egg collection and 411 Mudpuppies ranging in size from 37–392 mm Total Length, collected from water 3.5–15.1 m deep. Different types of fisheries gear collected specific life stages; spawning females used cement structures for egg deposition, larval Mudpuppies found refuge in eggmats, and we caught adults with baited setlines and minnow traps. Based on logistic regression models for setlines and minnow traps, there was a higher probability of catching adult Mudpuppies at lower temperatures and in shallower water with reduced clarity. In addition to documenting the presence of all life stages of this sensitive species in a deep and fast-flowing connecting channel, we were also able to show that standard fisheries research equipment can be used for Mudpuppy research in areas not typically sampled in herpetological studies. Our observations show that typical fisheries assessments and gear can play an important role in data collection for Mudpuppy population and spawning assessments.
Progress Report on the Improved Linear Ion Trap Physics Package
NASA Technical Reports Server (NTRS)
Prestage, John D.
1995-01-01
This article describes the first operational results from the extended linear ion trap frequency standard now being developed at JPL. This new design separates the state selection/interrogation region from the more critical microwave resonance region where the multiplied local oscillator (LO) signal is compared to the stable atomic transition. Hg+ ions have been trapped, shuttled back and forth between the resonance and state selection traps. In addition, microwave transitions between the Hg+ clock levels have been driven in the resonance trap and detected in the state selection trap.
The thermal balance of the lower atmosphere of Venus
NASA Technical Reports Server (NTRS)
Tomasko, M. G.
1981-01-01
The temperature near the surface of Venus (now established at 730 K) is remarkably high in view of Venus's cloud cover which causes the planet to absorb even less sunlight than does Earth. Early attempts to understand the thermal balance that leads to this unusual state were hindered by the lack of basic information regarding the composition, temperature-pressure structure, cloud properties, and wind field of the lower atmosphere. A series of successful space missions have measured many of the above quantities that control the transfer of heat in Venus's lower atmosphere. The relevant observational data are summarized and the attempts to understand the thermal balance of Venus's atmosphere below the cloud tops are reviewed. The data indicate that sufficient sunlight penetrates to deep atmospheric levels and is trapped by the large thermal opacity of the atmosphere to essentially account for the high temperatures observed.
Characteristics of low energy ions in the Heavy Ions In Space (HIIS) experiment
NASA Technical Reports Server (NTRS)
Kleis, Thomas; Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.
1995-01-01
We present preliminary data on heavy ions (Z greater than or equal to 10) detected in the topmost Lexan sheets of the track detector stacks of the Heavy Ions in space (HIIS) experiment (M0001) on LDEF. The energy interval covered by these observations varies with the element, with (for example) Ne observable at 18-100 MeV nuc and Fe at 45-200 MeV/nuc. All of the observed ions are at energies far below the geomagnetic cutoff for fully-ionized particles at the LDEF orbit. Above 50 MeV/nuc (where most of our observed particles are Fe), the ions arrive primarily from the direction of lowest geomagnetic cutoff. This suggests that these particles originate outside the magnetosphere from a source with a steeply-falling spectrum and may therefore be associated with solar energetic particle (SEP) events. Below 50 MeV/nuc, the distribution of arrival directions suggests that most of the observed heavy ions are trapped in the Earth's magnetic field. Preliminary analysis, however, shows that these trapped heavy ions have a very surprising composition: they include not only Ne and Ar, which are expected from the trapping of anomalous cosmic rays (ACR's), but also Mg and Si, which are not part of the anomalous component. Our preliminary analysis shows that trapped heavy ions at 12 less than or equal to Zeta less than or equal to 14 have a steeply-falling spectrum, similar to that reported by the Kiel experiment (exp 1,2,3) on LDEF (M0002) for trapped Ar and Fe at E less than 50 MeV/nuc. The trapped Mg, Si, and Fe may also be associated with SEP events, but the mechanism by which they have appeared to deep in the inner magnetosphere requires further theoretical investigation.
An accurate behavioral model for single-photon avalanche diode statistical performance simulation
NASA Astrophysics Data System (ADS)
Xu, Yue; Zhao, Tingchen; Li, Ding
2018-01-01
An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.
Mathies, T; Felix, T A; Lance, V A
2001-10-01
The effects of capture in a live trap and subsequent handling stress on plasma concentrations of corticosterone and other sex steroids were examined in wild male and female brown treesnakes (Boiga irregularis), an introduced species on Guam that has been implicated in the extirpation or decline of many of that island's vertebrate species. Males and females that spent 1 night in a trap had plasma levels of corticosterone about four and two times higher, respectively, than those of the respective free-ranging controls. Mean plasma levels of corticosterone of snakes that had spent 3 nights in a trap were intermediate between, but not significantly different from, those of snakes that had spent 1 night in a trap and free-ranging snakes, suggesting that some acclimation to capture occurred during this period. Snakes that were taken from traps and held in collecting bags for 10 min and 2 h prior to blood sampling had levels of corticosterone about two and three times higher, respectively, than those of control snakes that were taken from traps and bled immediately. Concentrations of plasma corticosterone in free-ranging females were about two times higher than those of males but were well within the range of basal levels observed in other reptiles. Few snakes of potential reproductive size were reproductive (males: 1 of 35; females: 2 of 33), and plasma concentrations of testosterone and progesterone in nonreproductive males and females, respectively, were accordingly low. The possible relationship between corticosterone and these sex steroids, therefore, could not be adequately assessed, although there was a positive relationship between plasma progesterone and corticosterone in the nonreproductive females. Nonetheless, as a prerequisite for studies on the seasonal hormonal cycles of this species on Guam, our observations raise the possibility that the stress caused by trapping could affect the levels of other sex steroids and that, therefore, such studies should use free-ranging individuals. Copyright 2001 Academic Press.
Hwang, Jae Youn; Kim, Jihun; Park, Jin Man; Lee, Changyang; Jung, Hayong; Lee, Jungwoo; Shung, K. Kirk
2016-01-01
We demonstrate a noncontact single-beam acoustic trapping method for the quantification of the mechanical properties of a single suspended cell with label-free. Experimentally results show that the single-beam acoustic trapping force results in morphological deformation of a trapped cell. While a cancer cell was trapped in an acoustic beam focus, the morphological changes of the immobilized cell were monitored using bright-field imaging. The cell deformability was then compared with that of a trapped polystyrene microbead as a function of the applied acoustic pressure for a better understanding of the relationship between the pressure and degree of cell deformation. Cell deformation was found to become more pronounced as higher pressure levels were applied. Furthermore, to determine if this acoustic trapping method can be exploited in quantifying the cell mechanics in a suspension and in a non-contact manner, the deformability levels of breast cancer cells with different degrees of invasiveness due to acoustic trapping were compared. It was found that highly-invasive breast cancer cells exhibited greater deformability than weakly-invasive breast cancer cells. These results clearly demonstrate that the single-beam acoustic trapping technique is a promising tool for non-contact quantitative assessments of the mechanical properties of single cells in suspensions with label-free. PMID:27273365
Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang
2007-12-01
Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.
Identification of microscopic hole-trapping mechanisms in nitride semiconductors
John L. Lyons; Krishnaswamy, Karthik; Luke Gordon; ...
2015-12-17
Hole trapping has been observed in nitride heterostructure devices, where the Fermi level is in the vicinity of the valence-band maximum. Using hybrid density functional calculations, we examine microscopic mechanisms for hole trapping in GaN and AlN. In a defect-free material, hole trapping does not spontaneously occur, but trapping can occur in the vicinity of impurities, such as C-a common unintentional impurity in nitrides. As a result, using Schrodinger-Poisson simulations, we assess the effects of C-derived hole traps on N-face high-electron mobility transistors, which we find to be more detrimental than the previously proposed interface traps.
NASA Technical Reports Server (NTRS)
Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute
2000-01-01
In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.
Direct Experiments on the Ocean Disposal of Fossil Fuel CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barry, James, P.
2010-05-26
Funding from DoE grant # FG0204-ER63721, Direct Experiments on the Ocean Disposal of Fossil Fuel CO2, supposed several postdoctoral fellows and research activities at MBARI related to ocean CO2 disposal and the biological consequences of high ocean CO2 levels on marine organisms. Postdocs supported on the project included Brad Seibel, now an associate professor at the University of Rhode Island, Jeff Drazen, now an associate professor at the University of Hawaii, and Eric Pane, who continues as a research associate at MBARI. Thus, the project contributed significantly to the professional development of young scientists. In addition, we made significant progressmore » in several research areas. We continued several deep-sea CO2 release experiments using support from DoE and MBARI, along with several collaborators. These CO2 release studies had the goal of broadening our understanding of the effects of high ocean CO2 levels on deep sea animals in the vicinity of potential release sites for direct deep-ocean carbon dioxide sequestration. Using MBARI ships and ROVs, we performed these experiments at depths of 3000 to 3600 m, where liquid CO2 is heavier than seawater. CO2 was released into small pools (sections of PVC pipe) on the seabed, where it dissolved and drifted downstream, bathing any caged animals and sediments in a CO2-rich, low-pH plume. We assessed the survival of organisms nearby. Several publications arose from these studies (Barry et al. 2004, 2005; Carman et al. 2004; Thistle et al. 2005, 2006, 2007; Fleeger et al. 2006, 2010; Barry and Drazen 2007; Bernhard et al. 2009; Sedlacek et al. 2009; Ricketts et al. in press; Barry et al, in revision) concerning the sensitivity of animals to low pH waters. Using funds from DoE and MBARI, we designed and fabricated a hyperbaric trap-respirometer to study metabolic rates of deep-sea fishes under high CO2 conditions (Drazen et al, 2005), as well as a gas-control aquarium system to support laboratory studies of the effects of high CO2 waters on marine animals (Barry et al. 2008). This system is capable of controlling oxygen, pH, and temperature of seawater for use in studies of the physiological responses of animals under acidified conditions. We have investigated the tolerance of deep- and shallow-living crabs to high CO2 levels (Pane and Barry 2007; Pane et al. 2008), and are now working on brachiopods (Barry et al. in prep.) and a comparison of deep and shallow living sea urchins. This research program, supported in part by DoE has contributed to a number of other publications authored or co-authored by Barry (Caldeira et al. 2005; Brewer and Barry 2008; Barry et al. 2006, 2010a,b,c; National Research Council, in press; Hoffman et al. in press) as well as over 40 invited talks since 2004, including Congressional briefings and testimony at U.S. Senate Hearings on Ocean Acidification. Through the grant period, the research emphasis shifted from studies of the effects of direct deep-sea carbon dioxide sequestration on deep-sea animals, to a broader conceptual framework of the effects of ocean acidification (whether purposeful or passive) on the physiology and survival of deep and shallow living marine animals. We feel that this has been a very productive program and are grateful to DoE for its support.« less
Development of GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy
Schulte, Kevin L.; Simon, John; Mangum, John; ...
2017-04-30
We demonstrate the growth of homojunction GaInP solar cells by dynamic hydride vapor phase epitaxy for the first time. Simple unpassivated n-on-p structures grown in an inverted configuration with gold back reflectors were analyzed. Short wavelength performance varied strongly with emitter thickness, since collection in the emitter was limited by the lack of surface passivation. Collection in the base increased strongly with decreasing doping density, in the range 1 x 10 16 - 5 x 10 17 cm -3. Optical modeling indicated that, in our best device, doped ~1 x 10 16 cm -3, almost 94% of photons that passedmore » through the emitter were collected. Modeling also indicated that the majority of collection occurs in the depletion region with this design, suggesting that nonradiative recombination there might limit device performance. In agreement with this observation, the experimental dark J-V curve exhibited an ideality factor near n = 2. Thus, limitation of deep level carrier traps in the material is a path to improved performance. Preliminary experiments indicate that a reduced V/III ratio, which potentially affects the density of these presumed traps, improves cell performance. With reduced V/III ratio, we demonstrate a ~13% efficient GaInP cell measured under the 1-sun AM1.5G spectrum. In conclusion, this cell had an antireflective coating, but no front surface passivation.« less
Donor and double-donor transitions of the carbon vacancy related EH{sub 6∕7} deep level in 4H-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, I. D., E-mail: ianbo@ifm.liu.se; Janzén, E., E-mail: erija@ifm.liu.se; Son, N. T.
Using medium- and high-resolution multi-spectra fitting of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), optical O-DLTS and optical-electrical (OE)-MCTS measurements, we show that the EH{sub 6∕7} deep level in 4H-SiC is composed of two strongly overlapping, two electron emission processes with thermal activation energies of 1.49 eV and 1.58 eV for EH{sub 6} and 1.48 eV and 1.66 eV for EH{sub 7}. The electron emission peaks of EH{sub 7} completely overlap while the emission peaks of EH{sub 6} occur offset at slightly different temperatures in the spectra. OE-MCTS measurements of the hole capture cross section σ{sub p0}(T) in p-type samples revealmore » a trap-Auger process, whereby hole capture into the defect occupied by two electrons leads to a recombination event and the ejection of the second electron into the conduction band. Values of the hole and electron capture cross sections σ{sub n}(T) and σ{sub p}(T) differ strongly due to the donor like nature of the deep levels and while all σ{sub n}(T) have a negative temperature dependence, the σ{sub p}(T) appear to be temperature independent. Average values at the DLTS measurement temperature (∼600 K) are σ{sub n2+}(T) ≈ 1 × 10{sup −14} cm{sup 2}, σ{sub n+}(T) ≈ 1 × 10{sup −14} cm{sup 2}, and σ{sub p0}(T) ≈ 9 × 10{sup −18} cm{sup 2} for EH{sub 6} and σ{sub n2+}(T) ≈ 2 × 10{sup −14} cm{sup 2}, σ{sub n+}(T) ≈ 2 × 10{sup −14} cm{sup 2}, σ{sub p0}(T) ≈ 1 × 10{sup −20} cm{sup 2} for EH{sub 7}. Since EH{sub 7} has already been identified as a donor transition of the carbon vacancy, we propose that the EH{sub 6∕7} center in total represents the overlapping first and second donor transitions of the carbon vacancy defects on both inequivalent lattice sites.« less
Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors
NASA Astrophysics Data System (ADS)
Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard
2018-05-01
Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .
NASA Astrophysics Data System (ADS)
Fischer, Gerhard; Karstensen, Johannes; Romero, Oscar; Baumann, Karl-Heinz; Donner, Barbara; Hefter, Jens; Mollenhauer, Gesine; Iversen, Morten; Fiedler, Björn; Monteiro, Ivanice; Körtzinger, Arne
2016-06-01
Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 µmol kg-1 at 40 m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mg m-2 d-1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ˜ 15 and 13.3 mg m-2 d-1, respectively, were observed in February-March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The δ15N record showed a decrease from 5.21 to 3.11 ‰ from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from ˜ 52 to 21.4 mg m-2 d-1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusing.
Phonon-assisted changes in charge states of deep level defects in germanium
NASA Astrophysics Data System (ADS)
Markevich, A. V.; Litvinov, V. V.; Emtsev, V. V.; Markevich, V. P.; Peaker, A. R.
2006-04-01
Electronic processes associated with changes in the charge states of the vacancy-oxygen center (VO or A center) and vacancy-group-V-impurity atom (P, As, Sb or Bi) pairs (E centers) in irradiated germanium crystals have been studied using deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS and Hall effect measurements. It is found that the electron emission and capture processes related to transitions between the doubly and the singly negatively charged states of the A center and the E centers in Ge are phonon-assisted, i.e., they are accompanied by significant vibrations and re-arrangements of atoms in the vicinity of the defects. Manifestations of the phonon involvements are: (i) temperature-dependent electron capture cross-sections which are well described in the frame of the multi-phonon-assisted capture model; (ii) large changes in entropy related to the ionization of the defects and, associated with these, temperature-dependent positions of energy levels; and (iii) electron emission via phonon-assisted tunneling upon the application of electric field. These effects have been considered in detail for the vacancy-oxygen and the vacancy-donor complexes. On the basis of a combined analysis of the electronic processes a configuration-coordinate diagram of the acceptor states of the A and E centers is plotted. It is found that changes in the entropy of ionization and the energy for electron emission for these traps follow the empirical Meyer-Neldel rule. A model based on multi-phonon-assisted carrier emission from defects is adapted for the explanation of the origin of this rule for the case of electronic processes in Ge.
Neuman, Keir C.; Block, Steven M.
2006-01-01
Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Buhao; Xu, Xuhui; Li, Qianyue
Properties of long persistent luminescence (LPL) and optically stimulated luminescence (OSL) of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} (R=Nd, Dy, Tm) materials were investigated. The observed phenomenon indicates that R{sup 3+} ions (R=Nd, Dy, Tm) have different effects on trap properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}. The greatly improved LPL performance was observed in Nd{sup 3+} co-doped samples, which indicates that the incorporation of Nd{sup 3+} creates suitable traps for LPL. While co-doping Tm{sup 3+} ions, the intensity of high temperature of thermoluminescence band in CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphors is enhanced for the formation of the most suitable trapsmore » which benefits the intense and stable OSL. These results suggest that the effective traps contributed to the LPL/OSL are complex, of which could be an aggregation formation with shallow and deep traps other than simple traps from co-doped R{sup 3+} ions. The mechanism presented in the end potentially provides explanations of why the OSL of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} exhibits different read-in/read-out performance as well. - Graphical abstract: OSL emission spectra of Ca{sub 0.995}Al{sub 2}O{sub 4}:0.0025Eu{sup 2+}, 0.0025R{sup 3+} (R=Nd, Dy, Tm) taken under varying stimulation time (0, 25, 50, 75, 100 s). Inset: Blue emission pictures under varying stimulation time. - Highlights: • The LPL and OSL properties of CaAl{sub 2}O{sub 4}:Eu{sup 2+}, R{sup 3+} were investigated. • An alternative approach to control the trap depth of CaAl{sub 2}O{sub 4}:Eu{sup 2+} phosphor was proposed. • A new oxide ETM phosphor exhibiting intense and stable OSL was explored.« less
Electronic circuit provides automatic level control for liquid nitrogen traps
NASA Technical Reports Server (NTRS)
Turvy, R. R.
1968-01-01
Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.
NASA Astrophysics Data System (ADS)
Hwang, J.; Manganini, S. J.; Montlucon, D. B.; Eglinton, T. I.
2012-12-01
Sinking particles have been collected on the Northwest Atlantic margin since summer 2004 to understand the dynamics of particle export and the role of the Deep Western Boundary Current in resuspension of particles from sediment and their horizontal transport. Three traps were deployed at roughly 1000m, 2000m, and 3000m (50 m above the bottom) on a mooring at 3000m isobath. The results from the 2004-2005 deployment have been published previously (Hwang et al., 2009). We report the results from summer 2004 to summer 2007 in this presentation. Lithogenic component accounted for an increasing fraction with increasing depth from 27% at 1000m to 42% at 3000m. Radiocarbon contents as Δ14C values of sinking particulate organic matter were significantly depleted from the value of particulate organic matter in the surface water. The 3-year average value decreased with increasing depth from +13 per mil at 1000m to -20 per mil at 3000m. As previously observed for the first year samples, radiocarbon content showed a strong negative correlation with aluminum concentration. Because there is no considerable riverine input the high concentrations of lithogenic component and depleted Δ14C values imply the influence of laterally transported particles resuspended from sediment. Fluxes of biogenic and lithogenic components and their temporal variation will be discussed in relation with production in the surface water, lateral supply of resuspended sediment, and the variability of the Deep Western Boundary Current. Hwang, J., et al. (2009), Dynamics of particle export on the Northwest Atlantic margin, Deep-Sea Res. I, 56, 1792-1803.
A Computer Model of Insect Traps in a Landscape
NASA Astrophysics Data System (ADS)
Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.
2014-11-01
Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Li, J.
2011-01-01
Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from {approx}85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodoluminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Li, J.
2011-07-01
Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from ~85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodo-luminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less
Wang, Long; Wu, Yishi; Chen, Jianwei; Wang, Lanfen; Liu, Yanping; Yu, Zhenyi; Yao, Jiannian; Fu, Hongbing
2017-11-16
A new class of donor-acceptor heterodimers based on two singlet fission (SF)-active chromophores, i.e., pentacene (Pc) and perylenediimide (PDI), was developed to investigate the role of charge transfer (CT) state on the excitonic dynamics. The CT state is efficiently generated upon photoexcitation. However, the resulting CT state decays to different energy states depending on the energy levels of the CT state. It undergoes extremely rapid deactivation to the ground state in polar CH 2 Cl 2 , whereas it undergoes transformation to a Pc triplet in nonpolar toluene. The efficient triplet generation in toluene is not due to SF but CT-mediated intersystem crossing. In light of the energy landscape, it is suggested that the deep energy level of the CT state relative to that of the triplet pair state makes the CT state actually serve as a trap state that cannot undergoes an intramolecular singlet fission process. These results provide guidance for the design of SF materials and highlight the requisite for more widely applicable design principles.
Du, Mao-Hua
2015-04-02
We know that native point defects play an important role in carrier transport properties of CH3NH3PbI3. However, the nature of many important defects remains controversial due partly to the conflicting results reported by recent density functional theory (DFT) calculations. In this Letter, we show that self-interaction error and the neglect of spin–orbit coupling (SOC) in many previous DFT calculations resulted in incorrect positions of valence and conduction band edges, although their difference, which is the band gap, is in good agreement with the experimental value. Moreover, this problem has led to incorrect predictions of defect-level positions. Hybrid density functional calculations,more » which partially correct the self-interaction error and include the SOC, show that, among native point defects (including vacancies, interstitials, and antisites), only the iodine vacancy and its complexes induce deep electron and hole trapping levels inside of the band gap, acting as nonradiative recombination centers.« less
Evolution of a dark soliton in a parabolic potential: Application to Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brazhnyi, V.A.; Konotop, V.V.
2003-10-01
Evolution of a dark soliton in a one-dimensional Bose-Einstein condensate trapped by a harmonic potential is studied analytically and numerically. In the case of a deep soliton, main characteristics of its motion such as frequency and amplitude of oscillations are calculated by means of the perturbation theory which in the leading order results in a Newtonian dynamics, corrections to which are computed as well.
Three Dimensional Imaging of Cold Atoms in a Magneto Optical Trap with a Light Field Microscope
2017-09-14
dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration the low magnification (1.25...axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100µm accuracy in a 3mm deep volume , with a 16µm in-focus...79 vi Page 4.5 Phase Term Effects on the 3D Volume
Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?
NASA Astrophysics Data System (ADS)
Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard
2016-04-01
The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping followed by subsequent interglacial carbon burn-down and CO2 release. Abyssal Northwest Pacific sediments may have served as glacial carbon reservoir in particular since the onset of systematic 100 kyr ice age cycles at the end of the Mid-Pleistocene transition (MPT). Stagnant glacial Antarctic Bottom Water, which expanded primarily into abyssal South Atlantic basins during the MPT interim phase, thereafter seemed to flow preferentially into the deeper and larger abyssal Indo-Pacific basins, where it may have enabled more efficient carbon-trapping. More intensive scavenging of the Northwest Pacific surface ocean by enhanced glacial Asian dust flux is suggested by parallel TOC and quartz contents, enhancing glacial carbon accumulation despite potentially lower export production. The magnetic records also identify numerous partly consistent tephra layers, which can be matched between most records of the core transect.
Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher
Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less
Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates
Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher; ...
2015-12-07
Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanhong; Gao, Ping; Li, La
Pure Si{sub x}C{sub 1−x} (x > 0.5) and B-containing Si{sub x}C{sub 1−x} (x > 0.5) based resistive switching devices (RSD) with the structure of Ag/Si{sub x}C{sub 1−x}/p-Si were fabricated and their switching characteristics and mechanism were investigated systematically. Percolation mechanism through trapping/ de-trapping at defect states was suggested for the switching process. Through the introduction of B atoms into Si{sub x}C{sub 1−x}, the density of defect states was reduced, then, the SET and RESET voltages were also decreased. Based on the percolation theory, the dependence of SET/RESET voltage on the density of defect states was analyzed. These results supply a deep understanding for themore » SiC-based RSD, which have a potential application in extreme ambient conditions.« less
Spurgeon, Dale W
2016-04-01
Eradication programs for the boll weevil (Anthonomus grandis grandis Boheman) rely on pheromone-baited traps to trigger insecticide treatments and monitor program progress. A key objective of monitoring in these programs is the timely detection of incipient weevil populations to limit or prevent re-infestation. Therefore, improvements in the effectiveness of trapping would enhance efforts to achieve and maintain eradication. Association of pheromone traps with woodlots and other prominent vegetation are reported to increase captures of weevils, but the spatial scale over which this effect occurs is unknown. The influences of trap distance (0, 10, and 20 m) and orientation (leeward or windward) to brush lines on boll weevil captures were examined during three noncropping seasons (October to February) in the Rio Grande Valley of Texas. Differences in numbers of captured weevils and in the probability of capture between traps at 10 or 20 m from brush, although often statistically significant, were generally small and variable. Variations in boll weevil population levels, wind directions, and wind speeds apparently contributed to this variability. In contrast, traps closely associated with brush (0 m) generally captured larger numbers of weevils, and offered a higher probability of weevil capture compared with traps away from brush. These increases in the probability of weevil capture were as high as 30%. Such increases in the ability of traps to detect low-level boll weevil populations indicate trap placement with respect to prominent vegetation is an important consideration in maximizing the effectiveness of trap-based monitoring for the boll weevil.
Optical Trapping of Ion Coulomb Crystals
NASA Astrophysics Data System (ADS)
Schmidt, Julian; Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias
2018-04-01
The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.
Warburton, Bruce; Gormley, Andrew M
2015-01-01
Internationally, invasive vertebrate species pose a significant threat to biodiversity, agricultural production and human health. To manage these species a wide range of tools, including traps, are used. In New Zealand, brushtail possums (Trichosurus vulpecula), stoats (Mustela ermine), and ship rats (Rattus rattus) are invasive and there is an ongoing demand for cost-effective non-toxic methods for controlling these pests. Recently, traps with multiple-capture capability have been developed which, because they do not require regular operator-checking, are purported to be more cost-effective than traditional single-capture traps. However, when pest populations are being maintained at low densities (as is typical of orchestrated pest management programmes) it remains uncertain if it is more cost-effective to use fewer multiple-capture traps or more single-capture traps. To address this uncertainty, we used an individual-based spatially explicit modelling approach to determine the likely maximum animal-captures per trap, given stated pest densities and defined times traps are left between checks. In the simulation, single- or multiple-capture traps were spaced according to best practice pest-control guidelines. For possums with maintenance densities set at the lowest level (i.e. 0.5/ha), 98% of all simulated possums were captured with only a single capacity trap set at each site. When possum density was increased to moderate levels of 3/ha, having a capacity of three captures per trap caught 97% of all simulated possums. Results were similar for stoats, although only two potential captures per site were sufficient to capture 99% of simulated stoats. For rats, which were simulated at their typically higher densities, even a six-capture capacity per trap site only resulted in 80% kill. Depending on target species, prevailing density and extent of immigration, the most cost-effective strategy for pest control in New Zealand might be to deploy several single-capture traps rather than investing in fewer, but more expense, multiple-capture traps.
Kinetic model of the bichromatic dark trap for atoms
NASA Astrophysics Data System (ADS)
Krasnov, I. V.
2017-08-01
A kinetic model of atom confinement in a bichromatic dark trap (BDT) is developed with the goal of describing its dissipative properties. The operating principle of the deep BDT is based on using the combination of multiple bichromatic cosine-Gaussian optical beams (CGBs) for creating high-potential barriers, which is described in our previous work (Krasnov 2016 Laser Phys. 26 105501). In the indicated work, particle motion in the BDT is described in terms of classical trajectories. In the present study, particle motion is analyzed by means of the Wigner function (phase-space distribution function (DF)), which allows one to properly take into account the quantum fluctuations of optical forces. Besides, we consider an improved scheme of the BDT, where CGBs create, apart from plane potential barriers, a narrow cooling layer. We find an asymptotic solution of the Fokker-Planck equation for the DF and show that the DF of particles deeply trapped in a BDT with a cooling layer is the Tsallis distribution with the effective temperature, which can be considerably lower than in a BDT without a cooling layer. Moreover, it can be adjusted by slightly changing the CGBs’ radii. We also study the effect of particle escape from the trap due to the scattering of resonant photons and show that the particle lifetime in a BDT can exceed several tens of hours when it is limited by photon scattering.
NASA Astrophysics Data System (ADS)
Kaplan, Michael L.; Tilley, Jeffrey S.; Hatchett, Benjamin J.; Smith, Craig M.; Walston, Joshua M.; Shourd, Kacie N.; Lewis, John M.
2017-10-01
On 27 September 2010 the Los Angeles Civic Center reached its all-time record maximum temperature of 45°C before 1330 local daylight time with several other regional stations observing all-time record breaking heat early in that afternoon. This record event is associated with a general circulation pattern predisposed to hemispheric wave breaking. Three days before the event, wave breaking organizes complex terrain- and coastal-induced processes that lead to isentropic surface folding into the Los Angeles Basin. The first wave break occurs over the western two thirds of North America leading to trough elongation across the southwestern U.S. Collocated with this trough is an isentropic potential vorticity filament that is the locus of a thermally indirect circulation central to warming and associated thickness increases and ridging westward across the Great Basin. In response to this circulation, two subsynoptic wave breaks are triggered along the Pacific coast. The isentropic potential vorticity filament is coupled to the breaking waves and the interaction produces a subsynoptic low-pressure center and a deep vortex aloft over the southeastern California desert. This coupling leads to advection of an elevated mixed layer over Point Conception the night before the record-breaking heat that creates a coastally trapped low-pressure area southwest of Los Angeles. The two low-pressure centers create a low-level pressure gradient and east-southeasterly jet directed offshore over the Los Angeles Basin by sunrise on 27 September. This allows the advection of low-level warm air from the inland terrain toward the coastally trapped disturbance and descending circulation resulting in record heating.
TiO2 nanoparticle induced space charge decay in thermal aged transformer oil
NASA Astrophysics Data System (ADS)
Lv, Yuzhen; Du, Yuefan; Li, Chengrong; Qi, Bo; Zhong, Yuxiang; Chen, Mutian
2013-04-01
TiO2 nanoparticle with good dispersibility and stability in transformer oil was prepared and used to modify insulating property of aged oil. It was found that space charge decay rate in the modified aged oil can be significantly enhanced to 1.57 times of that in the aged oil at first 8 s after polarization voltage was removed. The results of trap characteristics reveal that the modification of nanoparticle can not only greatly lower the shallow trap energy level in the aged oil but also increase the trap density, resulting in improved charge transportation via trapping and de-trapping process in shallower traps.
A study of electrically active traps in AlGaN/GaN high electron mobility transistor
NASA Astrophysics Data System (ADS)
Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth
2013-10-01
We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.
Gold, C S; Gold, C S; Okech, S H; Nokoe, S
2002-02-01
Controlled studies to determine the efficacy of pseudostem trapping in reducing adult populations of the banana weevil, Cosmopolites sordidus (Germar), were conducted under farmer conditions in Ntungamo district, Uganda. Twenty-seven farms were stratified on the basis of C. sordidus population density (estimated by mark and recapture methods) and divided among three treatments: (i) researcher-managed trapping (one trap per mat per month): (ii) farmer-managed trapping (trap intensity at discretion of farmer); and (iii) controls (no trapping). Intensive trapping (managed by researchers) resulted in significantly lower C. sordidus damage after one year. Over the same period, C. sordidus numbers declined by 61% on farms where trapping was managed by researchers, 53% where farmers managed trapping and 38% on farms without trapping; however, results varied greatly among farms and, overall, there was no significant effect of trapping on C. sordidus numbers. Moreover, there was only a weak relationship between the number of C. sordidus removed and the change in population density. Trapping success appeared to be affected by management levels and immigration from neighbouring farms. Although farmers were convinced that trapping was beneficial, adoption has been low due to resource requirements.
Francese, Joseph A; Oliver, Jason B; Fraser, Ivich; Lance, David R; Youssef, Nadeer; Sawyer, Alan J; Mastro, Victor C
2008-12-01
The key to an effective pest management program for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera Buprestidae), is a survey program equipped with tools for detecting and delimiting populations. We studied the effects of trap design, color, and placement on the efficacy of sticky traps for capturing the emerald ash borer. There were significant differences in trap catch along a transect gradient from wooded to open field conditions, with most beetles being caught along the edge, or in open fields, 15-25 m outside an ash (Fraxinus spp. L.) (Oleaceae) woodlot. Greater emerald ash borer catch occurred on purple traps than on red or white traps. Traps placed in the mid-canopy of ash trees (13 m) caught significantly more beetles than those placed at ground level. We also describe a new trap design, a three-sided prism trap, which is relatively easy to assemble and deploy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J; Park, S; Lee, H
Purpose: This work evaluated the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps (OSLDfull) with the bleaching conditions according to the accumulated dose. Methods: The OSLDs were first pre-irradiated with a Co-60 gamma ray at more than 5 kGy, so as to fill the deep electron and hole traps. Using a 6-MV beam, the OSLDfull characteristics were investigated in terms of the full bleaching, fading, dose linearity, and dose sensitivity obtained in response to the accumulated dose values. To facilitate a comparison of the dose sensitivity, OSLDs with un-filled deep electron/hole traps (OSLDempty) were investigatedmore » in the same manner. A long-pass filter was used to exclude bleaching-source wavelengths of less than 520 nm. Various bleaching time and wavelength combinations were used in order to determine the optimal bleaching conditions for the OSLD full. Results: The fading for the OSLDfull exhibited stable signals after 8 min, for both 1- and 10-Gy. For 4-h bleaching time and an unfiltered bleaching device, the supralinear index values for the OSLDfull were 1.003, 1.002, 0.999, and 1.001 for doses of 2, 4, 7, and 10 Gy, respectively. For a 65-Gy accumulated dose with a 5-Gy fraction, no variation in dose sensitivity was obtained for the OSLDfull, within a standard deviation of 0.85%, whereas the OSLDempty dose sensitivity decreased by approximately 2.3% per 10 Gy. The filtered bleaching device yielded a highly stable sensitivity for OSLDfull, independent of bleaching time and within a standard deviation of 0.71%, whereas the OSLDempty dose sensitivity decreased by approximately 4.2% per 10 Gy for an accumulated dose of 25 Gy with a 5-Gy fraction. Conclusion: Under the bleaching conditions determined in this study, clinical dosimetry with OSLDfull is highly stable, having an accuracy of 1% with no change in dose sensitivity or linearity at clinical doses. This work was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korea government (MISP) (No. 2014M2B2A4031164), and by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C3459).« less
Wang, Dong; Wang, Haifeng; Hu, P
2015-01-21
Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.
Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J
2014-07-22
Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.
Deegan, Carrie S; Burns, Joseph E; Huguenin, Michael; Steinhaus, Eliza Y; Panella, Nicholas A; Beckett, Susan; Komar, Nicholas
2005-11-01
Sentinel pigeons, Columba livia, were installed in lard-can traps at heights of 1.5 m and 7.6-9.1 m within differing canopy cover classes in New York City. Adult mosquitoes were collected weekly from July to October 2002, as were serum samples from each pigeon. Culex pipiens L. and Culex restuans Theobald comprised 97% of mosquitoes collected and were most numerous in canopy-level, forested traps. The West Nile virus (family Flaviviridae, genus Flavivirus, WNV) seroconversion rate was significantly greater for pigeons in canopy-level traps, although seroconversions occurred concurrently with human cases in the city and were of little prognostic value to public health agencies. Our results indicate that sentinel pigeons were most effective for monitoring enzootic transmission of WNV when placed in single-sentinel caging 7.6-9.1 m above ground level.
NASA Astrophysics Data System (ADS)
Mansor, Md Yazid; Snedden, J. W.; Sarg, J. F.; Smith, B. S.; Kolich, T.; Carter, M.
1999-04-01
Limited well control, great distances from age-equivalent producing fields, and a largely unknown stratigraphy necessitated use of sequence stratigraphic methods to assess exploration risk associated with reservoir, source and seal distribution in the Mobil-operated Deep-water Blocks of Sarawak, Malaysia. These methods allowed predictions to be made and reservoir risks to be halved in each of the locations drilled in 1995. Predictions regarding reservoir and stratigraphy proved correct, as the Mulu-1 and Bako-1 wells penetrated numerous high-quality, thick sandstone reservoirs in the Middle to Lower Miocene section. Shallow marine sandstones dominate the vertical succession in both wells, with characteristic aggradational, upward-coarsening log motifs. Cores display classic wave-generated stratification and hummocky cross-bedding. Evidence, such as marginal-marine to neritic microfauna in cuttings of both wells, supports these interpretations. Lack of hydrocarbon charge in the two wells may be due to their position relative to coaly hydrocarbon source beds. These prospects have high trap and seal integrity, being well defined on seismics as high relief horst blocks covered by a very thick shale-prone section. The Mulu-1 well, for example, is located at least 20-30 km down stratigraphic dip from mapped coeval lower coastal-plain deposits. Amplitude anomalies on the flank of the Mulu horst are probably derived from transported organics buried in deep Plio-Pleistocene kitchens in the northwest portion of the Mobil blocks. Remaining potential of mapped prospects is high and efforts continue at characterizing the petroleum system of the Deep-water Blocks. Seismic attribute and interval velocity analyses provide new clues to the location of probable coaly source rocks, especially when viewed in their regional and sequence stratigraphic context. Future work is planned and will serve to reduce risk to acceptable levels and support further drilling in this prospective hydrocarbon province.
The Crustal Structure And CTBT Monitoring Of India: New Insights From Deep Seismic Profiling
2000-09-01
transitional type crust as a major source of Deccan trap flows. The Narmada-Son lineament is the most conspicuous linear geological feature in the... Deccan proto-continents) buckling of the upper and middle crustal layers of the proto-continents took place, resulting in the western block’s lower...crustal column subducting below the Deccan proto-continents. Thus, the collision process was of such severe magnitude that the impact was seen in both
Plouviez, Sophie; Faure, Baptiste; Le Guen, Dominique; Lallier, François H.; Bierne, Nicolas; Jollivet, Didier
2013-01-01
Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33′S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25′S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25′S and 14°S. PMID:24312557
Plouviez, Sophie; Faure, Baptiste; Le Guen, Dominique; Lallier, François H; Bierne, Nicolas; Jollivet, Didier
2013-01-01
Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33'S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25'S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25'S and 14°S.
Thromboembolic Risk of Endovascular Intervention for Lower Extremity Deep Venous Thrombosis.
Lindsey, Philip; Echeverria, Angela; Poi, Mun J; Matos, Jesus; Bechara, Carlos F; Cheung, Mathew; Lin, Peter H
2018-05-01
This study evaluated the risk of thromboembolism during endovascular interventions in patients with symptomatic lower extremity deep vein thrombosis (DVT) METHODS: Clinical records of all patients who underwent endovascular interventions for symptomatic lower extremity DVT from 2001 to 2017 were retrospectively analyzed using a prospectively maintained database. Only patients who received an inferior vena cava (IVC) filter were included in the analysis. Trapped intrafilter thrombus was assessed for procedure-related thromboembolism. Clinical outcomes of thrombus management and thromboembolism risk were analyzed. A total 172 patients (mean age 57.4 years, 98 females) who underwent 174 endovascular DVT interventions were included in the analysis. Treatment strategies included thrombolytic therapy (64%), mechanical thrombectomy (n = 86%), pharmacomechanical thrombolysis (51%), balloon angioplasty (98%), and stent placement (28%). Thrombectomy device used included AngioJet (56%), Trellis (19%), and Aspire (11%). Trapped IVC filter thrombus was identified in 58 patients (38%) based on the IVC venogram. No patient developed clinically evident pulmonary embolism (PE). IVC filter retrieval was performed in 98 patients (56%, mean 11.8 months after implantation). Multivariate analysis showed that iliac vein occlusion (P = 0.04) was predictive for procedure-related thromboembolism. Iliac vein thrombotic occlusion is associated with an increased thromboembolic risk in DVT intervention. Retrievable IVC filter should be considered when performing percutaneous thrombectomy in patients with iliac venous occlusion to prevent PE. Copyright © 2017 Elsevier Inc. All rights reserved.
Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean
Marsay, Chris M.; Sanders, Richard J.; Henson, Stephanie A.; Pabortsava, Katsiaryna; Achterberg, Eric P.; Lampitt, Richard S.
2015-01-01
The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean. PMID:25561526
Influence of trapping potentials on the phase diagram of bosonic atoms in optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giampaolo, S.M.; Illuminati, F.; Mazzarella, G.
2004-12-01
We study the effect of external trapping potentials on the phase diagram of bosonic atoms in optical lattices. We introduce a generalized Bose-Hubbard Hamiltonian that includes the structure of the energy levels of the trapping potential, and show that these levels are in general populated both at finite and zero temperature. We characterize the properties of the superfluid transition for this situation and compare them with those of the standard Bose-Hubbard description. We briefly discuss similar behaviors for fermionic systems.
Luminescence and conductivity studies on CVD diamond exposed to UV light
NASA Astrophysics Data System (ADS)
Bizzarri, A.; Bogani, F.; Bruzzi, M.; Sciortino, S.
1999-04-01
The photoluminescence (PL), thermoluminescence (TL) and thermally stimulated currents (TSC) of four high-quality CVD diamond films have been investigated in the range of temperatures between 300 and 700 K. The sample excitation has been carried out by means of an UV xenon lamp and UV laser lines. The features of the signals have been found equal to those obtained from particle excitation. The TL analysis shows the existence of several deep traps with activation energies between 0.6 and 1.0 eV. The contribution to the TL signal from different traps has been singled out by means of successive annealing processes. The TL results are in good agreement with those obtained from TSC measurements. The combined use of the two techniques allows a precise determination of the trap parameters. The spectral content of the TL response has also been compared with the PL signal in order to investigate the recombination process. This analysis shows that, in this temperature range, the TL signal is likely due to recombination from bound states rather than due to radiative free to bound transitions, as generally assumed in TL theory. The TSC signal is likely to arise from impurity band rather than from free carriers conduction.
Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces.
Colombi, Andrea; Ageeva, Victoria; Smith, Richard J; Clare, Adam; Patel, Rikesh; Clark, Matt; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V
2017-07-28
Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques. Different demonstrations of acoustic and electromagnetic rainbow devices have been performed, however not for deep elastic substrates that support both shear and compressional waves, together with surface Rayleigh waves; these allow not only for Rayleigh wave rainbow effects to exist but also for mode conversion from surface into shear waves. Here we demonstrate experimentally not only elastic Rayleigh wave rainbow trapping, by taking advantage of a stop-band for surface waves, but also selective mode conversion of surface Rayleigh waves to shear waves. These experiments performed at ultrasonic frequencies, in the range of 400-600 kHz, are complemented by time domain numerical simulations. The metasurfaces we design are not limited to guided ultrasonic waves and are a general phenomenon in elastic waves that can be translated across scales.
Diffusivity of the double negatively charged mono-vacancy in silicon
NASA Astrophysics Data System (ADS)
Bhoodoo, Chidanand; Vines, Lasse; Monakhov, Edouard; Svensson, Bengt Gunnar
2017-05-01
Lightly-doped silicon (Si) samples of n-type conductivity have been irradiated with 2.0 MeV {{\\text{H}}+} ions at a temperature of 30 K and characterized in situ by deep level transient spectroscopy (DLTS) measurements using an on-line setup. Migration of the Si mono-vacancy in its double negative charge state (V 2-) starts to occur at temperatures above ˜70 K and is monitored via trapping of V 2- by interstitial oxygen impurity atoms ({{\\text{O}}i} ), leading to the growth of the prominent vacancy-oxygen (V\\text{O} ) center. The V\\text{O} center gives rise to an acceptor level located at ˜0.17 eV below the conduction band edge (E c ) and is readily detected by DLTS measurements. Post-irradiation isothermal anneals at temperatures in the range of 70 to 90 K reveal first-order kinetics for the reaction {{V}2-}+{{\\text{O}}i}\\to V\\text{O} ≤ft(+ 2{{e}-}\\right) in both Czochralski-grown and Float-zone samples subjected to low fluences of {{\\text{H}}+} ions, i.e. the irradiation-induced V concentration is dilute (≤slant 1013 cm-3). On the basis of these kinetics data and the content of {{\\text{O}}i} , the diffusivity of V 2- can be determined quantitatively and is found to exhibit an activation energy for migration of ˜0.18 eV with a pre-exponential factor of ˜4× {{10}-3} cm2 s-1. The latter value evidences a simple jump process without any entropy effects for the motion of V 2-. No deep level in the bandgap to be associated with V 2- is observed but the results suggest that the level is situated deeper than ˜0.19 eV below E c , corroborating results reported previously in the literature.
Westermeier, Christian; Fiebig, Matthias; Nickel, Bert
2013-10-25
Frequency-resolved scanning photoresponse microscopy of pentacene thin-film transistors is reported. The photoresponse pattern maps the in-plane distribution of trap states which is superimposed by the level of trap filling adjusted by the gate voltage of the transistor. Local hotspots in the photoresponse map thus indicate areas of high trap densities within the pentacene thin film. © 2013 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim.
Generalized Dicke Nonequilibrium Dynamics in Trapped Ions
NASA Astrophysics Data System (ADS)
Genway, Sam; Li, Weibin; Ates, Cenap; Lanyon, Benjamin P.; Lesanovsky, Igor
2014-01-01
We explore trapped ions as a setting to investigate nonequilibrium phases in a generalized Dicke model of dissipative spins coupled to phonon modes. We find a rich dynamical phase diagram including superradiantlike regimes, dynamical phase coexistence, and phonon-lasing behavior. A particular advantage of trapped ions is that these phases and transitions among them can be probed in situ through fluorescence. We demonstrate that the main physical insights are captured by a minimal model and consider an experimental realization with Ca+ ions trapped in a linear Paul trap with a dressing scheme to create effective two-level systems with a tunable dissipation rate.