Coupling surface and mantle dynamics: A novel experimental approach
NASA Astrophysics Data System (ADS)
Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea
2015-05-01
Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.
NASA Astrophysics Data System (ADS)
Gazel, E.; Madrigal, P.; Flores, K. E.; Bizimis, M.; Jicha, B. R.
2016-12-01
Global tomography and numerical models suggest that mantle plume occurrences are closely linked to the margins of the large low shear velocity provinces (LLSVPs). In these locations the ascent of material from the core-mantle boundary connects the deep Earth with surface processes through mantle plume activity, forming large igneous provinces (LIPs) and some of the modern hotspot volcanoes. Petrological and geodynamic evidence suggest a link between the formation of oceanic plateaus and the interactions of mantle plumes and mid-ocean ridges (MOR). Therefore, it is possible to trace the potential interactions between MORs and deep mantle plume upwellings by referencing the tectonic and magmatic evolution of the Pacific Plate in time to the current location of the LLSVP, considering the long-lived ( 500 Ma) existence of these thermochemical anomalies. We identified episodic upwellings of the Pacific LLSVP during the Mesozoic separated by 10 to 20 Ma, by reconstructing the kinematic evolution of the Pacific Plate in the last 170 Ma. The fact that the bulk emplacement of LIPs ( 120-80 Ma) in the Pacific coincides with the timing of the Cretaceous Normal Superchron, that can be related to fluctuations of mantle-core heat fluxes further supports the hypothesis of deep mantle origin for LIPs. The potential cyclicity of LIP emplacement could be tied to core heat fluctuations interacting with the lower mantle, the rheology contrast of material crossing the transition zone (either upwelling hot material or downgoing dense slabs as mantle avalanches), the rate of entrainment of recycled materials, or a combination of the processes mentioned. Recognizing patterns and possible cycles is crucial to the link between deep processes and life as these pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.
Tracking Crust-Mantle Recycling through Superdeep Diamonds and their Mineral Inclusions
NASA Astrophysics Data System (ADS)
Walter, Michael; Bulanova, Galina; Smith, Chris; Thomson, Andrew; Kohn, Simon; Burnham, Antony
2013-04-01
Sublithospheric, or 'superdeep' diamonds, originate in the deep upper mantle, transition zone, and at least as deep as the shallow lower mantle. When diamonds crystallize in the mantle from fluids or melts they occasionally entrap coexisting mineral phases. Because of their great physical resiliency, diamonds can potentially preserve information over long distance- and time-scales, revealing important information about the petrologic, tectonic and geodynamic environment in which the diamonds grew and were transported. Superdeep diamonds and their inclusions have proven especially powerful for probing processes related to subduction of slabs into the deep mantle [1-3]. In contrast to lithospheric diamonds that are effectively frozen-in geodynamically, mineral inclusions in superdeep diamonds often record hundreds of kilometers of uplift in the convecting mantle from their original depth of origin [3-5]. The phase equilibria of unmixing of original deep mantle phases such as Ca- and Mg-perovskite, NAL-phase, CF-phase, CAS-phase, and majorite provide a means to establish amounts of uplift. The few available age constraints indicate superdeep diamond growth from the Proterozoic to the Cretaceous, and further dating can potentially lead to constraining mantle upwelling rates [4]. Here we will provide several examples showing how superdeep diamonds and their inclusions record processes of subduction and slab foundering, and ultimately recycling of slab material from the transition zone and lower mantle into the shallow upper mantle. 1. Harte, B., Mineralogical Magazine, 2010. 74: p. 189-215. 2. Tappert, R., et al., Geology, 2005. 33: p. 565-568. 3. Walter, M.J., et al., Science, 2011. 333: p. 54-57. 4. Bulanova, G.P., et al., Contributions to Mineralogy and Petrology, 2010. 160: p. 489-510. 5. Harte, B. and N. Cayzer, Physics and Chemistry of Minerals, 2007.
Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.
Walter, M J; Kohn, S C; Araujo, D; Bulanova, G P; Smith, C B; Gaillou, E; Wang, J; Steele, A; Shirey, S B
2011-10-07
A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.
Processes of deep terrestrial mantles and cores
NASA Technical Reports Server (NTRS)
Jeanloz, Raymond
1991-01-01
Ultrahigh pressure experiments are currently focused on revealing processes occurring deep inside planets. This is in addition to the traditional emphasis on the constitution of planetary interiors, such as the identification of the high pressure perovskite phase of (Mg,Fe)SiO3 as the predominant mineral inside the Earth, and probably Venus. For example, experiments show that the mechanism of geochemical differentiation, separation of partial melts, differs fundamentally in the lower mantles of Earth and Venus than at near surface conditions. In addition to structural transformations, changes in chemical bonding caused by pressure can also be significant for planetary interiors. Measurements of AC and DC electrical conductivity can be obtained at ultrahigh pressures and temperatures, to greater than 80 GPa and 3000 K simultaneously, using the laser heated diamond cell. Anhydrous lower mantle assemblages (perovskite + or - oxide phases) exhibit an electrical conductivity that depends strongly on Fe content. Contrary to traditional assumptions, temperature affects the conductivity of lower mantle assemblages relatively little. The Earth's deep focus seismicity can be explained by the recycling of water into the mantle.
Self-gravity, self-consistency, and self-organization in geodynamics and geochemistry
NASA Astrophysics Data System (ADS)
Anderson, Don L.
The results of seismology and geochemistry for mantle structure are widely believed to be discordant, the former favoring whole-mantle convection and the latter favoring layered convection with a boundary near 650 km. However, a different view arises from recognizing effects usually ignored in the construction of these models, including physical plausibility and dimensionality. Self-compression and expansion affect material properties that are important in all aspects of mantle geochemistry and dynamics, including the interpretation of tomographic images. Pressure compresses a solid and changes physical properties that depend on volume and does so in a highly nonlinear way. Intrinsic, anelastic, compositional, and crystal structure effects control seismic velocities; temperature is not the only parameter, even though tomographic images are often treated as temperature maps. Shear velocity is not a good proxy for density, temperature, and composition or for other elastic constants. Scaling concepts are important in mantle dynamics, equations of state, and wherever it is necessary to extend laboratory experiments to the parameter range of the Earth's mantle. Simple volume-scaling relations that permit extrapolation of laboratory experiments, in a thermodynamically self-consistent way, to deep mantle conditions include the quasiharmonic approximation but not the Boussinesq formalisms. Whereas slabs, plates, and the upper thermal boundary layer of the mantle have characteristic thicknesses of hundreds of kilometers and lifetimes on the order of 100 million years, volume-scaling predicts values an order of magnitude higher for deep-mantle thermal boundary layers. This implies that deep-mantle features are sluggish and ancient. Irreversible chemical stratification is consistent with these results; plausible temperature variations in the deep mantle cause density variations that are smaller than the probable density contrasts across chemical interfaces created by accretional differentiation and magmatic processes. Deep-mantle features may be convectively isolated from upper-mantle processes. Plate tectonics and surface geochemical cycles appear to be entirely restricted to the upper ˜1,000 km. The 650-km discontinuity is mainly an isochemical phase change but major-element chemical boundaries may occur at other depths. Recycling laminates the upper mantle and also makes it statistically heterogeneous, in agreement with high-frequency scattering studies. In contrast to standard geochemical models and recent modifications, the deeper layers need not be accessible to surface volcanoes. There is no conflict between geophysical and geochemical data, but a physical basis for standard geochemical and geodynamic mantle models, including the two-layer and whole-mantle versions, and qualitative tomographic interpretations has been lacking.
Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves
NASA Astrophysics Data System (ADS)
Nelson, Peter L.; Grand, Stephen P.
2018-04-01
The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core-mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.
Xe isotopic constraints on cycling of deep Earth volatiles
NASA Astrophysics Data System (ADS)
Parai, R.; Mukhopadhyay, S.
2017-12-01
The modern deep Earth volatile budget reflects primordial volatiles delivered during accretion, radiogenic ingrowth of volatile species (e.g., 40Ar produced by 40K decay), outgassing in association with mantle processing, and regassing via subduction. The noble gases are unique volatile tracers in that they are chemically inert, but are thought to be trapped within hydrous alteration phases in downwelling lithologies. Noble gases thus provide a tracer of volatile transport between the deep Earth and surface reservoirs. Constraints on the fluxes of noble gases between deep Earth and surface reservoirs over time can accordingly be used to provide insight into temperature conditions at subduction zones, limits on volatile cycling, and the evolving distribution of major volatile species in terrestrial reservoirs over time. Xe isotope systematics in mantle-derived rocks show that 80-90% of the mantle Xe budget is derived from recycling of atmospheric Xe, indicating that atmospheric Xe is retained in subducting slabs beyond depths of magma generation in subduction zones over Earth history. We present an integrated model of Xe cycling between the mantle and atmosphere in association with mantle processing over Earth history. We test a wide variety of outgassing and regassing rates and take the evolution of the atmospheric Xe isotopic composition [e.g., 1] into account. Models in which the deep Earth transitions from a net outgassing to net regassing regime best satisfy Xe isotopic constraints from mantle-derived rocks [2-6]. [1] Avice et al., 2017; Nature Communications, 8; [2] Mukhopadhyay, 2012, Nature 486, 101-104; [3] Parai et al., 2012, EPSL 359-360, 227-239; [4] Parai and Mukhopadhay, 2015, G-cubed 16, 719-735; [5] Peto et al., 2013, EPSL 369-370, 13-23; [6] Tucker et al., 2012, EPSL 355-356, 244-254.
NASA Technical Reports Server (NTRS)
Tredoux, Marian; Hart, Rodger J.; Lindsay, Nicholas M.; De Wit, Maarten J.; Armstrong, Richard A.
1989-01-01
This paper reports the results of new field observations and the geochemical analyses for the area of the Bon Accord (BA) (the Kaapvaal craton, South Africa) Ni-Fe deposit, with particular consideration given to the trace element, platinum-group element, and isotopic (Pb, Nd, and Os) compositions. On the basis of these data, an interpretation of BA is suggested, according to which the BA deposit is a siderophile-rich heterogeneity remaining in the deep mantle after a process of incomplete core formation. The implications of such a model for the study of core-mantle segregation and the geochemistry of the lowermost mantle are discussed.
Deep water recycling through time
Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen
2014-01-01
We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5–3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. Key Points Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern PMID:26321881
Deep water recycling through time.
Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen
2014-11-01
We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity ( v s ), slab age ( a ) and mantle temperature (T m ). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×10 5 kg/m 2 ), as a function of v s (cm/yr), a (Myrs), and T m (°C):[Formula: see text]. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×10 5 kg/m 2 of H 2 O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×10 8 Tg/Myr of H 2 O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 10 8 Tg/Myr of H 2 O could still be recycled in the mantle at 2.8 Ga. Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H 2 O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern.
Chemical trends in ocean islands explained by plume–slab interaction
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Gassmöller, Rene
2018-04-01
Earth's surface shows many features, of which the genesis can be understood only through their connection with processes in Earth's deep interior. Recent studies indicate that spatial geochemical patterns at oceanic islands correspond to structures in the lowermost mantle inferred from seismic tomographic models. This suggests that hot, buoyant upwellings can carry chemical heterogeneities from the deep lower mantle toward the surface, providing a window to the composition of the lowermost mantle. The exact nature of this link between surface and deep Earth remains debated and poorly understood. Using computational models, we show that subducted slabs interacting with dense thermochemical piles can trigger the ascent of hot plumes that inherit chemical gradients present in the lowermost mantle. We identify two key factors controlling this process: (i) If slabs induce strong lower-mantle flow toward the edges of these piles where plumes rise, the pile-facing side of the plume preferentially samples material originating from the pile, and bilaterally asymmetric chemical zoning develops. (ii) The composition of the melt produced reflects this bilateral zoning if the overlying plate moves roughly perpendicular to the chemical gradient in the plume conduit. Our results explain some of the observed geochemical trends of oceanic islands and provide insights into how these trends may originate.
NASA Astrophysics Data System (ADS)
Pu, X.; Delph, J. R.; Shimizu, K.; Rasmussen, D. J.; Ratschbacher, B. C.
2017-12-01
Deep zones of mixing, assimilation, storage, and homogenization (MASH) are thought to be one of the primary locations where primitive arc magmas stall, interact with crustal material, and differentiate. Support for deep crustal MASH zones is found in exposed crustal sections, where mafic-ultramafic lithologies occur in the lower crust. However, geophysical observations of active deep MASH zones are rare, and their ubiquity is difficult to assess solely based on geochemistry. Using a multidisciplinary approach, we investigate the role of deep crustal processing by investigating two contrasting arcs: the Central Volcanic Zone (CVZ) of the Andes, characterized by thick crust ( 60 km) and large volume silicic eruptions that extend into the back arc, and the Cascadia arc, characterized by thinner crust ( 40 km) and less evolved eruptions. In the southern Puna region of the CVZ, shear-wave velocities in the uppermost mantle are slow ( 3.9 km/s) compared to the minimum expected shear velocity for melt-free mantle lithosphere ( 4.2 km/s). This is consistent with the presence of a melt-bearing MASH zone near the crust-mantle transition. Sr isotopes indicate the magmas interacted with continental crust, and elevated Dy/Yb ratios suggest this process occurred in the garnet stability field (> 1 GPa). Major element signatures (e.g., ASI vs. SiO2) also suggest contribution from partial melting of the lower crust. The signature of lower crustal differentiation (high Dy/Yb) is also observed in the nearby ignimbrites from Cerro Galan, despite the presence of a large slow velocity body at depths too shallow for garnet stability, suggesting that the geochemical signatures of deep MASH zones may be retained regardless of whether magmas stall at shallower depths. Similarly elevated Dy/Yb ratios and slow shear-wave velocities in the upper mantle are common in the CVZ, implying deep MASH zones are pervasive there. A similar approach is applied to Cascadia, where seismic and geochemical signatures of lower crustal processing are weaker than those in the CVZ. The strongest evidence for a deep MASH zone is found at Rainier, where upper mantle velocities are slow and slightly elevated Dy/Yb ratios in evolved melts indicate differentiation in the presence of garnet. Our results suggest deep MASH zones are more common in the CVZ than Cascadia.
NASA Astrophysics Data System (ADS)
Chang, C.; Liu, L.
2017-12-01
Driving mechanisms of the topographic evolution of central-western North America from the Cretaceous Western Interior Seaway (WIS) to its present-day high elevation remain ellusive. Quantifying the effects of lithospheric deformation versus deep-mantle induced topography on the landscape evolution of the region is a key to better constraining the history of North American tectonics and mantle dynamics. One way to tackle this problem is through running landscape evolution simulation coupled with uplift histories characteristic to these tectonic processes. We then use available surface observations, e.g., sedimentation records, land erosion, and drainage evolution, to infer the likely lithospheric and mantle processes that formed the WIS, the subsequent Laramide orogeny, and the present-day high topography of central-western North America. In practice, we use BadLands to simulate the evolution of surface process. To validate a given uplift history, we quantitatively compare model predictions with onshore and offshore stratigraphy data from the literature. Furthermore, critical forcings of landscape evolution, such as climate, lithology and sea level, will also be examined to better attest the effects of different uplift scenarios. Preliminary results demonstrate that only with geographically migratory subsidence, as predicted by an inverse mantle convection model, can we re-produce large scale tilted strata and shifting sediment deposition observed in the WIS basins. Ongoing work will also look into styles of Cenozoic uplift events that ended the WIS and produced the landscape features today. Eventually, we hope to place new constraints on the evolution and properties of lithospheric and deep-mantle dynamics of North American and to locate the best-fit scenario of its coresponding surface evolution since 100 Ma.
The mantle lithosphere and the Wilson Cycle
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2017-04-01
In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.
Topography: dusting for the fingerprints of mantle dynamics
NASA Astrophysics Data System (ADS)
Faccenna, C.; Becker, T. W.
2016-12-01
The surface of the Earth is an ever-changing expression of the dynamic processes occurring deep in the mantle and at and above its surface, but our ability to "read" landscapes in terms of their underlying tectonic or climatic forcing is rudimentary. During the last decade, particular attention has been drawn to the deep, convection-related component of topography, induced by the stress produced at the base of the lithosphere by mantle flow, and its relevance compared to the (iso)static component. Despite much progress, several issues, including the magnitude and rate of this dynamic component, remain open. Here, we use key sites from convergent margins (e.g., the Apennines) and from intraplate settings (e.g., Ethiopia) to estimate the amplitude and rate of topography change and to disentangle the dynamic from the static component. On the base of those and other examples, we introduce the concept of a Topographic Fingerprint: any combination of mantle, crustal and surface processes that will result in a distinctive, thus predictable, topographic expression.
Formation and Elimination of Transform Faults on the Reykjanes Ridge
NASA Astrophysics Data System (ADS)
Martinez, Fernando; Hey, Richard
2017-04-01
The Reykjanes Ridge is a type-setting for examining processes that form and eliminate transform faults because it has undergone these events systematically within the Iceland gradient in hot-spot influence. A Paleogene change in plate motion led to the abrupt segmentation of the originally linear axis into a stair-step ridge-transform configuration. Its subsequent evolution diachronously and systematically eliminated the just-formed offsets re-establishing the original linear geometry of the ridge over the mantle, although now spreading obliquely. During segmented stages accreted crust was thinner and during unsegmented stages southward pointing V-shaped crustal ridges formed. Although mantle plume effects have been invoked to explain the changes in segmentation and crustal features, we propose that plate boundary processes can account for these changes [Martinez & Hey, EPSL, 2017]. Fragmentation of the axis was a mechanical effect of an abrupt change in plate opening direction, as observed in other areas, and did not require mantle plume temperature changes. Reassembly of the fragmented axis to its original linear configuration was controlled by a deep damp melting regime that persisted in a linear configuration following the abrupt change in opening direction. Whereas the shallow and stronger mantle of the dry melting regime broke up into a segmented plate boundary, the persistent deep linear damp melting regime guided reassembly of the ridge axis back to its original configuration by inducing asymmetric spreading of individual ridge segments. Effects of segmentation on mantle upwelling explain crustal thickness changes between segmented and unsegmented phases of spreading without mantle temperature changes. Buoyant upwelling instabilities propagate along the long linear deep melting regime driven by regional gradients in mantle properties away from Iceland. Once segmentation is eliminated, these propagating upwelling instabilities lead to crustal thickness variations forming the V-shaped ridges on the Reykjanes Ridge flanks, without requiring actual rapid radial mantle plume flow or temperature variations. Our study indicates that the Reykjanes Ridge can be used to study how plate boundary processes within a regional gradient in mantle properties lead to a range of effects on lithospheric segmentation, melt production and crustal accretion.
NASA Astrophysics Data System (ADS)
Civiero, C.; Custodio, S.; Silveira, G. M.; Rawlinson, N.; Arroucau, P.
2017-12-01
The processes responsible for the geodynamical evolution of the Ibero-Maghrebian domain are still enigmatic. Several geophysical studies have improved our understanding of the region, but no single model has been accepted yet. This study takes advantage of the dense station networks deployed from France in the north to Canary Islands and Morocco in the south to provide a new high-resolution P-wave velocity model of the structure of the upper-mantle and top of the lower mantle. These images show subvertical small-scale upwellings below Atlas Range, Canary Islands and Central Iberia that seem to cross the transition zone. The results, together with geochemical evidence and a comparison with previous global tomographic models, reveal the ponding or flow of deep-plume material beneath the transition zone, which seems to feed upper-mantle "secondary" pulses. In the upper mantle the plumes, in conjunction with the subduction-related upwellings, allow the hot mantle to rise in the surrounding zones. During its rising, the mantle interacts with horizontal SW slab-driven flow which skirts the Alboran slab and connects with the mantle upwelling below Massif Central through the Valencia Trough rift.
Electromagnetic studies of global geodynamic processes
NASA Astrophysics Data System (ADS)
Tarits, Pascal
1994-03-01
The deep electromagnetic sounding (DES) technique is one of the few geophysical methods, along with seismology, gravity, heat flow, which may be use to probe the structure of the Earth's mantle directly. The interpretation of the DESs may provide electrical conductivity profiles down to the upper part of the lower mantle. The electrical conductivity is extremely sensitive to most of the thermodynamic processes we believe are acting in the Earth's mantle (temperature increases, partial melting, phase transition and to a lesser extent pressure). Therefore, in principle, results from DES along with laboratory measurements could be used to constrain models of these processes. The DES technique is reviewed in the light of recent results obtained in a variety of domains: data acquisition and analysis, global induction modeling and data inversion and interpretation. The mechanisms and the importance of surface distortions of the DES data are reviewed and techniques to model them are discussed. The recent results in terms of the conductivity distribution in the mantle from local and global DES are presented and a tentative synthesis is proposed. The geodynamic interpretations of the deep conductivity structures are reviewed. The existence of mantle lateral heterogeneities in conductivity at all scales and depths for which electromagnetic data are available is now well documented. A comparison with global results from seismology is presented.
Hydrogen-bearing iron peroxide and its implications to the deep Earth
NASA Astrophysics Data System (ADS)
Liu, J.; Hu, Q.; Kim, D. Y.; Wu, Z.; Wang, W.; Alp, E. E.; Yang, L.; Xiao, Y.; Meng, Y.; Chow, P.; Greenberg, E.; Prakapenka, V. B.; Mao, H. K.; Mao, W. L.
2017-12-01
Hydrous materials subducted into the deep mantle may play a significant role in the geophysical and geochemical processes of the lower mantle through geological time, but their roles have not become clear yet in the region. Hydrogen-bearing iron peroxide (FeO2Hx) was recently discovered to form through dehydrogenation of goethite (e.g., FeOOH) and the reaction between hematite (Fe2O3) and water under deep lower mantle conditions. We conducted synchrotron Mössbauer, X-ray absorption, and X-ray emission spectroscopy measurements to investigate the electronic spin and valence states of iron in hydrogen-bearing iron peroxide (FeO2Hx) in-situ at high pressures. Combined with theoretical calculations and other high-pressure experiments (i.e., nuclear resonant inelastic x-ray scattering spectroscopy and X-ray diffraction coupled with laser-heated diamond-anvil cell techniques), we find that the intriguing properties of FeO2Hx could shed light on the origin of a number of the observed geochemical and geophysical anomalies in the deep Earth.
By Permission of the Mantle: Modern and Ancient Deep Earth Volatile Cycles
NASA Astrophysics Data System (ADS)
Hirschmann, M. M.
2011-12-01
The principle volatile elements, H and C, are of surpassing importance to processes and conditions in the interiors and the surfaces of terrestrial planets, affecting everything from mantle dynamics and large scale geochemical differentiation to climate and habitability. The storage of these volatiles in planetary interiors, their inventory in the near-surface environment and exchange between the interiors and the exosphere are governed by petrologic processes. Were it not for the effective incompatibility of these components in mantle lithologies, there might be no oceans, no habitable climate, and no biosphere on the surface. Consequently, deep Earth volatile cycles represent one of the best examples of how petrology influences nearly all other aspects of Earth science. The exosphere of the modern Earth has a high H/C ratio compared to that of the interior sampled by oceanic basalts. A potential explanation for this is that C is subducted to the deep mantle more efficiently than H, such that the exosphere C reservoir shrinks through geologic time. Unfortunately this hypothesis conflicts with the sedimentary record, which suggests that carbonate storage on the continents has increased rather than decreased with time. It also may not be applicable to the first 3 Ga of Earth history, when hotter typical subduction geotherms greatly reduced the efficiency of C subduction. An important question regarding deep Earth volatile cycles is the inventory of H and C in the interior and the exosphere that descend from Earth's earliest differentiation processes. Originally, much of Earth's volatile inventory was presumably present as a thick atmosphere, in part because volatiles were probably delivered late in the accretion history and owing to both the efficiency of impact degassing and of volatile release from early magma ocean(s). Early mantle H2O may descend from the magma ocean, in which portions of a steam atmosphere are dissolved in the magma and then precipitated with nominally anhydrous minerals. In contrast, low magmatic solubility of C-bearing species would suggest that the early mantle was depleted in carbon. Thus, the earliest Earth could have been characterized by an exosphere with low H/C and a mantle with high H/C - the reverse of the modern case. An alternative hypothesis is that significant C was sequestered in the early mantle as a reduced phase- diamond, carbide, or alloy - precipitated during magma ocean solidification. Despite low solubility in magmas, early atmospheric carbon may have been incorporated into solidifying mantle if C solubility diminished with increasing magma ocean depth. Volatile solubilities in magmas typically increase with increasing pressure, but the opposite could be true for C if conditions were more reducing at depth and more oxidizing near the surface. Such conditions would allow operation of a carbon pump, transporting early atmospheric carbon to the solidifying mantle. If such a process operated, then the modern mantle/exosphere H/C fractionation is likely a remnant of this early process. If not, some other explanation for Earth's distribution of H and C must be sought.
Theoretical Prediction of Melting Relations in the Deep Mantle: the Phase Diagram Approach
NASA Astrophysics Data System (ADS)
Belmonte, D.; Ottonello, G. A.; Vetuschi Zuccolini, M.; Attene, M.
2016-12-01
Despite the outstanding progress in computer technology and experimental facilities, understanding melting phase relations in the deep mantle is still an open challenge. In this work a novel computational scheme to predict melting relations at HP-HT by a combination of first principles DFT calculations, polymer chemistry and equilibrium thermodynamics is presented and discussed. The adopted theoretical framework is physically-consistent and allows to compute multi-component phase diagrams relevant to Earth's deep interior in a broad range of P-T conditions by a convex-hull algorithm for Gibbs free energy minimisation purposely developed for high-rank simplexes. The calculated phase diagrams are in turn used as a source of information to gain new insights on the P-T-X evolution of magmas in the deep mantle, providing some thermodynamic constraints to both present-day and early Earth melting processes. High-pressure melting curves of mantle silicates are also obtained as by-product of phase diagram calculation. Application of the above method to the MgO-Al2O3-SiO2 (MAS) ternary system highlights as pressure effects are not only able to change the nature of melting of some minerals (like olivine and pyroxene) from eutectic to peritectic (and vice versa), but also simplify melting relations by drastically reducing the number of phases with a primary phase field at HP-HT conditions. It turns out that mineral phases like Majorite-Pyrope garnet and Anhydrous Phase B (Mg14Si5O24), which are often disregarded in modelling melting processes of mantle assemblages, are stable phases at solidus or liquidus conditions in a P-T range compatible with the mantle transition zone (i.e. P = 16 - 23 GPa and T = 2200 - 2700 °C) when their thermodynamic and thermophysical properties are properly assessed. Financial support to the Senior Author (D.B.) during his stay as Invited Scientist at the Institut de Physique du Globe de Paris (IPGP, Paris) is warmly acknowledged.
Water circulation and global mantle dynamics: Insight from numerical modeling
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru
2015-05-01
We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.
Terrestrial magma ocean and core segregation in the earth
NASA Technical Reports Server (NTRS)
Ohtani, Eiji; Yurimoto, Naoyoshi
1992-01-01
According to the recent theories of formation of the earth, the outer layer of the proto-earth was molten and the terrestrial magma ocean was formed when its radius exceeded 3000 km. Core formation should have started in this magma ocean stage, since segregation of metallic iron occurs effectively by melting of the proto-earth. Therefore, interactions between magma, mantle minerals, and metallic iron in the magma ocean stage controlled the geochemistry of the mantle and core. We have studied the partitioning behaviors of elements into the silicate melt, high pressure minerals, and metallic iron under the deep upper mantle and lower mantle conditions. We employed the multi-anvil apparatus for preparing the equilibrating samples in the ranges from 16 to 27 GPa and 1700-2400 C. Both the electron probe microanalyzer (EPMA) and the Secondary Ion Mass spectrometer (SIMS) were used for analyzing the run products. We obtained the partition coefficients of various trace elements between majorite, Mg-perovskite, and liquid, and magnesiowustite, Mg-perovskite, and metallic iron. The examples of the partition coefficients of some key elements are summarized in figures, together with the previous data. We may be able to assess the origin of the mantle abundances of the elements such as transition metals by using the partitioning data obtained above. The mantle abundances of some transition metals expected by the core-mantle equilibrium under the lower mantle conditions cannot explain the observed abundance of some elements such as Mn and Ge in the mantle. Estimations of the densities of the ultrabasic magma Mg-perovskite at high pressure suggest existence of a density crossover in the deep lower mantle; flotation of Mg-perovskite occurs in the deep magma ocean under the lower mantle conditions. The observed depletion of some transition metals such as V, Cr, Mn, Fe, Co, and Ni in the mantle may be explained by the two stage process, the core-mantle equilibrium under the lower mantle conditions in the first stage, and subsequent downwards separation of the ultrabasic liquid (and magnesiowustite) and flotation of Mg-perovskite in the lower mantle.
Geology is the Key to Explain Igneous Activity in the Mediterranean Area
NASA Astrophysics Data System (ADS)
Lustrino, M.
2014-12-01
Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.
Numerical study of the origin and stability of chemically distinct reservoirs deep in Earth's mantle
NASA Astrophysics Data System (ADS)
van Thienen, P.; van Summeren, J.; van der Hilst, R. D.; van den Berg, A. P.; Vlaar, N. J.
Seismic tomography is providing mounting evidence for large scale compositional heterogeneity deep in Earth's mantle; also, the diverse geochemical and isotopic signatures observed in oceanic basalts suggest that the mantle is not chemically homogeneous. Isotopic studies on Archean rocks indicate that mantle inhomogeneity may have existed for most of the Earth's history. One important component may be recycled oceanic crust, residing at the base of the mantle. We investigate, by numerical modeling, if such reservoirs may have been formed in the early Earth, before plate tectonics (and subduction) were possible, and how they have survived—and evolved—since then. During Earth's early evolution, thick basaltic crust may have sunk episodically into the mantle in short but vigorous diapiric resurfacing events. These sections of crust may have resided at the base of the mantle for very long times. Entrainment of material from the enriched reservoirs thus produced may account for enriched mantle and high-μ signatures in oceanic basalts, whereas deep subduction events may have shaped and replenished deep mantle reservoirs. Our modeling shows that (1) convective instabilities and resurfacing may have produced deep enriched mantle reservoirs before the era of plate tectonics; (2) such formation is qualitatively consistent with the geochemical record, which shows multiple distinct ocean island basalt sources; and (3) reservoirs thus produced may be stable for billions of years.
Structure and dynamics of Earth's lower mantle.
Garnero, Edward J; McNamara, Allen K
2008-05-02
Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.
NASA Astrophysics Data System (ADS)
Nakagawa, T.; Tajika, E.; Kadoya, S.
2017-12-01
Discussing an impact of evolution and dynamics in the Earth's deep interior on the surface climate change for the last few decades (see review by Ehlmann et al., 2016), the mantle volatile (particularly carbon) degassing in the mid-oceanic ridges seems to play a key role in understanding the evolutionary climate track for Earth-like planets (e.g. Kadoya and Tajika, 2015). However, since the mantle degassing occurs not only in the mid-oceanic ridges but also in the wedge mantle (island arc volcanism) and hotspots, to incorporate more accurate estimate of mantle degassing flux into the climate evolution framework, we developed a coupled model of surface climate-deep Earth evolution in numerical mantle convection simulations, including more accurate deep water and carbon cycle (e.g. Nakagawa and Spiegelman, 2017) with an energy balance theory of climate change. Modeling results suggest that the evolution of planetary climate computed from a developed model is basically consistent with an evolutionary climate track in simplified mantle degassing model (Kadoya and Tajika, 2015), but an occurrence timing of global (snowball) glaciation is strongly dependent on mantle degassing rate occurred with activities of surface plate motions. With this implication, the surface plate motion driven by deep mantle dynamics would play an important role in the planetary habitability of such as the Earth and Earth-like planets over geologic time-scale.
Search for seismic discontinuities in the lower mantle
NASA Astrophysics Data System (ADS)
Vinnik, Lev; Kato, Mamoru; Kawakatsu, Hitoshi
2001-09-01
Indications of lower mantle discontinuities have been debated for decades, but still little is known about their properties, and their origins are enigmatic. In our study broad-band recordings of deep events are examined for the presence of signals from the lower-mantle discontinuities with a novel technique. We deconvolve vertical component of the P-wave coda in the period range around 10s by the S waveform and stack many deconvolved traces with moveout time corrections. In synthetic seismograms for an earth model without lower mantle discontinuities, the strongest signal thus detected in the time window of interest is often s`410'P phase (generated as S and reflected as P from the `410km' discontinuity above the source). In actual seismograms there are other phases that can be interpreted as converted from S to P at discontinuities in the lower mantle beneath the seismic source. We summarize the results of processing the seismograms (1) of deep events in Sunda arc at seismograph stations in east Asia, (2) deep Kermadec-Fiji-Tonga events at the J-array and FREESIA networks in Japan and stations in east Asia, and (3) deep events in the northwest Pacific region (Mariana, Izu-Bonin and the Japan arc) recorded at stations in north America. In our data there are indications of discontinuities near 860-880, 1010-1120, 1170-1250 and 1670-1800km depths. The clearest signals are obtained from the discontinuity at a depth of 1200km. We argue that the `900', `1200' and `1700km' discontinuities are global, but laterally variable in both depth and strength. Seismic stratification of the lower mantle may have bearings on the patterns of subduction, as revealed by tomographic models.
The pyrite-type high-pressure form of FeOOH
NASA Astrophysics Data System (ADS)
Nishi, Masayuki; Kuwayama, Yasuhiro; Tsuchiya, Jun; Tsuchiya, Taku
2017-07-01
Water transported into Earth’s interior by subduction strongly influences dynamics such as volcanism and plate tectonics. Several recent studies have reported hydrous minerals to be stable at pressure and temperature conditions representative of Earth’s deep interior, implying that surface water may be transported as far as the core-mantle boundary. However, the hydrous mineral goethite, α-FeOOH, was recently reported to decompose under the conditions of the middle region of the lower mantle to form FeO2 and release H2, suggesting the upward migration of hydrogen and large fluctuations in the oxygen distribution within the Earth system. Here we report the stability of FeOOH phases at the pressure and temperature conditions of the deep lower mantle, based on first-principles calculations and in situ X-ray diffraction experiments. In contrast to previous work suggesting the dehydrogenation of FeOOH into FeO2 in the middle of the lower mantle, we report the formation of a new FeOOH phase with the pyrite-type framework of FeO6 octahedra, which is much denser than the surrounding mantle and is stable at the conditions of the base of the mantle. Pyrite-type FeOOH may stabilize as a solid solution with other hydrous minerals in deeply subducted slabs, and could form in subducted banded iron formations. Deep-seated pyrite-type FeOOH eventually dissociates into Fe2O3 and releases H2O when subducted slabs are heated at the base of the mantle. This process may cause the incorporation of hydrogen into the outer core by the formation of iron hydride, FeHx, in the reducing environment of the core-mantle boundary.
FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.
Hu, Qingyang; Kim, Duck Young; Yang, Wenge; Yang, Liuxiang; Meng, Yue; Zhang, Li; Mao, Ho-Kwang
2016-06-09
The distribution, accumulation and circulation of oxygen and hydrogen in Earth's interior dictate the geochemical evolution of the hydrosphere, atmosphere and biosphere. The oxygen-rich atmosphere and iron-rich core represent two end-members of the oxygen-iron (O-Fe) system, overlapping with the entire pressure-temperature-composition range of the planet. The extreme pressure and temperature conditions of the deep interior alter the oxidation states, spin states and phase stabilities of iron oxides, creating new stoichiometries, such as Fe4O5 (ref. 5) and Fe5O6 (ref. 6). Such interactions between O and Fe dictate Earth's formation, the separation of the core and mantle, and the evolution of the atmosphere. Iron, in its multiple oxidation states, controls the oxygen fugacity and oxygen budget, with hydrogen having a key role in the reaction of Fe and O (causing iron to rust in humid air). Here we use first-principles calculations and experiments to identify a highly stable, pyrite-structured iron oxide (FeO2) at 76 gigapascals and 1,800 kelvin that holds an excessive amount of oxygen. We show that the mineral goethite, FeOOH, which exists ubiquitously as 'rust' and is concentrated in bog iron ore, decomposes under the deep lower-mantle conditions to form FeO2 and release H2. The reaction could cause accumulation of the heavy FeO2-bearing patches in the deep lower mantle, upward migration of hydrogen, and separation of the oxygen and hydrogen cycles. This process provides an alternative interpretation for the origin of seismic and geochemical anomalies in the deep lower mantle, as well as a sporadic O2 source for the Great Oxidation Event over two billion years ago that created the present oxygen-rich atmosphere.
Very high-pressure orogenic garnet peridotites
Liou, J. G.; Zhang, R. Y.; Ernst, W. G.
2007-01-01
Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341
Upper-mantle origin of the Yellowstone hotspot
Christiansen, R.L.; Foulger, G.R.; Evans, J.R.
2002-01-01
Fundamental features of the geology and tectonic setting of the northeast-propagating Yellowstone hotspot are not explained by a simple deep-mantle plume hypothesis and, within that framework, must be attributed to coincidence or be explained by auxiliary hypotheses. These features include the persistence of basaltic magmatism along the hotspot track, the origin of the hotspot during a regional middle Miocene tectonic reorganization, a similar and coeval zone of northwestward magmatic propagation, the occurrence of both zones of magmatic propagation along a first-order tectonic boundary, and control of the hotspot track by preexisting structures. Seismic imaging provides no evidence for, and several contraindications of, a vertically extensive plume-like structure beneath Yellowstone or a broad trailing plume head beneath the eastern Snake River Plain. The high helium isotope ratios observed at Yellowstone and other hotspots are commonly assumed to arise from the lower mantle, but upper-mantle processes can explain the observations. The available evidence thus renders an upper-mantle origin for the Yellowstone system the preferred model; there is no evidence that the system extends deeper than ???200 km, and some evidence that it does not. A model whereby the Yellowstone system reflects feedback between upper-mantle convection and regional lithospheric tectonics is able to explain the observations better than a deep-mantle plume hypothesis.
Deep mantle: Enriched carbon source detected
NASA Astrophysics Data System (ADS)
Barry, Peter H.
2017-09-01
Estimates of carbon in the deep mantle vary by more than an order of magnitude. Coupled volcanic CO2 emission data and magma supply rates reveal a carbon-rich mantle plume source region beneath Hawai'i with 40% more carbon than previous estimates.
NASA Astrophysics Data System (ADS)
Juliá, J.; Tang, Z.; Mai, P. M.; Zahran, H.
2014-12-01
Cenozoic volcanic outcrops in Arabia - locally known as harrats - span more than 2000 km along the western half of the Arabian plate, from eastern Yemen to southern Syria. The magmatism is bimodal in character, with older volcanics (30 to 20 My) being tholeiitic-to-transitional and paralleling the Red Sea margin, and younger volcanics (12 Ma to Recent) being transitional-to-strongly-alkalic and aligning in a more north-south direction. The bimodal character has been attributed to a two-stage rifting process along the Red Sea, where the old volcanics would have produced from shallow sources related to an initial passive rifting stage, and young volcanics would have originated from one or more deep-seated mantle plumes driving present active rifting. Early models suggested the harrats would have resulted from either lateral flow from the Afar plume in Ethiopia, or more locally from a separate mantle plume directly located under the shield. Most recently, tomographic images of the Arabian mantle have suggested the northern harrats could be resulting from flow originating at a deep plume under Jordan. In this work, we investigate the location of deep mantle plumes under the Arabian plate by mapping transition zone thickness with teleseismic receiver functions. The transition zone is bounded by seismic discontinuities, nominally at 410 and 660 km depth, originating from phase transitions in the olivine-normative component of the mantle. The precise depth of the discontinuities is strongly dependent on temperature and, due to the opposing signs of the corresponding Clapeyron slopes, positive temperature anomalies are expected to result in thinning of the transition zone. Our dataset consists of ~5000 low-frequency (fc < 0.25 Hz) receiver function waveforms obtained at ~110 broadband stations belonging to a number of permanent and temporary seismic networks in the region. The receiver functions were migrated to depth and stacked along a ~2000 km long record section displaying P-to-S conversions at seismic discontinuities under Western Arabia. Our results display a normal to thicker-than-average transition zone under the study area, suggesting thermal perturbations of the transition zone due to deep mantle upwellings under the western shield and/or Jordan are unlikely.
NASA Astrophysics Data System (ADS)
Tsuno, Kyusei; Dasgupta, Rajdeep
2015-02-01
Constraining the stable form of carbon in the deep mantle is important because carbon has key influence on mantle processes such as partial melting and element mobility, thereby affecting the efficiency of carbon exchange between the endogenic and exogenic reservoirs. In the reduced, mid- to deep-upper mantle, the chief host of deep carbon is expected to be graphite/diamond but in the presence of Fe-Ni alloy melt in the reduced mantle and owing to high solubility of carbon in such alloy phase, diamond may become unstable. To investigate the nature of stable, C-bearing phases in the reduced, mid- to deep-upper mantle, here we have performed experiments to examine the effect of sulfur on the phase relations of the Ni-rich portion of Fe-Ni ± Cu-C-S system, and carbon solubility in the Fe-Ni solid and Fe-Ni-S liquid alloys at 6-8 GPa and 800-1400 °C using a multianvil press. Low-temperature experiments for six starting mixes (Ni/(Fe + Ni) ∼ 0.61, 8-16 wt.% S) contain C-bearing, solid Fe-Ni alloy + Fe-Ni-C-S alloy melt + metastable graphite, and the solid alloy-out boundary is constrained, at 1150-1200 °C at 6 GPa and 900-1000 °C at 8 GPa for S-poor starting mix, and at 1000-1050 °C at 6 GPa and 900-1000 °C at 8 GPa for the S-rich starting mix. The carbon solubility in the liquid alloy significantly diminishes from 2.1 to 0.8 wt.% with sulfur in the melt increasing from 8 to 24 wt.%, irrespective of temperature. We also observed a slight decrease of carbon solubility in the liquid alloy with increasing pressure when alloy liquid contains >∼18 wt.% S, and with decreasing Ni/(Fe + Ni) ratio from 0.65 to ∼0.53. Based on our results, diamond, coexisting with Ni-rich sulfide liquid alloy is expected to be stable in the reduced, alloy-bearing oceanic mantle with C content as low as 20 to 5 ppm for mantle S varying between 100 and 200 ppm. Deep, reduced root of cratonic mantle, on the other hand, is expected to have C distributed among solid alloy, liquid alloy, and diamond for low-S (≤100 ppm S) domains and between liquid alloy and diamond in high-S (≥150 ppm S) domains. Our findings can explain the observation of Ni-rich sulfide and/or Fe-Ni alloy inclusions in diamond and suggest that diamond stability in the alloy-bearing, reduced mantle does not necessarily require excess C supply from recycled, crustal lithologies. Our prediction of diamond stability in the background, depleted upper mantle, owing to the interaction with mantle sulfides, is also consistent with the carbon isotopic composition of peridotitic diamond (δ13C of - 5 ± 1 ‰), which suggests no significant input from recycled carbon.
NASA Astrophysics Data System (ADS)
Yuan, K.; Beghein, C.
2018-04-01
Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.
Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes
NASA Astrophysics Data System (ADS)
Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John
2015-12-01
Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially the lithospheric stresses imposed by increasing edifice load.
Tomography and Dynamics of Western-Pacific Subduction Zones
NASA Astrophysics Data System (ADS)
Zhao, D.
2012-01-01
We review the significant recent results of multiscale seismic tomography of the Western-Pacific subduction zones and discuss their implications for seismotectonics, magmatism, and subduction dynamics, with an emphasis on the Japan Islands. Many important new findings are obtained due to technical advances in tomography, such as the handling of complex-shaped velocity discontinuities, the use of various later phases, the joint inversion of local and teleseismic data, tomographic imaging outside a seismic network, and P-wave anisotropy tomography. Prominent low-velocity (low-V) and high-attenuation (low-Q) zones are revealed in the crust and uppermost mantle beneath active arc and back-arc volcanoes and they extend to the deeper portion of the mantle wedge, indicating that the low-V/low-Q zones form the sources of arc magmatism and volcanism, and the arc magmatic system is related to deep processes such as convective circulation in the mantle wedge and dehydration reactions in the subducting slab. Seismic anisotropy seems to exist in all portions of the Northeast Japan subduction zone, including the upper and lower crust, the mantle wedge and the subducting Pacific slab. Multilayer anisotropies with different orientations may have caused the apparently weak shear-wave splitting observed so far, whereas recent results show a greater effect of crustal anisotropy than previously thought. Deep subduction of the Philippine Sea slab and deep dehydration of the Pacific slab are revealed beneath Southwest Japan. Significant structural heterogeneities are imaged in the source areas of large earthquakes in the crust, subducting slab and interplate megathrust zone, which may reflect fluids and/or magma originating from slab dehydration that affected the rupture nucleation of large earthquakes. These results suggest that large earthquakes do not strike anywhere, but in only anomalous areas that may be detected with geophysical methods. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The Pacific slab becomes stagnant in the mantle transition zone under East Asia, and a big mantle wedge (BMW) has formed above the stagnant slab. Convective circulations and fluid and magmatic processes in the BMW may have caused intraplate volcanism (e.g., Changbai and Wudalianchi), reactivation of the North China craton, large earthquakes, and other active tectonics in East Asia. Deep subduction and dehydration of continental plates (such as the Eurasian plate, Indian plate and Burma microplate) are also found, which have caused intraplate magmatism (e.g., Tengchong) and geothermal anomalies above the subducted continental plates. Under Kamchatka, the subducting Pacific slab shortens toward the north and terminates near the Aleutian-Kamchatka junction. The slab loss was induced by friction with the surrounding asthenosphere, as the Pacific plate rotated clockwise 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle. Suggestions are also made for future directions of the seismological research of subduction zones.
Record of massive upwellings from the Pacific large low shear velocity province
NASA Astrophysics Data System (ADS)
Madrigal, Pilar; Gazel, Esteban; Flores, Kennet E.; Bizimis, Michael; Jicha, Brian
2016-11-01
Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ~10-20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Hongsheng; Zhang, Li
Recent advances in experimental techniques and data processing allow in situ determination of mineral crystal structure and chemistry up to Mbar pressures in a laser-heated diamond anvil cell (DAC), providing the fundamental information of the mineralogical constitution of our Earth's interior. This work highlights several recent breakthroughs in the field of high-pressure mineral crystallography, including the stability of bridgmanite, the single-crystal structure studies of post-perovskite and H-phase as well as the identification of hydrous minerals and iron oxides in the deep lower mantle. The future development of high-pressure crystallography is also discussed.
Isotopic Evidence For Chaotic Imprint In The Upper Mantle Heterogeneity
NASA Astrophysics Data System (ADS)
Armienti, P.; Gasperini, D.
2006-12-01
Heterogeneities of the asthenospheric mantle along mid-ocean ridges have been documented as the ultimate effect of complex processes dominated by temperature, pressure and composition of the shallow mantle, in a convective regime that involves mass transfer from the deep mantle, occasionally disturbed by the occurrence of hot spots (e.g. Graham et al., 2001; Agranier et al., 2005; Debaille et al., 2006). Alternatively, upper mantle heterogeneity is seen as the natural result of basically athermal processes that are intrinsic to plate tectonics, such as delamination and recycling of continental crust and of subducted aseismic ridges (Meibom and Anderson, 2003; Anderson, 2006). Here we discuss whether the theory of chaotic dynamical systems applied to isotopic space series along the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) can delimit the length-scale of upper mantle heterogeneities, then if the model of marble-cake mantle (Allègre and Turcotte, 1986) is consistent with a fractal distribution of such heterogeneity. The correlations between the isotopic (Sr, Nd, Hf, Pb) composition of MORB were parameterized as a function of the ridge length. We found that the distribution of isotopic heterogenity along both the MAR and EPR is self- similar in the range of 7000-9000 km. Self-similarity is the imprint of chaotic mantle processes. The existence of strange attractors in the distribution of isotopic composition of the asthenosphere sampled at ridge crests reveals recursion of the same mantle process(es), endured over long periods of time, up to a stationary state. The occurrence of the same fractal dimension for both the MAR and EPR implies independency of contingent events, suggesting common mantle processes, on a planetary scale. We envisage the cyclic route of "melting, melt extraction and recycling" as the main mantle process which could be able to induce scale invariance. It should have happened for a significant number of times over the Earth's mantle history before it acquired a chaotic structure, thus calling for ancient mantle events. The dimension of 7000 km might be related to the common size of the mantle region which has been affected by these processes.
Mantle temperature under drifting deformable continents during the supercontinent cycle
NASA Astrophysics Data System (ADS)
Yoshida, Masaki
2013-04-01
The thermal heterogeneity of the Earth's mantle under the drifting continents during a supercontinent cycle is a controversial issue in earth science. Here, a series of numerical simulations of mantle convection are performed in 3D spherical-shell geometry, incorporating drifting deformable continents and self-consistent plate tectonics, to evaluate the subcontinental mantle temperature during a supercontinent cycle. Results show that the laterally averaged temperature anomaly of the subcontinental mantle remains within several tens of degrees (±50 °C) throughout the simulation time. Even after the formation of the supercontinent and the development of subcontinental plumes due to the subduction of the oceanic plates, the laterally averaged temperature anomaly of the deep mantle under the continent is within +10 °C. This implies that there is no substantial temperature difference between the subcontinental and suboceanic mantles during a supercontinent cycle. The temperature anomaly immediately beneath the supercontinent is generally positive owing to the thermal insulation effect and the active upwelling plumes from the core-mantle boundary. In the present simulation, the formation of a supercontinent causes the laterally averaged subcontinental temperature to increase by a maximum of 50 °C, which would produce sufficient tensional force to break up the supercontinent. The periodic assembly and dispersal of continental fragments, referred to as the supercontinent cycle, bear close relation to the evolution of mantle convection and plate tectonics. Supercontinent formation involves complex processes of introversion, extroversion or a combination of these in uniting dispersed continental fragments, as against the simple opening and closing of individual oceans envisaged in Wilson cycle. In the present study, I evaluate supercontinent processes in a realistic mantle convection regime. Results show that the assembly of supercontinents is accompanied by a combination of introversion and extroversion processes. The regular periodicity of the supercontinent cycles observed in previous 2D and 3D simulation models with rigid nondeformable continents is not confirmed. The small-scale thermal heterogeneity is dominated in deep mantle convection during the supercontinent cycle, although the large-scale, active upwelling plumes intermittently originate under drifting continents and/or the supercontinent. Results suggest that active subducting cold plates along continental margins generate thermal heterogeneity with short-wavelength structures, which is consistent with the thermal heterogeneity in the present-day mantle convection inferred from seismic tomography models. References: [1] Yoshida, M. Mantle temperature under drifting deformable continents during the supercontinent cycle, Geophys. Res. Lett., 2013, in press. [2] Yoshida, M. and M. Santosh, Mantle convection modeling of supercontinent cycle: Introversion, extroversion, or combination?, 2013, submitted.
NASA Technical Reports Server (NTRS)
Zhang, Shuxia; Yuen, David A.
1988-01-01
A common assumption in modeling dynamical processes in the lower mantle is that both the thermal expansivity and thermal conductivity are reasonably constant. Recent work from seismic equation of state leads to substantially higher values for the thermal conductivity and much lower thermal expansivity values in the deep mantle. The dynamical consequences of incorporating depth-dependent thermodynamic properties on the thermal-mechanical state of the lower mantle are examined with the spherical-shell mean-field equations. It is found that the thermal structure of the seismically resolved anomalous zone at the base of the mantle is strongly influenced by these variable properties and, in particular, that the convective distortion of the core-mantle boundary (CMB) is reduced with the decreasing thermal expansivity. Such a reduction of the dynamically induced topography from pure thermal convection would suggest that some other dynamical mechanism must be operating at the CMB.
Origin of geochemical mantle components: Role of spreading ridges and thermal evolution of mantle
NASA Astrophysics Data System (ADS)
Kimura, Jun-Ichi; Gill, James B.; van Keken, Peter E.; Kawabata, Hiroshi; Skora, Susanne
2017-02-01
We explore the element redistribution at mid-ocean ridges (MOR) using a numerical model to evaluate the role of decompression melting of the mantle in Earth's geochemical cycle, with focus on the formation of the depleted mantle component. Our model uses a trace element mass balance based on an internally consistent thermodynamic-petrologic computation to explain the composition of MOR basalt (MORB) and residual peridotite. Model results for MORB-like basalts from 3.5 to 0 Ga indicate a high mantle potential temperature (Tp) of 1650-1500°C during 3.5-1.5 Ga before decreasing gradually to ˜1300°C today. The source mantle composition changed from primitive (PM) to depleted as Tp decreased, but this source mantle is variable with an early depleted reservoir (EDR) mantle periodically present. We examine a two-stage Sr-Nd-Hf-Pb isotopic evolution of mantle residues from melting of PM or EDR at MORs. At high-Tp (3.5-1.5 Ga), the MOR process formed extremely depleted DMM. This coincided with formation of the majority of the continental crust, the subcontinental lithospheric mantle, and the enriched mantle components formed at subduction zones and now found in OIB. During cooler mantle conditions (1.5-0 Ga), the MOR process formed most of the modern ocean basin DMM. Changes in the mode of mantle convection from vigorous deep mantle recharge before ˜1.5 Ga to less vigorous afterward is suggested to explain the thermochemical mantle evolution.
Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2
Maeda, Fumiya; Ohtani, Eiji; Kamada, Seiji; Sakamaki, Tatsuya; Hirao, Naohisa; Ohishi, Yasuo
2017-01-01
Diamond is an evidence for carbon existing in the deep Earth. Some diamonds are considered to have originated at various depth ranges from the mantle transition zone to the lower mantle. These diamonds are expected to carry significant information about the deep Earth. Here, we determined the phase relations in the MgCO3-SiO2 system up to 152 GPa and 3,100 K using a double sided laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. MgCO3 transforms from magnesite to the high-pressure polymorph of MgCO3, phase II, above 80 GPa. A reaction between MgCO3 phase II and SiO2 (CaCl2-type SiO2 or seifertite) to form diamond and MgSiO3 (bridgmanite or post-perovsktite) was identified in the deep lower mantle conditions. These observations suggested that the reaction of the MgCO3 phase II with SiO2 causes formation of super-deep diamond in cold slabs descending into the deep lower mantle. PMID:28084421
Preface: Deep Slab and Mantle Dynamics
NASA Astrophysics Data System (ADS)
Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.
2010-11-01
We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep mantle and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.
Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling
NASA Astrophysics Data System (ADS)
Ruh, J. B.; Le Pourhiet, L.; Agard, Ph.; Burov, E.; Gerya, T.
2015-10-01
Multikilometer-sized slivers of high-pressure low-temperature metamorphic oceanic crust and mantle are observed in many mountain belts. These blueschist and eclogite units were detached from the descending plate during subduction. Large-scale thermo-mechanical numerical models based on finite difference marker-in-cell staggered grid technique are implemented to investigate slicing processes that lead to the detachment of oceanic slivers and their exhumation before the onset of the continental collision phase. In particular, we investigate the role of the serpentinized subcrustal slab mantle in the mechanisms of shallow and deep crustal slicing. Results show that spatially homogeneous serpentinization of the sub-Moho slab mantle leads to complete accretion of oceanic crust within the accretionary wedge. Spatially discontinuous serpentinization of the slab mantle in form of unconnected patches can lead to shallow slicing of the oceanic crust below the accretionary wedge and to its deep slicing at mantle depths depending on the patch length, slab angle, convergence velocity and continental geothermal gradient. P-T paths obtained in this study are compared to natural examples of shallow slicing of the Crescent Terrane below Vancouver Island and deeply sliced crust of the Lago Superiore and Saas-Zermatt units in the Western Alps.
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9).
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-03-15
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab's fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.
Development of diapiric structures in the upper mantle due to phase transitions
NASA Technical Reports Server (NTRS)
Liu, M.; Yuen, D. A.; Zhao, W.; Honda, S.
1991-01-01
Solid-state phase transition in time-dependent mantle convection can induce diapiric flows in the upper mantle. When a deep mantle plume rises toward phase boundaries in the upper mantle, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower mantle may control the fate of deep mantle plumes, allowing hot plumes to go through and retarding the tepid ones.
Jephcoat, Andrew P; Bouhifd, M Ali; Porcelli, Don
2008-11-28
The present state of the Earth evolved from energetic events that were determined early in the history of the Solar System. A key process in reconciling this state and the observable mantle composition with models of the original formation relies on understanding the planetary processing that has taken place over the past 4.5Ga. Planetary size plays a key role and ultimately determines the pressure and temperature conditions at which the materials of the early solar nebular segregated. We summarize recent developments with the laser-heated diamond anvil cell that have made possible extension of the conventional pressure limit for partitioning experiments as well as the study of volatile trace elements. In particular, we discuss liquid-liquid, metal-silicate (M-Sil) partitioning results for several elements in a synthetic chondritic mixture, spanning a wide range of atomic number-helium to iodine. We examine the role of the core as a possible host of both siderophile and trace elements and the implications that early segregation processes at deep magma ocean conditions have for current mantle signatures, both compositional and isotopic. The results provide some of the first experimental evidence that the core is the obvious replacement for the long-sought, deep mantle reservoir. If so, they also indicate the need to understand the detailed nature and scale of core-mantle exchange processes, from atomic to macroscopic, throughout the age of the Earth to the present day.
Seismic structure and lithospheric rheology from deep crustal xenoliths, central Montana, USA
NASA Astrophysics Data System (ADS)
Mahan, K. H.; Schulte-Pelkum, V.; Blackburn, T. J.; Bowring, S. A.; Dudas, F. O.
2012-10-01
Improved resolution of lower crustal structure, composition, and physical properties enhances our understanding and ability to model tectonic processes. The cratonic core of Montana and Wyoming, USA, contains some of the most enigmatic lower crust known in North America, with a high seismic velocity layer contributing to as much as half of the crustal column. Petrological and physical property data for xenoliths in Eocene volcanic rocks from central Montana provide new insight into the nature of the lower crust in this region. Inherent heterogeneity in xenoliths derived from depths below ˜30 km support a composite origin for the deep layer. Possible intralayer velocity steps may complicate the seismic definition of the crust/mantle boundary and interpretations of crustal thickness, particularly when metasomatized upper mantle is considered. Mafic mineral-dominant crustal xenoliths and published descriptions of mica-bearing peridotite and pyroxenite xenoliths suggest a strong lower crust overlying a potentially weaker upper mantle.
On the deep-mantle origin of the Deccan Traps
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro M.
2017-02-01
The Deccan Traps in west-central India constitute one of Earth’s largest continental flood basalt provinces, whose eruption played a role in the Cretaceous-Paleogene extinction event. The unknown mantle structure under the Indian Ocean at the start of the Cenozoic presents a challenge for connecting the event to a deep mantle origin. We used a back-and-forth iterative method for time-reversed convection modeling, which incorporates tomography-based, present-day mantle heterogeneity to reconstruct mantle structure at the start of the Cenozoic. We show a very low-density, deep-seated upwelling that ascends beneath the Réunion hot spot at the time of the Deccan eruptions. We found a second active upwelling below the Comores hot spot that likely contributed to the region of partial melt feeding the massive eruption.
NASA Astrophysics Data System (ADS)
Yuen, D. A.; Shahnas, M. H.; De Hoop, M. V.; Pysklywec, R.
2016-12-01
The broad, slow seismic anomalies under Africa and Pacific cannot be explained without ambiguity. There is no well-established theory to explain the fast structures prevalent globally in seismic tomographic images that are commonly accepted to be the remnants of fossil slabs at different depths in the mantle. The spin transition from high spin to low spin in iron in ferropericlase and perovskite, two major constituents of the lower mantle can significantly impact their physical properties. We employ high resolution 2D-axisymmetric and 3D-spherical control volume models to reconcile the influence of the spin transition-induced anomalies in density, thermal expansivity, and bulk modulus in ferropericlase and perovskite on mantle dynamics. The model results reveal that the spin transition effects increase the mixing in the lower regions of mantle. Depending on the changes of bulk modulus associated with the spin transition, these effects may also cause both stagnation of slabs and rising plumes at mid-mantle depths ( 1600 km). The stagnation may be followed by downward or upward penetration of cold or hot mantle material, respectively, through an avalanche process. The size of these mid-mantle plumes reaches 1500 km across with a radial velocity reaching 20 cm/yr near the seismic transition zone and plume heads exceeding 2500 km across. We will employ a deep-learning algorithm to formulate this challenge as a classification problem where modelling/computation aids in the learning stage for detecting the particular patterns.The parameters based on which the convection models are developed are poorly constrained. There are uncertainties in initial conditions, heterogeneities and boundary conditions in the simulations, which are nonlinear. Thus it is difficult to reconstruct the past configuration over long time scales. In order to extract information and better understand the parameters in mantle convection, we employ deep learning algorithm to search for different patterns of developed in the ensemble of thousands of time-dependent mantle convection runs involving a history on the order of hundred million years. This new and disruptive strategy used in Big Data is necessary because no human mind can recall the details of thousands of runs and makes sense of them.
The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)
NASA Astrophysics Data System (ADS)
Morgan, Jason P.
2016-04-01
The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for discrepancies between idealized plume/hotspot models and geochronological observations will also be briefly discussed. A further consequence of the existence of strong deep mantle plumes is that hot plume material should preferentially pond at the base of the lithosphere, draining towards and concentrating beneath the regions where the lithosphere is thinnest, and asthenosphere is being actively consumed to make new tectonic plates - mid-ocean ridges. This plume-fed asthenosphere hypothesis makes predictions for the structure of asthenosphere flow and anisotropy, patterns of continental edge-volcanism linked to lateral plume drainage at continental margins, patterns of cratonic uplift and subsidence linked to passage from hotter plume-influenced to cooler non-plume-influenced regions of the upper mantle, and variable non-volcanic versus volcanic modes of continental extension linked to rifting above '~1425K cool normal mantle' versus 'warm plume-fed asthenosphere' regions of upper mantle. These will be briefly discussed. My take-home message is that "Mantle Plumes are almost certainly real". You can safely bet they will be part of any successful paradigm for the structure of mantle convection. While more risky, I would also recommend betting on the potential reality of the paradigm of a plume-fed asthenosphere. This is still a largely unexplored subfield of mantle convection. Current observations remain very imperfect, but seem more consistent with a plume-fed asthenosphere than with alternatives, and computational and geochemical advances are making good, falsifiable tests increasingly feasible. Make one!
Record of massive upwellings from the Pacific large low shear velocity province
Madrigal, Pilar; Gazel, Esteban; Flores, Kennet E.; Bizimis, Michael; Jicha, Brian
2016-01-01
Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ∼10–20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption. PMID:27824054
The thermochemical structure and evolution of Earth's mantle: constraints and numerical models.
Tackley, Paul J; Xie, Shunxing
2002-11-15
Geochemical observations place several constraints on geophysical processes in the mantle, including a requirement to maintain several distinct reservoirs. Geophysical constraints limit plausible physical locations of these reservoirs to a thin basal layer, isolated deep 'piles' of material under large-scale mantle upwellings, high-viscosity blobs/plums or thin strips throughout the mantle, or some combination of these. A numerical model capable of simulating the thermochemical evolution of the mantle is introduced. Preliminary simulations are more differentiated than Earth but display some of the proposed thermochemical processes, including the generation of a high-mu mantle reservoir by recycling of crust, and the generation of a high-(3)He/(4)He reservoir by recycling of residuum, although the resulting high-(3)He/(4)He material tends to aggregate near the top, where mid-ocean-ridge melting should sample it. If primitive material exists as a dense basal layer, it must be much denser than subducted crust in order to retain its primitive (e.g. high-(3)He) signature. Much progress is expected in the near future.
Implication of Broadband Dispersion Measurements in Constraining Upper Mantle Velocity Structures
NASA Astrophysics Data System (ADS)
Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Darbyshire, F. A.; Dosso, S. E.; Gosselin, J. M.; Spence, G.
2017-12-01
Dispersion measurements from earthquake (EQ) data are traditionally inverted to obtain 1-D shear-wave velocity models, which provide information on deep earth structures. However, in many cases, EQ-derived dispersion measurements lack short-period information, which theoretically should provide details of shallow structures. We show that in at least some cases short-period information, such as can be obtained from ambient seismic noise (ASN) processing, must be combined with EQ dispersion measurements to properly constrain deeper (e.g. upper-mantle) structures. To verify this, synthetic dispersion data are generated using hypothetical velocity models under four scenarios: EQ only (with and without deep low-velocity layers) and combined EQ and ASN data (with and without deep low-velocity layers). The now "broadband" dispersion data are inverted using a trans-dimensional Bayesian framework with the aim of recovering the initial velocity models and assessing uncertainties. Our results show that the deep low-velocity layer could only be recovered from the inversion of the combined ASN-EQ dispersion measurements. Given this result, we proceed to describe a method for obtaining reliable broadband dispersion measurements from both ASN and EQ and show examples for real data. The implication of this study in the characterization of lithospheric and upper mantle structures, such as the Lithosphere-Asthenosphere Boundary (LAB), is also discussed.
NASA Astrophysics Data System (ADS)
Bunge, H.; Schuberth, B. S.; Shephard, G. E.; Müller, D.
2010-12-01
Plate and plume flow are dominant modes of mantle convection, as pointed out by Geoff Davies early on. Driven, respectively, from a cold upper and a hot lower thermal boundary layer these modes are now sufficiently well imaged by seismic tomographers to exploit the thermal boundary layer concept as an effective tool in exploring two long standing geodynamic problems. One relates to the choice of an absolute reference frame in plate tectonic reconstructions. Several absolute reference frames have been proposed over the last decade, including those based on hotspot tracks displaying age progression and assuming either fixity or motion, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid versions. Each reference frame implies a particular history of the location of subduction zones through time and thus the evolution of mantle heterogeneity via mixing of subducted slab material in the mantle. Here we compare five alternative absolute plate motion models in terms of their consequences for deep mantle structure. Taking global paleo-plate boundaries and plate velocities back to 140 Ma derived from the new plate tectonic reconstruction software GPlates and assimilating them into vigorous 3-D spherical mantle circulation models, we infer geodynamic mantle heterogeneity and compare it to seismic tomography for each absolute rotation model. We also focus on the challenging problem of interpreting deep mantle seismic heterogeneity in terms of thermal and compositional variations. Using published thermodynamically self-consistent mantle mineralogy models in the pyrolite composition, we find strong plume flux from the CMB, with a high temperature contrast (on the order of 1000 K) across the lower thermal boundary layer is entirely sufficient to explain elastic heterogeneity in the deep mantle for a number of quantitative measures. A high excess temperatures of +1000--1500 K for plumes in the lowermost mantle is particularly important in understanding the strong seismic velocity reduction mapped by tomography in low-velocity bodies of the deep mantle, as this produces significant negative anomalies of shear wave velocity of up to -4%. We note, however, that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case. Our results provide important constraints for the integration of plate tectonics and mantle dynamics and their use in forward and inverse geodynamic mantle models.
Majorite-Garnet Partitioning of the Highly Siderophile Elements: New Results and Application to Mars
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Righter, K.; Waeselmann, N.; Humayun, M.
2015-01-01
HSE and Os isotopes are used to constrain processes such as accretion, mantle evolution, crustal recycling, and core-mantle mixing, and to constrain the timing and depth of differentiation of Mars. Although showed that the HSE contents of the martian mantle could have been established by metal-silicate equilibrium in early Mars, the role of a cooling magma ocean and associated crystallization in further fractionating the HSEs is unclear. Garnet is thought to have played an important role in controlling trace element concentrations in the martian mantle reservoirs. However, testing these models, including Os isotopes, has been hindered by a dearth of partitioning data for the HSE in deep mantle phases - majorite, wadsleyite, ringwoodite, akimotoite - that may be present in the martian mantle. We examine the partitioning behavior of HSEs between majorite garnet (gt), olivine (oliv), and silicate liquid (melt).
40K-(40)Ar constraints on recycling continental crust into the mantle
Coltice; Albarede; Gillet
2000-05-05
Extraction of potassium into magmas and outgassing of argon during melting constrain the relative amounts of potassium in the crust with respect to those of argon in the atmosphere. No more than 30% of the modern mass of the continents was subducted back into the mantle during Earth's history. It is estimated that 50 to 70% of the subducted sediments are reincorporated into the deep continental crust. A consequence of the limited exchange between the continental crust and the upper mantle is that the chemistry of the upper mantle is driven by exchange of material with the deep mantle.
On the deep-mantle origin of the Deccan Traps.
Glišović, Petar; Forte, Alessandro M
2017-02-10
The Deccan Traps in west-central India constitute one of Earth's largest continental flood basalt provinces, whose eruption played a role in the Cretaceous-Paleogene extinction event. The unknown mantle structure under the Indian Ocean at the start of the Cenozoic presents a challenge for connecting the event to a deep mantle origin. We used a back-and-forth iterative method for time-reversed convection modeling, which incorporates tomography-based, present-day mantle heterogeneity to reconstruct mantle structure at the start of the Cenozoic. We show a very low-density, deep-seated upwelling that ascends beneath the Réunion hot spot at the time of the Deccan eruptions. We found a second active upwelling below the Comores hot spot that likely contributed to the region of partial melt feeding the massive eruption. Copyright © 2017, American Association for the Advancement of Science.
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-01-01
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle. PMID:28295018
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)
NASA Astrophysics Data System (ADS)
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-03-01
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.
Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere
NASA Astrophysics Data System (ADS)
Kirby, Stephen H.; Stein, Seth; Okal, Emile A.; Rubie, David C.
1996-05-01
Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine → spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge transforms to denser spinel, favoring the subsequent sinking of the slab into the lower mantle.
Radiative conductivity and abundance of post-perovskite in the lowermost mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobanov, Sergey S.; Holtgrewe, Nicholas; Lin, Jung-Fu
Thermal conductivity of the lowermost mantle governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure–temperature conditions of Earth's core–mantle boundary. Here we determine the radiative conductivity of post-perovskite at near core–mantle boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (~1.1 W/m/K) is almost two times smaller than that of bridgmanite (~2.0 W/m/K) at the base of the mantle. By combining this result with the present-day core–mantle heat flow and availablemore » estimations on the lattice thermal conductivity we conclude that post-perovskite is at least as abundant as bridgmanite in the lowermost mantle which has profound implications for the dynamics of the deep Earth.« less
Radiative conductivity and abundance of post-perovskite in the lowermost mantle
NASA Astrophysics Data System (ADS)
Lobanov, Sergey S.; Holtgrewe, Nicholas; Lin, Jung-Fu; Goncharov, Alexander F.
2017-12-01
Thermal conductivity of the lowermost mantle governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure-temperature conditions of Earth's core-mantle boundary. Here we determine the radiative conductivity of post-perovskite at near core-mantle boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (∼1.1 W/m/K) is almost two times smaller than that of bridgmanite (∼2.0 W/m/K) at the base of the mantle. By combining this result with the present-day core-mantle heat flow and available estimations on the lattice thermal conductivity we conclude that post-perovskite is at least as abundant as bridgmanite in the lowermost mantle which has profound implications for the dynamics of the deep Earth.
Single-crystal structure determination of hydrous minerals and insights into a wet deep lower mantle
NASA Astrophysics Data System (ADS)
Zhang, L.; Yuan, H.; Meng, Y.; Popov, D.
2017-12-01
Water enters the Earth's interior through hydrated subducting slabs. How deep within the lower mantle (670-2900 km depth) can water be transported down and stored depends upon the availability of hydrous phases that is thermodynamically stable under the high P-T conditions and have a sufficiently high density to sink through the lower mantle. Phase H [MgSiH2O4] (1) and the δ-AlOOH (2) form solid solutions that are stable in the deep lower mantle (3), but the solid solution phase is 10% lighter than the corresponding lower mantle. Recent experimental discoveries of the pyrite (Py) structured FeO2 and FeOOH (4-6) suggest that these Fe-enriched phases can be transported to the deepest lower mantle owing to their high density. We have further discovered a very dense hydrous phase in (Fe,Al)OOH with a previously unknown hexagonal symmetry and this phase is stable relative to the Py-phase under extreme high P-T conditions in the deep lower mantle. Through in situ multigrain analysis (7) and single-crystal structure determination of the hydrous minerals at P-Tconditions of the deep lower mantle, we can obtain detailed structure information of the hydrous phases and therefore provide insights into the hydration mechanism in the deep lower mantle. These highly stable hydrous minerals extend the water cycle at least to the depth of 2900 km. 1. M. Nishi et al., Nature Geoscience 7, 224-227 (2014). 2. E. Ohtani, K. Litasov, A. Suzuki, T. Kondo, Geophysical Research Letters 28, 3991-3993 (2001). 3. I. Ohira et al., Earth and Planetary Science Letters 401, 12-17 (2014). 4. Q. Hu et al., Proceedings of the National Academy of Sciences of the United States of America 114, 1498-1501 (2017). 5. M. Nishi, Y. Kuwayama, J. Tsuchiya, T. Tsuchiya, Nature 547, 205-208 (2017). 6. Q. Hu et al., Nature 534, 241-244 (2016). 7. L. Zhang et al., American Mineralogist 101, 231-234 (2016).
Numerical modelling of volatiles in the deep mantle
NASA Astrophysics Data System (ADS)
Eichheimer, Philipp; Thielmann, Marcel; Golabek, Gregor J.
2017-04-01
The transport and storage of water in the mantle significantly affects several material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.). The processes driving transport and circulation of H2O in subduction zones remain a debated topic. Geological and seismological observations suggest different inflow mechanisms of water e.g. slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017), followed by dehydration of the slab. On Earth both shallow and steep subduction can be observed (Li et al., 2011). However most previous models (van Keken et al., 2008; Wilson et al., 2014) did not take different dip angles and subduction velocities of slabs into account. To which extent these parameters and processes influence the inflow of water still remains unclear. We present 2D numerical models simulating the influence of the various water inflow mechanisms on the mantle with changing dip angle and subduction velocity of the slab over time. The results are used to make predictions regarding the rheological behavior of the mantle wedge, dehydration regimes and volcanism at the surface. References: van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Wilson, C. R., et al. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401, 261-274 (2014). Li, Z. H., Z. Q. Xu, and T. V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011).
NASA Astrophysics Data System (ADS)
Sharkov, E. V.
2015-12-01
Lower crustal xenoliths occurred in the Middle Cretaceous lamprophyre diatremes in Jabel Ansaria (Western Syria) (Sharkov et al., 1992). They are represented mainly garnet granulites and eclogite-like rocks, which underwent by deformations and retrograde metamorphism, and younger fresh pegmatoid garnet-kaersutite-clinopyroxene (Al-Ti augite) rocks; mantle peridotites are absent in these populations. According to mineralogical geothermobarometers, forming of garnet-granulite suite rocks occurred under pressure 13.5-15.4 kbar (depths 45-54 kn) and temperature 965-1115oC. At the same time, among populations of mantle xenoliths in the Late Cenozoic platobasalts of the region, quite the contrary, lower crustal xenoliths are absent, however, predominated spinel lherzolites (fragments of upper cooled rim of a plume head), derived from the close depths (30-40 km: Sharkov, Bogatikov, 2015). From this follows that ancient continental crust was existed here even in the Middle Cretaceous, but in the Late Cenozoic was removed by extended mantle plume head; at that upper sialic crust was not involved in geomechanic processes, because Precambrian metamorphic rocks survived as a basement for Cambrian to Cenozoic sedimentary cover of Arabian platform. In other words, though cardinal rebuilding of deep-seated structure of the region occurred in the Late Cenozoic but it did not affect on the upper shell of the ancient lithosphere. Because composition of mantle xenolithis in basalts is practically similar worldwide, we suggest that deep-seated processes are analogous also. As emplacement of the mantle plume heads accompanied by powerful basaltic magmatism, very likely that range of lower (mafic) continental crust existence is very convenient for extension of plume heads and their adiabatic melting. If such level, because of whatever reasons, was not reached, melting was limited but appeared excess of volatile matters which led to forming of lamprophyre or even kimberlite.
High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier
Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.
2015-01-06
In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO 3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO 3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO 2, the occurrence of the tetrahedrally-coordinated carbonates based on CO 4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO 3 carbonates upmore » to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO 3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less
Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan
2016-06-29
The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.
NASA Astrophysics Data System (ADS)
Osei Tutu, A.; Webb, S. J.; Steinberger, B. M.; Rogozhina, I.
2017-12-01
The debate about the origin of the highlands in southern African has generated varying hypothesis, since the nominal processes for mountain building such as evidence of orogeny is not observed here at present-day. For example, some studies have suggested a pre-Paleozoic subduction under the southern Africa plate, might have caused the high topography, whiles other have proposed a large-scale buoyant flow coming from the mid-mantle over the African Large Low Share Velocity Province (LLSVP) as the source. A different school of thought is centered on a probable plume-lithosphere interaction in the early Miocene to late Pliocene. Using joint analysis of geodynamics and geophysical models with geological records; we seek to quantify both shallow and deep mantle density heterogeneities and viscosity structure to understand the tectonics of the southern Africa regional topography. We estimate uplift rates and change in lithosphere stress field for the past 200 Ma and compare with geological records considering first only shallow and deep contributions and their combined effect using a thermo-mechanical model with a free surface.
Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan
2016-01-01
The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861
NASA Astrophysics Data System (ADS)
Lin, J. F.; Yang, J.; Fu, S.
2017-12-01
Elasticity of the candidate lower-mantle minerals at relevant P-T conditions of the region provides critical information in understanding seismic profiles, compositional and mineralogical models, and geodynamic processes of the Earth's interior. Here we will discuss recent major research advances in the investigation of the elasticity of major lower-mantle minerals in a high-pressure diamond anvil cell coupled with Brillouin Light Scattering, Impulsive Stimulated Scattering (ISS), and X-ray diffraction. These have permitted direct and reliable measurements of both Vp and Vs to derive full elastic constants of single-crystal ferropericlase and (Fe, Al)-bearing bridgmanite as well as velocity profiles of polycrystalline silicate post-perovskite at relevant lower-mantle pressures. The effects of the spin transition on the single-crystal elasticity of ferropericlase are now well understood experimentally and theoretically1,2: the spin transition causes drastic softening in elastic constants involving the compressive stress component (C11 and C12) due to the additional Gibbs free energy term arising from the mixing of the high-spin and low-spin states, while the elastic constant(s) related to the shear stress component (C44) is not affected. This leads to significant reduction in VP/VS ratio within the spin transition of ferropericlase in the mid-lower mantle. The derived single-crystal Cij of bridgmanite at lower mantle pressures display relatively small elastic Vp and Vs anisotropies as compared to the ferropericlase counterpart. Using thermoelastic modelling, we will discuss the application of the elasticity of ferropericlase, bridgmanite, and silicate post-perovskite at relevant conditions of the Earth's lower mantle to differentiate the role of the thermal vs. chemical perturbations as well as the spin transition and iron partitioning effects in the reported seismic lateral heterogeneity in lower mantle as well as the D″ zone region3,4. We will address how recent elasticity results are applied to advance our understanding of seismic structures, mineralogical models, and geodynamic processes of the deep Earth's interior. References: 1Yang et al., Sci. Rep., 2015; 2Fu et al., Phys. Rev. Lett., 2017; 3Yang et al., J. Geophys. Res., 2016; 4Wu et al., Nature Comm., 2017.
Numerical Mantle Convection Models With a Flexible Thermodynamic Interface
NASA Astrophysics Data System (ADS)
van den Berg, A. P.; Jacobs, M. H.; de Jong, B. H.
2001-12-01
Accurate material properties are needed for deep mantle (P,T) conditions in order to predict the longterm behavior of convection planetary mantles. Also the interpretation of seismological observations concerning the deep mantle in terms of mantle flow models calls for a consistent thermodynamical description of the basic physical parameters. We have interfaced a compressible convection code using the anelastic liquid approach based on finite element methods, to a database containing a full thermodynamic description of mantle silicates (Ita and King, J. Geophys. Res., 99, 15,939-15,940, 1994). The model is based on high resolution (P,T) tables of the relevant thermodynamic properties containing typically 50 million (P,T) table gridpoints to obtain resolution in (P,T) space of 1 K and an equivalent of 1 km. The resulting model is completely flexible such that numerical mantle convection experiments can be performed for any mantle composition for which the thermodynamic database is available. We present results of experiments for 2D cartesian models using a data base for magnesium-iron silicate in a pyrolitic composition (Stixrude and Bukowinski, Geoph.Monogr.Ser., 74, 131-142, 1993) and a recent thermodynamical model for magnesium silicate for the complete mantle (P,T) range, (Jacobs and Oonk, Phys. Chem. Mineral, 269, inpress 2001). Preliminary results of bulksound velocity distribution derived in a consistent way from the convection results and the thermodynamic database show a `realistic' mantle profile with bulkvelocity variations decreasing from several percent in the upper mantle to less than a percent in the deep lower mantle.
Experimental investigation of the stability of Fe-rich carbonates in the lower mantle
NASA Astrophysics Data System (ADS)
Boulard, E.; Menguy, N.; Auzende, A.; Benzerara, K.; Bureau, H.; Antonangeli, D.; Corgne, A.; Morard, G.; Siebert, J.; Perrillat, J.; Guyot, F. J.; Fiquet, G.
2011-12-01
Carbonates are the main C-bearing minerals that are transported deep in the Earth's mantle via subduction of the oceanic lithosphere [1]. The fate of carbonates at mantle conditions plays a key role in the deep carbon cycle. Decarbonation, melting or reduction of carbonates will affect the extent and the way carbon is recycled into the deep Earth. To clarify the fate of carbonates in the deep mantle, high-pressure high-temperature experiments were carried out up to 105 GPa and 2850 K on oxide assemblages of (Mg,Fe)O + CO2. The presence of Fe(II) in starting materials induces redox reactions from which Fe(II) is oxidized and a part of the carbon is reduced. This leads to an assemblage of magnetite, diamonds, and carbonates or, pressure depending, their newly discovered Fe(III)-bearing high-pressure polymorphs based on a silicate-like chemistry with tetrahedrally coordinated carbon [2]. Our results show the possibility for carbon to be recycled in the lowermost mantle and provide evidence of a possible coexistence of reduced and oxidized carbon at lower mantle conditions. [1] Sleep, N. H., and K. Zahnle (2001) J. Geophys. Res.-Planets 106(E1), 1373-1399. [2] Boulard et al. (2011) PNAS, 108, 5184-5187.
Artemieva, I.M.; Thybo, H.; Kaban, M.K.; ,
2006-01-01
We present a summary of geophysical models of the subcrustal lithosphere of Europe. This includes the results from seismic (reflection and refraction profiles, P- and S-wave tomography, mantle anisotropy), gravity, thermal, electromagnetic, elastic and petrological studies of the lithospheric mantle. We discuss major tectonic processes as reflected in the lithospheric structure of Europe, from Precambrian terrane accretion and subduction to Phanerozoic rifting, volcanism, subduction and continent-continent collision. The differences in the lithospheric structure of Precambrian and Phanerozoic Europe, as illustrated by a comparative analysis of different geophysical data, are shown to have both a compositional and a thermal origin. We propose an integrated model of physical properties of the European subcrustal lithosphere, with emphasis on the depth intervals around 150 and 250 km. At these depths, seismic velocity models, constrained by body-and surface-wave continent-scale tomography, are compared with mantle temperatures and mantle gravity anomalies. This comparison provides a framework for discussion of the physical or chemical origin of the major lithospheric anomalies and their relation to large-scale tectonic processes, which have formed the present lithosphere of Europe. ?? The Geological Society of London 2006.
NASA Astrophysics Data System (ADS)
Das, S.; Basu, A. R.
2017-12-01
Our recently discovered transition zone ( 410 - 660 Km) -derived peridotites in the Indus Ophiolite, Ladakh Himalaya [1] provide a unique opportunity to study changes in oxygen fugacity from shallow mantle beneath ocean ridges to mantle transition zone. We found in situ diamond, graphite pseudomorphs after diamond crystals, hydrocarbon (C - H) and hydrogen (H2) fluid inclusions in ultra-high pressure (UHP) peridotites that occur in the mantle - section of the Indus ophiolite and sourced from the mantle transition zone [2]. Diamond occurs as octahedral inclusion in orthoenstatite of one of these peridotites. The graphite pseudomorphs after diamond crystals and primary hydrocarbon (C-H), and hydrogen (H2) fluids are included in olivine of this rock. Hydrocarbon fluids are also present as inclusions in high pressure clinoenstatite (> 8 GPa). The association of primary hydrocarbon and hydrogen fluid inclusions in the UHP peridotites suggest that their source-environment was highly reduced at the base of the upper mantle. We suggest that during mantle upwelling beneath Neo Tethyan spreading center, the hydrocarbon fluid was oxidized and precipitated diamond. The smaller diamonds converted to graphite at shallower depth due to size, high temperature and elevated oxygen fugacity. This process explains how deep mantle upwelling can oxidize reduced fluid carried from the transition zone to produce H2O - CO2. The H2O - CO2 fluids induce deep melting in the source of the mid oceanic ridge basalts (MORB) that create the oceanic crust. References: [1] Das S, Mukherjee B K, Basu A R, Sen K, Geol Soc London, Sp 412, 271 - 286; 2015. [2] Das S, Basu A R, Mukherjee B K, Geology 45 (8), 755 - 758; 2017.
Primordial helium entrained by the hottest mantle plumes
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Konter, J. G.; Becker, T. W.
2017-02-01
Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet’s interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high 3He/4He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower 3He/4He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-3He/4He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-3He/4He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have 3He/4He values ranging from low to high, other hotspots exhibit only low 3He/4He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum 3He/4He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum 3He/4He ratios. We interpret the relationships between 3He/4He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes—which exhibit seismic low-velocity anomalies at depths of 200 kilometres—are more buoyant and entrain both high-3He/4He and low-3He/4He material. In contrast, cooler, less buoyant plumes do not entrain this high-3He/4He material. This can be explained if the high-3He/4He domain is denser than low-3He/4He mantle components hosted in plumes, and if high-3He/4He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-3He/4He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir.
Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle
NASA Astrophysics Data System (ADS)
Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.
2017-12-01
Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).
The deep Earth may not be cooling down
NASA Astrophysics Data System (ADS)
Andrault, Denis; Monteux, Julien; Le Bars, Michael; Samuel, Henri
2016-06-01
The Earth is a thermal engine generating the fundamental processes of geomagnetic field, plate tectonics and volcanism. Large amounts of heat are permanently lost at the surface yielding the classic view of the deep Earth continuously cooling down. Contrary to this conventional depiction, we propose that the temperature profile in the deep Earth has remained almost constant for the last ∼4.3 billion years. The core-mantle boundary (CMB) has reached a temperature of ∼4400 K in probably less than 1 million years after the Moon-forming impact, regardless the initial core temperature. This temperature corresponds to an abrupt increase in mantle viscosity atop the CMB, when ∼60% of partial crystallization was achieved, accompanied with a major decrease in heat flow at the CMB. Then, the deep Earth underwent a very slow cooling until it reached ∼4100 K today. This temperature at, or just below, the mantle solidus is suggested by seismological evidence of ultra-low velocity zones in the D;-layer. Such a steady thermal state of the CMB temperature excludes thermal buoyancy from being the predominant mechanism to power the geodynamo over geological time. An alternative mechanism to sustain the geodynamo is mechanical forcing by tidal distortion and planetary precession. Motions in the outer core are generated by the conversion of gravitational and rotational energies of the Earth-Moon-Sun system. Mechanical forcing remains efficient to drive the geodynamo even for a sub-adiabatic temperature gradient in the outer core. Our thermal model of the deep Earth is compatible with an average CMB heat flow of 3.0 to 4.7 TW. Furthermore, the regime of core instabilities and/or secular changes in the astronomical forces could have supplied the lowermost mantle with a heat source of variable intensity through geological time. Episodic release of large amounts of heat could have remelted the lowermost mantle, thereby inducing the dramatic volcanic events that occurred during the Earth's history. In this scenario, because the Moon is a necessary ingredient to sustain the magnetic field, the habitability on Earth appears to require the existence of a large satellite.
Lower plate serpentinite diapirism in the Calabrian Arc subduction complex.
Polonia, A; Torelli, L; Gasperini, L; Cocchi, L; Muccini, F; Bonatti, E; Hensen, C; Schmidt, M; Romano, S; Artoni, A; Carlini, M
2017-12-19
Mantle-derived serpentinites have been detected at magma-poor rifted margins and above subduction zones, where they are usually produced by fluids released from the slab to the mantle wedge. Here we show evidence of a new class of serpentinite diapirs within the external subduction system of the Calabrian Arc, derived directly from the lower plate. Mantle serpentinites rise through lithospheric faults caused by incipient rifting and the collapse of the accretionary wedge. Mantle-derived diapirism is not linked directly to subduction processes. The serpentinites, formed probably during Mesozoic Tethyan rifting, were carried below the subduction system by plate convergence; lithospheric faults driving margin segmentation act as windows through which inherited serpentinites rise to the sub-seafloor. The discovery of deep-seated seismogenic features coupled with inherited lower plate serpentinite diapirs, provides constraints on mechanisms exposing altered products of mantle peridotite at the seafloor long time after their formation.
Lasting mantle scars lead to perennial plate tectonics.
Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell
2016-06-10
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.
Lasting mantle scars lead to perennial plate tectonics
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-01-01
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541
Investigating melting induced mantle heterogeneities in plate driven mantle convection models
NASA Astrophysics Data System (ADS)
Price, M.; Davies, H.; Panton, J.
2017-12-01
Observations from geochemistry and seismology continue to suggest a range of complex heterogeneity in Earth's mantle. In the deep mantle, two large low velocity provinces (LLVPs) have been regularly observed in seismic studies, with their longevity, composition and density compared to the surrounding mantle debated. The cause of these observed LLVPs is equally uncertain, with previous studies advocating either thermal or thermo-chemical causes. There is also evidence that these structures could provide chemically distinct reservoirs within the mantle, with recent studies also suggesting there may be additional reservoirs in the mantle, such as bridgmanite-enriched ancient mantle structures (BEAMS). One way to test these hypotheses is using computational models of the mantle, with models that capture the full 3D system being both complex and computationally expensive. Here we present results from our global mantle model TERRA. Using our model, we can track compositional variations in the convecting mantle that are generated by self-consistent, evolving melting zones. Alongside the melting, we track trace elements and other volatiles which can be partitioned during melting events, and expelled and recycled at the surface. Utilising plate reconstruction models as a boundary condition, the models generate the tectonic features observed at Earth's surface, while also organising the lower mantle into recognisable degree-two structures. This results in our models generating basaltic `oceanic' crusts which are then brought into the mantle at tectonic boundaries, providing additional chemical heterogeneity in the mantle volume. Finally, by utilising thermodynamic lookup tables to convert the final outputs from the model to seismic structures, together with resolution filters for global tomography models, we are able to make direct comparisons between our results and observations. By varying the parameters of the model, we investigate a range of current hypotheses for heterogeneity in the mantle. Our work attempts to reconcile the many proposed current ideas for the deep mantle, giving additional insight from modelling on the latest observations from other Deep Earth disciplines.
Dehydrogenation of goethite in Earth’s deep lower mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qingyang; Kim, Duck Young; Liu, Jin
2017-01-31
The cycling of hydrogen influences the structure, composition, and stratification of Earth’s interior. Our recent discovery of pyrite-structured iron peroxide (designated as the P phase) and the formation of the P phase from dehydrogenation of goethite FeO 2H implies the separation of the oxygen and hydrogen cycles in the deep lower mantle beneath 1,800 km. Here we further characterize the residual hydrogen, x, in the P-phase FeO 2Hx. Using a combination of theoretical simulations and high-pressure–temperature experiments, we calibrated the x dependence of molar volume of the P phase. Within the current range of experimental conditions, we observed a compositionalmore » range of P phase of 0.39 < x < 0.81, corresponding to 19–61% dehydrogenation. Increasing temperature and heating time will help release hydrogen and lower x, suggesting that dehydrogenation could be approaching completion at the high-temperature conditions of the lower mantle over extended geological time. Our observations indicate a fundamental change in the mode of hydrogen release from dehydration in the upper mantle to dehydrogenation in the deep lower mantle, thus differentiating the deep hydrogen and hydrous cycles.« less
Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere
Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.
1996-01-01
Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge tra
NASA Astrophysics Data System (ADS)
Jean, M. M.; Falloon, T.; Gillis, K. M.
2014-12-01
We have acquired high-precision Pb-isotopic signatures of primitive lithologies (basalts/gabbros) recovered from IODP Expedition 345.The Hess Deep Rift, located in the vicinity of the Galapagos triple junction (Cocos, Nazca, and Pacific), is viewed as one the best-studied tectonic windows into fast-spreading crust because a relatively young (<1.5 Ma) cross section of oceanic crust. This allows for (1) characterization of the mantle source(s) at Hess Deep, (2) insight into the extent of isotopic homogeneity or heterogeneity in the area, and (3) constrain the relative contributions from the intruding Cocos-Nazca spreading center. The observed Pb-isotopic variation at Hess Deep covers almost the entire range of EPR MORB (10°N to -5°S). Hess Deep samples range from 208Pb (37.3-38.25), 207Pb (15.47-15.58), 206Pb (17.69-18.91). These compositions suggest that this part of Hess Deep mantle is no more isotopically homogeneous than EPR mantle. Two distinct arrays are also observed: 208Pb-enriched (r2=0.985; n=30) and 208Pb-depleted (r2=0.988; n=6). The 208Pb/204Pb isotopes indicates that the Pb-source for some of the samples at Hess Deep had very low Th/U ratios, whereas other areas around the Galapagos microplate seem to have more "normal" ratios. These trends are less apparent when viewed with 207Pb-isotopes. Instead, the majority of basalts and gabbros follow the NHRL, however, at the depleted-end of this array a negative excursion to more enriched compositions is observed. This negative but linear trend could signify an alteration trend or mixing with an EMI-type mantle source, yet this mixing is not observed with 208Pb. This trend is also observed at Pito Deep, which has similar origins to Hess Deep (Barker et al., 2008; Pollack et al., 2009). The Galapagos region has been considered a testing ground for mixing of HIMU, Enriched Mantle, and Depleted Mantle reservoirs (e.g., Schilling et al., 2002). According to our data, however, an EPR-component must also be considered. We model Hess Deep Pb-isotopes as a 4-component system. EPR-DM-EM comprise a 'local' reservoir, but the majority of samples contain a mixture of modified-HIMU-EM-EPR, a product of incoming plume material entrained within the Galapagos Spreading Center.
NASA Astrophysics Data System (ADS)
Bianchi, M. B. D.; Assumpcao, M.; Julià, J.
2017-12-01
The fate of the deep Nazca subducted plate is poorly mapped under stable South America. Transition zone thickness and position is greatly dependent on mantle temperature and so is influenced by the colder Nazca plate position. We use a database of 35,000 LQT deconvolved receiver function traces to image the mantle transition zone and other upper mantle discontinuities under different terranes of stable South American continent. Data from the entire Brazilian Seismographic Network database, consisting of more than 80 broadband stations supplemented by 35 temporary stations deployed in west Brazil, Argentina, Paraguay, Bolivia and Uruguay were processed. Our results indicates that upper mantle velocities are faster than average under stable cratons and that most of the discontinuities are positioned with small variations in respect to nominal depths, except in places were the Nazca plate interacts with the transition zone. Under the Chaco-Pantanal basin the Nazca plate appears to be trapped in the transition zone for more than 1000 km with variations of up to 30 km in 660 km discontinuity topography under this region consistent with global tomographic models. Additional results obtained from SS precursor analysis of South Sandwich Islands teleseismic events recorded at USArray stations indicates that variations of transition zones thickness occur where the Nazca plate interacts with the upper mantle discontinuities in the northern part of Stable South American continent.
Albarède, Francis; Van Der Hilst, Rob D
2002-11-15
We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced negative buoyancy and can more easily founder to the very base of the mantle. Plateau segregation remains statistical and no sharp compositional interface is expected from the multiple fate of the plates. We show that the variable depth subduction of heavily laden plates can prevent full vertical mixing and preserve a vertical concentration gradient in the mantle. In addition, it can account for the preservation of scattered remnants of primitive material in the deep mantle and therefore for the Ar and (3)He observations in ocean-island basalts.
Evidence for primordial water in Earth's deep mantle.
Hallis, Lydia J; Huss, Gary R; Nagashima, Kazuhide; Taylor, G Jeffrey; Halldórsson, Sæmundur A; Hilton, David R; Mottl, Michael J; Meech, Karen J
2015-11-13
The hydrogen-isotope [deuterium/hydrogen (D/H)] ratio of Earth can be used to constrain the origin of its water. However, the most accessible reservoir, Earth's oceans, may no longer represent the original (primordial) D/H ratio, owing to changes caused by water cycling between the surface and the interior. Thus, a reservoir completely isolated from surface processes is required to define Earth's original D/H signature. Here we present data for Baffin Island and Icelandic lavas, which suggest that the deep mantle has a low D/H ratio (δD more negative than -218 per mil). Such strongly negative values indicate the existence of a component within Earth's interior that inherited its D/H ratio directly from the protosolar nebula. Copyright © 2015, American Association for the Advancement of Science.
Flow in the Deep Mantle from Seisimc Anisotropy: Progress and Prospects
NASA Astrophysics Data System (ADS)
Long, M. D.
2017-12-01
Observations of seismic anisotropy, or the directional dependence of seismic wavespeeds, provide one some of the most direct constraints on the pattern of flow in the Earth's mantle. In particular, as our understanding of crystallographic preferred orientation (CPO) of olivine aggregates under a range of deformation conditions has improved, our ability to exploit observations of upper mantle anisotropy has led to fundamental discoveries about the patterns of flow in the upper mantle and the drivers of that flow. It has been a challenge, however, to develop a similar framework for understanding flow in the deep mantle (transition zone, uppermost lower mantle, and lowermost mantle), even though there is convincing observational evidence for seismic anisotropy at these depths. Recent progress on the observational front has allowed for an increasingly detailed view of mid-mantle anisotropy (transition zone and uppermost lower mantle), particularly in subduction systems, which may eventually lead to a better understanding of mid-mantle deformation and the dynamics of slab interaction with the surrounding mid-mantle. New approaches to the observation and modeling of lowermost mantle anisotropy, in combination with constraints from mineral physics, are progressing towards interpretive frameworks that allow for the discrimination of different mantle flow geometries in different regions of D". In particular, observational strategies that involve the use of multiple types of body wave phases sampled over a range of propagation azimuths enable detailed forward modeling approaches that can discriminate between different mechanisms for D" anisotropy (e.g., CPO of post-perovskite, bridgmanite, or ferropericlase, or shape preferred orientation of partial melt) and identify plausible anisotropic orientations. We have recently begun to move towards a full waveform modeling approach in this work, which allows for a more accurate simulation for seismic wave propagation. Ongoing improvements in seismic observational strategies, experimental and computational mineral physics, and geodynamic modeling approaches are leading to new avenues for understanding flow in the deep mantle through the study of seismic anisotropy.
NASA Astrophysics Data System (ADS)
Ogawa, Masaki
2018-02-01
To discuss how redistribution of heat producing elements (HPEs) by magmatism affects the lunar mantle evolution depending on the initial condition, I present two-dimensional numerical models of magmatism in convecting mantle internally heated by incompatible HPEs. Mantle convection occurs beneath a stagnant lithosphere that inhibits recycling of the HPE-enriched crustal materials to the mantle. Magmatism is modeled by a permeable flow of magma generated by decompression melting through matrix. Migrating magma transports heat, mass, and HPEs. When the deep mantle is initially hot with the temperature TD around 1800 K at its base, magmatism starts from the beginning of the calculated history to extract HPEs from the mantle. The mantle is monotonously cooled, and magmatism ceases within 2 Gyr, accordingly. When the deep mantle is initially colder with TD around 1100 K, HPEs stay in the deep mantle for a longer time to let the planet be first heated up and then cooled only slightly. If, in addition, there is an HPE-enriched domain in the shallow mantle at the beginning of the calculation, magma continues ascending to the surface through the domain for more than 3 Gyr. The low TD models fit in with the thermal and magmatic history of the Moon inferred from spacecraft observations, although it is not clear if the models are consistent with the current understanding of the origin of the Moon and its magnetic field. Redistribution of HPEs by magmatism is a crucial factor that must be taken into account in future studies of the evolution of the Moon.
Petrology of exhumed mantle rocks at passive margins: ancient lithosphere and rejuvenation processes
NASA Astrophysics Data System (ADS)
Müntener, Othmar; McCarthy, Anders; Picazo, Suzanne
2014-05-01
Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of chemical and isotopic upper mantle heterogeneity even on a local scale. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. These heterogeneities might comprise an (ancient?) subduction component. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and refertilization of the lithosphere and this process might well be at the origin of the difference between magma-poor and volcanic margins. Similar heterogeneity might be created in the oceanic lithosphere, in particular at slow to ultra-slow spreading ridges where the thermal boundary layer (TBM) is thick and may be veined with metasomatic assemblages that might be recycled in subduction zones. In this presentation, we provide a summary of mantle compositions from the European realm to show that inherited mantle signatures from previous orogenies play a key role on the evolution of rift systems and on the chemical diversity of peridotites exposed along passive margins and ultra-slow spreading ridges. Particularly striking is the abundance of plagioclase peridotites in the Alpine ophiolites that are interpreted as recorders of refertilization processes related to thinning and exhumation of mantle lithosphere. Another important result over the last 20 years was the discovery of extremely refractory Nd-isotopic compositions with highly radiogenic 147Sm/144Nd which indicates that partial melting processes and Jurassic magmatism in the Western Thetys are decoupled. Although the isotopic variability might be explained by mantle heterogeneities, an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes. The findings of the these refractory mantle rocks over the entire Western Alpine arc and the similarity in model ages of depletion suggests a connection to the Early Permian magmatic activity. Shallow and deep crustal magmatism in the Permian is widespread over Western Europe and the distribution of these mafic rocks are likely to pre-determine the future areas of crustal thinning and exhumation during formation of the Thethyan passive margins.
Early Earth differentiation [rapid communication
NASA Astrophysics Data System (ADS)
Walter, Michael J.; Trønnes, Reidar G.
2004-09-01
The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation ( t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal-melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10-15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally consistent with isotopic constraints for time-integrated Sm/Nd and Lu/Hf ratios in the modern upper mantle and might account for the characteristics of some mantle isotope reservoirs. Although much remains to be learned about the earliest formative period in the Earth's development, a convergence of theoretical, physical, isotopic and geochemical arguments is beginning to yield a self-consistent portrait of the infant Earth.
Water Distribution in the Continental and Oceanic Upper Mantle
NASA Technical Reports Server (NTRS)
Peslier, Anne H.
2015-01-01
Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the mantle derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from mantle xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the mantle root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic mantle, and questions whether xenoliths are representative of the whole cratonic mantle. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that mantle lithosphere is not enriched in water when it interacts with melts from deep mantle upwellings (plumes).
NASA Astrophysics Data System (ADS)
Hallis, L. J.; Huss, G. R.; Nagashima, K.; Taylor, J.; Hilton, D. R.; Mottl, M. J.; Meech, K. J.; Halldorsson, S. A.
2016-12-01
Experimentally based chemical models suggest Jeans escape could have caused an increase in Earth's atmospheric D/H ratio of between a factor of 2 and 9 since the planets formation1. Plate tectonic mixing ensures this change has been incorporated into the mantle. In addition, collisions with hydrogen bearing planetesimals or cometary material after Earth's accretion could have altered the D/H ratio of the planet's surface and upper mantle2. Therefore, to determine Earth's original D/H ratio, a reservoir that has been completely unaffected by these surface and upper mantle changes is required. Most studies suggest that high 3He/4He ratios in some OIBs indicate the existence of relatively undegassed regions in the deep mantle compared to the upper mantle, which retain a greater proportion of their primordial He3-4. Early Tertiary (60-million-year-old) picrites from Baffin Island and west Greenland, which represent volcanic rocks from the proto/early Iceland mantle plume, contain the highest recorded terrestrial 3He/4He ratios3-4. These picrites also have Pb and Nd isotopic ratios consistent with primordial mantle ages (4.45 to 4.55 Ga)5, indicating the persistence of an ancient, isolated reservoir in the mantle. The undegassed and primitive nature6of this reservoir suggests that it could preserve Earth's initial D/H ratio. We measured the D/H ratios of olivine-hosted glassy melt inclusions in Baffin Island and Icelandic picrites to establish whether their deep mantle source region exhibits a different D/H ratio to known upper mantle and surface reservoirs. Baffin Island D/H ratios were found to extend lower than any previously measured mantle values (δD -97 to -218 ‰), suggesting that areas of the deep mantle do preserve a more primitive hydrogen reservoir, hence are unaffected by plate tectonic mixing. Comparing our measured low D/H ratios to those of known extra-terrestrial materials can help determine where Earths water came from. References: [1] Genda and Ikoma, 2008 Icarus 194, 42-52. [2] Abramov, and Mojzsis, (2009) Nature 459, 419-422. [3] Stuart et al. (2003) Nature 424, 57-59. [4] Starkey et al. (2009) Earth Planet. Sci. Lett. 277, 91-100. [5] Jackson et al. (2010) Nature 466, 853-856. [6] Robillard et al. (1992) Contrib. Mineral. Petrol. 112, 230-241.
The role of thermal effect on mantle seismic anomalies from observations of GIA
NASA Astrophysics Data System (ADS)
Wu, P.; Wang, H. S.; Steffen, H.
2012-04-01
Recent advance in seismic tomography reveals the structure inside the mantle. An outstanding issue is the role of thermal versus non-thermal (e.g. compositional, partial melting) contribution to seismic velocity anomalies. Here we use observations of Glacial Isostatic Adjustment (GIA), e.g. global relative sea level data, GRACE observations (with recent hydrology contributions removed) and GPS crustal uplift rates in combination with 3D GIA models to address this issue. Both ICE-4G and ICE-5G models are tested, but ICE-4G gives much better overall fit to these observations. Also, several 1-D background viscosity profiles, with different viscosity contrast at 670 km depth have also been tested and the one that gives consistent results is model RF3 which has a moderate viscosity increase across 670 km. Lateral mantle viscosity variation is inferred from Ekstrom & Dziewonski's S20A seismic tomography model using a scaling law that includes both the effect of anharmonicity and anelasticity. Thermal contribution to seismic tomography appears as the beta factor in the scaling law. The values of beta in the upper mantle, shallow part of the lower mantle and the deep part of the lower mantle are allowed to be different and the solution space of the beta values is searched to find the best combination that gives the best fit to the GIA observations simultaneously. The result of our best model (RF3 with lateral heterogeneity) shows that thermal effect increases from about 65% in the upper mantle to 80% in the shallow part of the lower mantle and to about 100% in the deep lower mantle above the D" layer. This is consistent with temperature excess in the lower mantle from high core heating. However, the uncertainty increases from < 1% in the upper mantle to 20% in the shallow lower mantle and is not very well constrained in the deep lower mantle.
Interstellar and Cometary Dust
NASA Technical Reports Server (NTRS)
Mathis, John S.
1997-01-01
'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral/carbonaceous matrix, without organic refractory mantles, in between the ices. Unfortunately, they may be significantly processed by chemical processes accompanying the warming (over the 10 K of the dark cloud cores) which occurs in the outer solar system. Evidence of this processing is the chemical anomalies present in interplanetary dust particles collected in the stratosphere, which may be the most primitive materials we have obtained to date. The comet return mission would greatly clarify the situation, and probably provide samples of genuine interstellar grains.
NASA Astrophysics Data System (ADS)
Miyagi, L. M.; Kunz, M.; Couper, S.; Lin, F.; Yan, J.; Doran, A.; MacDowell, A. A.
2017-12-01
The rheology of rocks and minerals in the Earth's deep interior plays a primary role in controlling large scale geodynamic processes such as mantle convection and slab subduction. Plastic deformation resulting from these processes can lead to texture development and associated seismic anisotropy. If a detailed understanding of the link between deformation and seismic anisotropy is established, observations of seismic anisotropy can be used to understand the dynamic state in the deep Earth. However, performing deformation experiments at lower mantle pressure and temperature conditions are extremely challenging. Thus most deformation studies have been performed either at room temperature and high pressure or at reduced pressures and high temperature. Only a few extraordinary efforts have attained pressures and temperatures relevant to lower mantle. Therefore our ability to interpret observations of lower mantle seismic anisotropy in terms of mantle flow models remains limited. In order to expand the pressure and temperature range available for deformation of deep Earth relevant mineral phases, we have developed a laser heating system for in-situ double-sided heating in radial diffraction geometry at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. This allows texture and lattice strain measurements to be recorded at simultaneous high pressures and temperatures in the diamond anvil cell. This new system is integrated into the newly built axial laser heating system to allow for rapid and reliable transitioning between double-sided laser heating in axial and radial geometries. Transitioning to radial geometry is accomplished by redirecting the laser and imaging paths from 0° and 180° to 90° and 270°. To redirect the 90° path, a motorized periscope mirror pair with an objective lens can be inserted into the downstream axial beam path. The 270° redirection is accomplished by removing the upstream axial objective lens and manually installing a small assembly carrying 2 infrared mirrors and an objective lens. Using this system we have performed two pilot studies recording texture and lattice strain development during deformation of FeO up to 1300 K and 45 GPa and bridgmanite up to 1600 K and 80 GPa.
Carbonate stability in the reduced lower mantle
NASA Astrophysics Data System (ADS)
Dorfman, Susannah M.; Badro, James; Nabiei, Farhang; Prakapenka, Vitali B.; Cantoni, Marco; Gillet, Philippe
2018-05-01
Carbonate minerals are important hosts of carbon in the crust and mantle with a key role in the transport and storage of carbon in Earth's deep interior over the history of the planet. Whether subducted carbonates efficiently melt and break down due to interactions with reduced phases or are preserved to great depths and ultimately reach the core-mantle boundary remains controversial. In this study, experiments in the laser-heated diamond anvil cell (LHDAC) on layered samples of dolomite (Mg, Ca)CO3 and iron at pressure and temperature conditions reaching those of the deep lower mantle show that carbon-iron redox interactions destabilize the MgCO3 component, producing a mixture of diamond, Fe7C3, and (Mg, Fe)O. However, CaCO3 is preserved, supporting its relative stability in carbonate-rich lithologies under reducing lower mantle conditions. These results constrain the thermodynamic stability of redox-driven breakdown of carbonates and demonstrate progress towards multiphase mantle petrology in the LHDAC at conditions of the lowermost mantle.
Carbonate stability in the reduced lower mantle
Dorfman, Susannah M.; Badro, James; Nabiei, Farhang; ...
2018-05-01
Carbonate minerals are important hosts of carbon in the crust and mantle with a key role in the transport and storage of carbon in Earth’s deep interior over the history of the planet. Whether subducted carbonates efficiently melt and break down due to interactions with reduced phases or are preserved to great depths and ultimately reach the core-mantle boundary remains controversial. In this study, experiments in the laser-heated diamond anvil cell (LHDAC) on layered samples of dolomite (Mg,Ca)CO3 and iron at pressure and temperature conditions reaching those of the deep lower mantle show that carbon-iron redox interactions destabilize the MgCO3more » component, producing a mixture of diamond, Fe7C3, and (Mg,Fe)O. However, CaCO3 is preserved, supporting its relative stability in carbonate-rich lithologies under reducing lower mantle conditions. These results constrain the thermodynamic stability of redox-driven breakdown of carbonates and demonstrate progress towards multiphase mantle petrology in the LHDAC at conditions of the lowermost mantle.« less
Partition Coefficients at High Pressure and Temperature
NASA Astrophysics Data System (ADS)
Righter, K.; Drake, M. J.
2003-12-01
Differentiation of terrestrial planets includes separation of a metallic core and possible later fractionation of mineral phases within either a solid or molten mantle (Figure 1). Lithophile and siderophile elements can be used to understand these two different physical processes, and ascertain whether they operated in the early Earth. The distribution of elements in planets can be understood by measuring the partition coefficient, D (ratio of concentrations of an element in different phases (minerals, metals, or melts)). (14K)Figure 1. Schematic cross-section through the Earth, showing: (a) an early magma ocean stage and (b) a later cool and differentiated stage. The siderophile elements (iron-loving) encompass over 30 elements and are defined as those elements for which D(metal/silicate)>1, and are useful for deciphering the details of core formation. This group of elements is commonly broken up into several subclasses, including the slightly siderophile elements (1
NASA Astrophysics Data System (ADS)
Chapelle, F. H.
2003-12-01
Differentiation of terrestrial planets includes separation of a metallic core and possible later fractionation of mineral phases within either a solid or molten mantle (Figure 1). Lithophile and siderophile elements can be used to understand these two different physical processes, and ascertain whether they operated in the early Earth. The distribution of elements in planets can be understood by measuring the partition coefficient, D (ratio of concentrations of an element in different phases (minerals, metals, or melts)). (14K)Figure 1. Schematic cross-section through the Earth, showing: (a) an early magma ocean stage and (b) a later cool and differentiated stage. The siderophile elements (iron-loving) encompass over 30 elements and are defined as those elements for which D(metal/silicate)>1, and are useful for deciphering the details of core formation. This group of elements is commonly broken up into several subclasses, including the slightly siderophile elements (1
Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago.
Keller, C Brenhin; Schoene, Blair
2012-05-23
The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.
Lower Mantle S-wave Velocity Model under the Western United States
NASA Astrophysics Data System (ADS)
Nelson, P.; Grand, S. P.
2016-12-01
Deep mantle plumes created by thermal instabilities at the core-mantle boundary has been an explanation for intraplate volcanism since the 1970's. Recently, broad slow velocity conduits in the lower mantle underneath some hotspots have been observed (French and Romanowicz, 2015), however the direct detection of a classical thin mantle plume using seismic tomography has remained elusive. Herein, we present a seismic tomography technique designed to image a deep mantle plume under the Yellowstone Hotspot located in the western United States utilizing SKS and SKKS waves in conjunction with finite frequency tomography. Synthetic resolution tests show the technique can resolve a 235 km diameter lower mantle plume with a 1.5% Gaussian velocity perturbation even if a realistic amount of random noise is added to the data. The Yellowstone Hotspot presents a unique opportunity to image a thin plume because it is the only hotspot with a purported deep origin that has a large enough aperture and density of seismometers to accurately sample the lower mantle at the length scales required to image a plume. Previous regional tomography studies largely based on S wave data have imaged a cylindrically shaped slow anomaly extending down to 900km under the hotspot, however they could not resolve it any deeper (Schmandt et al., 2010; Obrebski et al., 2010).To test if the anomaly extends deeper, we measured and inverted over 40,000 SKS and SKKS waves' travel times in two frequency bands recorded at 2400+ stations deployed during 2006-2012. Our preliminary model shows narrow slow velocity anomalies in the lower mantle with no fast anomalies. The slow anomalies are offset from the Yellowstone hotspot and may be diapirs rising from the base of the mantle.
U-series disequilibria of trachyandesites from minor volcanic centers in the Central Andes
NASA Astrophysics Data System (ADS)
Huang, Fang; Sørensen, Erik V.; Holm, Paul M.; Zhang, Zhao-Feng; Lundstrom, Craig C.
2017-10-01
Young trachyandesite lavas from minor volcanic centers in the Central Andes record the magma differentiation processes at the base of the lower continental crust. Here we report U-series disequilibrium data for the historical lavas from the Andagua Valley in Southern Peru to define the time-scale and processes of magmatism from melting in the mantle wedge to differentiation in the crust. The Andagua lavas show (230Th)/(238U), (231Pa)/(235U), and (226Ra)/(230Th) above unity except for one more evolved lava with 230Th depletion likely owing to fractional crystallization of accessory minerals. The 226Ra excess indicates that the time elapsed since magma emplacement and differentiation in the deep crust is within 8000 years. Based on the correlations of U-series disequilibria with SiO2 content and ratios of incompatible elements, we argue that the Andagua lavas were produced by mixing of fresh mantle-derived magma with felsic melt of earlier emplaced basalts in the deep crust. Because of the lack of sediment in the Chile-Peru trench, there is no direct link of recycled slabs with 230Th and 231Pa excesses in the Andagua lavas. Instead, 230Th and 231Pa excesses are better explained by in-growth melting in the upper mantle followed by magma differentiation in the crust. Such processes also produced the 226Ra excess and the positive correlations among (226Ra)/(230Th), Sr/Th, and Ba/Th in the Andagua lavas. The time-scale of mantle wedge melting should be close to the half-life of 231Pa (ca. 33 ka), while it takes less than a few thousand years for magma differentiation to form intermediate volcanic rocks at a convergent margin.
Understanding the nature of mantle upwelling beneath East-Africa
NASA Astrophysics Data System (ADS)
Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham
2014-05-01
The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 < mb < 5.5) from poorly sampled regions in order to have a more uniform data coverage. The tomographic results allow us to image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow depths. Moreover, our preliminary models show that the low-velocity feature in the transition zone and uppermost lower mantle beneath Afar trends to the northeast beneath the Red Sea and Saudi Arabia as opposed to being linked to the African Superplume towards the southwest.
Probing the Hawaiian Hot Spot With New Broadband Ocean Bottom Instruments
NASA Astrophysics Data System (ADS)
Laske, Gabi; Collins, John A.; Wolfe, Cecily J.; Solomon, Sean C.; Detrick, Robert S.; Orcutt, John A.; Bercovici, David; Hauri, Erik H.
2009-10-01
The Hawaiian hot spot is regarded as the textbook example of the product of a deep-rooted mantle plume [Wilson, 1963; Morgan, 1971]. Its isolated location, far from any plate boundary, should provide an opportunity to test most basic hypotheses on the nature of plume-plate interaction and related magmatism [e.g., Ribe and Christensen, 1999]. Yet the lack of crucial geophysical data has sustained a debate about whether Hawaii's volcanism is plume-related or is instead the consequence of more shallow processes, such as the progressive fracturing of the plate in response to extensional stresses [Turcotte and Oxburgh, 1973]. In the plume model for Hawaii's volcanism, hot material is expected to ascend near vertically within the more viscous surrounding mantle before ponding and spreading laterally beneath the rigid lithosphere. Mantle convection in general, and the fast moving Pacific plate in particular, shear and tilt the rising plume. The plume top is dragged downstream by the plate, and this dragged material may give rise to an elongated bathymetric swell [Davies, 1988; Olson, 1990; Sleep, 1990; Phipps Morgan et al., 1995]. However, identifying the dominant cause of the swell remains elusive, and proposed mechanisms include thermal rejuvenation, dynamic support, compositional buoyancy, and mechanical erosion (see Li et al. [2004] for a summary). There is also considerable debate about the continuity of the plume within the mantle, how discrete islands are formed, and how a deep-rooted plume interacts with the mantle transition zone [e.g., van Keken and Gable, 1995].
Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?
Meibom, A.; Anderson, D.L.; Sleep, Norman H.; Frei, R.; Chamberlain, C.P.; Hren, M.T.; Wooden, J.L.
2003-01-01
The existence of a primordial, undegassed lower mantle reservoir characterized by high concentration of 3He and high 3He/4He ratios is a cornerstone assumption in modern geochemistry. It has become standard practice to interpret high 3He/4He ratios in oceanic basalts as a signature of deep-rooted plumes. The unfiltered He isotope data set for oceanic spreading centers displays a wide, nearly Gaussian, distribution qualitatively similar to the Os isotope (187Os/188 Os) distribution of mantle-derived Os-rich alloys. We propose that both distributions are produced by shallow mantle processes involving mixing between different proportions of recycled, variably aged radiogenic and unradiogenic domains under varying degrees of partial melting. In the case of the Re-Os isotopic system, radiogenic mid-ocean ridge basalt (MORB)-rich and unradiogenic (depleted mantle residue) endmembers are constantly produced during partial melting events. In the case of the (U+Th)-He isotope system, effective capture of He-rich bubbles during growth of phenocryst olivine in crystallizing magma chambers provides one mechanism for 'freezing in' unradiogenic (i.e. high 3He/4He) He isotope ratios, while the higher than chondritic (U+Th)/He elemental ratio in the evolving and partially degassed MORB melt provides the radiogenic (i.e. low 3He/4He) endmember. If this scenario is correct, the use of He isotopic signatures as a fingerprint of plume components in oceanic basalts is not justified. Published by Elsevier Science B.V.
Deep structure of the Afro-Arabian hotspot by S receiver functions
NASA Astrophysics Data System (ADS)
Vinnik, L. P.; Farra, V.; Kind, R.
2004-06-01
We investigated deep structure of the Afro-Arabian hotspot by using recordings from Geoscope seismograph station ATD. The records are processed with the S receiver function technique, which allows a detection of Sp converted phases from the upper mantle discontinuities. The seismic data reveal two unusual discontinuities. The discontinuity at a depth of 160 km beneath the Gulf of Aden corresponds to the onset of melting. If the water content in olivine is around 800 H/106Si, melting at this depth requires a temperature close to 1550°C, about 120°C higher than the average. Another remarkable discontinuity is found at a depth of 480 km, where S velocity drops with depth by about 0.2 km/s. This can be the head of another plume which is trapped in the mantle transition zone.
NASA Astrophysics Data System (ADS)
Zhu, Jianjiang; Zhang, Lifei; Lü, Zeng; Bader, Thomas
2018-03-01
Subduction zones are important for understanding of the global carbon cycle from the surface to deep part of the mantle. The processes involved the metamorphism of carbonate-bearing rocks largely control the fate of carbon and contribute to local carbon isotopic heterogeneities of the mantle. In this study, we present petrological and geochemical results for marbles and carbonated eclogites in the Southwestern Tianshan UHP belt, NW China. Marbles are interlayered with coesite-bearing pelitic schists, and have Sr-Nd isotopic values (εNd (T=320Ma) = -3.7 to -8.9, 87Sr/86Sr (i) = 0.7084-0.7089), typical of marine carbonates. The marbles have dispersed low δ18OVSMOW values (ranging from 14 to 29‰) and unaffected carbon isotope (δ13CVPDB = -0.2-3.6‰), possibly due to infiltration of external H2O-rich fluids. Recycling of these marbles into mantle may play a key role in the carbon budget and contributed to the mantle carbon isotope heterogeneity. The carbonated eclogites have high Sr isotopic compositions (87Sr/86Sr (i) = 0.7077-0.7082) and positive εNd (T = 320 Ma) values (from 7.6 to 8.2), indicative of strong seafloor alteration of their protolith. The carbonates in the carbonated eclogites are mainly dolomite (Fe# = 12-43, Fe# = Fe2+/(Fe2+ + Mg)) that were added into oceanic basalts during seafloor alteration and experienced calcite - dolomite - magnesite transformation during the subduction metamorphic process. The uniformly low δ18O values (∼11.44‰) of carbonates in the carbontaed eclogites can be explained by closed-system equilibrium between carbonate and silicate minerals. The low δ13C values (from -3.3 to -7.7‰) of the carbonated eclogites most likely reflect contribution from organic carbon. Recycling of these carbonated eclogites with C isotope similar to typical mantle reservoirs into mantle may have little effect on the mantle carbon isotope heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, W.
1982-08-10
Tectonic features at the earth's surface can be used to test models for mantle return flow and to determine the geographic pattern of this flow. A model with shallow return and deep continental roots places the strongest constraints on the geographical pattern of return flow and predicts recognizable surface manifestations. Because of the progressive shrinkage of the Pacific (averaging 0.5 km/sup 2//yr over the last 180 m.y.) this model predicts upper mantle outflow through the three gaps in the chain of continents rimming the Pacific (Carribbean, Drake Passage, Australian-Antartic gap). In this model, upper mantle return flow streams originating atmore » the western Pacific trenches and at the Java Trench meet south of Australia, filling in behind this rapidly northward-moving continent and provding an explanation for the negative bathymetric and gravity anomalies of the 'Australian-Antarctic-Discordance'. The long-continued tectonic movements toward the east that characterize the Caribbean and the eastenmost Scotia Sea may be produced by viscous coupling to the predicted Pacific outflow through the gaps, and the Caribbean floor slopes in the predicted direction. If mantle outflow does not pass through the gaps in the Pacific perimeter, it must pass beneath three seismic zones (Central America, Lesser Antiles, Scotia Sea); none of these seismic zones shows foci below 200 km. Mantle material flowing through the Caribbean and Drake Passage gaps would supply the Mid-Atlantic Ridge, while the Java Trench supplies the Indian Ocean ridges, so that deep-mantle upwellings need not be centered under spreading ridges and therefore are not required to move laterally to follow ridge migrations. The analysis up to this point suggests that upper mantle return flow is a response to the motion of the continents. The second part of the paper suggest driving mechanism for the plate tectonic process which may explain why the continents move.« less
Volatiles in the Earth: All shallow and all recycled
NASA Technical Reports Server (NTRS)
Anderson, Don L.
1994-01-01
A case can be made that accretion of the Earth was a high-temperature process and that the primordial Earth was dry. A radial zone-refining process during accretion may have excluded low-melting point and volatile material, including large-ion lithophile elements toward the surface, leaving a refractory and zoned interior. Water, sediments and altered hydrous oceanic crust are introduced back into the interior by subduction, a process that may be more efficient today than in the past. Seismic tomography strongly suggests that a large part of the uppermantle is above the solidus, and this implies wet melting. The mantle beneath Archean cratons has very fast seismic velocities and appears to be strong to 150 km or greater. This is consistent with very dry mantle. It is argued that recycling of substantial quantities of water occurs in the shallow mantle but only minor amounts recycle to depths greater than 200 km. Recycling also oxidizes that mantle; ocean island ('hotspot') basalts are intermediate in oxidation state to island-arc and midocean ridge basalts (MORB). This suggests a deep uncontaminated reservoir for MORB. Plate tectonics on a dry Earth is discussed in order to focus attention on inconsistencies in current geochemical models of terrestrial evolution and recycling.
Noble gas models of mantle structure and reservoir mass transfer
NASA Astrophysics Data System (ADS)
Harrison, Darrell; Ballentine, Chris J.
Noble gas observations from different mantle samples have provided some of the key observational data used to develop and support the geochemical "layered" mantle model. This model has dominated our conceptual understanding of mantle structure and evolution for the last quarter of a century. Refinement in seismic tomography and numerical models of mantle convection have clearly shown that geochemical layering, at least at the 670 km phase change in the mantle, is no longer tenable. Recent adaptations of the mantle-layering model that more successfully reconcile whole-mantle convection with the simplest data have two common features: (i) the requirement for the noble gases in the convecting mantle to be sourced, or "fluxed", by a deep long-lived volatile-rich mantle reservoir; and (ii) the requirement for the deep mantle reservoirs to be seismically invisible. The fluxing requirement is derived from the low mid-ocean ridge basalt (MORB)-source mantle 3He concentration, in turn calculated from the present day 3He flux from mid-ocean ridges into the oceans (T½ ˜ 1,000 yr) and the ocean crust generation rate (T½ ˜ 108 yr). Because of these very different residence times we consider the 3He concentration constraint to be weak. Furthermore, data show 3He/22Ne ratios derived from different mantle reservoirs to be distinct and require additional complexities to be added to any model advocating fluxing of the convecting mantle from a volatile-rich mantle reservoir. Recent work also shows that the convecting mantle 20Ne/22Ne isotopic composition is derived from an implanted meteoritic source and is distinct from at least one plume source system. If Ne isotope heterogeneity between convecting mantle and plume source mantle is confirmed, this result then excludes all mantle fluxing models. While isotopic heterogeneity requires further quantification, it has been shown that higher 3He concentrations in the convecting mantle, by a factor of 3.5, remove the need for the noble gases in the convecting mantle to be sourced from such a deep hidden reservoir. This "zero paradox" concentration [Ballentine et al., 2002] is then consistent with the different mantle source 3He/22Ne and 20Ne/22Ne heterogeneities. Higher convecting mantle noble gas concentrations also eliminate the requirement for a hidden mantle 40Ar rich-reservoir and enables the heat/4He imbalance to be explained by temporal variance in the different mechanisms of heat vs. He removal from the mantle system—two other key arguments for mantle layering. Confirmation of higher average convecting mantle noble gas concentrations remains the key test of such a concept.
Effect of hydrogen on the melting of the Fe-C system and the fate of the subducted carbon
NASA Astrophysics Data System (ADS)
Lai, X.; Chen, B.; Gao, J.; Zhu, F.
2017-12-01
The subducted oceanic crust carries significant amount of carbonates and organic carbons from the surface into the deep mantle. Through slab-mantle interactions, subducted carbons can react with metallic iron in the metal-saturated regions of the mantle and form various reduced species such as Fe carbides. The Fe-C system is found to have higher eutectic melting temperature than mantle geotherm and thus carbon by forming iron carbides may be "redox freezed" in the mantle (Rohrbach and Schmidt 2011). Hydrogen was found to be have significant effect on the melting of the Fe-light-elements systems such as the Fe-S system (Shibazaki et al., 2011). Here we report experimental results from both multi-anvil press and diamond anvil cell experiments on the melting behaviors of the Fe-C-H system. C14H12, a solid-state C-H organic compound was used as a C-H source to react with the metallic iron at high pressure and high temperature conditions. With excess C14H12, hydrogen in the FeHx alloy was totally replaced by carbon at 14.8-24.7 GPa. Conversely, with excess Fe, the existence of hydrogen is found to depress the melting temperature of the Fe-C system by at least 100 K. Hydrogen may facilitate the transport and cycling of subducted carbon in the deep mantle and contribute to formation of superdeep diamonds (Smith et al. 2016). Rohrbach, Arno, and Max W. Schmidt. "Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling." Nature 472.7342 (2011): 209. Shibazaki, Yuki, et al. "Effect of hydrogen on the melting temperature of FeS at high pressure: Implications for the core of Ganymede." Earth and Planetary Science Letters 301.1 (2011): 153-158. Smith, Evan M., et al. "Large gem diamonds from metallic liquid in Earth's deep mantle." Science 354.6318 (2016): 1403-1405.
The origin of volatiles in the Earth's mantle
NASA Astrophysics Data System (ADS)
Hier-Majumder, Saswata; Hirschmann, Marc M.
2017-08-01
The Earth's deep interior contains significant reservoirs of volatiles such as H, C, and N. Due to the incompatible nature of these volatile species, it has been difficult to reconcile their storage in the residual mantle immediately following crystallization of the terrestrial magma ocean (MO). As the magma ocean freezes, it is commonly assumed that very small amounts of melt are retained in the residual mantle, limiting the trapped volatile concentration in the primordial mantle. In this article, we show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere. Using a two-phase flow model, we demonstrate that compaction within the moving freezing front is inefficient over time scales characteristic of magma ocean solidification. We employ a scaling relation between the trapped melt fraction, the rate of compaction, and the rate of freezing in our magma ocean evolution model. For cosmochemically plausible fractions of volatiles delivered during the later stages of accretion, our calculations suggest that up to 77% of total H2O and 12% of CO2 could have been trapped in the mantle during magma ocean crystallization. The assumption of a constant trapped melt fraction underestimates the mass of volatiles in the residual mantle by more than an order of magnitude.
Spin and valence dependence of iron partitioning in Earth’s deep mantle
Piet, Hélène; Badro, James; Nabiei, Farhang; Dennenwaldt, Teresa; Shim, Sang-Heon; Cantoni, Marco; Hébert, Cécile; Gillet, Philippe
2016-01-01
We performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth’s lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (high/low) and valence (ferrous/ferric) states on iron partitioning in the deep mantle. In aluminum-bearing compositions relevant to Earth’s mantle, iron concentration in silicates drops above 70 GPa before increasing up to 110 GPa with a minimum at 85 GPa; it then dramatically drops in the postperovskite stability field above 116 GPa. This compositional variation should strengthen the lowermost mantle between 1,800 km depth and 2,000 km depth, and weaken it between 2,000 km depth and the D” layer. The succession of layers could dynamically decouple the mantle above 2,000 km from the lowermost mantle, and provide a rheological basis for the stabilization and nonentrainment of large low-shear-velocity provinces below that depth. PMID:27647917
Multiple seismic reflectors in Earth’s lowermost mantle
Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert
2014-01-01
The modern view of Earth’s lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core–mantle boundary and an interface some 150–300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth’s deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth’s mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto. PMID:24550266
Numerical modeling the genetic mechanism of Cenozoic intraplate Volcanoes in Northeastern China
NASA Astrophysics Data System (ADS)
Qu, Wulin; Chen, Yongshun John; Zhang, Huai; Jin, Yimin; Shi, Yaolin
2017-04-01
Changbaishan Volcano located about 1400 km west of Japan Trench is an intra continental volcano which having different origin from island arc volcanoes. A number of different mechanisms have been proposed to interpret the origin of intraplate volcanoes, such as deep mantle plumes, back-arc extension and decompressional partial melting, asthenosphere upwelling and decompressional melting, and deep stagnant slab dehydration and partial melting. The recent geophysical research reveals that the slow seismic velocity anomaly extends continuously just below 660 km depth to surface beneath Changbaishan by seismic images and three-dimensional waveform modelling [Tang et al., 2014]. The subduction-induced upwelling occurs within a gap in the stagnant subducted Pacific Plate and produces decompressional melting. Water in deep Earth can reduce viscosity and lower melting temperature and seismic velocity and has effects on many other physical properties of mantle materials. The water-storage capacity of wadsleyite and ringwoodite, which are the main phase in the mantle transition zone, is much greater than that of upper mantle and lower mantle. Geophysical evidences have shown that water content in the mantle transition zone is exactly greater than that of upper mantle and lower mantle [Karato, 2011]. Subducted slab could make mantle transition zone with high water content upward or downward across main phase change surface to release water, and lead to partial melting. We infer that the partial melting mantle and subducted slab materials propagate upwards and form the Cenozoic intraplate Volcanoes in Northeastern China. We use the open source code ASPECT [Kronbichler et al., 2012] to simulate the formation and migration of magma contributing to Changbaishan Volcano. We find that the water entrained by subducted slab from surface has only small proportion comparing to water content of mantle transition zone. Our model provide insights into dehydration melting induced by water transport out of the mantle transition zone associated with dynamic interactions between the subducted slab and surrounding mantle. References Karato, S. (2011), Water distribution across the mantle transition zone and its implications for global material circulation, EARTH PLANET SC LETT, 301(3), 413-423. Kronbichler, M., et al. (2012), High accuracy mantle convection simulation through modern numerical methods, GEOPHYS J INT, 191(1), 12-29. Tang, Y., et al. (2014), Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling, NAT GEOSCI, 7(6), 470-475.
Earth's Deep Carbon Cycle Constrained by Partial Melting of Mantle Peridotite and Eclogite
NASA Astrophysics Data System (ADS)
Dasgupta, R.; Hirschmann, M. M.; Withers, A. C.
2006-05-01
The mass of carbon in the mantle is thought to exceed that in all Earth's other reservoirs combined1 and large fluxes of carbon are cycled into and out of the mantle via subduction and volcanic emission. Devolatilization is known to release water in the mantle wedge, but release of carbon could be delayed if the relevant decarbonation reactions or solidi of oceanic crust are not encountered along P-T path of subduction. Outgassing of CO2 from the mantle also has a critical influence on Earth's climate for time scales of 108-109 yr1. The residence time for carbon in the mantle is thought to exceed the age of the Earth1,2, but it could be significantly shorter owing to pervasive deep melting beneath oceanic ridges. The dominant influx of carbon is via carbonate in altered ocean-floor basalts, which survives decarbonation during subduction. Our experiments demonstrate that solidi of carbonated eclogite remain hotter than average subduction geotherms at least as deep as transition zone3, and thus significant subducted C is delivered to the deep Earth, rather than liberated in the shallow mantle by melting. Flux of CO2 into the mantle, assuming average estimate of carbon in altered ocean crust of 0.21 wt. % CO24, can amount to 0.15 × 1015 g/yr. In upwelling mantle, however, partial melting of carbonated eclogite releases calcio-dolomitic carbonatite melt at depths near ~400 km and metasomatically implants carbonate to surrounding peridotite. Thus, volcanic release of CO2 to basalt source regions is likely controlled by the solidus of carbonated peridotite. Our recent experiments with nominally anhydrous, carbonate-bearing garnet lherzolite indicate that the solidus of peridotite with a trace amount of CO2 is ~500 °C lower than that of volatile-free peridotite at 10 GPa5. In upwelling mantle the solidus of carbonated lherzolite is ~100-200 km shallower than that of eclogite+CO2, but beneath oceanic ridges, initial melting occurs as deep as 300-330 km. For peridotite with ~100-1000 ppm CO2, this initial melting yields 0.03-0.3% carbonatite melt. Extraction of such melts from the mantle above 300 km implies residence times of 1 to 4 Gyr for carbon and other highly incompatible elements in the convecting mantle. Such short residence times suggest that large fractions of mantle carbon must be recycled rather than primordial. Implied CO2 fluxes are 0.12-3.4 × 1015 g/yr, which matches or exceeds direct estimates for CO2 fluxes at ridges (0.04-0.66 × 1015 g/yr) 1,6. However, not all of this deep extracted CO2 may reach ridges; some may instead be implanted into oceanic lithosphere, providing a widespread source for metasomatic fluids that are highly enriched in incompatible elements. 1Sleep, N. H. and Zahnle, K. 2001, JGR 106, 1373-1399. 2Zhang, Y. and Zindler, A. 1993, EPSL 117, 331-345. 3Dasgupta, R. et al. 2004, EPSL 227, 73-85. 4Alt, J. C. and Teagle, D. A. H. 1999, GCA, 1527-1535. 5Dasgupta, R. and Hirschmann, M. M. in press, Nature. 6Javoy, M. and Pineau, F. 1991, EPSL 107, 598-611.
NASA Astrophysics Data System (ADS)
Ortiz, E.; Vento, N. F. R.; Tominaga, M.; Beinlich, A.; Einsle, J. F.; Buisman, I.; Ringe, E.; Schrenk, M. O.; Cardace, D.
2017-12-01
Serpentinization of mantle peridotite has been recognized as one of the most important energy factories for the deep biosphere. To better evaluate the habitability of the deep biosphere, it is crucial to understand the link between in situ peridotite serpentinization processes and associated magnetite and hydrogen production. Previous efforts in correlating magnetite and hydrogen production during serpentinization processes are based primarily on laboratory experiments and numerical modeling, being challenged to include the contribution of superparamagnetic-sized magnetites (i.e., extremely fine-grained magnetite, petrographically observed as a "pepper flake" like texture in many natural serpentinized rock samples). To better estimate the abundance of superparamagnetic grains, we conducted frequency-dependent susceptibility magnetic measurements at the Institute of Rock Magnetism on naturally serpentinized rock samples from the Coast Range Ophiolite Microbial Observatory (CROMO) in California, USA and the Atlin Ophiolite (British Columbia). In addition, we conducted multiscale EDS phase mapping, BackScattered Electron (BSE) scanning, FIB-nanotomography and STEM-EELS to identify and quantify the superparamagnetic minerals that contribute to the measured magnetic susceptibility signals in our rock samples. Utilizing a multidisciplinary approach, we aim to improve the estimation of hydrogen production based on the abundance of magnetite, that includes the contribution of superparamagnetic particle size magnetite, to ultimately provide a more accurate estimation of bulk deep-biomass hosted by in situ serpentinization processes.
NASA Technical Reports Server (NTRS)
Tackley, P. J.; Stevenson, D. J.; Scott, D. R.
1992-01-01
A large number of volcanic features exist on Venus, ranging from tens of thousands of small domes to large shields and coronae. It is difficult to reconcile all these with an explanation involving deep mantle plumes, since a number of separate arguments lead to the conclusion that deep mantle plumes reaching the base of the lithosphere must exceed a certain size. In addition, the fraction of basal heating in Venus' mantle may be significantly lower than in Earth's mantle reducing the number of strong plumes from the core-mantle boundary. In three-dimensional convection simulations with mainly internal heating, weak, distributed upwellings are usually observed. We present an alternative mechanism for such volcanism, originally proposed for the Earth and for Venus, involving Rayleigh-Taylor instabilities driven by melt buoyancy, occurring spontaneously in partially or incipiently molten regions.
Bending-related faulting and mantle serpentinization at the Middle America trench.
Ranero, C R; Morgan, J Phipps; McIntosh, K; Reichert, C
2003-09-25
The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50-300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.
NASA Astrophysics Data System (ADS)
Audet, Pascal; Kim, YoungHee
2016-02-01
More than a decade after the discovery of deep episodic slow slip and tremor, or slow earthquakes, at subduction zones, much research has been carried out to investigate the structural and seismic properties of the environment in which they occur. Slow earthquakes generally occur on the megathrust fault some distance downdip of the great earthquake seismogenic zone in the vicinity of the mantle wedge corner, where three major structural elements are in contact: the subducting oceanic crust, the overriding forearc crust and the continental mantle. In this region, thermo-petrological models predict significant fluid production from the dehydrating oceanic crust and mantle due to prograde metamorphic reactions, and their consumption by hydrating the mantle wedge. These fluids are expected to affect the dynamic stability of the megathrust fault and enable slow slip by increasing pore-fluid pressure and/or reducing friction in fault gouges. Resolving the fine-scale structure of the deep megathrust fault and the in situ distribution of fluids where slow earthquakes occur is challenging, and most advances have been made using teleseismic scattering techniques (e.g., receiver functions). In this paper we review the teleseismic structure of six well-studied subduction zones (three hot, i.e., Cascadia, southwest Japan, central Mexico, and three cool, i.e., Costa Rica, Alaska, and Hikurangi) that exhibit slow earthquake processes and discuss the evidence of structural and geological controls on the slow earthquake behavior. We conclude that changes in the mechanical properties of geological materials downdip of the seismogenic zone play a dominant role in controlling slow earthquake behavior, and that near-lithostatic pore-fluid pressures near the megathrust fault may be a necessary but insufficient condition for their occurrence.
NASA Astrophysics Data System (ADS)
Liou, Juhn G.; Tsujimori, Tatsuki; Yang, Jingsui; Zhang, R. Y.; Ernst, W. G.
2014-12-01
Newly recognized occurrences of ultrahigh-pressure (UHP) minerals including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mantle xenoliths suggest the recycling of crustal materials through deep subduction, mantle upwelling, and return to the Earth's surface. This circulation process is supported by crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths in kimberlites, and from chromitities of several Alpine-Himalayan and Polar Ural ophiolites; some of these minerals contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and inferred stishovite, a number of nanometric minerals have been identified as inclusions employing state-of-the-art analytical tools. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. For example, Tibetan chromites containing exsolution lamellae of coesite + diopside suggest that the original chromitites formed at P > 9-10 GPa at depths of >250-300 km. The precursor phase most likely had a Ca-ferrite or a Ca-titanite structure; both are polymorphs of chromite and (at 2000 °C) would have formed at minimum pressures of P > 12.5 or 20 GPa respectively. Some podiform chromitites and host peridotites contain rare minerals of undoubted crustal origin, including zircon, feldspars, garnet, kyanite, andalusite, quartz, and rutile; the zircons possess much older U-Pb ages than the time of ophiolite formation. These UHP mineral-bearing chromitite hosts evidently had a deep-seated evolution prior to extensional mantle upwelling and partial melting at shallow depths to form the overlying ophiolite complexes. These new findings together with stable isotopic and inclusion characteristics of diamonds provide compelling evidence for profound underflow of both oceanic and continental lithosphere, recycling of surface 'organic' carbon into the lower mantle, and ascent to the Earth's surface through mantle upwelling. Intensified study of UHP granulite-facies lower crustal basement and ophiolitic chromitites should allow a better understanding of the geodynamics of subduction and crustal cycling.
NASA Astrophysics Data System (ADS)
Lee, C.; Zhou, Y.; King, S. D.
2008-12-01
Analyses of seismic anisotropy caused by spatial alignments of anisotropic minerals (e.g., olivine) have been widely used to infer mantle flow directions in the upper mantle. Deep seismic anisotropy beneath fast spreading mid-ocean ridges (e.g., East Pacific Rise) has been recently observed at depths of 200-300 km and even down to the transition zone, with polarization changes in radial anisotropy from VSH < VSV (shallow) to VSH < VSV (deep). We investigate the origin of the observed deep seismic anisotropy and polarization changes beneath the EPR in 2-D Cartesian numerical models using both kinematically (prescribed velocity) and dynamically (negative buoyancy) driven ridge spreading. Because subduction is thought to be an important controlling factor in the style of ridge spreading and mantle convection, we consider a subduction zone developing at the prescribed weak zone. A whole mantle domain expressed by a one by four box (2890 by 11560 km) is used to minimize the boundary effects on the subducting slab. For the upper mantle rheology, we consider composite viscosity of diffusion and dislocation creep for dry olivine to evaluate the effects of lateral variation of mantle viscosity and the rheological changes from dislocation to diffusion creep under the mid-ocean ridge. For the lower mantle rheology, we use diffusion creep for dry olivine by increasing grain size to match relevant lower mantle viscosity. We also consider the 660 km phase transition with density and viscosity jump as well as Clapeyron slope. Anisotropy is evaluated using finite-strain ellipses based on the assumption that a-axes of olivine crystals are parallel to the major axes of the finite-strain ellipses. Our preliminary results show 1) in general, the development of VSH < VSV anisotropy is confined only in a narrow region under the ridge axis at depths of 200- 300 km; 2) strong VSH > VSV anisotropy can be found in the 'asthenosphere' beneath the entire spreading oceanic lithosphere; and 3) the dominate creep mechanism changes from dislocation creep to diffusion creep at depths of 300-400 km; indicating a more isotropic lower upper mantle. We conclude that our geodynamical modeling in a passive ridge spreading system does not produce the deep seismic anisotropy recently observed beneath the EPR. However, we do not consider partial melting, dynamic recrystallization and anisotropic viscosity which would change seismic interpretation and mantle flow, and thus further study is required.
Combined micro and macro geodynamic modelling of mantle flow: methods, potentialities and limits.
NASA Astrophysics Data System (ADS)
Faccenda, M.
2015-12-01
Over the last few years, geodynamic simulations aiming at reconstructing the Earth's internal dynamics have increasingly attempted to link processes occurring at the micro (i.e., strain-induced lattice preferred orientation (LPO) of crystal aggregates) and macro scale (2D/3D mantle convection). As a major outcome, such a combined approach results in the prediction of the modelled region's elastic properties that, in turn, can be used to perform seismological synthetic experiments. By comparison with observables, the geodynamic simulations can then be considered as a good numerical analogue of specific tectonic settings, constraining their deep structure and recent tectonic evolution. In this contribution, I will discuss the recent methodologies, potentialities and current limits of combined micro- and macro-flow simulations, with particular attention to convergent margins whose dynamics and deep structure is still the object of extensive studies.
U-Series Disequilibria across the New Southern Ocean Mantle Province, Australian-Antarctic Ridge
NASA Astrophysics Data System (ADS)
Scott, S. R.; Sims, K. W. W.; Park, S. H.; Langmuir, C. H.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Michael, P. J.; Choi, H.; Yang, Y. S.
2017-12-01
Mid-ocean ridge basalts (MORB) provide a unique window into the temporal and spatial scales of mantle evolution. Long-lived radiogenic isotopes in MORB have demonstrated that the mantle contains many different chemical components or "flavors". U-series disequilibria in MORB have further shown that different chemical components/lithologies in the mantle contribute differently to mantle melting processes beneath mid-ocean ridges. Recent Sr, Nd, Hf, and Pb isotopic analyses from newly collected basalts along the Australian-Antarctic Ridge (AAR) have revealed that a large distinct mantle province exists between the Australian-Antarctic Discordance and the Pacific-Antarctic Ridge, extending from West Antarctica and Marie Byrd Land to New Zealand and Eastern Australia (Park et al., submitted). This southern mantle province is located between the Indian-type mantle and the Pacific-type mantle domains. U-series measurements in the Southeast Indian Ridge and East Pacific Rise provinces show distinct signatures suggestive of differences in melting processes and source lithology. To examine whether the AAR mantle province also exhibits different U-series systematics we have measured U-Th-Ra disequilibria data on 38 basalts from the AAR sampled along 500 km of ridge axis from two segments that cross the newly discovered Southern Ocean Mantle province. We compare the data to those from nearby ridge segments show that the AAR possesses unique U-series disequilibria, and are thus undergoing distinct mantle melting dynamics relative to the adjacent Pacific and Indian ridges. (230Th)/(238U) excesses in zero-age basalts (i.e., those with (226Ra)/(230Th) > 1.0) range from 1.3 to 1.7, while (226Ra)/(230Th) ranges from 1.0 to 2.3. (226Ra)/(230Th) and (230Th)/(238U) are negatively correlated, consistent with the model of mixing between deep and shallow melts. The AAR data show higher values of disequilibria compared to the Indian and Pacific Ridges, which can be explained by either lower melting rates and porosities, or a higher gt/cpx ratio in their mantle source. That both long-lived radiogenic isotopes and U-series disequilibria are distinct in these three adjacent mantle provinces suggests that lithological differences are strongly influencing the melting process beneath each of these mid-ocean ridges.
Oceanic-type accretion may begin before complete continental break-up
NASA Astrophysics Data System (ADS)
Geoffroy, L.; Zalan, P. V.; Viana, A. R.
2011-12-01
Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.
Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Ammann, M.; Brodholt, J. P.; Dobson, D. P.; Valencia, D.
2013-07-01
The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigour in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result in no convection in their deep mantles due to the very low effective Rayleigh number. Here we evaluate this. First, as the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of to a pressure of 1 TPa, for both slowest diffusion (upper-bound rheology) and fastest diffusion (lower-bound rheology) directions. Along a 1600 K adiabat the upper-bound rheology would lead to a post-perovskite layer of a very high (˜1030 Pa s) but relatively uniform viscosity, whereas the lower-bound rheology leads to a post-perovskite viscosity increase of ˜7 orders of magnitude with depth; in both cases the deep mantle viscosity would be too high for convection. Second, we use these DFT-calculated values in statistically steady-state numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behaviour. Results confirm the likelihood of plate tectonics for planets with Earth-like surface conditions (temperature and water) and show a self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead feedback between internal heating, temperature and viscosity regulates the temperature such that the viscosity has the value needed to facilitate convective loss of the radiogenic heat, which results in a very hot perovskite layer for the upper-bound rheology, a super-adiabatic perovskite layer for the lower-bound rheology, and an azimuthally-averaged viscosity of no more than 1026 Pa s. Convection in large super-Earths is characterised by large upwellings (even with zero basal heating) and small, time-dependent downwellings, which for large super-Earths merge into broad downwellings. In the context of planetary evolution, if, as is likely, a super-Earth was extremely hot/molten after its formation, it is thus likely that even after billions of years its deep interior is still extremely hot and possibly substantially molten with a "super basal magma ocean" - a larger version of the proposal of Labrosse et al. (Labrosse, S., Hernlund, J.W., Coltice, N. [2007]. Nature 450, 866-869), although this depends on presently unknown melt-solid density contrast and solidus.
A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow.
Hassan, Rakib; Müller, R Dietmar; Gurnis, Michael; Williams, Simon E; Flament, Nicolas
2016-05-12
Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin--probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.
Using the heterogeneity distribution in Earth's mantle to study structure and flow
NASA Astrophysics Data System (ADS)
Rost, S.; Frost, D. A.; Bentham, H. L.
2016-12-01
The Earth's interior contains heterogeneities on many scale-lengths ranging from continent sized structures such as Large-Low Shear Velocity Provinces (LLSVPs) to grain-sized anomalies resolved using geochemistry. Sources of heterogeneity in Earth's mantle are for example the recycling of crustal material through the subduction process as well as partial melting and compositional variations. The subduction and recycling of oceanic crust throughout Earth's history leads to strong heterogeneities in the mantle that can be detected using seismology and geochemistry. Current models of mantle convection show that the subducted crustal material can be long-lived and is transported passively throughout the mantle by convective flows. Settling and entrainment is dependent on the density structure of the heterogeneity. Imaging heterogeneities throughout the mantle therefore allows imaging mantle flow especially in areas of inhibited flow due to e.g. viscosity changes or changes in composition or dynamics. The short-period seismic wavefield is dominated by scattered seismic energy partly originating from scattering at small-scale heterogeneities in Earth's mantle. Using specific raypath configurations we are able to sample different depths throughout Earth's mantle for the existence and properties of heterogeneities. These scattering probes show distinct variations in energy content with frequency indicating dominant heterogeneity length-scales in the mantle. We detect changes in heterogeneity structure both in lateral and radial directions. The radial heterogeneity structure requires changes in mantle structure at depths of 1000 km and 1800 to 2000 km that could indicate a change in viscosity structure in the mid mantle partly changing the flow of subducted crustal material into the deep mantle. Lateral changes in heterogeneity structure close to the core mantle boundary indicate lateral transport inhibited by the compositional anomalies of the LLSVPs.
Inverse Problems in Geodynamics Using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.
2018-01-01
During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.
Lithospheric electrical structure of the middle Lhasa terrane in the south Tibetan plateau
NASA Astrophysics Data System (ADS)
Liang, Hongda; Jin, Sheng; Wei, Wenbo; Gao, Rui; Ye, Gaofeng; Zhang, Letian; Yin, Yaotian; Lu, Zhanwu
2018-04-01
The Lhasa terrane in southern Tibetan plateau is a huge tectono-magmatic belt and an important metallogenic belt. Its formation evolution process and mineralization are affected by the subduction of oceanic plate and subsequent continental collision. However, the evolution of Lhasa terrane has been a subject of much debate for a long time. The Lithospheric structure records the deep processes of the subduction of oceanic plate and continental collision. The magnetotelluric (MT) method can probe the sub-surface electrical conductivity, newly dense broadband and long period magnetotelluric data were collected along a south-north trending profile that across the Lhasa terrane at 88°-89°E. Dimensionality analyses demonstrated that the MT data can be interpreted using two-dimensional approaches, and the regional strike direction was determined as N110°E.Based on data analysis results, a two-dimensional (2-D) resistivity model of crust and upper mantle was derived from inversion of the transverse electric mode, transverse magnetic mode and vertical magnetic field data. Inversion model shows a large north-dipping resistor that extended from the upper crust to upper mantle beneath the Himalaya and the south of Lhasa Terrane, which may represent the subducting Indian continental lithosphere. The 31°N may be an important boundary in the Lhasa Terrane, the south performs a prominent high-conductivity anomaly from the lower crust to upper mantle which indicates the existence of asthenosphere upwelling, while the north performs a higher resistivity and may have a reworking ancient basement. The formation of the ore deposits in the study area may be related to the upwelling of the mantle material triggered by slab tearing and/or breaking off of the Indian lithosphere, and the mantle material input also contributed the total thickness of the present-day Tibetan crust. The results provide helpful constrains to understand the mechanism of the continent-continent collision and the regional exploratory prospect of the deep resources.
Metasomatic Enrichment of Oceanic Lithospheric Mantle Documented by Petit-Spot Xenoliths
NASA Astrophysics Data System (ADS)
Pilet, S.; Abe, N.; Rochat, L.; Hirano, N.; Machida, S.; Kaczmarek, M. A.; Muntener, O.
2015-12-01
Oceanic lithosphere is generally interpreted as mantle residue after MORB extraction. It has been proposed, however, that metasomatism could take place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere or by the percolation of low-degree melts produced in periphery of Mid Ocean Ridges. This later process is observed in slow spreading ridges and ophiolites where shallow oceanic lithospheric mantle could be metasomatized/refertilized during incomplete MORB melt extraction. Nevertheless, direct evidence for metasomatic refertilization of the deep part of the oceanic lithospheric mantle is still missing. Xenoliths and xenocrysts sampled by petit-spot volcanoes interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, provide important new information about the nature and the processes associated with the evolution of oceanic lithospheric mantle. Here, we report, first, the presence of a garnet xenocryst in petit-spot lavas from Japan characterized by low-Cr, low-Ti content and mostly flat MREE-HREE pattern. This garnet is interpreted as formed during subsolidus cooling of pyroxenitic or gabbroic cumulates formed at ~1 GPa during the incomplete melt extraction at the periphery of the Pacific mid-ocean ridge. It is the first time that such processes are documented in fast spreading context. Second, we report petit-spot mantle xenoliths with cpx trace element "signatures" characterized by high U, Th, relative depletion in Nb, Pb, Ti and high but variable LREE/HREE ratio suggesting equilibration depth closed to the Gt/Sp transition zone. Such "signatures" are unknown from oceanic settings and show unexpected similarity to melt-metasomatized gt-peridotites sampled by kimberlites. This similarity suggests that metasomatic processes are not restricted to continental setting, but could correspond to a global mechanism at the lithosphere-asthenosphere boundary. As plate flexure represents a global mechanism in subduction zone, a portion of oceanic lithospheric mantle is likely to be metasomatized; recycling of these enriched domains into the convecting mantle is fundamental to understand the generation of small scale mantle isotopic and volatile heterogeneities sampled by OIBs and MORBs.
Formation and modification of chromitites in the mantle
NASA Astrophysics Data System (ADS)
Arai, Shoji; Miura, Makoto
2016-11-01
Podiform chromitites have long supplied us with unrivaled information on various mantle processes, including the peridotite-magma reaction, deep-seated magmatic evolution, and mantle dynamics. The recent discovery of ultrahigh-pressure (UHP) chromitites not only sheds light on a different aspect of podiform chromitites, but also changes our understanding of the whole picture of podiform chromitite genesis. In addition, new evidence was recently presented for hydrothermal modification/formation chromite/chromitite in the mantle, which is a classical but innovative issue. In this context, we present here an urgently needed comprehensive review of podiform chromitites in the upper mantle. Wall-rock control on podiform chromitite genesis demonstrates that the peridotite-magma reaction at the upper mantle condition is an indispensable process. We may need a large system in the mantle, far larger than the size of outcrops or mining areas, to fulfill the Cr budget requirement for podiform chromitite genesis. The peridotite-magma reaction over a large area may form a melt enriched with Na and other incompatible elements, which mixes with a less evolved magma supplied from the depth to create chromite-oversaturated magma. The incompatible-element-rich magma trapped by the chromite mainly precipitates pargasite and aspidolite (Na analogue of phlogopite), which are stable under upper mantle conditions. Moderately depleted harzburgites, which contain chromite with a moderate Cr# (0.4-0.6) and a small amount of clinopyroxene, are the best reactants for the chromitite-forming reaction, and are the best hosts for podiform chromitites. Arc-type chromitites are dominant in ophiolites, but some are of the mid-ocean ridge type; chromitites may be common beneath the ocean floor, although it has not yet been explored for chromitite. The low-pressure (upper mantle) igneous chromitites were conveyed through mantle convection or subduction down to the mantle transition zone to form ultrahigh-pressure chromitites. Some of these reappear at the shallower mantle, and can coexist with newly formed low-pressure igneous chromitites. High-temperature hydrothermal fluids can dissolve and precipitate chromite, and hydrothermal chromitites (chromitites precipitated from aqueous fluids) are possibly formed within the mantle where the circulation of hydrous fluid is available, e.g., at the mantle wedge.
Geochemical Constraints on Core-Mantle Interaction from Fe/Mn Ratios
NASA Astrophysics Data System (ADS)
Humayun, M.; Qin, L.
2003-12-01
The greater density of liquid iron alloy, and its immiscibility with silicate, maintains the physical separation of the core from the mantle. There are no a priori reasons, however, why the Earth's mantle should be chemically isolated from the core. Osmium isotopic variations in mantle plumes have been interpreted in terms of interaction between outer core and the source regions of deep mantle plumes. If chemical transport occurs across the core-mantle boundary its mechanism remains to be established. The Os isotope evidence has also been interpreted as the signatures of subducted Mn-sediments, which are known to have relatively high Pt/Os. In the mantle, Fe occurs mainly as the divalent ferrous ion, and Mn occurs solely as a divalent ion, and both behave in a geochemically coherent manner because of similarity in ionic charge and radius. Thus, the Fe/Mn ratio is a planetary constant insensitive to processes of mantle differentiation by partial melting. Two processes may perturb the ambient mantle Fe/Mn of 60: a) the subduction of Mn-sediments should decrease the Fe/Mn ratio in plume sources, while b) chemical transport from the outer core may increase the Fe/Mn ratio. The differentiation of the liquid outer core to form the solid inner core may increase abundances of the light element constituents (FeS, FeO, etc.) to the point of exsolution from the core at the CMB. The exact rate of this process is determined by the rate of inner core growth. Two end-member models include 1) inner core formation mainly prior to 3.5 Ga with heat release dominated by radioactive sources, or 2) inner core formation occurring mainly in the last 1.5 Ga with heat release dominated by latent heat. This latter model would imply large fluxes of Fe into the sources of modern mantle plumes. Existing Fe/Mn data for Gorgona and Hawaiian samples place limits on both these processes. We describe a new procedure for the precise determination of the Fe/Mn ratio in magmatic rocks by ICP-MS. This high-resolution study of the Fe/Mn of mantle-derived samples offers a new set of chemical constraints on the rates of inner core differentiation and the viability of Os isotope interpretations.
Production and recycling of oceanic crust in the early Earth
NASA Astrophysics Data System (ADS)
van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.
2004-08-01
Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.
NASA Astrophysics Data System (ADS)
Ogawa, M.
2017-12-01
The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra < 107, basaltic materials generated by the initial widespread magmatism accumulate in the deep mantle to form a layer; the basaltic layer is colder than the overlying shallow mantle. At Ra > 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.
NASA Astrophysics Data System (ADS)
Lee, C. T.
2016-12-01
Most of Earth's continents today are above sea level, but the presence of thick packages of ancient sediments on top of the stable cores of continents indicates that continents must have been submerged at least once in their past. Elevations of continents are controlled by the interplay between crustal thickness, mantle root thickness and the temperature of the ambient convecting mantle. The history of a continent begins with mountain building through magmatic or tectonic crustal thickening, during which exhumation of deep-seated igneous and metamorphic rocks are highest. Mountain building is followed by a long interval of subsidence as a result of continued, but decreasing erosion and thermal relaxation, the latter in the form of a growing thermal boundary layer. Subsidence is manifest first as a boring interval in which no sedimentary record is preserved, followed by continent-scale submergence wherein sediments are deposited directly on deep-seated igneous/metamorphic basement, generating a major disconformity. The terminal resting elevation of a mature continent, however, is defined by the temperature of the ambient convecting mantle: below sea level when the mantle is hot and above sea level when the mantle is cold. Using thermobarometric constraints on secular cooling of Earth's mantle, our results suggest that Earth, for most of its history, must have been a water world, with regions of land confined to narrow orogenic belts and oceans characterized by deep basins and shallow continental seas, the latter serving as repositories of sediments and key redox-sensitive biological nutrients, such as phosphorous. Cooling of the Earth led to the gradual and irreversible rise of the continents, culminating in rapid emergence, through fits and starts and possible instabilities in climate, between 500-1000 Ma. Such emergence fundamentally altered marine biogeochemical cycling, continental weathering and the global hydrologic cycle, defining the backdrop for the Cambrian explosion, the largest biological diversification event in Earth's history.
NASA Astrophysics Data System (ADS)
Eguchi, J.; Dasgupta, R.
2015-12-01
Experimental phase relations of carbonated lithologies [1] and geochemistry of deep diamonds [2] suggest that deep recycling of carbon has likely been efficient for a significant portion of Earth's history. Both carbonates and organic carbon subduct into the mantle, but with gradual decrease of fO2 with depth [3] most carbon in deep mantle rocks including eclogite could be diamond/graphite [4]. Previous studies investigated the transfer of CO2 from subducted eclogite to the ambient mantle by partial melting in the presence of carbonates, i.e., by generation of carbonate-rich melts [5]. However, the transfer of carbon from subducted eclogite to the mantle can also happen, perhaps more commonly, by extraction of silicate partial melt in the presence of reduced carbon; yet, CO2 solubility in eclogite-derived andesitic melt at graphite/diamond saturation remains unconstrained. CO2content of eclogite melts is also critical as geochemistry of many ocean island basalts suggest the presence of C and eclogite in their source regions [6]. In the present study we determine CO2 concentration in a model andesitic melt [7] at graphite/diamond saturation at conditions relevant for partial melting of eclogite in the convecting upper mantle. Piston cylinder and multi anvil experiments were conducted at 1-6 GPa and 1375-1550 °C using Pt/Gr double capsules. Oxygen fugacity was monitored with Pt-Fe sensors in the starting mix. Completed experiments at 1-3 GPa show that CO2 concentration increases with increasing P, T, and fO2 up to ~0.3 wt%. Results were used to develop empirical and thermodynamic models to predict CO2 concentration in partial melts of graphite saturated eclogite. This allowed us to quantify the extent to which CO2 can mobilize from eclogitic heterogeneities at graphite/diamond saturated conditions. With estimates of eclogite contribution to erupted basaltic lavas, the models developed here allow us to put constraints on the flux of CO2 to mantle source regions coming from subducted crust and investigate the possible role this process may play in the deep carbon cycle. [1] Dasgupta (2013) RiMG. [2] Shirey, et al. (2013) RiMG. [3] Frost & McCammon (2008) Ann Rev Earth Plan Sci. [4] Stagno, et al. (2015) CMP. [5] Kiseeva, et al. (2012) JPet. [6] Mallik & Dasgupta (2014) G3. [7] Spandler, et al. (2008) JPet.
Signal restoration through deconvolution applied to deep mantle seismic probes
NASA Astrophysics Data System (ADS)
Stefan, W.; Garnero, E.; Renaut, R. A.
2006-12-01
We present a method of signal restoration to improve the signal-to-noise ratio, sharpen seismic arrival onset, and act as an empirical source deconvolution of specific seismic arrivals. Observed time-series gi are modelled as a convolution of a simpler time-series fi, and an invariant point spread function (PSF) h that attempts to account for the earthquake source process. The method is used on the shear wave time window containing SKS and S, whereby using a Gaussian PSF produces more impulsive, narrower, signals in the wave train. The resulting restored time-series facilitates more accurate and objective relative traveltime estimation of the individual seismic arrivals. We demonstrate the accuracy of the reconstruction method on synthetic seismograms generated by the reflectivity method. Clean and sharp reconstructions are obtained with real data, even for signals with relatively high noise content. Reconstructed signals are simpler, more impulsive, and narrower, which allows highlighting of some details of arrivals that are not readily apparent in raw waveforms. In particular, phases nearly coincident in time can be separately identified after processing. This is demonstrated for two seismic wave pairs used to probe deep mantle and core-mantle boundary structure: (1) the Sab and Scd arrivals, which travel above and within, respectively, a 200-300-km-thick, higher than average shear wave velocity layer at the base of the mantle, observable in the 88-92 deg epicentral distance range and (2) SKS and SPdiff KS, which are core waves with the latter having short arcs of P-wave diffraction, and are nearly identical in timing near 108-110 deg in distance. A Java/Matlab algorithm was developed for the signal restoration, which can be downloaded from the authors web page, along with example data and synthetic seismograms.
Bernard J. Wood Receives 2013 Harry H. Hess Medal: Citation
NASA Astrophysics Data System (ADS)
Hofmann, Albrecht W.
2014-01-01
As Harry Hess recognized over 50 years ago, mantle melting is the fundamental motor for planetary evolution and differentiation. Melting generates the major divisions of crust mantle and core. The distribution of chemical elements between solids, melts, and gaseous phases is fundamental to understanding these differentiation processes. Bernie Wood, together with Jon Blundy, has combined experimental petrology and physicochemical theory to revolutionize the understanding of the distribution of trace elements between melts and solids in the Earth. Knowledge of these distribution laws allows the reconstruction of the source compositions of the melts (deep in Earth's interior) from their abundances in volcanic rocks. Bernie's theoretical treatment relates the elastic strain of the lattice caused by the substitution of a trace element in a crystal to the ionic radius and charge of this element. This theory, and its experimental calibrations, brought order to a literature of badly scattered, rather chaotic experimental data that allowed no satisfactory quantitative modeling of melting processes in the mantle.
NASA Astrophysics Data System (ADS)
Fillerup, Melvin A.
The Vrancea Seismogenic Zone (VSZ) of Romania is a steeply NW-dipping volume (30 x 70 x 200 km) of intermediate-depth seismicity in the upper mantle beneath the bend zone of the Eastern Carpathians. The majority of tectonic models lean heavily on subduction processes to explain the Vrancea mantle seismicity and the presence of a Miocene age calc-alkaline volcanic arc in the East Carpathian hinterland. However, recent deep seismic reflection data collected over the Eastern Carpathian bend zone image an orogen lacking (1) a crustal root and (2) dipping crustal-scale fabrics routinely imaged in modern and ancient subduction zones. The DRACULA I and DACIA-PLAN deep seismic reflection profiles show that the East Carpathian orogen is supported by crust only 30-33 km thick while the Focsani basin (foreland) and Transylvanian basin (hinterland) crust is 42 km and 46 km thick respectively. Here the VSZ is interpreted as the former Eastern Carpathian orogenic root which was removed as a result of continental lithospheric delamination and is seismically foundering beneath the East Carpathian bend zone. Because large volumes of calc-alkaline volcanism are typically associated with subduction settings existing geochemical analyses from the Calimani, Gurghiu, and Harghita Mountains (CGH) have been reinterpreted in light of the seismic data which does not advocate the subduction of oceanic lithosphere. CGH rocks exhibit a compositional range from basalt to rhyolite, many with high-Mg# (Mg/Mg+Fe > 0.60), high-Sr (>1000 ppm), and elevated delta-O18 values (6-8.7 /) typical of arc lavas, and are consistent with mixing of mantle-derived melts with a crustal component. The 143Nd/144Nd (0.5123-0.5129) and 87Sr/86Sr (0.7040-0.7103) ratios similarly suggest mixing of mantle and crustal end members to obtain the observed isotopic compositions. A new geochemical model is presented whereby delamination initiates a geodynamic process like subduction but with the distinct absence of subducted oceanic lithosphere to produce the CGH lavas. The origin of the VSZ presented here suggests that the delamination of continental lithosphere is a process capable of producing mantle earthquakes and calc-alkaline volcanism without subduction tectonics.
NASA Astrophysics Data System (ADS)
Glisovic, P.; Forte, A. M.
2017-12-01
An outstanding challenge in modern geodynamics is the utilization of mantle convection models and geophysical data to successfully explain geological events and processes that alter Earth's biosphere, climate, and surface. A key challenge in this modelling is the determination of the initial (and unknown) configuration of mantle heterogeneity in the geological past. The first step in addressing this challenge is recognizing that seismic tomography is our most powerful tool for mapping the present-day, internal structure of the mantle. We, therefore, implemented a new back-and-forth iterative method for time-reversed, tomography-based convection modelling to reconstruct Earth's internal 3-D structure and dynamics over the Cenozoic [Glisovic & Forte 2016 (JGR)]. This backward convection modelling also includes another key input - the depth variation of mantle viscosity inferred from joint inversions of the global convection-related observables and a suite of glacial isostatic adjustments (GIA) data [Mitrovica & Forte 2004 (EPSL), Forte et al. 2010 (EPSL)]. This state-of-the-art, time-reversed convection model is able to show that massive outpourings of basalt in west-central India, known as the Deccan Traps, about 65 million years ago can be directly linked to the presence of two different deep-mantle hotspots: Réunion and Comores [Glisovic & Forte 2017 (Science)]. This work constitutes case study showing how time-reversed convection modelling provides a new framework for interpreting the relations between mantle dynamics and changing paleogeography and it provides a roadmap for a new series of studies that will elucidate these linkages.
Intraplate seismicity across the Cape Verde swell
NASA Astrophysics Data System (ADS)
Vales, Dina; Matias, Luís.; Haberland, Christian; Silveira, Graça.; Weber, Michael; Carrilho, Fernando; Dias, Nuno
2010-05-01
The Cape Verde Archipelago ((15-17°N, 23-26°W) is located within the African plate, about 500km west of Senegal, in the African coast. The islands are located astride the Cape Verde mid-plate topographic swell, one of the largest features of its type in the world's ocean basins. The origin of this Cape Verde swell is still in debate. Previous determinations of the elastic thickness (Te) reveal a normal Te and a modest heat flow anomaly which suggest that the swell cannot be fully explained by uplift due to thermal reheating of the lithosphere by an underlying ‘‘hot spot'' and that other, deep-seated, mantle processes must be involved. The CV-PLUME (An investigation on the geometry and deep signature of the Cape Verde mantle plume) project intends to shape the geometry and deep origin of the Cape Verde mantle plume, via a combined study of seismic, magnetic, gravimetric and geochemical observations. Through this study we intend to characterize the structure beneath the archipelago from the surface down to the deep mantle. The core of this 3-year project was a temporary deployment of 39 Very Broad Band seismometers, across all the inhabited islands, to recorder local and teleseismic earthquakes. These instruments were operational from November 2007 to September 2008. In this work we report on the preliminary results obtained from the CV-PLUME network on the characterization of the local and regional seismicity. To detect the small magnitude seismic events the continuous data stream was screened using spectrograms. This proved to be a very robust technique in the face of the high short-period noise recorded by many of the stations, particularly during day time. The 10 month observation time showed that the background seismic activity in the Archipelago and surrounding area is low, with only a very few events recorded by the complete network. However, two clusters of earthquakes were detected close to the Brava Island, one to the NW and a second one, more active, to the SW. This activity was concentrated mainly during January 2008. The Brava and nearby Fogo Islands are known for their recent volcanic activity (last eruption in Fogo was in April 1995) and earthquake swarms. Therefore, we infer that the recorded seismic activity may be also triggered by magma flow. This study was funded by project "CV-PLUME: An investigation on the geometry and deep signature of the Cape Verde mantle plume", reference - PTDC/CTE-GIN/64330/2006; and Germany - "COBO: Cape Verdes Origin from Broadband Observations, GFZ, Geophysical Deep Sounding Section. The operation was possible thanks to the cooperation between the GeoForschungsZentrum Potsdam (Germany's National Research Centre for Geosciences) with the Instituto Dom Luiz.
NASA Astrophysics Data System (ADS)
Yang, D.; Wang, W.; Wu, Z.
2017-12-01
Plate subduction can transport the water to the Earth's interior by forming hydrous phases and water can exert important effects on global dynamics and many processes within the deep Earth. Superhydrous phase B (ShyB), as an important candidate for transporting water into the mantle transition zone and lower mantle, is stable up to 31 GPa and will decompose into bridgmanite, periclase and water at a depth of 800 km [Komabayashi and Omori, 2006]. The decomposition of ShyB may be related to the seismic discontinuity at the depth of 800 km in Western-Pacific Subduction Zones [Liu et al., 2016; Porritt and Yoshioka, 2016]. The detail discussions on this topic require the elasticity of ShyB at the P-T conditions of the transition zone and lower mantle. In this contribution, we obtained the thermal elasticity of ShyB using first-principles calculations. ShyB shows a very low velocity and density compared to the bridgmanite and periclase, the major minerals in the lower mantle. The accumulation of ShyB will generate the low-velocity anomaly in the uppermost lower mantle. The dehydration of ShyB will cause the Vp, Vs, and density increase by 7.5%, 15.0% and 12%, respectively. It means that a slab with 10% ShyB could cause an impedance contrast of 2.7% at a depth of 800 km for shear wave. Furthermore, the released waters by the dehydration of ShyB probably migrate upward and promote the partial melt to reduce the sound velocity at shallower depth, which can further explain the low-velocity zones just above 800-km discontinuity in Western-Pacific Subduction Zones [Liu et al., 2016]. Komabayashi, T., and S. Omori (2006), Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35GPa, 1600°C: Implications for water circulation in the Earth's deep mantle, Physics of the Earth and Planetary Interiors, 156(1-2), 89-107. Liu, Z., J. Park, and S. I. Karato (2016), Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone, Geophysical Research Letters, 43(6), 2480-2487. Porritt, R. W., and S. Yoshioka (2016), Slab pileup in the mantle transition zone and the 30 May 2015 Chichi-jima earthquake, Geophysical Research Letters, 43(10), 4905-4912.
Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi
2014-01-01
Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.
Electrical conductivity imaging in the western Pacific subduction zone
NASA Astrophysics Data System (ADS)
Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi
2010-05-01
Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005 to 2008. As a preliminary investigation, MT response functions from 20 sites in the Philippine Sea and 4 sites in the west Pacific basin in the period range between 300 and 80000 sec were respectively inverted to one-dimensional (1-D) profile of electrical conductivity by quantitatively considering the effect of the heterogeneous conductivity distribution (ocean and lands) at the surface. The resultant 1-D models show three main features: (1) Strong contrast in the conductivity for the shallower 200 km of the upper mantle depths is recognized between the two regions, which is qualitatively consistent with the difference in lithospheric age. (2) The conductivity at 200-300 km depth is more or less similar to each other at about 0.3 S /m. (3) The conductivity around the MTZ depth is higher for the Philippine Sea mantle than for the Pacific mantle, which is consistent with the implication obtained from a semi-global approach (a). As already suggested in our previous work, the high conductivity in the MTZ below the Philippine Sea can be explained by the excess conduction due to the presence of hydrogen (water) in wadesleyite or in ringwoodite. Therefore, it implies a large scale circulation of water in the back arc mantle not only in the upper mantle but also down to the MTZ depth. However, our interpretation indicates that the high conductivity of the Philippine Sea uppermost upper mantle cannot be explained only by the effect of hydrogen conduction in olivine, but that additional conduction enhancement such as the presence of partial melt is required.
Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Tréhu, A.; Cannon, W.; Green, A.
1990-01-01
Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth.
NASA Astrophysics Data System (ADS)
Immoor, J.; Marquardt, H.; Miyagi, L.; Lin, F.; Speziale, S.; Merkel, S.; Buchen, J.; Kurnosov, A.; Liermann, H.-P.
2018-05-01
Seismic anisotropy in Earth's lowermost mantle, resulting from Crystallographic Preferred Orientation (CPO) of elastically anisotropic minerals, is among the most promising observables to map mantle flow patterns. A quantitative interpretation, however, is hampered by the limited understanding of CPO development in lower mantle minerals at simultaneously high pressures and temperatures. Here, we experimentally determine CPO formation in ferropericlase, one of the elastically most anisotropic deep mantle phases, at pressures of the lower mantle and temperatures of up to 1400 K using a novel experimental setup. Our data reveal a significant contribution of slip on {100} to ferropericlase CPO in the deep lower mantle, contradicting previous inferences based on experimental work at lower mantle pressures but room temperature. We use our results along with a geodynamic model to show that deformed ferropericlase produces strong shear wave anisotropy in the lowermost mantle, where horizontally polarized shear waves are faster than vertically polarized shear waves, consistent with seismic observations. We find that ferropericlase alone can produce the observed seismic shear wave splitting in D″ in regions of downwelling, which may be further enhanced by post-perovskite. Our model further shows that the interplay between ferropericlase (causing VSH > VSV) and bridgmanite (causing VSV > VSH) CPO can produce a more complex anisotropy patterns as observed in regions of upwelling at the margin of the African Large Low Shear Velocity Province.
Implications of a reservoir model for the evolution of deep carbon
NASA Astrophysics Data System (ADS)
Kellogg, L. H.; Weisfeiler, M.; Turcotte, D. L.
2016-12-01
We consider a reservoir model for the evolution of carbon in Earth's deep interior. We begin with the assumption that the mantle reservoir that interacts with the surface is well mixed. We hypothesize that the loss of carbon from the mantle reservoir occurs primarily at mid-ocean ridges and we take the flux of carbon to be 36 ± 24 GtC yr-1 (Dasgupta and Hirschmann, 2010). We infer that the mass concentration of carbon is 5.3 ± 1.8 × 10-5. Assuming that the mass of the mantle reservoir is 4.043×1024 kg, the mass of carbon in that reservoir is 2.1±0.7×108 GtC. We further hypothesize that the addition of carbon to the mantle reservoir occurs primarily at subduction zones and take the flux of carbon to be 36 ± 12 GtC yr-1 (Dasgupta and Hirschmann, 2010). Thus within estimated uncertainties there is a steady state balance between the fluxes into and out of the mantle reservoir. A basic question is where this carbon came from. The present mass of carbon in the atmosphere of Venus is 1.28 × 108 GtC, which scales to be equivalent to 1.57 × 108 GtC in the Earth's atmosphere. This is much greater than the current mass of cabron in Earth's atmosphere but is close to the mass of carbon in the mantle reservoir given above. One explanation for the loss of carbon from Earth's atmosphere to its mantle has been given by Sleep and Zahnle (2001), who suggest that after the moon-forming giant impact at about 4.4 Ga, the carbon in the Earth's atmosphere was transferred into the mantle reservoir. We further suggest that the volcanic flux of carbon out of the mantle was responsible for the carbon concentrations in the surficial reservoirs today. In this scenario, carbon accumulated in the deep ocean until the carbon flux into the mantle due to subduction balanced the carbon flux out of the mantle due to volcanism.
NASA Astrophysics Data System (ADS)
Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.
2009-08-01
Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.
Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo
2015-01-01
Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth’s upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 1019.6 to 1020.7 Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size–sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle. PMID:26601281
Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-Ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo
2015-10-01
Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 10(19.6) to 10(20.7) Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size-sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle.
Mantle structure: The message from scattered seismic waves (Invited)
NASA Astrophysics Data System (ADS)
Helffrich, G. R.; Kaneshima, S.
2009-12-01
When Francis Birch named the Transition Zone, the deep mantle became a dull place. It was homogeneous material simply becoming denser as pressure increased with depth. No more respect was accorded to it by geochemists than by geophysicists. For geochemists, the deep mantle was simply a dark box in which chemical components were held until needed for delicate flavoring of various sorts of rock cocktails. It deserves more respect. Though it may be dregs, the part of the mantle in contact with the core is rich in seismologically annoying structural detail. This might be written off as an observational quirk due to a mendacious Earth or investigative incompetence, except that more of the lower mantle is grudgingly revealing structure as well. The structural details are fine-scale, at characteristic sizes of around one to one hundred kilometers. The details are emerging from studies of scattered seismic waves. These are unscheduled arrivals in the timetable following an earthquake. They don't arise in a uniform or even a layered Earth. Rather, they originate from the wave field's interactions with sub-wavelength roughness in Earth structure. A lot of data is needed to be sure those arrivals are real and repeatable, but networks of hundreds of seismometers such as the ones in existence in Asia, Europe and North America can provide or have provided the necessary redundancy for confident detection. The results of studies of S-to-P and P-to-P scattering to date show that some lower mantle heterogeneity is associated with present subduction. Some is also found at sites of past subduction, but it is difficult to generalize to all heterogeneity. Scattering strength varies with depth: the shallowest lower mantle is rougher than the deeper parts. The peak scattering strength is around 1600 km deep in the mantle, followed by a slow decline. The roughness clusters, too, with individual groups separated by around 100 km. Individual clusters appear to have particular fabrics that influence their scattering characteristics. Because the km- to 100 km-length scales are present in oceanic plates in their layer thicknesses and plate thickness, these features strongly suggest that the scattered waves emanate from solid material injected into the lower mantle by subduction. They also suggest that the deep mantle is not strongly layered in viscosity or density because scattering strength depth profiles do not change abruptly. A real puzzle is the material identity of the heterogeneity. Seismic wavespeeds must change by more than 5% within a kilometer. Clearly, this is no thermal signal, but compositional differences that extreme in mantle mineralogies require extreme variations in silica or a very broad pressure-dependent phase transition to change properties that significantly. Only about 2% of the lower mantle volume has been explored to date. Much of the mantle away from subduction zones will never be visible. Different methods will be needed to see all of the mantle's structure details, even using scattering.
Mantle plumes and hotspot geochemistry
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Becker, T. W.; Konter, J.
2017-12-01
Ever improving global seismic models, together with expanding databases of mantle derived hotspot lavas, herald advances that relate the geochemistry of hotspots with low seismic shear-wave velocity conduits (plumes) in the mantle. Early efforts linked hotspot geochemistry with deep mantle large low velocity provinces (LLVPs) [1]. More recently, Konter and Becker (2012) [2] observed that the proportion of the C mantle component (inferred from Sr-Nd-Pb isotopes) in hotspot lavas shows an inverse relationship with seismic S-wave velocity anomalies in the shallow mantle (200 km) beneath each hotspot. They proposed that these correlations should also be made based on 3He/4He. Thus, we compare 3He/4He versus seismic S-wave velocity anomalies at 200 km depth. We find that plume-fed hotspots with the highest maximum 3He/4He (i.e., which host more of the C component) have higher hotspot buoyancy fluxes and overlie regions of lower seismic S-wave velocity (interpreted to relate to hotter mantle temperatures) at 200 km depth than hotspots that have only low 3He/4He [3]. This result complements recent work that shows an inverse relationship between maximum 3He/4He and seismic S-wave velocity anomalies in the mantle beneath the western USA [4]. The relationship between 3He/4He, shallow mantle seismic S-wave velocity anomalies, and buoyancy flux is most easily explained by a model where hotter plumes are more buoyant and entrain more of a deep, dense high 3He/4He reservoir than cooler plumes that underlie low 3He/4He hotspots. If the high 3He/4He domain is denser than other mantle components, it will be entrained only by the hottest, most buoyant plumes [3]. Such a deep, dense reservoir is ideally suited to preserving early-formed Hadean domains sampled in modern plume-fed hotspots. An important question is whether, like 3He/4He, seismic S-wave velocity anomalies in the mantle are associated with distinct heavy radiogenic isotopic compositions. C signatures are related to hot mantle upwellings, but are geochemically enriched (EM) and HIMU mantle signatures observed in oceanic hotspots associated with such upwellings? We will present new constraints on this and similar problems. [1] Castillo (1988) Nature 336. [2] Konter and Becker (2012) G-cubed 13. [3] Jackson et al. (2017), Nature 542. [4] Crossey et al. (2016), EPSL 435.
Early differentiation and volatile accretion recorded in deep-mantle neon and xenon.
Mukhopadhyay, Sujoy
2012-06-06
The isotopes (129)Xe, produced from the radioactive decay of extinct (129)I, and (136)Xe, produced from extinct (244)Pu and extant (238)U, have provided important constraints on early mantle outgassing and volatile loss from Earth. The low ratios of radiogenic to non-radiogenic xenon ((129)Xe/(130)Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir. However, the low (129)Xe/(130)Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir. Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and (20)Ne/(22)Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower (129)Xe/(130)Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because (129)I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth's mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth's heterogeneous accretion and early differentiation.
NASA Astrophysics Data System (ADS)
Dick, H.; Natland, J.
2003-04-01
No. With few exceptions, lower ocean crust sampled by dredge or submersible in tectonic windows such as Atlantis Bank in the Indian Ocean or the MARK area on the Mid-Atlantic Ridge are not representative of the ocean crust. They represent tectonic mixing of rocks from the mantle and crust on large faults that also localize late magmatic intrusion. Where this can be sorted out, the in-situ crustal sections may generally represent a sub-horizontal cross-section through the lower crust and mantle and not a vertical one. The gabbroic rocks exposed represent largely high-level intrusions, highly hybridized by late melt flow along deep faults, or highly evolved gabbro at the distal ends of larger intrusions emplaced into the mantle near transforms. Oceanic gabbros have average compositions that lie outside the range of primary MORB compositions, and rarely are equivalent to spatially associated MORB either as a parent to, or as a residue of their crystallization. Oceanic gabbros sampled from these complexes generally are very coarse-grained, and are unlike those seen in nearly all ophiolites and layered intrusions. In addition, there are few exposures of gabbro and lower ocean crust and mantle in Pacific tectonic windows, though there the possibility of more representative sections is greater due to their exposure in propagating rifts. Limited samples of the mantle from near the midpoints of ocean ridge segments at slow-spreading rifts are from anomalous crustal environments such as ultra-slow spreading ridges or failed rifts. These include abundant dunites, as opposed to samples from fracture zones, which contain only about 1% dunite. While this indicates focused mantle flow towards the midpoint of a ridge, it also shows that fracture zone peridotites are not fully representative of the oceanic upper mantle. Major classes of rocks common in ophiolites, such as fine to medium grained layered primitive olivine gabbros, troctolites, wherlites and dunites, sheeted dikes, and epidosites are rarely or even not exposed. Models of lower ocean crust stratigraphy drawn from deep sea sampling, certainly from slow spreading ridges, do not match those for major intact ophiolites. Thus the ophiolite hypothesis remains unconfirmed for the lower ocean crust and shallow mantle, and it is nearly impossible to accurately identify the ocean ridge environment of any one ophiolite. The one deep drill hole that exists in lower ocean crust, 1.5 km Hole 735B, has a bulk composition too fractionated to mass balance MORB back to a primary mantle melt composition. Thus, a large mass of primitive cumulates is missing and could be situated in the crust below the base of the hole or in the underlying mantle. This is an unresolved question that is critical to understanding the evolution of the most common magma on earth: MORB. Since lower ocean crust and mantle represent a major portion of the crust and the exchange of mass, heat and volatiles from the earth's interior to its exterior this leaves a major hole in our understanding of the global geochemical and tectonic cycle which can only be filled by deep drilling.
Origin and evolution of the deep thermochemical structure beneath Eurasia.
Flament, N; Williams, S; Müller, R D; Gurnis, M; Bower, D J
2017-01-18
A unique structure in the Earth's lowermost mantle, the Perm Anomaly, was recently identified beneath Eurasia. It seismologically resembles the large low-shear velocity provinces (LLSVPs) under Africa and the Pacific, but is much smaller. This challenges the current understanding of the evolution of the plate-mantle system in which plumes rise from the edges of the two LLSVPs, spatially fixed in time. New models of mantle flow over the last 230 million years reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. The anomaly formed in isolation within a closed subduction network ∼22,000 km in circumference prior to 150 million years ago before migrating ∼1,500 km westward at an average rate of 1 cm year -1 , indicating a greater mobility of deep mantle structures than previously recognized. We hypothesize that the mobile Perm Anomaly could be linked to the Emeishan volcanics, in contrast to the previously proposed Siberian Traps.
Sub-Moho Reflectors, Mantle Faults and Lithospheric Rheology
NASA Astrophysics Data System (ADS)
Brown, L. D.
2013-12-01
One of the most unexpected and dramatic observations from the early years of deep reflection profiling of the continents using multichannel CMP techniques was the existing of prominent reflections from the upper mantle. The first of these, the Flannan thrust/fault/feature, was traced by marine profiling of the continental margin offshore Britain by the BIRPS program, which soon found them to be but one of several clear sub-crustal discontinuities in that area. Subsequently, similar mantle reflectors have been observed in many areas around the world, most commonly beneath Precambrian cratonic areas. Many, but not all, of these mantle reflections appear to arise from near the overlying Moho or within the lower crust before dipping well into the mantle. Others occur as subhorizontal events at various depths with the mantle, with one suite seeming to cluster at a depth of about 75 km. The dipping events have been variously interpreted as mantle roots of crustal normal faults or the deep extension of crustal thrust faults. The most common interpretation, however, is that these dipping events are the relicts of ancient subduction zones, the stumps of now detached Benioff zones long since reclaimed by the deeper mantle. In addition to the BIRPS reflectors, the best known examples include those beneath Fennoscandia in northern Europe, the Abitibi-Grenville of eastern Canada, and the Slave Province of northwestern Canada (e.g. on the SNORCLE profile). The most recently reported example is from beneath the Sichuan Basin of central China. The preservation of these coherent, and relatively delicate appearing, features beneath older continental crust and presumably within equally old (of not older) mantle lithosphere, has profound implications for the history and rheology of the lithosphere in these areas. If they represent, as widely believe, some form of faulting with the lithosphere, they provide corollary constraints on the nature of faulting in both the lower crust and upper mantle. The SNORCLE mantle reflectors, which can be traced deep within the early Precambrian (?) mantle by both surface (controlled source) reflection profiles and passive (receiver function) images most clearly illustrates the rheological implications of such feature. The SNORCLE events appear to root upwards into the lower crust and extend to depths approaching 200 km into the mantle. This would seem to require the preservation of undeformed mantle lithosphere for almost 2.5 billion years in this area. This preservation is clearly inconsistent with the interpretation of nearby shallower mantle interfaces as marking the modern lithosphere-asthenosphere boundary. In summary, dipping mantle reflections imply preservation of substantial thicknesses of mantle lithosphere for very long periods of time, and localization of mantle deformation during the formation of these structures along relatively narrow, discrete interfaces rather than across broad zones of diffuse deformation. .
Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial
NASA Technical Reports Server (NTRS)
Volk, Tyler
1989-01-01
A model of the carbonate-silicate geochemical cycle is presented that distinguishes carbonate masses produced by shallow-ocean and deep-ocean carbonate burial and shows that reasonable increases in deep-ocean burial could produce substantial warmings over a few hundred million years. The model includes exchanges between crust and mantle; transients from burial shifts are found to be sensitive to the fraction of nondegassed carbonates subducted into the mantle. Without the habitation of the open ocean by plankton such as foraminifera and coccolithophores, today's climate would be substantially colder.
Chondritic xenon in the Earth’s mantle
NASA Astrophysics Data System (ADS)
Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G.; Füri, Evelyn; Marty, Bernard
2016-05-01
Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth’s mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth’s mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth’s accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.
Chondritic xenon in the Earth's mantle.
Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard
2016-05-05
Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.
Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica
Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.
2011-01-01
Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.
Deep-tow geophysical survey above large exhumed mantle domains of the eastern Southwest Indian ridge
NASA Astrophysics Data System (ADS)
Bronner, A.; Munschy, M.; Sauter, D.; Carlut, J.; Searle, R.; Cannat, M.
2012-04-01
The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the easternmost part of the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining multibeam bathymetric data, magnetic data, geology mapping from sidescan sonar (TOBI) images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the sidescan sonar images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. We investigate the possibility that magnetic anomalies are either caused by serpentinized peridotites and/or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may result from fluid-rock interactions along the detachment faults as well as from the occurrence of small sized and thin volcanic patches and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this peculiar seafloor.
Deep-tow magnetic survey above large exhumed mantle domains of the eastern Southwest Indian ridge
NASA Astrophysics Data System (ADS)
Bronner, A.; Munschy, M.; Carlut, J. H.; Searle, R. C.; Sauter, D.; Cannat, M.
2011-12-01
The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining magnetic data, geology mapping from side-scan sonar images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the side-scan images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. This allows us to hypothesis that magnetic anomalies are caused by serpentinized peridotites or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may results from fluid-rocks interaction along the detachment faults as well as from the repartition of the volcanic material and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this peculiar seafloor.
Circulation of carbon dioxide in the mantle: multiscale modeling
NASA Astrophysics Data System (ADS)
Morra, G.; Yuen, D. A.; Lee, S.
2012-12-01
Much speculation has been put forward on the quantity and nature of carbon reservoirs in the deep Earth, because of its involvement in the evolution of life at the surface and inside planetary interiors. Carbon penetrates into the Earth's mantle mostly during subduction of oceanic crust, which contains carbonate deposits [1], however the form that it assumes at lower mantle depths is scarcely understood [2], hampering our ability to estimate the amount of carbon in the entire mantle by orders of magnitude. We present simulations of spontaneous degassing of supercritical CO2 using in-house developed novel implementations of the Fast-Multipole Boundary Element Method suitable for modeling two-phase flow (here mantle mineral and free CO2 fluid) through disordered materials such as porous rocks. Because the mutual interaction of droplets immersed either in a fluid or a solid matrix and their weakening effect to the host rock alters the strength of the mantle rocks, at the large scale the fluid phases in the mantle may control the creeping of mantle rocks [3]. In particular our study focuses on the percolation of supercritical CO2, estimated through the solution of the Laplace equation in a porous system, stochastically generated through a series of random Karhunen-Loeve decomposition. The model outcome is employed to extract the transmissivity of supercritical fluids in the mantle from the lowest scale up to the mantle scale and in combination with the creeping flow of the convecting mantle. The emerging scenarios on the global carbon cycle are finally discussed. [1] Boulard, E., et al., New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences, 2011. 108(13): p. 5184-5187. [2] Walter, M.J., et al., Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011. 334(6052): p. 54-57. [3] Morra, G., et al., Ascent of Bubbles in Magma Conduits Using Boundary Elements and Particles. Procedia Computer Science, 2011.; Boundary Element solution of a flow through a porous. Left boxes represent the the matrix associated with the integrals. The flow enters below and emerges at the top, the amount of flow is identical. The flow is spread in the porous and is viscousless (Laplace equation).
NASA Astrophysics Data System (ADS)
Zhang, L.
2016-12-01
Hydrous minerals play an important role in the transportation and storage of water in the Earth's interior. Recently a pyrite-structured iron oxide (FeO2) (P-phase) was found stable at 76 GPa and 1800 K [1] and this discovery has brought new insights into the H2-O2 cycles in the deep mantle. In this study, we perform in situ synchrotron X-ray experiments in the Al2O3-Fe2O3-H2O system in a laser-heated diamond anvil cell (DAC) at P-T conditions in the deep lower mantle. The new results added more complexity to the H2-O2/H2O cycles in the deep lower mantle. The symmetry and unit-cell parameters of each phase in the run products were determined using the multigrain approach [2]. On the other hand, the d-H solid solution AlOOH-MgSiO2(OH)2 is the stable hydrous phase coexisting with bridgmanite or post-perovskite under equilibrium P-T conditions to the deepest lower mantle [3]. The detailed crystal chemistry of the newly found hydrous phases and its relations to the d-H phase have been investigated using both first-principles calculations and experiments, providing new understanding to the hydration mechanism and water storage in the deep mantle. It is worth mentioning that recent development in high pressure multigrain method has realized separation of each individual phase in a multiphase assemblage and even allowed in situ crystal structure determination of a minor phase in the assemblage contained in a DAC [4]. [1] Q. Hu, D. Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, and H. K. Mao, Nature 534, 241 (2016). [2] H. O. Sørensen et al., Zeitschrift für Kristallographie 227, 63 (2012). [3] I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, and M. Nishijima, Earth and Planetary Science Letters 401, 12 (2014). [4] L. Zhang, D. Popov, Y. Meng, J. Wang, C. Ji, B. Li, and H.-k. Mao, American Mineralogist 101, 231 (2016).
Constraining the Material that Formed the Moon: The Origin of Lunar V, CR, and MN Depletions
NASA Technical Reports Server (NTRS)
Chabot, N. L.; Agee, C. B.
2002-01-01
The mantles of the Earth and Moon are similarly depleted in V, Cr, and Mn relative to chondritic values. Core formation deep within the Earth was suggested by as the origin of the depletions. Following Earth's core formation, the Moon was proposed to have inherited its mantle from the depleted mantle of the Earth by a giant impact event. This theory implied the Moon was primarily composed of material from the Earth's mantle. Recent systematic metal-silicate experiments of V, Cr, and Mn evaluated the behavior of these elements during different core formation scenarios. The study found that the V, Cr, and Mn depletions in the Earth could indeed be explained by core formation. The conditions of core formation necessary to deplete V, Cr, and Mn in the Earth's mantle were consistent with the deep magma ocean proposed to account for the Earth's mantle abundances of Ni and Co. Using the parameterizations of for the metal-silicate partition coefficients (D) of V, Cr, and Mn, we investigate here the conditions needed to match the depletions in the silicate Moon and determine if such conditions could have been present on the giant impactor.
Duration of the hydrocarbon fluid formation under thermobaric conditions of the Earth's upper mantle
NASA Astrophysics Data System (ADS)
Mukhina, Elena; Kolesnikov, Anton; Kutcherov, Vladimir
2016-04-01
Deep abiogenic formation of hydrocarbons is an inherent part of the Earth's global carbon cycle. It was experimentally confirmed that natural gas could be formed from inorganic carbon and hydrogen containing minerals at pressure and temperature corresponding to the Earth's upper mantle conditions. Reaction between calcite, wustite and water in the large volume device was studied in several works. It was previously proposed that reaction is possible only after 40 minutes of exposure at high pressure and temperature. In this work similar experiment at P = 60 kbar and T = 1200 K were carried out in "Toroid" type chamber with the 5 seconds duration of thermobaric exposure. Gas chromatographic analysis of the reaction products has shown the presence of hydrocarbon mixture comparable to 5 minutes and 6 hours exposure experiments. Based on this fact it is possible to conclude that the reaction of natural gas formation is instant at least at given thermobaric conditions. This experiment will help to better understand the process of deep hydrocarbon generation, particularly its kinetics.
Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction
NASA Astrophysics Data System (ADS)
Arredondo, K.; Billen, M. I.
2013-12-01
While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and feedback to other added processes remain important, which could encourage mineralogical research into multiphase systems. Feedback from the compositionally complex slab to the dynamic trench may improve understanding on the mechanics of slab behavior in the upper and lower mantle and surface behavior of the subducting and overriding plates. Běhounková, M., and H. Cízková, Long-wavelength character of subducted slabs in the lower mantle, Earth and Planetary Science Letters, 275, 43-53, 2008. Fukao, Y., M. Obayashi, T. Nakakuki, and the Deep Slab Project Group, Stagnant slab: A review, Annual Reviews of Earth and Planetary Science, 37, 19-46, 2009. Ricard, Y., E. Mattern, and J. Matas, Synthetic tomographic images of slabs from mineral physics, in Earth's Deep Mantle: Structure, Composition, and Evolution, Geophysical Monograph Series, vol. 160, American Geophysical Union, 2005.
How large is the subducted water flux? New constraints on mantle regassing rates
NASA Astrophysics Data System (ADS)
Parai, R.; Mukhopadhyay, S.
2012-02-01
Estimates of the subducted water (H2O) flux have been used to discuss the regassing of the mantle over Earth history. However, these estimates vary widely, and some are large enough to have reduced the volume of water in the global ocean by a factor of two over the Phanerozoic. In light of uncertainties in the hydration state of subducting slabs, magma production rates and mantle source water contents, we use a Monte Carlo simulation to set limits on long-term global water cycling and the return flux of water to the deep Earth. Estimates of magma production rates and water contents in primary magmas generated at ocean islands, mid-ocean ridges, arcs and back-arcs are paired with estimates of water entering trenches via subducting oceanic slab in order to construct a model of the deep Earth water cycle. The simulation is constrained by reconstructions of Phanerozoic sea level change, which suggest that ocean volume is near steady-state, though a sea level decrease of up to 360 m may be supported. We provide limits on the return flux of water to the deep Earth over the Phanerozoic corresponding to a near steady-state exosphere (0-100 meter sea level decrease) and a maximum sea level decrease of 360 m. For the near steady-state exosphere, the return flux is 1.4 - 2.0- 0.3+ 0.4 × 1013 mol/yr, corresponding to 2-3% serpentinization in 10 km of lithospheric mantle. The return flux that generates the maximum sea level decrease over the Phanerozoic is 3.5- 0.3+ 0.4 × 1013 mol/yr, corresponding to 5% serpentinization in 10 km of lithospheric mantle. Our estimates of the return flux of water to the mantle are up to 7 times lower than previously suggested. The imbalance between our estimates of the return flux and mantle output flux leads to a low rate of increase in bulk mantle water content of up to 24 ppm/Ga.
Mg-Fe Isotope Systems of Mantle Xenoliths: Constrains on the Evolution of Siberian Craton
NASA Astrophysics Data System (ADS)
An, Y.; Kiseeva, E. S.; Sobolev, N. V.; Zhang, Z.
2017-12-01
Mantle xenoliths bring to the surface a variety of lithologies (dunites, lherzolites, harzburgites, wehrlites, eclogites, pyroxenites, and websterites) and represent snapshots of the geochemical processes that occur deep within the Earth. Recent improvements in the precision of the MC-ICP-MS measurements have allowed us to expand the amount of data on Mg and Fe isotopes for mantle-derived samples. For instance, to constrain the isotopic composition of the Earth based on the study of spinel and garnet peridotites (An et al., 2017; Teng et al., 2010), to trace the origin and to investigate the isotopic fractionation mechanism during metamorphic process using cratonic or orogenic eclogites (Li et al., 2011; Wang et al., 2012) and to reveal the metasomatism-induced mantle heterogeneity by pyroxenites (Hu et al., 2016). Numerous multi-stage modification events and mantle layering are detected in the subcontinental lithospheric mantle under the Siberian craton (Ashchepkov et al., 2008a; Sobolev et al., 1975, etc). Combined analyses of Mg and Fe isotopic systems could provide new constraints on the formation and evolution of the ancient cratonic mantle. In order to better constrain the magnitude and mechanism of inter-mineral Mg and Fe isotopic fractionations at high temperatures, systematic studies of mantle xenoliths are needed. For example, theoretical calculations and natural samples measurements have shown that large equilibrium Mg isotope fractionations controlled by the difference in coordination number of Mg among minerals could exist (Huang et al., 2013; Li et al., 2011). Thus, the Mg isotope geothermometer could help us trace the evolution history of ancient cratons. In this study we present Mg and Fe isotopic data for whole rocks and separated minerals (clinopyroxene (cpx) and garnet (grt)) from different types of mantle xenoliths (garnet pyroxenites, eclogites, grospydites and garnet peridotites) from a number of kimberlite pipes in Siberian craton (Udachnaya, Obnazhennaya, Mir, and Zagadochnaya). The large Mg and Fe isotope fractionations between clinopyroxene and garnet for various mantle rocks (Δ26Mg cpx-gnt= 0.360‰ 0.888‰, Δ56Fe cpx-gnt= 0.018‰ 0.348‰) indicate that the Siberian cratonic lithosphetic mantle has undergone multiple complex metasomatic and re-equilibration events.
Deep-focus earthquakes and recycling of water into the earth's mantle
NASA Technical Reports Server (NTRS)
Meade, Charles; Jeanloz, Raymond
1991-01-01
For more than 50 years, observations of earthquakes to depths of 100 to 650 kilometers inside earth have been enigmatic: at these depths, rocks are expected to deform by ductile flow rather than brittle fracturing or frictional sliding on fault surfaces. Laboratory experiments and detailed calculations of the pressures and temperatures in seismically active subduction zones indicate that this deep-focus seismicity could originate from dehydration and high-pressure structural instabilities occurring in the hydrated part of the lithosphere that sinks into the upper mantle. Thus, seismologists may be mapping the recirculation of water from the oceans back into the deep interior of the planet.
Iron-carbonate interaction at Earth's core-mantle boundary
NASA Astrophysics Data System (ADS)
Dorfman, S. M.; Badro, J.; Nabiei, F.; Prakapenka, V.; Gillet, P.
2015-12-01
Carbon storage and flux in the deep Earth are moderated by oxygen fugacity and interactions with iron-bearing phases. The amount of carbon stored in Earth's mantle versus the core depends on carbon-iron chemistry at the core-mantle boundary. Oxidized carbonates subducted from Earth's surface to the lowermost mantle may encounter reduced Fe0 metal from disproportionation of Fe2+ in lower mantle silicates or mixing with the core. To understand the fate of carbonates in the lowermost mantle, we have performed experiments on sandwiches of single-crystal (Ca0.6Mg0.4)CO3 dolomite and Fe foil in the laser-heated diamond anvil cell at lower mantle conditions of 49-110 GPa and 1800-2500 K. Syntheses were conducted with in situ synchrotron X-ray diffraction to identify phase assemblages. After quench to ambient conditions, samples were sectioned with a focused Ga+ ion beam for composition analysis with transmission electron microscopy. At the centers of the heated spots, iron melted and reacted completely with the carbonate to form magnesiowüstite, iron carbide, diamond, magnesium-rich carbonate and calcium carbonate. In samples heated at 49 and 64 GPa, the two carbonates exhibit a eutectoid texture. In the sample heated at 110 GPa, the carbonates form rounded ~150-nm-diameter grains with a higher modal proportion of interspersed diamonds. The presence of reduced iron in the deep lower mantle and core-mantle boundary region will promote the formation of diamonds in carbonate-bearing subducted slabs. The complete reaction of metallic iron to oxides and carbides in the presence of mantle carbonate supports the formation of these phases at the Earth's core-mantle boundary and in ultra-low velocity zones.
Key new pieces of the HIMU puzzle from olivines and diamond inclusions.
Weiss, Yaakov; Class, Cornelia; Goldstein, Steven L; Hanyu, Takeshi
2016-09-29
Mantle melting, which leads to the formation of oceanic and continental crust, together with crust recycling through plate tectonics, are the primary processes that drive the chemical differentiation of the silicate Earth. The present-day mantle, as sampled by oceanic basalts, shows large chemical and isotopic variability bounded by a few end-member compositions. Among these, the HIMU end-member (having a high U/Pb ratio, μ) has been generally considered to represent subducted/recycled basaltic oceanic crust. However, this concept has been challenged by recent studies of the mantle source of HIMU magmas. For example, analyses of olivine phenocrysts in HIMU lavas indicate derivation from the partial melting of peridotite, rather than from the pyroxenitic remnants of recycled oceanic basalt. Here we report data that elucidate the source of these lavas: high-precision trace-element analyses of olivine phenocrysts point to peridotite that has been metasomatized by carbonatite fluids. Moreover, similarities in the trace-element patterns of carbonatitic melt inclusions in diamonds and HIMU lavas indicate that the metasomatism occurred in the subcontinental lithospheric mantle, fused to the base of the continental crust and isolated from mantle convection. Taking into account evidence from sulfur isotope data for Archean to early Proterozoic surface material in the deep HIMU mantle source, a multi-stage evolution is revealed for the HIMU end-member, spanning more than half of Earth's history. Before entrainment in the convecting mantle, storage in a boundary layer, upwelling as a mantle plume and partial melting to become ocean island basalt, the HIMU source formed as Archean-early Proterozoic subduction-related carbonatite-metasomatized subcontinental lithospheric mantle.
New High Pressure Phase of CaCO3: Implication for the Deep Diamond Formation
NASA Astrophysics Data System (ADS)
Mao, Z.; Li, X.; Zhang, Z.; Lin, J. F.; Ni, H.; Prakapenka, V.
2017-12-01
Surface carbon can be transported to the Earth's deep interior through sinking subduction slabs. Carbonates, including CaCO3, MgCO3 and MgCa(CO3)2, are important carbon carriers for the deep carbon cycle. Experimental studies on the phase stability of carbonates with coexisting mantle minerals at relevant pressure and temperature conditions are thus important for understanding the deep carbon cycle. In particular, recent petrological studies have revealed the evidence for the transportation of CaCO3 to the depth at least of the top lower mantle by analyzing the diamond inclusions. Yet the phase stability of CaCO3 at relevant pressure and temperature conditions of the top lower mantle is still unclear. Previous single-crystal study has shown that CaCO3 transforms from the CaCO3-III structure to CaCO3-VI at 15 GPa and 300 K. The CaCO3-VI is stable at least up to 40 GPa at 300 K. At high temperatures, CaCO3 in the aragonite structure will directly transform into the post-aragonite structure at 40 GPa. However, a recent theoretical study predicted a new phase of CaCO3 with a space group of P21/c between 32 and 48 GPa which is different from previous experimental results. In this study, we have investigated the phase stability of CaCO3 at high pressure-temperature conditions using synchrotron X-ray diffraction in laser-heated diamond anvil cells. We report the discovery of a new phase of CaCO3 at relevant pressure-temperature conditions of the top lower mantle which is consistent with previous theoretical predictions. This new phase is an important carrier for the transportation of carbon to the Earth's lower mantle and crucial for growing deep diamonds in the region.
Volatiles in the Earth and Moon: Constraints on planetary formation and evolution
NASA Astrophysics Data System (ADS)
Parai, Rita
The volatile inventories of the Earth and Moon reflect unique histories of volatile acquisition and loss in the early Solar System. The terrestrial volatile inventory was established after the giant impact phase of accretion, and the planet subsequently settled into a regime of long-term volatile exchange between the mantle and surface reservoirs in association with plate tectonics. Therefore, volatiles in the Earth and Moon shed light on a diverse array of processes that shaped planetary bodies in the Solar System as they evolved to their present-day states. Here we investigate new constraints on volatile depletion in the early Solar System, early outgassing of the terrestrial mantle, and the long-term evolution of the deep Earth volatile budget. We develop a Monte Carlo model of long-term water exchange between the mantle and surface reservoirs. Previous estimates of the deep Earth return flux of water are up to an order of magnitude too large, and incorporation of recycled slabs on average rehydrates the upper mantle but dehydrates the plume source. We find evidence for heterogeneous recycling of atmospheric argon and xenon into the upper mantle from noble gases in Southwest Indian Ridge basalts. Xenon isotope systematics indicate that xenon budgets of mid-ocean ridge and plume-related mantle sources are dominated by recycled atmospheric xenon, though the two sources have experienced different degrees of degassing. Differences between the mid-ocean ridge and plume sources were initiated within the first 100 million years of Earth history, and the two sources have never subsequently been homogenized. New high-precision xenon isotopic data contribute to an emerging portrait of two mantle reservoirs with distinct histories of outgassing and incorporation of recycled material in association with plate tectonics. Xenon isotopes indicate that the Moon likely formed within ˜70 million years of the start of the Solar System. To further investigate early Solar System chronology, we determined strontium isotopic compositions in a suite of planetary materials. If the Moon is derived from proto-Earth material, then rubidium-strontium systematics in the lunar anorthosite 60025 and Moore County plagioclase indicate that Moon formation occurred within ~62 million years of the start of the Solar System.
The source location of mantle plumes from 3D spherical models of mantle convection
NASA Astrophysics Data System (ADS)
Li, Mingming; Zhong, Shijie
2017-11-01
Mantle plumes are thought to originate from thermal boundary layers such as Earth's core-mantle boundary (CMB), and may cause intraplate volcanism such as large igneous provinces (LIPs) on the Earth's surface. Previous studies showed that the original eruption sites of deep-sourced LIPs for the last 200 Myrs occur mostly above the margins of the seismically-observed large low shear velocity provinces (LLSVPs) in the lowermost mantle. However, the mechanism that leads to the distribution of the LIPs is not clear. The location of the LIPs is largely determined by the source location of mantle plumes, but the question is under what conditions mantle plumes form outside, at the edges, or above the middle of LLSVPs. Here, we perform 3D geodynamic calculations and theoretical analyses to study the plume source location in the lowermost mantle. We find that a factor of five decrease of thermal expansivity and a factor of two increase of thermal diffusivity from the surface to the CMB, which are consistent with mineral physics studies, significantly reduce the number of mantle plumes forming far outside of thermochemical piles (i.e., LLSVPs). An increase of mantle viscosity in the lowermost mantle also reduces number of plumes far outside of piles. In addition, we find that strong plumes preferentially form at/near the edges of piles and are generally hotter than that forming on top of piles, which may explain the observations that most LIPs occur above LLSVP margins. However, some plumes originated at pile edges can later appear above the middle of piles due to lateral movement of the plumes and piles and morphologic changes of the piles. ∼65-70% strong plumes are found within 10 degrees from pile edges in our models. Although plate motion exerts significant controls over the large-scale mantle convection in the lower mantle, mantle plume formation at the CMB remains largely controlled by thermal boundary layer instability which makes it difficult to predict geographic locations of most mantle plumes. However, all our models show consistently strong plumes originating from the lowermost mantle beneath Iceland, supporting a deep mantle plume origin of the Iceland volcanism.
Toward a coherent model for the melting behavior of the deep Earth's mantle
NASA Astrophysics Data System (ADS)
Andrault, D.; Bolfan-Casanova, N.; Bouhifd, M. A.; Boujibar, A.; Garbarino, G.; Manthilake, G.; Mezouar, M.; Monteux, J.; Parisiades, P.; Pesce, G.
2017-04-01
Knowledge of melting properties is critical to predict the nature and the fate of melts produced in the deep mantle. Early in the Earth's history, melting properties controlled the magma ocean crystallization, which potentially induced chemical segregation in distinct reservoirs. Today, partial melting most probably occurs in the lowermost mantle as well as at mid upper-mantle depths, which control important aspects of mantle dynamics, including some types of volcanism. Unfortunately, despite major experimental and theoretical efforts, major controversies remain about several aspects of mantle melting. For example, the liquidus of the mantle was reported (for peridotitic or chondritic-type composition) with a temperature difference of ∼1000 K at high mantle depths. Also, the Fe partitioning coefficient (DFeBg/melt) between bridgmanite (Bg, the major lower mantle mineral) and a melt was reported between ∼0.1 and ∼0.5, for a mantle depth of ∼2000 km. Until now, these uncertainties had prevented the construction of a coherent picture of the melting behavior of the deep mantle. In this article, we perform a critical review of previous works and develop a coherent, semi-quantitative, model. We first address the melting curve of Bg with the help of original experimental measurements, which yields a constraint on the volume change upon melting (ΔVm). Secondly, we apply a basic thermodynamical approach to discuss the melting behavior of mineralogical assemblages made of fractions of Bg, CaSiO3-perovskite and (Mg,Fe)O-ferropericlase. Our analysis yields quantitative constraints on the SiO2-content in the pseudo-eutectic melt and the degree of partial melting (F) as a function of pressure, temperature and mantle composition; For examples, we find that F could be more than 40% at the solidus temperature, except if the presence of volatile elements induces incipient melting. We then discuss the melt buoyancy in a partial molten lower mantle as a function of pressure, F and DFeBg/melt. In the lower mantle, density inversions (i.e. sinking melts) appear to be restricted to low F values and highest mantle pressures. The coherent melting model has direct geophysical implications: (i) in the early Earth, the magma ocean crystallization could not occur for a core temperature higher than ∼5400 K at the core-mantle boundary (CMB). This temperature corresponds to the melting of pure Bg at 135 GPa. For a mantle composition more realistic than pure Bg, the right CMB temperature for magma ocean crystallization could have been as low as ∼4400 K. (ii) There are converging arguments for the formation of a relatively homogeneous mantle after magma ocean crystallization. In particular, we predict the bulk crystallization of a relatively large mantle fraction, when the temperature becomes lower than the pseudo-eutectic temperature. Some chemical segregation could still be possible as a result of some Bg segregation in the lowermost mantle during the first stage of the magma ocean crystallization, and due to a much later descent of very low F, Fe-enriched, melts toward the CMB. (iii) The descent of such melts could still take place today. There formation should to be related to incipient mantle melting due to the presence of volatile elements. Even though, these melts can only be denser than the mantle (at high mantle depths) if the controversial value of DFeBg/melt is indeed as low as suggested by some experimental studies. This type of melts could contribute to produce ultra-low seismic velocity anomalies in the lowermost mantle.
Water in geodynamical models of mantle convection and plate tectonics
NASA Astrophysics Data System (ADS)
Rodríguez-González, J.; Van Hunen, J.; Chotalia, K.; Lithgow-Bertelloni, C. R.; Rozel, A.; Tackley, P. J.; Nakagawa, T.
2017-12-01
The presence of water in the the mantle has a significant effect in the dynamical and thermal evolution of Earth, which partially explains the differences with other planets and is a key factor for the presence of life on Earth. First, a small amount of water can decrease the mantle viscosity by a several orders of magnitude, thereby changing the convection regime and affecting the thermal evolution. Second, the presence of water significantly changes the solidus curve, with crucial implications for melting. Third, water in the mantle can change the Clapeyron slope of mantle materials, which changes the depth at which phase transitions take place. The thermal and dynamical evolution of Earth under the presence of water in the mantle has been the focus of recent studies, but many questions remain unanswered. In this project we intend to investigate how the maximum water capacity of different mantle regions affects water transport and Earth's convective regime. We will study the effect phase transitions under the presence of water, which can change the buoyancy of slabs in the transition zone. We present preliminary results numerical models of global mantle convection for the whole history of earth using the numerical geodynamics software tool StagYY. We will use a new parametrisation of dehydration processes, obtained from high-resolution numerical simulations, to implement a more accurate description of the water released from the slab as it travels through the mantle. We have integrated recent experimental results of the water capacity of deep mantle minerals to study the water circulation and the total water budget. We use data from the most recent experiments and ab-inito calculations to implement a realistic rheology.
Super-deep diamond genesis at Redox conditions of slab-mantle boundary
NASA Astrophysics Data System (ADS)
Gao, J.; Chen, B.; Wu, X.
2017-12-01
Diamond genesis is an intriguing issue for diamond resources and the deep carbon cycle of the Earth's interiors. Super-deep diamonds, representing only 6% of the global diamond population, often host inclusions with phase assemblages requiring a sublithospheric origin (>300 km). Being the windows for probing the deep Earth, super-deep diamonds with their distinctive micro-inclusions not only record a history of oceanic lithosphere subduction and upward transport at a depth of >250 km to even 1000 km, but indicate their genesis pertinent to mantle-carbonate melts in a Fe0-bufferred reduced condition. Our pilot experiments have evidenced the formation of diamonds from MgCO3-Fe0 system in a diamond anvil cell device at 25 GPa and 1800 K. Detailed experimental investigations of redox mechanism of MgCO3-Fe0 and CaCO3-Fe0 coupling have been conducted using multi-anvil apparatus. The conditions are set along the oceanic lithosphere subduction paths in the pressure-temperature range of 10-24 GPa and 1200-2000 K, covering the formation region of most super-deep diamonds. The clear reaction zones strongly support the redox reaction between carbonatitic slab and Fe0-bearing metals under mantle conditions. Our study has experimentally documented the possibility of super-deep diamond genesis at redox conditions of carbonateitic slab and Fe0-bearings. The kinetics of diamond formation as a function of pressure-temperature conditions are also discussed.
A New Carbonate Chemistry in the Earth's Lower Mantle
NASA Astrophysics Data System (ADS)
Boulard, E.; Gloter, A.; Corgne, A.; Antonangeli, D.; Auzende, A.; Perrillat, J.; Guyot, F. J.; Fiquet, G.
2010-12-01
The global geochemical carbon cycle involves exchange between the Earth’s mantle and the surface. Carbon (C) is recycled into the mantle via subduction and released to the atmosphere via volcanic outgassing. Carbonates are the main C-bearing minerals that are transported deep in the Earth’s mantle via subduction of the oceanic lithosphere [1]. The way C is recycled and its contribution to the lower mantle reservoir is however largely unknown [ e.g 2, 3]. In this respect, it is important to assess if carbonates can be preserved in the deep mantle, or if decarbonatation, melting or reduction play a role in the deep carbon cycle. To clarify the fate of carbonates in the deep mantle, we carried out high-pressure and high-temperature experiments up to 105 GPa and 2850 K. Natural Fe-Mg carbonates or oxide mixtures of (Mg,Fe)O + CO2 were loaded into laser heated diamond anvil cells. In situ characterizations were done by X-ray Diffraction (XRD) using synchrotron radiation at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility. A focused ion beam technique was then used to prepare the recovered samples for electron energy loss spectroscopy in a dedicated scanning transmission electron microscope (EELS-STEM) and scanning transmission X-ray microscopy (STXM). In situ XRD clearly shows the transformation of the initial carbonate phase into a new Mg-Fe high pressure carbonate phase at lower mantle conditions. We also provide direct evidence for recombination of CO2 with (Mg,Fe)O to form this new carbonate structure. In addition, subsequent EELS-STEM and STXM spectroscopies carried out on recovered samples yields C K-edge and stoechiometry characteristic to this new carbonate structure. This new high pressure phase concentrates a large amount of Fe(III), as a result of redox reactions within the siderite-rich carbonate. The oxidation of iron is balanced by partial reduction of carbon into CO groups and/or diamond. These reactions may provide an explanation for the coexistence of oxidized and reduced C species observed on natural samples [4, 5], but also a new diamond formation mechanism at lower mantle conditions. [1] Sleep, N. H., and K. Zahnle (2001) J. Geophys. Res.-Planets 106(E1), 1373-1399. [2] Javoy, M. (1997) Geophys. Res. Lett. 24(2), 177-180. [3] Lecuyer et al. (2000) Earth Planet. Sci. Lett. 181(1-2), 33-40. [4] Brenker et al. (2007) Earth Planet. Sci. Lett. 260(1-2), 1-9. [5] Stachel et al. (2000) Contrib. Mineral. Petrol. 140(1), 16-27.
NASA Astrophysics Data System (ADS)
Ballmer, Maxim; Lekic, Vedran; Schumacher, Lina; Ito, Garrett; Thomas, Christine
2016-04-01
Seismic tomography reveals two antipodal LLSVPs in the Earth's mantle, each extending from the core-mantle boundary (CMB) up to ~1000 km depth. The LLSVPs are thought to host primordial mantle materials that bear witness of early-Earth processes, and/or subducted basalt that has accumulated in the mantle over billions of years. A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as abrupt lateral gradients in Vs along LLSVP margins. Both of these observations, however, are mainly restricted to the LLSVP bottom domains (2300~2900 km depth), or hereinafter referred to as "deep distinct domains" (DDD). Seismic sensitivity calculations suggest that DDDs are more likely to be composed of primordial mantle material than of basaltic material. On the other hand, the seismic signature of LLSVP shallow domains (1000~2300 km depth) is consistent with a basaltic composition, though a purely thermal origin cannot be ruled out. Here, we explore the dynamical, seismological, and geochemical implications of the hypothesis that the LLSVPs are compositionally layered with a primordial bottom domain (or DDD) and a basaltic shallow domain. We test this hypothesis using 2D thermochemical mantle-convection models. Depending on the density difference between primordial and basaltic materials, the materials either mix or remain separate as they join to form thermochemical piles in the deep mantle. Separation of both materials within these piles provides an explanation for LLSVP seismic properties, including substantial internal vertical gradients in Vs observed at 400-700 km height above the CMB, as well as out-of-plane reflections on LLSVP sides over a range of depths. Predicted geometry of thermochemical piles is compared to LLSVP and DDD shapes as constrained by seismic cluster analysis. Geodynamic models predict short-lived "secondary" plumelets to rise from LLSVP roofs and to entrain basaltic material that has evolved in the lower mantle. Long-lived "primary" plumes rise from LLSVP margins and entrain a mix of materials, including small fractions of primordial mantle material. These predictions address the geochemical and geochronological record of intraplate hotspot volcanism on the Pacific plate. In general, the parameter range spanned by models that are able to reconcile observations provides a constraint for the intrinsic density anomaly (or composition) of DDDs. We use this constraint to evaluate a possible origin of DDDs from (basal) magma ocean cumulates. The study of LLSVP compositional layering has indeed important implications for our understanding of heat and material fluxes through mantle reservoirs, as well as bulk Earth chemistry and evolution.
NASA Astrophysics Data System (ADS)
Ma, L.; Castro, M. C.; Hall, C. M.
2007-12-01
The presence of primordial He and Ne components in ocean island basalts (OIBs) as well as a mantle He/heat flux ratio lower than the production ratio near mid-ocean ridges have historically been used to support the existence of a two-layer mantle convection model. This would comprise a lower, primordial, undegassed reservoir from which He removal to the upper degassed mantle would be impeded. Arguments based on He and heat transport have been recently invalidated by Castro et al. (2005) and should no longer be used to justify the presence of two such distinct mantle reservoirs. Indeed, it was shown that such low He/heat flux ratios are expected and do not reflect a He deficit in the original crust or mantle reservoir. By contrast, the occurrence of a He/heat flux ratio greater than the radiogenic production ratio can only result from a past mantle thermal event in which the released heat has already escaped while the released He remains, and is slowly rising to the surface. Such a high He/heat flux ratio is present in shallow groundwaters of the Michigan Basin. We now present results of a new noble gas study conducted in the Michigan Basin, in which 38 deep (0.5-3.6km) brine samples were collected and analyzed for all noble gas abundances and isotopic ratios. As expected from previously computed shallow high He/heat flux ratios, both He and Ne isotopic ratios clearly indicate the presence of a mantle component. Of greater significance is the primordial, solar-like signature, of this mantle component. It is also the first primordial signature ever recorded in crustal fluids in a continental region. Because no hotspots or hotspot tracks are known in the area, it is highly unlikely for such primordial, solar-like signature to result from a mantle plume-related mechanism originating deep in the mantle. We argue that such a primordial signature can be explained by a shallow noble gas reservoir in the subcontinental lithospheric mantle (SCLM) beneath the Michigan Basin, possibly created by a mechanism similar to that proposed by Anderson (1998) for oceanic regions. Indeed, the Michigan Basin, located within the ancient North American craton (~1.1->2.5Ga), lies on a very thick U-Th depleted SCLM, possibly allowing preservation of a primordial, residual, mantle reservoir beneath the continental crust. Recent reactivation of the old mid-continent rift transecting the crystalline basement is likely responsible for the release of this primordial signature into the basin. The solar-like He and Ne signatures present in the Michigan Basin fluids not only suggest that a deep primordial mantle reservoir is not required to explain the presence of such components, they also point to a very heterogeneous mantle as previously suggested by Anderson (1998), Albarede (2005), and others. Consequently, the presence of a primordial noble gas signature, at least if observed in a continental region, should not be used to conclude at the existence of a deep mantle source and thus, of a hotspot as typically defined. The SCLM underneath ancient cratons is a great candidate for hosting primitive ancient mantle reservoirs. Arguments based on He/heat flux ratios as well as the presence of a primordial noble gas signature should not be used to support the existence of a lower, primordial, versus an upper, degassed mantle reservoir. Our study provides the first observational case for long-term primordial lithospheric storage. Anderson, 1998, Proc. Natl. Acad. Sci. USA, 95, 9087-9092. Albarede, 2005, AGU Monograph, 160, 27-46. Castro et al., 2005, EPSL, 237, 893-910.
Jicha, B.R.; Johnson, C.M.; Hildreth, W.; Beard, B.L.; Hart, G.L.; Shirey, S.B.; Singer, B.S.
2009-01-01
A suite of 23 basaltic to dacitic lavas erupted over the last 350??kyr from the Mount Adams volcanic field has been analyzed for U-Th isotope compositions to evaluate the roles of mantle versus crustal components during magma genesis. All of the lavas have (230Th/238U) > 1 and span a large range in (230Th/232Th) ratios, and most basalts have higher (230Th/232Th) ratios than andesites and dacites. Several of the lavas contain antecrysts (crystals of pre-existing material), yet internal U-Th mineral isochrons from six of seven lavas are indistinguishable from their eruption ages. This indicates a relatively brief period of time between crystal growth and eruption for most of the phenocrysts (olivine, clinopyroxene, plagioclase, magnetite) prior to eruption. One isochron gave a crystallization age that is ~ 20-25??ka older than its corresponding eruptive age, and is interpreted to reflect mixing of older and juvenile crystals or a protracted period of magma storage in the crust. Much of the eruptive volume since 350??ka consists of lavas that have small to moderate 230Th excesses (2-16%), which are likely inherited from melting of a garnet-bearing intraplate ("OIB-like") mantle source. Following melt generation and subsequent migration through the upper mantle, most Mt. Adams magmas interacted with young, mafic lower crust, as indicated by 187Os/188Os ratios that are substantially more radiogenic than the mantle or those expected via mixing of subducted material and the mantle wedge. Moreover, Os-Th isotope variations suggest that unusually large 230Th excesses (25-48%) and high 187Os/188Os ratios in some peripheral lavas reflect assimilation of small degree partial melts of pre-Quaternary basement that had residual garnet or Al-rich clinopyroxene. Despite the isotopic evidence for lower crustal assimilation, these processes are not generally recorded in the erupted phenocrysts, indicating that the crystal record of the deep-level 'cryptic' processes has been decoupled from shallow-level crystallization. ?? 2008 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Benoit, Margaret H.; Nyblade, Andrew A.; Owens, Thomas J.; Stuart, Graham
2006-11-01
Ethiopia has been subjected to widespread Cenozoic volcanism, rifting, and uplift associated with the Afar hot spot. The hot spot tectonism has been attributed to one or more thermal upwellings in the mantle, for example, starting thermal plumes and superplumes. We investigate the origin of the hot spot by imaging the S wave velocity structure of the upper mantle beneath Ethiopia using travel time tomography and by examining relief on transition zone discontinuities using receiver function stacks. The tomographic images reveal an elongated low-velocity region that is wide (>500 km) and extends deep into the upper mantle (>400 km). The anomaly is aligned with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but its center shifts westward with depth. The 410 km discontinuity is not well imaged, but the 660 km discontinuity is shallower than normal by ˜20-30 km beneath most of Ethiopia, but it is at a normal depth beneath Djibouti and the northwestern edge of the Ethiopian Plateau. The tomographic results combined with a shallow 660 km discontinuity indicate that upper mantle temperatures are elevated by ˜300 K and that the thermal anomaly is broad (>500 km wide) and extends to depths ≥660 km. The dimensions of the thermal anomaly are not consistent with a starting thermal plume but are consistent with a flux of excess heat coming from the lower mantle. Such a broad thermal upwelling could be part of the African Superplume found in the lower mantle beneath southern Africa.
Origin and Constraints on Ilmenite-rich Partial Melt in the Lunar Lower Mantle
NASA Astrophysics Data System (ADS)
Mallik, A.; Fuqua, H.; Bremner, P. M.; Panovska, S.; Diamond, M. R.; Lock, S. J.; Nishikawa, Y.; Jiménez-Pérez, H.; Shahar, A.; Panero, W. R.; Lognonne, P. H.; Faul, U.
2015-12-01
Existence of a partially molten layer at the lunar core-mantle boundary has been proposed to explain the lack of observed far-side deep moonquakes, the observation of reflected seismic phases from deep moonquakes, and the dissipation of tidal energy within the lunar interior [1,2]. However, subsequent models explored the possibility that dissipation due to elevated temperatures alone can explain the observed dissipation factor (Q) and tidal love numbers [3]. Using thermo-chemical and dynamic modeling (including models of the early lunar mantle convection), we explore the hypothesis that an ilmenite-rich layer forms below crustal anorthosite during lunar magma ocean crystallization and may sink to the base of the mantle to create a partial melt layer at the lunar core-mantle boundary. Self-consistent physical parameters (including gravity, pressure, density, VP and Vs) are forward calculated for a well-mixed mantle with uniform bulk composition versus a mantle with preserved mineralogical stratigraphy from lunar magma ocean crystallization. These parameters are compared against observed mass, moment of inertia, real and imaginary parts of the Love numbers, and seismic travel times to further limit the acceptable models for the Moon. We have performed a multi-step grid search with over twenty thousand forward calculations varying thicknesses of chemically/mineralogically distinct layers within the Moon to evaluate if a partially molten layer at the base of the lunar mantle is well-constrained by the observed data. Furthermore, dynamic mantle modeling was employed on the best-fit model versions to determine the survivability of a partially molten layer at the core-mantle boundary. This work was originally initiated at the CIDER 2014 program. [1] Weber et al. (2011). Science 331(6015), 309-12. [2] Khan et al. (2014). JGR 119. [3] Nimmo et al. (2012). JGR 117, 1-11.
NASA Astrophysics Data System (ADS)
Solarino, Stefano; Malusà, Marco G.; Eva, Elena; Guillot, Stéphane; Paul, Anne; Schwartz, Stéphane; Zhao, Liang; Aubert, Coralie; Dumont, Thierry; Pondrelli, Silvia; Salimbeni, Simone; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang
2018-01-01
In continental subduction zones, the behaviour of the mantle wedge during exhumation of (ultra)high-pressure [(U)HP] rocks provides a key to distinguish among competing exhumation mechanisms. However, in spite of the relevant implications for understanding orogenic evolution, a high-resolution image of the mantle wedge beneath the Western Alps is still lacking. In order to fill this gap, we perform a detailed analysis of the velocity structure of the Alpine belt beneath the Dora-Maira (U)HP dome, based on local earthquake tomography independently validated by receiver function analysis. Our results point to a composite structure of the mantle wedge above the subducted European lithosphere. We found that the Dora-Maira (U)HP dome lays directly above partly serpentinized peridotites (Vp 7.5 km/s; Vp/Vs = 1.70-1.72), documented from 10 km depth down to the top of the eclogitized lower crust of the European plate. These serpentinized peridotites, possibly formed by fluid release from the subducting European slab to the Alpine mantle wedge, are juxtaposed against dry mantle peridotites of the Adriatic upper plate along an active fault rooted in the lithospheric mantle. We propose that serpentinized mantle-wedge peridotites were exhumed at shallow crustal levels during late Eocene transtensional tectonics, also triggering the rapid exhumation of (U)HP rocks, and were subsequently indented under the Alpine metamorphic wedge in the early Oligocene. Our findings suggest that mantle-wedge exhumation may represent a major feature of the deep structure of exhumed continental subduction zones. The deep orogenic levels here imaged by seismic tomography may be exposed today in older (U)HP belts, where mantle-wedge serpentinites are commonly associated with coesite-bearing continental metamorphic rocks.
NASA Astrophysics Data System (ADS)
Karki, Bijaya B.; Ghosh, Dipta B.; Maharjan, Charitra; Karato, Shun-ichiro; Park, Jeffrey
2018-05-01
Density is a key property controlling the chemical state of Earth's interior. Our knowledge about the density of relevant melt compositions is currently poor at deep-mantle conditions. Here we report results from first-principles molecular-dynamics simulations of Fe-bearing MgSiO3 liquids considering different valence and spin states of iron over the whole mantle pressure conditions. Our simulations predict the high-spin to low-spin transition in both ferrous and ferric iron in the silicate liquid to occur gradually at pressures around 100 GPa. The calculated iron-induced changes in the melt density (about 8% increase for 25% iron content) are primarily due to the difference in atomic mass between Mg and Fe, with smaller contributions (<2%) from the valence and spin states. A comparison of the predicted density of mixtures of (Mg,Fe)(Si,Fe)O3 and (Mg,Fe)O liquids with the mantle density indicates that the density contrast between the melt and residual-solid depends strongly on pressure (depth): in the shallow lower mantle (depths < 1,000 km), the melt is lighter than the solids, whereas in the deep lower mantle (e.g., the D″ layer), the melt density exceeds the mantle density when iron content is relatively high and/or melt is enriched with Fe-rich ferropericlase.
NASA Astrophysics Data System (ADS)
Harmon, N.; Rychert, C.
2013-12-01
Billions of years ago primary mantle magmas evolved to form the continental crust, although no simple magmatic differentiation process explains the progression to average andesitic crustal compositions observed today. A multiple stage process is often invoked, involving subduction and or oceanic plumes, to explain the strong depletion observed in Archean xenoliths and as well as pervasive tonalite-trondhjemite-granodiorite and komatiite protoliths in the greenstone belts in the crust in the cratons. Studying modern day analogues of oceanic plateaus that are currently interacting with subductions zones can provide insights into continental crust formation. Here we use surface waves to image crustal isotropic and radially anisotropic shear velocity structure above the central American subduction system in Nicaragua and Costa Rica, which juxtaposes thickened ocean island plateau crust in Costa Rica with continental/normal oceanic crust in Nicaragua. We find low velocities beneath the active arc regions (3-6% slower than the surrounding region) and up to 6% radially anisotropic structures within the oceanic crust of the Caribbean Large Igneous Province beneath Costa Rica. The low velocities and radial anisotropy suggest the anomalies are due to pervasive deep crustal magma sills. The inferred sill structures correlate spatially with increased silicic outputs in northern Costa Rica, indicating that deep differentiation of primary magmas is more efficient beneath Costa Rica relative to Nicaragua. Subduction zone alteration of large igneous provinces promotes efficient, deep processing of primary basalts to continental crust. This scenario can explain the formation of continental lithosphere and crust, by both providing strongly depleted mantle lithosphere and a means for rapidly generating a silicic crustal composition.
NASA Astrophysics Data System (ADS)
Bebout, Gray E.
The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.
Absolute plate motions relative to deep mantle plumes
NASA Astrophysics Data System (ADS)
Wang, Shimin; Yu, Hongzheng; Zhang, Qiong; Zhao, Yonghong
2018-05-01
Advances in whole waveform seismic tomography have revealed the presence of broad mantle plumes rooted at the base of the Earth's mantle beneath major hotspots. Hotspot tracks associated with these deep mantle plumes provide ideal constraints for inverting absolute plate motions as well as testing the fixed hotspot hypothesis. In this paper, 27 observed hotspot trends associated with 24 deep mantle plumes are used together with the MORVEL model for relative plate motions to determine an absolute plate motion model, in terms of a maximum likelihood optimization for angular data fitting, combined with an outlier data detection procedure based on statistical tests. The obtained T25M model fits 25 observed trends of globally distributed hotspot tracks to the statistically required level, while the other two hotspot trend data (Comores on Somalia and Iceland on Eurasia) are identified as outliers, which are significantly incompatible with other data. For most hotspots with rate data available, T25M predicts plate velocities significantly lower than the observed rates of hotspot volcanic migration, which cannot be fully explained by biased errors in observed rate data. Instead, the apparent hotspot motions derived by subtracting the observed hotspot migration velocities from the T25M plate velocities exhibit a combined pattern of being opposite to plate velocities and moving towards mid-ocean ridges. The newly estimated net rotation of the lithosphere is statistically compatible with three recent estimates, but differs significantly from 30 of 33 prior estimates.
Constraints from Earth's heat budget on mantle dynamics
NASA Astrophysics Data System (ADS)
Kellogg, L. H.; Ferrachat, S.
2006-12-01
Recent years have seen an increase in the number of proposed models to explain Earth's mantle dynamics: while two end-members, pure layered convection with the upper and lower mantle convecting separately from each other, and pure, whole mantle convection, appear not to satisfy all the observations, several addition models have been proposed. These models include and attempt to characterize least one reservoir that is enriched in radiogenic elements relative to the mid-ocean ridge basalt (MORB) source, as is required to account for most current estimates of the Earth's heat budget. This reservoir would also be responsible for the geochemical signature in some ocean island basalts (OIBs) like Hawaii, but must be rarely sampled at the surface. Our current knowledge of the mass- and heat-budget for the bulk silicate Earth from geochemical, cosmochemical and geodynamical observations and constraints enables us to quantify the radiogenic heat enrichment required to balance the heat budget. Without assuming any particular model for the structure of the reservoir, we first determine the inherent trade-off between heat production rate and mass of the reservoir. Using these constraints, we then investigate the dynamical inferences of the heat budget, assuming that the additional heat is produced within a deep layer above the core-mantle boundary. We carry out dynamical models of layered convection using four different fixed reservoir volumes, corresponding to deep layers of thicknesses 150, 500 1000 and 1600 km, respectively, and including both temperature-dependent viscosity and an instrinsic viscosity jump between upper and lower mantle. We then assess the viability of these cases against 5 criteria: stability of the deep layer through time, topography of the interface, effective density profile, intrinsic chemical density and the heat flux at the CMB.
NASA Astrophysics Data System (ADS)
Liou, J. G.; Tsujimori, T.; Yang, J.; Zhang, R. Y.; Ernst, W. G.
2014-12-01
Newly recognized ultrahigh-pressure (UHP) mineral occurrences including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mafic/ultramafic xenoliths suggest the recycling of crustal materials through profound subduction, mantle upwelling, and return to the Earth's surface. Recycling is supported by unambiguously crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths, and from ultramafic bodies of several Alpine-Himalayan and Polar Ural ophiolites; some such phases contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and stishovite, a wide variety of nanometric minerals have been identified as inclusions employing state-of-the-art analysis. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. Some podiform chromitites and associated peridotites contain rare minerals of undoubted crustal origin, including Zrn, corundum, Fls, Grt, Ky, Sil, Qtz, and Rtl; the zircons possess much older U-Pb ages than the formation age of the host ophiolites. These UHP mineral-bearing chromitites had a deep-seated evolution prior to extensional mantle upwelling and its partial melting at shallow depths to form the overlying ophiolite complexes. These new findings plus stable isotopic and inclusion characteristics of diamonds provide compelling evidence for profound underflow of both oceanic and continental lithosphere, recycling of biogenic carbon into the lower mantle, and ascent to the Earth's surface through deep mantle ascent.
NASA Astrophysics Data System (ADS)
Matsukage, K. N.; Nishihara, Y.
2015-12-01
We experimentally discovered a new hydrous phase in the system FeOOH-TiO2 at pressures of 10-16 GPa and temperatures of 1000-1600°C which corresponds to conditions of the deep upper mantle and the Earth's mantle transition zone. Seven different compositions in the FeOOH-TiO2 system having molar ratios of x = Ti/(Fe + Ti) = 0, 0.125, 0.25, 0.375, 0.5, 0.75 that were prepared by mixing reagent grade a-FeOOH (goethite) and TiO2 (anatase) powders were used as starting materials. High-pressure and high-temperature experiments were carried out using Kawai-type multi-anvil apparatus (Orange-1000 at Ehime University and SPI-1000 at Tokyo Institute of Technology). In this system, we identified two stable iron-titanium oxyhydroxide phases whose estimated composition is expressed by (FeH)1 - xTixO2 . One is the Fe-rich solid solution (x < 0.23) with e-FeOOH type crystal structure (e-phase, orthorhombic, P21nm) that was described by the previous studies (e.g., Suzuki 2010), and the other is the more Ti-rich solid solution (x > 0.35) with a-PbO2 type structure (a-phase, orthorhombic, Pbcn). The a-phase is stable up to 1500ºC for a composition of x = 0.5 and at least to 1600ºC for x = 0.75. Our result means that this phase is stable at average mantle temperature in the Earth's mantle transition zone. The Iron-titanium-rich hydrous phases was possible to stable in basalt + H2O system (e.g., Hashimoto and Matsukage 2013). Therefore our findings suggest that water transport in the Earth's deep interior is probably much more efficient than had been previously thought.
NASA Astrophysics Data System (ADS)
Huang, J.
2017-12-01
Northeast China is located in the composite part of Paleo Asia ocean and Pacific ocean Domain, it undergone multi-stage tectonism and has complicated geological structure. In this region, two major geologic and geophysical boundaries are distinct, the NNE-trending North South Gravity Lineament (NSGL) and Tanlu fault. With respect to North China Craton (NCC), Northeast China is more closely adjacent to the subduction zone of Pacific slab. Along the eastern boundary of Northeast China, the subducting Pacific plate approaches depths of 600 km, many deep earthquakes occurred here. This region becomes an ideal place to investigate deep structure related to deep subduction, deep earthquakes as well as intraplate volcanism. In this study, we determined high-resolution three dimensional P- and S-wave velocity models of the crust and upper mantle to 800 km depth by jointly inverting arrival times from local events and relative residuals from teleseismic events. Our results show that main velocity anomalies exhibited block feature and are generally oriented in NE to NNE direction, which is consistent with regional tectonic direction. The NSGL is characterized by a high-velocity (high-V) anomaly belt with a width of approximately 100 km, and the high-V anomaly extents to the bottom of upper mantle or mantle transition zone. The songliao basin, which is located between NSGL and Tanlu fault tectonic boundaries, obvious low-velocity anomaly extends to about depth of 200 km(. Under the Great Xing'an Range on the west side of NSGL, the low velocity extend to the lithosphere. Our results also show that most of deep earthquakes all occurred in deep subduction zone with high-velocity anomaly. Further, we also observed that extensive low velocity exists above deep-earthquakes zones, this result suggests that deep subduction of the Pacific slab maybe affect overlying lithosphere, resulting in the state of molten, semi-molten or high water.This research is supported by the National Science Foundation of China (91114204) and National Key R&D Plan (2017YFC0601406)
Geochemical constraints on the origin of serpentinization of oceanic mantle
NASA Astrophysics Data System (ADS)
Li, Z.; Lee, C. A.
2004-12-01
The lower seismic zone of double seismic zones in subducting oceanic lithosphere is suggested to be a result of serpentine or chlorite dehydration in the lithospheric mantle (Hacker et al., 2003). However, the mechanism by which oceanic lithospheric mantle is serpentinized is unclear. One way is through hydrothermal circulation where the lithospheric mantle represents part of the circuit through which seawater passes and then returns to the ocean. Another way is to inject seawater into the lithospheric mantle through fractures in the overlying crust without having a return path of water to the ocean. The two mechanisms differ in that the former is an open system process whereas the latter is a closed system process in which the mantle serves as a ¡°sponge¡± for water. Identifying the dominant process is important. For example, if the mantle is part of a hydrothermal circulation cell, the interaction of seawater with the mantle will influence the composition of seawater. This also has important implications for the heat flow out of seafloor. On the other hand, if serpentinization occurs by a closed system process, there will be no influence on seawater composition. Previous studies have suggested that serpentinization of ophiolite bodies was an isochemical process, hence closed system, but it was not clear in these studies whether serpentinization occurred in situ in the oceanic lithosphere. To better understand serpentinization processes in the oceanic lithosphere, we investigated a continuous transition zone of relatively unaltered harzburgite to completely serpentinized harzburgite in the Feather River Ophiolite in northern California. These samples are highly enriched in Na, K, Rb, Cs, U, and Sr, which strongly suggests that serpentinization occurred while the oceanic lithosphere was beneath the ocean. All samples (n=19) have Al2O3 contents ranging from 0.6 to 2.5 wt.% and have extremely depleted light rare-earth element abundances, indicating that these samples are cpx-free harzburgites, which have experienced roughly 20 to 35% melt extraction. The degree of serpentinization was quantified using the concentration of magnetite, a by-product of serpentinization. The lack of antigorite suggests that serpentinization occurred at temperatures lower than 300 C. By comparing Cr and Cr/Al systematics to that predicted from theoretical partial melting calculations and empirical relationships in unaltered peridotite xenoliths, it is shown that Cr and Al are immobile. Al content was thus used to determine the composition of the protolith, which allows us to estimate the amount of depletion/enrichment of a given element by processes other than melt depletion. Most of the harzburgites show no evidence for mantle metasomatism as evidenced by extreme depletions in LREE elements. Consistent with previous studies, we find no depletions in Mg, Fe, or Ca. As seawater is undersaturated in Mg-bearing minerals, an open system process would yield progressive depletion of Mg as is seen in abyssal peridotites, which have been weathered by seawater at the bottom of the seafloor (e.g., Snow et al. 1995). Collectively, this suggests that, except for the addition of seawater and its constituents, serpentinization of the Feather River Ophiolite, was a closed system process. By combining these observations with the results of our field mapping project, we suggest that serpentinization of the lithospheric mantle occurs by local introduction of seawater through fractures extending from the crust and into the mantle. We find no evidence that serpentinized zones in oceanic lithospheric mantle represents an extremely deep hydrothermal circulation cell.
Multi-Scale Lower Mantle Structure and Dynamics (Invited)
NASA Astrophysics Data System (ADS)
Garnero, E. J.; McNamara, A. K.; Zhao, C.; Thorne, M. S.
2010-12-01
Seismically imaged heterogeneity in the lowermost mantle ranges from large scale (1000+ km), exemplified by the two nearly antipodal large low shear velocity provinces (LLSVPs) illuminated by seismic tomography, to very short scales, such as isolated ultra-low velocity zones (ULVZs), 10’s of km thick or less. Intermediate scale phenomena include D″ reflectors attributed to the perovskite to post-perovskite phase transition and possibly a deeper back-transformation, lowermost mantle anisotropy plausibly related to mantle flow, and vertical extensions of the LLSVPs that have been explained as plume upwelling (both super and regular plumes). Well over a dozen studies document seismically sharp boundaries between LLSVP and surrounding mantle material, which, combined with the inference of elevated LLSVP density, suggest LLSVPs are chemically distinct, and hence are sometimes called “piles”. Studies documenting LLSVP low velocities extending up into the lower mantle, such as beneath Africa, refer to the low velocities as a superplume. While there is not necessarily consensus on whether or not LLSVP material is stable at the CMB versus periodically entrained in large plume upwellings, as well as primordial or not, the dynamical behavior of LLSVPs have important implications on a wide range of phenomena. For example, dense ULVZs (partially molten or not) migrate to LLSVP edges. If LLSVPs merge and bifurcate over time, as suggested in the Pacific, strong temporal variations in plume and ULVZ signatures should result (e.g., bigger plumes and ULVZs in a merging event), and be detectable. High-resolution seismology may shed light on important LLSVP and ULVZ morphological features, such as the geographical distribution and properties of ULVZs, the steepness of LLSVP sides, and the nature of the top of LLSVPs (e.g., sharpness), though these (and other) aspects of deep mantle phenomena are not well-constrained at present, especially in a global context. Despite these things that we don’t know, strides in numerical and laboratory geodynamical experiments, combined with continued advancement in our understanding of deep mantle mineralogy from mineral physics and geochemistry, help to narrow the model space of possibilities that accommodate findings from all of the disciplines. In this somewhat seismocentric review of deep mantle structure, we will explore the feasibility of various dynamical scenarios consistent our current understanding and constraints of lower mantle phenomena.
NASA Astrophysics Data System (ADS)
Harrison, L.; Weis, D.
2017-12-01
Oceanic island basalts provide the opportunity for the geochemist to study the deep mantle source removed from continental sources of contamination and, for long-lived systems, the evolution of mantle sources with time. In the case of the Hawaiian-Emperor (HE) chain, formation by a long-lived (>81 Myr), deeply-sourced mantle plume allows for insight into plume dynamics and deep mantle geochemistry. The geochemical record of the entire chain is now complete with analysis of Pb-Hf-Nd-Sr isotopes and elemental compositions of the Northwest Hawaiian Ridge (NWHR), which consists of 51 volcanoes spanning 42 Ma between the bend in the chain and the Hawaiian Islands. This segment of the chain previously represented a significant data gap where Hawaiian plume geochemistry changed markedly, along with magmatic flux: only Kea compositions have been observed on Emperor seamounts (>50 Ma), whereas the Hawaiian Islands (<6 Ma) present both Kea and Loa compositions. A database of 700 Hawaiian Island shield basalts Pb-Hf-Nd-Sr isotopic compositions were compiled to construct a logistical regression model of Loa or Kea affinity that sorts data into a dichotomous category and provides insight into the relationship between independent variables. We use this model to predict whether newly analyzed NWHR samples are Loa or Kea composition based on their Pb-Sr-Nd-Hf isotopic compositions. The logistical regression model is significantly better at prediciting Loa or Kea affinity than the constant only model (χ2=263.3, df=4, p<0.0001), with Pb and Sr isotopes providing the most predicitive power. Daikakuji, West Nihoa, Nihoa, and Mokumanamana erupt Loa-type lavas, suggesting that the Loa source is sampled ephemerally during the NWHR and increases in presence and volume towards the younger section of the NWHR (younger than Midway 20-25 Ma). These results complete the picture of Hawaiian mantle plume geochemistry and geodynamics for 81 Myr, and show that the Hawaiian mantle plume has transitioned from a dominately Kea source during the Emperor seamounts and older NWHR to an increasingly enriched Loa source from the mid NWHR to Hawaiian Islands. We propose this is due to Hawaiian mantle plume drift through different lower mantle geohemical domains.
NASA Astrophysics Data System (ADS)
Mulibo, G.; Tugume, F.; Julia, J.
2012-12-01
In this study, teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are used to invert P and S travel time residuals, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds and for examining relief on transition zone discontinuities using receiver function stacks. Tomographic images reveal a low wave speed anomaly (LWA) that dips to the SW beneath northern Zambia, extending to a depth of at least 900 km. The anomaly appears to be continuous across the transition zone, extending into the lower mantle. Receiver function stacks reveal an average transition zone thickness (TZT) across a wide region extending from central Zambia to the NE through Tanzania and into Kenya, which is ~30-40 km thinner than the global average. These results are not easily explained by models for the origin of the Cenozoic tectonism in eastern Africa that invoke a plume head or small scale convection either by edge flow or passive stretching of the lithosphere. However, the depth extent of the LWA coincident with a thin transition zone is consistent with a model invoking a through-going mantle anomaly beneath eastern Africa that links anomalous upper mantle to the African Superplume anomaly in the lower mantle beneath southern Africa. This finding indicates that geodynamic processes deep in the lower mantle are influencing surface dynamics across the Afro-Arabian rift system.
Facilitating atmosphere oxidation through mantle convection
NASA Astrophysics Data System (ADS)
Lee, K. K. M.; Gu, T.; Creasy, N.; Li, M.; McCammon, C. A.; Girard, J.
2017-12-01
Earth's mantle connects the surface with the deep interior through convection, and the evolution of its redox state will affect the distribution of siderophile elements, recycling of refractory isotopes, and the oxidation state of the atmosphere through volcanic outgassing. While the rise of oxygen in the atmosphere, i.e., the Great Oxidation Event (GOE) occurred 2.4 billion years ago (Ga), multiple lines of evidence point to oxygen production in the atmosphere well before 2.4 Ga. In contrast to the fluctuations of atmospheric oxygen, vanadium in Archean mantle lithosphere suggests that the mantle redox state has been constant for 3.5 Ga. Indeed, the connection between the redox state of the deep Earth and the atmosphere is enigmatic as is the effect of redox state on mantle dynamics. Here we show a redox-induced density contrast affects mantle convection and may potentially cause the oxidation of the upper mantle. We compressed two synthetic enstatite chondritic samples with identical bulk compositions but formed under different oxygen fugacities (fO2) to lower mantle pressures and temperatures and find Al2O3 forms its own phase separate from the dominant bridgmanite phase in the more reduced composition, in contrast to a more Al-rich, bridgmanite-dominated assemblage for a more oxidized starting composition. As a result, the reduced material is 1-1.5% denser than the oxidized material. Subsequent experiments on other plausible mantle compositions, which differ only in redox state of the starting glass materials, show similar results: distinct mineral assemblages and density contrasts up to 4%. Our geodynamic simulations suggest that such a density contrast causes a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. The resulting heterogeneous redox conditions in Earth's interior may have contributed to the large low-shear velocity provinces in the lower mantle and the rise of oxygen in Earth's atmosphere.
Tidal tomography constrains Earth's deep-mantle buoyancy.
Lau, Harriet C P; Mitrovica, Jerry X; Davis, James L; Tromp, Jeroen; Yang, Hsin-Ying; Al-Attar, David
2017-11-15
Earth's body tide-also known as the solid Earth tide, the displacement of the solid Earth's surface caused by gravitational forces from the Moon and the Sun-is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the mantle and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth's deep-mantle buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average mantle density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the mantle. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth's formation. Because the dynamics of the mantle is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.
Decrease in oceanic crustal thickness since the breakup of Pangaea
NASA Astrophysics Data System (ADS)
van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.
2017-01-01
Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.
Towards modelling of water inflow into the mantle
NASA Astrophysics Data System (ADS)
Thielmann, M.; Eichheimer, P.; Golabek, G.
2017-12-01
The transport and storage of water in the mantle significantly affects various material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.) Geological and seismological observations suggest different inflow mechanisms of water via the subducting slab like slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017). Most of the previous numerical models do not take different dip angles of the subduction slab and subduction velocities into account, while nature provides two different types of subduction regimes i.e. shallow and deep subduction (Li et al., 2011). To which extent both parameters influence the inflow and outflow of water in the mantle still remains unclear. For the investigation of the inflow and outflow of fluids e.g. water in the mantle, we use high resolution 2D finite element simulations, which allow us to resolve subducted sediments and crustal layers. For this purpose the finite element code MVEP2 (Kaus, 2010), is tested against benchmark results (van Keken et al., 2008). In a first step we reproduced the analytical cornerflow model (Batchelor, 1967) used in the benchmark of van Keken et al.(2008) as well as the steady state temperature field. Further steps consist of successively increasing model complexity, such as the incorporation of hydrogen diffusion, water transport and dehydration reactions. ReferencesBatchelor, G. K. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK (1967) van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Li, Z. H., Xu, Z. Q., and T.V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011). Kaus, B. J. P. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophys. 484, 36-47 (2010). The transport and storage of water in the mantle significantly affects various material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.) Geological and seismological observations suggest different inflow mechanisms of water via the subducting slab like slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017). Most of the previous numerical models do not take different dip angles of the subduction slab and subduction velocities into account, while nature provides two different types of subduction regimes i.e. shallow and deep subduction (Li et al., 2011). To which extent both parameters influence the inflow and outflow of water in the mantle still remains unclear. For the investigation of the inflow and outflow of fluids e.g. water in the mantle, we use high resolution 2D finite element simulations, which allow us to resolve subducted sediments and crustal layers. For this purpose the finite element code MVEP2 (Kaus, 2010), is tested against benchmark results (van Keken et al., 2008). In a first step we reproduced the analytical cornerflow model (Batchelor, 1967) used in the benchmark of van Keken et al.(2008) as well as the steady state temperature field.Further steps consist of successively increasing model complexity, such as the incorporation of hydrogen diffusion, water transport and dehydration reactions. Systematic simulations are performed to assess the influence of different model parameters on various target parameters such as dehydration depth, volcanic line position etc., the ultimate goal being the derivation of scaling laws for water transport in the mantleReferencesBatchelor, G. K. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK (1967)van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Li, Z. H., Xu, Z. Q., and T.V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011). Kaus, B. J. P. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophys. 484, 36-47 (2010).
Water and hydrogen are immiscible in Earth's mantle.
Bali, Enikő; Audétat, Andreas; Keppler, Hans
2013-03-14
In the deep, chemically reducing parts of Earth's mantle, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth's mantle so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the mantle that contain moissanite (SiC) and other phases indicative of extremely reducing conditions. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth's upper mantle immediately following core formation.
Predicting and testing continental vertical motion histories since the Paleozoic
NASA Astrophysics Data System (ADS)
Zhang, Nan; Zhong, Shijie; Flowers, Rebecca M.
2012-02-01
Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on cratonic regions. We propose that burial-unroofing histories of cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests of and constraints on our mantle dynamic models.
Predicting and testing continental vertical motion histories since the Paleozoic
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.; Flowers, R. M.
2011-12-01
Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on continental cratonic regions. We propose that burial-unroofing histories of continental cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests and constraints on our mantle dynamic models.
NASA Astrophysics Data System (ADS)
Glebovitsky, V. A.; Nikitina, L. P.; Khiltova, V. Ya.; Ovchinnikov, N. O.
2004-05-01
The thermal state of the upper mantle beneath tectonic structures of various ages and types (Archaean cratons, Early Proterozoic accretionary and collisional orogens, and Phanerozoic structures) is characterized by geotherms and by thermal gradients (TG) derived from data on the P- T conditions of mineral equilibria in garnet and garnet-spinel peridotite xenoliths from kimberlites (East Siberia, Northeastern Europe, India, Central Africa, North America, and Canada) and alkali basalts (Southeastern Siberia, Mongolia, southeastern China, southeastern Australia, Central Africa, South America, and the Solomon and Hawaiian islands). The use of the same garnet-orthopyroxene thermobarometer (Theophrastus Contributions to Advanced Studies in Geology. 3: Capricious Earth: Models and Modelling of Geologic Processes and Objects 2000 44) for all xenoliths allowed us to avoid discrepancies in estimation of the P- T conditions, which may be a result of the mismatch between different thermometers and barometers, and to compare the thermal regimes in the mantle in various regions. Thus, it was established that (1) mantle geotherms and geothermal gradients, obtained from the estimation of P- T equilibrium conditions of deep xenoliths, correspond to the age of crust tectonic structures and respectively to the time of lithosphere stabilization; it can be suggested that the ancient structures of the upper mantle were preserved within continental roots; (2) thermal regimes under continental mantle between the Archaean cratons and Palaeoproterozoic belts are different today; (3) the continental mantle under Neoproterozoic and Phanerozoic belts is characterized by significantly higher values of geothermal gradient compared to the mantle under Early Precambrian structures; (4) lithosphere dynamics seems to change at the boundary between Early and Mezo-Neoproterozoic and Precambrian and Phanerozoic.
Chondritic Xenon in the Earth's mantle: new constrains on a mantle plume below central Europe
NASA Astrophysics Data System (ADS)
Caracausi, Antonio; Avice, Guillaume; Bernard, Peter; Furi, Evelin; Marty, Bernard
2016-04-01
Due to their inertness, their low abundances, and the presence of several different radiochronometers in their isotope systematics, the noble gases are excellent tracers of mantle dynamics, heterogeneity and differentiation with respect to the atmosphere. Xenon deserves particular attention because its isotope systematic can be related to specific processes during terrestrial accretion (e.g., Marty, 1989; Mukhopadhyay, 2012). The origin of heavy noble gases in the Earth's mantle is still debated, and might not be solar (Holland et al., 2009). Mantle-derived CO2-rich gases are particularly powerful resources for investigating mantle-derived noble gases as large quantities of these elements are available and permit high precision isotope analysis. Here, we report high precision xenon isotopic measurements in gases from a CO2 well in the Eifel volcanic region (Germany), where volcanic activity occurred between 700 ka and 11 ka years ago. Our Xe isotope data (normalized to 130Xe) show deviations at all masses compared to the Xe isotope composition of the modern atmosphere. The improved analytical precision of the present study, and the nature of the sample, constrains the primordial Xe end-member as being "chondritic", and not solar, in the Eifel mantle source. This is consistent with an asteroidal origin for the volatile elements in Earth's mantle and it implies that volatiles in the atmosphere and in the mantle originated from distinct cosmochemical sources. Despite a significant fraction of recycled atmospheric xenon in the mantle, primordial Xe signatures still survive in the mantle. This is also a demonstration of a primordial component in a plume reservoir. Our data also show that the reservoir below the Eifel region contains heavy-radiogenic/fissiogenic xenon isotopes, whose ratios are typical of plume-derived reservoirs. The fissiogenic Pu-Xe contribution is 2.26±0.28 %, the UXe contribution is negligible, the remainder being atmospheric plus primordial. Our data support the notion that the fraction of plutonium-derived Xe in plume sources (oceanic as well as continental) is higher than in the MORB source reservoir. Hence, the MORB - type reservoirs appear to be well distinguished and more degassed than the plume sources (oceanic as well as continental) supporting the heterogeneity of Earth's mantle. Finally this study highlights that xenon isotopes in the Eifel gas have preserved a chemical signature that is characteristic of other mantle plume sources. This is very intriguing because the presence of a mantle plume in this sector of Central Europe was already inferred from geophysical and geochemical studies(Buikin et al., 2005; Goes et al., 1999). Notably, tomographic images show a low-velocity structure down to 2000 km depth, representing deep mantle upwelling under central Europe, that may feed smaller upper-mantle plumes (Eifel volcanic district-Germany). References Buikin A., Trieloff M., HoppJ., Althaus T., Korochantseva E., Schwarz W.H. &Altherr R., (2005), Noble gas isotopessuggestdeepmantleplume source of late Cenozoicmaficalkalinevolcanism in Europe, Earth Planet. Sci. Lett. 230, 143-162. Goes S., Spakman W. &BijwaardH., (1999), A lowermantle source for centraleuropeanvolcanism, Science, 286, 1928-1931.G. Holland, M. Cassidy, C.J. Ballentine, Meteorite Kr in the Earth's mantle suggests a late accretionary source for the atmosphere, Science, 326, 1522-1525, (2009). Marty, B. Neon and xenon isotopes in MORB: implications for the Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45-56 (1989). Mukhopadhyay S., Early differentiation and volatile accretion recorded in deep-mantle neon and xenon Nature, 486, 101-106, (2013).
Terrestrial aftermath of the Moon-forming impact.
Sleep, Norman H; Zahnle, Kevin J; Lupu, Roxana E
2014-09-13
Much of the Earth's mantle was melted in the Moon-forming impact. Gases that were not partially soluble in the melt, such as water and CO2, formed a thick, deep atmosphere surrounding the post-impact Earth. This atmosphere was opaque to thermal radiation, allowing heat to escape to space only at the runaway greenhouse threshold of approximately 100 W m(-2). The duration of this runaway greenhouse stage was limited to approximately 10 Myr by the internal energy and tidal heating, ending with a partially crystalline uppermost mantle and a solid deep mantle. At this point, the crust was able to cool efficiently and solidified at the surface. After the condensation of the water ocean, approximately 100 bar of CO2 remained in the atmosphere, creating a solar-heated greenhouse, while the surface cooled to approximately 500 K. Almost all this CO2 had to be sequestered by subduction into the mantle by 3.8 Ga, when the geological record indicates the presence of life and hence a habitable environment. The deep CO2 sequestration into the mantle could be explained by a rapid subduction of the old oceanic crust, such that the top of the crust would remain cold and retain its CO2. Kinematically, these episodes would be required to have both fast subduction (and hence seafloor spreading) and old crust. Hadean oceanic crust that formed from hot mantle would have been thicker than modern crust, and therefore only old crust underlain by cool mantle lithosphere could subduct. Once subduction started, the basaltic crust would turn into dense eclogite, increasing the rate of subduction. The rapid subduction would stop when the young partially frozen crust from the rapidly spreading ridge entered the subduction zone. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Heister, Timo
2016-12-01
Melt generation and migration are an important link between surface processes and the thermal and chemical evolution of the Earth's interior. However, their vastly different timescales make it difficult to study mantle convection and melt migration in a unified framework, especially for 3-D global models. And although experiments suggest an increase in melt volume of up to 20 per cent from the depth of melt generation to the surface, previous computations have neglected the individual compressibilities of the solid and the fluid phase. Here, we describe our extension of the finite element mantle convection code ASPECT that adds melt generation and migration. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in areas where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high-resolution, 3-D, compressible, global mantle convection simulations coupled with melt migration. We evaluate the functionality and potential of this method using a series of benchmarks and model setups, compare results of the compressible and incompressible formulation, and show the effectiveness of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. The implementation is available in the Open Source ASPECT repository.
NASA Astrophysics Data System (ADS)
Eguchi, J.; Dasgupta, R.
2017-12-01
Investigating the redox state of the convective upper mantle remains challenging as there is no way of retrieving samples from this part of the planet. Current views of mantle redox are based on Fe3+/∑Fe of minerals in mantle xenoliths and thermodynamic calculations of fO2 [1]. However, deep xenoliths are only recoverable from continental lithospheric mantle, which may have different fO2s than the convective oceanic upper mantle [1]. To gain insight on the fO2 of the deep parts of the oceanic upper mantle, we probe CO2-trace element systematics of basalts that have been argued to receive contributions from subducted crustal lithologies that typically melt deeper than peridotite. Because CO2 contents of silicate melts at graphite saturation vary with fO2 [2], we suggest CO2-trace element systematics of oceanic basalts which sample deep heterogeneities may provide clues about the fO2 of the convecting mantle containing embedded heterogeneities. We developed a new model to predict CO2 contents in nominally anhydrous silicate melts from graphite- to fluid-saturation over a range of P (0.05- 5 GPa), T (950-1600 °C), and composition (foidite-rhyolite). We use the model to calculate CO2 content as a function of fO2 for partial melts of lithologies that vary in composition from rhyolitic sediment melt to silica-poor basaltic melt of pyroxenites. We then use modeled CO2 contents in mixing calculations with partial melts of depleted mantle to constrain the fO2 required for partial melts of heterogeneities to deliver sufficient CO2 to explain CO2-trace element systematics of natural basalts. As an example, Pitcairn basalts, which show evidence of a subducted crustal component [3] require mixing of 40% of partial melts of a garnet pyroxenite at ΔFMQ -1.75 at 3 GPa. Mixing with a more silicic composition such as partial melts of a MORB-eclogite cannot deliver enough CO2 at graphite saturation, so in this scenario fO2 must be above the EMOG/D buffer at 4 GPa. Results suggest convecting upper mantle may be more oxidized than continental lithospheric mantle, and fO2 profiles of continental lithospheric mantle may not be applicable to convective upper mantle.[1] Frost, D, McCammon, C. 2008. An Rev E & P Sci. (36) p.389-420; [2] Holloway, J, et al. 1992. Eu J. Min. (4) p. 105-114; [3] Woodhead, J, Devey C. 1993. EPSL. (116) p. 81-99.
Magnesium Isotopic Compositions of Continental Basalts From Various Tectonic Settings
NASA Astrophysics Data System (ADS)
Yang, W.; Li, S.; Tian, H.; Ke, S.
2016-12-01
Recycled sedimentary carbonate through subduction is the main light Mg isotopic reservoir in Earth's deep interior, thus Mg isotopic variation of mantle-derived melts provides a fresh perspective on investigating deep carbon cycling. Here we investigate Mg isotopic compositions of continental basalts from various tectonic settings: (1) The Cenozoic basalts from eastern China, coinciding with the stagnant Pacific slab in the mantle transition zone revealed by seismic tomography; (2) The Cenozoic basalts from Tengchong area, southwestern China, which comprises a crucial part of the collision zone between the Indian and Eurasian plates; (3) The Permian basalts from Emeishan large igneous province, related to a mantle plume. The Cenozoic basalts from both eastern China and Tengchong area exhibit light Mg isotopic compositions (δ26Mg = -0.60 to -0.30‰ and -0.51 to -0.33‰), suggesting recycled sedimentary carbonates in their mantle sources. This is supported by their low Fe/Mn, high CaO/Al2O3, low Hf/Hf* and low Ti/Ti* ratios, which are typical features of carbonated peridotite-derived melt. The Tengchong basalts also show high 87Sr/86Sr, high radiogenic Pb and upper crustal-like trace element pattern, indicating contribution of recycled continental crustal materials. By contrast, all Emeishan basalts display a mantle-like Mg isotopic composition, with δ26Mg ranging from -0.35 to -0.19‰. Since the Emeishan basalts derived from a mantle plume, their mantle-like Mg isotopic composition may indicate limited sedimentary carbonated recycled into the lower mantle. This is consistent with a recent experimental study which concluded that direct recycling of carbon into the lower mantle may have been highly restricted throughout most of the Earth's history.
Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea
NASA Astrophysics Data System (ADS)
Zhao, Dapeng
2017-09-01
The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related to the deep seismicity. However, many of these results are still preliminary, due to the lack of seismic stations in the Japan Sea. The key to resolving these critical geoscientific issues is seismic instrumentation in the Japan Sea, for which international cooperation of geoscience communities in the East Asian countries is necessary.
Origins of ultralow velocity zones through slab-derived metallic melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiachao; Li, Jie; Hrubiak, Rostislav
2016-05-03
Understanding the ultralow velocity zones (ULVZs) places constraints on the chemical composition and thermal structure of deep Earth and provides critical information on the dynamics of large-scale mantle convection, but their origin has remained enigmatic for decades. Recent studies suggest that metallic iron and carbon are produced in subducted slabs when they sink beyond a depth of 250 km. Here we show that the eutectic melting curve of the iron-carbon system crosses the current geotherm near Earth’s core-mantle boundary, suggesting that dense metallic melt may form in the lowermost mantle. If concentrated into isolated patches, such melt could produce themore » seismically observed density and velocity features of ULVZs. Depending on the wetting behavior of the metallic melt, the resultant ULVZs may be short-lived domains that are replenished or regenerated through subduction, or long-lasting regions containing both metallic and silicate melts. Slab-derived metallic melt may produce another type of ULVZ that escapes core sequestration by reacting with the mantle to form iron-rich post-bridgmanite or ferropericlase. The hypotheses connect peculiar features near Earth’s core-mantle boundary to subduction of the oceanic lithosphere through the deep carbon cycle.« less
Origins of ultralow velocity zones through slab-derived metallic melt
Liu, Jiachao; Li, Jie; Smith, Jesse S.
2016-01-01
Understanding the ultralow velocity zones (ULVZs) places constraints on the chemical composition and thermal structure of deep Earth and provides critical information on the dynamics of large-scale mantle convection, but their origin has remained enigmatic for decades. Recent studies suggest that metallic iron and carbon are produced in subducted slabs when they sink beyond a depth of 250 km. Here we show that the eutectic melting curve of the iron−carbon system crosses the current geotherm near Earth’s core−mantle boundary, suggesting that dense metallic melt may form in the lowermost mantle. If concentrated into isolated patches, such melt could produce the seismically observed density and velocity features of ULVZs. Depending on the wetting behavior of the metallic melt, the resultant ULVZs may be short-lived domains that are replenished or regenerated through subduction, or long-lasting regions containing both metallic and silicate melts. Slab-derived metallic melt may produce another type of ULVZ that escapes core sequestration by reacting with the mantle to form iron-rich postbridgmanite or ferropericlase. The hypotheses connect peculiar features near Earth's core−mantle boundary to subduction of the oceanic lithosphere through the deep carbon cycle. PMID:27143719
NASA Astrophysics Data System (ADS)
Bunge, Hans-Peter
2002-08-01
Earth's mantle overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state mantle convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in mantle dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct mantle flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of mantle circulation and conclude that it is feasible to reconstruct mantle flow back in time for at least the past 100 myrs.
NASA Astrophysics Data System (ADS)
Terasaki, Hidenori; Ohtani, Eiji; Sakai, Takeshi; Kamada, Seiji; Asanuma, Hidetoshi; Shibazaki, Yuki; Hirao, Naohisa; Sata, Nagayoshi; Ohishi, Yasuo; Sakamaki, Tatsuya; Suzuki, Akio; Funakoshi, Ken-ichi
2012-03-01
The hydrous mineral, δ-AlOOH, is stable up to at least the core-mantle boundary, and therefore has been proposed as a water carrier to the Earth's deep mantle. If δ-AlOOH is transported down to the core-mantle boundary by a subducting slab or the mantle convection, then the reaction between the iron alloy core and δ-AlOOH is important in the deep water/hydrogen cycle in the Earth. Here we conducted an in situ X-ray diffraction study to determine the behavior of hydrogen between Fe-Ni alloys and δ-AlOOH up to near the core-mantle boundary conditions. The obtained diffraction spectra show that fcc/dhcp Fe-Ni hydride is stable over a wide pressure range of 19-121 GPa at high temperatures. Although the temperature of formation of Fe-Ni hydride tends to increase up to 1950 K with increasing pressure to 121 GPa, this reaction temperature is well below the mantle geotherm. δ-AlOOH was confirmed to coexist stably with perovskite, suggesting that δ-AlOOH can be a major hydrous phase in the lower mantle. Therefore, when δ-AlOOH contacts with the core at the core-mantle boundary, the hydrogen is likely to dissolve into the Earth's core. Based on the present results, the amount of hydrogen to explain the core density deficit is estimated to be 1.0-2.0 wt.%.
NASA Astrophysics Data System (ADS)
Afonso Dias, Nuno; Afilhado, Alexandra; Schnürle, Philippe; Gallais, Flora; Soares, José; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Moulin, Maryline; Aslanian, Daniel; Matias, Luís; Evain, Mikael; Loureiro, Afonso
2017-04-01
The deep crustal structure of the North-East equatorial Brazilian margin, was investigated during the MAGIC (Margins of brAzil, Ghana and Ivory Coast) joint project, conducted in 2012. The main goal set to understand the fundamental processes leading to the thinning and finally breakup of the continental crust, in a context of a Pull-apart system with two strike-slip borders. The offshore Barreirinhas Basin, was probed by a set of 5 intersecting deep seismic wide-angle profiles, with the deployment of short-period OBS's from IFREMER and land stations from the Brazilian pool. The experiment was devoted to obtain the 2D structure along the directions of flow lines, parallel to margin segmentation and margin segmentation, from tomography and forward modeling. The OBS's deployed recorded also lateral shooting along some profiles, allowing a 3D tomography inversion complementing the results of 2D modeling. Due to the large variation of the water column thickness, heterogeneous crustal structure and Moho depth, several approaches were tested to generate initial input models, to set the grid parameterization and inversion parameters. The assessment of the 3D model was performed by standard synthetic tests and comparison with the obtained 2D forward models. The results evidence a NW-SE segmentation of the margin, following the opening direction of this pull-apart basin, and N-S segmentation that marks the passage between Basins II-III. The signature of the segmentation is evident in the tomograms, where the shallowing of the basement from Basin II towards the oceanic domain is well marked by a NW-SE velocity gradient. Both 2D forward modeling and 3D tomographic inversion indicate a N-S segmentation in the proto-oceanic and oceanic domains, at least at the shallow mantle level. In the southern area the mantle is much faster than on the north. In all profiles crossing Basin II, a deep layer with velocities of 7-4-7.6 km/s generates both refracted as well as reflected phases from its boundaries, in agreement with the 3D model, which indicate a much more gradual transition of crustal velocities to mantle-velocities, than in the remaining segments. The intersection of Basins II, III and proto-oceanic crust is well marked by the absence of seismic energy propagation at deep crust to mantle levels, with no lateral arrival being recorded. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
NASA Astrophysics Data System (ADS)
Chin, Emily J.; Shimizu, Kei; Bybee, Grant M.; Erdman, Monica E.
2018-01-01
Two distinct igneous differentiation trends - the tholeiitic and calc-alkaline - give rise to Earth's oceanic and continental crust, respectively. Mantle melting at mid-ocean ridges produces dry magmas that differentiate at low-pressure conditions, resulting in early plagioclase saturation, late oxide precipitation, and Fe-enrichment in mid-ocean ridge basalts (MORBs). In contrast, magmas formed above subduction zones are Fe-depleted, have elevated water contents and are more oxidized relative to MORBs. It is widely thought that subduction of hydrothermally altered, oxidized oceanic crust at convergent margins oxidizes the mantle source of arc magmas, resulting in erupted lavas that inherit this oxidized signature. Yet, because our understanding of the calc-alkaline and tholeiitic trends largely comes from studies of erupted melts, the signals from shallow crustal contamination by potentially oxidized, Si-rich, Fe-poor materials, which may also generate calc-alkaline rocks, are obscured. Here, we use deep crustal cumulates to "see through" the effects of shallow crustal processes. We find that the tholeiitic and calc-alkaline trends are indeed reflected in Fe-poor mid-ocean ridge cumulates and Fe-rich arc cumulates, respectively. A key finding is that with increasing crustal thickness, arc cumulates become more Fe-enriched. We propose that the thickness of the overlying crustal column modulates the melting degree of the mantle wedge (lower F beneath thick arcs and vice versa) and thus water and Fe3+ contents in primary melts, which subsequently controls the onset and extent of oxide fractionation. Deep crustal cumulates beneath thick, mature continental arcs are the most Fe-enriched, and therefore may be the "missing" Fe-rich reservoir required to balance the Fe-depleted upper continental crust.
Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction
NASA Astrophysics Data System (ADS)
Gibson, S. A.; Geist, D. J.; Richards, M. A.
2015-05-01
Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.
NASA Astrophysics Data System (ADS)
Zhang, Yanfei; Wu, Yao; Wang, Chao; Zhu, Lüyun; Jin, Zhenmin
2016-08-01
The subducted continental crust material will be gravitationally trapped in the deep mantle after having been transported to depths of greater than ∼250-300 km (the "depth of no return"). However, little is known about the status of this trapped continental material as well as its contribution to the mantle heterogeneity after achieving thermal equilibrium with the surrounding mantle. Here, we conduct an experimental study over pressure and temperature ranges of 9-16 GPa and 1300-1800 °C to constrain the fate of these trapped upper continental crust (UCC). The experimental results show that partial melting will occur in the subducted UCC along normal mantle geotherm to produce K-rich melt. The residual phases composed of coesite/stishovite + clinopyroxene + kyanite in the upper mantle, and stishovite + clinopyroxene + K-hollandite + garnet + CAS-phase in the mantle transition zone (MTZ), respectively. The residual phases achieve densities greater than the surrounding mantle, which provides a driving force for descent across the 410-km seismic discontinuity into the MTZ. However, this density relationship is reversed at the base of the MTZ, leaving the descended residues to be accumulated above the 660-km seismic discontinuity and may contribute to the "second continent". The melt is ∼0.6-0.7 g/cm3 less dense than the surrounding mantle, which provides a buoyancy force for ascent of melt to shallow depths. The ascending melt, which preserves a significant portion of the bulk-rock rare earth elements (REEs), large ion lithophile elements (LILEs), and high-filed strength elements (HFSEs), may react with the surrounding mantle. Re-melting of the metasomatized mantle may contribute to the origin of the "enriched mantle sources" (EM-sources). Therefore, the deep subducted continental crust may create geochemical/geophysical heterogeneity in Earth's interior through subduction, stagnation, partial melting and melt segregation.
NASA Astrophysics Data System (ADS)
Macera, P.; Gasperini, D.; Blichert-Toft; Bosch, D.; del Moro, A.; Dini, G.; Martin, S.; Piromallo, C.
DuringTertiary times extensive mafic volcanism took place in the South-Eastern Alps, along a half-graben structure bounded by the Schio-Vicenza main fault. This mag- matism gave rise to four main volcanic centers: Lessini, Berici, Euganei, and Maros- tica. The dominating rock types are alkali basalts, basanites and transitional basalts, with hawaiites, trachybasalts, tephrites, basaltic andesites, and differentiated rocks be- ing less common. Major and trace element and Sr-Nd-Hf-Pb isotopic data for the most primitive lavas from each volcanic center show the typical features of HIMU hotspot volcanism, variably diluted by a depleted asthenospheric mantle component (87Sr/86Sr48Ma = 0.70314-0.70321; eNd48Ma = +6.4 to +6.5; eHf48Ma = +6.4 to +8.1, 206Pb/204Pb48Ma = 18.786-19.574). Since the HIMU component is consid- ered to be of deep mantle origin, its presence in a tectonic environment dominated by subduction (the Alpine subduction of the European plate below the Adria plate) has significant geodynamic implications. Slab detachment and ensuing rise of deep man- tle material into the lithospheric gap is proposed to be a viable mechanism of hotspot magmatism in a subduction zone setting. Interaction between deep-seated plume ma- terial and shallow depleted asthenospheric mantle may account for the geochemical features of the Veneto volcanics, as well as those of the so-called enriched astheno- spheric reservoir (EAR) component. Ascending counterflow of deep mantle material through the lithospheric gap to the top of the subducting slab further may induce heat- ing of the overriding plate and trigger it to partially melt. Upwelling of the resulting mafic magmas and their subsequent underplating at the mantle-lower crust bound- ary would favor partial melting of the lower crust, thereby giving rise to the bimodal mafic-felsic magmatism that characterizes the whole Periadriatic province. According to this model, the HIMU-like magmatism of the Alpine foreland is therefore closely related to the calc-alkaline magmatism of the Periadriatic Lineament, and caused by the same mechanism of Tertiary Alpine convergence tectonics.
NASA Astrophysics Data System (ADS)
Lü, Qingtian; Shi, Danian; Jiang, Guoming; Dong, Shuwen
2014-05-01
The lithosphere structure and deep processes are keys to understanding mineral system and ore-forming processes. Lithosphere-scale process could create big footprints or signatures which can be observed by geophysics methods. SinoProbe has conducted an integrated deep exploration across middle and lower reaches of Yangtze Metallogenic Belt (YMB) in Eastern China, these included broadband seismic, reflection seismic, wide-angle reflection and magnetotellurics survey. Seismic reflection profiles and MT survey were also performed in Luzong, Tongling and Ningwu ore districts to construct 3D geological model. The resulting geophysical data provides new information which help to better understanding the lithosphere structure, geodynamic, deformation and heat and mass transportation that lead to the formation of the Metallogenic Belt. The major results are: (1) Lower velocity body at the top of upper mantle and a SE dipping high velocity body were imaged by teleseismic tomography beneath YMB; (2) Shear wave splitting results show NE parallel fast-wave polarization direction which parallel with tectonic lineament; (3) The reflection seismic data support the crustal-detachment model, the lower and upper crust was detached during contraction deformation near Tanlu fault and Ningwu volcanic basin; (4) Broadband and reflection seismic confirm the shallow Moho beneath YMB; (5) Strong correlation of lower crust reflectivity with magmatism; (6) The lower crust below Luzong Volcanics shows obvious reflective anisotropy both at the crust-mantle transition and the brittle-ductile transition in the crust. All these features suggest that introcontinental subduction, lithosphere delamination, mantle sources magmatic underplating, and MASH process are responsible for the formation of this Mesozoic metallogenic belt. Acknowledgment: We acknowledge the financial support of SinoProbe by the Ministry of Finance and Ministry of Land and Resources, P. R. China, under Grant sinoprobe-03, and financial support by National Natural Science Foundation of China under Grant 40930418
Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence
NASA Astrophysics Data System (ADS)
Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian
2018-01-01
We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the mantle, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the mantle to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-mantle boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the mantle and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the mantle. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost mantle, and a minimum in the mid-mantle, resembling the radial distribution of tomographically derived whole-mantle velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the mantle, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the mantle there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the mantle. The similarity between the distribution of large-scale and small-scale mantle structures suggests a dynamic connection across scales, whereby mantle heterogeneities of all sizes may be directed in similar ways by large-scale convective currents.
Seismic character of the crust and upper mantle beneath the Sierra Nevada
NASA Astrophysics Data System (ADS)
Frassetto, A.; Gilbert, H.; Zandt, G.; Owens, T. J.; Jones, C.
2008-12-01
Recent geophysical studies of the Southern Sierra Nevada suggest that the removal of a gravitationally unstable, eclogitic residue links to recent volcanism and uplift in the Eastern Sierra. The Sierra Nevada EarthScope Project (SNEP) investigates the extent of this process beneath Central and Northern Sierra Nevada. We present receiver functions, which provide estimates of crustal thickness and Vp/Vs and image the response of the crust and upper mantle to lithospheric removal. For completeness this study combines data from the 2005-2007 SNEP broadband experiment, EarthScope's BigFoot Array, regional backbone stations, and earlier PASSCAL deployments. We analyze transects of teleseismic receiver functions generated using a common-conversion-point stacking algorithm. These identify a narrow, "bright" conversion from the Moho at depths of ~25-35 km along the crest of the Eastern Sierra and adjacent Basin and Range northward to the Cascade Arc. Trade-off analysis using the primary conversion and reverberations shows a high Vp/Vs (~1.9) throughout the Eastern Sierra, which may relate to partial melt present in the lower crust. To the west the crust-mantle boundary vanishes beneath the western foothills. However, low frequency receiver functions do image the crust-mantle boundary exceeding 50 km depth along the foothills to the west and south of Yosemite National Park. Unusually deep, intraplate earthquakes (Ryan et al., this session) occur in the center of this region. The frequency dependence of the Moho conversion implies a gradational increase from crust to mantle wavespeeds over a significant depth interval. The transition from a sharp to gradational Moho probably relates to the change from a delaminated granitic crust to crust with an intact, dense, eclogitic residue. The spatial correlation and focal mechanisms of the deep earthquakes suggest that a segment of this still intact residue is currently delaminating.
NASA Astrophysics Data System (ADS)
Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.
2017-12-01
As terrestrial planets accreted, mantle silicates equilibrated with core-forming metallic iron, which would have imposed a mantle oxygen fugacity below the iron-wüstite oxygen buffer. Throughout Earth's history, however, the oxygen fugacity of at least the accessible portions of the upper mantle has been 4-5 orders of magnitude higher. The process that caused the rapid increase in the redox state of the mantle soon after core formation is unclear. Here we test the possibility that pressure stabilises ferric iron in silicate melts, as has been observed in silicate minerals. A deep magma ocean, which would have likely existed towards the end of accretion, could then develop a gradient in oxygen fugacity for a fixed ferric-ferrous ratio as a result of pressure. We have equilibrated an andesitic melt with a Ru-RuO2 buffer in a multianvil press between 5 and 24 GPa. Further experiments were performed on the same melt in equilibrium with iron metal. The recovered melts were then analysed using Mössbauer spectroscopy to determine the ferric/ferrous ratio. The results show that for the Ru-RuO2 buffer at lower pressures, the ferric iron content decreases with pressure, due to a positive volume change of the reaction FeO + 1/4O2 = FeO1.5. Ferric iron content also appears to be sensitive to water content at lower pressures. However, above 15 GPa this trend apparently reverses and the ferric iron content increases with pressure. This reversal in pressure dependence would drive the oxygen fugacity of a deep magma ocean with a fixed ferric/ferrous ratio down with increasing depth. This would create a redox gradient, where the magma ocean could potentially be in equilibrium with metallic iron at its base but more oxidised in its shallower regions. Crystallisation of this magma ocean could render an upper mantle oxygen fugacity similar to that in the Earth's accessible mantle today.
Water-rich planets: How habitable is a water layer deeper than on Earth?
NASA Astrophysics Data System (ADS)
Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.
2016-10-01
Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.
NASA Astrophysics Data System (ADS)
Holzer, Mark; DeVries, Timothy; Bianchi, Daniele; Newton, Robert; Schlosser, Peter; Winckler, Gisela
2017-01-01
Hydrothermal vents along the ocean's tectonic ridge systems inject superheated water and large amounts of dissolved metals that impact the deep ocean circulation and the oceanic cycling of trace metals. The hydrothermal fluid contains dissolved mantle helium that is enriched in 3He relative to the atmosphere, providing an isotopic tracer of the ocean's deep circulation and a marker of hydrothermal sources. This work investigates the potential for the 3He/4He isotope ratio to constrain the ocean's mantle 3He source and to provide constraints on the ocean's deep circulation. We use an ensemble of 11 data-assimilated steady-state ocean circulation models and a mantle helium source based on geographically varying sea-floor spreading rates. The global source distribution is partitioned into 6 regions, and the vertical profile and source amplitude of each region are varied independently to determine the optimal 3He source distribution that minimizes the mismatch between modeled and observed δ3He. In this way, we are able to fit the observed δ3He distribution to within a relative error of ∼15%, with a global 3He source that ranges from 640 to 850 mol yr-1, depending on circulation. The fit captures the vertical and interbasin gradients of the δ3He distribution very well and reproduces its jet-sheared saddle point in the deep equatorial Pacific. This demonstrates that the data-assimilated models have much greater fidelity to the deep ocean circulation than other coarse-resolution ocean models. Nonetheless, the modelled δ3He distributions still display some systematic biases, especially in the deep North Pacific where δ3He is overpredicted by our models, and in the southeastern tropical Pacific, where observed westward-spreading δ3He plumes are not well captured. Sources inferred by the data-assimilated transport with and without isopycnally aligned eddy diffusivity differ widely in the Southern Ocean, in spite of the ability to match the observed distributions of CFCs and radiocarbon for either eddy parameterization.
Global Adjoint Tomography - Hotspots and Slabs
NASA Astrophysics Data System (ADS)
Ruan, Y.; Lei, W.; Lefebvre, M. P.; Modrak, R. T.; Smith, J. A.; Orsvuran, R.; Bozdag, E.; Tromp, J.
2017-12-01
Plumes rise from the deep mantle due to thermal or/and chemical buoyancy, forming hotspots at the surface, and oceanic plates subduct underneath continents, piling up at discontinuities or sinking down to the core-mantle boundary. Despite these basic convection mechanisms, many questions remain about the origin of mantle plumes, slab subduction, their interaction with mantle convection, and their relationship with the large low shear velocity provinces (LLSVPs) at the base of the mantle. Plume and slab morphology at depth provide further insight into these questions but imaging them in the mid and lower mantle is known to be very challenging due to a lack of data coverage and resolvability limits of conventional body-wave traveltime tomography. The deployment of regional dense arrays (e.g., USArray) and development of full waveform inversion techniques provide opportunities to resolve finer 3D details of mantle plumes and slabs. Harnessing the power of supercomputer ''Titan'' at Oak Ridge National Laboratory, we employed a spectral-element method to accurately simulate seismograms in complex 3D Earth models and an adjoint method to obtain model updates. Bozdag et al. (2016) iteratively determined a transversely isotropic earth model (GLAD_M15) using 253 events. To achieve higher resolution and better coverage in the deep mantle, we expanded our database to 1,040 events; a 1/3 of them are deep earthquakes (>500 km). We reinverted source parameters using model GLAD_M15, recalculated synthetic seismograms, selected time windows that show good agreement between data and the synthetics, and made measurements within these windows. From the measurements, we further assess the overall quality of each event and station and exclude bad measurements using very conservative criteria. Thus far, we assimilated more than 10 million windows in three period bands from 17-250 s. As the model improves, we correct the centroid time and scalar moment of each event using its mean traveltime and amplitude anomalies and reselect windows after each iteration to include more measurements. So far, we have finished 5 iterations and found prominent fine-scale features of mantle plumes, especially in areas with sparse data coverage (e.g., Hoggar, Reunion). We expect to finish 4-5 more iterations and present the results of these iterations.
Controls on the time-scales of mantle mixing
NASA Astrophysics Data System (ADS)
Crameri, F.; Cagney, N.; Lithgow-Bertelloni, C. R.; Whitehead, J. A.
2016-12-01
Understanding the processes controlling the mantle mixing is crucial to our geochemical interpretation of basalts, and our understanding of the mantle heterogeneity. We investigate the influence of various mantle conditions on the time scales of mixing using numerical simulations. We examine the effects of Rayleigh number (Ra), depth- and temperature-dependent rheology and internal heating, as well as the role of Prandtl number (Pr), in order to assess how mixing in the early magma ocean and experiments (where Pr tends to be 103) differs from that in the present-day mantle (Pr 1025). We use the "coarse grained density" method to quantify the mixing state and determine the mixing time. The mixing time is found to be strongly affected by the Rayleigh number, scaling with Ra-0.65, in agreement with previous studies. In contrast, when Ra is held constant, the temperature-dependent rheology has a weak effect. The depth-dependent rheology also has a negligible effect on the mixing time, as material that is initially viscous is transported to the low viscosity near the surface where it undergoes fast mixing. The internal heating rate does not affect the mixing time, provided that it does not increase the fluid temperature above that of the boundary condition. In this case, the decrease in mixing time is shown to be a result of an increase in the effective Ra. Finally, we show that for moderate and low Pr, the mixing time increases with Pr0.45. However, for all Pr greater than about 100, the mixing time is the same at the infinite-Pr value. Our results have several implications for the mantle: (1) Ra is the controlling factor on mantle mixing. (2) The non-Newtonian rheology of the mantle has a very weak effect on mantle mixing and can be neglected. (3) A dramatic increase in viscosity in the deep mantle has been proposed at a cause of regions of unmixed `primitive' mantle. Our results show that this hypothesis is unlikely, as depth dependent rheology does not increase in the mixing time. (4) Pr does not have a significant effect, for Pr > 100. This implies that the same processes govern mixing in the magma ocean and the solid mantle. (5) Using an appropriate estimate for the Rayleigh of the early magma ocean, we show that the degree of mixing achieved throughout the history of the solid mantle is less than that achieved in a single year in the magma ocean.
NASA Astrophysics Data System (ADS)
Li, Y.; Yang, J.; Nida, K.; Yamamoto, S.; Lin, Y.; Li, Q.; Tian, M.; Kon, Y.; Komiya, T.; Maruyama, S.
2017-12-01
The Horoman peridotite complex is an Alpine-type orogenic lherzolite massif of upper-mantle in the Hidaka metamorphic belt, Hokkaido, Japan. The peridotite complex is composed of dunite, harzburgite, spinel lherzolite and plagioclase lherzolite, exhibits a conspicuous layered structure, which is a product of a Cretaceous to early Paleogene arc-trench system formed by westward subduction of an oceanic plate between the paleo-Eurasian and paleo-North American Plates. Various combinations of diamond, corundum, moissanite, zircon, monazite, rutile, and kyanite have been separated from spinel harzburgite (700 kg) and lherzolite (500 kg), respectively. The carbon isotopes analyses of diamond grains by Nano-SIMS yielded significant light carbon isotopes feature as δ13 CPDB values ranging from -29.2 ‰ to -17.2 ‰, with an average of -22.8±0.32 ‰. Zircon grains occur as sub-angular to round in morphological characteristics, similar to zircons of crustal sedimentary rocks. Many zircons contain small inclusions, comprise of quartz, apatite, rutile and muscovite. The U-Pb age of zircon grains analyzed using LA-ICP-MS and SIMS gave a wide age range, from the Jurassic to Archean (ca 159 - 3131 Ma). In the zircon age histogram, four age groups were identified; the age peaks are 2385 Ma, 1890 Ma, 1618 Ma and 1212 Ma, respectively. On the other hand, U-Pb ages of rutile grains analyzed using SIMS gave a peak of 370 Ma in age histogram. The mineralogical and chronological evidences of numerous crustal minerals in peridotite of Horoman suggest that the ancient continent material was subducted in deep mantle and recycled through the upper mantle by multicycle subduction processes.
NASA Astrophysics Data System (ADS)
Stoppa, Francesco; Schiazza, Mariangela
2013-01-01
We address general features of carbonatite monogenetic volcanic fields located in continental settings which are peculiar being associated with kamafugites or melilite-bearing leucitites. Instructive examples are the Toro Ankole in Uganda, West Qinling in China, and Campo de Calatrava in Spain and the Intra-mountain Ultra-alkaline Province (IUP) of Italy. Maars are the typical volcanic forms, occurring in isolation or in clusters along fault systems. Concentric-shelled juvenile lapilli and bombs, having a upper-mantle peridotite kernel, are unique to this type of volcanism. These pyroclasts are interpreted as the result of deep-seated fragmentation of magma having a high carbon dioxide-water (CO2/H2O) ratio. The presence of discrete, large peridotitic nodules implies a high-velocity propagation of magma, while the associated large CO2 emission suggests a high proportion of juvenile CO2. Magma fragmentation is inferred to occur as a consequence of explosive CO2 exsolution at the upper mantle level (diatresis) followed by immiscibility. Based on field evidence, carbonatitic maar formation could be due to violent CO2 expansion and does not require phreatomagmatic phenomena. Extrusive carbonatites and associated rocks represent very primitive melts having a distinct High Field Strength Elements (HFSE) distribution, the source of which is related to enriched mantle. Carbonated peridotite is a stable paragenesis at depths of 400-600 km; thus, primary carbonatitic silicate magma can be produced at these depths as a consequence of rising deeper melt/fluids that are trapped at the transition zone. In our opinion, carbonatitic carbon is linked to the primary process of deep-mantle differentiation and Earth's core degassing.
The Yellowstone ‘hot spot’ track results from migrating Basin Range extension
Foulger, Gillian R.; Christiansen, Robert L.; Anderson, Don L.; Foulger, Gillian R.; Lustrino, Michele; King, Scott D.
2015-01-01
Whether the volcanism of the Columbia River Plateau, eastern Snake River Plain, and Yellowstone (western U.S.) is related to a mantle plume or to plate tectonic processes is a long-standing controversy. There are many geological mismatches with the basic plume model as well as logical flaws, such as citing data postulated to require a deep-mantle origin in support of an “upper-mantle plume” model. USArray has recently yielded abundant new seismological results, but despite this, seismic analyses have still not resolved the disparity of opinion. This suggests that seismology may be unable to resolve the plume question for Yellowstone, and perhaps elsewhere. USArray data have inspired many new models that relate western U.S. volcanism to shallow mantle convection associated with subduction zone processes. Many of these models assume that the principal requirement for surface volcanism is melt in the mantle and that the lithosphere is essentially passive. In this paper we propose a pure plate model in which melt is commonplace in the mantle, and its inherent buoyancy is not what causes surface eruptions. Instead, it is extension of the lithosphere that permits melt to escape to the surface and eruptions to occur—the mere presence of underlying melt is not a sufficient condition. The time-progressive chain of rhyolitic calderas in the eastern Snake River Plain–Yellowstone zone that has formed since basin-range extension began at ca. 17 Ma results from laterally migrating lithospheric extension and thinning that has permitted basaltic magma to rise from the upper mantle and melt the lower crust. We propose that this migration formed part of the systematic eastward migration of the axis of most intense basin-range extension. The bimodal rhyolite-basalt volcanism followed migration of the locus of most rapid extension, not vice versa. This model does not depend on seismology to test it but instead on surface geological observations.
NASA Astrophysics Data System (ADS)
Rampone, E.; Borghini, G.; Class, C.; Goldstein, S. L.; Cai, Y.; Cipriani, A.; Zanetti, A.; Hofmann, A. W.
2017-12-01
Melt percolation and melt-peridotite interaction are efficient processes in creating chemical and isotopic heterogeneity in the upper mantle at variable scale. Such processes can generate a pyroxenite-bearing veined mantle often invoked as source of the oceanic magmatism. Natural examples of such veined mantle are however scarce, as well as studies combining geochemical and isotopic investigations with detailed field control and sampling. Mantle lherzolites in the External Liguride ophiolites (Northern Apennines) contain cm-thick pyroxenite layers that originated by deep infiltration of MORB-type melts (Borghini et al., 2016, J.Petrology 57). In a previous study (Borghini et al, 2013, Geology 41), we showed that geochemical gradients are preserved across the pyroxenite-peridotite contact, and the host peridotites have been modified in terms of modal, chemical and Nd isotopic composition, by reaction with pyroxenite-derived melts. Such interaction caused systematic lowering of the Sm/Nd ratios in clinopyroxene of the host peridotite at >0.1 m scale, and over time this resulted in decimeter-scale Nd isotopic heterogeneity, larger than the Nd isotopic variability of global abyssal peridotites. In this paper, we show the results of Lu-Hf isotopic investigations, performed on the same peridotite-pyroxenite profiles, aimed to test the existence of Hf isotopic changes in mantle peridotite induced by a pyroxenite component. In both peridotites and pyroxenites, initial (160Ma) EpsilonHf versus EpsilonNd values define an overall positive correlation, almost covering the entire MORB variation, and extending beyond the depleted end of the MORB field. As documented for Nd isotopes, the lowest 176Lu/177Hf and 176Hf/177Hf ratios are shown by peridotites adjacent to pyroxenite layers, as a result of reaction with pyroxenite-derived melts. Internal Lu-Hf isochrones on two pyroxenite-peridotite profiles have yielded Ordovician ages of pyroxenite emplacement, consistent with previous Sm-Nd investigations (Borghini et al., 2013). Our results point to predominant coherent behaviour of Hf and Nd isotopes during melt percolation and melt-peridotite interaction, and corroborate the role of such processes in creating the enriched mantle components often invoked to explain the isotopic variability of MORBs.
Linking magma transport structures at Kīlauea volcano
Wech, Aaron G.; Thelen, Weston A.
2015-01-01
Identifying magma pathways is important for understanding and interpreting volcanic signals. At Kīlauea volcano, seismicity illuminates subsurface plumbing, but the broad spectrum of seismic phenomena hampers event identification. Discrete, long-period events (LPs) dominate the shallow (5-10 km) plumbing, and deep (40+ km) tremor has been observed offshore. However, our inability to routinely identify these events limits their utility in tracking ascending magma. Using envelope cross-correlation, we systematically catalog non-earthquake seismicity between 2008-2014. We find the LPs and deep tremor are spatially distinct, separated by the 15-25 km deep, horizontal mantle fault zone (MFZ). Our search corroborates previous observations, but we find broader-band (0.5-20 Hz) tremor comprising collocated earthquakes and reinterpret the deep tremor as earthquake swarms in a volume surrounding and responding to magma intruding from the mantle plume beneath the MFZ. We propose the overlying MFZ promotes lateral magma transport, linking this deep intrusion with Kīlauea’s shallow magma plumbing.
Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals.
Carrez, Philippe; Ferré, Denise; Cordier, Patrick
2007-03-01
The dynamics of the Earth's interior is largely controlled by mantle convection, which transports radiogenic and primordial heat towards the surface. Slow stirring of the deep mantle is achieved in the solid state through high-temperature creep of rocks, which are dominated by the mineral MgSiO3 perovskite. Transformation of MgSiO3 to a 'post-perovskite' phase may explain the peculiarities of the lowermost mantle, such as the observed seismic anisotropy, but the mechanical properties of these mineralogical phases are largely unknown. Plastic flow of solids involves the motion of a large number of crystal defects, named dislocations. A quantitative description of flow in the Earth's mantle requires information about dislocations in high-pressure minerals and their behaviour under stress. This property is currently out of reach of direct atomistic simulations using either empirical interatomic potentials or ab initio calculations. Here we report an alternative to direct atomistic simulations based on the framework of the Peierls-Nabarro model. Dislocation core models are proposed for MgSiO3 perovskite (at 100 GPa) and post-perovskite (at 120 GPa). We show that in perovskite, plastic deformation is strongly influenced by the orthorhombic distortions of the unit cell. In silicate post-perovskite, large dislocations are relaxed through core dissociation, with implications for the mechanical properties and seismic anisotropy of the lowermost mantle.
Deep and persistent melt layer in the Archaean mantle
NASA Astrophysics Data System (ADS)
Andrault, Denis; Pesce, Giacomo; Manthilake, Geeth; Monteux, Julien; Bolfan-Casanova, Nathalie; Chantel, Julien; Novella, Davide; Guignot, Nicolas; King, Andrew; Itié, Jean-Paul; Hennet, Louis
2018-02-01
The transition from the Archaean to the Proterozoic eon ended a period of great instability at the Earth's surface. The origin of this transition could be a change in the dynamic regime of the Earth's interior. Here we use laboratory experiments to investigate the solidus of samples representative of the Archaean upper mantle. Our two complementary in situ measurements of the melting curve reveal a solidus that is 200-250 K lower than previously reported at depths higher than about 100 km. Such a lower solidus temperature makes partial melting today easier than previously thought, particularly in the presence of volatiles (H2O and CO2). A lower solidus could also account for the early high production of melts such as komatiites. For an Archaean mantle that was 200-300 K hotter than today, significant melting is expected at depths from 100-150 km to more than 400 km. Thus, a persistent layer of melt may have existed in the Archaean upper mantle. This shell of molten material may have progressively disappeared because of secular cooling of the mantle. Crystallization would have increased the upper mantle viscosity and could have enhanced mechanical coupling between the lithosphere and the asthenosphere. Such a change might explain the transition from surface dynamics dominated by a stagnant lid on the early Earth to modern-like plate tectonics with deep slab subduction.
NASA Astrophysics Data System (ADS)
Park, Yongcheol; Kim, Kwang-Hee; Lee, Joohan; Yoo, Hyun Jae; Plasencia L., Milton P.
2012-12-01
Upper-mantle structure between 100 and 300 km depth below the northern Antarctic Peninsula is imaged by modelling P-wave traveltime residuals from teleseismic events recorded on the King Sejong Station (KSJ), the Argentinean/Italian stations (JUBA and ESPZ), an IRIS/GSN Station (PMSA) and the Seismic Experiment in Patagonia and Antarctica (SEPA) broad-band stations. For measuring traveltime residuals, we applied a multichannel cross-correlation method and inverted for upper-mantle structure using VanDecar's method. The new 3-D velocity model reveals a subducted slab with a ˜70° dip angle at 100-300 km depth and a strong low-velocity anomaly confined below the SE flank of the central Bransfield Basin. The low velocity is attributed to a thermal anomaly in the mantle that could be as large as 350-560 K and which is associated with high heat flow and volcanism in the central Bransfield Basin. The low-velocity zone imaged below the SE flank of the central Bransfield Basin does not extend under the northern Bransfield Basin, suggesting that the rifting process in that area likely involves different geodynamic processes.
Implications of magma transfer between multiple reservoirs on eruption cycling.
Elsworth, Derek; Mattioli, Glen; Taron, Joshua; Voight, Barry; Herd, Richard
2008-10-10
Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers).
Recycling Seamounts: Implications for Mantle Source Heterogeneities
NASA Astrophysics Data System (ADS)
Madrigal, P.; Gazel, E.
2016-12-01
Isolated seamounts formed away from plate boundaries and/or known hotspot tracks are widely distributed in the Earth's oceanic plates. Despite their pervasiveness, the origin and composition of the magmatic sources that create these seamounts are still unknown. Moreover, as the seamount provinces travel along with the oceanic plate towards subduction trenches these volcanic edifices become subducted materials that are later recycled into the mantle. Using radiogenic isotopes (Sr-Nd-Pb) from present-day non-plume ocean island basalts (OIB) sampled by drilling and dredging as well as by normal processes of accretion to subduction margins, we modeled the isotopic evolution of these enriched reservoirs to assess their role as discrete components contributing to upper mantle heterogeneity. Our evidence suggests that a highly enriched mantle reservoir can originate from OIB-type subducted material that gets incorporated and stirred throughout the upper mantle in a shorter time period ( 200 Ma-500 Ma) than other highly enriched components like ancient subducted oceanic crust (>1 Ga), thought to be the forming agent of the HIMU mantle reservoir endmember. Enriched signatures from intraplate volcanism can be described by mixing of a depleted component like DMM and an enriched reservoir like non-plume related seamounts. Our data suggests that the isotopic evolution in time of a seamount-province type of reservoir can acquire sufficiently enriched compositions to resemble some of the most enriched magmas on Earth. This "fast-forming" (between 200 and 500 Ma) enriched reservoir could also explain some of the enriched signatures commonly present in intraplate and EMORB magmas unrelated to deep mantle plume upwellings.
147Sm-143Nd systematics of Earth are inconsistent with a superchondritic Sm/Nd ratio
Huang, Shichun; Jacobsen, Stein B.; Mukhopadhyay, Sujoy
2013-01-01
The relationship between the compositions of the Earth and chondritic meteorites is at the center of many important debates. A basic assumption in most models for the Earth’s composition is that the refractory elements are present in chondritic proportions relative to each other. This assumption is now challenged by recent 142Nd/144Nd ratio studies suggesting that the bulk silicate Earth (BSE) might have an Sm/Nd ratio 6% higher than chondrites (i.e., the BSE is superchondritic). This has led to the proposal that the present-day 143Nd/144Nd ratio of BSE is similar to that of some deep mantle plumes rather than chondrites. Our reexamination of the long-lived 147Sm-143Nd isotope systematics of the depleted mantle and the continental crust shows that the BSE, reconstructed using the depleted mantle and continental crust, has 143Nd/144Nd and Sm/Nd ratios close to chondritic values. The small difference in the ratio of 142Nd/144Nd between ordinary chondrites and the Earth must be due to a process different from mantle-crust differentiation, such as incomplete mixing of distinct nucleosynthetic components in the solar nebula. PMID:23479630
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro M.
2014-03-01
The lack of knowledge of the initial thermal state of the mantle in the geological past is an outstanding problem in mantle convection. The resolution of this problem also requires the modelling of 3-D mantle evolution that yields maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. To solve and estimate the robustness of the time-reversed (inverse) problem of mantle convection, we analyse two different numerical techniques: the quasi-reversible (QRV) and the backward advection (BAD) methods. Our investigation extends over the 65 Myr interval encompassing the Cenozoic era using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spherical geometry. We find that the two dominant issues for solving the inverse problem of mantle convection are the choice of horizontally-averaged temperature (i.e., geotherm) and mechanical surface boundary conditions. We find, in particular, that the inclusion of thermal boundary layers that yield Earth-like heat flux at the top and bottom of the mantle has a critical impact on the reconstruction of mantle evolution. We have developed a new regularisation scheme for the QRV method using a time-dependent regularisation function. This revised implementation of the QRV method delivers time-dependent reconstructions of mantle heterogeneity that reveal: (1) the stability of Pacific and African ‘large low shear velocity provinces’ (LLSVP) over the last 65 Myr; (2) strong upward deflections of the CMB topography at 65 Ma beneath: the North Atlantic, the south-central Pacific, the East Pacific Rise (EPR) and the eastern Antarctica; (3) an anchored deep-mantle plume ascending directly under the EPR (Easter and Pitcairn hotspots) throughout the Cenozoic era; and (4) the appearance of the transient Reunion plume head beneath the western edge of the Deccan Plateau at 65 Ma. Our reconstructions of Cenozoic mantle evolution thus suggest that mantle plumes play a key role in driving surface tectonic processes and large-scale volcanism.
NASA Astrophysics Data System (ADS)
Hempel, S.; Garcia, R.; Weber, R. C.; Schmerr, N. C.; Panning, M. P.; Lognonne, P. H.; Banerdt, W. B.
2016-12-01
Complementary to investigating ray theoretically predictable parameters to explore the deep interior of Mars (see AGU contribution by R. Weber et al.), this paper presents the waveform approach to illuminate the lowermost mantle and core-mantle boundary of Mars. In preparation to the NASA discovery mission InSight, scheduled for launch in May, 2018, we produce synthetic waveforms considering realistic combinations of sources and a single receiver, as well as noise models. Due to a lack of constraints on the scattering properties of the Martian crust and mantle, we assume Earth-like scattering as a minimum and Moon-like scattering as a maximum possibility. Various seismic attenuation models are also investigated. InSight is set up to deliver event data as well as a continuous data flow. Where ray theoretical approaches will investigate the event data, the continuous data flow may contain signals reflected multiple times off the same reflector, e.g. the underside of the lithosphere, or the core-mantle boundary. It may also contain signals of individual events not detected or interfering wavefields radiated off multiple undetected events creating 'seismic noise'. We will use AxiSEM to simulate a continuous data flow for these cases for various 1D and 2D Mars models, and explore the possibilities of seismic interferometry to use seismic information hidden in the coda to investigate the deep interior of Mars.
Deep-Earth Equilibration between Molten Iron and Solid Silicates
NASA Astrophysics Data System (ADS)
Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.
2017-12-01
Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.
Ice cap melting and low viscosity crustal root explain narrow geodetic uplift of the Western Alps
NASA Astrophysics Data System (ADS)
Chery, Jean; Genti, Manon; Vernant, Philippe
2016-04-01
More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Three uplift mechanisms have been proposed so far: (1) the isostatic response to denudation. However this process is responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting. This process leads to a broader uplifting region than the one evidenced by geodetic observations. (3) a deep source motion associated with slab motion or some deep isostatic unbalance. Using a numerical model accounting for crustal and mantle rheology of the Alps and its foreland, we model the response to Wurmian ice cap melting. We show that a crustal viscosity contrast between the foreland and the central part of the Alps, the later being weaker with a viscosity of 1021 Pa.s, is needed to produce a narrow uplift. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly thanks to the continuity between the low viscosity parts of the crust and mantle. References: Champagnac, J.-D., F. Schlunegger, K. Norton, F. von Blanckenburg, L. M. Abbühl, and M. Schwab (2009), Erosion-driven uplift of the modern Central Alps, Tectonophysics, 474(1-2), 236-249. Vernant, P., F. Hivert, J. Chéry, P. Steer, R. Cattin, and A. Rigo (2013), Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, geology, 41(4), 467-470.
Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core
NASA Astrophysics Data System (ADS)
Kendall, Jordan D.; Melosh, H. J.
2016-08-01
The abundance of moderately siderophile elements (;iron-loving;; e.g. Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. We have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments rain through the magma ocean and settle deeper into the planet. Our results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean.
NASA Astrophysics Data System (ADS)
Weis, D.; Harrison, L.
2017-12-01
The Hawaiian mantle plume has been active for >80 Ma with the highest magmatic flux, also distinctly increasing with time. The identification of two clear geochemical trends (Loa-Kea) among Hawaiian volcanoes in all isotope systems has implications for the dynamics and internal structure of the plume conduit and source in the deep mantle. A compilation of modern isotopic data on Hawaiian shield volcanoes and from the Northwest Hawaiian Ridge (NWHR), focusing specifically on high-precision Pb isotopes integrated with Sr, Nd and Hf isotopes, indicates the presence of source differences for Loa- and Kea-trend volcanoes that are maintained throughout the 1 Ma activity of each volcano. These differences extend back in time on all the Hawaiian Islands ( 5 Ma), and as far back as 47 Ma on the NWHR. In all isotope systems, the Loa-trend basalts are more heterogeneous by a factor of 1.5 than the Kea-trend basalts. The Hawaiian mantle plume overlies the boundary between ambient Pacific lower mantle on the Kea side and the Pacific LLSVP on the Loa side. Geochemical differences between Kea and Loa trends reflect preferential sampling of these two distinct sources of deep mantle material, with additional contribution of ULVZ material sporadically on the Loa side. Plume movement up the gently sloping edge of the LLSVP resulted in entrainment of greater amounts of LLSVP-enriched material over time, and explains why the Hawaiian mantle plume dramatically strengthens over time, contrary to plume models. Similar indications of preferential sampling at the edges of the African LLSVP are found in Kerguelen and Tristan da Cunha basalts in the Indian and Atlantic oceans, respectively. The anomalous low-velocity zones at the core-mantle boundary store geochemical heterogeneities that are enriched in recycled material (EM-I type) with different compositions under the Pacific and under Africa, and that are sampled by strong mantle plumes such as Hawaii and Kerguelen.
Investigating Different Patterns of Slab Deformation in the Lower Mantle
NASA Astrophysics Data System (ADS)
Zhang, J.; McNamara, A. K.
2017-12-01
The geometry of slabs within the upper mantle have been relatively well-imaged by tomography and regional seismic studies; however, the style of slab deformation in the lower mantle remains poorly understood. Although tomography models reveal that the lower mantle beneath paleo-subduction regions are faster-than-average, the resolution is not high enough to resolve how slabs are actually deforming there. Slabs have long been hypothesized as viscous, tabular sheets that subduct at the surface, descend through the mantle, and impinge on the core-mantle boundary (CMB). Geodynamical studies have shown a wide range of possible deformational behaviors, ranging from stiff, buckling slabs to more-ductile masses of accumulating slab material undergoing pure shear. Of particular interest is how rheology and 3D spherical geometry control the shape and deformational style of slabs as they descend deeper into the mantle. We performed high resolution 3D spherical calculations to explore slab deformation in deep mantle as a function of slab strength. In our model, kinematic velocity boundary conditions are imposed on the surface to simulate a moving plate which guides the formation of a subducting slab. In addition, a viscosity jump at the transition zone is applied. We find that although a slab subducts as a large tabular sheet from the surface, it doesn't always maintain such geometry. Instead, it typically breaks apart into a few smaller and narrower sheets which can even turn into cylindrical-shaped downwelling after subducting into deep mantle. Since seismic anisotropy is hypothesized to originate from crystal preferred orientation (CPO) in a slab when it impinges on the CMB and is predicted with significant help of time-dependent deformation information from the geodynamic models, our findings on lower mantle slab deformation patterns may enhance the understanding towards the cause of characteristic patterns of predicted seismic anisotropy.
Diamond and moissanite in ophiolitic mantle rocks and podiform chromitites: A deep carbon source?
NASA Astrophysics Data System (ADS)
Yang, J.; Xu, X.; Wiedenbeck, M.; Trumbull, R. B.; Robinson, P. T.
2010-12-01
Diamonds are known from a variety of occurreces, mainly from mantle-derived kimberlites, meteorite impact craters, and continental deep subduction and collision zones. Recently, an unusual mineral group was discovered in the Luobusa ophiolitic chromitites from the Yarlung Zangbu suture, Tibet, which probably originated from a depth of over 300 km in the mantle. Minerals of deep origin include coesite apparently pseudomorphing stishovite, and diamond as individual grains or inclusions in OsIr alloy. To determine if such UHP and unusual minerals occur elsewhere, we collected about 1.5 t of chromitite from two orebodies in an ultramafic body in the Polar Urals. Thus far, more than 60 different mineral species have been separated from these ores. The most exciting discovery is the common occurrence of diamond, a typical UHP mineral in the Luobusa chromitites. These minerals are very similar in composition and structure to those reported from the Luobusa chromitites. So far diamond and/or moissanite have been discovered from many different ophiolitic ultramafic rocks, including in-situ grains in polished chromitite fragments. These discoveries demonstrate that the Luobusa ophiolite is not a unique diamond-bearing massif. Secondary ion mass spectrometric (SIMS) analysis shows that the ophiolite-hosted diamond has a distinctive 13C-depleted isotopic composition (δ13C from -18 to -28‰, n=70), compatible to the ophiolite-hosted moissanite (δ13C from -18 to -35‰, n=36), both are much lighter than the main carbon reservoir in the upper mantle (δ13C near -5‰). The compiled data from moissanite from kimberlites and other mantle settings share the characteristic of strongly 13C-depleted isotopic composition. This suggests that diamond and moissanite originates from a separate carbon reservoir in the mantle or that its formation involved strong isotopic fractionation. Subduction of biogenic carbonaceous material could potentially satisfy both the unusual isotopic and redox constraints on diamond and moissanite formation, but this material would need to stay chemically isolated from the upper mantle until it reached the high-T stability field of diamond and moissanite. The origin of diamond and moissanite in the mantle is still unsolved, but all evidence from the upper mantle indicates that they cannot have formed there, except under special and local redox conditions. We suggest, alternatively, that diamond and moissanite may have formed in the lower mantle, where the existence of 13C-depleted carbon is strongly suspected.
Comparing the composition of the earliest basalts erupted by the Iceland and Afar mantle plumes.
NASA Astrophysics Data System (ADS)
Stuart, Finlay M.
2013-04-01
The first basalts erupted by mantle plumes are typically generated by mantle melting at temperatures 200-300°C higher than average ambient mantle. This is consistent with the derivation of from a thermal boundary layer at the core-mantle boundary. Mantle plume temperatures decrease with time, likely as large plume heads give way to thin plume conduits. Consequently the early, hot plume basalts are a window into the deep mantle. At it's simplest they provide a test of whether the discrete plume source regions are primordial mantle that have been isolated since soon after Earth accretion, or have substantial contributions from subducted slabs. Here I present new isotopic and trace element determinations of the earliest picritic basalts from the ~30 Ma Afar plume in Ethiopia. They will be compared with similar material from the ~60 Ma proto-Iceland plume (PIP) in an effort to test prevailing models regarding the source of mantle plumes. The extremely primordial nature of the helium in the PIP picrites (3He/4He ~ 50 Ra) contrasts with much lower values of the Ethiopian flood basalt province (~21 Ra). The Iceland plume 3He/4He has decreased (linearly) with time, mirroring the secular cooling of the Iceland mantle plume identified by decreasing MgO and FeO in primary melts. In 60 million years the Iceland plume 3He/4He is still higher than the maximum Afar plume value. The Sr-Nd-Pb isotopic composition of the high 3He/4He Ethiopian flood basalt province picrites are remarkably homogenous (e.g. 87Sr/86Sr = 0.70396-0.70412; 206Pb/204Pb = 18.82-19.01). In comparison the PIP picrites have ranges that span nearly the global range of E-MORB and N-MORB. The Afar and proto-Iceland mantle plumes are clearly not initiated in a single deep mantle domain with the same depletion/enrichment and degassing histories, and the same scale of heterogeneity. This implies that there is more than one plume source region/mechanism that is capable of generating comparable volumes of basalt melt at Earth surface.
NASA Astrophysics Data System (ADS)
Boles, J. R.; Garven, G.; Camacho, H.; Lupton, J. E.
2015-07-01
Mantle helium is a significant component of the helium gas from deep oil wells along the Newport-Inglewood fault zone (NIFZ) in the Los Angeles (LA) basin. Helium isotope ratios are as high as 5.3 Ra (Ra = 3He/4He ratio of air) indicating 66% mantle contribution (assuming R/Ra = 8 for mantle), and most values are higher than 1.0 Ra. Other samples from basin margin faults and from within the basin have much lower values (R/Ra < 1.0). The 3He enrichment inversely correlates with CO2, a potential magmatic carrier gas. The δ13C of the CO2 in the 3He rich samples is between 0 and -10‰, suggesting a mantle influence. The strong mantle helium signal along the NIFZ is surprising considering that the fault is currently in a transpressional rather than extensional stress regime, lacks either recent magma emplacement or high geothermal gradients, and is modeled as truncated by a proposed major, potentially seismically active, décollement beneath the LA basin. Our results demonstrate that the NIFZ is a deep-seated fault directly or indirectly connected with the mantle. Based on a 1-D model, we calculate a maximum Darcy flow rate q ˜ 2.2 cm/yr and a fault permeability k ˜ 6 × 10-17 m2 (60 microdarcys), but the flow rates are too low to create a geothermal anomaly. The mantle leakage may be a result of the NIFZ being a former Mesozoic subduction zone in spite of being located 70 km west of the current plate boundary at the San Andreas fault.
Dissipation in the deep interiors of Ganymede and Europa
NASA Astrophysics Data System (ADS)
Hussmann, Hauke; Shoji, Daigo; Steinbruegge, Gregor; Stark, Alexander; Sohl, Frank
2017-04-01
Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Tidal flexing in the deep interiors can be a significant heat source for the satellites' thermal-orbital evolution. Whereas typical structure models of Europa consist of a core, a silicate mantle, an ocean and an outer ice-I shell [1], pressures inside Ganymede are sufficient for high-pressure ice phases to occur between the silicate mantle and the ocean [2]. With current data it is unknown whether the deep interiors (i.e., Europa's silicate shell and Ganymede's silicate mantle and/or high-pressure ice layer) are dissipative. Other possibilities would be that the dissipation rates are in general very low (unlikely at least for Europa due to recent observations) or that dissipative processes are mainly occurring in the ice-I shell and/or ocean. Thus, for evaluations of the heating state of these satellites, it is important to measure the magnitude of the interior dissipation. However, observation of the interior layers such as high-pressure ice layers is more challenging than that of the surface ice-I layer. Here we suggest a method to constrain the dissipation states of the deep interiors of Ganymede and Europa by altimetry and gravity measurements from an orbiting or multi-flyby spacecraft. Tidal variations are generally described by the Love numbers k2 and h2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags of these complex numbers contain information about the rheological and dissipative states of the satellites. For the satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference between the lags of k2 and h2 can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small (the phase-lag difference is almost independent of the dissipation in the surface layer). In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities of 1e13-1e14 Pa s (around the lower boundary at its melting temperature) and would indicate a highly dissipative state of the deep interior. In this case, in contrast to the phase lags itself, the phase-lag difference is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite [3]. For Europa the phase-lag difference could reach values exceeding 20 deg if the silicate mantle contains melt and phase-lag measurements could help distinguish between (1) a hot dissipative (melt-containing) silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA's Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system. References: [1] Schubert, G., F. Sohl and H. Hussmann 2009. Interior of Europa. In: Europa, (R.T. Pappalardo, W.B. McKinnon, K. Khurana, Eds.), University of Arizona Press, pp. 353 - 368. [2] Schubert G., J. D. Anderson, T. Spohn, and W. B. McKinnon 2004. Interior composition, structure, and dynamics of the Galilean satellites. In: F. Bagenal, T. E. Dowling, and W. B. McKinnon (eds.) Jupiter. The Planet, Satellites, and Magnetosphere, pp. 281-306. Cambridge University Press. [3] Hussmann, H., D. Shoji, G. Steinbrügge, A. Stark, F. Sohl 2016. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags. Cel. Mech. Dyn. Astr. 126, 131 - 144.
Quantitative Restoration of the Evolution of Mantle Structures Using Data Assimilation
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Schubert, G.; Tsepelev, I.
2008-12-01
Rapid progress in imaging deep Earth structures and in studies of physical and chemical properties of mantle rocks facilitates research in assimilation of data related to mantle dynamics. We present a quantitative approach to assimilation of geophysical and geodetic data, which allows for incorporating observations and unknown initial conditions for mantle temperature and flow into a three-dimensional dynamic model in order to determine the initial conditions in the geological past. Once the conditions are determined the evolution of mantle structures can be restore backward in time. We apply data assimilation techniques to model the evolution of mantle plumes and lithospheric slabs. We show that the geometry of the mantle structures changes with time diminishing the degree of surface curvature of the structures, because the heat conduction smoothes the complex thermal surfaces of mantle bodies with time. Present seismic tomography images of mantle structures do not allow definition of the sharp shapes of these structures. Assimilation of mantle temperature and flow to the geological past instead provides a quantitative tool to restore thermal shapes of prominent structures in the past from their diffusive shapes at present.
Elasticity of Deep-Earth Materials at High P and T: Implication for Earths Lower Mantle
NASA Astrophysics Data System (ADS)
Bass, Jay; Sinogeikin, S. V.; Mattern, Estelle; Jackson, J. M.; Matas, J.; Wang, J.; Ricard, Y.
2005-03-01
Brillouin spectroscopy allows measurements of sound velocities and elasticity on phases of geophysical interest at high Pressures and Temperatures. This technique was used to measure the properties of numerous important phases of Earths deep interior. Emphasis is now on measurements at elevated P-T conditions, and measurements on dense polycrystals. Measurements to 60 GPa were made using diamond anvil cells. High temperature is achieved by electrical resistance and laser heating. Excellent results are obtained for polycrystalline samples of dense oxides such as silicate spinels, and (Mg,Al)(Si,Al)O3 --perovskites. A wide range of materials can now be characterized. These and other results were used to infer Earths average lower mantle composition and thermal structure by comparing mineral properties at lower mantle P-T conditions to global Earth models. A formal inversion procedure was used. Inversions of density and bulk sound velocity do not provide robust compositional and thermal models. Including shear properties in the inversions is important to obtain unique solutions. We discuss the range of models consistent with present lab results, and data needed to further refine lower mantle models.
NASA Astrophysics Data System (ADS)
Enciu, Dana-Mihaela
Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.
NASA Astrophysics Data System (ADS)
LI, S.; Guo, Z.; Chen, Y. J.
2017-12-01
We present a high-resolution upper mantle S velocity model of the northern Ordos block using ambient noise tomography and two-plane-wave tomography between 8 and 143 s. The Ordos block, regarded as the nuclei of the Archean craton of North China Craton, is underlain by high velocity down to 200 km, indicating the preservation of cratonic root at the interior. However, thick lithospheric keel (≥ 200 km) is not observed outside the Ordos, suggesting craton reworking around the Ordos. The most important findings is the prominent low velocity shown beneath the Datong volcano that migrates westward with depth. At 200 km depth, the low velocity locates almost 500 km west to the leading edge of the flat-lying Pacific slab in the mantle transition zone. This observation is in conflict with the previous interpretation that the Datong volcano is fed by the deep upwelling related to the subduction of the Pacific plate. The westward tilted low velocity beneath the Datong volcano, however, is in agreement with the predominant NW-SE trending alignment of fast direction revealed by SKS splitting in this area, suggesting the Datong volcano is likely due to the asthenospheric mantle flow from west. Two possible scenarios could be related to this mantle process. First, the low velocity beneath the Datong volcano may link to the large-scale, deep-rooted mantle upwelling beneath the Mongolia, northwest to the Datong volcano at deeper depth revealed by Zhang et al. (2016). We postulate that when the raising mantle materials reaches the shallow depth, it would be forced bent by the thick lithosphere beneath the Gobi in Mongolia and flow southeastward to Datong volcano. Second, it is also worth noting that the low velocity beneath the Datong volcano connects to the low velocity zone (LVZ) beneath the Ordos block below 200km, which further links the LVZ beneath the northeastern Tibet to the west. Therefore, the Datong volcano could be fed by the mantle flow from northeastern Tibet. The continuous slab-retreating of the western Pacific since the Cenozoic would have created void spaces in eastern Asia which could in turn suck new asthenospheric materials from the Mongolia and northeast Tibet through the northern TNCO. The upward mantle flow along the rapid thinning lithosphere to the northeast of Ordos had generated partial melting to supply the Datong volcano.
NASA Astrophysics Data System (ADS)
Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija
2015-04-01
We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.
Research and Teaching About the Deep Earth
NASA Astrophysics Data System (ADS)
Williams, Michael L.; Mogk, David W.; McDaris, John
2010-08-01
Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.
Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke
2015-01-01
Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle. PMID:25675890
NASA Astrophysics Data System (ADS)
Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke
2015-02-01
Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle.
Geodynamic models of the deep structure of the natural disaster regions of the Earth
NASA Astrophysics Data System (ADS)
Rodnikov, A. G.; Sergeyeva, N. A.; Zabarinskaya, L. P.
2012-04-01
Investigation of the deep structure and creation of geodynamic models of natural disaster regions are important for understanding of the nature of such phenomena as earthquakes, eruptions of volcanoes, tsunami and others. Carrying out of such researches is necessary for definition of areas of potential risk, forecasting and the prevention of negative consequences of acts of nature. Research region is active continental margins of the Sea of Okhotsk, and especially the area of Neftegorsk earthquake which has occurred on May, 28th 1995 in the North Sakhalin and caused many victims and destructions. The geodynamic model of the lithosphere in the region of Neftegorsk earthquake has been constructed along the profile crossing the North Sakhalin Basin, Deryugin Basin and ophiolite complex between them. The Deryugin Basin was formed at the site of an ancient deep trench after the subduction of the Okhotsk Sea Plate under Sakhalin. The basin is located above a hot plume in the mantle at a depth of 25 km. The ophiolite belt of ultramafic magmatic rocks is an ancient (K2-Pg) paleosubduction zone separating the Deryugin basin from the North Sakhalin Basin. The thickness of the ancient seismic focal zone is 80 km. It is probably that the structures of the North Sakhalin have been formed in the following way. In the Late Cretaceous the oceanic Okhotsk Sea Plate subducted under Sakhalin, the eastern part of which was an andesite island arc. Approximately in Miocene the subduction of the plate apparently ceased. In that time the Tatar Rift Strait was formed. Ophiolite rocks of the subduction zones as a result of compression have been squeezed out on a surface. The ophiolite complex combined by the ultrabasic rocks, fixes position of ancient subduction zone. It is probable that the manifestation of the Neftegorsk earthquake was a result of activization of this ancient subduction zone. On a surface the subduction zone manifests itself as deep faults running along Sakhalin. The center of the Neftegorsk earthquake was directly formed by burst of activity of this ancient subduction zone. From a position of the ancient subduction zone under Sakhalin, which is a cause of strong earthquakes here, it follows that the region is one of seismic dangerous in Russia. Constructed on the basis of complex interpretation of the geologic-geophysical data the geodynamic models of natural disaster regions give the chance: to study a deep structure under seismic dangerous zones; to investigate a role of deep processes in the upper mantle in formation of structures of earth crust; to relate the geological features, tectonomagmatic, hydrothermal activity with the processes in the upper mantle; to plot maps in detail with zones of increasing risks to prevent active building or other economic activities in such dangerous regions.
NASA Astrophysics Data System (ADS)
DeFelipe, I.; Pedreira, D.; Pulgar, J. A.; Van der Beek, P.; Bernet, M.; Pik, R.
2017-12-01
The Pyrenean-Cantabrian Mountain belt extends in an E-W direction along the northern border of Spain and resulted from the convergence between the Iberian and European plates from the Late Cretaceous to the Miocene, in the context of the Alpine orogeny. The main aim of this work is to characterize the tectonic evolution at a crustal-scale of the transition zone from the Pyrenees to the Cantabrian Mountains, in the eastern Basque-Cantabrian Basin (BCB). We integrate structural work, thermochronology (apatite fission track and zircon (U-Th)/He) and geophysical information (shallow seismic reflection profiles, deep seismic refraction/wide-angle reflection profiles and seismicity distribution) to propose an evolutionary model since the Jurassic to the present. During the Albian, hyperextension related to the opening of the Bay of Biscay yielded to mantle unroofing to the base of the BCB. This process was favored by a detachment fault that connected the mantle in its footwall with the base of a deep basin in its hanging wall. During this process, the basin experienced HT metamorphism and fluid circulation caused the serpentinization of the upper part of the mantle. There is no evidence of seafloor mantle exhumation before the onset of the Alpine orogeny. The thermochronological study points to a N-vergent phase of contractional deformation in the late Eocene represented by the thin-skinned Leiza fault system followed in the early Oligocene by the S-vergent, thick-skinned, Ollín thrust. Exhumation rates for the late Eocene-early Oligocene are of 0.2-0.7 km/Myr. After that period, deformation continues southwards until the Miocene. The crustal-scale structure resultant of the Alpine orogeny consists of an Iberian plate that subducts below the European plate. The crust is segmented into four blocks separated by three S-vergent crustal faults inherited from the Cretaceous extensional period. The P-wave velocities in this transect show anomalous values (7.4 km/s) in the deepest part of the Iberian crust that may correspond to serpentinized mantle formed during the Cretaceous and later subducted. The Alpine shortening in this transect is estimated in ca. 90 km. Integration of structural, geophysical and thermochronological data, allows a more precise reconstruction of the crustal-scale Alpine cycle in the eastern BCB.
A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution
NASA Astrophysics Data System (ADS)
Evans, A. J.; Zuber, M. T.; Weiss, B. P.; Tikoo, S. M.
2014-05-01
While recent analyses of lunar samples indicate the Moon had a core dynamo from at least 4.2-3.56 Ga, mantle convection models of the Moon yield inadequate heat flux at the core-mantle boundary to sustain thermal core convection for such a long time. Past investigations of lunar dynamos have focused on a generally homogeneous, relatively dry Moon, while an initial compositionally stratified mantle is the expected consequence of a postaccretionary lunar magma ocean. Furthermore, recent re-examination of Apollo samples and geophysical data suggests that the Moon contains at least some regions with high water content. Using a finite element model, we investigate the possible consequences of a heterogeneously wet, compositionally stratified interior for the evolution of the Moon. We find that a postoverturn model of mantle cumulates could result in a core heat flux sufficiently high to sustain a dynamo through 2.5 Ga and a maximum surface, dipolar magnetic field strength of less than 1 μT for a 350-km core and near ˜2 μT for a 450-km core. We find that if water was transported or retained preferentially in the deep interior, it would have played a significant role in transporting heat out of the deep interior and reducing the lower mantle temperature. Thus, water, if enriched in the lower mantle, could have influenced core dynamo timing by over 1.0 Gyr and enhanced the vigor of a lunar core dynamo. Our results demonstrate the plausibility of a convective lunar core dynamo even beyond the period currently indicated by the Apollo samples.
Perovskite in Earth’s deep interior
NASA Astrophysics Data System (ADS)
Hirose, Kei; Sinmyo, Ryosuke; Hernlund, John
2017-11-01
Silicate perovskite-type phases are the most abundant constituent inside our planet and are the predominant minerals in Earth’s lower mantle more than 660 kilometers below the surface. Magnesium-rich perovskite is a major lower mantle phase and undergoes a phase transition to post-perovskite near the bottom of the mantle. Calcium-rich perovskite is proportionally minor but may host numerous trace elements that record chemical differentiation events. The properties of mantle perovskites are the key to understanding the dynamic evolution of Earth, as they strongly influence the transport properties of lower mantle rocks. Perovskites are expected to be an important constituent of rocky planets larger than Mars and thus play a major role in modulating the evolution of terrestrial planets throughout the universe.
Seismic evidence for silicate melt atop the 410-km mantle discontinuity
Revenaugh, Justin; Sipkin, S.A.
1994-01-01
LABORATORY results demonstrating that basic to ultrabasic melts become denser than olivine-rich mantle at pressures above 6 GPa (refs 1-3) have important implications for basalt petrogenesis, mantle differentiation and the storage of volatiles deep in the Earth. A density cross-over between melt and solid in the extensively molten Archaean mantle has been inferred from komatiitic volcanism and major-element mass balances, but present-day evidence of dense melt below the seismic low-velocity zone is lacking. Here we present mantle shear-wave impedance profiles obtained from multiple-ScS reverberation mapping for corridors connecting western Pacific subduction zone earthquakes with digital seismograph stations in eastern China, imaging a ~5.8% impedance decrease roughly 330 km beneath the Sea of Japan, Yellow Sea and easternmost Asia. We propose that this represents the upper surface of a layer of negatively buoyant melt lying on top of the olivine ??? ??- phase transition (the 410-km seismic discontinuity). Volatile-rich fluids expelled from the partial melt zone as it freezes may migrate upwards, acting as metasomatic agents and perhaps as the deep 'proto-source' of kimberlites. The remaining, dense, crystalline fraction would then concentrate above 410 km, producing a garnet-rich layer that may flush into the transition zone.
NASA Astrophysics Data System (ADS)
Osmaston, M. F.
2012-04-01
Introduction. The title poses a question very like that of my talk in 2003 [1], concluding then that, as a driver, subduction comes 'a doubtful third'. My purpose here is to show that subsequent developments now cause even that limited status to be denied it with great assurance, except in a rare situation, of which there is no current example. The key point is that studies of subduction have been importantly mistaken as to the nature of the plate arriving for subduction. Deep-keeled cratons? The 'deep-keeled cratons' frame for global dynamics [2 - 5] is the result of seeking Earth-behaviour guidance on the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Remarkably it has turned out [2 - 5] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that the explanation for the otherwise-unexpected immobility of subcratonic material to such depths is a petrological one which is also applicable to the behaviour of LVZ mantle below MORs [6 - 8]. Straight away this result has major consequences for the character of the plate arriving for subduction. First, to construct them, we need a 'thick-plate' (>100km?) model of the MOR process which recognizes that this LVZ immobility renders invalid the existing concept of divergent mantle flow below MORs. I show that my now not-so-new model [1, 8 - 10], based on a deep, narrrow, wall-accreting sub-axis crack, possesses outstandingly relevant properties, even appropriately dependent on spreading rate. Second, the oceanic plate arriving for subduction is no longer just the cooled mantle boundary layer habitually assumed, but its LVZ content gives it (i) residual heat content, (ii) corresponding buoyancy, and (iii) a flexural strength which demands a reconsideration of its mode of downbend, hitherto widely regarded as flexural, but still be able to explain outer rises and their differences. Solutions for (ii) and (iii) are convincingly supported by widespread exposure of the resulting rocks in the Alps, telling us how they and other UHP metamorphic mountain belts have been built [11]. I will illustrate the essential points. In particular, the buoyancy (ii) provides the upward mechanical contact essential for the shallow basal subduction tectonic erosion of the upper plate as preparation of thin imbricate crustal slices to subduct to UHP. And a seismologically supported through-plate step-faulting mode of downbend copes with the flexure problem (iii) and provides the tectonic erosion mechanism. In tackling these matters, important intrinsic properties of the materials are, notably:- (1) the thermal conductivity of non-migrating interstitial melt is >20 times less than its parent rock, so the LVZ heat is effectively trapped during the plate's journey across the ocean, only to be released when subduction raises the pressure and the melt freezes; (2) the garnet-to-spinel peridotite phase change, typically at 50 to 90 km depth, gives some 50 times more volume change per joule than pure expansivity, and it does so with the big force of solid-state recrystallization. This force is the crack-wall push-apart force provided by our thick-plate MOR model, which thereby develops at least an order more ridge push than the divergent flow model. We now consider the post-downbend evolution of the subducting plate, recognizing both the heat content of its ex-LVZ material and that, within the 2-layer mantle picture established by the plate dynamics of 'deep-keeled cratons' [2 - 5], there is no substantial mantle transport across the 660 km level. Examination of tomographic transects shows at once that in by far the majority of cases, the 'slab' signature begins to fade at some depth in the 180 - 350 km interval, but that a second high-Vp signature begins near 400 km and may continue far into the lower mantle. The fading, whose onset depth varies both with the age of the plate and with the subduction rate, is clearly due, not to slab drop-off, but to reheating of the slab component by its underlying ex-LVZ heat. In either case, reheating or drop-off, this invalidates slab pull as a reliable item in the tectonics toolkit. Instead, there is a thick-plate mechanism to provide back-arc opening in the presence of ridge-push [3, 11]. Slab-reheating may proceed to the stage of partially melting the interface oceanic crust. On experimental evidence, this will, at TZ depth, produce high-density, high-Vp stishovitic residues, lumps of which I see as causing the second high-Vp signature, as they shower through the 660 into the lower mantle. This interpretation escapes the slab-view paradox that the world's longest-lived young-plate subduction zone also has the world's biggest high-Vp signature in the lower mantle, whereas Izu-Bonin, subducting very old plate, has one of the smallest. Young-plate heat would surely melt more of the interface crust and generate more of the high-density residue. The early Proterozoic date at which this mantle layout replaced whole-mantle overturn is well shown by the behaviour of the mantle depletion index, epsilon Nd. At this point I conclude unhesitatingly that subduction is neither the, nor even one of the drivers of current plate motions, but is primarily driven by the powerful ridge-push from the thick-plate version of the MOR process. That push is what compresses the ocean plate if step-faulting at the downbend has temporarily locked subduction ('seismic coupling'), with the potential to release the energy for an M9 earthquake. But our system is dynamically incomplete. Ridge push cannot split a continent, so how does that occur? My original proposal [1] for that function was the long-term clockwise rotation of Antarctica and its coupling to the other plates. In another contribution at this meeting [12] the observational basis for its reality is now shown to be very strong. So the conclusion is that plate tectonics has only two primary drivers - this rotation and ridge push - subduction being a wholly passive consequence. [1] Osmaston M. F. (2003) What drives plate tectonics? Slab pull, ridge push or geomagnetic torque from the CMB? A new look at the old players vis-a-vis an exciting new one. XXIII IUGG, B129, Abstr. 016795-2. [2] Osmaston M. (2005) Interrelationships between large-scale plate motions as indicators of mantle structure: new constraints on mantle modelling and compositional layout. In 3rd Workshop on "Earth's mantle composition, structure and phase transitions". http://deep.earth.free.fr/participants.php. [3] Osmaston M. F. (2006) Global tectonic actions emanating from Arctic opening in the circumstances of a two-layer mantle and a thick-plate paradigm involving deep cratonic tectospheres: the Eurekan (Eocene) compressive motion of Greenland and other examples. In Proc. ICAM IV, 2003 (ed. R. Scott & D. Thurston). OCS Study MMS 2006-003, pp.105-124: Also at ; http://www.mms.gov/alaska/icam. [4] Osmaston M. F. (2007) Cratonic keels and a two-layer mantle tested: mantle expulsion during Arabia-Russia closure linked to westward enlargement of the Black Sea, formation of the Western Alps and subduction of the Tyrrhenian (not the Ionian) Sea. XXIV IUGG, Session JSS 011 Abstr #2105, http://www.iugg2007perugia.it/webbook/. [5] Osmaston M. F. (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. Geophys. Res.Abstr 11, EGU2009-6359 (Solicited). [6] Karato S. (1986) Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309-310. [7] Hirth G. & Kohlstedt D. L. (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere. EPSL 144, 93-108. [8] Osmaston M. F. (2010) On the actual variety of plate dynamical mechanisms and how mantle evolution affected them through time, from core formation to the Indian collision. Geophys. Res. Abstr. 12, EGU2010-6101. [9] Osmaston M. F. (1995) A straightness mechanism for MORs: a new view of ocean plate genesis and evolution XXI IUGG, Abstracts p. A472. [10] Osmaston M. (2005) The ridge push mechanism of MORs as the agent of seismic coupling, tsunami, convergence partitioning and landward thrusting at subduction zones; insights on an interactive family of mostly-jerky mechanisms. IASPEI 2005 Gen. Assy, Santiago, Chile, Abstr. No 303. [11] Osmaston M. F. (2008) Basal subduction tectonic erosion (STE), butter mélanges and the construction and exhumation of HP-UHP belts: the Alps example and some comparisons. Internat. Geol. Rev. 50(8), 685-754 DOI: 10.2747/00206814.50.8.685. [12] Osmaston M. F. (2012) Did clockwise rotation of Antarctica cause the break-up of Gondwanaland? An investigation in the 'deep-keeled cratons' frame for global dynamics. GD6.1. Geophys. Res. Abstr. 14, EGU2012-2170.
The shear-wave splitting in the crust and the upper mantle around the Bohai Sea, North China
NASA Astrophysics Data System (ADS)
Yutao, Shi; Yuan, Gao; Lingxue, Tai; Yuanyuan, Fu
2015-11-01
In order to infer the distribution of local stress and the deep geodynamic process in North China, this study detects seismic anisotropy in the crust and upper mantle beneath the Bohai Sea area. A total of 535 local shear-wave and 721 XKS (including SKS, PKS and SKKS phases) splitting measurements were obtained from stations in permanent regional seismograph networks and a temporary seismic network called ZBnet-E. The dominant fast polarization orientation of local shear-waves in the crust is nearly East-West, suggesting an East-West direction of local maximum compressive stress in the area. Nearly North-South fast orientation was obtained at some stations in the Tan-Lu fault belt and the Zhang-Bo seismic belt. The average fast orientation from XKS splitting analysis is 87.4° measured clockwise from the North. The average time-delays of XKS splitting are range from 0.54 s to 1.92 s, corresponding to a 60-210 km thick layer of anisotropy. The measured results indicate that upper mantle anisotropy beneath Bohai Sea area, even the eastern part of North China, is mainly from asthenospheric mantle flow from the subduction of the Pacific plate. From the complicated anisotropic characteristics in this study, we infer that there might be multiple mechanisms in the crust and upper mantle around the Bohai Sea area that led to the observed anisotropy.
Quantifying mantle structure and dynamics using plume tracing in seismic tomography
NASA Astrophysics Data System (ADS)
O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.
2017-12-01
Directly linking deep mantle processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of mantle signatures, but the depth and source of the mantle plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the mantle. By analyzing the behavior of mantle plumes we can constrain the vigor of mantle convection, the net rotation of the mantle and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale mantle flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower mantle and in the upper mantle (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net mantle rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the mantle and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different mantle adiabat temperatures. We are able to constrain the average temperature anomaly of the conduits to be around 150 K. We use these thermal anomalies in conjunction with our measured plume tilts/deflections to further explore the dynamics of plume conduits in the lower mantle and transition zone.
NASA Astrophysics Data System (ADS)
Singh, S. C.; Carton, H.; Chauhan, A.; Dyment, J.; Cannat, M.; Hananto, N.; Hartoyo, D.; Tapponnier, P.; Davaille, A.
2007-12-01
Recently, we acquired deep seismic reflection data using a state-of-the-art technology of Schlumberger having a powerful source (10,000 cubic inch) and a 12 km long streamer along a 250 km long trench parallel line offshore Sumatra in the Indian Ocean deformation zone that provides seismic reflection image down to 40 km depth over the old oceanic lithosphere formed at Wharton spreading centre about 55-57 Ma ago. We observe deep penetrating faults that go down to 37 km depth (~24 km in the oceanic mantle), providing the first direct evidence for full lithospheric-scale deformation in an intra-plate oceanic domain. These faults dip NE and have dips between 25 and 40 degrees. The majority of faults are present in the mantle and are spaced at about 5 km, and do not seem cut through the Moho. We have also imaged active strike-slip fault zones that seem to be associated with the re-activation of ancient fracture zones, which is consistent with previous seismological and seafloor observations. The geometries of the deep penetrating faults neither seem to correspond to faulting associated with the plate bending at the subduction front nor with the re-activation of fracture zone that initiated about 7.5 Ma ago, and therefore, we suggest that these deep mantle faults were formed due to compressive stress at the beginning of the hard collision between India and Eurasia, soon after the cessation of seafloor spreading in the Wharton basin. We also find that the crust generated at the fast Wharton spreading centre 55-57 Ma ago is only 3.5-4.5 km thick, the thinnest crust ever observed in a fast spreading environment. We suggest that this extremely thin crust is due to 40-50°C lower than normal mantle temperature in this part of the Indian Ocean during its formation.
Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study
Soares, J.E.; Berrocal, J.; Fuck, R.A.; Mooney, W.D.; Ventura, D.B.R.
2006-01-01
A two-dimensional model of the Brazilian central crust and upper mantle was obtained from the traveltime interpretation of deep seismic refraction data from the Porangatu and Cavalcante lines, each approximately 300 km long. When the lines were deployed, they overlapped by 50 km, forming an E-W transect approximately 530 km long across the Tocantins Province and western Sa??o Francisco Craton. The Tocantins Province formed during the Neoproterozoic when the Sa??o Francisco, the Paranapanema, and the Amazon cratons collided, following the subduction of the former Goia??s ocean basin. Average crustal VP and VP/VS ratios, Moho topography, and lateral discontinuities within crustal layers suggest that the crust beneath central Brazil can be associated with major geological domains recognized at the surface. The Moho is an irregular interface, between 36 and 44 km deep, that shows evidences of first-order tectonic structures. The 8.05 and 8.23 km s-1 P wave velocities identify the upper mantle beneath the Porangatu and Cavalcante lines, respectively. The observed seismic features allow for the identification of (1) the crust has largely felsic composition in the studied region, (2) the absence of the mafic-ultramafic root beneath the Goia??s magmatic arc, and (3) block tectonics in the foreland fold-and-thrust belt of the northern Brasi??lia Belt during the Neoproterozoic. Seismic data also suggested that the Bouguer gravimetric discontinuities are mainly compensated by differences in mass distribution within the lithospheric mantle. Finally, the Goia??s-Tocantins seismic belt can be interpreted as a natural seismic alignment related to the Neoproterozoic mantle domain. Copyright 2006 by the American Geophysical Union.
Lattice thermal conductivity of silicate glasses at high pressures
NASA Astrophysics Data System (ADS)
Chang, Y. Y.; Hsieh, W. P.
2016-12-01
Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.
Sub-crustal seismic activity beneath Klyuchevskoy Volcano
NASA Astrophysics Data System (ADS)
Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.
2013-12-01
Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep events observed at a site closest to the epicenter to delay times of Ps phases in RFs that we associate with the crust-mantle transition. Both observations are essentially differences between travel times of S and P waves originating at the same place, and traversing the same velocity structure. Consequently, the uncertainty of the velocity structure beneath the KVG does not influence the comparison. For all events nominally located at 28-30 km beneath KVG the S-P time at the nearest site (CIR) significantly exceeds 4 seconds. Given that crust-mantle boundary Ps times at nearby sites are ~3 s, these earthquakes take place in the upper mantle. Both recent RFs and wide-angle reflection (Deep Seismic Sounding) studies in the late 1970s identified additional boundaries beneath KVG at depths in excess of 40 km. The nature of these boundaries is unclear, however their sharpness suggests chemical changes or the presence of fluids or melts. Chemistry of Klyuchevskoy lavas suggests sub-crustal origin with no clear magma chamber within the crust. Sub-crustal earthquakes we describe show that processes in the magma conduit at the base of the crust beneath KVG are vigorous enough to promote brittle failure in the surrounding mantle rock. The complex seismic structure of the uppermost mantle beneath KVG may reflect a history of magma injection that is accompanied by seismic energy release.
NASA Astrophysics Data System (ADS)
Sun, C.; Dasgupta, R.
2017-12-01
Kimberlite is a diamond-bearing CO2-rich ultramafic magma from the mantle at depths of >200 km, featured by enrichment of incompatible elements [1]. It has been considered significant for understanding mantle geochemistry and particularly for providing information of deep carbon cycle. Recent experimental studies suggested that partial melts of carbonated peridotites at high pressures and temperatures could resemble the MgO (>20 wt%) and enriched incompatible elements in kimberlites only when the source experienced refertilization with perhaps prior depletion (e.g., [2]). Although addition of CO2 and incompatible elements in the deep mantle is often linked to subducted components, partial melts directly from carbonated oceanic crusts do not have high enough MgO (e.g., ≤8.2 wt%; [3]). A crucial question is how slab-derived CO2-rich melt evolves in reaction with ambient mantle, which may provide a feasible mechanism for kimberlite generation. To investigate the fate of slab-derived carbonatitic melt in the deep ambient mantle, we have performed multi-anvil experiments at 7-10 GPa and 1400-1450 °C. The starting compositions were synthesized by mixing a fertile peridotite composition, KLB-1, with variable proportions (0-45 wt.%) of Ca-rich carbonatitic melt similar to those derived from a carbonated ocean crust at 13-21 GPa [3]. Experiments were performed in Pt, Pt/Gr, Au-Pd and Au-Pd/Gr capsules, and the experimental phases include olivine ± opx + cpx + majoritic garnet ± carbonated silicate melt. With the increase of melt-rock ratios, experimental melts become progressively enriched in CaO (13.0-23.1 wt%) and CO2 (14.2-38.7 wt%) but depleted in MgO (28.9-19.9 wt%), SiO2 (33.1-7.9 wt%), and Al2O3 (2.7-0.2 wt%). The net flux of melt increases with the increase of infiltrating carbonatitic melt proportion and with the decrease of pressure. Kimberlite melts were produced from experiments with 5-25 wt% infiltrating carbonatitic melts by dissolution of olivine and orthopyroxene and precipitation of clinopyroxene. Thus, a localized influx of slab-derived CO2-rich melts can enlarge the mantle porosity, enhance melt focusing, and initiate a channelized flow of kimberlite melts. [1] Becker & Le Roex (2006) J. Pet. 47: 673-703; [2] Brey et al. (2008) J. Pet. 49: 797-821; [3] Thomson et al. (2016) Nature 529: 76-79.
NASA Astrophysics Data System (ADS)
Dasgupta, R.; Hirschmann, M. M.; Withers, A. C.
2005-12-01
The mass of carbon stored in the mantle exceeds that in all other Earth's reservoirs combined1 and large fluxes of carbon are cycled into and out of the mantle via subduction and volcanic emission. Outgassing of CO2 from the mantle has a critical influence on Earth's climate for time scales of 108-109 yr1. The residence time for carbon in the mantle is thought to exceed the age of the Earth1,2, but it could be significantly less owing to pervasive deep melting beneath oceanic ridges. The chief flux of subducted carbon is via carbonate in altered ocean-floor basalts, which survives dehydration during subduction. Because solidi of carbonated eclogite remain hotter than average subduction geotherms at least up to transition zone3, significant subducted C is delivered to the deep Earth. In upwelling mantle, however, partial melting of carbonated eclogite releases calcio-dolomitic carbonatite melt at depths near ~400 km and metasomatically implants carbonate to surrounding peridotite. Thus, volcanic release of CO2 to basalt source regions is controlled by the solidus of carbonated peridotite. We conducted experiments with nominally anhydrous, carbonated garnet lherzolite (PERC: MixKLB-1+2.5 wt.% CO2) using Pt/C capsules in piston cylinder (3 GPa) and Walker-style multi-anvil presses (4 to 10 GPa) and between 1075-1500 °C. The stable near-solidus crystalline carbonate is dolomitess at 3 GPa and magnesitess from 4 to 10 GPa. Carbonate melt is stabilized at the solidus and crystalline carbonate disappears within 20-60°. The solidus increases from ≥1075 °C at 3 GPa to 1110-1140 °C at 4.1 GPa as the stable carbonate transforms from dolomitess to magnesitess. From 4.1 GPa, the solidus of PERC magnesite lherzolite increases to ~1500 °C at 10 GPa. In upwelling mantle the solidus of carbonated lherzolite is ~100-200 km shallower than that of eclogite+CO2, but beneath oceanic ridges, initial melting occurs as deep as 300-330 km. For peridotite with ~120-1200 ppm CO2, this initial melting yields 0.03-0.3% carbonatite melt. Extraction of such melts from the mantle above 300 km implies residence times of 1 to 4 Gyr for carbon and other highly incompatible elements in the convecting mantle. Such short residence times suggest that large fractions of mantle carbon must be recycled rather than primordial. Implied CO2 fluxes are 0.12-3.4 × 1015 g/yr, which matches or exceeds direct estimates for CO2 fluxes at ridges (0.04-0.66 × 1015 g/yr)1,4. However, not all of this deep extracted CO2 may reach ridges; some may instead be implanted into oceanic lithosphere, providing a widespread source for metasomatic fluids highly enriched in incompatible elements. 1Sleep, N. H. and Zahnle, K. 2001, JGR 106, 1373-1399. 2Zhang, Y. and Zindler, A. 1993, EPSL 117, 331-345. 3Dasgupta et al. 2004, EPSL 227, 73-85. 4Javoy, M. and Pineau, F. 1991, EPSL 107, 598-611.
NASA Astrophysics Data System (ADS)
Lassiter, J. C.
2007-12-01
The style of mantle convection (e.g., layered- vs. whole-mantle convection) is one of the most hotly contested questions in the Geological Sciences. Geochemical arguments for and against mantle layering have largely focused on mass-balance evidence for the existence of "hidden" geochemical reservoirs. However, the size and location of such reservoirs are largely unconstrained, and most geochemical arguments for mantle layering are consistent with a depleted mantle comprising most of the mantle mass and a comparatively small volume of enriched, hidden material either within D" or within seismically anomalous "piles" beneath southern Africa and the South Pacific. The mass flux associated with subduction of oceanic lithosphere is large and plate subduction is an efficient driver of convective mixing in the mantle. Therefore, the depth to which oceanic lithosphere descends into the mantle is effectively the depth of the upper mantle in any layered mantle model. Numerous geochemical studies provide convincing evidence that many mantle plumes contain material which at one point resided close to the Earth's surface (e.g., recycled oceanic crust ± sediments, possibly subduction-modified mantle wedge material). Fluid dynamic models further reveal that only the central cores of mantle plumes are involved in melt generation. The presence of recycled material in the sources of many ocean island basalts therefore cannot be explained by entrainment of this material during plume ascent, but requires that recycled material resides within or immediately above the thermo-chemical boundary layer(s) that generates mantle plumes. More recent Os- isotope studies of mantle xenoliths from OIB settings reveal the presence not only of recycled crust in mantle plumes, but also ancient melt-depleted harzburgite interpreted to represent ancient recycled oceanic lithosphere [1]. Thus, there is increasing evidence that subducted slabs accumulate in the boundary layer(s) that provide the source of mantle plumes, as suggested 25 years ago by Hofmann & White [2]. Determination of the depth of origin of mantle plumes would provide a 1st-order constraint on the depth of plate subduction and the volume of the "upper" mantle. Improved seismic techniques and deployment of OBS arrays may soon allow robust imaging of mantle plumes in the deep mantle, although preliminary results are controversial [3]. Detection of a conclusive geochemical signature of core/mantle interaction would also provide strong evidence for a deep origin of mantle plumes, although there is considerable debate as to what such a signature would entail. In summary, determination of the depth of origin of mantle plumes may provide the key to deciphering the fate of subducted slabs and the overall style of mantle convection. Although this problem remains unresolved after several decades of work, recent developments in both geophysics and geochemistry provide hope for a final resolution within the next 10 years. [1] M Bizimis, M Griselin, JC Lassiter, VJM Salters, G Sen, EPSL 257, 259-293, 2007. [2] AW Hofmann, WM White, EPSL 57, 421-436, 1982. [3] R Montelli, G Nolet, F Dahlens, G Masters, E Engdahl, S-H Hung, Science 303, 338-343, 2004.
NASA Astrophysics Data System (ADS)
Hu, Y.; Burgmann, R.; Shestakov, N.; Titkov, N. N.; Serovetnikov, S.; Prytkov, A.; Vasilenko, N. F.; Wang, K.
2016-12-01
The upper mantle rheology at depths within a few hundred kilometers has been well studied through shallow great megathrust earthquakes. However, understanding of the mantle rheology at greater depths, such as in the vicinity of the transition zone, has been limited by the lack of direct or indirect measurements. The largest well-recorded deep earthquake with magnitude Mw 8.3 occurred within the subducting Pacific plate at 600 km depth beneath the Okhotsk Sea on May 24, 2013. Twenty-seven continuous GPS stations in this region recorded coseismic displacements of up to 15 mm in the horizontal direction and up to 20 mm in the vertical direction. Within three years after the earthquake seventeen continuous GPS stations underwent transient westward motion of up to 8 mm/yr and vertical motion of up to 10 mm/yr. The geodetically delineated postseismic crustal deformation thus provides a unique opportunity to study the three dimensional heterogeneity of the mantle rheology and properties of the subducting slab at great depths. We have developed three-dimensional viscoelastic finite element models of the 2013 Okhotsk earthquake to explore these questions. Our initial model includes an elastic lithosphere including the subducting slab, a viscoelastic continental upper mantle and a viscoelastic oceanic upper mantle. We assume that the upper mantle is characterized by a bi-viscous Burgers rheology. For simplicity, we assume that the transient Kelvin viscosity is one order of magnitude lower than that of the steady-state Maxwell viscosity. Our preliminary models indicate that the viscosity of the upper mantle beneath the transition zone has to be at least one order of magnitude lower than that of the upper mantle at shallower depths. A viscoelastic subducting slab at depths >400 km with viscosities of 2-3 orders of magnitude higher than that of the mantle wedge provides a better fit to the observed surface velocities.
Upper mantle fluids evolution, diamond formation, and mantle metasomatism
NASA Astrophysics Data System (ADS)
Huang, F.; Sverjensky, D. A.
2017-12-01
During mantle metasomatism, fluid-rock interactions in the mantle modify wall-rock compositions. Previous studies usually either investigated mineral compositions in xenoliths and xenocrysts brought up by magmas, or examined fluid compositions preserved in fluid inclusions in diamonds. However, a key study of Panda diamonds analysed both mineral and fluid inclusions in the diamonds [1] which we used to develop a quantitative characterization of mantle metasomatic processes. In the present study, we used an extended Deep Earth Water model [2] to simulate fluid-rock interactions at upper mantle conditions, and examine the fluids and mineral assemblages together simultaneously. Three types of end-member fluids in the Panda diamond fluid inclusions include saline, rich in Na+K+Cl; silicic, rich in Si+Al; and carbonatitic, rich in Ca+Mg+Fe [1, 3]. We used the carbonatitic end-member to represent fluid from a subducting slab reacting with an excess of peridotite + some saline fluid in the host environment. During simultaneous fluid mixing and reaction with the host rock, the logfO2 increased by about 1.6 units, and the pH increased by 0.7 units. The final minerals were olivine, garnet and diamond. The Mg# of olivine decreased from 0.92 to 0.85. Garnet precipitated at an early stage, and its Mg# also decreased with reaction progress, in agreement with the solid inclusions in the Panda diamonds. Phlogopite precipitated as an intermediate mineral and then disappeared. The aqueous Ca, Mg, Fe, Si and Al concentrations all increased, while Na, K, and Cl concentrations decreased during the reaction, consistent with trends in the fluid inclusion compositions. Our study demonstrates that fluids coming from subducting slabs could trigger mantle metasomatism, influence the compositions of sub-lithospherc cratonic mantle, precipitate diamonds, and change the oxygen fugacity and pH of the upper mantle fluids. [1] Tomlinson et al. EPSL (2006); [2] Sverjensky, DA et al., GCA (2014), Huang, F, Ph. D. thesis, Johns Hopkins University, (2017); [3] Shirey et al., Rev. Mineral. Geochem. (2013)
Eutectic melting temperature of the lowermost Earth's mantle
NASA Astrophysics Data System (ADS)
Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.
2009-12-01
Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings, and changes in the relation between sample-temperature and laser-power. In this work, we show that temperatures higher than 4000 K are necessary for melting mean mantle at the 135 GPa pressure found at the core mantle boundary (CMB). Such temperature is much higher than that from estimated actual geotherms. Therefore, melting at the CMB can only occur if (i) pyrolitic mantle resides for a very long time in contact with the outer core, (ii) the mantle composition is severely affected by additional elements depressing the solidus such as water or (iii) the temperature gradient in the D" region is amazingly steep. Other implications for the temperature state and the lower mantle properties will be presented. References (1) Ito et al., Phys. Earth Planet. Int., 143-144, 397-406, 2004 (2) Ohtani et al., Phys. Earth Planet. Int., 100, 97-114, 1997 (3) Zerr et al., Science, 281, 243-246, 1998 (4) Holland and Ahrens, Science, 275, 1623-1625, 1997 (5) Schultz et al., High Press. Res., 25, 1, 71-83, 2005.
NASA Astrophysics Data System (ADS)
Stuart, Finlay; Rogers, Nick; Davies, Marc
2016-04-01
The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a common depletion history and that they do not mix with shallower mantle reservoirs to the same extent.
Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.
2016-12-01
IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Contamination tracer testing with seabed drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.
2017-11-01
IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Acquisition and Early Losses of Rare Gases from the Deep Earth
NASA Technical Reports Server (NTRS)
Porcelli, D.; Cassen, P.; Woolum, D.; Wasserburg, G. J.
1998-01-01
Direct observations show that the deep Earth contains rare gases of solar composition distinct from those in the atmosphere. We examine the implications of mantle rare gas characteristics on acquisition of rare gases from the solar nebula and subsequent losses due to a large impact. Deep mantle rare gas concentrations and isotopic compositions can be obtained from a model of transport and distribution of mantle rare gases. This model assumes the lower mantle closed early, while the upper mantle is open to subduction from the atmosphere and mass transfer from the lower mantle. Constraints are derived that can be incorporated into models for terrestrial volatile acquisition: (1) Calculated lower-mantle Xe-isotopic ratios indicate that the fraction of radiogenic Xe produced by I-129 and Pu-244 during the first about 10(exp 8) yr was lost, a conclusion also drawn for atmospheric Xe. Thus, either the Earth was made from materials that had lost >99% of rare gases about (0.7-2) x 10(exp 8) yr after the solar system formed, or gases were then lost from the fully formed Earth. (2) Concentrations of 3He and 20Ne in the lower mantle were established after these losses. (3) Neon-isotopic data indicates that mantle Ne has solar composition. The model allows for solar Ar/Ne and Xe/Ne in the lower mantle if a dominant fraction of upper mantle Ar and Xe are subduction-derived. If Earth formed in the presence of the solar nebula, it could have been melted by accretional energy and the blanketing effect of a massive, nebula-derived atmosphere. Gases from this atmosphere would have been sequestered within the molten Earth by dissolution at the surface and downward mixing. It was found that too much Ne would be dissolved in the Earth unless the atmosphere began to escape when the Earth was only partially assembled. Here we consider conditions required to initially dissolve sufficient rare gases to account for the present lower mantle concentrations after subsequent losses at 10(exp 8) yr. It is assumed that equilibration of the atmosphere with a thoroughly molten mantle was rapid, so that initial abundances of gases retained in any mantle layer reflected surface conditions when the layer solidified. For subsequent gas loss of 99.5% and typical solubility coefficients, a total pressure of 100 atm was required for an atmosphere of solar composition. Calculations of the pressure at the base of a primordial atmosphere indicate that this value might be exceeded by an order of magnitude or more for an atmosphere supported by accretional energy. Surface temperatures of about 4000 K would have been produced, probably high enough to melt the deep mantle. Initial distributions of retained rare gases would then be determined by the history of surface pressure and temperature during mantle cooling and solidification, i.e., the coupled cooling of Earth and atmosphere. The Earth's thermal state was determined by its surface temperature and the efficiency of convection in the molten mantle, estimated to be sufficient to maintain an adiabatic gradient. Because the melting curve is steeper than the adiabat, solidification of the mantle proceeded outward from the interior. Incorporation of atmospheric gases in the mantle therefore occurred over a range in surface temperature of a few thousand degrees Kelvin. The thermal state of the atmosphere was controlled by total luminosity of the Earth (energy) released by accreting planetesimals and the cooling Earth), nebular temperature and pressure, and atmospheric opacity. The energy released by accretion declined with time as did nebular pressure. Analytical solutions for an idealized (constant opacity radiative atmosphere show that declining energy sources under constant nebular conditions result in slowly diminishing surface temperature but dramatically increasing surface pressure. For such an atmosphere with declining nebular pressure but constant total luminosity, surface pressure decreases gradually with decreasing temperaure. A decline in accretion luminosity might be compensated by energy released as the mantle cools for about 10(exp 5) year, after which luminosity must decline. The total complement of dissolved rare gases will depend on the particular evolutionary path determined by the declining accretional luminosity, the Earth thermal history, removal of the nebula, and opacity variations of the atmosphere. Models for these coupled evolutionary histories for Earth's acquisition of nebular-derived noble gases are in progress. The later losses required at about 10(exp 8) yr (depleting the interior concentrations of the sequestered solar gases by a factor of > 100) were presumably related to the major impact in which the Moon formed.
Dehydration of δ-AlOOH in the lower mantle
NASA Astrophysics Data System (ADS)
Piet, H.; Shim, S. H.; Tappan, J.; Leinenweber, K. D.; Greenberg, E.; Prakapenka, V. B.
2017-12-01
Hydrous phase δ-AlOOH is an important candidate for water transport and storage in the Earth's deep mantle [1]. Knowing the conditions, under which it is stable and dehydrated, is therefore important for understanding the water transportation to the deep mantle or even to the core. A few experimental studies [1, 2] have shown that δ-AlOOH may be stable in cold descending slabs while it is dehydrated into a mixture of corundum and water under normal mantle conditions, up to 25 GPa. A subsequent study [3] reported the stability of δ-AlOOH in cold descending slabs to the core-mantle boundary conditions (2300 K at 135 GPa). However, the dehydration of δ-AlOOH has not bee directly observed in the experiments conducted at pressures above 25 GPa. We have synthesized δ-AlOOH from diaspore and Al(OH)3 in multi-anvil press at ASU. The sample was mixed with Au for coupling with near IR laser beams and loaded in diamond-anvil cells. We performed the laser-heated diamond anvil cell experiments at the 13IDD beamline of the Advanced Photon Source and ASU. At APS, we measured X-ray diffraction patterns at in situ high pressure and temperature. We observed the appearance of the corundum diffraction lines at 1700-2000 K and 55-90 GPa, indicating the dehydration of δ-AlOOH to Al2O3+ H2O. We found that the transition occurs over a broad range of temperature (500 K). We also observed that the dehydration of δ-AlOOH was accompanied by sudden change in laser coupling, most likely due to the release of fluids. The property change also helps us to determine the dehydration at ASU without in situ XRD. Our new experimental results indicate that δ-AlOOH would be stable in most subducting slabs in the deep mantle. However, because the dehydration occurs very close to the temperatures expected for the lower mantle, its stability is uncertain in the normal mantle. [1] Ohtani et al. 2001, Stability field of new hydrous phase, delta-AlOOH, Geophysical Research Letters 28, 3991-3993. [2] Sano et al. 2004, In situ XRD of dehydration of AlSiO3OH and d-AlOOH, JPCS 65, 1547-1554. [3] Sano et al. 2008, Aluminous hydrous mineral d-AlOOH as a carrier of hydrogen into the core-mantle boundary, Geophysical Research Letters 35, L03303.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Horn, Brian
2014-05-01
Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.
NASA Astrophysics Data System (ADS)
Valyaev, Boris; Dremin, Ivan
2016-04-01
More than half a century ago, Academician PN Kropotkin substantiated the relationship of the formation and distribution of oil and gas fields with the processes of emanation hydrocarbon degassing of the Earth. Over the years, the concept of PN Kropotkin received further development and recognition of studies based on new factual material. Of particular importance are the following factors: a) the results of studies on global and regional uneven processes of traditional oil and gas and the role of deep faults in controlling the spread of oil and gas fields; b) the results of the research on gigantic volumes and localization of the discharges of hydrocarbon fluids (mud volcanoes, seeps) on land and into the atmosphere and through the bottom of the World ocean; c) the results of the studies on grand volumes of the spread of unconventional hydrocarbon resources in their non-traditional fields, especially on near-surface interval of unconventional oil and gas accumulation with gas hydrates, heavy oil and bitumen, as well as extraordinary resources of oil and gas in the shale and tight rocks. Deep mantle-crust nature of oil and gas in traditional and nontraditional deposits thus received further substantiation of geological and geophysical data and research results. However, isotopic and geochemical data are still interpreted in favor of the concept of the genesis of oil and gas in the processes of thermal catalytic conversion of organic matter of sedimentary rocks, at temperatures up to 200°C. In this report an alternative interpretation of the isotope carbon-hydrogen system (δ13C-δD) for gas and of oil deposits, isotope carbon system for methane and carbon dioxide (δ13C1-δ13C0) will be presented. An alternative interpretation will also be presented for the data on carbon-helium isotope geochemical system for oil and gas fields, volcanoes and mud volcanoes. These constructions agree with the geological data on the nature of deep hydrocarbon fluids involved in the formation of traditional and nontraditional hydrocarbon accumulations. The genesis of hydrocarbon fluids turn up to be associated with a hydrocarbon branch of deep degassing and recycling of crustal materials and processes of crust-mantle interaction [1,2,3]. The study was supported by the Russian Foundation for Basic Research (RFBR), grant № 14-05-00869. 1. Valyaev B.M., Dremin I.S. Deep Roots of the Fluid Systems and Oil-Gas Fields (Isotope Geochemical and Geodynamic Aspects) // International Conference Goldschmidt2015, Prague, Czech Republic, August 16-21, 2015. Abstracts. P. 3221. 2. Valyaev B., Dremin I. Recycling of crustal matter and the processes of mantle-crust interaction in the genesis of hydrocarbon fluids // International Conference on Gas Geochemistry 2013, Patras, Greece, 1-7 September 2013, Book of abstracts. P. 32. 3. Degassing of the Earth: Geotectonics, Geodynamics, Geofluids; Oil and Gas; Hydrocarbon and Life. Proceedings of the all-Russian with International Participation Conference, devoted the centenary of Academician P.N. Kropotkin, October 18-22, 2010, Moscow. Responsible editors: Academician A.N. Dmitrievsky, senior doctorate B.M. Valyaev. -Moscow: GEOS, 2010. 712 p.
NASA Astrophysics Data System (ADS)
Faccenna, C.; Funiciello, F.
2012-04-01
EC-Marie Curie Initial Training Networks (ITN) projects aim to improve the career perspectives of young generations of researchers. Institutions from both academic and industry sectors form a collaborative network to recruit research fellows and provide them with opportunities to undertake research in the context of a joint research training program. In this frame, TOPOMOD - one of the training activities of EPOS, the new-born European Research Infrastructure for Geosciences - is a funded ITN project designed to investigate and model how surface processes interact with crustal tectonics and mantle convection to originate and develop topography of the continents over a wide range of spatial and temporal scales. The multi-disciplinary approach combines geophysics, geochemistry, tectonics and structural geology with advanced geodynamic numerical/analog modelling. TOPOMOD involves 8 European research teams internationally recognized for their excellence in complementary fields of Earth Sciences (Roma TRE, Utrecht, GFZ, ETH, Cambridge, Durham, Rennes, Barcelona), to which are associated 5 research institutions (CNR-Italy, Univ. Parma, Univ. Lausanne, Univ. Montpellier, Univ. Mainz) , 3 high-technology enterprises (Malvern Instruments, TNO, G.O. Logical Consulting) and 1 large multinational oil and gas company (ENI). This unique network places emphasis in experience-based training increasing the impact and international visibility of European research in modeling. Long-term collaboration and synergy are established among the overmentioned research teams through 15 cross-disciplinary research projects that combine case studies in well-chosen target areas from the Mediterranean, the Middle and Far East, west Africa, and South America, with new developments in structural geology, geomorphology, seismology, geochemistry, InSAR, laboratory and numerical modelling of geological processes from the deep mantle to the surface. These multidisciplinary projects altogether aim to answer a key question in earth Sciences: how do deep and surface processes interact to shape and control the topographic evolution of our planet.
High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt.
Eilon, Zachary C; Abers, Geoffrey A
2017-05-01
At most mid-ocean ridges, a wide region of decompression melting must be reconciled with a narrow neovolcanic zone and the establishment of full oceanic crustal thickness close to the rift axis. Two competing paradigms have been proposed to explain melt focusing: narrow mantle upwelling due to dynamic effects related to in situ melt or wide mantle upwelling with lateral melt transport in inclined channels. Measurements of seismic attenuation provide a tool for identifying and characterizing the presence of melt and thermal heterogeneity in the upper mantle. We use a unique data set of teleseismic body waves recorded on the Cascadia Initiative's Amphibious Array to simultaneously measure seismic attenuation and velocity across an entire oceanic microplate. We observe maximal differential attenuation and the largest delays ([Formula: see text] s and δ T S ~ 2 s) in a narrow zone <50 km from the Juan de Fuca and Gorda ridge axes, with values that are not consistent with laboratory estimates of temperature or water effects. The implied seismic quality factor ( Q s ≤ 25) is among the lowest observed worldwide. Models harnessing experimentally derived anelastic scaling relationships require a 150-km-deep subridge region containing up to 2% in situ melt. The low viscosity and low density associated with this deep, narrow melt column provide the conditions for dynamic mantle upwelling, explaining a suite of geophysical observations at ridges, including electrical conductivity and shear velocity anomalies.
NASA Astrophysics Data System (ADS)
He, Xiaobo; Zheng, Yixian
2018-02-01
The fate of a subducted slab is a key ingredient in the context of plate tectonics, yet it remains enigmatic especially in terms of its crustal component. In this study, our efforts are devoted to resolve slab-related structures in the mid-mantle below eastern Indonesia, the Izu-Bonin region, and the Peru area by employing seismic array analysing techniques on high-frequency waveform data from F-net in Japan and the Alaska regional network and the USArray in North America. A pronounced arrival after the direct P wave is observed in the recordings of four deep earthquakes (depths greater than 400 km) from three subduction systems including the Philippines, the Izu-Bonin, and the Peru. This later arrival displays a slightly lower slowness compared to the direct P wave and its back-azimuth deviates somewhat from the great-circle direction. We explain it as an S-to-P conversion at a deep scatterer below the sources in the source region. In total, five scatterers are seen at depths ranging from 930 to 1500 km. Those scatterers appear to be characterised by an 7 km-thick low-velocity layer compared to the ambient mantle. Combined evidence from published mineral physical analysis suggests that past subducted oceanic crust, possibly fragmented, is most likely responsible for these thin-layer compositional heterogeneities trapped in the mid-mantle beneath the study regions. Our observations give a clue to the potential fate of subducted oceanic crust.
Considering bioactivity in modelling continental growth and the Earth's evolution
NASA Astrophysics Data System (ADS)
Höning, D.; Spohn, T.
2013-09-01
The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater vailability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller continental surface area and dryer mantle. The origin and evolution of life on Earth might be responsible for the rise of continents 3.5 billion years ago.
Volcanoes of the passive margin: The youngest magmatic event in eastern North America
Mazza, Sarah E; Gazel, Esteban; Johnson, Elizabeth A; Kunk, Michael J.; McAleer, Ryan J.; Spotila, James A; Bizimis, Michael; Coleman, Drew S
2014-01-01
The rifted eastern North American margin (ENAM) provides important clues to the long-term evolution of continental margins. An Eocene volcanic swarm exposed in the Appalachian Valley and Ridge Province of Virginia and West Virginia (USA) contains the youngest known igneous rocks in the ENAM. These magmas provide the only window into the most recent deep processes contributing to the postrift evolution of this margin. Here we present new 40Ar/39Ar ages, geochemical data, and radiogenic isotopes that constrain the melting conditions and the timing of emplacement. Modeling of the melting conditions on primitive basalts yielded an average temperature and pressure of 1412 ± 25 °C and 2.32 ± 0.31 GPa, corresponding to a mantle potential temperature of ∼1410 °C, suggesting melting conditions slightly higher than average mantle temperatures beneath mid-ocean ridges. When compared with magmas from Atlantic hotspots, the Eocene ENAM samples share isotopic signatures with the Azores and Cape Verde. This similarity suggests the possibility of a large-scale dissemination of similar sources in the upper mantle left over from the opening of the Atlantic Ocean. Asthenosphere upwelling related to localized lithospheric delamination is a possible process that can explain the intraplate signature of these magmas that lack evidence of a thermal anomaly. This process can also explain the Cenozoic dynamic topography and evidence of rejuvenation of the central Appalachians.
Crustal structure of Central Sicily
NASA Astrophysics Data System (ADS)
Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo
2018-01-01
We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.
A large mantle water source for the northern San Andreas Fault System: A ghost of subduction past
Kirby, Stephen H.; Wang, Kelin; Brocher, Thomas M.
2014-01-01
Recent research indicates that the shallow mantle of the Cascadia subduction margin under near-coastal Pacific Northwest U.S. is cold and partially serpentinized, storing large quantities of water in this wedge-shaped region. Such a wedge probably formed to the south in California during an earlier period of subduction. We show by numerical modeling that after subduction ceased with the creation of the San Andreas Fault System (SAFS), the mantle wedge warmed, slowly releasing its water over a period of more than 25 Ma by serpentine dehydration into the crust above. This deep, long-term water source could facilitate fault slip in San Andreas System at low shear stresses by raising pore pressures in a broad region above the wedge. Moreover, the location and breadth of the water release from this model gives insights into the position and breadth of the SAFS. Such a mantle source of water also likely plays a role in the occurrence of Non-Volcanic Tremor (NVT) that has been reported along the SAFS in central California. This process of water release from mantle depths could also mobilize mantle serpentinite from the wedge above the dehydration front, permitting upward emplacement of serpentinite bodies by faulting or by diapiric ascent. Specimens of serpentinite collected from tectonically emplaced serpentinite blocks along the SAFS show mineralogical and structural evidence of high fluid pressures during ascent from depth. Serpentinite dehydration may also lead to tectonic mobility along other plate boundaries that succeed subduction, such as other continental transforms, collision zones, or along present-day subduction zones where spreading centers are subducting.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.; Horn, B.
2013-12-01
Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Faccenna, Claudio
2018-05-01
The Apennines is a well-studied orogeny formed by the accretion of continental slivers during the subduction of the Adriatic plate, but its deep structure is still a topic of controversy. Here we illuminated the deep structure of the Northern Apennines belt by combining results from the analysis of active seismic (CROP03) and receiver function data. The result from combining these two approaches provides a new robust view of the structure of the deep crust/upper mantle, from the back-arc region to the Adriatic subduction zone. Our analysis confirms the shallow Moho depth beneath the back-arc region and defines the top of the downgoing plate, showing that the two plates separate at depth about 40 km closer to the trench than reported in previous reconstructions. This spatial relationship has profound implications for the geometry of the shallow subduction zone and of the mantle wedge, by the amount of crustal material consumed at trench.
The Upper Mantle Flow Field around South-Africa as Reflected by Isotopic Provinciality
NASA Astrophysics Data System (ADS)
Meyzen, C.; Blichert-Toft, J.; Ludden, J.; Humler, E.; Mevel, C.; Albarede, F.
2006-12-01
Isotopic studies of MORB have established the existence of broad isotopic provinces within the underlying asthenosphere, such as in the Indian Ocean (DUPAL). How these features relate to mantle circulation is, however, still unknown. The steepness of the transition between such isotopic provinces will define the geometry of the velocity field in the upper mantle. In this respect, the transition between the Indian and South Atlantic provinces, two domains that are isotopically contrasted, should be readily identifiable over this long ridge segment. Here, we present Hf isotope data for 60 samples dredged along the SWIR between 35° and 69°E. The new Hf isotope data show that the Indian asthenosphere does not spill directly into the South Atlantic upper mantle: the general decreasing southward gradient observed for ^{176}Hf/^{177}Hf down the mid- Atlantic Ridge, and also for Sr isotopes and model Th/U ratios (derived from Pb isotopes), is overprinted by material with radiogenic Sr, unradiogenic Hf and high Th/U. The Indian domain grades into the South Atlantic around Bouvet, while the South Atlantic collides with the Atlantic province around Tristan. We interpret these features to represent fronts between three adjacent isotopic provinces similar to what has been suggested for the Australian-Antarctic Discordance. The common DUPAL signature of MORB and OIB from the Indian province and the geochemistry of Gulf of Aden MORB and the Afar plume suggest that the source of this distinctive mantle component is deep and lies to the north of the province. This is also what the three-dimensional flow field computed by Behn et al. (2004) from shear-wave splitting shows with a major lower mantle upwelling radiating at the base of the asthenosphere under the Afar plume. Lower mantle gushing out from this source flows southward unimpeded along the Indian ridges, whereas it only reaches the South Atlantic ridge after first having been deflected under the deep roots of the South African Archean cratons. Erosion of these roots by the asthenospheric drift confers a distinct continental signature on the source of South Atlantic MORB. This pattern is also consistent with the observation that the lowest He isotope values occur, on average, along the South Atlantic ridge. To some extent, the dynamics of the North Atlantic upper mantle mirrors the Indian situation: the flow field of Behn et al. (2004) shows that the North Atlantic asthenosphere also fills up through deep mantle upwellings, which is consistent with the Dupal-like isotopic signature of the Arctic ridges. M.D. Behn, C.P. Conrad and P.G. Silver (2004), Detection of upper mantle flow associated with the African Superplume, Earth. Planet. Sci. Lett., 224, 259-274.
Dynamics of metasomatic transformation of lithospheric mantle rocks under Siberian Craton
NASA Astrophysics Data System (ADS)
Sharapov, Victor; Perepechko, Yury; Tomilenko, Anatoly; Chudnenko, Konstantin; Sorokin, Konstantin
2014-05-01
Numerical problem for one- and two-velocity hydrodynamics of heat and mass transfer in permeable zones over 'asthenospheric lenses' (with estimates for dynamics of non-isothermal metasomatosis of mantle rocks, using the approximation of flow reactor scheme) was formulated and solved based on the study of inclusion contents in minerals of metamorphic rocks of the lithosphere mantle and earth crust, estimates of thermodynamic conditions of inclusions appearance, and the results of experimental modeling of influence of hot reduced gases on rocks and minerals of xenoliths in mantle rocks under the cratons of Siberian Platform (SP): 1) the supply of fluid flows of any composition from upper mantle magma sources results in formation of zonal metasomatic columns in ultrabasic lithosphere mantle in permeable zones of deep faults; 2) when major element or petrogenetic components are supplied from magma source, depleted ultrabasic rocks of the lithosphere mantle are transformed into substrates which can be regarded as deep analogs of crust rodingites; 3) other fluid compositions cause deep calcinations and noticeable salination of metasomated substrate, or garnetization (eclogitization) of primary ultrabasic matrix develops; 4) above these zones the zone of basification appears; it is changed by the area of pyroxenitization, amphibolization, and biotitization; 5) modeling of thermo and mass exchange for two-velocity hydrodynamic problem showed that hydraulic approximation increases velocities of heat front during convective heating and decreases pressure in fluid along the flow. It was shown that grospydites, regarded earlier as eclogites, in permeable areas of lithosphere mantle, are typical zones draining upper mantle magma sources of metasomatic columns. As a result of the convective melting the polybaric magmatic sources may appear. Thus the formation of the (kimberlites?) melilitites or carbonatites is possible at the base of the lithospheric plates. It is shown that the physico - chemical conditions of the carbonation of the depleted mantle peridotites refer to the narrow interval of the possible fluid compositions. The bulk fluid content near 4 weight % with the SiO2 CaO 0.5 - 0.1 molar volumes the 1) the Si/Ca molar ratio is < 1; 2) in the C-H-O system the molar ration should be 1/2/3 - 2/1/2; 3) the pO2 variations should be -8 < lg pO2 < -11; 4) in the fluid the CO2 content is twice higher than H2O and Cl essentially prevail under F. In the system with smaller fraction of the fluid phase less increased by the major element rock components the carbonation is more intensive when the Ca content decrease. The fusions of the basic magmas are possible within the wehrlitization zones. The work is supported by RFBR grant 12-05-00625.
NASA Astrophysics Data System (ADS)
Lei, J., Sr.; Zhao, D.
2016-12-01
We determined a new 3-D P-wave velocity model of the upper mantle beneath eastern Tibet using 112,613 high-quality arrival-time data collected from teleseismic seismograms recorded by a new portable seismic array in Yunnan and permanent networks in southwestern China. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under the Sichuan basin and the Ordos and Alashan blocks. Low-velocity (low-V) anomalies are imaged in the upper mantle under the Kunlun-Qilian and Qinling fold zones, and the Songpan-Ganzi, Qiangtang, Lhasa and Chuan-Dian diamond blocks, suggesting that eastward moving low-V materials are extruded to eastern China after the obstruction by the Sichuan basin, and the Ordos and Alashan blocks. Furthermore, the extent and thickness of these low-V anomalies are correlated with the surface topography, suggesting that the uplift of eastern Tibet could be partially related to these low-V materials having a higher temperature and strong positive buoyancy. In the mantle transition zone (MTZ), broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, and they are connected upward with the Wadati-Benioff seismic zone. These results suggest that the subducted Indian slab has traveled horizontally for a long distance after it descended into the MTZ, and return corner flow and deep slab dehydration have contributed to forming the low-V anomalies in the big mantle wedge. Our results shed new light on the deep origin of Tengchong volcano and large crustal earthquakes as well as the mantle dynamics of the eastern Tibetan plateau.
NASA Astrophysics Data System (ADS)
Fu, S.; Yang, J.; Lin, J. F.
2016-12-01
Carbon can be transported into deep Earth's interior via subduction of carbonated oceanic crust, hosted as Mg-Fe bearing carbonates. The existence of stable carbonate can significantly affect our understanding on geochemical and geophysical properties of the planet. Early studies have shown that iron spin-pairing transition could occur in the iron-enriched carbonates, generally called magnesiosiderite, under lower mantle conditions. The pressure-induced spin state change is accompanied by a sudden volume collaps. However, the effects of the spin-pairing transition on single-crystal elasticity of magnesiosiderite under high pressure conditions are still unclear. Understanding the elasticity of single-crystal magnesiosiderite at relevant lower mantle conditions plays an important role in better understanding the seismic signatures in the carbon-enriched region, and to constrain carbon storage and recycling in the mantle. In order to solve all individual elastic constants (C11, C22, C33, C44, C55, C66, C12, C23, and C13) of magnesiosiderite at high pressures via Christoffel's equations, we employed Brillouin Light Scattering (BLS) to measure shear wave (Vs) and compressional wave velocities (Vp) as a function of the azimuthal angle under lower mantle pressures, accompanied by Impulsive Stimulate Light Scattering (ISS) to measure the Vp when pressures are too high to measure it by BLS. A general thermoelastic modelling was developed to fit the elastic softening within the spin transition. We will further discuss the effects of pressures, as well as iron spin states, on the single-crystal elasticity and seismic parameters (Vp and Vs anisotropy AVp, AVs, etc) at lower mantle conditions. These results could provide clues in explaining regional seismic heterogeneities in deep mantle.
The fate of carbon dioxide in water-rich fluids under extreme conditions
Pan, Ding; Galli, Giulia
2016-01-01
Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures (P) and temperatures (T) approximating the conditions of Earth’s upper mantle. Contrary to popular geochemical models assuming that molecular CO2(aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate (CO32−) and bicarbonate (HCO3−) ions and that even carbonic acid [H2CO3(aq)] is more abundant than CO2(aq). Furthermore, our simulations revealed that ion pairing between Na+ and CO32−/HCO3− is greatly affected by P-T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth’s upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting CO32− and HCO3− ions, not solvated CO2(aq) molecules. PMID:27757424
The fate of carbon dioxide in water-rich fluids under extreme conditions.
Pan, Ding; Galli, Giulia
2016-10-01
Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures ( P ) and temperatures ( T ) approximating the conditions of Earth's upper mantle. Contrary to popular geochemical models assuming that molecular CO 2 (aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate ([Formula: see text]) and bicarbonate ([Formula: see text]) ions and that even carbonic acid [H 2 CO 3 (aq)] is more abundant than CO 2 (aq). Furthermore, our simulations revealed that ion pairing between Na + and [Formula: see text]/[Formula: see text] is greatly affected by P - T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth's upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting [Formula: see text] and [Formula: see text] ions, not solvated CO 2 (aq) molecules.
Rost, S.; Earle, P.S.
2010-01-01
We detect seismic scattering from the core-mantle boundary related to the phase PKKP (PK. KP) in data from small aperture seismic arrays in India and Canada. The detection of these scattered waves in data from small aperture arrays is new and allows a better characterization of the fine-scale structure of the deep Earth especially in the southern hemisphere. Their slowness vector is determined from array processing allowing location of the heterogeneities at the core-mantle boundary using back-projection techniques through 1D Earth models. We identify strong scattering at the core-mantle boundary (CMB) beneath the Caribbean, Patagonia and the Antarctic Peninsula as well as beneath southern Africa. An analysis of the scattering regions relative to sources and receivers indicates that these regions represent areas of increased scattering likely due to increased heterogeneities close to the CMB. The 1. Hz array data used in this study is most sensitive to heterogeneity with scale lengths of about 10. km. Given the small size of the scatterers, a chemical origin of the heterogeneities is likely. By comparing the location of the fine-scale heterogeneity to geodynamical models and tomographic images, we identify different scattering mechanisms in regions related to subduction (Caribbean and Patagonia) and dense thermo chemical piles (Southern Africa). ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lu, Kunquan; Hou, Meiying; Jiang, Zehui; Wang, Qiang; Sun, Gang; Liu, Jixing
2018-03-01
We treat the earth crust and mantle as large scale discrete matters based on the principles of granular physics and existing experimental observations. Main outcomes are: A granular model of the structure and movement of the earth crust and mantle is established. The formation mechanism of the tectonic forces, which causes the earthquake, and a model of propagation for precursory information are proposed. Properties of the seismic precursory information and its relevance with the earthquake occurrence are illustrated, and principle of ways to detect the effective seismic precursor is elaborated. The mechanism of deep-focus earthquake is also explained by the jamming-unjamming transition of the granular flow. Some earthquake phenomena which were previously difficult to understand are explained, and the predictability of the earthquake is discussed. Due to the discrete nature of the earth crust and mantle, the continuum theory no longer applies during the quasi-static seismological process. In this paper, based on the principles of granular physics, we study the causes of earthquakes, earthquake precursors and predictions, and a new understanding, different from the traditional seismological viewpoint, is obtained.
Pierce, Kenneth L.; Morgan, Lisa A.
2009-01-01
Both the belts of faulting and the YCHT are asymmetrical across the volcanic hotspot track, flaring out 1.6 times more on the south than the north side. This and the southeast tilt of the Yellowstone plume may reflect southeast flow of the upper mantle.
Volatiles in the deep Earth: An experimental study using the laser-heated diamond cell
NASA Technical Reports Server (NTRS)
Li, Xiaoyuan; Jeanloz, Raymond; Nguyen, Jeffrey H.
1994-01-01
Experiments with the laser-heated diamond cell show that H2O and CO2 can be stabilized within crystalline mineral structures of the lower-mantle, and hence can be present at relatively non-volatile components of the Earth's deep interior. Samples quenched from high pressures and temperatures document that the MgCO3-FeCO3 magnesite-siderite solid-solution is stable and coexists with (Mg,Fe)SiO3 perovskite at 30-40 GPa and approximately 1500-2000 K. In contrast, H2O combines with the silicate to form (Mg,Fe)SiH2O4 phase D, coexisting with (Mg,Fe)SiO3 perovskite at these conditions. If enough water is present, phase D can become the predominant phase in the MgSiO3-H2O system at lower-mantle conditions. Our work extends previous studies to Fe-bearing compositions and to the pressures of the mid-lower mantle. Thus, the results of high-pressure experiments suggest that both H2O and CO2 can be abundant in the Earth's lower mantle, being present in stable hydroxisilicate and carbonate phases.
NASA Astrophysics Data System (ADS)
Saiga, Atsushi; Kato, Aitaro; Kurashimo, Eiji; Iidaka, Takashi; Okubo, Makoto; Tsumura, Noriko; Iwasaki, Takaya; Sakai, Shin'ichi; Hirata, Naoshi
2013-03-01
is an important feature of elastic wave propagation in the Earth and can arise from a variety of ordered architectures such as fractures with preferential alignments or preferred crystal orientations. We studied the regional variations in shear wave anisotropy around a deep Low-Frequency Earthquake (LFE) zone beneath the Kii Peninsula, SW Japan, using waveforms of local earthquakes observed by a dense linear array along the LFE zone. The fast directions of polarization are subparallel to the strike of the margin for both crustal and intraslab earthquakes. The delay time of the split shear waves in intraslab earthquakes is larger than that in crustal earthquakes and shows a down-dip variation across the LFE zone. This indicates that anisotropy exists in the mantle wedge and in the lower crust and/or oceanic slab. We explain the observed delay time of 0.015-0.045 s by suggesting that the mantle wedge consists of a deformed, 1-15 km thick serpentine layer if the mantle wedge is completely serpentinized. In addition to high-fluid pressures within the oceanic crust, the sheared serpentine layer may be a key factor driving LFEs in subduction zones.
Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri A; Galli, Giulia
2013-04-23
Water is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties greatly limits our ability to model water-rock interactions and, in general, our understanding of aqueous fluids below the Earth's crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth's upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)--insoluble in water under ambient conditions--becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. Our results suggest that aqueous carbonates could leave the subducting lithosphere during dehydration reactions and could be injected into the overlying lithosphere. The Earth's deep carbon could possibly be recycled through aqueous transport on a large scale through subduction zones.
NASA Technical Reports Server (NTRS)
Glikson, A. Y.
1992-01-01
Since the oldest intact terrestrial rocks of ca. 4.0 Ga and oldest zircon xenocrysts of ca. 4.3 Ga measured to date overlap with the lunar late heavy bombardment, the early Precambrian record requires close reexamination vis a vis the effects of megaimpacts. The identification of microtektite-bearing horizons containing spinals of chondritic chemistry and Ir anomalies in 3.5-3.4-Ga greenstone belts provides the first direct evidence for large-scale Archaean impacts. The Archaean crustal record contains evidence for several major greenstone-granite-forming episodes where deep upwelling and adiabatic fusion of the mantle was accompanied by contemporaneous crustal anatexis. Isotopic age studies suggest evidence for principal age clusters about 3.5, 3.0, and 2.7 (+/- 0.8) Ga, relics of a ca. 3.8-Ga event, and several less well defined episodes. These peak events were accompanied and followed by protracted thermal fluctuations in intracrustal high-grade metamorphic zones. Interpretations of these events in terms of internal dynamics of the Earth are difficult to reconcile with the thermal behavior of silicate rheologies in a continuously convecting mantle regime. A triggering of these episodes by mantle rebound response to intermittent extraterrestrial asteroid impacts is supported by (1) identification of major Archaean impacts from microtektite and distal ejecta horizons marked by Ir anomalies; (2) geochemical and experimental evidence for mantle upwelling, possibly from levels as deep as the transition zone; and (3) catastrophic adiabatic melting required to generate peridotitic komatites. Episodic differentiation/accretion growth of sial consequent on these events is capable of resolving the volume problem that arises from comparisons between modern continental crust and the estimated sial produced by continuous two-stage mantle melting processes. The volume problem is exacerbated by projected high accretion rates under Archaean geotherms. It is suggested that impact shock effects have been largely obscured by (1) outpouring of voluminous basic/ultrabasic lavas, inundating shock-deformed crust and extending beyond the perimeters of impact excavated basins; (2) gravity subsidence and downfaulting of terrestrial maria, accounting for the burial and anatexis of subgreenstone basement; and (3) extensive shearing and recrystallization at elevated temperatures of impact structure, breccias, and mineral deformation features beneath impact-excavated basins, relics of which may be retained in structural windows in high-grade metamorphic terranes.
Melt focusing and CO2 extraction at mid-ocean ridges: simulations of reactive two-phase flow
NASA Astrophysics Data System (ADS)
Keller, T.; Katz, R. F.; Hirschmann, M. M.
2016-12-01
The deep CO2 cycle is the result of fluxes between near-surface and mantle reservoirs. Outgassing from mid-ocean ridges is one of the primary fluxes of CO2 from the asthenosphere into the ocean-atmosphere reservoir. Focusing of partial melt to the ridge axis crucially controls this flux. However, the role of volatiles, in particular CO2 and H2O, on melt transport processes beneath ridges remains poorly understood. We investigate this transport using numerical simulations of two-phase, multi-component magma/mantle dynamics. The phases are solid mantle and liquid magma; the components are dunite, MORB, hydrated basalt, and carbonated basalt. These effective components capture accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Our results indicate that volatiles cause channelized melt transport, which leads to significant variability in volume and composition of focused melt. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing; distal volatile-rich melts are not focused to the axis. Up to 50% of these melts are instead emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of CO2 and H2O in the deep lithosphere, which has implications for LAB rheology and volatile recycling by subduction. Results from a suite of simulations, constrained by catalogued observational data [4,5,6] enable predictions of global MOR CO2 output. By combining observational constraints with self-consistent numerical simulations we obtain a range of CO2 output from the global ridge system of 28-110 Mt CO2/yr, corresponding to mean CO2 contents of 50-200 ppm in the mantle. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171. Fig: Simulation results of MOR magma/mantle dynamics with H2O and CO2, showing Darcy flux magnitude for half-spreading rates of 1 and 5 cm/yr.
NASA Astrophysics Data System (ADS)
King, S. D.
2017-12-01
In high-Rayleigh-number, spherical-shell convection, such as one expects to find in the interiors of large silicate planetary bodies, plumes will migrate unless they are anchored to fixed structures. Within the Earth LLSVPs or core-mantle boundary topography have been proposed to anchor deep mantle plumes, fixing the location of hotspots. The relative stability of volcanic features on Mars and Venus, which are thought to be related to mantle plumes, have not be satisfactorily explained. Thus, it is surprising to see high-Rayleigh-number, stagnant-lid, spherical-shell convection calculations where plumes seeded by the structure of the initial condition persist in a stable configuration for more than 1 Gyr. By comparing calculations with a fixed lithospheric rheology structure with a lithosphere rheology determined by temperature and pressure, I show that in these calculations, topography on the base of the stagnant lid (i.e., the lithosphere-asthenosphere boundary) is responsible for the spatial stability of the plumes. If there is symmetry in the plume distribution, this symmetry can prevent the lithosphere becoming unstable and overturning, leading to a significantly over-thickened lithosphere relative to predictions based on scaling laws. This is confirmed by considering an identical calculation where the symmetry in the plume distribution is broken. I discuss geological and geophysical implications for planetary bodies resulting of long-lived, stable, mantle structures.
Deep mantle structure as a reference frame for movements in and on the Earth
Torsvik, Trond H.; van der Voo, Rob; Doubrovine, Pavel V.; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D.; Trønnes, Reidar G.; Webb, Susan J.; Bull, Abigail L.
2014-01-01
Earth’s residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core–mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth’s surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core–mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth’s axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth’s mantle may have operated throughout the entire Phanerozoic. PMID:24889632
Deep mantle structure as a reference frame for movements in and on the Earth.
Torsvik, Trond H; van der Voo, Rob; Doubrovine, Pavel V; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D; Trønnes, Reidar G; Webb, Susan J; Bull, Abigail L
2014-06-17
Earth's residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core-mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth's surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core-mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth's axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth's mantle may have operated throughout the entire Phanerozoic.
New Insights into Passive Margin Development from a Global Deep Seismic Reflection Dataset
NASA Astrophysics Data System (ADS)
Bellingham, Paul; Pindell, James; Graham, Rod; Horn, Brian
2014-05-01
The kinematic and dynamic evolution of the world's passive margins is still poorly understood. Yet the need to replace reserves, a high oil price and advances in drilling technology have pushed the international oil and gas industry to explore in the deep and ultra-deep waters of the continental margins. To support this exploration and help understand these margins, ION-GXT has acquired, processed and interpreted BasinSPAN surveys across many of the world's passive margins. Observations from these data lead us to consider the modes of subsidence and uplift at both volcanic and non-volcanic margins. At non-volcanic margins, it appears that frequently much of the subsidence post-dates major rifting and is not thermal in origin. Rather the subsidence is associated with extensional displacement on a major fault or shear zone running at least as deep as the continental Moho. We believe that the subsidence is structural and is probably associated with the pinching out (boudinage) of the Lower Crust so that the Upper crust effectively collapses onto the mantle. Eventually this will lead to the exhumation of the sub-continental mantle at the sea bed. Volcanic margins present more complex challenges both in terms of imaging and interpretation. The addition of volcanic and plutonic material into the system and dynamic effects all impact subsidence and uplift. However, we will show some fundamental observations regarding the kinematic development of volcanic margins and especially SDRs which demonstate that the process of collapse and the development of shear zones within and below the crust are also in existence at this type of margin. A model is presented of 'magma welds' whereby packages of SDRs collapse onto an emerging sub-crustal shear zone and it is this collapse which creates the commonly observed SDR geometry. Examples will be shown from East India, Newfoundland, Brazil, Argentina and the Gulf of Mexico.
A massively parallel adaptive scheme for melt migration in geodynamics computations
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Heister, Timo; Grove, Ryan
2016-04-01
Melt generation and migration are important processes for the evolution of the Earth's interior and impact the global convection of the mantle. While they have been the subject of numerous investigations, the typical time and length-scales of melt transport are vastly different from global mantle convection, which determines where melt is generated. This makes it difficult to study mantle convection and melt migration in a unified framework. In addition, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. We describe our extension of the community mantle convection code ASPECT that adds equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects, and it incorporates the individual compressibilities of the solid and the fluid phase. For this, we derive an accurate and stable Finite Element scheme that can be combined with adaptive mesh refinement. This is particularly advantageous for this type of problem, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high resolution, 3d, compressible, global mantle convection simulations coupled with melt migration. Furthermore, scalable iterative linear solvers are required to solve the large linear systems arising from the discretized system. Finally, we present benchmarks and scaling tests of our solver up to tens of thousands of cores, show the effectiveness of adaptive mesh refinement when applied to melt migration and compare the compressible and incompressible formulation. We then apply our software to large-scale 3d simulations of melting and melt transport in mantle plumes interacting with the lithosphere. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. The presented implementation is available online under an Open Source license together with an extensive documentation.
Inference of mantle viscosity for depth resolutions of GIA observations
NASA Astrophysics Data System (ADS)
Nakada, Masao; Okuno, Jun'ichi
2016-11-01
Inference of the mantle viscosity from observations for glacial isostatic adjustment (GIA) process has usually been conducted through the analyses based on the simple three-layer viscosity model characterized by lithospheric thickness, upper- and lower-mantle viscosities. Here, we examine the viscosity structures for the simple three-layer viscosity model and also for the two-layer lower-mantle viscosity model defined by viscosities of η670,D (670-D km depth) and ηD,2891 (D-2891 km depth) with D-values of 1191, 1691 and 2191 km. The upper-mantle rheological parameters for the two-layer lower-mantle viscosity model are the same as those for the simple three-layer one. For the simple three-layer viscosity model, rate of change of degree-two zonal harmonics of geopotential due to GIA process (GIA-induced J˙2) of -(6.0-6.5) × 10-11 yr-1 provides two permissible viscosity solutions for the lower mantle, (7-20) × 1021 and (5-9) × 1022 Pa s, and the analyses with observational constraints of the J˙2 and Last Glacial Maximum (LGM) sea levels at Barbados and Bonaparte Gulf indicate (5-9) × 1022 Pa s for the lower mantle. However, the analyses for the J˙2 based on the two-layer lower-mantle viscosity model only require a viscosity layer higher than (5-10) × 1021 Pa s for a depth above the core-mantle boundary (CMB), in which the value of (5-10) × 1021 Pa s corresponds to the solution of (7-20) × 1021 Pa s for the simple three-layer one. Moreover, the analyses with the J˙2 and LGM sea level constraints for the two-layer lower-mantle viscosity model indicate two viscosity solutions: η670,1191 > 3 × 1021 and η1191,2891 ˜ (5-10) × 1022 Pa s, and η670,1691 > 1022 and η1691,2891 ˜ (5-10) × 1022 Pa s. The inferred upper-mantle viscosity for such solutions is (1-4) × 1020 Pa s similar to the estimate for the simple three-layer viscosity model. That is, these analyses require a high viscosity layer of (5-10) × 1022 Pa s at least in the deep mantle, and suggest that the GIA-based lower-mantle viscosity structure should be treated carefully in discussing the mantle dynamics related to the viscosity jump at ˜670 km depth. We also preliminarily put additional constraints on these viscosity solutions by examining typical relative sea level (RSL) changes used to infer the lower-mantle viscosity. The viscosity solution inferred from the far-field RSL changes in the Australian region is consistent with those for the J˙2 and LGM sea levels, and the analyses for RSL changes at Southport and Bermuda in the intermediate region for the North American ice sheets suggest the solution of η670,D > 1022, ηD,2891 ˜ (5-10) × 1022 Pa s (D = 1191 or 1691 km) and upper-mantle viscosity higher than 6 × 1020 Pa s.
2-dimensional triplicated waveform modeling of the mantle transition zone beneath Northeast Asia
NASA Astrophysics Data System (ADS)
Lai, Y.; Chen, L.; Wang, T.
2017-12-01
The Mantle Transition Zone (MTZ) of Northeast Asia has long been investigated by geoscientists for its critical importance where the subducted Pacific slab is stagnant above the 660km discontinuity, accompanied by complicated mantle processes. Taking advantages of the frequent occurrent deep earthquakes in subduction zone and dense seismic arrays in Northeast China, we successfully constructed the fine-scale P and SH velocity structure of a narrow azimuthal fan area based on 2-Dimensional (2D) triplicated waveform modeling for three deep close earthquakes, in which the triplicated waveforms are very sensitive to MTZ velocity structure in general, particularly the morphology of the stagnant slab in Northeast Asia. In our 2D triplication study, for the first time, we show a quite consistent feature of a high velocity layer for both Vp and Vs with the thickness of 140km and the length of 1200km just atop the 660km discontinuity, the western edge of the stagnant slab intersect with the North-South Gravity Lineament in China and has the subducting age of 30 Ma. Compared with a quite normal Vp, the Shear wave velocity reduction of -0.5% in the slab and -2.5% in the upper MTZ is required to reconcile the SH waves featured by the broad BOD. The high Vp/Vs ratio beneath Northeast Asia may imply a water-rich MTZ with the H2O content of 0.1-0.3 wt%. Particularly, a low velocity anomaly of about 150km wide was detected in the overall high-velocity stagnant slab by both P and SH triplicated waveform modeling, with the velocity anomaly value of -1% and -3%, respectively. The gap/window in the stagnant slab may provide a passage for hot deeper mantle materials to penetrate through the thick slab and feed the surface Changbaishan volcano. We also speculate that the existence of such a gap can be the manifestation of the original heterogeneity in the subducted slab and will further exacerbatethe impending gravitational instability and speed up mantle avalanche.
NASA Astrophysics Data System (ADS)
Litvin, Yuriy; Spivak, Anna
2017-04-01
Melting relations of the lower-mantle magmatic system MgO - FeO - CaO - SiO2 are characterized by peritectic reaction of bridgmanite (Mg,Fe)SiO3 and melt with formation of Fe-rich phases of periclase-wustite solid solutions (MgO•FeO)ss and stishovite SiO2. The reaction proceeds also in melts-solutions of lower-mantle diamond-parental system MgO - FeO - CaO - SiO2 - (Mg-Fe-Ca-Na-carbonate) - C. Xenoliths of lower mantle rocks were never found among the deep mantle derived materials. Estimation of lower-mantle mineralogy as ferropericlase+ bridgmanite+ Ca-perovskite association is inferred from high-pressure subsolidus experiments with ultrabasic pyrolite composition (Akaogi, 2007). The paradoxical in situ paragenesis of stishovite and ferropericlase as primary inclusions in lower-mantle diamonds (Kaminsky, 2012) takes its explanation from the bridgmanite peritectic reaction (effect of "stishovite paradox") (Litvin et al., 2014). Based on the data for inclusions, physico-chemical study on syngenesis of diamonds and primary inclusions has experimentally revealed the ferropericlase-bridgmanite-Ca-perovskite-stishovite-magnesiowustite-(Mg-Fe-Ca-Na-carbonate)-carbon compositions of the lower-mantle diamond-forming system .(Litvin et al., 2016). The generalized diagram of diamong-forming media characterizes the variable compositions of growths melts for diamonds and paragenetic phases and their genetic relationships with lower mantle matter, and it is the reason for genetic classifying primary inclusions. Fractional ultrabasic-basic evolution and continuous paragenetic transition from ultrabasic bridgmanite-ferropericlase to basic stishovite-magnesiowustite assemblages in the of lower-mantle diamond-parental melts-solutions are providing by the physico-chemical mechanism of stishovite paradox. References Akaogi M. (2007). Phase transformations of minerals in the transition zone and upper part of the lower mantle. In Advances in High-Pressure Mineralogy (Ohtani E., ed.). Geol. Soc. Am. Spec. Paper 421, 1-13. Kaminsky F.V. (2012). Mineralogy of the lower mantle: a review of "supper-deep" mineral inclusions in diamonds. Earth Sci. Rev. 110, 127-147. Litvin Yu.A., Spivak A.V., Solopova N.A., Dubrovinsky L.S. (2014). On origin of lower-mantle diamonds and their primary inclusions. Phys. Earth Planet. Inter. 228, 176-185. Litvin Yu.A., Spivak A.V., Dubrovinsky L.S. (2016). Magmatic evolution of the material of the Earth's lower mantle: stishovite paradox and origin of superdeep diamonds (experiments at 24-26 GPa). Geochemistry Internat. 54(11, 936-947.)
New insight into the Upper Mantle Structure Beneath the Pacific Ocean Using PP and SS Precursors
NASA Astrophysics Data System (ADS)
Gurrola, H.; Rogers, K. D.
2013-12-01
The passing of the EarthScope Transportable array has provided a dense data set that enabled beam forming of SS and PP data that resultes in improved frequency content to as much a 1 Hz in the imaging of upper mantle structure. This combined with the application of simultaneous iterative deconvolution has resulted in images to as much as 4 Hz. The processing however results in structure being averaged over regions of 60 to 100 km in radius. This is becomes a powerful new tool to image the upper mantle beneath Oceanic regions where locating stations is expensive and difficult. This presentation will summarize work from a number of regions as to new observations of the upper mantle beneath the Pacific and Arctic Oceans. Images from a region of the Pacific Ocean furthest from hot spots or subduction zones (we will refer to this as the 'reference region'). show considerable layering in the upper mantle. The 410 km discontinuity is always imaged using these tools and appears to be a very sharp boundary. It does usually appear as an isolated positive phase. There appears to be a LAB at ~100 km as expected but there is a strong negative phase at ~ 200 km with a positive phase 15 km deeper. This is best explained as a lens of partial melt as expected for this depth based on the geothermal gradient. If so this should be a low friction point and so we would expect it to accommodate plate motion. Imaging of the Aleutian subduction zone does show the 100 km deep LAB as it descends but this 200 km deep horizon appears as a week descending positive anomaly without the shallower negative pulse. In addition to the 410, 100 and 200 km discontinuities there are a number of paired anomalies, between the 200 and 400 km depths, with a negative pulse 15 to 20 km shallower then the positive pulse. We do not believe these are side lobes or we would see side lobes on the 100 km and 410 km discontinuities. We believe these to be the result of friction induced partial melt along zones of critical failure to accommodate differential mantle flow with depth. The paired layers disappear beneath the Hawaiian Island chain. We believe heat from the hot spot warms the mantle beneath the Hawaiian island chain so flow is more easily accommodated. As a result the lenses of melt disappear in the region near hot spots.
Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment
NASA Astrophysics Data System (ADS)
Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan
2013-04-01
One of the most robust results from tomographic studies is the existence of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle, which appear to be chemically denser than the ambient mantle. Results from reconstruction studies (Torsvik et al., 2006) infer that the LLSVPs are stable, long-lived, and are sampled by deep mantle plumes that rise predominantly from their margins. The origin of the dense material is debated, but generally falls within three categories: (i) a primitive layer that formed during magma ocean crystallization, (ii) accumulation of a dense eclogitic component from the recycled oceanic crust, and (iii) outer core material leaking into the lower mantle. A dense layer underlying a less dense ambient mantle is gravitationally stable. However, the flow due to thermal density variations, i.e. hot rising plumes and cold downwelling slabs, may deform the layer into piles with higher topography. Further deformation may lead to entrainment of the dense layer, its mixing with the ambient material, and even complete homogenisation with the rest of the mantle. The amount of the anomalous LLSVP-material that gets entrained into the rising plumes poses a constraint on the survival time of the LLSVPs, as well as on the plume buoyancy, on the lithospheric uplift associated with plume interaction and geochemical signature of the erupted lavas observed at the Earth's surface. Recent estimates for the plume responsible for the formation of the Siberian Flood Basalts give about 15% of entrained dense recycled oceanic crust, which made the hot mantle plume almost neutrally buoyant (Sobolev et al., 2011). In this numerical study we investigate the mechanics of entrainment of a dense basal layer by convective mantle flow. We observe that the types of flow that promote entrainment of the dense layer are (i) upwelling of the dense layer when it gets heated enough to overcome its stabilizing chemical density anomaly, (ii) upwelling of the ambient material in the vicinity of the dense material (mechanism of selective withdrawal (Lister, 1989)), and (iii) cold downwellings sliding along the bottom boundary, and forcing the dense material upwards. The objective of this study is to compare the efficiency of entrainment by each of these mechanisms, and its dependence on the density and viscosity anomaly of the dense material with respect to the ambient mantle. To perform this study, we have developed a two-dimensional FEM code to model thermal convection in a hollow cylinder domain with presence of chemical heterogeneities, and using a realistic viscosity profile. We present the results of the simulations that demonstrate the entrainment mechanisms described above. In addition, we perfom numerical experiments in a Cartesian box domain, where the bottom right boundary of the box is deformed to resemble the geometry of an LLSVP edge. In some of the experiments, the bottom left part of the boundary is moving towards the right boundary, simulating a slab sliding along the core-mantle boundary towards an LLSVP. These experiments allow a detailed study of the process of entrainment, and its role in the thermochemical evolution of the Earth.
NASA Astrophysics Data System (ADS)
Shimizu, N.; Mandeville, C. W.
2009-12-01
Geochemical cycle of sulfur in near-surface reservoirs has been a subject of intense studies for decades. It has been shown that sulfur isotopic compositions of sedimentary sulfides and sulfates record interactions of the atmosphere, hydrosphere, biosphere and lithosphere, with δ34S of sedimentary sulfides continuously decreasing from 0‰ toward present-day values of ~-30 to -40‰ over the Phanerozoic (e.g., Canfield, 2004). It has also been shown that microbial reduction of the present-day seawater sulfate (δ34S=+21‰) results in large shifts in isotopic compositions of secondary pyrites in altered oceanic crust (to δ34S=-70‰: Rouxel et al., 2009). How much of these near surface isotopic variations survive during deep geochemical cycle of sulfur interacting with the mantle infinite reservoir with δ34S=0‰? Could extent of their survival be used as a tracer of processes and dynamics involved in deep geochemical cycle? As a first step toward answering these questions, δ34S was determined in-situ using a Cameca IMS 1280 ion microprobe at Woods Hole Oceanographic Institution in materials representing various domains of deep geochemical cycle. They include pyrites in altered MORB as potential subducting materials and pyrites in UHP eclogites as samples that have experienced subduction zone processes, and mantle-derived melts are represented by olivine-hosted melt inclusions in MORB and those in IAB, and undegassed submarine OIB glasses. Salient features of the results include: (1) pyrites in altered MORB (with O. Rouxel; from ODP site 801 and ODP Hole 1301B) range from -70 to +19‰, (2) pyrites in UHP eclogites from the Western Gneiss Region, Norway (with B. Hacker and A. Kylander-Clark) show a limited overall range from -3.4 to + 2.8‰ among five samples, with one of them covering almost the entire range, indicating limited scale lengths of isotopic equilibration during subduction, (3) olivine-hosted melt inclusions in arc basalts from Galunggung (-2.8 - +5.2‰ with majority between +3 and +5), Krakatau (+1.5 - +8.6‰ with a cluster around +3 - +5), and Augustine (+8 - +12‰) show larger variations among arc magmas than previously known, (4) olivine-hosted melt inclusions from a FAMOUS lava (519-4-1) range from -9.5 to +10.5‰, and (5) undegassed submarine glasses from Samoa (with M. Jackson) appear to show separate ranges for individual islands, including Vailulu clustering around -1.9 to +2.1‰ and Malumalu ranging from -0.9 to -12.1‰. Overall, the results clearly show that low temperature signatures are not completely erased during recycling and isotopic exchange with the mantle infinite reservoir, and that mantle-derived melts still display large isotopic variations for small sampling scales, similar to observations on other isotope systems. Canfield, D. E. (2004) Amer. Jour. Sci., 304, 839-861. Rouxel, O. et al., (2009) Goldschmidt Conf. Abstract.
NASA Astrophysics Data System (ADS)
Cao, Q.; van der Hilst, R. D.; Shim, S.; De Hoop, M. V.
2011-12-01
The Hawaiian hotspot is often attributed to hot material rising from depth in the mantle, but efforts to detect a thermal plume seismically have been inconclusive. Most tomographic models reveal anomalously low wavespeeds beneath Hawaii, but the depth extent of this structure is not well known. S or P data used in traveltime inversions are associated with steep rays to distant sources, which degrades depth resolution, and surface wave dispersion does not have sufficient sensitivity at the depths of interest. To investigate pertinent thermal anomalies we mapped depth variations of upper mantle discontinuities using precursors of the surface-reflected SS wave. Instead of stacking the data over geographical bins, which leads to averaging of topography and hence loss of spatial resolution, we used a generalized Radon transform (GRT) to detect and map localized elasticity contrasts in the transition zone (Cao et al., PEPI, 2010). We apply the GRT to produce 3D image volumes beneath a large area of the Pacific Ocean, including Hawaii and the Hawaii-Emperor seamount chain (Cao et al., Science, 2011). The 3D image volumes reveal laterally continuous interfaces near 410 and 660 km depths, that is, the traditional boundaries of the transition zone, but also suggest (perhaps intermittent) scatter horizons near 300-350, 520-550, and 800-1000 km depth. The upper mantle appears generally hot beneath Hawaii, but the most conspicuous topographic (and probably thermal) anomalies are found west of Hawaii. The GRT images reveal a 800 km wide uplift of the 660 discontinuity just west of Hawaii, but there is no evidence for a corresponding localized depression of the 410 discontinuity. This expression of the 410 and 660 km topographies is consistent with some existed geodynamical modeling results, in which a deep-rooted mantle plume impinging on the transition zone, creating a broad pond of hot material underneath endothermic phase change at 660 km depth, and with secondary plumes stemming from this hot pool of materials and rising in the upper mantle to create the present-day hotspot at Earth's surface. West of the upwarp that we interpret as the elevated post-spinel the main interface deepens to nearly 700 km depth. Given this position, it is unlikely that this deep structure is due to low temperatures. Instead, it would be consistent with slightly elevated temperatures (compared to transition temperature of post-spinel) and transitions in the garnet phase. This interpretation, if correct, implies that the area of ponded hot material is at least 2,000 km wide. The presence of an 800- to 2,000-kilometer-wide thermal anomaly deep in the transition zone west of Hawaii suggests that hot material does not rise from the lower mantle through a narrow vertical plume but accumulates near the base of the transition zone before being entrained in flow toward Hawaii and, perhaps, other islands. This implies that geochemical trends in Hawaiian lavas cannot constrain lower mantle domains directly. This type of flow may be a better explanation of bathymetric features in the Pacific (including other seamount chains) than the canonical deep mantle plumes.
Between a rock and a hot place: the core-mantle boundary.
Wookey, James; Dobson, David P
2008-12-28
The boundary between the rocky mantle and iron core, almost 2900 km below the surface, is physically the most significant in the Earth's interior. It may be the terminus for subducted surface material, the source of mantle plumes and a control on the Earth's magnetic field. Its properties also have profound significance for the thermochemical and dynamic evolution of the solid Earth. Evidence from seismology shows that D'' (the lowermost few hundred kilometres of the mantle) has a variety of anomalous features. Understanding the origin of these observations requires an understanding of the elastic and deformation properties of the deep Earth minerals. Core-mantle boundary pressures and temperatures are achievable in the laboratory using diamond anvil cell (DAC) apparatus. Such experiments have led to the recent discovery of a new phase, 'post-perovskite', which may explain many hitherto poorly understood properties of D''. Experimental work is also done using analogue minerals at lower pressures and temperatures; these circumvent some of the limits imposed by the small sample size allowed by the DAC. A considerable contribution also comes from theoretical methods that provide a wealth of otherwise unavailable information, as well as verification and refinement of experimental results. The future of the study of the lowermost mantle will involve the linking of the ever-improving seismic observations with predictions of material properties from theoretical and experimental mineral physics in a quantitative fashion, including simulations of the dynamics of the deep Earth. This has the potential to dispel much of the mystery that still surrounds this remote but important region.
NASA Astrophysics Data System (ADS)
Tassara, C. S.; González-Jiménez, J. M.; Reich, M.; Morata, D.; Barra, F.; Gregoire, M.; Saunders, J. E.; Cannatelli, C.
2017-12-01
Refertilisation of the subcontinental lithospheric mantle is a key process controlling the noble metal budget of the mantle, and recent views point to anomalously enriched mantle sources as a critical factor in the formation of noble metal (e.g., Au) provinces at a lithospheric scale. Here we test this hypothesis by studying peridotite xenoliths from the mantle beneath the Deseado Massif auriferous province in southern Patagonia, Argentina. Extensive Neogene back-arc plateau magmatism composed of alkaline basalts ( 3.5 Ma) has brought to the surface deep-seated mantle xenoliths from beneath the crust that host the Au mineralization. In the studied xenolith samples we found gold particles enclosed within primary olivine and pyroxene, and embedded in a highly alkaline interstitial glass or sulphides. Detailed inspection of the sulphide hosts using FESEM reveals abundant native Au nanoparticles, which are consistent with the high Au (up to 6 ppm) obtained by LA-ICP-MS analysis of these sulphides. It is relevant to note that these sulphides also contain significant amounts of Ag (up to 163 ppm). Different generations of sulphides were identified on the basis of their chondrite-normalized PGE patterns, and they can be systematically associated with different events of melt depletion and metasomatism in the mantle. Noticeably, Cu-Pd-Pt-Au rich sulfides are associated with clinopyroxene showing typical carbonatite markers (i.e., large LREE/HREE, Zr and Hf negative anomalies) and accessory minerals such as carbonates and apatite. Still, clinopyroxene commonly has high Ti contents suggesting that a "basaltic" component was also present during the metasomatism. These results suggest that overprinting of events of melt depletion and metasomatism lead to the formation of several generations of sulfides. We propose that the Cu-Pd-Pt-Au rich sulfides may be associated with carbonated silicate melts in the mantle. Our results point to 1) a link between an enriched source of gold (and silver) in the mantle and the formation of the Deseado Massif auriferous province; and 2) carbonated silicate melt metasomatism as an important factor in the PPGE + Au refertilisation of the mantle.
Source of Volatiles in Earth's Deep Mantle from Neon Isotope Systematics in the South Atlantic
NASA Astrophysics Data System (ADS)
Williams, C. D.; Mukhopadhyay, S.
2016-12-01
The noble gases play an important role in understanding Earth's accretion and subsequent evolution. Neon isotopes in particular have the potential to distinguish between distinct sources of Earth's volatiles e.g., acquisition of nebular gas, solar wind implanted materials or chondritic meteorites and their components. The neon isotopic composition of the deep mantle remains subject to debate with the majority of mantle-derived basalts displaying maximum 20Ne/22Ne ratios less than 12.5, similar to values determined for the convective mantle (20Ne/22Ne = 12.49 +/- 0.04; [1]). These values are also much lower than those of solar wind (20Ne/22Ne = 13.8; [2,3]) and estimates of the nebular gas (20Ne/22Ne = 13.4; [4]) but comparable to solar wind implanted meteoritic materials (20Ne/22Ne = 12.5-12.7; [5]). Here we determine the neon isotopic composition of mantle-derived materials from the south Atlantic. These samples display strong linear correlations in 20Ne/22Ne-21Ne/22Ne space with maximum 20Ne/22Ne ratios that are resolvable from and higher than materials derived from the convecting mantle as well as models of solar wind implantation. These results supplement a growing database of mantle materials characterized by 20Ne/22Ne ratios greater than 12.5, challenging the notion that the entire mantle acquired volatiles from solar wind implanted meteoritic materials. In this presentation we will explore alternative origins for these volatiles and provide testable predictions for each scenario. [1] G. Holland, C.J. Ballentine.. Nature 441 (2006), 186-191. [2] A. Gimberg et al. GCA 72 (2008), 626-645. [3] V.S. Heber et al. GCA 73 (2009), 7414-7432. [4] V. S. Heber et al. ApJ 759 (2012), 121. [5] R. Wieler in: D. Porcelli, C.J. Ballentine, R. Wieler (Eds.), Reviews in Mineralogy and Geochemistry 47 (2002), 21-70.
Melting behavior of Earth's lower mantle minerals at high pressures
NASA Astrophysics Data System (ADS)
Fu, S.; Yang, J.; Prakapenka, V. B.; Zhang, Y.; Greenberg, E.; Lin, J. F.
2017-12-01
Melting behavior of the most abundant lower mantle minerals, bridgmanite and ferropericlase, at high pressure-temperature (P-T) conditions is of critical importance to understand the dynamic evolution of the early Earth and to explain the seismological and geochemical signatures in the present lowermost mantle. Theoretical calculations [1] and geodynamical models [2] suggested that partial melting of early Earth among MgO-FeO-SiO2 ternary could be located at the eutectic point where a pyrolitic composition formed for the Earth's lower mantle and the eutectic crystallization process could provide a plausible mechanism to the origin of the ultra-low velocity zones (ULVZs) near the core-mantle boundary. Here we have investigated the melting behavior of ferropericlase and Al,Fe-bearing bridgmanite in laser-heated diamond anvil cells coupled with in situ X-ray diffraction up to 120 GPa. Together with chemical and texture characterizations of the quenched samples, these results are analyzed using thermodynamic models to address the effects of iron on the liquidus and solidus temperatures as well as solid-liquid iron partitioning and the eutectic point in ferropericlase-bridgmanite existing system at lower-mantle pressure. In this presentation, we discuss the application of these results to better constrain the seismic observations of the deep lowermost mantle such as large low shear wave velocity provinces (LLSVPs) and ULVZs. We will also discuss the geochemical consequences of the ferropericlase-bridgmanite melting due to the changes in the electronic spin and valence states of iron in the system. ADDIN EN.REFLIST 1. Boukaré, C.E., Y. Ricard, and G. Fiquet, Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: Application to the crystallization of Earth's magma ocean. Journal of Geophysical Research: Solid Earth, 2015. 120(9): p. 6085-6101. 2. Labrosse, S., J. Hernlund, and N. Coltice, A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 2007. 450(7171): p. 866-869.
NASA Astrophysics Data System (ADS)
Čížková, Hana; Čadek, Ondřej; van den Berg, Arie P.; Vlaar, Nicolaas J.
Below subduction zones, high resolution seismic tomographic models resolve fast anomalies that often extend into the deep lower mantle. These anomalies are generally interpreted as slabs penetrating through the 660-km seismic discontinuity, evidence in support of whole-mantle convection. However, thermal coupling between two flow systems separated by an impermeable interface might provide an alternative explanation of the tomographic results. We have tested this hypothesis within the context of an axisymmetric model of mantle convection in which an impermeable boundary is imposed at a depth of 660 km. When an increase in viscosity alone is imposed across the impermeable interface, our results demonstrate the dominant role of mechanical coupling between shells, producing lower mantle upwellings (downwellings) below upper mantle downwellings (upwellings). However, we find that the effect of mechanical coupling can be significantly weakened if a narrow low viscosity zone exists beneath the 660-km discontinuity. In such a case, both thermally induced ‘slabs’ in the lower mantle and thermally activated plumes that rise from the upper/lower mantle boundary are observed even though mass transfer between the shells does not exist.
Banerjee, Amlan; Person, Mark; Hofstra, Albert; Sweetkind, Donald S.; Cohen, Denis; Sabin, Andrew; Unruh, Jeff; Zyvoloski, George; Gable, Carl W.; Crossey, Laura; Karlstrom, Karl
2011-01-01
This study assesses the relative importance of deeply circulating meteoric water and direct mantle fluid inputs on near-surface 3He/4He anomalies reported at the Coso and Beowawe geothermal fields of the western United States. The depth of meteoric fluid circulation is a critical factor that controls the temperature, extent of fluid-rock isotope exchange, and mixing with deeply sourced fluids containing mantle volatiles. The influence of mantle fluid flux on the reported helium anomalies appears to be negligible in both systems. This study illustrates the importance of deeply penetrating permeable fault zones (10-12 to 10-15 m2) in focusing groundwater and mantle volatiles with high 3He/4He ratios to shallow crustal levels. These continental geothermal systems are driven by free convection.
Trübenbach, Katja; Pegado, Maria R; Seibel, Brad A; Rosa, Rui
2013-02-01
The Humboldt (jumbo) squid, Dosidicus gigas, is a part-time resident of the permanent oxygen minimum zone (OMZ) in the Eastern Tropical Pacific and, thereby, it encounters oxygen levels below its critical oxygen partial pressure. To better understand the ventilatory mechanisms that accompany the process of metabolic suppression in these top oceanic predators, we exposed juvenile D. gigas to the oxygen levels found in the OMZ (1% O(2), 1 kPa, 10 °C) and measured metabolic rate, activity cycling patterns, swimming mode, escape jet (burst) frequency, mantle contraction frequency and strength, stroke volume and oxygen extraction efficiency. In normoxia, metabolic rate varied between 14 and 29 μmol O(2) g(-1) wet mass h(-1), depending on the level of activity. The mantle contraction frequency and strength were linearly correlated and increased significantly with activity level. Additionally, an increase in stroke volume and ventilatory volume per minute was observed, followed by a mantle hyperinflation process during high activity periods. Squid metabolic rate dropped more than 75% during exposure to hypoxia. Maximum metabolic rate was not achieved under such conditions and the metabolic scope was significantly decreased. Hypoxia changed the relationship between mantle contraction strength and frequency from linear to polynomial with increasing activity, indicating that, under hypoxic conditions, the jumbo squid primarily increases the strength of mantle contraction and does not regulate its frequency. Under hypoxia, jumbo squid also showed a larger inflation period (reduced contraction frequency) and decreased relaxed mantle diameter (shortened diffusion pathway), which optimize oxygen extraction efficiency (up to 82%/34%, without/with consideration of 60% potential skin respiration). Additionally, they breathe 'deeply', with more powerful contractions and enhanced stroke volume. This deep-breathing behavior allows them to display a stable ventilatory volume per minute, and explains the maintenance of the squid's cycling activity under such O(2) conditions. During hypoxia, the respiratory cycles were shorter in length but increased in frequency. This was accompanied by an increase in the number of escape jets during active periods and a faster switch between swimming modes. In late hypoxia (onset ~170 ± 10 min), all the ventilatory processes were significantly reduced and followed by a lethargic state, a behavior that seems closely associated with the process of metabolic suppression and enables the squid to extend its residence time in the OMZ.
Dolomite III: A new candidate lower mantle carbonate
NASA Astrophysics Data System (ADS)
Mao, Zhu; Armentrout, Matt; Rainey, Emma; Manning, Craig E.; Dera, Przemyslaw; Prakapenka, Vitali B.; Kavner, Abby
2011-11-01
Dolomite is a major constituent of subducted carbonates; therefore evaluation of its phase stability and equation of state at high pressures and temperatures is important for understanding the deep Earth carbon cycle. X-ray diffraction experiments in the diamond anvil cell show that Ca0.988Mg0.918Fe0.078Mn0.016(CO3)2 dolomite transforms to dolomite-II at ∼17 GPa and 300 K and then upon laser-heating transforms to a new monoclinic phase (dolomite-III), that is observed between 36 and 83 GPa. Both high-pressure polymorphs are stable up to 1500 K, indicating that addition of minor Fe stabilizes dolomite to Earth's deep-mantle conditions.
NASA Astrophysics Data System (ADS)
Matsumoto, Koji; Yamada, Ryuhei; Kikuchi, Fuyuhiko; Kamata, Shunichi; Ishihara, Yoshiaki; Iwata, Takahiro; Hanada, Hideo; Sasaki, Sho
2015-09-01
The internal structure of the Moon is important for discussions on its origin and evolution. However, the deep structure of the Moon is still debated due to the absence of comprehensive seismic data. This study explores lunar interior models by complementing Apollo seismic travel time data with selenodetic data which have recently been improved by Gravity Recovery and Interior Laboratory (GRAIL) and Lunar Laser Ranging (LLR). The observed data can be explained by models including a deep-seated zone with a low velocity (S wave velocity = 2.9 ± 0.5 km/s) and a low viscosity (˜3 × 1016 Pa s). The thickness of this zone above the core-mantle boundary is larger than 170 km, showing a negative correlation with the radius of the fluid outer core. The inferred density of the lowermost mantle suggests a high TiO2 content (>11 wt.%) which prefers a mantle overturn scenario.
Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle
Prieto, Germán A.; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel
2017-01-01
Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere. PMID:28345055
Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.
Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel
2017-03-01
Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.
NASA Technical Reports Server (NTRS)
Okal, E. A.
1978-01-01
The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Iwamori, Hikaru
2017-10-01
We investigate the cycling of water (regassing, dehydration, and degassing) in mantle convection simulations as a function of the strength of the oceanic lithosphere and its influence on the evolution of mantle water content. We also consider pseudo-plastic yielding with a friction coefficient for simulating brittle behavior of the plates and the water-weakening effect of mantle materials. This model can generate long-term plate-like behavior as a consequence of the water-weakening effect of mantle minerals. This finding indicates that water cycling plays an essential role in generating tectonic plates. In vigorous plate motion, the mantle water content rapidly increases by up to approximately 4-5 ocean masses, which we define as the "burst" effect. A burst is related to the mantle temperature and water solubility in the mantle transition zone. When the mantle is efficiently cooled down, the mantle transition zone can store water transported by the subducted slabs that can pass through the "choke point" of water solubility. The onset of the burst effect is strongly dependent on the friction coefficient. The burst effect of the mantle water content could have significantly influenced the evolution of the surface water if the burst started early, in which case the Earth's surface cannot preserve the surface water over the age of the Earth.
NASA Astrophysics Data System (ADS)
Su, Yuping; Zheng, Jianping; Griffin, William L.; Huang, Yan; Wei, Ying; Ping, Xianquan
2017-11-01
The age and composition of the lower crust are critical in understanding the processes of continental formation and evolution, and deep-seated granulite xenoliths can offer direct information on the lower crust. Here, we report mineral chemistry, whole-rock major and trace elements, Sr-Nd isotopes and zircon U-Pb-Hf results for a suite of deep-seated crustal xenoliths, recently discovered in the Cenozoic basalts of the Nangaoya area in the northern part of the North China Craton (NCC). Based on the P-T estimates, these xenoliths including mafic, intermediate and felsic granulites and hornblendites were sampled from different levels of the lower crust. While a hornblendite has a flat REE pattern, all other xenoliths display LREE enrichment and depletion of Nb, Ta, Th and Ti. The mafic granulite xenolith has relatively high whole-rock εNd(t) value of - 13.37, and yields Mesozoic (188-59 Ma) zircons ages with high εHf(t) values from - 15.3 to - 9.2. The garnet-bearing intermediate granulite-facies rocks show low εNd(t) values from - 16.92 to - 17.48, and reveal both Paleoproterozoic (1948 Ma) and Mesozoic (222-63 Ma) zircon U-Pb ages. Their Mesozoic zircons have lower εHf(t) values (from - 18.4 to - 13.8) than those from the mafic xenolith. The remaining intermediate to felsic xenoliths show Paleoproterozoic zircon ages, and the lowest εNd(t) values (from - 20.78 to - 24.03). The mafic-intermediate granulites with Mesozoic zircons originated from the interaction of lower crust-derived magmas with mantle melts, with higher proportions of mantle magmas involved in the generation of mafic granulite, whereas intermediate to felsic xenoliths without Mesozoic zircons represent ancient Paleoproterozoic to Neoarchean deep crust. These deep-seated xenoliths reveal complicated crustal evolution processes, including crustal growth during Neoarchean (2.5-2.7 Ga), middle Paleoproterozoic (2.2-2.1 Ga) and Mesozoic, and reworking during early Paleoproterozoic, late Paleoproterozoic and Mesozoic related to magmatic underplating. The integrated analyses of lithological, geochemical and age data for a suite of deep-seated xenoliths show that the lower crust in the Nangaoya area is temporally and compositionally zoned. The upper part of the lower crust mainly comprises Neoarchean to Paleoproterozoic intermediate-felsic rocks with intercalated hornblendites, the majority of which record 1950 and 1850 Ma metamorphism; the middle part is dominated by a Paleoproterozoic and Mesozoic intermediate garnet-bearing granulite-facies hybrid layer; and the lowermost crust is represented by a Mesozoic mafic granulite layer, which was significantly modified by episodic magmatic underplating. Such a modification induced by crust-mantle interaction can result in Mesozoic ages and more mafic components for xenolith granulites, and thus is an effective mechanism to explain the differences between exposed and xenolithic granulites.
Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury
NASA Astrophysics Data System (ADS)
Zhang, Z.; Pommier, A.
2017-12-01
Transfers of mass, heat, and electric currents between a silicate mantle and an underlying metallic core characterize the Core-Mantle Boundary (CMB) region of terrestrial planets. In particular, constraining the structure and chemistry of the CMB region of Mercury is crucial to understand its thermal state and unique magnetic activity. To probe the physical and chemical processes of the Hermean CMB, we conducted an electrical study of metal-olivine systems at pressure, temperature, and chemistry conditions relevant to the mantle and CMB region of Mercury. Electrical measurements were performed at 5-7 GPa and up to 1675ºC during heating and cooling in the multi-anvil apparatus using impedance spectroscopy. Samples are made of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si systems) and one polycrystalline olivine (Fo90) layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that bulk electrical conductivity increases with temperature from 10-2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the one of the metal phase at similar conditions. In some experiments, a conductivity jump is observed at a temperature corresponding to the melting temperature of the metal phase. This conductivity increase cannot be explained by the electrical properties of liquid metal as metal is less conductive with increasing temperature. We observe that both the metal:olivine ratio and the change in metal phase geometry during heating best explain the bulk conductivity. By combining our electrical results, textural analyses of the samples and previous experimental and numerical works, we propose an electrical profile of the deep interior of Mercury. Comparison of our model with existing conductivity estimates of Mercury's lowermost mantle and CMB from magnetic field observations and thermodynamic calculations supports the hypothesis of a layered CMB-outermost core structure in present-day Mercury.
Water cycling between ocean and mantle: Super-earths need not be waterworlds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, Nicolas B.; Abbot, Dorian S., E-mail: n-cowan@northwestern.edu
2014-01-20
Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridgesmore » and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.« less
The thermal evolution of Mercury's Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurriën Sebastiaan; van Westrenen, Wim
2018-01-01
We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.
Advances in target imaging of deep Earth structure
NASA Astrophysics Data System (ADS)
Masson, Y.; Romanowicz, B. A.; Clouzet, P.
2015-12-01
A new generation of global tomographic models (Lekić and Romanowicz, 2011; French et al, 2013, 2014) has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features, requires further efforts to obtain higher resolution images. The focus of our ongoing effort is to develop advanced tomographic methods to image remote regions of the Earth at fine scales. We have developed an approach in which distant sources (located outside of the target region) are replaced by an equivalent set of local sources located at the border of the computational domain (Masson et al., 2014). A limited number of global simulations in a reference 3D earth model is then required. These simulations are computed prior to the regional inversion, while iterations of the model need to be performed only within the region of interest, potentially allowing us to include shorter periods at limited additional computational cost. Until now, the application was limited to a distribution of receivers inside the target region. This is particularly suitable for studies of upper mantle structure in regions with dense arrays (e.g. see our companion presentation Clouzet et al., this Fall AGU). Here we present our latest development that now can include teleseismic data recorded outside the imaged region. This allows us to perform regional waveform tomography in the situation where neither earthquakes nor seismological stations are present within the region of interest, such as would be desireable for the study of a region in the deep mantle. We present benchmark tests showing how the uncertainties in the reference 3D model employed outside of the target region affects the quality of the regional tomographic images obtained.
NASA Astrophysics Data System (ADS)
Bénard, A.; Koga, K. T.; Shimizu, N.; Kendrick, M. A.; Ionov, D. A.; Nebel, O.; Arculus, R. J.
2017-02-01
We report chlorine (Cl) and fluorine (F) abundances in minerals, interstitial glasses, and melt inclusions in 12 andesite-hosted, spinel harzburgite xenoliths and crosscutting pyroxenite veins exhumed from the sub-arc lithospheric mantle beneath Avacha volcano in the Kamchatka Arc (NE Russia). The data are used to calculate equilibrium mineral-melt partition coefficients (D mineral / melt) for Cl and F relevant to subduction-zone processes and unravel the history of volatile depletion and enrichment mechanisms in an arc setting. Chlorine is ∼100 times more incompatible in pyroxenes (DClmineral/melt = 0.005-0.008 [±0.002-0.003]) than F (DFmineral/melt = 0.50-0.57 [±0.21-0.24]), which indicates that partial melting of mantle sources leads to strong depletions in Cl relative to F in the residues. The data set in this study suggests a strong control of melt composition on DCl,Fpyroxene/melt, in particular H2O contents and Al/(Al + Si), which is in line with recent experiments. Fluorine is compatible in Ca-amphibole in the 'wet' sub-arc mantle (DFamphibole/melt = 3.5-3.7 [±1.5]) but not Cl (DClamphibole/melt = 0.03-0.05 [±0.01-0.03]), indicating that amphibole may fractionate F from Cl in the mantle wedge. The inter-mineral partition coefficients for Cl and F in this study are consistent amongst different harzburgite samples, whether they contain glass or not. In particular, disseminated amphibole hosts much of the Cl and F bulk rock budgets of spinel harzburgites (DClamphibole/pyroxene up to 14 and DFamphibole/pyroxene up to 40). Chlorine and fluorine are variably enriched (up to 1500 ppm Cl and 750 ppm F) in the parental arc picrite and boninite melts of primitive pyroxenite veins (and related melt inclusions) crosscutting spinel harzburgites. Based on the data in this study, the main inferences on the behaviour of Cl and F during melting and metasomatic processes in the sub-arc mantle are as follow: (i) Melting models show that most depleted mantle protoliths of intra-oceanic arc sources can have extremely low Cl/F (0.002-0.007) before being overprinted by subduction-derived components. (ii) Chlorine has a higher percolation distance in the mantle than F. Even for small fluid or melt volumes, Cl and F signatures of partial melting are overprinted by those of pervasive percolation, which increases Cl/F in percolating agents and bulk peridotites during chromatographic interaction and/or amphibole-forming metasomatic reactions. These processes ultimately control the bulk Cl and F compositions of the residual mantle lithosphere beneath arcs, and likely in other tectonic settings. (iii) Fluxed melting models suggest that Cl enrichment in arc picrite and boninite melts in this study, and in many arc melt inclusions reported in the literature, could be related to the infiltration of high Cl/F fluids derived from subducted serpentinite or altered crust in mantle wedge sources. However, these high Cl/F signatures should be re-evaluated with new models in light of the possible overprint of pervasive percolation effects in the mantle. The breakdown of amphibole (and/or mica) in the deep metasomatised mantle at higher pressure and temperature conditions than in the slab may explain, at least in part, the positive correlations between F abundances and Cl/F in primitive arc melt inclusions and slab depth.
Mantle structure and tectonic history of SE Asia
NASA Astrophysics Data System (ADS)
Hall, Robert; Spakman, Wim
2015-09-01
Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs that detached in the Early Miocene such as the Sula slab, now found in the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.
Evolution of asteroid (4) Vesta in the light of Dawn
NASA Astrophysics Data System (ADS)
Thangjam, Guneshwar; Mengel, Kurt; Nathues, Andreas; Schmidt, Kai H.; Hoffmann, Martin
2016-04-01
Asteroid (4) Vesta has been visited by the NASA Dawn spacecraft in 2011/12. The combination of compositional/elemental information from the three onboard instruments with mineralogical information from the howardite-eucrite-diogenite (HED) clan of stony achondrites has shed new light on the surface lithologic heterogeneity and the early evolution. Although petrologic/chemical models have tried to unravel the evolutionary processes, inconsistencies exist for some chemical major element/phase [e.g., 1, 2]. A revised evolutionary model is presented here [3]. The three oxygen isotope signature of HEDs and, thus, of proto-Vesta is best met by a mixture of 80% ordinary plus 20 % CV chondrites. Assuming a 27Al-triggered magma ocean within the first MA after accretion and taking into account the reliable major element data of the silicate fraction of the chondritic mixture results a crystallization sequence that differs from the earlier models [1, 2, 3]. The crystallized phase obtained by 'MELTS' software [4] starts with olivine and continues with minor olivine plus orthopyroxene until the liquid reaches a Kd value (partition coefficient) of 0.31 where the fractionated melt is in equilibrium with the residual liquid [5]. The abundance of minerals and rocks formed in this model are converted in volume proportions assuming a spherical shape of early Vesta (262 km radius) with a core (FeNi, FeNiS) radius of 110 km [6]. Two scenarios are considered to describe the early bulk silicate Vesta. First, the early-crystallized olivine accumulated at the base of the silicate shell is accounted for a dunitic lower mantle having a thickness of 46 km while the later crystallized phases form an orthopyroxenitic upper mantle and a crust of thickness 84 and 22 km, respectively. Second, an olivine-rich lower mantle that gradually changes to orthopyroxene-rich upper mantle is expected having an overall shell thickness of 137 km, with a 15 km thick crust. An important result is that the deep-seated olivine-rich mantle has not been accessible to the deep excavation processes by large impacts such as the Rheasilvia basin formation [7]. This is likely the reason why olivine-rich exposures detected by Dawn are of exogenic origin [8]. Reference: [1] Mandler B. E., Elkins-Tanton L. T. 2013. Meteorit. Planet. Sci. 48, 2333. [2] Toplis M.J., et al., 2013. Meteorit. Planet. Sci. 48, 2300. [3] Thangjam G., PhD thesis, (in publication process). [4] Ghiorso M.S., Sack R.O., 1995. Contributions to Mineralogy and Petrology 119, 197. [5] Takahasi E., Kushiro I., 1983. American Mineralogist. 68, 859. [6] Russell C.T., et al., 2012. Science 336, 684. [7] Clenet H., et al., 2014. Nature 511, 303. [8] Nathues A., et al., 2015. Icarus 258, 467.
Hydrogen Isotopic Systematics of Nominally Anhydrous Phases in Martian Meteorites
NASA Astrophysics Data System (ADS)
Tucker, Kera
Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the martian mantle and contain phases that potentially record the evolution of the H 2O content and isotopic composition of the interior of the planet over time. Examined here are the hydrogen isotopic compositions of Nominally Anhydrous Phases (NAPs) in eight martian meteorites (five shergottites and three nakhlites) using Secondary Ion Mass Spectrometry (SIMS). This study presents a total of 113 individual analyses of H2O contents and hydrogen isotopic compositions of NAPs in the shergottites Zagami, Los Angeles, QUE 94201, SaU 005, and Tissint, and the nakhlites Nakhla, Lafayette, and Yamato 000593. The hydrogen isotopic variation between and within meteorites may be due to one or more processes including: interaction with the martian atmosphere, magmatic degassing, subsolidus alteration (including shock), and/or terrestrial contamination. Taking into consideration the effects of these processes, the hydrogen isotope composition of the martian mantle may be similar to that of the Earth. Additionally, this study calculated upper limits on the H2O contents of the shergottite and nakhlite parent melts based on the measured minimum H2O abundances in their maskelynites and pyroxenes, respectively. These calculations, along with some petrogenetic assumptions based on previous studies, were subsequently used to infer the H2O contents of the mantle source reservoirs of the depleted shergottites (200-700 ppm) and the nakhlites (10-100 ppm). This suggests that mantle source of the nakhlites is systematically drier than that of the depleted shergottites, and the upper mantle of Mars may have preserved significant heterogeneity in its H2O content. Additionally, this range of H2O contents is not dissimilar to the range observed for the Earth's upper mantle.
A migratory mantle plume on Venus: Implications for Earth?
Chapman, M.G.; Kirk, R.L.
1996-01-01
A spatially fixed or at least internally rigid hotspot reference frame has been assumed for determining relative plate motions on Earth. Recent 1:5,000,000 scale mapping of Venus, a planet without terrestrial-style plate tectonics and ocean cover, reveals a systematic age and dimensional progression of corona-like arachnoids occurring in an uncinate chain. The nonrandom associations between arachnoids indicate they likely formed from a deep-seated mantle plume in a manner similar to terrestrial hotspot features. However, absence of expected convergent "plate" margin deformation suggests that the arachnoids are the surface expression of a migratory mantle plume beneath a stationary surface. If mantle plumes are not stationary on Venus, what if any are the implications for Earth?
Plate tectonics and hotspots: the third dimension.
Anderson, D L; Tanimoto, T; Zhang, Y S
1992-06-19
High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.
Hot spot and trench volcano separations
NASA Technical Reports Server (NTRS)
Lingenfelter, R. E.; Schubert, G.
1974-01-01
It is suggested that the distribution of separations between trench volcanos located along subduction zones reflects the depth of partial melting, and that the separation distribution for hot spot volcanoes near spreading centers provides a measure of the depth of mantle convection cells. It is further proposed that the lateral dimensions of mantle convection cells are also represented by the hot-spot separations (rather than by ridge-trench distances) and that a break in the distribution of hot spot separations at 3000 km is evidence for both whole mantle convection and a deep thermal plume origin of hot spots.
Melt focusing and geochemical evolution at mid-ocean ridges: simulations of reactive two-phase flow
NASA Astrophysics Data System (ADS)
Keller, T.; Katz, R. F.; Hirschmann, M. M.
2017-12-01
The geochemical character of MORB and related off-axis volcanic products reflects the signature of chemical reservoirs in the mantle, the processes of melt transport from source to surface, or both. Focusing of partial melt to the ridge axis controls the proportion of deep, volatile- and incompatible-rich melts that contribute to MORB formation. However, the effect of volatiles, including CO2 and H2O, on melt segregation and focusing remains poorly understood. We investigate this transport using 2-D numerical simulations of reactive two-phase flow. The phases are solid mantle and liquid magma. Major elements and volatiles are represented by a system with 4 or 6 pseudo-components. This captures accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Trace element transport is computed for 5 idealized elements between highly incompatible and compatible behavior. Our results indicate that volatiles cause channelized melt transport, which leads to fluctuations in volume and composition of melt focused to the axis. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing. Up to 50% of deep, volatile-rich melts are not focused to the axis, but are emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of volatiles and incompatibles in the deep lithosphere. This has implications for volatile recycling by subduction, seismic properties of the oceanic LAB, and potential sources for seamount volcanism. Results from a suite of simulations, constrained by catalogued observational data [4,5,6], enable prediction of global MORB and volatile output and systematic variations of major, volatile and trace element concentrations as a function of mantle conditions and dynamic properties. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171.
USArray Imaging of North American Continental Crust
NASA Astrophysics Data System (ADS)
Ma, Xiaofei
The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry. The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting. EarthScope's USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth's surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix, and the combination of high temperature and water may point to small amounts of melt in the lower crust of Cordillera.
A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California
Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.
2008-01-01
Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block basement to the SW of the SAFOD represents an isolated body, being 5-8km wide and reaching to depths >7km, in agreement with aeromagnetic data. This body is separated from a massive block of Salinian crust farther to the SW. The NE terminus of resistive Salinian crust has a spatial relationship with a near-vertical zone of increased seismic reflectivity ???15km SW of the SAF and likely represents a deep-reaching fault zone. ?? 2008 The Authors Journal compilation ?? 2008 RAS.
NASA Astrophysics Data System (ADS)
Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.
2018-01-01
Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.
NASA Astrophysics Data System (ADS)
Ishikawa, A.; Senda, R.; Suzuki, K.; Tani, K.; Ishii, T.
2015-12-01
Recent accumulation of Os isotope data obtained either from abyssal peridotites or from ocean island peridotite xenoliths has clearly demonstrated that the modern convecting mantle is substantially heterogeneous in Os-isotope composition. Unlike other radiogenic isotope heterogeneities observed in oceanic basalts, largely controlled by incorporation of recycled crustal materials, it seems likely that the observed range of Os-isotope compositions in oceanic peridotites directly reflect varying degrees of ancient melt extraction from peridotitic mantle. Hence, global variations of Os-isotope compositions in oceanic peridotites may provide an important piece of information in unraveling the geochemical and geodynamic evolution of the convecting mantle. Here we present the Os-isotope variations in peridotite-serpentinite recovered from the Pacific area because the number of data available is yet scarce when compared with data from other oceans (Atlantic, Arctic and Indian Ocean). Our primary purpose is to test whether mantle domains underlying four major oceans are distinct in terms of Os isotope variations, reflecting the pattern of mantle convection or mixing efficiency. We examined 187Os/188Os ratios and highly siderophile element concentrations in serpentinized harzburgite recovered from Hess Deep in the East Pacific Rise, a mantle section in the Taitao ophiolite, Chile (Schulte et al., 2009), serpentinized harzburgite bodies in the Izu-Ogasawara and Tonga forearc (Parkinson et al., 1998), peridotite xenoliths from the Pali-Kaau vent in O'ahu island, Hawaii (Bizimis et al., 2007), and low-temperature type peridotite xenoliths from Malaita, Solomon Islands (Ishikawa et al., 2011). The results demonstrate that samples from each area display very similar Os-isotope variations with a pronounced peak in 187Os/188Os = 0.125-0.128. Moreover, the relatively larger datasets obtained from Hess Deep, Taitao and Malaita clearly exhibit the presence of secondary peak in 187Os/188Os=0.117-0.119 (Re-depletion ages ~1.5 Ga). These characteristics are almost identical to the global population mainly comprised of data from other oceans. This suggests that small-scale heterogeneities created by ancient melt extraction are homogeneously distributed over large scales within the convecting mantle.
NASA Astrophysics Data System (ADS)
Russell, J. B.; Gaherty, J. B.; Lin, P. P.; Lizarralde, D.; Collins, J. A.; Hirth, G.; Evans, R. L.
2017-12-01
Observations of seismic anisotropy in the ocean basins are important for constraining deformation and melting processes in the upper mantle. The NoMelt OBS array was deployed on relatively pristine, 70 Ma seafloor in the central Pacific with the aim of constraining upper mantle circulation and the evolution of the lithosphere-asthenosphere system. Surface-waves traversing the array provide a unique opportunity to estimate a comprehensive set of anisotropic parameters. Azimuthal variations in Rayleigh-wave velocity over a period band of 15-180 s suggest strong anisotropic fabric both in the lithosphere and deep in the asthenosphere. High-frequency ambient noise (4-10 s) provides constraints on average VSV and VSH as well as azimuthal variations in both VS and VP in the upper ˜10 km of the mantle. Our best fitting models require radial anisotropy in the uppermost mantle with VSH > VSV by 3 - 7% and as much as 2% radial anisotropy in the crust. Additionally, we find a strong azimuthal dependence for Rayleigh- and Love-wave velocities, with Rayleigh 2θ fast direction parallel to the fossil spreading direction (FSD) and Love 2θ and 4θ fast directions shifted 90º and 45º from the FSD, respectively. These are some of the first direct observations of the Love 2θ and 4θ azimuthal signal, which allows us to directly invert for anisotropic terms G, B, and E in the uppermost Pacific lithosphere, for the first time. Together, these observations of radial and azimuthal anisotropy provide a comprehensive picture of oceanic mantle fabric and are consistent with horizontal alignment of olivine with the a-axis parallel to fossil spreading and having an orthorhombic or hexagonal symmetry.
NASA Astrophysics Data System (ADS)
Tesoniero, Andrea; Auer, Ludwig; Boschi, Lapo; Cammarano, Fabio
2015-11-01
We present a new global model of shear and compressional wave speeds for the entire mantle, partly based on the data set employed for the shear velocity model savani. We invert Rayleigh and Love surface waves up to the sixth overtone in combination with major P and S body wave phases. Mineral physics data on the isotropic δlnVS/δlnVP ratio are taken into account in the form of a regularization constraint. The relationship between VP and VS that we observe in the top 300 km of the mantle has important thermochemical implications. Back-arc basins in the Western Pacific are characterized by large VP/VS and not extremely low VS at ˜150 km depth, consistently with presence of water. Most pronounced anomalies are located in the Sea of Japan, in the back-arc region of the Philippine Sea, and in the South China Sea. Our results indicate the effectiveness of slab-related processes to hydrate the mantle and suggest an important role of Pacific plate subduction also for the evolution of the South China Sea. We detect lateral variations in composition within the continental lithospheric mantle. Regions that have been subjected to rifting, collisions, and flood basalt events are underlain by relatively large VP/VS ratio compared to undeformed Precambrian regions, consistently with a lower degree of chemical depletion. Compositional variations are also observed in deep lithosphere. At ˜200 km depth, mantle beneath Australia and African cratons has comparable positive VS anomalies with other continental regions, but VP is ˜1% higher.
Partitioning of Oxygen During Core Formation on Earth and Mars
NASA Astrophysics Data System (ADS)
Rubie, D. C.; Gessmann, C. K.; Frost, D. J.
2003-12-01
Core formation on Earth and Mars involved the physical separation of Fe-Ni metal alloy from silicate, most likely in deep magma oceans. Although core-formation models explain many aspects of mantle geochemistry, they do not account for large differences between the compositions of the mantles of Earth ( ˜8 wt% FeO) and Mars ( ˜18 wt% FeO) or the much smaller mass fraction of the Martian core. Here we explain these differences using new experimental results on the solubility of oxygen in liquid Fe-Ni alloy, which we have determined at 5-23 GPa, 2100-2700 K and variable oxygen fugacities using a multianvil apparatus. Oxygen solubility increases with increasing temperature and oxygen fugacity and decreases with increasing pressure. Thus, along a high temperature adiabat (e.g. after formation of a deep magma ocean on Earth), oxygen solubility is high at depths up to about 2000 km but decreases strongly at greater depths where the effect of high pressure dominates. For modeling oxygen partitioning during core formation, we assume that Earth and Mars both accreted from oxidized chondritic material with a silicate fraction initially containing around 18 wt% FeO. In a terrestrial magma ocean, 1200-2000 km deep, high temperatures resulted in the extraction of FeO from the silicate magma ocean, due to the high solubility of oxygen in the segregating metal, leaving the mantle with its present FeO content of ˜8 wt%. Lower temperatures of a Martian magma ocean resulted in little or no extraction of FeO from the mantle, which thus remained unchanged at about 18 wt%. The mass fractions of segregated metal are consistent with the mass fraction of the Martian core being small relative to that of the Earth. FeO extracted from the Earth's magma ocean by segregating core-forming liquid may have contributed to chemical heterogeneities in the lowermost mantle, a FeO-rich D'' layer and the light element budget of the core.
Steady state toroidal magnetic field at earth's core-mantle boundary
NASA Technical Reports Server (NTRS)
Levy, Eugene H.; Pearce, Steven J.
1991-01-01
Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.
How to build stable geochemical reservoirs on Mars?
NASA Astrophysics Data System (ADS)
Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris
2014-05-01
To explain the complex thermo-chemical processes needed for the formation of distinct and stable geochemical reservoirs early in the thermo-chemical evolution of Mars, most geochemical studies argue that fractional crystallization of a global magma ocean may reproduce the isotopic characteristic of the SNCs [1, 2]. However, geodynamical models show that such scenario is difficult to reconcile with other observations like late volcanic activity and crustal density values as obtained from gravity and topography modelling [3, 4]. The stable density gradient, which establishes after the mantle overturn has completed, inhibits thermal convection. Albeit capable to provide stable reservoirs, this scenario suggests a conductive mantle after the overturn which on the one hand fails to sample deep regions of the mantle and on the other hand is clearly at odds with the volcanic history of Mars. This is best explained by assuming a convective mantle and partial melting as the principal agents responsible for the generation and evolution of Martian volcanism. Therefore, in this work an alternative scenario for the formation of early stable geochemical reservoirs is presented similar to the model of [5]. We investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The entire convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution [6]. Some of these reservoirs can be sustained during the entire evolution whereas others change with time - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites. References: [1] Elkins-Tanton et al., 2005, EPSL; [2] Debaille et al., 2009, Nature; [3] Tosi et al., 2013, JGR; [4] Plesa et al., submitted to EPSL; [5] Ogawa and Yanagisawa 2011, JGR; [6] Plesa and Breuer, 2013, PSS.
Continental Basalts and Mantle Xenoliths
NASA Astrophysics Data System (ADS)
Zartman, Robert E.
In this decade of the International Lithosphere Program, much scientific attention is being directed toward the deep continental crust and subadjacent mantle. The petrologic, geochemical, and isotopic signatures of basaltic magmas, which transect much of the lithosphere as they ascend from their site of melting, and of contained cognate and accidental xenoliths, which are found along the path of ascent, give us, perhaps, the best clues to composition and structure in the third dimension. Continental Basalts and Mantle Xenoliths provides an opportunity to sample the British school of thought on subjects such as differences between oceanic and continental basalts, effects of mantle metasomatism, and relationships between events in the subcontinental mantle and those in the overlying crust. This volume is recommended by the publisher as being of interest to senior undergraduates and postgraduate researchers; I would extend that readership to all scientists who seek access to a potpourri of recent findings and current ideas in a rapidly evolving field of research.
Disproportionation of (Mg,Fe)SiO 3 perovskite in Earth's deep lower mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Meng, Y.; Yang, W.
2014-05-22
The mineralogical constitution of the Earth's mantle dictates the geophysical and geochemical properties of this region. Previous models of a perovskite-dominant lower mantle have been built on the assumption that the entire lower mantle down to the top of the D" layer contains ferromagnesian silicate [(Mg,Fe)SiO 3] with nominally 10 mole percent Fe. On the basis of experiments in laser-heated diamond anvil cells, at pressures of 95 to 101 gigapascals and temperatures of 2200 to 2400 kelvin, we found that such perovskite is unstable; it loses its Fe and disproportionates to a nearly Fe-free MgSiO 3 perovskite phase and anmore » Fe-rich phase with a hexagonal structure. This observation has implications for enigmatic seismic features beyond ~2000 kilometers depth and suggests that the lower mantle may contain previously unidentified major phases.« less
Disproportionation of (Mg,Fe)SiO3 perovskite in Earth's deep lower mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Meng, Y.; Yang, W.
2014-05-22
The mineralogical constitution of the Earth’s mantle dictates the geophysical and geochemical properties of this region. Previous models of a perovskite-dominant lower mantle have been built on the assumption that the entire lower mantle down to the top of the D'' layer contains ferromagnesian silicate [(Mg,Fe)SiO3] with nominally 10 mole percent Fe. On the basis of experiments in laser-heated diamond anvil cells, at pressures of 95 to 101 gigapascals and temperatures of 2200 to 2400 kelvin, we found that such perovskite is unstable; it loses its Fe and disproportionates to a nearly Fe-free MgSiO3 perovskite phase and an Fe-rich phasemore » with a hexagonal structure. This observation has implications for enigmatic seismic features beyond ~2000 kilometers depth and suggests that the lower mantle may contain previously unidentified major phases.« less
Mantle structure beneath the western edge of the Colorado Plateau
Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.
2008-01-01
Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.
Influence of the iron spin crossover in ferropericlase on the lower mantle geotherm
NASA Astrophysics Data System (ADS)
Valencia-Cardona, Juan J.; Shukla, Gaurav; Wu, Zhongqing; Houser, Christine; Yuen, David A.; Wentzcovitch, Renata M.
2017-05-01
The iron spin crossover in ferropericlase introduces anomalies in its thermodynamics and thermoelastic properties. Here we investigate how these anomalies can affect the lower mantle geotherm using thermodynamics properties from ab initio calculations. The anomalous effect is examined in mantle aggregates consisting of mixtures of bridgmanite, ferropericlase, and CaSiO3 perovskite, with different Mg/Si ratios varying from harzburgitic to perovskitic (Mg/Si ˜ 1.5 to 0.8). We find that the anomalies introduced by the spin crossover increase the isentropic gradient and thus the geotherm proportionally to the amount of ferropericlase. The geotherms can be as much as ˜200 K hotter than the conventional adiabatic geotherm at deep lower mantle conditions. Aggregate elastic moduli and seismic velocities are also sensitive to the spin crossover and the geotherm, which impacts analyses of lower mantle velocities and composition.
Earth's interior. Dehydration melting at the top of the lower mantle.
Schmandt, Brandon; Jacobsen, Steven D; Becker, Thorsten W; Liu, Zhenxian; Dueker, Kenneth G
2014-06-13
The high water storage capacity of minerals in Earth's mantle transition zone (410- to 660-kilometer depth) implies the possibility of a deep H2O reservoir, which could cause dehydration melting of vertically flowing mantle. We examined the effects of downwelling from the transition zone into the lower mantle with high-pressure laboratory experiments, numerical modeling, and seismic P-to-S conversions recorded by a dense seismic array in North America. In experiments, the transition of hydrous ringwoodite to perovskite and (Mg,Fe)O produces intergranular melt. Detections of abrupt decreases in seismic velocity where downwelling mantle is inferred are consistent with partial melt below 660 kilometers. These results suggest hydration of a large region of the transition zone and that dehydration melting may act to trap H2O in the transition zone. Copyright © 2014, American Association for the Advancement of Science.
Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle
Hutko, Alexander R.; Lay, T.; Revenaugh, Justin; Garnero, E.J.
2008-01-01
Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 ?? 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 ?? 0.5% increase in S wave velocity (Vs) near a depth of 2570 km. Bulk-sound velocity [Vb = (V p2 - 4/3Vs2)1/2] decreases by -1.0 ?? 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg1-x-y FexAly)(Si,Al) O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by ???6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.
Okal, E.A.; Kirby, S.H.
1998-01-01
Previous work has suggested that many of the deep earthquakes beneath the Fiji Basin occur in slab material that has been detached and foundered to the bottom of the transition zone or has been laid down by trench migration in a similar recumbent position. Since nowhere else in the Earth do so many earthquakes occur in slabs stagnated in the transition zone, these earthquakes merit closer study. Accordingly, we have assembled from historical and modern data a comprehensive catalogue of the relocated hypocenters and focal mechanisms of well-located deep events in the geographic area between the bottoms of the main Vanuatu and Tonga Wadati-Benioff zones. Two regions of deep seismogenesis are recognized there: (i) 163 deep shocks have occurred north of 15??S in the Vityaz Group from 1949 to 1996. These seismological observations and the absence of other features characteristic of active subduction suggest that the Vityaz group represents deep failure in a detached slab that has foundered to a horizontal orientation near the bottom of the transition zone. (ii) Another group of nearly 50 'outboard' deep shocks occur between about 450 and 660 km depth, west of the complexly buckled and offset western edge of the Tonga Wadati-Benioff zone. Their geometry is in the form of two or possibly three small-circle arcs that roughly parallel the inferred motion of Tonga trench migration. Earthquakes in the southernmost of these arcs occur in a recumbent high-seismic-wavespeed slab anomaly that connects both to the main inclined Tonga anomaly to the east and a lower mantle anomaly to the west [Van der Hilst, R., 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, Vol. 374, pp. 154-157.]. Both groups show complexity in their focal mechanisms. The major question raised by these observations is the cause of this apparent temporary arrest in the descent of the Tonga slab into the lower mantle. We approach these questions by considering the effects of buoyant metastable peridotite in cold slab material that was detached and rapidly foundered, or was buckled, segmented and laid out in the transition zone.
NASA Astrophysics Data System (ADS)
Esteve, C.; Schaeffer, A. J.; Audet, P.
2017-12-01
Over the past number of decades, the Slave Craton (Canada) has been extensively studied for its diamondiferous kimberlites. Not only are diamonds a valuable resource, but their kimberlitic host rocks provide an otherwise unique direct source of information on the deep upper mantle (and potentially transition zone). Many of the Canadian Diamond mines are located within the Slave Craton. As a result of the propensity for diamondiferous kimberlites, it is imperative to probe the deep mantle structure beneath the Slave Craton. This work is further motivated by the increase in high-quality broadband seismic data across the Northern Canadian Cordillera over the past decade. To this end we have generated a P and S body wave tomography model of the Slave Craton and its surroundings. Furthermore, tomographic inversion techniques are growing ever more capable of producing high resolution Earth models which capture detailed structure and dynamics across a range of scale lengths. Here, we present preliminary results on the structure of the upper mantle underlying the Slave Craton. These results are generated using data from eight different seismic networks such as the Canadian National Seismic Network (CNSN), Yukon Northwest Seismic Network (YNSN), older Portable Observatories for Lithospheric Analysis and Reseach Investigating Seismicity (POLARIS), Regional Alberta Observatory for Earthquake Studies Network (RV), USArray Transportable Array (TA), older Canadian Northwest Experiment (CANOE), Batholith Broadband (XY) and the Yukon Observatory (YO). This regional model brings new insights about the upper mantle structure beneath the Slave Craton, Canada.
The Presence of Dense Material in the Deep Mantle: Implications for Plate Motion
NASA Astrophysics Data System (ADS)
Stein, C.; Hansen, U.
2017-12-01
The dense material in the deep mantle strongly interacts with the convective flow in the mantle. On the one hand, it has a restoring effect on rising plumes. On the other hand, the dense material is swept about by the flow forming dense piles. Consequently this affects the plate motion and, in particular, the onset time and the style of plate tectonics varies considerably for different model scenarios. In this study we apply a thermochemical mantle convection model combined with a rheological model (temperature- and stress-dependent viscosity) that allows for plate formation according to the convective flow. The model's starting condition is the post-magma ocean period. We analyse a large number of model scenarios ranging from variations in thickness, density and depth of a layer of dense material to different initial temperatures.Furthermore, we present a mechanism in which the dense layer at the core-mantle boundary forms without prescribing the thickness or the density contrast. Due to advection-assisted diffusion, long-lived piles can be established that act on the style of convection and therefore on plate motion. We distinguish between the subduction-triggered regime with early plate tectonics and the plume-triggered regime with a late onset of plate tectonics. The formation of piles by advection-assisted diffusion is a typical phenomenon that appears not only at the lower boundary, but also at internal boundaries that form in the layering phase during the evolution of the system.
Temperature profiles in the earth of importance to deep electrical conductivity models
NASA Astrophysics Data System (ADS)
Čermák, Vladimír; Laštovičková, Marcela
1987-03-01
Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350 1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200 1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.
Mapping seismic azimuthal anisotropy of the Japan subduction zone
NASA Astrophysics Data System (ADS)
Zhao, D.; Liu, X.
2016-12-01
We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi:10.1002/2016JB013116. Zhao, D., S. Yu, X. Liu (2016) Seismic anisotropy tomography: New insight into subduction dynamics. Gondwana Res. 33, 24-43.
Modelling the Impact of Life on Continental Growth - Mechanisms and Results
NASA Astrophysics Data System (ADS)
Höning, D.; Spohn, T.
2013-12-01
The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater availability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller continental surface area and dryer mantle. The origin and evolution of life on Earth might be responsible for the rise of continents 3.5 billion years ago. References: [1] N. H. Sleep et al., Annu. Rev. Earth Planet. Sci. 40, 277-300, 2012 [2] M. T. Rosing et al., Paleo3 232, 90-113, 2006
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.
2016-05-01
Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).
Interplay between solid Earth and biological evolution
NASA Astrophysics Data System (ADS)
Höning, Dennis; Spohn, Tilman
2017-04-01
Major shifts in Earth's evolution led to progressive adaptations of the biosphere. Particularly the emergence of continents permitted efficient use of solar energy. However, the widespread evolution of the biosphere fed back to the Earth system, often argued as a cause for the great oxidation event or as an important component in stabilizing Earth's climate. Furthermore, biologically enhanced weathering rates alter the flux of sediments in subduction zones, establishing a potential link to the deep interior. Stably bound water within subducting sediments not only enhances partial melting but further affects the mantle rheology. The mantle responds by enhancing its rates of convection, water outgassing, and subduction. How crucial is the emergence and evolution of life on Earth to these processes, and how would Earth have been evolved without the emergence of life? We here discuss concepts and present models addressing these questions and discuss the biosphere as a major component in evolving Earth system feedback cycles.
Nanodiamond finding in the hyblean shallow mantle xenoliths.
Simakov, S K; Kouchi, A; Mel'nik, N N; Scribano, V; Kimura, Y; Hama, T; Suzuki, N; Saito, H; Yoshizawa, T
2015-06-01
Most of Earth's diamonds are connected with deep-seated mantle rocks; however, in recent years, μm-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in serpentinite-hosted hydrothermal systems. Herein, we report the first finding of nanodiamonds, primarily of 6 and 10 nm, in Hyblean asphaltene-bearing serpentinite xenoliths (Sicily, Italy). The discovery was made by electron microscopy observations coupled with Raman spectroscopy analyses. The finding reveals new aspects of carbon speciation and diamond formation in shallow crustal settings. Nanodiamonds can grow during the hydrothermal alteration of ultramafic rocks, as well as during the lithogenesis of sediments bearing organic matter.
Helium Flux from the Earth's Mantle as Estimated from Hawaiian Fumarolic Degassing.
Naughton, J J; Lee, J H; Keeling, D; Finlayson, J B; Dority, G
1973-04-06
Averaged helium to carbon dioxide ratios measured from systematic collections of gases from Sulphur Bank fumarole. Kilauea, Hawaii, when coupled with estimates of carbon in the earth's crust, give a helium flux of 1 x 105 atoms per square centimeter per second. This is within the lower range of other estimates, and may represent the flux from deep-seated sources in the upper mantle.
NASA Astrophysics Data System (ADS)
Gaillard, Fabrice; Tarits, Pascal; Massuyeau, Malcolm; David, Sifre; Leila, Hashim; Emmanuel, Gardes
2013-04-01
The asthenosphere has classically been considered as a convective layer, with its viscosity decreased by the presence of 100's ppm water in olivine, and being overtopped by a rigid and dry lithosphere. It, however, needs a new conceptual definition as the presence of water seems not able to affect the rheology of olivine; furthermore, properties such as electrical conductivity and seismic wave's velocity are not sensibly affected by water content in olivine, leaving the geophysical features of the asthenosphere unexplained. An asthenosphere impregnated by low melt fractions is consistent with constraints on melting behavior of C-O-H-bearing peridotites and may also better explain electrical conductivity and seismic features. The challenge is therefore to confront and reconcile the complexity of mantle melting in the C-O-H system with geophysical observations. This work reviews and discusses several key properties of the asthenosphere and relates their vertical and lateral heterogeneities to geodynamic processes. The first discussion is about the top of the Lithosphere-Asthenosphere boundary in the oceanic mantle. The discontinuity identified by seismic and electrical surveys is located at an average depth of 65km and is weakly influenced by the age, and therefore, the temperature of the lithosphere. This puzzling observation is shown here to be in perfect line the onset of peridotite melting in presence of both H2O and CO2. Mantle melting is therefore expected at 65 km depth, where the melt is essentially carbonatitic, inducing weakening and imposing transition in the regime of thermal transfer. Deeper, the melt evolve to silica-richer compositions. Twenty years of petrological investigations on processes that control mantle redox state unanimously concur on an increasingly reduced mantle with increasing depth. The conventional wisdom defines garnet as being increasingly abundant and increasingly able to concentrate ferric iron with increasing depth. Such oxygen pump results in an increasingly reduced mantle with depth. Recent surveys have calibrated the carbon-carbonate redox transition at mantle pressure and have located its depth around 180-250 km (depth of redox melting); Deeper, only diamond is stable; Shallower, carbonates, mostly in its molten state, are expected. This petrological model is confronted to the most recent geophysical observations. Such observations indicate that melting must occur at depth down to 400 km, which conflict with the concept of redox melting. What is the composition of the melt? Hydrous silicate melt or hydrous carbonated melt? What does it mean in terms of deep upper mantle redox state?
NASA Astrophysics Data System (ADS)
Baba, Kiyoshi; Chen, Jin; Sommer, Malte; Utada, Hisashi; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion
2017-10-01
The Tristan da Cunha (TDC) is a volcanic island located above a prominent hotspot in the Atlantic Ocean. Many geological and geochemical evidences support a deep origin of the mantle material feeding the hotspot. However, the existence of a plume has not been confirmed as an anomalous structure in the mantle resolved by geophysical data because of lack of the observations in the area. Marine magnetotelluric and seismological observations were conducted in 2012-2013 to examine the upper mantle structure adjacent to TDC. The electrical conductivity structure of the upper mantle beneath the area was investigated in this study. Three-dimensional inversion analysis depicted a high conductive layer at 120 km depth but no distinct plume-like vertical structure. The conductive layer is mostly flat independently on seafloor age and bulges upward beneath the lithospheric segment where the TDC islands are located compared to younger segment south of the TDC Fracture Zone, while the bathymetry is rather deeper than prediction for the northern segment. The apparent inconsistency between the absence of vertical structure in this study and geochemical evidences on deep origin materials suggests that either the upwelling is too small and/or weak to be resolved by the current data set or that the upwelling takes place elsewhere outside of the study area. Other observations suggest that 1) the conductivity of the upper mantle can be explained by the fact that the mantle above the high conductivity layer is depleted in volatiles as the result of partial melting beneath the spreading ridge, 2) the potential temperature of the segments north of the TDC Fracture Zone is lower than that of the southern segment at least during the past 30 Myr.
NASA Technical Reports Server (NTRS)
Peslier, Anne H.; Brandon, Alan D.; Schaffer, Lillian Aurora; O'Reilly, Suzanne Yvette; Griffin, William L.; Morris, Richard V.; Graff, Trevor G.; Agresti, David G.
2014-01-01
The mantle lithosphere beneath the cratonic part of continents is the deepest (> 200 km) and oldest (>2-3 Ga) on Earth, remaining a conundrum as to how these cratonic roots could have resisted delamination by asthenospheric convection over time. Water, or trace H incorporated in mineral defects, could be a key player in the evolution of continental lithosphere because it influences melting and rheology of the mantle. Mantle xenoliths from the Lac de Gras kimberlite in the Slave craton were analyzed by FTIR. The cratonic mantle beneath Lac de Gras is stratified with shallow (<145 km) oxidized ultradepleted peridotites and pyroxenites with evidence for carbonatitic metasomatism, underlain by reduced and less depleted peridotites metasomatized by kimberlite melts. Peridotites analyzed so far have H O contents in ppm weight of 7-100 in their olivines, 58 to 255 in their orthopyroxenes (opx), 11 to 84 in their garnet, and 139 in one clinopyroxene. A pyroxenite contains 58 ppm H2O in opx and 5 ppm H2O in its olivine and garnet. Olivine and garnet from the deep peridotites have a range of water contents extending to higher values than those from the shallow ones. The FTIR spectra of olivines from the shallow samples have more prominent Group II OH bands compared to the olivines from the deep samples, consistent with a more oxidized mantle environment. The range of olivine water content is similar to that observed in Kaapvaal craton peridotites at the same depths (129-184 km) but does not extend to as high values as those from Udachnaya (Siberian craton). The Slave, Kaapvaal and Siberian cratons will be compared in terms of water content distribution, controls and role in cratonic root longevity.
Preliminary Results on Lunar Interior Properties from the GRAIL Mission
NASA Technical Reports Server (NTRS)
Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, H. Jay; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.;
2013-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k2. Lunar structure includes a thin crust, a deep mantle, a fluid core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future GRAIL will search for evidence of tidal dissipation and a solid inner core.
Magmatic plumbing system from lower mantle of Hainan plume
NASA Astrophysics Data System (ADS)
Xia, Shaohong; Sun, Jinlong; Xu, Huilong; Huang, Haibo; Cao, Jinghe
2017-04-01
Intraplate volcanism during Late Cenozoic in the Leiqiong area of southernmost South China, with basaltic lava flows covering a total of more than 7000 km2, has been attributed to an underlying Hainan plume. However, detailed features of Hainan plume, such as morphology of magmatic conduits, depth of magmatic pool in the upper mantle and pattern of mantle upwelling, are still enigmatic. Here we present seismic tomographic images of the upper 1100 km of the mantle beneath the southern South China. Our results show a mushroom-like continuous low-velocity anomaly characterized by a columnar tail with diameter of about 200-300 km that tilts downward to lower mantle beneath north of Hainan hotspot and a head that spreads laterally near the mantle transition zone, indicating a magmatic pool in the upper mantle. Further upward, this head is decomposed into small patches, but when encountering the base of the lithosphere, a pancake-like anomaly is shaped again to feed the Hainan volcanism. Our results challenge the classical model of a fixed thermal plume that rises vertically to the surface, and propose the new layering-style pattern of magmatic upwelling of Hainan plume. This work indicates the spatial complexities and differences of global mantle plumes probably due to heterogeneous compositions and changefully thermochemical structures of deep mantle.
Crystallization and Cooling of a Deep Silicate Magma Ocean
NASA Astrophysics Data System (ADS)
Bower, Dan; Wolf, Aaron
2016-04-01
Impact and accretion simulations of terrestrial planet formation suggest that giant impacts are both common and expected to produce extensive melting. The moon-forming impact, for example, likely melted the majority of Earth's mantle to produce a global magma ocean that subsequently cooled and crystallised. Understanding the cooling process is critical to determining magma ocean lifetimes and recognising possible remnant signatures of the magma ocean in present-day mantle heterogeneities. Modelling this evolution is challenging, however, due to the vastly different timescales and lengthscales associated with turbulent convection (magma ocean) and viscous creep (present-day mantle), in addition to uncertainties in material properties and chemical partitioning. We consider a simplified spherically-symmetric (1-D) magma ocean to investigate both its evolving structure and cooling timescale. Extending the work of Abe (1993), mixing-length theory is employed to determine convective heat transport, producing a high resolution model that parameterises the ultra-thin boundary layer (few cms) at the surface of the magma ocean. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval for melting. This model is used to determine the cooling timescale for a variety of plausible thermodynamic models, with special emphasis on comparing the center-outwards vs bottom-up cooling scenarios that arise from the assumed EOS.
Structure of the crust and upper mantle beneath the Balearic Islands (Western Mediterranean)
NASA Astrophysics Data System (ADS)
Banda, E.; Ansorge, J.; Boloix, M.; Córdoba, D.
1980-09-01
Data are presented from deep seismic sounding along the strike of the Balearic Islands carried out in 1976. The interpretation of the data gives the following results: A sedimentary cover of 4 km around Ibiza to 7 km under Mallorca overlies the crystalline basement. This basement with a P-wave velocity of 6.0 km/s at the top reaches a depth of at least 15 km under Ibiza and 17 km under Mallorca with an increase to 6.1 km/s at these depths. The crust-mantle boundary lies at a depth of 20 km and 25 km, respectively. A well documented upper-mantle velocity of 7.7 km/s is found along the entire profile. The Moho rises to a depth of 20 km about 30 km north of Mallorca and probably continues rising towards the center of the North Balearic Sea. The newly deduced crustal structure together with previously determined velocity-depth sections in the North Balearic Sea as well as heat flow and aeromagnetic data can be interpreted as an extended rift structure caused by large-scale tensional processes in the upper mantle. The available data suggest that the entire zone from the eastern Alboran Sea to the area north of the Balearic Islands represents the southeastern flank of this rift system. In this model the provinces of Spain along the east coast would represent the northwestern rift flank.
NASA Astrophysics Data System (ADS)
Liu, Y.-S.; Kuo, B.-Y.
2009-04-01
Taiwan is located in the convergent plate boundary zone where the Philippine Sea plate has obliquely collided on the Asian continental margin, initiating the arc-continent collision and subsequent mountain-building in Taiwan. Receiver function has been a powerful tool to image seismic velocity discontinuity structure in the crust and upper mantle which can help illuminate the deep dynamic process of active Taiwan orogeny. In this study, we adopt backprojection migration processing of teleseismic receiver functions to investigate the crust and upper mantle discontinuities beneath southern Taiwan, using the data from Southern Taiwan Transect Seismic Array (STTA), broadband stations of Central Weather Bureau (CWB), Broadband Array in Taiwan for Seismology (BATS), and Taiwan Integrated Geodynamics Research (TAIGER). This composite east-west trending linear array has the aperture of about 150 km with the station spacing of ~5-10 km. Superior to the common midpoint (CMP) stack approach, the migration can properly image the dipping, curved, or laterally-varying topography of discontinuous interfaces which very likely exist under the complicated tectonic setting of Taiwan. We first conduct synthetic experiments to test the depth and lateral resolution of migration images based on the WKBJ synthetic waveforms calculated from available source and receiver distributions. We will next construct the 2-D migration image under the array to reveal the topographic variation of the Moho and lithosphere discontinuities beneath southern Taiwan.
Archean komatiite volcanism controlled by the evolution of early continents.
Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John
2014-07-15
The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.
Archean komatiite volcanism controlled by the evolution of early continents
Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John
2014-01-01
The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873
Ambient Noise Tomography and Microseism Directionalities across the Juan de Fuca Plate
NASA Astrophysics Data System (ADS)
Tian, Ye
Ambient noise tomography has been well developed over the past decade and proven to be effective in studying the crust and upper mantle structure beneath the Earth’s continents. With new seismic array deployments beginning in the oceans, the application of the tomographic methods based on ambient noise observed at ocean bottom seismometers (OBSs) has become an important topic for research. In this thesis, I investigate the application of ambient noise tomography to oceanic bottom seismic data recorded by the Cascadia Initiative experiment across the Juan de Fuca plate. With higher local noise levels recorded by OBSs, I find that traditional data processing procedures used in ambient noise tomography produce measurable Rayleigh wave Green’s functions between deep ocean stations, whereas the shallow water stations are severely contaminated by both tilt noise and compliance noise and require new methods of processing. Because the local noise level varies across the study region, four semi-independent studies are conducted to both utilize the quieter deep-water stations and to address the problem posed by noisy shallow water stations. First, I construct an age-dependent shear wave speed model of the crust and uppermost mantle with 18 deep-water stations near the Juan de Fuca Ridge. The model possess a shallow low shear velocity zone near the ridge and has its sedimentary thickness, lithospheric thickness, and mantle shear wave speeds increase systematically with age Second, I investigate the locations and mechanisms of microseism generation using ambient noise cross-correlations constructed between 61 OBSs and 42 continental stations near the western US coast and find that the primary and secondary microseisms are generated at different locations and possibly have different physical mechanisms. Third, I show that tilt and compliance noise on the vertical components of the OBSs can be reduced substantially using the horizontal components and the differential pressure gauge records. Removal of these types of noise improves the signal-to-noise ratio of ambient noise cross-correlations significantly at beyond 10 sec period. Lastly, I present a new single-station method to estimate the microseism Rayleigh wave strength and directionality based on the horizontal-to-vertical transfer function. The high spatial and temporal resolution of this method may open up the microseism Rayleigh waves for a wider range of studies.
The Deep Crust Magmatic Refinery, Part 2 : The Magmatic Output of Numerical Models.
NASA Astrophysics Data System (ADS)
Bouilhol, P.; Riel, N., Jr.; Van Hunen, J.
2016-12-01
Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To better constrain lower crust processes, we have built up a numerical model [see Riel et al. associated abstract for methods] to explore different parameters, unravelling the complex interplay between melt percolation / crystallization and degassing / re-melting in a so called "hot zone" model. We simulated the intrusion of water bearing mantle melts at the base of an amphibolitized lower crust during a magmatic event that lasts 5 Ma. We varied several parameters such as Moho depth and melt rock ratio to better constrain what controls the final melt / lower crust composition.. We show the evolution of the chemical characteristics of the melt that escape the system during this magmatic event, as well as the resulting lower crust characteristics. We illustrate how the evolution of melt major elements composition reflects the progressive replacement of the crust towards compositions that are dominated by the mantle melt input. The resulting magmas cover a wide range of composition from tonalite to granite, and the modelled lower crust shows all the petrological characteristic of observed lower arc-crust.
Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra
NASA Astrophysics Data System (ADS)
Venkataraman, Anupama; Nyblade, Andrew A.; Ritsema, Jeroen
2004-08-01
We measure P wave spectral amplitude ratios from deep-focus earthquakes recorded at broadband seismic stations of the Tanzania network to estimate regional variation of sublithospheric mantle attenuation beneath the Tanzania craton and the eastern branch of the East African Rift. One-dimensional profiles of QP adequately explain the systematic variation of P wave attenuation in the sublithospheric upper mantle: QP ~ 175 beneath the cratonic lithosphere, while it is ~ 80 beneath the rifted lithosphere. By combining the QP values and a model of P wave velocity perturbations, we estimate that the temperature beneath the rifted lithosphere (100-400 km depth) is 140-280 K higher than ambient mantle temperatures, consistent with the observation that the 410 km discontinuity in this region is depressed by 30-40 km.
NASA Astrophysics Data System (ADS)
Ichinose, G.; Woods, M.; Dwyer, J.
2014-03-01
We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580-600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200-300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5-2 Hz range.
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Sharp, T. G.; Hervig, R. L.
2005-01-01
Siderophile elements in the Earth.s mantle are depleted relative to chondrites. This is most pronounced for the highly siderophile elements (HSEs), which are approximately 400x lower than chondrites. Also remarkable is the relative chondritic abundances of the HSEs. This signature has been interpreted as representing their sequestration into an iron-rich core during the separation of metal from silicate liquids early in the Earth's history, followed by a late addition of chondritic material. Alternative efforts to explain this trace element signature have centered on element partitioning experiments at varying pressures, temperatures, and compositions (P-T-X). However, first results from experiments conducted at 1 bar did not match the observed mantle abundances, which motivated the model described above, a "late veneer" of chondritic material deposited on the earth and mixed into the upper mantle. Alternatively, the mantle trace element signature could be the result of equilibrium partitioning between metal and silicate in the deep mantle, under P-T-X conditions which are not yet completely identified. An earlier model determined that equilibrium between metal and silicate liquids could occur at a depth of approximately 700 km, 27(plus or minus 6) GPa and approximately 2000 (plus or minus 200) C, based on an extrapolation of partitioning data for a variety of moderately siderophile elements obtained at lower pressures and temperatures. Based on Ni-Co partitioning, the magma ocean may have been as deep as 1450 km. At present, only a small range of possible P-T-X trace element partitioning conditions has been explored, necessitating large extrapolations from experimental to mantle conditions for tests of equilibrium models. Our primary objective was to reduce or remove the additional uncertainty introduced by extrapolation by testing the equilibrium core formation hypothesis at P-T-X conditions appropriate to the mantle.
NASA Astrophysics Data System (ADS)
Morino, P.; Caro, G.; Reisberg, L. C.
2015-12-01
Early onset of magma ocean crystallization revealed by coupled 146,147Sm-142,143Nd systematics of Nulliak ultramafics (3.78 Ga, Labrador) Precillia Morino1, Guillaume Caro1, Laurie Reisberg 1 1CRPG-CNRS, Université de Lorraine, Nancy, France Coupled 146,147Sm-142,143Nd systematics provides constraints on the timing of magma ocean crystallization on Mars, the Moon and Vesta. Estimates for the Earth's mantle, however, are less accurate owing to the sparsity of Eoarchean mantle-derived rocks with undisturbed 147Sm-143Nd systematics. This study attempts to establish a coherent 142,143Nd dataset for the Eoarchean mantle using well-preserved ultramafic rocks from the Nulliak assemblage (Labrador). Samples include meta-dunites, -pyroxenites and -peridotites exhibiting only minor serpentinization and limited element mobility. The presence of "Barberton type" komatiitic compositions (low Al/Ti, HREE depletion) is suggestive of a deep mantle source. 146,147Sm-142,143Nd and 187Re-187Os analyses yield a crystallization age of 3.78±0.09 Ga with ɛ143Ndi=1.5±0.2 and ɛ142Nd=8.6±2 ppm. This 142,143Nd signature yields a model age of mantle differentiation of 4.43±0.05 Ga (assuming a BSE with chondritic Sm/Nd and ɛ142Nd=0). Superchondritic Sm/Nd compositions for the BSE would translate into older model ages. Irrespective of the choice of primitive mantle composition, Nulliak ultramafics provide differentiation ages 100 Ma older than those estimated from Akilia tonalites but remarkably similar to that estimated from the 2.7 Ga Theo's flow (Abitibi). If Nulliak ultramafics originated from deep melting of a hot plume, their model age could reflect the early onset of magma ocean crystallization in the lowermost mantle.
Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography
NASA Astrophysics Data System (ADS)
Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.
2018-05-01
The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography.
NASA Astrophysics Data System (ADS)
Tseng, Tai-Lin; Chi, Hui-Ching; Huang, Bor-Shouh; Godoladze, Tea; Javakhishvili, Zurab; Karakhanyan, Arkadi
2015-04-01
Recent studies of seismic tomography show velocity anomalies in the mantle transition zone (TZ) under Zagros and Iranian Plateau, which are created by active collision between Africa and Eurasia. Remnants of Neo-Tethys slab that subducted before the collision might had experienced a break-off and likely be rested in the deep mantle. In this study, we utilize triplicate arrivals of high-resolution P waveforms to investigate the velocity structure of mantle beneath this continental collision zone and the surroundings. By combining several broadband arrays in eastern Turkey and Caucasus, we construct a fan of profiles, each about 800 km long, which consist of triplicate waveforms generated from the 410- and 660-km discontinuities. The method is particularly sensitive to the size of the velocity contrast for the sampled regions, including the central Iranian Plateau, Turan shield and part of South Caspian basin. Our results show that the lower TZ under the stable Turan shield is fast. The corresponding 660-km contrast is about 4.5% only, smaller than the value in global average model IASP91, but fairly close to that under the northern Indian shield in Precambrian age. For profiles sampling Iran, we observe azimuthal changes in the waveforms which require further data division or grouping. The preliminary analysis suggests that the velocity near the bottom of the TZ is comparable to model appropriate for Turan and probably has a slightly shallower 660-km discontinuity. We hope the comparisons between velocity structures under different terranes can improve our understandings to the lithosphere-mantle dynamics under the process of continental collision.
Outer Rise Faulting And Mantle Serpentinization
NASA Astrophysics Data System (ADS)
Ranero, C. R.; Phipps Morgan, J.; McIntosh, K.; Reichert, C.
Dehydration of serpentinized mantle of the downgoing slab has been proposed to cause both intermediate depth earthquakes (50-300 km) and arc volcanism at sub- duction zones. It has been suggested that most of this serpentinization occurs beneath the outer rise; where normal faulting earthquakes due to bending cut > 20 km deep into the lithosphere, allowing seawater to reach and react with underlying mantle. However, little is known about flexural faulting at convergent margins; about how many normal faults cut across the crust and how deeply they penetrate into the man- tle; about the true potential of faults as conduits for fluid flow and how much water can be added through this process. We present evidence that pervasive flexural faulting may cut deep into the mantle and that the amount of faulting vary dramatically along strike at subduction zones. Flexural faulting increases towards the trench axis indicat- ing that active extension occurs in a broad area. Multibeam bathymetry of the Pacific margin of Costa Rica and Nicaragua shows a remarkable variation in the amount of flexural faulting along the incoming ocean plate. Several parameters seem to control lateral variability. Off south Costa Rica thick crust of the Cocos Ridge flexes little, and little to no faulting develops near the trench. Off central Costa Rica, normal thick- ness crust with magnetic anomalies striking oblique to the trench displays small offset faults (~200 m) striking similar to the original seafloor fabric. Off northern Costa Rica, magnetic anomalies strike perpendicular to the trench axis, and a few ~100m-offset faults develop parallel to the trench. Further north, across the Nicaraguan margin, magnetic anomalies strike parallel to the trench and the most widespread faulting de- velops entering the trench. Multichannel seismic reflection images in this area show a pervasive set of trenchward dipping reflections that cross the ~6 km thick crust and extend into the mantle to depths of at least 20 km. Some reflections project updip to offsets in top basement and seafloor, indicating that they are fault plane reflections. Such a deeply penetrating tectonic fabric could have not developed during crustal cre- ation at the paleo-spreading center where the brittle layer is few km thick. Thus, they must be created during flexure of the plate entering the trench. This data imply that deep and widespread serpentinization of the incoming lithosphere can occur when the lithosphere is strongly faulted; that the extent of lithospheric faulting is closely re- lated to the crustal structure of the incoming plate; and that the amount of lithosphere faulting can change dramatically within a hundred km distance along a trench axis.
NASA Astrophysics Data System (ADS)
Pang, Chong-Jin; Wang, Xuan-Ce; Xu, Bei; Luo, Zhi-Wen; Liu, Yi-Zhi
2017-08-01
The role of fluids in the formation of the Permian-aged Xigedan and Mandula gabbroic intrusions in western Inner Mongolia was significant to the evolution of the Xing'an Mongolia Orogenic Belt (XMOB), and the active northern margin of the North China Craton (NCC). Secondary Ion Mass Spectroscopy (SIMS) U-Pb zircon geochronology establishes that the Xigedan gabbroic intrusion in the northern NCC was emplaced at 266 Ma, and is therefore slightly younger than the ca 280 Ma Mandula gabbroic intrusion in the XMOB. Along with their felsic counterparts, the mafic igneous intrusions record extensive bimodal magmatism along the northern NCC and in the XMOB during the Early to Middle Permian. The Mandula gabbroic rocks have low initial 87Sr/86Sr ratios (0.7040-0.7043) and positive εNd(t) (+6.2 to +7.3) and εHf(t) values (+13.4 to +14.5), resembling to those of contemporaneous Mandula basalts. These features, together with the presence of amphibole and the enrichment of large ion lithophile elements (LILE, e.g., Rb, Ba, U and Sr) and depletion of Nb-Ta suggest that the parental magmas of the Mandula mafic igneous rocks were derived from a depleted mantle source metasomatized by water-rich fluids. In contrast, the Xigedan gabbroic rocks are characterised by high 87Sr/86Sr ratios (0.7078-0.7080) and zircon δ18O values (5.84-6.61‰), but low εNd(t) (-9.3 to -10.2) and εHf(t) values (-8.76 to -8.54), indicative of a long-term enriched subcontinental lithosphere mantle source that was metasomatized by recycled, high δ18O crustal materials prior to partial melting. The high water contents (4.6-6.9 wt%) and arc-like geochemical signature (enrichment of fluid-mobile elements and depletion of Nb-Ta) of the parental magmas of the Xigedan gabbroic rocks further establish the existence of a mantle hydration event caused by fluid/melts released from hydrated recycled oceanic crust. Incompatible element modelling shows that 5-10% partial melting of an enriched mantle source by adding respectively 0.5% and 2% sediment melts and fluids, could have produced the parental magmas of the Xigedan gabbroic rocks. A range of geological evidence establishes an intracontinental origin for Late Paleozoic mafic igneous rocks along the northern NCC and in the XMOB, rather than a subduction-related setting. We therefore propose a deep-Earth water cycling process to account for mantle hydration and subsequent Late Paleozoic magmatism, supporting a geodynamic link between deep-Earth water cycling, and intracontinental magmatism and lithospheric extension.
Carbon-bearing MgSiO3 melt at deep mantle conditions
NASA Astrophysics Data System (ADS)
Ghosh, D. B.; Bajgain, S. K.; Mookherjee, M.; Karki, B. B.
2016-12-01
Carbon di-oxide and water are two important volatiles that are often present in silicate magmas and volcanic eruptions. To address the influence of these volatiles in deep seated melts, their properties (e.g., structure, transport, thermodynamics) at relevant pressure-temperature (P-T) conditions along with compositional variance need to be explored. MgSiO3 being one of the major components of the mantle, the study of carbonated MgSiO3 melts is of great contextual relevance. In the present work we investigate the structure and thermodynamics of carbon bearing MgSiO3 melts under conditions of the entire mantle.Our first-principles molecular dynamics (MD) simulations of the MgSiO3-CO2 system show that pressure profoundly influences the behavior of carbon-bearing silicate melts. Our results encompassing from 5 - 30 wt.% CO2 in MgSiO3 demonstrate that: (1) carbon speciation consists of distinct molecular CO2 and carbonate ions ( (CO3)2-) below 15 GPa and interestingly almost all of the carbonate ions are bound to Mg polyhedra; (2) with compression they evolve to silicon-polyhedral bound carbonate (along with Mg polyhedra bound), CO4 , and di-carbonate species. Accordingly, carbon solubility in the silicate melt becomes nearly ideal and carbon remains completely miscible with increasing pressure. Carbon reduces the melt density modestly by 0.015 to 0.005 g cm-3 per wt.% CO2 between 15 and 140 GPa. These results imply that deep-seated silicate melts above and below the transition zone, and atop the core-mantle boundary may be able to sequester significant amounts of carbon without making melts gravitationally unstable.
Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution
NASA Astrophysics Data System (ADS)
Khan, A.; Connolly, J. A. D.; Pommier, A.; Noir, J.
2014-10-01
Analysis of lunar laser ranging and seismic data has yielded evidence that has been interpreted to indicate a molten zone in the lowermost mantle overlying a fluid core. Such a zone provides strong constraints on models of lunar thermal evolution. Here we determine thermochemical and physical structure of the deep Moon by inverting lunar geophysical data (mean mass and moment of inertia, tidal Love number, and electromagnetic sounding data) in combination with phase-equilibrium computations. Specifically, we assess whether a molten layer is required by the geophysical data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is required to explain the geophysical data. This region is located within the mantle where the solidus is crossed at a depth of ˜1200 km (≥1600°C). Inverted compositions for the partially molten layer (150-200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. The melt phase is neutrally buoyant at pressures of ˜4.5-4.6 GPa but contains less TiO2 (<15 wt %) than the Ti-rich (˜16 wt %) melts that produced a set of high-density primitive lunar magmas (density of 3.4 g/cm3). Melt densities computed here range from 3.25 to 3.45 g/cm3 bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.
NASA Astrophysics Data System (ADS)
Harmon, Nicholas; Rychert, Catherine A.
2015-11-01
Continental crust formed billions of years ago but cannot be explained by a simple evolution of primary mantle magmas. A multi-step process is required that likely includes re-melting of wet metamorphosed basalt at high pressures. Such a process could occur at depth in oceanic crust that has been thickened by a large magmatic event. In Central America, variations in geologically inferred, pre-existing oceanic crustal thickness beneath the arc provides an excellent opportunity to study its effect on magma storage, re-melting of meta-basalts, and the potential for creating continental crust. We use surface waves derived from ambient noise tomography to image 6% radially anisotropic structures in the thickened oceanic plateau crust of Costa Rica that likely represent deep crustal melt sills. In Nicaragua, where the arc is forming on thinner oceanic crust, we do not image these deep crustal melt sills. The presence of these deep sills correlates with more felsic arc outputs from the Costa Rican Arc suggesting pre-existing thickened crust accelerates processing of primary basalts to continental compositions. In the Archean, reprocessing thickened oceanic crust by subsequent hydrated hotspot volcanism or subduction zone volcanism may have similarly enhanced formation of early continental crust. This mechanism may have been particularly important if subduction did not initiate until 3 Ga.
NASA Astrophysics Data System (ADS)
Dick, H. J.; Kvassnes, A. J.; Kinoshita, H.; MacLeod, C. J.; Robinson, P. T.
2017-12-01
Until the discovery of oceanic core complexes little was known and much inferred about the lower ocean crust at slow-spreading ridges. Their study shows the ocean crust isn't simply a uniform layer-cake of pillow lavas, sheeted dikes and gabbros, but is highly variable in thickness, composition and architecture, and even absent over large regions. The 660 km2 Atlantis Bank Gabbro Massif in the rift-mountains of the SW Indian Ridge flanking the Atlantis II Transform is the magmatic end member for ocean core complexes, and best approximates `average' slow-spread crust. Thus it has been a focus for drilling since its discovery in 1986, leading to the current attempt to drill to Moho there (Project SloMo). There are 3 ODP and IODP drill holes on its crest: 1508-m deep Hole 735B, 158-m deep Hole 1105A, and 809.4-m deep Hole U1473. These provide a 200 Kyr view of lower crustal accretion at a slow-spread ocean ridge. Here we extend this view to 2.7 Myr. Mapping and sampling shows the gabbro massif extends nearly the length of a single 2nd order magmatic ridge segment. With numerous inliers of the dike-gabbro transition at numerous locations, and a crust-mantle boundary, traced for 30-km along the transform wall, it would appear to represent a full section of the lower crust. As Moho is at 5.5 ± 1 km mbsf near Hole 735B, and 4.5 km beneath the transform, it is likely a serpentinization front. The crust-mantle boundary was crossed by dives at 4 locations. In each case gabbros at the base of the crust crystallized from melt that had previously fractionated 50% or more from a likely parent. Thus the gabbro massif must be laterally zoned, and the parental mantle melts had to have been emplaced at the center of the paleo-ridge segment, before intruding laterally to the distal end of the complex. Gabbros on a lithospheric flow line down the center of the massif closely resemble those from the drill holes. This shows that while lateral variations in crustal composition and thickness exist at Atlantis Bank, we can extend the conclusions derived from drilling at Hole U1473 that there is a continuum of accretionary magmatic and tectonic processes for 2.7 Myr, and a centrally located deep hole through the lower crust and mantle there will likely be representative of the 660-km2 Atlantis Bank gabbro massif as a whole.
Evidence against a chondritic Earth.
Campbell, Ian H; O'Neill, Hugh St C
2012-03-28
The (142)Nd/(144)Nd ratio of the Earth is greater than the solar ratio as inferred from chondritic meteorites, which challenges a fundamental assumption of modern geochemistry--that the composition of the silicate Earth is 'chondritic', meaning that it has refractory element ratios identical to those found in chondrites. The popular explanation for this and other paradoxes of mantle geochemistry, a hidden layer deep in the mantle enriched in incompatible elements, is inconsistent with the heat flux carried by mantle plumes. Either the matter from which the Earth formed was not chondritic, or the Earth has lost matter by collisional erosion in the later stages of planet formation.
Conference on Deep Earth and Planetary Volatiles
NASA Technical Reports Server (NTRS)
1994-01-01
The following topics are covered in the presented papers: (1) rare gases systematics and mantle structure; (2) volatiles in the earth; (3) impact degassing of water and noble gases from silicates; (4) D/H ratios and H2O contents of mantle-derived amphibole megacrysts; (5) thermochemistry of dense hydrous magnesium silicates; (6) modeling of the effect of water on mantle rheology; (7) noble gas isotopes and halogens in volatile-rich inclusions in diamonds; (8) origin and loss of the volatiles of the terrestrial planets; (9) structure and the stability of hydrous minerals at high pressure; (10) recycling of volatiles at subduction zones and various other topics.
NASA Astrophysics Data System (ADS)
Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.
2015-12-01
Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [2,3]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other volatiles. [1] Hauri et al. 1996, Nature 382, 415-419. [2] Dixon et al. 2002, Nature 420:385-89 [3] Workman et al. 2006, EPSL 241:932-51.
Hadean silicate differentiation revealed by anomalous 142Nd in the Réunion hotspot source
NASA Astrophysics Data System (ADS)
Peters, B. J.; Carlson, R.; Day, J. M.; Horan, M.
2017-12-01
Geochemical and geophysical data show that volcanic hotspots can tap ancient domains sequestered in Earth's deep mantle. Evidence from stable and long-lived radiogenic isotope systems has demonstrated that many of these domains result from tectonic and differentiation processes that occurred more than two billion years ago. Recent advances in the analysis of short-lived radiogenic isotopes have further shown that some hotspot sources preserve evidence for metal-silicate differentiation occurring within the first one percent of Earth's history. Despite these discoveries, efforts to detect variability in the lithophile 146Sm-142Nd (t1/2 = 103 Ma) system in Phanerozoic hotspot lavas have not yet detected significant global variation. We report 142Nd/144Nd ratios in Réunion Island basalts that are statistically distinct from the terrestrial Nd standard ranging to both higher and lower 142Nd/144Nd. Variations in 142Nd/144Nd, which total nearly 15 ppm on Réunion, are correlated with 3He/4He among both anomalous and non-anomalous samples. Such behavior implies that there were analogous changes in Sm/Nd and (U+Th)/3He that occurred during a Hadean silicate differentiation event and were not completely overprinted by the depleted mantle. Variations in the 142Nd-143Nd compositions of Réunion basalts can be explained by a single Hadean melting event producing enriched and depleted domains that partially re-mixed after 146Sm was no longer extant. Assuming differentiation occurred at pressures where perovskite is stable, anomalies of the magnitude observed in Réunion basalts require melting of at least 50% across a wide depth range, and up to 90% for melting at pressures near those of the deepest mantle. Models with best fits to Nd isotope data suggest this differentiation occurred around 4.40 Ga and mixing occurred after 4 Ga. This two-stage differentiation process nearly erased the ancient, anomalous 142Nd composition of the Réunion source and produced the relatively invariant 143Nd signature that is a hallmark of Réunion hotspot lavas. Given growing evidence that the Réunion hotspot source represents an unusually ancient, primitive mantle domain, these new data argue that Réunion is a critical source of information regarding the formation and preservation of ancient heterogeneities in Earth's deep interior.
NASA Astrophysics Data System (ADS)
Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter
Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e.g. limestone) recycled through shallow, subcontinental-lithospheric-mantle and deep, lower-mantle sources.
NASA Astrophysics Data System (ADS)
Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter
2001-11-01
Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e.g. limestone) recycled through shallow, subcontinental-lithospheric-mantle and deep, lower-mantle sources.
Mantle-derived trace element variability in olivines and their melt inclusions
NASA Astrophysics Data System (ADS)
Neave, David A.; Shorttle, Oliver; Oeser, Martin; Weyer, Stefan; Kobayashi, Katsura
2018-02-01
Trace element variability in oceanic basalts is commonly used to constrain the physics of mantle melting and the chemistry of Earth's deep interior. However, the geochemical properties of mantle melts are often overprinted by mixing and crystallisation processes during ascent and storage. Studying primitive melt inclusions offers one solution to this problem, but the fidelity of the melt-inclusion archive to bulk magma chemistry has been repeatedly questioned. To provide a novel check of the melt inclusion record, we present new major and trace element analyses from olivine macrocrysts in the products of two geographically proximal, yet compositionally distinct, primitive eruptions from the Reykjanes Peninsula of Iceland. By combining these macrocryst analyses with new and published melt inclusion analyses we demonstrate that olivines have similar patterns of incompatible trace element (ITE) variability to the inclusions they host, capturing chemical systematics on intra- and inter-eruption scales. ITE variability (element concentrations, ratios, variances and variance ratios) in olivines from the ITE-enriched Stapafell eruption is best accounted for by olivine-dominated fractional crystallisation. In contrast, ITE variability in olivines and inclusions from the ITE-depleted Háleyjabunga eruption cannot be explained by crystallisation alone, and must have originated in the mantle. Compatible trace element (CTE) variability is best described by crystallisation processes in both eruptions. Modest correlations between host and inclusion ITE contents in samples from Háleyjabunga suggest that melt inclusions can be faithful archives of melting and magmatic processes. It also indicates that degrees of ITE enrichment can be estimated from olivines directly when melt inclusion and matrix glass records of geochemical variability are poor or absent. Inter-eruption differences in olivine ITE systematics between Stapafell and Háleyjabunga mirror differences in melt inclusion suites, and confirm that the Stapafell eruption was fed by lower degree melts from greater depths within the melting region than the Háleyjabunga eruption. Although olivine macrocrysts from Stapafell are slightly richer in Ni than those from Háleyjabunga, their overall CTE systematics (e.g., Ni/(Mg/Fe), Fe/Mn and Zn/Fe) are inconsistent with being derived from olivine-free pyroxenites. However, the major element systematics of Icelandic basalts require lithological heterogeneity in their mantle source in the form of Fe-rich and hence fusible domains. We thus conclude that enriched heterogeneities in the Icelandic mantle are composed of modally enriched, yet nonetheless olivine-bearing, lithologies and that olivine CTE contents provide an incomplete record of lithological heterogeneity in the mantle. Modally enriched peridotites may therefore play a more important role in oceanic magma genesis than previously inferred.
Obrebski, M.; Allen, R.M.; Pollitz, F.; Hung, S.-H.
2011-01-01
The relation between the complex geological history of the western margin of the North American plate and the processes in the mantle is still not fully documented and understood. Several pre-USArray local seismic studies showed how the characteristics of key geological features such as the Colorado Plateau and the Yellowstone Snake River Plains are linked to their deep mantle structure. Recent body-wave models based on the deployment of the high density, large aperture USArray have provided far more details on the mantle structure while surface-wave tomography (ballistic waves and noise correlations) informs us on the shallow structure. Here we combine constraints from these two data sets to image and study the link between the geology of the western United States, the shallow structure of the Earth and the convective processes in mantle. Our multiphase DNA10-S model provides new constraints on the extent of the Archean lithosphere imaged as a large, deeply rooted fast body that encompasses the stable Great Plains and a large portion of the Northern and Central Rocky Mountains. Widespread slow anomalies are found in the lower crust and upper mantle, suggesting that low-density rocks isostatically sustain part of the high topography of the western United States. The Yellowstone anomaly is imaged as a large slow body rising from the lower mantle, intruding the overlying lithosphere and controlling locally the seismicity and the topography. The large E-W extent of the USArray used in this study allows imaging the 'slab graveyard', a sequence of Farallon fragments aligned with the currently subducting Juan de Fuca Slab, north of the Mendocino Triple Junction. The lithospheric root of the Colorado Plateau has apparently been weakened and partly removed through dripping. The distribution of the slower regions around the Colorado Plateau and other rigid blocks follows closely the trend of Cenozoic volcanic fields and ancient lithospheric sutures, suggesting that the later exert a control on the locus of magmato-tectonic activity today. The DNA velocity models are available for download and slicing at http://dna.berkeley.edu. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
NASA Astrophysics Data System (ADS)
Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike
2018-02-01
Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below 1400 °C during post-Archean times, probably sometime shortly after 2 Ga. At around this time kimberlites replace komatiites as the hallmark mantle-derived magmatic feature of continental shields worldwide. The remarkable Mesozoic-Cenozoic 'kimberlite bloom' between 250-50 Ma may represent the ideal circumstance under which the relatively cool and volatile-fluxed cratonic roots of the Pangea supercontinent underwent significant tectonic disturbance. This created more than 60% of world's known kimberlites in a combination of redox- and decompression-related low-degree partial melting. Less than 2% of world's known kimberlites formed after 50 Ma, and the tectonic settings of rare 'young' kimberlites from eastern Africa and western North America demonstrate that far-field stresses on cratonic lithosphere enforced by either continental rifting or cold subduction play a crucial role in enabling kimberlite magma transfer to Earth's surface.
Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth
NASA Astrophysics Data System (ADS)
Masson, Yder; Romanowicz, Barbara
2017-04-01
The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth's interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images. In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geological structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this "box tomography" [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present within the D'' region at the base of the mantle. Further, we show that box-tomography performs well even in the difficult situation where the velocity distribution in the mantle above the target structure is not known a-priori. REFERENCES [1] French, S. W. and B. Romanowicz (2015) Broad Plumes at the base of the mantle beneath major hotspots, Nature, 525, 95-99 [2] Masson, Y., Cupillard, P., Capdeville, Y., & Romanowicz, B. (2013). On the numerical implementation of time-reversal mirrors for tomographic imaging. Geophysical Journal International, ggt459. [3] Masson, Y., & Romanowicz, B. (2017). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem. Geophysical Journal International, 208(2), 674-692. [4] Masson, Y., & Romanowicz, B. (2017). Box Tomography: Localised imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, (under review).
Deep drilling; Probing beneath the earth's surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, J.250
1991-06-01
This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.
Seismic Reflection Transect across the Central Iberian Zone (Iberian Massif): The ALCUDIA project
NASA Astrophysics Data System (ADS)
Carbonell, R.; Simancas, F.; Martinez-Poyatos, D.; Ayarza, P.; Gonzalez, P.; Tejero, R.; Martín-Parra, L.; Matas, J.; Gonzalez-Lodeiro, F.; Pérez-Estaún, A.; García-Lobon, J.; Mansilla, L.; Palomeras, I.
2007-12-01
The lithosphere of the Central Iberian Zone (CIZ) differs from that of the southwestern Iberian Massif. They are limited by a suture zone. The seismic reflection profile IBERSEIS suggested that the activity of a Carboniferous mantle plume resulted in abundant intrusions of mafic magmas in the mid-to-lower crust which resulted in a singular crustal evolution. The current knowledge of the area based mostly in surface geological mapping suggests that basic magmatism continues further towards the north, indicating that the mantle plume may have affected a bigger area up to the Tajo depression. Furthermore, the existence of the Almadén mine, one of the largest mercury mine in the world within the CIZ, favour that the crust in this area is the result of anomalous lithospheric processes. Accordingly, the ALCUDIA project has been lauched aiming to study the structure and nature of the lithosphere of the CIZ. It includes the acquisition of a deep high resolution seismic reflection transect, detailed geological mapping, kinematic, petrologic and geochemical studies, and other geophysical studies (potential field methods). This new profile extends the previous IBERSEIS Transect towards the northeast, completing almost 600 km of deep seismic profiles, crossing the southern half of the Iberian Variscides. The transect crosses some important structures, such as the Toledo fault, Santa Elena Fault, Alcudia anticline, Almadén syncline, and some major magnetic anomalies. The preliminary results reveal that the crust is 30 km thick in average, with a horizontal Moho, a highly reflective mid-to-lower crust with a few mantle reflectors and well defined features in the upper crust with the indication of detachments zones that might link to the mid- crustal reflective zone.
Metal concentrations in the mussel Bathymodiolus platifrons from a cold seep in the South China Sea
NASA Astrophysics Data System (ADS)
Wang, Xiaocheng; Li, Chaolun; Zhou, Li
2017-11-01
Data regarding the concentration and distribution of various metals in different tissues of mussels from the cold seep is scant. We aimed to quantify the presence of twenty elements (Ca, K, Mg, Sr, Ag, Al, As, Ba, Cd, Co, Cr, Cu, Li, Fe, Mn, Mo, Ni, Pb, V, and Zn) in gills, mantles and shells of Bathymodiolus platifrons, a common mussel species in deep-sea cold seep and hydrothermal vent communities. Specimens of B. platifrons were sampled from a cold seep at the northern continental slope of the South China Sea and the elemental contents in its tissues were quantified. Our findings were compared to data from taxonomically similar species at hydrothermal vents and coastal waters. We found that most elements were significantly enriched in the gills, which could be related to food uptake and the existence of endosymbionts. In shells and mantles, Mn was particularly rich, possibly due to its replacement of Ca in the carbonate structure. A significant positive correlation among Ca, Sr, and Mg was found in both gills and mantles, consistent with relationships observed in vent and littoral mussel species. Concentrations of metals were highest in the new-growth outer edges of shells in comparison to older shell material, which suggests that trace metals have become more abundant in the ambient seawater in recent years. Compared with other deep-sea environments and coastal areas, metal accumulation showed local variability but similar overall patterns of uptake and accumulation, indicating that essential elemental requirements in different mussel species may be similar across taxa. The high bioconcentration factor (BCF) values of Mn and Ag suggest that their particular functions and regulation mechanisms are related to specific adaptations and life cycle processes.
Earth Evolution and Dynamics (Arthur Holmes Medal Lecture)
NASA Astrophysics Data System (ADS)
Torsvik, Trond H.
2016-04-01
While physicists are fantasizing about a unified theory that can explain just about everything from subatomic particles (quantum mechanics) to the origin of the Universe (general relativity), Darwin already in 1858 elegantly unified the biological sciences with one grand vision. In the Earth Sciences, the description of the movement and deformation of the Earth's outer layer has evolved from Continental Drift (1912) into Sea-Floor Spreading (1962) and then to the paradigm of Plate Tectonics in the mid-to-late 1960s. Plate Tectonics has been extremely successful in providing a framework for understanding deformation and volcanism at plate boundaries, allowed us to understand how continent motions through time are a natural result of heat escaping from Earth's deep interior, and has granted us the means to conduct earthquake and volcanic hazard assessments and hydrocarbon exploration, which have proven indispensable for modern society. Plate Tectonics is as fundamentally unifying to the Earth Sciences as Darwin's Theory of Evolution is to the Life Sciences, but it is an incomplete theory that lacks a clear explanation of how plate tectonics, mantle convection and mantle plumes interact. Over the past decade, however, we have provided compelling evidence that plumes rise from explicit plume generation zones at the margins of two equatorial and antipodal large low shear-wave velocity provinces (Tuzo and Jason). These thermochemical provinces on the core-mantle boundary have been stable for at least the last 300 million years, possibly the last 540 million years, and their edges are the dominant sources of the plumes that generate large igneous provinces, hotspots and kimberlites. Linking surface and lithospheric processes to the mantle is extremely challenging and is only now becoming feasible due to breakthroughs in the estimation of ancient longitudes before the Cretaceous, greatly improved seismic tomography, recent advances in mineral physics, and new developments in our understanding of the dynamics of true polar wander. Dramatic improvements in computational capacity and numerical methods that efficiently model mantle flow while incorporating surface tectonics, plumes, and subduction, have emerged to facilitate further study - We are now capitalizing on these recent advances so as to generate a new Earth model that links plate tectonics with shallow and deep mantle convection through time, and which includes elements such as deeply subducted slabs and stable thermochemical piles with plumes that rise from their edges. It is still unclear, though, why lower mantle structures similar to today would have existed since the Early Phanerozoic (540 Ma), and perhaps for much longer time. Could large-scale upwellings act as an anchor for mantle structure that also controls where downward flow and subduction occurs? Or could it be that subduction keeps itself in place? These are open questions, and at the moment we do not even know with certainty whether Tuzo and Jason were spatially stable for much longer than 300 Myr; we can only state that their stability before Pangea formed is consistent with palaeomagnetic and geological data, but is not necessarily required.
Lessons from geothermal gases at Yellowstone
NASA Astrophysics Data System (ADS)
Lowenstern, J. B.; Bergfeld, D.; Evans, W.; Hurwitz, S.
2015-12-01
The magma-hydrothermal system of the Yellowstone Plateau Volcanic Field encompasses over ten thousand individual springs, seeps, and fumaroles spread out over >9000 square kilometers, and produces a range of acid, neutral and alkaline waters. A prominent model (Fournier, 1989 and related papers) concludes that many neutral and alkaline fluids found in hot springs and geysers are derived from a uniform, high-enthalpy parent fluid through processes such as deep boiling and mixing with dilute meteoric groundwater. Acid waters are generally condensates of gas-bearing steam that boils off of subsurface geothermal waters. Our recent studies of gases at Yellowstone (Lowenstern et al., 2015 and references therein) are compatible with such a model, but also reveal that gases are largely decoupled from thermal waters due to open-system addition of abundant deep gas to (comparatively) shallow circulating thermal waters. Fumarole emissions at Yellowstone range from gas-rich (up to 15 mol%) composed of deeply derived CO2, He and CH4, to steam-rich emissions (<0.01% gas) dominated by N2 and Ar. The clear implication is that deep gas is diluted with atmospheric gas boiled off of geothermal liquids. The general trend is antithetical to that predicted by progressive boiling of a parent fluid (Rayleigh or batch degassing), where decreasing gas content should correlate with increasing proportions of soluble gas (i.e., CO2). Deep gas at Yellowstone fits into two general categories: 1) mantle-derived CO2 with a hotspot He isotope signature (>16 RA) and low CH4 and He concentrations and 2) mantle-derived CO2 with much higher CH4 and/or He concentrations and abundant radiogenic He picked up from crustal degassing. Individual thermal areas have distinct CH4/He. It remains unclear whether some gas ratios mainly reflect subsurface geothermal temperatures. Instead, they may simply reflect signatures imparted by local rock types and mixing on timescales too fast for reequilibration. Overall, the gas chemistry reflects a broader view of mantle-crust dynamics than can be appreciated by studies of only dissolved solutes in the neutral and alkaline waters from Yellowstone geysers. Fournier (1989) Ann. Rev. Earth Planet. Sci. v. 17, p. 13-53. Lowenstern et al. (2015) JVGR, v. 302, 87-101.
Contrasting melt equilibration conditions across Anatolia
NASA Astrophysics Data System (ADS)
Reid, Mary; Delph, Jonathan; Schleiffarth, W. Kirk; Cosca, Michael
2017-04-01
The widespread mafic volcanism, elevated crustal temperatures, and plateau-type topography in Central Anatolia, Turkey, could collectively be the result of lithospheric delamination, mantle upwelling, and tectonic escape in response to Arabian-Anatolian plate collision. We used the results from basalt geochemistry and a passive-source broadband seismic experiment obtained as part of an international collaborative effort (Continental Dynamics - Central Anatolia Tectonics) to investigate the crust-mantle structure and melting conditions associated with the Quaternary Hasandag Monogenic Cluster (HMC) south and west of Hasandag volcano. The HMC is unusually mafic, not only for Central Anatolia but globally, enabling meaningful comparisons between geochemical and seismic interpretations of mantle conditions. HMC basalts are characterized by orogenic signatures that could have originated (1) in mantle wedge that, after stagnating because of collision, was remobilized south and upward as a result of rollback of the African slab or, alternatively (2) by piecemeal foundering of residual mantle lithosphere into convecting upper mantle, producing small-scale convection and associated decompression melting. Melt equilibration conditions for the HMC are hot (TP ˜1335-1250˚ C, assuming 1-4 wt.% H2O) and shallow (P = 1.1 to 1.6 GPa), approaching those for MORB. Shear wave velocities are relatively constant at ˜4.1 km/s between the Moho and a depth of ˜45-50 km (˜1.4 GPa; Fig. 6), below which Vs increases with increasing depth. We infer that a melt-perfused mantle lid could be locally present between 40 and 55 km. In contrast to Central Anatolia, estimated equilibration conditions for Western Anatolia and Eastern Anatolia (east of the Inner Tauride Suture) mantle melts are hotter (by ≥60˚ C) and deeper (mostly by 0.6-1.0 GPa). They also have chemical signatures that, unlike Central Anatolia, are similar to those of intraplate basalts. These differences are likely related to the presence of a fragmenting, if quite deep, Cyprus slab beneath Central Anatolia, in contrast to absence of the Arabian slab beneath Eastern Anatolia since at least 10 Ma, and flow of deep-seated asthenosphere through a tear in the African plate under Western Anatolia. .
Evidence for postglacial signatures in gravity gradients: A clue in lower mantle viscosity
NASA Astrophysics Data System (ADS)
Métivier, Laurent; Caron, Lambert; Greff-Lefftz, Marianne; Pajot-Métivier, Gwendoline; Fleitout, Luce; Rouby, Hélène
2016-10-01
The Earth's surface was depressed under the weight of ice during the last glaciations. Glacial Isostatic Adjustment (GIA) induces the slow recession of the trough that is left after deglaciation and is responsible for a contemporary uplift rate of more than 1 cm/yr around Hudson Bay. The present-day residual depression, an indicator of still-ongoing GIA, is difficult to identify in the observed topography, which is predominantly sensitive to crustal heterogeneities. According to the most widespread GIA models, which feature a viscosity of 2- 3 ×1021 Pa s on top of the lower mantle, the trough is approximately 100 m deep and cannot explain the observed gravity anomalies across North America. These large anomalies are therefore usually attributed to subcontinental density heterogeneities in the tectosphere or to slab downwelling in the deep mantle. Here, we use observed gravity gradients (GG) to show that the uncompensated GIA trough is four times larger than expected and that it is the main source of the North American static gravity signal. We search for the contribution to these GGs from mantle mass anomalies, which are deduced from seismic tomography and are mechanically coupled to the global mantle flow. This contribution is found to be small over Laurentia, and at least 82% of the GGs are caused by GIA. Such a contribution from GIA in these GG observations implies a viscosity that is greater than 1022 Pa s in the lower mantle. Our conclusions are a plea for GIA models with a highly viscous lower mantle, which confirm inferences from mantle dynamic models. Any change in GIA modelling has important paleoclimatological and environmental implications, encouraging scientists to re-evaluate the past ice history at a global scale. These implications, in turn, affect the contribution of bedrock uplift to the contemporaneous mass balance over Antarctica and Greenland and thus the present-day ice-melting rate as deduced from the GRACE space mission. Additionally, studies of the thermo-chemical structure of the lithosphere/crust under North America that exploit gravity or geodetic data should be corrected for a GIA model, which is not the case today.
Hydrogen-bond symmetrization breakdown and dehydrogenation mechanism in FeO2H at high pressure
NASA Astrophysics Data System (ADS)
Hu, Q.; Zhu, S.; Mao, H. K.; Mao, W. L.; Sheng, H.
2017-12-01
The cycling of hydrogen plays an important role in the geochemical evolution of our planet. In Earth's interiors, hydrogen cycling is mainly carried out by hydrous minerals. Under high-pressure conditions, asymmetric hydroxyl bonds in hydrous minerals tend to form a symmetric O-H-O configuration that improves their thermal stability. Therefore it is possible to transport water into the deeper part of the Earth's lower mantle. Here, we employ first-principles free-energy landscape sampling methods based on a recently developed stochastic surface walking algorithm to reveal the transition mechanism of a water-bearing mineral, FeO2H, at deep mantle conditions. By resolving the lowest-energy transition pathway from ɛ-FeO2H to the high-pressure Py-phase, we demonstrate that half of the O-H bonds in the mineral rupture during the structural transition, leading toward the breakdown of symmetrized hydrogen bonds and eventual dehydrogenation. Our study sheds new light on the stability of symmetric hydrogen bonds in hydrous minerals during structural transitions and suggests a dehydrogenation mechanism from water in the deep mantle.
Saltus, R.W.; Hudson, T.L.
2007-01-01
The northern Cordilleran fold-and-thrust belt in Canada and Alaska is at the boundary between the broad continental margin mobile belt and the stable North American craton. The fold-and-thrust belt is marked by several significant changes in geometry: cratonward extensions in the central Yukon Territory and northeastern Alaska are separated by marginward re-entrants. These geometric features of the Cordilleran mobile belt are controlled by relations between lithospheric strength and compressional tectonic forces developed along the continental margin. Regional magnetic anomalies indicate deep thermal and compositional characteristics that contribute to variations in crustal strength. Our detailed analysis of one such anomaly, the North Slope deep magnetic high, helps to explain the geometry of the fold-and-thrust front in northern Alaska. This large magnetic anomaly is inferred to reflect voluminous mafic magmatism in an old (Devonian?) extensional domain. The presence of massive amounts of malic material in the lower crust implies geochemical depletion of the underlying upper mantle, which serves to strengthen the lithosphere against thermal erosion by upper mantle convection. We infer that deep-source magnetic highs are an important indicator of strong lower crust and upper mantle. This stronger lithosphere forms buttresses that play an important role in the structural development of the northern Cordilleran fold-and-thrust belt. ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Morón, S.; Gallagher, S. J.; Moresi, L. N.; Salles, T.; Rey, P. F.; Payenberg, T.
2016-12-01
The effect of plate-mantle dynamics on surface topography has increasingly being recognized. This concept is particularly useful for the understanding of the links between plate-mantle dynamics, continental break up and the creation of sedimentary basins and their associated drainage systems. To unravel these links back in time we present an approach that uses numerical models and the geological record. The sedimentary basins of the North West Shelf (NWS) of Australia contain an exceptional record of the Permian to early Cretaceous polyphased rifting of Australia from Greater India, which is in turn associated with the breakup of Gondwana. This record and the relative tectonic quiescence of the Australian Continent since the Late Cretaceous make the NWS a great natural laboratory for investigating the interaction between mantle dynamics, plate tectonics and drainage patterns. Furthermore, as a result of the extensive petroleum exploration and production in the area a uniquely large dataset containing seismic, lithologic, biostratigraphic and detrital zircon information is already available. This study will first focus on augmenting zircon datasets to refine the current conceptual models of paleodrainage systems associated with the NWS. Current conceptual models of drainage patterns suggest the previous existance of large transcontinental rivers that transported sediments from Antarctica and India, rather than from more proximal Australian sources. From a mass-balance point of view this model seems reasonable, as large transcontinental rivers would be required to transport the significant volume of sediments that are deposited in the thick (15km) sedimentary sequences of the NWS. Coupling of geodynamic (Underworld) and landscape-dynamics (Badlands) models will allow us to numerically test the likelihood of this conceptual model and also to present and integrated approach to investigate the link between deep Earth processes and surficial processes.
NASA Astrophysics Data System (ADS)
Watremez, L.; Chen, C.; Prada, M.; Minshull, T. A.; O'Reilly, B.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.
2015-12-01
The Porcupine Basin is a narrow V-shaped failed rifted basin located offshore SW Ireland. It is of Permo-Triassic to Cenozoic age, with the main rifting phase in the Late Jurassic to Early Cretaceous. Porcupine Basin is a key study area to learn about the processes of continental extension and to understand the thermal history of this rifted basin. Previous studies show increasing stretching factors, from less than 1.5 to the North to more than 6 to the South. A ridge feature, the Porcupine Median Ridge, has been identified in the middle of the southernmost part of the basin. During the last three decades, this ridge has been successively interpreted as a volcanic structure, a diapir of partially serpentinized mantle, or a block of continental crust. Its nature still remains debated today. In this study, we use arrival times from refractions and wide-angle reflections in the sedimentary, crustal and mantle layers to image the crustal structure of the thinnest part of the basin, the geometry of the continental thinning from margin to margin, and the Porcupine Median Ridge. The final velocity model is then compared with coincident seismic reflection data. We show that (1) the basin is asymmetric, (2) P-wave velocities in the uppermost mantle are lower than expected for unaltered peridotites, implying upper-mantle serpentinisation, (3) the nature of Porcupine Median Ridge is probably volcanic, and (4) the amount of thinning is greater than shown in previous studies. We discuss the thermal implications of these results for the evolution of this rift system and the processes leading to the formation of failed rifts. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.
NASA Technical Reports Server (NTRS)
Brandon, Alan D.; Graham, David W.; Waight, Tod; Gautason, Bjarni
2007-01-01
Picrites from the neovolcanic zones in Iceland display a range in Os-187/Os-188O from 0.1297 to 0.1381 ((gamma)Os = 0.0 to 6.5) and uniform Os-186/Os-188 of 0.1198375+/-32 (2 (sigma)). The value for Os-186/Os-188 is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398+/-16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in Os-186/Os-188 and Os-187/Os-188 from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high He-3/He-4, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not. A positive correlation between Os-187/Os-188 and He-3/He-4 from 9.6 to 19 RA in Iceland picrites is best modeled as mixtures of 500 Ma or older ancient recycled crust mixed with primitive mantle, creating a hybrid source region that subsequently mixes with the convecting MORB mantle during ascent and melting. This multistage mechanism to explain these isotope systematics is consistent with ancient recycled crust juxtaposed with more primitive, relatively He-rich mantle, in convective isolation from the upper mantle, most likely in the lowermost mantle. This is inconsistent with models that propose random mixing between heterogeneities in the convecting upper mantle as a mechanism to explain the observed isotopic variation in oceanic lavas or models that produce a high He-3/He-4 signature in melt depleted and strongly outgassed, He-poor mantle. Instead these systematics require a deep mantle source to explain the 3He/4He signature in Iceland lavas. The He-3/He-4 of lavas derived from the Iceland plume changed over time, from a maximum of 50 RA at 60 Ma, to approximately 25-27 RA at present. The changes are coupled with distinct compositional gaps between the different aged lavas when H-3/He-4 is plotted versus various geochemical parameters such as Nd-143/Nd-144 and La/Sm. These relationships can be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period.
NASA Astrophysics Data System (ADS)
Osmaston, M. F.
2012-04-01
Introduction. The 'deep-keeled cratons' frame for global dynamics is the result of seeking Earth-behaviour answers to the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Surprisingly it has turned out [1 - 4] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that there is a rational petrological explanation for the otherwise-unexpected immobility of subcratonic material to such depths [5 - 7]. Clockwise rotation of Antarctica? This contribution greatly amplifies my original plate dynamical arguments for suggesting [8] that such rotation is ongoing. Convection is unsuited to causing rotation about a pole within the plate so, as noted then, a gearwheel-like linkage to Africa at the SWIR would provide its clearly CCW (Biscay-Caucasus) relationship to the Mediterranean belt for the past 100 Ma, also seen in its separation from South America. Gearwheel-like linkage of motion requires the presence of some kind of E-W restraint further north. In that case it was the N Africa/Arabia involvement in the Alpide belt, but the earlier opening of the central Atlantic by the eastward motion of Africa, suggests its rigid Gondwanan attachment to Antarctica rotation at that time, with little constraint in the north. Further east, the seafloor data show that Australia-Antarctica separation involved no such opposite rotational linkage, so, with no E-W mechanical constraint in the north by Indonesia, they must have rotated together, as is recorded by Australia's eastward motion to generate the Mesozoic seafloor at its western side. Moving east again, the sigmoidal fracture-zone pattern between W Antarctica and Tonga Trench seems consistent with a gearwheel-linked relative rotation of the Pacific plate by about 35o CCW since about 120 Ma, so about half that (clockwise) by Antarctica. The triangular Cocos plate is then in the position where the two gearwheels separate. Further north, the dextral slip on the San Andreas Fault and the opening of the Gorda Ridge are broadly consistent with such rotation. Note that with our two-layer mantle all reference to 'absolute', lower mantle-related, positions is inappropriate. Our sole concern now is with relative motions of plates. Driving torque on the cratonic keel of East Antarctica. I maintain here my suggestion [8] that this keel, in actual contact with the lower mantle at its boundary, is picking up an electromagnetically generated torque, transmitted up from the polar zone of the CMB through the higher viscosity lower mantle. The reality of the rotation now invites more attention to this mechanism. The involvement of the cratonic keel is supported, as noted [8], by the apparent absence of rotational effects in the Arctic, where there is no keel in the polar position, although a similar CMB coupling to the lower mantle seems likely. The involvement of geomagnetism is supported by the sharp changes in central Pacific fracture zone orientation and the onset of the Ontong Java magmatism, correlating with the start and end of the Cretaceous long normal geochron [8, 9]. Such a change is also seen at M0 time in the Weddell Sea. Presumably the speed of Antarctica rotation was affected. Gondwanaland break-up. In view of these abundant tectonic effects attributable to Antarctica rotation, I propose that this was what broke up Gondwanaland, not a plume, as no such things are recognized in this thick-plate, two-layer mantle, version of the Earth-function paradigm. In this version, magmas with apparently lower mantle chemical signatures can be sourced within the upper mantle [10] and flood basalts can be generated by splitting cratons [11]. So the ~176 Ma age of the Ferrar Dolerite in Antarctica is a record of one of those splits. Gaps in the PalaeoPacific rim. If we restore Australia both westward to before the spreading at its western side and southward to its position against Antarctica, the Pacific rim was a fair approximation to a great circle, so it covered a hemisphere. Spreading of the other oceans, initiated by Gondwanaland break-up, must have been at the expense of the size of the Pacific, so it must formerly have covered much more than a hemisphere, and had a periphery correspondingly rather shorter than a great circle. Thus we have the surprising result that reducing the area of the Pacific actually required that its rim be made longer, by making gaps between the previously defining cratonic keels. A further result was that now-excess upper mantle material from below the Pacific had to flow through those gaps to put beneath the widening 'new' oceans. For all four of the obvious gaps - Caribbean, Scotia, Australia-Antarctica, Bering - there is evidence to support the presence of that outflow, and in two of the cases there is evidence that motions to open the gaps began very soon after Gondwana began to break up. Subduction and a two-layer mantle? In another contribution at this meeting (GD5.1) I explain that, in the thick-plate frame adopted here, subduction is neither a motivating player (for break-up purposes) in plate dynamics nor does it breach significantly our 2-layer mantle picture. The underlying reason is that oceanic 'tectosphere' is actually thicker for the same reason [5 - 7] as that of cratons, giving it ex-LVZ heat content which transforms the subduction picture. Three Conclusions. (1) The thick-plate, 2-layer mantle version of the earth-function paradigm [1 - 7] is alive and well. (2) The break-up of Gondwanaland was caused by Antarctica's clockwise rotation. (3) Such rotation is now to be considered a major agent in plate motion dynamics for the period during which East Antarctica, or any other sufficiently deep-keeled craton previously, was located at one of the Earth's poles. [1] Osmaston M. F. (2006) Global tectonic actions emanating from Arctic opening in the circumstances of a two-layer mantle and a thick-plate paradigm involving deep cratonic tectospheres: the Eurekan (Eocene) compressive motion of Greenland and other examples. In Proc. ICAM IV, 2003 (ed. R. Scott & D. Thurston). OCS Study MMS 2006-003, p.105-124: Also at: http://www.mms.gov/alaska/icam. [2] Osmaston M. (2005) Interrelationships between large-scale plate motions as indicators of mantle structure: new constraints on mantle modelling and compositional layout. In 3rd Workshop on "Earth's mantle composition, structure and phase transitions" St Malo, France. http://deep.earth.free.fr/participants.php. [3] Osmaston M. F. (2007) Cratonic keels and a two-layer mantle tested: mantle expulsion during Arabia-Russia closure linked to westward enlargement of the Black Sea, formation of the Western Alps and subduction of the Tyrrhenian (not the Ionian) Sea. XXIV IUGG, Session JSS 011, Abstr #2105 http://www.iugg2007perugia.it/webbook/. [4] Osmaston M. F. (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. Geophys. Res. Abstr. 11, EGU2009-6359 (Solicited). [5] Karato S. (1986) Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309-310. [6] Hirth G. & Kohlstedt D. L. (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere. EPSL 144, 93-108. [7] Osmaston M. F. (2010) On the actual variety of plate dynamical mechanisms and how mantle evolution affected them through time, from core formation to the Indian collision. Geophys. Res. Abstr. 12, EGU2010-6101. [8] Osmaston M. F. (2003) What drives plate tectonics? Slab pull, ridge push or geomagnetic torque from the CMB? A new look at the old players vis-a-vis an exciting new one. In XXIII IUGG 2003, B129, Abstr no 016795-2. [9] Atwater T., Sclater J., Sandwell D., Severinghaus J., & Marlow M. S. (1993) Fracture zone traces across the North Pacific Cretaceous quiet zone and their tectonic implications. In The Mesozoic Pacific: geology, tectonics and volcanism, (ed. Pringle, Sager, Sliter, & Stein) AGU Geophys. Monogr. 77, 137-154. [10] Osmaston M. F. (2000) An upper mantle source for plumes and Dupal; result of processes and history that have shaped the Earth's interior from core to crust. Goldschmidt 2000, J. Conf. Abstr. 5 (2), 763. [11] Osmaston M. F. (2008) Extra-thick plates: basis for a single model of mantle magmagenesis, all the way from MORB to kimberlite. Goldschmidt 2008. Geochim.Cosmochim. Acta 72(12S), A711.
Supercontinents, Plate Tectonics, Large Igneous Provinces and Deep Mantle Heterogeneities
NASA Astrophysics Data System (ADS)
Torsvik, T. H.; Steinberger, B.; Burke, K.; Smethurst, M. A.
2008-12-01
The formation and break-up of supercontinents is a spectacular demonstration of the Earth's dynamic nature. Pangea, the best-documented supercontinent, formed at the end of the Palaeozoic era (320 Ma) and its dispersal, starting in the Early Jurassic (190 Ma), was preceded by and associated with widespread volcanic activity, much of which produced Large Igneous Provinces (LIPs), but whether any of the heat or material involved in the generation of LIP rocks comes from greater depths has remained controversial. Two antipodal Large Low Shear wave Velocity Provinces with centre of mass somewhat south of the equator (African and Pacific LLSVPs), isolated within the faster parts of the deep mantle dominate all global shear- wave tomography models. We have tested eight global models and two D" models: They all show that deep- plume sourced hotspots and most reconstructed LIPs for the last 300 million years project radially downwards to the core-mantle-boundary near the edges of the LLSVPs showing that the plumes that made those hotspots and LIPS came only from those plume generation zones. This is a robust result because it is observed in multiple reference frames, i.e. fixed/moving hotspot and palaeomagnetic frames, and in the latter case whether the effect of True Polar Wander (TPW) is considered or not. Our observations show that the LLSVPs must have remained essentially stable in their present position for the last 300 million years. LIPs have erupted since the Archean and may all have been derived from the margins of LLSVPs but whether the African and Pacific LLSVPs have remained the same throughout Earth's history is less certain although analogous structures on Mars do indicate long-term stability on that planet. Deep mantle heterogeneities and the geoid have remained very stable for the last 300 million years, and the possibility is therefore open for speculating on links to Pangea assembly. In a numerical model, Zhong et al. (2007, EPSL) argued that Pangea assembled above a major down-welling, and calculated that, following the assembly, a sub-Pangea upwelling developed relatively fast (within~50 Myr) as mantle return flow in response to circum-Pangea subduction. Collision of Gondwana and Laurussia took place during the destruction of the Rheic Ocean and parts of the Palaeotethys and bulk Pangea assembled at ca. 320 Ma. However, most of the Rheic Ocean had gone much earlier (ca. 370 Ma) and it may therefore be more appropriate in terms of mantle modelling to place "supercontinent formation" in Devonian times. In that case a large-scale thermal upwelling under Africa, and the presumed chemically distinct African LLSVP beneath it, would have existed as early as 320 Ma, so that a plume head from its edge could have impinged upon the lithosphere at the time determined for the oldest LIP we have reconstructed. In such a model, the African LLSVP should not have existed before Devonian times, because convection would have been dominated by a degree-1 mode with only one upwelling, presumably above the Pacific LLSVP. The situation becomes more obscure further back in time; TPW may have been larger during degree-1 convection, so that reconstructions in the palaeomagnetic frame are not necessarily in relation to the deep mantle. There may again have been two LLSVPs during dispersal of the previous supercontinent (Rodinia), in which case a second LLSVP may again have been approximately antipodal to the one beneath the Pacific.
Anomalous mantle transition zone beneath the Yellowstone hotspot track
NASA Astrophysics Data System (ADS)
Zhou, Ying
2018-06-01
The origin of the Yellowstone and Snake River Plain volcanism has been strongly debated. The mantle plume model successfully explains the age-progressive volcanic track, but a deep plume structure has been absent in seismic imaging. Here I apply diffractional tomography to receiver functions recorded at USArray stations to map high-resolution topography of mantle transition-zone discontinuities. The images reveal a trail of anomalies that closely follow the surface hotspot track and correlate well with a seismic wave-speed gap in the subducting Farallon slab. This observation contradicts the plume model, which requires anomalies in the mid mantle to be confined in a narrow region directly beneath the present-day Yellowstone caldera. I propose an alternative interpretation of the Yellowstone volcanism. About 16 million years ago, a section of young slab that had broken off from a subducted spreading centre in the mantle first penetrated the 660 km discontinuity beneath Oregon and Idaho, and pulled down older stagnant slab. Slab tearing occurred along pre-existing fracture zones and propagated northeastward. This reversed-polarity subduction generated passive upwellings from the lower mantle, which ascended through a water-rich mantle transition zone to produce melting and age-progressive volcanism.
NASA Astrophysics Data System (ADS)
Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu
2018-04-01
Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8–10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.
Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu
2018-04-17
Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8-10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.
Deformation of phase D and Earth's deep water cycle
NASA Astrophysics Data System (ADS)
Walker, A.; Skelton, R.; Nowacki, A.
2016-12-01
The stability of dense hydrous magnesium silicates such as phase D in subducting slabs provide a potential path for hydrogen transport from the Earth's surface environment into the lower mantle. Recent analysis of source-side shear wave splitting for rays from deep earthquakes around slabs detected a signal of anisotropy that could be attributed to the deformation of phase D [Nowacki et al. 2015; Geochem. Geophys. Geosyst., 16, 764-784]. If this is the case these observations could provide an estimate of the hydrogen flux into the lower mantle at depths beyond shallow recycling through the volcanic arc. However, the processes leading to the deformation of phase D and the generation of seismic anisotropy are not well known and this is a barrier to progress. Here we present initial results of simulations designed to reveal how easily different dislocations move in phase D during deformation and lead to the generation of seismic anisotropy measured by shear wave splitting. In particular, we use atomic scale simulations to calculate the energies of generalised stacking faults in phase D, which are used to parameterise Peierls-Nabarro models of dislocation structures and Peierls stresses at pressures up to 60 GPa. We then use results from these calculations as parameters for models of texture development in polycrystalline aggregates during deformation using the visco-plastic self-consistent approach. In combination with measurement of the distribution of seismic anisotropy around subducting slabs, and an analysis of the strain pattern expected as slabs pass through the transition zone, these results could constrain an important part of Earth's deep water cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forte, A M; Quere, S; Moucha, R
Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomographymore » model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.« less
Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling
Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.; Glišović, Petar; Moucha, Robert; Grand, Stephen P.; Simmons, Nathan A.
2016-01-01
Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region. PMID:28028535
Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling.
Rowley, David B; Forte, Alessandro M; Rowan, Christopher J; Glišović, Petar; Moucha, Robert; Grand, Stephen P; Simmons, Nathan A
2016-12-01
Earth's tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth's dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.
NASA Astrophysics Data System (ADS)
Jean, B.; Sophie, V. D. G.; Greff-Lefftz, M.; Frizon de Lamotte, D.; Lescanne, M.; Leparmentier, F.
2017-12-01
We compare several models of hot spot reference frames published in the litterature retracing the kinematics of the lithosphere over the mantle for the last 120Ma. We then propose a new model between 130 and 300Ma, based on the comparison of various surface indicators (geological, thermal data from boreholes and compilation of global surface volcanism), a reassessment of hot spots classification and paleomagnetic data. We discuss the implication of our model on the location and timing of several types of surface volcanism (subductions, intracontinental volcanism, rifting and LIPS, kimberlites) that we link to deep structures interpreted from tomographic images. A clear degree two permanent organization of mantle convection during this period of time is obvious, and the subduction rate appears to be episodic. We finally deduce from our model mantle TPW (True Polar Wander), the shifting of the entire mantle relative to the earth's spin axis over the last 300 million years. The inferred global motion of the mantle deduced occurs around a Euler pole which axis is close to the earth equator but varies significantly in longitude with respect to time showing complex tridimensional mass reorganizations in the mantle, probably linked to both LLSVPs and slabs effect.
Resolving the potential mantle reservoirs that influence volcanism in the West Antarctic Rift System
NASA Astrophysics Data System (ADS)
Maletic, E. L.; Darrah, T.
2017-12-01
Lithospheric extension and magmatism are key characteristics of active continental rift zones and are often associated with long-lasting alkaline magmatic provinces. In these settings, a relationship between lithospheric extension and mantle plumes is often assumed for the forces leading to rift evolution and the existence of a plume is commonly inferred, but typically only extension is supported by geological evidence. A prime example of long-lasting magmatism associated with an extensive area of continental rifting is the West Antarctic Rift System (WARS), a 2000 km long zone of ongoing extension within the Antarctic plate. The WARS consists of high alkaline silica-undersaturated igneous rocks with enrichments in light rare earth elements (LREEs). The majority of previous geochemical work on WARS volcanism has focused on bulk classification, modal mineralogy, major element composition, trace element chemistry, and radiogenic isotopes (e.g., Sr, Nd, and Pb isotopes), but very few studies have evaluated volatile composition of volcanics from this region. Previous explanations for WARS volcanism have hypothesized a plume beneath Marie Byrd Land, decompression melting of a fossilized plume head, decompression melting of a stratified mantle source, and mixing of recycled oceanic crust with one or more enriched mantle sources from the deep mantle, though researchers are yet to reach a consensus. Unlike trace elements and radiogenic isotopes which can be recycled between the crust and mantle and which are commonly controlled by degrees of partial melting and prior melt differentiation, noble gases are present in low concentrations and chemically inert, allowing them to serve as reliable tracers of volatile sources and subsurface processes. Here, we present preliminary noble gas isotope (e.g., 3He/4He, CO2/3He, CH4/3He, 40Ar/36Ar, 40Ar*/4He) data for a suite of lava samples from across the WARS. By coupling major and trace element chemistry with noble gas elemental and isotopic composition and other volatiles from a suite of volcanic rocks in the WARS, we can better constrain a magmatic source and provide geological evidence that could support or oppose the existence of a mantle plume, HIMU plume, or deconvolve mantle-lithosphere interactions.
3D Integrated geophysical-petrological modelling of the Iranian lithosphere
NASA Astrophysics Data System (ADS)
Mousavi, Naeim; Ardestani, Vahid E.; Ebbing, Jörg; Fullea, Javier
2016-04-01
The present-day Iranian Plateau is the result of complex tectonic processes associated with the Arabia-Eurasia Plate convergence at a lithospheric scale. In spite of previous mostly 2D geophysical studies, fundamental questions regarding the deep lithospheric and sub-lithospheric structure beneath Iran remain open. A robust 3D model of the thermochemical lithospheric structure in Iran is an important step toward a better understanding of the geological history and tectonic events in the area. Here, we apply a combined geophysical-petrological methodology (LitMod3D) to investigate the present-day thermal and compositional structure in the crust and upper mantle beneath the Arabia-Eurasia collision zone using a comprehensive variety of constraining data: elevation, surface heat flow, gravity potential fields, satellite gravity gradients, xenoliths and seismic tomography. Different mantle compositions were tested in our model based on local xenolith samples and global data base averages for different tectonothermal ages. A uniform mantle composition fails to explain the observed gravity field, gravity gradients and surface topography. A tectonically regionalized lithospheric mantle compositional model is able to explain all data sets including seismic tomography models. Our preliminary thermochemical lithospheric study constrains the depth to Moho discontinuity and intra crustal geometries including depth to sediments. We also determine the depth to Curie isotherm which is known as the base of magnetized crustal/uppermost mantle bodies. Discrepancies with respect to previous studies include mantle composition and the geometry of Moho and Lithosphere-Asthenosphere Boundary (LAB). Synthetic seismic Vs and Vp velocities match existing seismic tomography models in the area. In this study, depleted mantle compositions are modelled beneath cold and thick lithosphere in Arabian and Turan platforms. A more fertile mantle composition is found in collision zones. Based on our 3D thermochemical model we propose a new scenario to interpret the geodynamical history of area. In this context the present-day central Iran block would be as remain of the older and larger Iranian block present before the onset of Turan platform subduction beneath the Iranian Plateau. Further analysis of sub-lithospheric density anomalies (e.g., subducted slabs) is required to fully understand the geodynamics of the area.
Seismic evidence for water transport out of the mantle transition zone beneath the European Alps
NASA Astrophysics Data System (ADS)
Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro
2018-01-01
The mantle transition zone has been considered a major water reservoir in the deep Earth. Mass transfer across the transition-zone boundaries may transport water-rich minerals from the transition zone into the water-poor upper or lower mantle. Water release in the mantle surrounding the transition zone could cause dehydration melting and produce seismic low-velocity anomalies if some conditions are met. Therefore, seismic observations of low-velocity layers surrounding the transition zone could provide clues of water circulation at mid-mantle depths. Below the Alpine orogen, a depressed 660-km discontinuity has been imaged clearly using seismic tomography and receiver functions, suggesting downwellings of materials from the transition zone. Multitaper-correlation receiver functions show prominent ∼0.5-1.5% velocity reductions at ∼750-800-km depths, possibly caused by partial melting in the upper part of lower mantle. The gap between the depressed 660-km discontinuity and the low-velocity layers is consistent with metallic iron as a minor phase in the topmost lower mantle reported by laboratory studies. Velocity drops atop the 410-km discontinuity are observed surrounding the Alpine orogeny, suggesting upwelling of water-rich rock from the transition zone in response to the downwelled materials below the orogeny. Our results provide evidence that convective penetration of the mantle transition zone pushes hydrated minerals both upward and downward to add hydrogen to the surrounding mantle.
Early episodes of high-pressure core formation preserved in plume mantle
NASA Astrophysics Data System (ADS)
Jackson, Colin R. M.; Bennett, Neil R.; Du, Zhixue; Cottrell, Elizabeth; Fei, Yingwei
2018-01-01
The decay of short-lived iodine (I) and plutonium (Pu) results in xenon (Xe) isotopic anomalies in the mantle that record Earth’s earliest stages of formation. Xe isotopic anomalies have been linked to degassing during accretion, but degassing alone cannot account for the co-occurrence of Xe and tungsten (W) isotopic heterogeneity in plume-derived basalts and their long-term preservation in the mantle. Here we describe measurements of I partitioning between liquid Fe alloys and liquid silicates at high pressure and temperature and propose that Xe isotopic anomalies found in modern plume rocks (that is, rocks with elevated 3He/4He ratios) result from I/Pu fractionations during early, high-pressure episodes of core formation. Our measurements demonstrate that I becomes progressively more siderophile as pressure increases, so that portions of mantle that experienced high-pressure core formation will have large I/Pu depletions not related to volatility. These portions of mantle could be the source of Xe and W anomalies observed in modern plume-derived basalts. Portions of mantle involved in early high-pressure core formation would also be rich in FeO, and hence denser than ambient mantle. This would aid the long-term preservation of these mantle portions, and potentially points to their modern manifestation within seismically slow, deep mantle reservoirs with high 3He/4He ratios.
Stability of active mantle upwelling revealed by net characteristics of plate tectonics.
Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H
2013-06-27
Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.
The Chlorine Isotope Composition of Earth’s Mantle
NASA Astrophysics Data System (ADS)
Bonifacie, M.; Jendrzejewski, N.; Agrinier, P.; Humler, E.; Coleman, M.; Javoy, M.
2008-03-01
Chlorine stable isotope compositions (δ37Cl) of 22 mid-ocean ridge basalts (MORBs) correlate with Cl content. The high-δ37Cl, Cl-rich basalts are highly contaminated by Cl-rich materials (seawater, brines, or altered rocks). The low-δ37Cl, Cl-poor basalts approach the composition of uncontaminated, mantle-derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB-source mantle has δ37Cl ≤ 1.6 per mil (‰), which is significantly lower than that of surface reservoirs (~ 0‰). This isotopic difference between the surface and deep Earth results from net Cl isotopic fractionation (associated with removal of Cl from the mantle and its return by subduction over Earth history) and/or the addition (to external reservoirs) of a late volatile supply that is 37Cl-enriched.
Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.
Righter, Kevin
2015-09-01
A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.
NASA Astrophysics Data System (ADS)
Osmaston, Miles
2013-04-01
Since the seismic anisotropy (SA) in the uppermost oceanic mantle was discovered [1] and attributed to the shearing of olivine by an MOR-divergent flow velocity gradient, rheological mobility interpretations of this type have dominated studies of SA there and elsewhere in the Earth. Here I describe two other SA-generating mechanisms. I will reason that one of these, the anisotropic crystallization from melt, bids fair largely to replace the shearing one and be present in even larger volumes of the Earth, both within its outer 100km and in the Inner Core. The other, the layered deposition of disparate substances, offers to explain the ULVZs and SA in D''. We start with the Upper Mantle. New constraints on its rheological properties and dynamical behaviour have come from two directions. Firstly, contrary to the seismologists' rule-book, the oceanic LVZ is no longer to be thought of as mobile because the presence of interstitial melt strips out the water-weakening of the mineral structure [2, 3]. So we require a substitute for the divergent-flow model for MORs. In fact it also has three other, apparently unrecognized, dynamical inconsistencies. One of these [4] is that there are in the record many rapid changes of spreading rate and direction, and ridge jumps. This cannot happen with a process driven by slow-to-change body forces. Secondly, during the past decade, my work on the global dynamics for the past 150Ma (I will show examples) has shown [4 - 7] that the tectospheres of cratons must extend to very close to the bottom of the upper mantle. And that East Antarctica's 'keel' must actually reach it, because its CW rotation [7] suggests it has been picking up an electromagnetic torque from the CMB via the lower mantle. Xenoliths suggest that the reason for this downwards extent of 'keels' is the same as [3]. To meet these two sets of constraints I will demonstrate my now not-so-new MOR model, which has a narrow, wall-accreting subaxial crack. Among its many features, including generating internally a very strong push-apart force, the straightness of MOR segments is the automatic result of accretion controlled by lateral cooling [8]. Olivine crystal has grossly anisotropic thermal conductivity, high on the a-axis [9] so, contrasting with the much lower conductivity of melt, suitably oriented ones on the crack walls grow the fastest and build in the seismic anisotropy from the start. For ophiolites, I will illustrate a close relative of this thick-plate model, but geared to their specific near-continent genesis and emplacement, which provides for their very real shearing and anisotropy at the crust-tectonite junction and for the 25 - 50 km metamorphic pressures in their soles [10]. A remarkably fertile model for the genesis of intraplate volcanism, without plumes, is also provided by this thick-plate perspective of plate dynamics [11]. We now move to deeper in the mantle. Attachment of the LVZ material to the ocean plate and the low conductivity of its interstial melt renders it still buoyant when the bigger ridge push makes it subduct [12]. Seismological transects of subduction zones show that this heat re-emerges at depth to partially melt the interface former oceanic crust, the result (on experimental evidence) being stishovitic residue plus (because of its compressibility) very dense ultramafic melt [12]. Both will shower into the lower mantle and eventually form layers on D'', the melt being prevented from freezing because that would need the energy to increase its volume. Hence the seismic anisotropy of D''. Moving still deeper, to the outer-core flows from which the Inner Core has grown. I attribute its cigar shape to preferential addition to its polar regions, from a downwelling flow, not to deformation of the IC, except perhaps as weak isostatic adjustment to that polar addition. I speculate that polar-aligned columnar growth of iron crystals, although themselves not strongly anisotropic, would impound 'less pure' alloy between them, with lower seismic property, thus giving the anisotropy. A.m. conservation in the poleward outer-core flow just below the CMB, needed to provide that cooler polar downwelling flow to the IC, would accelerate it clockwise. This seems likely to be the ultimate agent of Antarctica's CW rotation. Finally we come right back to the surface, to the nominally continental crust. Important thermal epeirogenic sensitivity resides in its deep constitution [13]. But much of the crust of continental shelves and beneath deep sedimentary basins appears to lack this sensitivity. So I have reasoned [13] that this 'intermediate crust' (IC) is the product, not of stretching, but of a sedimentation-dominated pre-oceanic stage of continental splitting that has modified crustal genesis by the MOR process but retained the accreting-deep-narrow-crack aspect and resulting seismic anisotropy. If, as geometrical reconstructions lead me to believe, this is the origin of the widespread block-and-basin structures in continents, then it offers also a fascinating explanation of the seismic anisotropy, and its direction, increasingly reported beneath the epeirogenically identifiable IC areas of crust. In that case, as noted at the beginning, crystallization from melt would indeed emerge as the principal agent of seismic anisotropy in the Earth. [1] Raitt RW et al. (1969) Anisotropy of the Pacific upper mantle. JGR 74, 3095-3109. [2] Karato S (1986) Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309. [3] Hirth G & Kohlstedt DL (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere. EPSL 144, 93-108. [4] Osmaston MF (2010) On the actual variety of plate dynamical mechanisms and how mantle evolution affected them through time, from core formation to the Indian collision. Geophys. Res. Abstr. 12, EGU2010-6101. [5] Osmaston MF (2006) Global tectonic actions emanating from Arctic opening in the circumstances of a two-layer mantle and a thick-plate paradigm involving deep cratonic tectospheres: the Eurekan (Eocene) compressive motion of Greenland and other examples. In Proc. ICAM IV 2003 (ed. R Scott & D Thurston). OCS Study MMS 2006-003, p.105-124: Also published on: http://www.mms.gov/alaska/icam. [6] Osmaston MF (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. Geophys. Res. Abstr. 11, EGU2009-6359. Session SM 6.2 (Solicited). [7] Osmaston MF (2012) Did clockwise rotation of Antarctica cause the break-up of Gondwanaland? An investigation in the 'deep-keeled cratons' frame for global dynamics. Geophys. Res. Abstr. 14, EGU2012-2170. [8] Osmaston MF (1995) A straightness mechanism for MORs: a new view of ocean plate genesis and evolution. In IUGG XXI Gen. Assy. Abstr. p. A472. {N.B. Typing error as published: 'c-axes' should read 'a-axes'} [9] Chai M, Brown JM & Slutsky LJ (1996) Thermal diffusivity of mantle minerals. Phys. and Chem. of Minerals 23, 470-475. [10] Osmaston MF (2001) Two breeds of ophiolite; their different origins and contrasting plate tectonic significance, Archaean to Cenozoic. Gondwana Res. 4(2), 184-186. Osmaston MF (2001) Two breeds of ophiolite: their differing origins and contrasting plate tectonic significance, Archaean to Cenozoic. GSA Ann. Mtg, Boston. (Invited). GSA Abstr. With Programs 33(6), A-173. [11] Osmaston MF (2008) Extra-thick plates: basis for a single model of mantle magmagenesis, all the way from MORB to kimberlite. GCA 72(12S), A711. [12] Osmaston MF (2012) Is subduction really in the plate tectonics driving seat, or do two other global mechanisms do the driving? A review in the 'deep-keeled cratons' frame for global dynamics. Geophys. Res. Abstr. 14, EGU2012-2529, 2012. [13] Osmaston MF (2008) Basal subduction tectonic erosion (STE), butter mélanges and the construction and exhumation of HP-UHP belts: the Alps example and some comparisons. International Geology Review 50(8), 685-754 DOI: 10.2747/00206814.50.8.685.
New Estimates of Rhenium in the Crust: Implications for Mantle Re-Os Budgets
NASA Astrophysics Data System (ADS)
Bennett, V. C.; Sun, W.
2002-12-01
The 187Re-187Os isotopic system has provided a new probe of mantle chemical structure with, for example, now numerous studies balancing estimates of the Os isotopic compositions of the upper modern mantle with sizes and ages of proposed conjugate reservoirs stored within the deep mantle. This style of modeling is dependent upon estimates of the parent Re in the various reservoirs including total crust, upper mantle, MORB and ocean island basalts. New laser ICP-MS in situ and ID whole rock results from OIB, arc and back-arc basalts suggest Re concentrations in oceanic and crustal domains may have been greatly underestimated. For example Hawaiian OIBs show a clear distinction between subaerial and submarine erupted samples with the latter having Re much closer to the higher MORB estimates (1) than to previous OIB estimates. This difference has been attributed to Re volatility and loss during syn- and post-eruption degassing of subaerial samples. Recent work has produced similar results for submarine arc samples using both dredged glasses and melt inclusions in olivines from primitive basalts. Both have much higher average Re (ca. 1.5 and 3.4 ppb; 2,3) than literature values for arcs (ca. 0.30ppb) determined largely from sub-aerial samples, or for average crust estimated from loess (0.2 ppb; 4). If the undegassed arc samples are representative, then the total crust may have more than 5 times the Re previously estimated. Re lost during arc eruptions may ultimately be concentrated in anoxic seafloor sediments. Prior under-estimates may be linked to the extremely heterogeneous concentration (> 5 orders of magnitude) of the chalcophile, redox sensitive Re in crustal environments. If the residence time of high Re in the crust is long (>1 Ga) then, 1) much smaller reservoirs of stored Re in the deep mantle are required to balance Re depletions in the upper mantle, and 2) significant portions of the upper mantle are likely Re depleted. Alternatively Re may be rapidly recycled in oceanic sediments (short residence time) resulting in a smaller affect on Re-Os budgets, but creating areas of extreme Re heterogeneity in the upper mantle. Refs: 1. Bennett, Norman and Garcia, EPSL 2000. 2. Sun et al. (in press, Chemical Geology) 3. Sun et al. (submitted). 4. Peucker-Ehrenbrink and Jahn, G3, 2001.
Origin and evolution of the Perm Anomaly
NASA Astrophysics Data System (ADS)
Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.; Bower, D. J.
2016-12-01
Earth's lower mantle is characterized by two large-low-shear velocity provinces (LLSVPs, 15000 km in diameter, 500-1000 km high) located under Africa and the Pacific Ocean. In addition, a single, much smaller ( 1000 km in diameter, 500 km high) deep mantle structure named the "Perm Anomaly" was recently identified through the analysis of seismic tomography models. This discovery challenges current reconstructions of the evolution of the plate-mantle system that invoke plumes rising from the edges of the two LLSVPs, assumed spatially fixed and non-deforming in time. Here, we present mantle flow models constrained by tectonic reconstructions that reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. In the dynamic models, spanning 230 Myr, subducting slabs deform an initially uniform basal layer containing 2% of the volume of the mantle. Basal density, convective vigour, mantle viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify equally-spaced points on Earth's surface into two groups with similar variations in present-day temperature between 1000-2800 km depth, for each model case. The procedure reveals a high-temperature cluster and a low-temperature cluster with respect to ambient mantle temperature below 2400 km depth. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the LLSVPs and of the Perm Anomaly revealed by a similar cluster analysis of seven tomography models. Model success is quantified by computing the accuracy (between 0.56 and 0.76) of the temperature clusters in predicting the low-velocity cluster obtained from tomography, and qualified by the occurrence of a separate Perm-like anomaly. The anomaly formed in isolation prior to 150 Ma within a long-lived subduction network 22000 km in circumference composed of the Mongol-Okhotsk subduction along Eurasia to the west, northern Tethys subduction to the south, and east Asia subduction to the east, then migrated 2500 km westward at an average rate of 1.7 cm/yr, indicating a greater mobility of deep mantle structures than previously recognized. We infer that the mobile Perm Anomaly could be linked to the Emeishan volcanics, in contrast to the previously proposed Siberian Traps.
United States crustal thickness
NASA Technical Reports Server (NTRS)
Allenby, R. J.; Schnetzler, C. C.
1983-01-01
The thickness of the crust, the thickness of the basal (intermediate or lower) crustal layer, and the average velocity at the top of the mantle have been mapped using all available deep-penetrating seismic-refraction profiles in the conterminous United States and surrounding border areas. These profiles are indexed to their literature data sources. The more significant long wavelength anomalies on the three maps are briefly discussed and analyzed. An attempt to use Bouguer gravity to validate mantle structure was inconclusive.
Morphology and tectonics of the Mid-Atlantic Ridge, 7°-12°S
NASA Astrophysics Data System (ADS)
Bruguier, N. J.; Minshull, T. A.; Brozena, J. M.
2003-02-01
We present swath bathymetric, gravity, and magnetic data from the Mid-Atlantic Ridge between the Ascension and the Bode Verde fracture zones, where significant ridge-hot spot interaction has been inferred. The ridge axis in this region may be divided into four segments. The central two segments exhibit rifted axial highs, while the northernmost and southernmost segments have deep rift valleys typical of slow-spreading mid-ocean ridges. Bathymetric and magnetic data indicate that both central segments have experienced ridge jumps since ˜1 Ma. Mantle Bouguer anomalies (MBAs) derived from shipboard free air gravity and swath bathymetric data show deep subcircular lows centered on the new ridge axes, suggesting that mantle flow has been established beneath the new spreading centers for at least ˜1 Myr. Inversion of gravity data indicates that crustal thicknesses vary by ˜4 km along axis, with the thickest crust occurring beneath a large axial volcanic edifice. Once the effects of lithospheric aging have been removed, a model in which gravity variations are attributed entirely to crustal thickness variations is more consistent with data from an axis-parallel seismic line than a model that includes additional along-axis variations in mantle temperature. Both geophysical and geochemical data from the region may be explained by the melting of small (<200 km) mantle chemical heterogeneities rather than elevated temperatures. Therefore, there may be no Ascension/Circe plume.
Snyder, D.B.; England, R.W.; McBride, J.H.
1997-01-01
Deep seismic reflection profiles in Scotland reveal mantle structures beneath a crust with a polyphase tectonic history that resulted in several generations of structures. Continuum mechanics suggests that coeval mantle and crustal structures must be kinematically linked. Inherited structures imply relative ages for the reflectors, ages that can be placed into the context of the geological history of the near-surface rocks of northern Scotland. Thus, some mantle reflectors are assigned Triassic ages related to the opening of the West Orkney and related marginal basins of the Atlantic Ocean. Other mantle reflectors are cut by late Caledonian structures associated with the Great Glen Fault Zone and therefore older than c. 400 Ma. Many of these structures also track the late Precambrian margin of Laurentia and may be related to either the opening (900-600 Ma) or closing (500-400 Ma) of the Iapetus Ocean. Some reflective structures may also be attributed to 1800-1700 Ma Laxfordian deformation that was part of a global-scale orogenic belt.
Melting temperatures of MgO under high pressure by micro-texture analysis
Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.
2017-01-01
Periclase (MgO) is the second most abundant mineral after bridgmanite in the Earth's lower mantle, and its melting behaviour under pressure is important to constrain rheological properties and melting behaviours of the lower mantle materials. Significant discrepancies exist between the melting temperatures of MgO determined by laser-heated diamond anvil cell (LHDAC) and those based on dynamic compressions and theoretical predictions. Here we show the melting temperatures in earlier LHDAC experiments are underestimated due to misjudgment of melting, based on micro-texture observations of the quenched samples. The high melting temperatures of MgO suggest that the subducted cold slabs should have higher viscosities than previously thought, suggesting that the inter-connecting textural feature of MgO would not play important roles for the slab stagnation in the lower mantle. The present results also predict that the ultra-deep magmas produced in the lower mantle are peridotitic, which are stabilized near the core–mantle boundary. PMID:28580945
The ratios of carbon and non-radiogenic helium and argon isotopes in the mantle and crustal rocks
NASA Technical Reports Server (NTRS)
Lokhov, K.; Levsky, L.
1994-01-01
The studies of the relations of carbon and primary isotopes of noble gases were carried out on the natural gases and on the mantle rocks from the mantle M-type sources, which represent the degassed mantle reservoir (MORB's). These works has the aim of estimation of the values of the C/3He ratios in the deep mantle fluids to determine the flux of the mantle CO2 on the basis of known flux of primary mantle 3He. It was found, that in the natural gases the values of the C/3He ratios fall into the range from 1 times E plus 6 to 1 times E plus 15, and in the fluids of MORB's are constant near 2 times E plus 9. We have studied the mantle rocks from the relatively undergassed mantle P minus type sources: continental; Baikal Rift (Siberia), Mongolia, Catalonia (Spain), Pannonia Depression (central Europe) and ocean; Spietzbergen isl., Hawaii isl., Canarian isl. It ws found, that in mantle xenolites and the host alkaline basalts from the continental rifts and ocean islands, the values of the C/3He ratios fall into the range from E plus 11 to E plus 15 (and this result needed to be explained; the higher carbon to helium ratios is relatively undergassed mantle reservoir compared with the degassed one, requires whether hilly compatibility of helium compared with carbon, whether additional flux of 3He to the degassed mantle reservoir). From the other hand it was found that in the mantle rocks from the sources of P minus and M minus types, continental carbonatites, the values of the C/36Ar ratios are constant in the range from E plus 9 to E plus 10, the close values have the MORB's also.
NASA Astrophysics Data System (ADS)
Dupuis, Nicolle E.; Murphy, J. Brendan; Braid, James A.; Shail, Robin K.; Nance, R. Damian
2016-06-01
The geology of SW England has long been interpreted to reflect Variscan collisional processes associated with the closure of the Rhenohercynian Ocean and the formation of Pangea. The Cornish peninsula is composed largely of Early Devonian to Late Carboniferous volcanosedimentary successions that were deposited in pre- and syn-collisional basins and were subsequently metamorphosed and deformed during the Variscan orogeny. Voluminous Early Permian granitic magmatism (Cornubian Batholith) is broadly coeval with the emplacement of ca. 280-295 Ma lamprophyric dykes and flows. Although these lamprophyres are well mapped and documented, the processes responsible for their genesis and their relationship with regional Variscan tectonic events are less understood. Pre- to syn-collisional basalts have intra-continental alkalic affinities, and have REE profiles consistent with derivation from the spinel-garnet lherzolite boundary. εNd values for the basalts range from + 0.37 to + 5.2 and TDM ages from 595 Ma to 705 Ma. The lamprophyres are extremely enriched in light rare earth elements, large iron lithophile elements, and are depleted in heavy rare earth elements, suggesting a deep, garnet lherzolite source that was previously metasomatised. They display εNd values ranging from - 1.4 to + 1.4, initial Sr values of ca. 0.706, and TDM ages from 671 Ma to 1031 Ma, suggesting that metasomatism occurred in the Neoproterozoic. Lamprophyres and coeval granite batholiths of similar chemistry to those in Cornwall occur in other regions of the Variscan orogen, including Iberia and Bohemia. By using new geochemical and isotopic data to constrain the evolution of the mantle beneath SW England and the processes associated with the formation of these post-collisional rocks, we may be able to gain a more complete understanding of mantle processes during the waning stages of supercontinent formation.
Fast Spreading Mid Ocean Ridge Magma Chamber Processes: New Constraints from Hess Deep
NASA Astrophysics Data System (ADS)
MacLeod, C. J.; Lissenberg, J. C.; Howard, K. A.; Ildefonse, B.; Morris, A.; JC21 Scientific Party
2011-12-01
Hess Deep, on the northern edge of the Galapagos Microplate, is a rift valley located at the tip of the Cocos Nazca spreading centre. It is actively propagating westwards into young lithosphere formed at the East Pacific Rise (EPR). Previous studies have shown that the centre of Hess Deep, in the vicinity of a horst block termed the intra-rift ridge (IRR), is characterised by outcrops of gabbro and (minor) peridotite that form the most extensive and complete exposure yet known of lower crust and shallow mantle from a fast spreading mid-ocean ridge. In the absence of a total crustal penetration borehole, the tectonic window of Hess Deep provides our best opportunity to study fast-spreading magma chamber processes and lower crustal accretion by direct observation. Using the Isis ROV we collected high-resolution bathymetry and video data from an 11 sq km area of seafloor, from the nadir of Hess Deep (5400 mbsl) up to the IRR, and sampled outcrops from the region in detail. Of 145 samples in total 94 were gabbro (s.l.). Accounting as much as possible for the complex tectonic disruption of the region we have reassembled these gabbros into a stratigraphic section through an EPR lower crust that we estimate to have been originally about 4350 m thick. The upper half of this plutonic section, which includes a dyke to gabbro transition at the top, is more or less intact on the IRR; however the lower half has been tectonically thinned by active gravity driven faulting and is incomplete. Within this lower section we nevertheless believe we have representative samples from the entire interval. At its base, in addition to primitive olivine gabbro we also recovered dunite, troctolite and residual mantle harzburgite. We here present a synthesis of the petrography and whole rock and mineral compositions of the gabbros from the reconstructed lower crustal section, coupled with a quantitative (electron backscatter diffraction and magnetic) study of their petrofabrics. From this, in conjunction with the mineral trace element constraints presented elsewhere in this session by Lissenberg et al., we review the constraints they provide upon magma chamber models derived from the Oman ophiolite. Whether through sheeted sills or otherwise we conclude that in situ crystallisation mechanisms dominate, and that wholesale gabbro glacier crystal subsidence is unlikely to be an important mechanism.
NASA Astrophysics Data System (ADS)
Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.
2012-04-01
The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian. There are typical tectonic and deep origin mechanisms for the moderate-strong earthquakes nearby SP Tuantian, and precaution should be added on this area in case of the potential earthquake. Our fusion image also clearly revealed that there exist two remarkable positions on the Moho discontinuity through which the heat from the upper mantle was transmitted upward, and this is attributed to the widely distributed hot material within the crust and upper mantle. We acknowledge the financial support of the Ministry of Land and Resources of China (SinoProbe-02-02), and the National Nature Science Foundation of China (No. 41074033 and No. 40830315). Key Words: Seismic Signature, Magma, Tengchong Volcanic Area, Deep Seismic Sounding, Seismic Attribute Fusion Li, Chang, van der Hilst, D., Meltzer, A.S., Engdahl, E.R., 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274. doi:10.1016/j.epsl.2008.07.016. Lebedev, S., van der Hilst, R.D., 2008. Global upper-mantle tomography with the automated multi-mode surface and S waveforms. Geophys. J. Int. 173 (2), 505-518. Wang C.Y. and Huangfu G.. 2004. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China. Tectonophysics, 380: 69-87.
NASA Astrophysics Data System (ADS)
Khan, A.; Connolly, J. A.; Pommier, A.
2013-12-01
Analysis of lunar seismic and lunar laser ranging data has yielded evidence that has been interpreted to indicate a molten zone in the lower-most mantle and/or the outer core of the Moon. Such a zone would provide strong constraints on models of the thermal evolution of the Moon. Here we invert lunar geophysical data in combination with phase-equilibrium modeling to derive information about the thermo-chemical and physical structure of the deep lunar interior. Specifically, we assess whether a molten layer is required by the geophysical data and, if so, its likely composition and physical properties (e.g., density and seismic wave speeds). The data considered are mean mass and moment of inertia, second-degree tidal Love number, and frequency-dependent electromagnetic sounding data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is indeed required to explain the geophysical data. If this dissipative region is located within the mantle, then the solidus is crossed at a depth of ~1200 km (>1600 deg C). The apparent absence of far-side deep moonquakes (DMQs) is supporting evidence for a highly dissipative layer. Inverted compositions for the partially molten layer (typically 100--200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. While the melt phase in >95 % of inverted models is neutrally buoyant at pressures of ~4.5--4.6 GPa, the melt contains less TiO2 (>~4 wt %) than the Ti-rich (~16 wt % TiO2) melts that produced a set of high-density primitive lunar magmas (~3.4 g/ccm). Melt densities computed here range from 3.3 to 3.4 g/ccm bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.
NASA Astrophysics Data System (ADS)
Dong, J.; Li, J.; Zhu, F.; Li, Z.; Farawi, R.
2017-12-01
The whereabouts of subducted carbonates place a major constraint on the Earth's deep carbon cycle, but the fraction of carbon retained in the slab and transported into the deep mantle, compared to that released from the slab and recycled to the surface, is still under debate. Knowledge of the stability of carbonated mantle rocks is pivotal for assessing the ability of slabs to carry carbonates into the deep mantle. Determination and systematic comparison of the melting curves of alkali and alkaline earth carbonates at high pressure can help construct thermodynamic models to predict the melting behavior of complex carbonated mantle rocks. Among alkaline earth carbonates, the melting behavior of barium carbonate (BaCO3) has not been adequately understood. The reported melting point of BaCO3at 1 bar differ by nearly 800 °C and constraints on the melting curve of BaCO3 at high pressure are not available. In this study, the melting temperatures of BaCO3 were determined up to 11 GPa from in situ ionic conductivity measurements using the multi-anvil apparatus at the University of Michigan. The solid-liquid boundary at high pressure was detected on the basis of a steep rise in conductivity through the sample upon melting. The melting point of BaCO3 was found to drop from 1797 °C at 3.3 GPa to 1600 °C at 5.5 GPa and then rise with pressure to 2180 °C at 11 GPa. The observed melting depression point at 5.5 GPa corresponds to the phase transition of BaCO3 from the aragonite structure (Pmcn) to post-aragonite structure (Pmmn) at 6.3 GPa, 877 °C and 8.0 GPa, 727 °C, determined from synchrotron X-ray diffraction measurements using laser-heated DAC experiments at the Advanced Photon Source, Argonne National Laboratory. These results are also compared with ex situ falling marker experiments, and the three methods together place tight constraints on the melting curve of BaCO3 and elucidates the effect of structural phase transitions on its melting behavior.
Some Mineral Physics Observations Pertinent to the Rheological Properties of Super-Earths
NASA Astrophysics Data System (ADS)
Karato, S.
2010-12-01
Both orbital and thermal evolution of recently discovered super-Earths (terrestrial planets whit mass exceeding that of Earth) depends critically on the rheological properties of their mantle. Although direct experimental studies on rheological properties are unavailable under the conditions equivalent to the deep mantles of these planets (~1 TPa and ~5000 K), a review of key materials science observations suggests that the deep mantle of these planets have much lower viscosity than most of the shallower regions of these planets. The key observations are: (i) phase transformations likely occur under these conditions including the B1 to B2 transition in MgO (1) and the dissociation of MgSiO3 into two oxides (MgO and SiO2) (2), (ii) the systematics in high-temperature creep show that materials with NaCl (B1) structures have much smaller viscosity than other oxides compared at the same normalized conditions (3), and (iii) diffusion coefficients in most of materials have a minimum at certain pressure and above that pressure it increases with pressure (due to mechanism transition) (4). In addition, a review of existing studies also shows that the ionic solids with B2 (CsCl) structure have larger diffusion coefficients than their B1 counter parts. Furthermore, if metallization transition occurs in any of these materials, delocalized electrons will further weaken the material. All of these observations or concepts suggest that even though the viscosity of a planet (below the asthenosphere) increases with depth in the relatively shallow regions, viscosity likely starts to decrease with depth below some critical depth (>~2000 km). The inferred low viscosity of super-Earths implies a large tidal dissipation and relatively rapid orbital evolution. Also such a rheological properties likely promote a layered mantle convection that enhances a weak deep mantle and retards the thermal evolution. 1. A. R. Oganov, M. J. Gillan, G. D. Price, Journal of Chemical Physics 118, 10174 (2003). 2. K. Umemoto, R. M. Wentzcovitch, P. B. Allen, Science 311, 983 (2006). 3. S. Karato, Physics of Earth and Planetary Interiors 55, 234 (1989). 4. S. Karato, Programme and Abstracts, The Seismological Society of Japan 1, 216 (1978).
Mantle viscosity structure constrained by joint inversions of seismic velocities and density
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Moulik, P.; Lekic, V.
2017-12-01
The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.
NASA Astrophysics Data System (ADS)
Walpole, J.; Wookey, J. M.; Masters, G.; Kendall, J. M.
2013-12-01
The asthenosphere is embroiled in the process of mantle convection. Its viscous properties allow it to flow around sinking slabs and deep cratonic roots as it is displaced by intruding material and dragged around by the moving layer above. As the asthenosphere flows it develops a crystalline fabric with anisotropic crystals preferentially aligned in the direction of flow. Meanwhile, the lithosphere above deforms as it is squeezed and stretched by underlying tectonic processes, enabling anisotropic fabrics to develop and become fossilised in the rigid rock and to persist over vast spans of geological time. As a shear wave passes through an anisotropic medium it splits into two orthogonally polarised quasi shear waves that propagate at different velocities (this phenomenon is known as shear wave splitting). By analysing the polarisation and the delay time of many split waves that have passed through a region it is possible to constrain the anisotropy of the medium in that region. This anisotropy is the key to revealing the deformation history of the deep Earth. In this study we present measurements of shear wave splitting recorded on S, SKS, and SKKS waves from earthquakes recorded at stations from the IRIS DMC catalogue (1976-2010). We have used a cluster analysis phase picking technique [1] to pick hundreds of thousands of high signal to noise waveforms on long period data. These picks are used to feed the broadband data into an automated processing workflow that recovers shear wave splitting parameters [2,3]. The workflow includes a new method for making source and receiver corrections, whereby the stacked error surfaces are used as input to correction rather than a single set of parameters, this propagates uncertainty information into the final measurement. Using SKS, SKKS, and source corrected S, we recover good measurements of anisotropy beneath 1,569 stations. Using receiver corrected S we recover good measurements of anisotropy beneath 470 events. We compare our results to a large compilation of previous regional studies and find good agreement. Our results are compared with upper mantle anisotropy recovered from surface waves, and other seismic observables such as wave speed tomography. The comparison with tomography beneath the USA is particularly interesting; here we observe the vivid toroidal swirl beneath Nevada branching off along the Snake River Plateau in excellent agreement with tomographic images at 150 km depth. We compare our results to absolute plate motion vectors to see how well drag from the plate can explain the development of anisotropic fabric; and to a more sophisticated asthenospheric flow model which takes into account the effect of mantle density heterogeneities [4]. Finally, we investigate patterns in the source side anisotropy, globally we detect a fabric with a fast shear wave polarisation parallel to the strike of subducting slabs, however, in several regions interesting deviations are found. [1] Houser et al. (2008) Geophys. J. Int. (2008) 174, 195-212. [2] Teanby et al. (2004). Bulletin Of The Seismological Society Of America, 94(2), 453-463. [3] Wuestefeld et al. (2010). Geophysical Prospecting, 58(5), 753-771. [4] Conrad & Behn (2010). Geochemistry Geophysics Geosystems, 11.
de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico
2017-12-01
The current study was designed to investigate the mechanical response of a polyetheretherketone-on-polyethylene total knee replacement device during a deep squat. Application of this high-demand loading condition can identify weaknesses of the polyetheretherketone relative to cobalt-chromium. This study investigated whether the implant is strong enough for this type of loading, whether cement stresses are considerably changed and whether a polyetheretherketone femoral component is likely to lead to reduced periprosthetic bone loss as compared to a cobalt-chromium component. A finite element model of a total knee arthroplasty subjected to a deep squat loading condition, which was previously published, was adapted with an alternative total knee arthroplasty design made of either polyetheretherketone or cobalt-chromium. The maximum tensile and compressive stresses within the implant and cement mantle were analysed against their yield and fatigue stress levels. The amount of stress shielding within the bone was compared between the polyetheretherketone and cobalt-chromium cases. Relative to its material strength, tensile peak stresses were higher in the cobalt-chromium implant; compressive peak stresses were higher in the polyetheretherketone implant. The stress patterns differed substantially between polyetheretherketone and cobalt-chromium. The tensile stresses in the cement mantle supporting the polyetheretherketone implant were up to 33% lower than with the cobalt-chromium component, but twice as high for compression. Stress shielding was reduced to a median of 1% for the polyetheretherketone implant versus 56% for the cobalt-chromium implant. Both the polyetheretherketone implant and the underlying cement mantle should be able to cope with the stress levels present during a deep squat. Relative to the cobalt-chromium component, stress shielding of the periprosthetic femur was substantially less with a polyetheretherketone femoral component.
NASA Technical Reports Server (NTRS)
Lyon-Caen, Helene; Molnar, Peter
1989-01-01
Gravity anomalies over the Alps and the Molasse Basin are examined, focusing on the relationship between the anomalies and the tectonic processes beneath the region. Bouguer gravity anomalies measured in France, Germany, Italy, and Switzerland are analyzed. No large isostatic anomalies are observed over the Alps and an elastic model is unable to account for gravity anomalies over the Molasse Basin. These results suggest that the dynamic processes that flexed the European plate down, forming the Molasse Basin and building the Alpine chain, have waned. It is proposed that the late Cenozoic uplift of the region may be due to a diminution or termination of downwelling of mantle material.
Effect of phase transformations on microstructures in deep mantle materials
NASA Astrophysics Data System (ADS)
Merkel, Sébastien; Langrand, Christopher; Rosa, Angelika; Hilairet, Nadège
2017-04-01
Phase transformations induce microstructural changes in deep Earth materials, including changes in grain size and orientation distribution. The effect of phase transformations on mineral microstructures is usually studied using electron microscopy on quench products from high P/T experiments. The method allows for a precise evaluation of the microscopic mechanisms involved. It is limited, however, to samples that can be quenched to ambient conditions and allows for investigations at a single P/T point for each experiment. In recent years, we extended the use of multigrain crystallography to samples inside diamond anvil cells under mantle P/T conditions. The method allows for monitoring the orientations of hundreds of grains and grain size variations during various physical processes, such as plastic deformation and successions of phase transformations (Rosa et al 2015, Langrand et al 2017). Here, we will show results concerning hydrous Mg2SiO4 during the series of α-β-γ phase transformations up to 40 GPa and 850 °C. Such results are important to understand the descending behaviour of subducted slabs, observations of seismic anisotropy, and polarity changes for seismic waves reflected of deep Earth interfaces. The data is used to asses the effect of the transformation on grain orientation and grain sizes. In particular, we do not observe orientation relationships between the parent α-phase and the daughter β-phase phase, suggesting an incoherent growth. We also observe significant grain size reductions and only little grain growth within the newly formed phases (Rosa et al 2016). These new results are important for understanding the mechanical behavior of subducting slabs, seismic anisotropy in the Earth's mantle, and phase transformation mechanisms in olivine. Now that it is validated, the method can also be applied to other phases that can not be studied using electron microscopy, such as perovskite and post-perovskite. Langrand, Hilairet, Nisr, Roskosz, Ribárik, Vaughan, Merkel, Reliability of Multigrain Indexing for Orthorhombic Polycrystals above 1 Mbar: Application to MgSiO3-Post-Perovskite, J Appl Cryst 50, in press (2017) Rosa, Hilairet, Ghosh, Garbarino, Jacobs, Perrillat, Vaughan, Merkel, In situ monitoring of phase transformation microstructures at Earth's mantle pressure and temperature using multi-grain XRD, J Appl Cryst 48, 1346-1354 (2015) Rosa, Hilairet, Ghosh, Perrillat, Garbarino, Merkel, Evolution of grain sizes and orientations during phase transitions in hydrous Mg2SiO4, J Geophys Res 121, 7161-7176 (2016)
Magnesium isotope geochemistry in arc volcanism.
Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine
2016-06-28
Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.
NASA Astrophysics Data System (ADS)
Ma, Jincheng; Tian, You; Liu, Cai; Zhao, Dapeng; Feng, Xuan; Zhu, Hongxiang
2018-01-01
A high-resolution model of 3-D P-wave velocity structure beneath Northeast Asia and adjacent regions is determined by using 244,180 arrival times of 14,163 local and regional earthquakes and 319,857 relative travel-time residuals of 9988 teleseismic events recorded at ∼2100 seismic stations in the study region. Our tomographic results reveal the subducting Pacific slab clearly as a prominent high-velocity anomaly from the Japan Trench to the North-South Gravity lineament (NSGL) in East China. The NSGL is roughly coincident with the western edge of the stagnant Pacific slab in the mantle transition zone (MTZ). The subducting Pacific slab has partly sunk into the lower mantle beneath Northeast China, but under the Sino-Korean Craton the slab lies horizontally in the MTZ. The NSGL, as an important tectonic line in Mainland China, is marked by sharp differences in the surface topography, gravity anomaly, crustal and lithospheric thickness and mantle seismic velocity from the east to the west. These features of the NSGL and large-scale hot and wet upwelling in the big mantle wedge (BMW) in the east of the NSGL are all related to the subduction processes of the Western Pacific plate. The Changbai intraplate volcanic group is underlain by a striking low-velocity anomaly from the upper MTZ and the BMW up to the surface, and deep earthquakes (410-650 km depths) occur actively in the subducting Pacific slab to the east of the Changbai volcano. We propose that the Changbai volcanic group is caused by upwelling of hot and wet asthenospheric materials and active convection in the BMW. The formation of other volcanic groups in the east of the NSGL is also associated with the subduction-driven corner flow in the BMW.
Insights into the mantle geochemistry of scandium from a meta-analysis of garnet data
NASA Astrophysics Data System (ADS)
Chassé, Mathieu; Griffin, William L.; Alard, Olivier; O'Reilly, Suzanne Y.; Calas, Georges
2018-06-01
The meta-analysis of about 13,000 analyses of scandium content in garnet grains shows that, below the spinel-garnet transition, this phase carries about three-quarters of the Sc budget of the mantle, indicating its control on Sc mobility. The Sc content of garnets in mafic rocks is low, due to a dilution effect resulting from their high modal content in garnet. Garnets from ultramafic rocks exhibit a wider range of Sc concentrations. We assess the relative influence of thermobarometry, crystal chemistry and fluid-related events on the distribution of Sc in garnet from such rocks to improve the tracking of geochemical processes in the mantle. Pressure and temperature of equilibration in the mantle are second-order factors influencing the Sc content of garnet, while crystal chemistry, in particular Cr/Cr+Al and Ca/Ca+Mg, is the main parameter controlling the compatibility of Sc. Scandium is incorporated in both X and Y sites of Cr-Ca-rich garnets, resulting in a behaviour intermediate between rare-earth elements, incorporated in the X site, and trivalent transition elements, occupying the Y site. This affinity for both sites results in a mild compatibility of Sc in the garnet stability field of the mantle; hence Sc concentration in garnet increases with melt extraction and can be reduced by silicate-melt metasomatism. In contrast, metasomatism by volatile-rich fluids increases the Sc concentration in garnet. The control of garnet on the compatibility of Sc in deep lithospheric rocks demonstrates the potential of using Sc to track the conditions of formation of magmas and their residual rocks, as well as the origin and nature of metasomatic fluids.
NASA Astrophysics Data System (ADS)
James, D. E.; Fouch, M. J.; Long, M. D.; Druken, K. A.; Wagner, L. S.; Chen, C.; Carlson, R. W.
2012-12-01
We interpret post-20 Ma tectonomagmatism across the U.S. Pacific Northwest in the context of subduction related processes. While mantle plume models have long enjoyed favor as an explanation for the post 20-Ma magmatism in the region, conceptually their support has hinged almost entirely on two major features: (1) Steens/Columbia River flood basalt volcanism (plume head); and (2) The Snake River Plain/Yellowstone hotspot track (plume tail). Recent work, synthesized in this presentation, suggests that these features are more plausibly the result of mantle dynamical processes driven by southerly truncation of the Farallon/Juan de Fuca subduction zone and slab detachment along the evolving margin of western North America (Long et al., 2012; James et al., 2011). Plate reconstructions indicate that shortening of the subduction zone by the northward migration of the Mendocino triple junction resulted in a significant increase in the rate of trench retreat and slab rollback ca 20 Ma. Both numerical modeling and physical tank experiments in turn predict large-scale mantle upwelling and flow around the southern edge of the rapidly retreating slab, consistent both with the observed Steens/Columbia River flood volcanism and with the strong E-W mantle fabric observed beneath the region of the High Lava Plains of central and eastern Oregon. The High Lava Plains and Snake River Plain time-progressive volcanism began concurrently about 12 Ma, but along highly divergent tracks and characterized by strikingly different upper mantle structure. Crustal and upper mantle structure beneath the High Lava Plains exhibits evidence typical of regional extension; i.e. thin crust, flat and sharp Moho, and an uppermost mantle with low velocities but otherwise largely devoid of significant vertical structure. In contrast, the Snake River Plain exhibits ultra-low mantle velocities to depths of about 180 km along the length of the hotspot track. Seismic images of the upper mantle in the depth range 300-600 km show that a northern segment of the orphaned Farallon plate lies sub-horizontally in the mantle transition zone parallel to and along the length of the SRP. The images also provide evidence for present-day upwelling from the deep upper mantle around the northern edge of the remnant slab beneath SRP as well as around its leading tip beneath Yellowstone. These results, coupled with petrologic and geochemical constraints, provide compelling support for a subduction model that accounts for virtually all post-20 Ma Cenozoic volcanism and structural deformation in the Cascadian back arc. James, D.E., Fouch, M.J., Carlson, R.W., Roth, J.B., 2011. Slab fragmentation, edge flow, and the origin of the Yellowstone hotspot track. Earth and Planetary Science Letters 311, 124-135. Long, M.D., Till, C.B., Druken, K.A., Carlson, R.W., Wagner, L.S., Fouch, M.J., James, D.E., Grove, T.L., Schmerr, N., Kincaid, C., 2012. Mantle dynamics beneath the Pacific Northwest and generation of voluminous back-arc volcanism. G-cubed in press.
Mantle hydrous-fluid interaction with Archaean granite.
NASA Astrophysics Data System (ADS)
Słaby, E.; Martin, H.; Hamada, M.; Śmigielski, M.; Domonik, A.; Götze, J.; Hoefs, J.; Hałas, S.; Simon, K.; Devidal, J.-L.; Moyen, J.-F.; Jayananda, M.
2012-04-01
Water content/species in alkali feldspars from late Archaean Closepet igneous bodies as well as growth and re-growth textures, trace element and oxygen isotope composition have been studied (Słaby et al., 2011). Both processes growth and re-growth are deterministic, however they differ showing increasing persistency in element behaviour during interaction with fluids. The re-growth process fertilized domains and didn't change their oxygen-isotope signature. Water speciation showed persistent behaviour during heating at least up to 600oC. Carbonate crystals with mantle isotope signature are associated with the recrystallized feldspar domains. Fluid-affected domains in apatite provide evidence of halide exchange. The data testify that the observed recrystallization was a high-temperature reaction with fertilized, halide-rich H2O-CO2 mantle-derived fluids of high water activity. A wet mantle being able to generate hydrous plumes, which appear to be hotter during the Archean in comparison to the present time is supposed by Shimizu et al. (2001). Usually hot fluids, which can be strongly carbonic, precede asthenospheric mantle upwelling. They are supposed to be parental to most recognized compositions, which can be derived by their immiscible separation into saline aqueous-silicic and carbonatitic members (Klein-BenDavid et al., 2007). The aqueous fractions are halogen-rich with a significant proportion of CO2. Both admixed fractions are supposed to be fertile. The Closepet granite emplaced in a major shear zone that delimitates two different terrains. Generally such shear zones, at many places, are supposed to be rooted deep into the mantle. The drain, that favoured and controlled magma ascent and emplacement, seemed to remain efficient after granite crystallization. In the southern part of the Closepet batholiths an evidence of intensive interaction of a lower crust fluid (of high CO2 activity) is provided by the extensive charnockitization of amphibolite facies (Stähle et al., 1987).The previously published data as well as the new ones point to volatile elements from both mantle and crust playing a prominent role in the petrogenesis of magmatic rocks during the Archaean. Their composition differs significantly in regard to water and CO2 activity. The present contribution gives an evidence of hydrous mantle-derived fluids. Taking under consideration two-end members model proposed for Archaean mantle, the contribution favours wet-mantle model. The work has been done within the framework of IGCP-SIDA 599 and has been funded by IGSci PASci 'Hybrid' and IGSci PASci-CNRS-UMR 6524-LMV project: 'Equilibration and re-equilibration processes in Archaean granites'. Klein-BenDavid, O., Izraeli, E.S., Hauri, E. & Navon, O. (2007). Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochimica et Cosmochimica Acta 71, 723-744. Słaby, E., Martin, H., Hamada, M., Śmigielski, M., Domonik, A., Götze, J., Hoefs, J., Hałas, S., Simon, K., Devidal, J-L., Moyen, J-F., Jayananda, M. (2011) Evidence in Archaean alkali-feldspar megacrysts for high-temperature interaction with mantle fluids. Journal of Petrology (on line). doi:10.1093/petrology/egr056. Stähle, H.J., Raith, M., Hoernes, S. & Delfs, A. (1987). Element mobility during incipient granulite formation at Kabbaldurga, Southern India. Journal of Petrology 28, 803-834.
Subduction Related Crustal and Mantle Deformations and Their Implications for Plate Dynamics
NASA Astrophysics Data System (ADS)
Okeler, Ahmet
Ocean-continent convergence and subsequent continental collision are responsible for continental growth, mountain building, and severe tectonic events including volcanic eruptions and earthquake activity. They are also key driving forces behind the extensive thermal and compositional heterogeneities at crustal and mantle depths. Active subduction along the Calabrian Arc in southern Italy and the Hellenic Arc are examples of such collisional tectonics. The first part of this thesis examines the subduction related deformations within the crust beneath the southern Apennines. By modeling regional surface wave recordings of the largest temporary deployment in the southern Apennines, a lower-crustal/upper-mantle low-velocity volume extending down to 50 km beneath the mountain chain is identified. The magnitude (˜ 0.4 km/s slower) and anisotropic nature (˜ 10%) of the anomaly suggest the presence of hot and partially molten emplacement that may extend into the upper-crust towards Mt. Vulture, a once active volcano. Since the Apulian basement units are deformed during the compressional and consequent extensional events, our observations favor the "thick-skin" tectonic growth model for the region. In the deeper mantle, active processes are thermodynamically imprinted on the depth and strength of the phase transitions. This thesis examines more than 15000 SS precursors and provides the present-day reflectivity structure and topography associated with these phase transitions. Through case studies I present ample evidence for both slab penetration into the lower mantle (beneath the Hellenic Arc, Kurile Island and South America) and slab stagnation at the bottom of the Mantle Transition Zone (beneath the Tyrrhenian Sea and eastern China). Key findings include (1) thermal anomalies (˜ 200 K) at the base of the MTZ, which represent the deep source for Cenozoic European Rift Zone, Mount Etna and Mount Cameroon volcanism, (2) significant depressions (by 20-40 km) at the bottom of the Mantle Transition Zone beneath subducting slabs, (3) a strong 520-km reflector near subducting slabs, (4) a weak and elevated (15-25 km) 410-km reflector within active deformation zones, (5) strong lower mantle reflectors (˜ 900 km) while slabs penetrate into the lower mantle, and (6) consistency between the topography of a 300-km reflector and an exothermic phase transformation.
NASA Astrophysics Data System (ADS)
Lessing, Stephan; Thomas, Christine; Rost, Sebastian; Cobden, Laura; Dobson, David P.
2014-04-01
We investigate the seismic structure of the upper-mantle and mantle transition zone beneath India and Western China using PP and SS underside reflections off seismic discontinuities, which arrive as precursors to the PP and SS arrival. We use high-resolution array seismic techniques to identify precursory energy and to map lateral variations of discontinuity depths. We find deep reflections off the 410 km discontinuity (P410P and S410S) beneath Tibet, Western China and India at depths of 410-440 km and elevated underside reflections of the 410 km discontinuity at 370-390 km depth beneath the Tien Shan region and Eastern Himalayas. These reflections likely correspond to the olivine to wadsleyite phase transition. The 410 km discontinuity appears to deepen in Central and Northern Tibet. We also find reflections off the 660 km discontinuity beneath Northern China at depths between 660 and 700 km (P660P and S660S) which could be attributed to the mineral transformation of ringwoodite to magnesiowuestite and perovskite. These observations could be consistent with the presence of cold material in the middle and lower part of the mantle transition zone in this region. We also find a deeper reflector between 700 and 740 km depth beneath Tibet which cannot be explained by a depressed 660 km discontinuity. This structure could, however, be explained by the segregation of oceanic crust and the formation of a neutrally buoyant garnet-rich layer beneath the mantle transition zone, due to subduction of oceanic crust of the Tethys Ocean. For several combinations of sources and receivers we do not detect arrivals of P660P and S660S although similar combinations of sources and receivers give well-developed P660P and S660S arrivals. Our thermodynamic modelling of seismic structure for a range of compositions and mantle geotherms shows that non-observations of P660P and S660S arrivals could be caused by the dependence of underside reflection coefficients on the incidence angle of the incoming seismic waves. Apart from reflections off the 410 and 660 km discontinuities, we observe intermittent reflectors at 300 and 520 km depth. The discontinuity structure of the study region likely reflects lateral thermal and chemical variations in the upper-mantle and mantle transition zone connected to past and present subduction and mantle convection processes.
Tectonic evolution and mantle structure of the Caribbean
NASA Astrophysics Data System (ADS)
van Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus
2013-04-01
In the broad context of investigating the relationship between deep structure & processes and surface expressions, we study the Caribbean plate and underlying mantle. We investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P-wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past ~45 Myr. The imaged Lesser-Antilles slab consists of a northern and southern anomaly, separated by a low velocity anomaly across most of the upper mantle, which we interpret as the subducted North-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northern boundary. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of the Farallon anomaly and is interpreted as a remnant of the late Mesozoic subduction of North and South America oceanic lithosphere at the Greater Antilles, Aves ridge and Leeward Antilles. The imaged mantle structure does not allow us to discriminate between an 'Intra-Americas' origin and a 'Pacific origin' of the Caribbean plate.
NASA Astrophysics Data System (ADS)
Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.
2005-12-01
In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated conductive lower crust and nested faults, and these are advanced as melt source regions for the underplating. MT, with its wide frequency bandwidth, allows views of nearly a complete melting and emplacement process, from mantle source region, through lower crustal intrusion, to brittle regime deformational response.
Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons
NASA Astrophysics Data System (ADS)
An, Yajun; Huang, Jin-Xiang; Griffin, W. L.; Liu, Chuanzhou; Huang, Fang
2017-03-01
We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in δ26Mg and δ56Fe of garnet peridotites from these two cratons. δ26Mg of whole rocks varies from -0.243‰ to -0.204‰ with an average of -0.225 ± 0.037‰ (2σ, n = 19), and δ56Fe from -0.038‰ to 0.060‰ with an average of -0.003 ± 0.068‰ (2σ, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show δ26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (⩽±0.05‰ for δ26Mg and δ56Fe, 2σ) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest δ26Mg and δ56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy δ26Mg and much lighter δ56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.
NASA Astrophysics Data System (ADS)
Briggs, R. M.; Utting, A. J.; Gibson, I. L.
1990-01-01
The Ngatutura Basalts are one of a series of Pliocene-Quaternary alkalic basalt volcanic fields in North Island, New Zealand. They are situated in an intraplate tectonic setting behind the currently active Taupo Volcanic Zone, and 300 km above the subducting slab. The volcanic field consists of 16 small-volume monogenetic volcanic centres composed mainly of eroded scoria cones and lava flows, that occupy an extensional tectonic environment characterized by NE-striking block faulting. In some cases the faults have controlled the localization of volcanic vents. The lavas have restricted compositions, ranging from hawaiites to nepheline hawaiites, and are characterized by enriched LILE, LREE, and HFS elements, with particularly high Nb and Ta, low Ba/Nb, and high Zr/Y and Ce N/Yb N ratios. Nepheline hawaiites are slightly more differentiated than hawaiites and have higher Ce N/Yb N ratios. Petrogenetic modelling suggests that the range in composition was mainly controlled by fractional crystallization of olivine, clinopyroxene, and minor plagioclase and titanomagnetite, which is consistent with the modal phenocryst abundances. Fractionation is explained by side-wall crystallization and flowage differentiation during rapid ascent, rather than gravitative settling in a magma chamber. Ngatutura magmas were probably derived from an enriched garnet lherzolite source within the low-velocity mantle. The process of source enrichment is speculative but our preferred model calls on metasomatizing fluids in the low-velocity zone. There is no geochemical evidence for any influence of the subducted slab on their composition, even though they overlie the Pacific plate subduction zone. This implies that the extent of subduction-related contamination in the mantle wedge is not pervasive, but is confined to a limited region overlying the subducted slab. Also, the "deep mantle plume" responsible for alkalic magmatism must have originated above the slab, because it seems unlikely that such a plume could have occurred at a deeper level and penetrate the slab without some evidence. This therefore limits the depth of origin of these "deep mantle plumes" to less than 300 km.
Partial separation of halogens during the subduction of oceanic crust
NASA Astrophysics Data System (ADS)
Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.
2014-05-01
Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep into the mantle through subduction of oceanic crust, possibly via marine pore fluids (Sumino et al. 2010). The OIB source region is, however, significantly enriched in fluorine relative to the primitive mantle by a factor of 1.4-3.6, which indicates that significantly larger amounts of fluorine are transported deep into the Earth's mantle through subduction. An explanation for the partial separation of chlorine and fluorine during subduction is that the heavy halogens are more likely to escape from the subducting slab in hydrous fluids at an early subduction stage whereas significant amounts of fluorine are likely to remain in the slab, possibly incorporated in the lattice of hydrous amphibole or mica, or in anhydrous high-pressure phases of eclogite. The MORB source mantle is degassed in fluorine (17-88%) and chlorine (22-99%) relative to primitive mantle estimates. Preliminary data suggest that the bromine partitioning behaviour between forsterite and melt is roughly comparable to the behaviour of fluorine and chlorine. If true, this would imply that the Earth's upper mantle is presumably degassed of all halogens despite the more likely escape of heavy halogens from the slab at an early subduction stage, implying that these halogens are at least partly accumulating in the crust after leaving the slab. Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Earth Planet Sci. Lett. 337-338, pp. 1-9. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL (2012) Contrib. Mineral. Petrol. 163, pp. 591-609. Palme H, O'Neill HSTC (2003) Treatise Geochem. 2, pp. 1-38. Ruzié L, Burgess R, Hilton DR, Ballentine CJ (2012) AGU Fall Meeting 2012. V31A-2762 (abstr.). Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Earth Planet. Sci. Lett. 294, pp. 163-172.
Tomographic imaging of subducted lithosphere below northwest Pacific island arcs
Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.
1991-01-01
The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.
Super-deep low-velocity layer beneath the Arabian plate
NASA Astrophysics Data System (ADS)
Vinnik, L.; Ravi Kumar, M.; Kind, R.; Farra, V.
2003-04-01
S and P receiver functions reveal indications of a low S velocity layer at 350-410 km depths beneath the Arabian plate. A similar layer was previously found beneath the Kaapvaal craton in southern Africa and Tunguska basin of the Siberian platform. We hypothesize, that the boundary at 350 km depth may separate dry mantle root of the Arabian plate from the underlying wet mantle layer. This boundary is not found beneath the Gulf of Aden, where the root is destroyed by sea-floor spreading.
The Feedback Between Continents and Compositional Anomalies in the Deep Mantle
NASA Astrophysics Data System (ADS)
Lowman, J. P.; Trim, S. J.
2014-12-01
Findings from global seismic tomography studies suggest that the deep mantle may harbor a pair of broad, steep-sided, relatively dense compositionally anomalous provinces. The longevity and stability of these Large Low Shear-Wave Velocity Provinces (LLSVPs) has received considerable interest but their possible influence on surface motion has drawn lesser attention. Recent work using numerical mantle convection models investigated the feedback between oceanic plate motion and high density compositional anomalies. It was found that surface mobility is affected by the presence of compositional anomalies such that critical density contrasts and volumes of the enriched material produce a transition to stagnant-lid convection. For lesser volumes and density contrast (for example, volumes that are representative of the concentrations in the Earth's mantle) the presence of the compositional anomalies affects mean plate velocity and size when compared to the characteristics of systems in which the enriched material is absent. In addition, numerous studies and lines of evidence in the geologic record suggest that the presence of the density anomalies plays a role in determining the location of mantle upwellings, which in turn influence surface dynamics. In this study, we present the results from a study implementing a two-dimensional mantle convection model featuring an anomalously dense component and distinct continental and oceanic lithosphere. The mass, momentum, and energy conservation equations are solved using a hybrid spectral-finite difference code. Compositional variations are tracked using Lagrangian tracer particles. Mobile tectonic plates are modeled using a force-balance method and plate boundary locations evolve in response to interior stresses, plate velocity, age and lithospheric chemistry (i.e., oceanic versus continental). We examine the influence of continents on compositional anomaly morphology and longevity and the influence of compositional anomalies on continental size, mobility and aggregation. The influence of continents is isolated by comparing our calculations with cases in which continents are absent.
Global rates of mantle serpentinization and H2 release at oceanic transform faults
NASA Astrophysics Data System (ADS)
Ruepke, Lars; Hasenclever, Joerg
2017-04-01
The cycling of seawater through the ocean floor is the dominant mechanism of biogeochemical exchange between the solid earth and the global ocean. Crustal fluid flow appears to be typically associated with major seafloor structures, and oceanic transform faults (OTF) are one of the most striking yet poorly understood features of the global mid-ocean ridge systems. Fracture zones and transform faults have long been hypothesized to be sites of substantial biogeochemical exchange between the solid Earth and the global ocean. This is particularly interesting with regard to the ocean biome. Deep ocean ecosystems constitute 60% of it but their role in global ocean biogeochemical cycles is much overlooked. There is growing evidence that life is supported by chemosynthesis at hydrothermal vents but also in the crust, and therefore this may be a more abundant process than previously thought. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting as it is also a mechanism of abiotic hydrogen and methane formation. Interestingly, a quantitative global assessment of mantle serpentinization at oceanic transform faults in the context of the biogeochemical exchange between the seafloor and the global ocean is still largely missing. Here we present the results of a set of 3-D thermo-mechanical model calculations that investigate mantle serpentinization at OTFs for the entire range of globally observed slip rates and fault lengths. These visco-plastic models predict the OTF thermal structure and the location of crustal-scale brittle deformation, which is a prerequisite for mantle serpentinization to occur. The results of these simulations are integrated with information on the global distribution of OTF lengths and slip rates yielding global estimates on mantle serpentinization and associated H2 release. We find that OTFs are potentially sites of intense crustal fluid flow and are in terms of H2 release almost as important as MOR-related serpentinization.
NASA Astrophysics Data System (ADS)
Zonenshain, L. P.; Kuzmin, M. I.; Bocharova, N. Yu.
1991-12-01
Intraplate, hot spot related volcanic occurrences do not have a random distribution on the Earth's surface. They are concentrated in two large regions (up to 10,000 km in diameter), the Pacific and the African, and two smaller areas (2000-3000 km in diameter), the Central Asian and the Tasmanian. These regions are considered as manifestations of hot fields in the mantle, whereas the regions lying in between are expressions of cold fields in the mantle. Large-scale anomalies coincide with the hot fields: topographic swells, geoid highs, uplifts of the "asthenospheric table", inferred heated regions in the lowermost mantle according to seismic tomographic images, geochemical anomalies showing the origin of volcanics from undepleted mantle sources. Hot fields are relatively stable features, having remained in the same position on the Earth's surface during the last 120 Ma, although they have other configurations and other positions in the Late Paleozoic and Early Mesozoic. Available data show that two main hot fields (Pacific and African) are possibly moving one with respect to the other, converging along the Eastern Pacific subduction system and diverging along that of the Western Pacific. If so, well-known differences between these subduction systems can also be connected with related displacement of the hot fields. Hot fields are assumed to correspond to upwelling branches of mantle and rather deep mantle convection, and cold fields to downwelling branches. Thus, hot fields can be regarded as expressions of deeper tectonics, comparative to the plate tectonics, which is operating in the upper layers of the Earth. We call it hot-field tectonics. Plate tectonics is responsible for the opening and closure of oceans and for the formation of orogenic belts, whereas hot-field tectonics accounts for a larger cyclicity of the Earth's evolution and for amalgamation and break up of Pangea-type supercontinents. Hot-field tectonics seems to be the only process to have existed on all of the terrestrial planets. We speculate that hot-field tectonics governs the global geodynamics of the Earth.
Origin of olivine at Copernicus
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Wilhelms, D. E.
1985-01-01
The central peaks of Copernicus are among the few lunar areas where near-infrared telescopic reflectance spectra indicate extensive exposures of olivine. Other parts of Copernicus crater and ejecta, which were derived from highland units in the upper parts of the target site, contain only low-Ca pyroxene as a mafic mineral. The exposure of compositionally distinct layers including the presence of extensive olivine may result from penetration to an anomalously deep layer of the crust or to the lunar mantle. It is suggested that the Procellarum basin and the younger, superposed Insularum basin have provided access to these normally deep-seated crustal or mantle materials by thinning the upper crustal material early in lunar history. The occurrences of olivine in portions of the compositionally heterogeneous Aristarchus Region, in a related geologic setting, may be due to the same sequence of early events.
Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle
Merlini, Marco; Crichton, Wilson A.; Hanfland, Michael; Gemmi, Mauro; Müller, Harald; Kupenko, Ilya; Dubrovinsky, Leonid
2012-01-01
Carbon-bearing solids, fluids, and melts in the Earth's deep interior may play an important role in the long-term carbon cycle. Here we apply synchrotron X-ray single crystal micro-diffraction techniques to identify and characterize the high-pressure polymorphs of dolomite. Dolomite-II, observed above 17 GPa, is triclinic, and its structure is topologically related to CaCO3-II. It transforms above 35 GPa to dolomite-III, also triclinic, which features carbon in [3 + 1] coordination at the highest pressures investigated (60 GPa). The structure is therefore representative of an intermediate between the low-pressure carbonates and the predicted ultra-high pressure carbonates, with carbon in tetrahedral coordination. Dolomite-III does not decompose up to the melting point (2,600 K at 43 GPa) and its thermodynamic stability demonstrates that this complex phase can transport carbon to depths of at least up to 1,700 km. Dolomite-III, therefore, is a likely occurring phase in areas containing recycled crustal slabs, which are more oxidized and Ca-enriched than the primitive lower mantle. Indeed, these phases may play an important role as carbon carriers in the whole mantle carbon cycling. As such, they are expected to participate in the fundamental petrological processes which, through carbon-bearing fluids and carbonate melts, will return carbon back to the Earth’s surface. PMID:22869705
Thermochemistry of dense hydrous magnesium silicates
NASA Technical Reports Server (NTRS)
Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra
1994-01-01
Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.
A role for subducted super-hydrated kaolinite in Earth’s deep water cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae
Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slabmore » (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.« less
A role for subducted super-hydrated kaolinite in Earth's deep water cycle
NASA Astrophysics Data System (ADS)
Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang
2017-12-01
Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.
The tungsten isotopic composition of the Earth's mantle before the terminal bombardment.
Willbold, Matthias; Elliott, Tim; Moorbath, Stephen
2011-09-07
Many precious, 'iron-loving' metals, such as gold, are surprisingly abundant in the accessible parts of the Earth, given the efficiency with which core formation should have removed them to the planet's deep interior. One explanation of their over-abundance is a 'late veneer'--a flux of meteorites added to the Earth after core formation as a 'terminal' bombardment that culminated in the cratering of the Moon. Some 3.8 billion-year-old rocks from Isua, Greenland, are derived from sources that retain an isotopic memory of events pre-dating this cataclysmic meteorite shower. These Isua samples thus provide a window on the composition of the Earth before such a late veneer and allow a direct test of its importance in modifying the composition of the planet. Using high-precision (less than 6 parts per million, 2 standard deviations) tungsten isotope analyses of these rocks, here we show that they have a isotopic tungsten ratio (182)W/(184)W that is significantly higher (about 13 parts per million) than modern terrestrial samples. This finding is in good agreement with the expected influence of a late veneer. We also show that alternative interpretations, such as partial remixing of a deep-mantle reservoir formed in the Hadean eon (more than four billion years ago) or core-mantle interaction, do not explain the W isotope data well. The decrease in mantle (182)W/(184)W occurs during the Archean eon (about four to three billion years ago), potentially on the same timescale as a notable decrease in (142)Nd/(144)Nd (refs 3 and 6). We speculate that both observations can be explained if late meteorite bombardment triggered the onset of the current style of mantle convection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.
Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pullmore » should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. Lastly, the mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.« less
Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.; ...
2016-12-23
Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pullmore » should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. Lastly, the mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.« less
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1998-10-01
The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.
Primitive helium isotopic compositions associated with Miocene lavas from Northwest Iceland
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Reinhard, A.; Blichert-Toft, J.; Price, A. A.; Kurz, M. D.; Halldorsson, S. A.
2016-12-01
Elevated 3He/4He ratios identified in hotspots globally are associated with an early-formed, less degassed mantle reservoir that resides in the deep mantle, but the origin and mechanism for the long-term preservation of this mantle domain are not well understood. The highest known terrestrial mantle-derived 3He/4He ratios (49.5 Ra) have been measured in 62 million year old lavas from Baffin Island and West Greenland, associated with the proto-Iceland plume [1]. Mid-Miocene lavas from northwest Iceland have 3He/4He ratios of up to 37 Ra [2]. Thus, the Iceland plume has tapped a high-3He/4He mantle source over much of the Cenozoic. This is important, as 182W [3] and 129Xe [4] data indicate that the high 3He/4He domain sampled by the Iceland plume formed in the early Hadean. We report new 3He/4He measurements on magmatic olivine in mid-Miocene lavas from Northwest Iceland. Fusion experiments indicate that the new, high 3He/4He ratios do not have a cosmogenic 3He contribution. New Sr, Nd, Hf, and Pb isotopic data place important constraints on the isotopic composition of the highest 3He/4He mantle domain sampled by mid-Miocene Iceland lavas. An important question is whether the highest 3He/4He lavas from Iceland have Sr-Nd-Hf-Pb isotopic compositions that overlap with those found in the high-3He/4He lavas from Baffin Island. If not, it will be important to understand the mechanism responsible for the offset in Sr-Nd-Hf-Pb isotopic compositions, and whether this also explains the lower maximum 3He/4He in mid-Miocene Icelandic lavas relative to their counterparts in Baffin Island. The new data will have implications for the preservation of primitive reservoirs in the deep mantle. [1] Stuart et al., Nature, v. 424, 2003. [2] Hilton et al., Earth Planet Sci. Lett., v. 173, 1999. [3] Rizo et al., Science, v. 352, 2016. [4] Mukhopadhyay, Nature, v. 486, 2012.
One billion year-old Mid-continent Rift leaves virtually no clues in the mantle
NASA Astrophysics Data System (ADS)
Bollmann, T. A.; Frederiksen, A. W.; van der Lee, S.; Wolin, E.; Revenaugh, J.; Wiens, D.; Darbyshire, F. A.; Aleqabi, G. I.; Wysession, M. E.; Stein, S.; Jurdy, D. M.
2017-12-01
We measured the relative arrival times of more than forty-six thousand teleseismic P waves recorded by seismic stations of Earthscope's Superior Province Rifting Earthscope Experiment (SPREE) and combined them with a similar amount of such measurements from other seismic stations in the larger region. SPREE recorded seismic waves for two and a half years around the prominent, one billion year-old Mid-continent Rift structure. The curvilinear Mid-continent Rift (MR) is distinguished by voluminous one billion year-old lava flows, which produce a prominent gravity high along the MR. As for other seismic waves, these lava flows along with their underplated counterpart, slightly slow down the measured teleseismic P waves, on average, compared to P waves that did not traverse structures beneath the Mid-continent Rift. However, the variance in the P wave arrival times in these two groups is nearly ten times higher than their average difference. In a seismic-tomographic inversion, we mapped all measured arrival times into structures deep beneath the crust, in the Earth's mantle. Beneath the crust we generally find relatively high P velocities, indicating relatively cool and undeformable mantle structures. However, the uppermost mantle beneath the MR shows several patches of slightly decreased P velocities. These patches are coincident with where the gravity anomalies peak, in Iowa and along the northern Minnesota/Wisconsin border. We will report on the likelihood that these anomalies are indeed a remaining mantle-lithospheric signature of the MR or whether these patches indirectly reflect the presence of the lava flows and their underplated counterparts at the crust-mantle interface. Other structures of interest and of varying depth extent in our tomographic image locate at 1) the intersection of the Superior Craton with the Penokean Province and the Marshfield Terrane west of the MR in southern Minnesota, 2) the intersection of the Penokean, Yavapai, and Mazatzal Terranes along the eastern edge of the Michigan arm of the MR, and 3) beneath Lake Nipigon, north of Lake Superior. Our tomographic image also reveals an intricate distribution of deep high-velocity anomalies, including in the lower mantle, potentially related to Mesozoic subduction of the Kula and/or Farallon Plates.
Features of the Caucasian segment of the Alpine-Himalayan-Indonesian Convergence Zone
NASA Astrophysics Data System (ADS)
Sharkov, E.
2012-04-01
The Caucasus Mountain System is a part of the Cenozoic Alpine-Himalayan-Indonesian Convergence Zone (AHICZ) which lasted throughout Eurasia from Western Mediterranean to Western Pacific. This belt has been formed after closure of the Mesozoic Tethys and is marked by mountains building processes, appearance of riftogenic structures, numerous late Cenozoic basaltic plateaus, and chain of often within-continental andesite-latite volcanic arcs, which trace suture zones of the continental plates collision. Caucasus Mountains are located in eastern part of the proper Alpine Zone in zone of Arabian-Eurasian syntaxis and appeared as a result of submeridional pressure which generated by oncoming moving of these plates. The Great Caucasus is represent the south border of the Eurasian plate, uplifted along the Main Caucasian Fault (Thrust). The latter is a part of super-regional deep-seated fault ranged from the Kopetdag through Caspian Sea, Caucasus and Crimea; very likely, that its further continuation is Tornquist-Teisseyre Zone. This superfault separates areas of Alpine convergence from Eurasian plate sensu stricto. The Caucasus occurred between Black and Caspian seas with passive margins and oceanic crust, covered by sediments of 10-15 km thick. Depressions of the seas form large "downfall", or caldrons which cut off pre-Pliocene structures of Caucasus and Kopetdag. These seas are, probably, small remnants of the Tethys which gradually shallowing in the Miocene (Zonenshain, Le Pichon, 1986). New essential deepening of the Black Sea and South-Caspian deep began in the Pliocene- Quaternary; it occurred simultaneously with uprising of Crimea and Caucasus, which were not marked in relief before (Grachev, 2000). Large positive isostatic anomaly beneath the Trans-Caucasian Transverse Uplift (TCTU) of the Great Caucasus and Lesser Caucasus, which stretch out to Arabian plate, occurred between "subsides" Black and especially Caspian seas with neutral to negative isostatic anomalies (Artemiev, 1973; Artemieva et al., 2006). We suggest that the positive anomaly considers with ascending of a mantle plume and .negative anomalies - with descending mantle flows on each its side (Sharkov, 2011). The main feature of this segment of the AHICZ is a presence of two late Cenozoic andesite-latite volcanic arcs: Anatolian-Caucasian and Caucasian-Elbursian, which jointed in area of TCTU. Such type of volcanism is also traced to the south practically through the whole zone of the syntaxis till to Van Lake area in Turkey. These volcanics are close to subduction-related magmas on their petrological and geochemical features, however, there are no clear evidences of the present-day subduction in the area of Neogene-Quaternary volcanism: crustal-level earthquakes predominated here (Gugunava, 1981; Sandvol et al., 2003). It suggests that such type of magmatism appeared as a result of interaction of a mantle plume head with continental crust under condition of continental plates collision (Lebedev et al., 2011). So, the Caucasus is an area of the present-day active interaction of deep-seated mantle processes with shallow lithosphere under conditions of the largest modern convergence zone.
New hydrologic model of fluid migration in deep porous media
NASA Astrophysics Data System (ADS)
Dmitrievsky, A.; Balanyuk, I.
2009-04-01
The authors present a new hydrological model of mantle processes that effect on formation of oil-and-gas bearing basins, fault tectonics and thermal convection. Any fluid migration is initially induced by lateral stresses in the crust and lithosphere which result from global geodynamic processes related to the mantle convection. The global processes are further transformed into regional movements in weakness zones. Model of porous media in deep fractured zones and idea of self-oscillation processes in mantle layers and fractured zones of the crust at different depths was used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in mantle layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, ocean rift and ocean subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. A certain class of fluid dynamic models describing consolidation of sedimentary basins, free oscillation processes slow and quick (at the final stage) fluid dynamic processes of the evolution of a sedimentary basin in subduction zones is considered for the first time. The last model of quick fluid dynamic processes reflects the process of formation of hydrocarbon deposits in the zones of collision of lithosphere plates. The results of numerical simulation and diagrams reflecting consecutive stages of the gas-fluid dynamic front propagation are assessed of the Pri-Caspian depression as the example. Calculations with this model will simultaneously be carried out for the sedimentary basins of Timan-Pechora region, Barents Sea, Volga-Ural area, etc. Hydrologic model of deep porous media and the idea of self-oscillation processes in fractured layers of the crust at different depths were used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in fractured layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, rift and subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. Specific manifestations of these mechanisms can vary in dependence on geological settings and geodynamic situations. In particular, periods of self-oscillations and depths of fractured layers can be various. Orientation of layers can be not only horizontal, but vertical as well, that is, self-oscillations can occur not only in deep porous media, but in faults and impaired fractured zones as well. Predominating vertical fluid migration can be accompanied by horizontal migration along crust waveguide. A set of fluid dynamic models is considered. Mathematical modeling of geodynamic and fluid dynamic processes in these zones seems very promising. Combined consideration of geodynamic and fluid dynamic aspects in a model of lithosphere plates collision enables to understand the influence of P-T conditions and shear deformations on the mechanism of hydrocarbon generation and to look after their migration and to explain these processes, but also to predict some features essential for the search and exploration of hydrocarbon fields in these regions and their classification. In terms of compaction models, multiphase filtration in a piezo-conduction mode and models of deep porous media major stages of fluid evolution under the conditions of developing passive margins and in the zones of collision of plates are described. In particular, compaction models of one of the stages of fluid mode evolution within a sedimentary basin and fluid migration from the convergence zones toward the upper layers are considered. In the final part of work, computation of fluid transfer of hydrocarbons in a pulse mode described by the equation of piezo-conductivity is presented for a mature oil-bearing sedimentary basin over individual sections for short periods of a few hundreds of years. These calculations were executed on the basis of a new mathematical method TEKON and computer programs for quantitative analysis of fluid migration and formation of hydrocarbon deposits with account taken for actual geometrical and lithological properties of the layers. On the basis of the specified numerical calculations the scales, form, and routes of fluid movement were disclosed, as well as the formation of zones of anomalously high rock pressure and non-traditional hydrocarbon deposits.
Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites.
Bindi, Luca; Griffin, William L; Panero, Wendy R; Sirotkina, Ekaterina; Bobrov, Andrey; Irifune, Tetsuo
2018-04-03
Tibetan ophiolites are shallow mantle material and crustal slabs that were subducted as deep as the mantle transition zone, a conclusion supported by the discovery of high-pressure phases like inverse ringwoodite in these sequences. Ringwoodite, Mg 2 SiO 4 , exhibits the normal spinel structure, with Mg in the octahedral A site and Si in the tetrahedral B site. Through A and B site-disorder, the inverse spinel has four-coordinated A cations and the six-coordinated site hosts a mixture of A and B cations. This process affects the density and impedance contrasts across the boundaries in the transition zone and seismic-wave velocities in this portion of the Earth. We report the first synthesis at high pressure (20 GPa) and high temperature (1600 °C) of a Cr-bearing ringwoodite with a completely inverse-spinel structure. Chemical, structural, and computational analysis confirm the stability of inverse ringwoodite and add further constraints to the subduction history of the Luobusa peridotite of the Tibetan ophiolites.
Hot Spots and Mantle Plumes: A Window Into the Deep Earth and a Lesson on How Science Really Works
NASA Astrophysics Data System (ADS)
Caplan-Auerbach, J.
2010-12-01
Despite years of discussion, debate and controversy over the causes of ocean island volcanism, most students simply learn that such features form from fixed plumes of hot material rising from the core mantle boundary. Although we know that the Hawaiian plume exhibited substantial southward motion, most introductory geology textbooks still report that hot spots are fixed and that the Hawaiian-Emperor bend reflects a change in plate motion. That mantle plumes are the focus of significant controversy within the scientific community is rarely, if ever, discussed, and alternative models for the formation of intraplate volcanoes are ignored. Students may thus complete their studies without learning about the dynamic debate focused on the existence and formation of mantle plumes. This issue represents an opportunity for students to see how science really works, how new models are constructed, and what distinguishes a hypothesis from a theory. The culminating project in Western Washington University’s Introduction to Geophysics class, a course required for the BS degree in geology, focuses on the hot spot and mantle plume debate. For the first nine weeks of the quarter students learn about general topics in geophysics including plate tectonics, magnetism, seismology, gravity and heat flow. At the end of the course, students break into small research groups with the goal of investigating how geophysics may be used to address three questions: (1) Do ocean island volcanoes form from mantle plumes? (2) Are “hot spots” actually hot? (3) Are hot spots stationary? Each group examines how these questions may be addressed using a specific geophysical tool. In addition to the five topics described above, a sixth group investigates the question of “if not hot spots/mantle plumes, how do ocean island volcanoes form?” Students read the current literature on the topic and present their results to their classmates. Presentations focus on topics such as the use of seismic tomography to image deep plumes, the use of magnetic data to determine plume paleolatitude, and the search for heat flow anomalies near hot spots. On the final day of the class students revisit the three questions presented above and discuss whether their thoughts on the topic have changed as a result of studying the geophysics. Finally, the class discusses the issue in terms of Thomas Kuhn’s phases of scientific study, considering whether or not the mantle plumes paradigm is in crisis. As evidenced by comments in student course evaluations, the project is very popular and students appreciate the opportunity to investigate a modern scientific controversy. The project not only helps students learn how geophysics may be used to study the deep earth, it familiarizes them with current scientific literature, and perhaps most importantly, it allows them to learn about and engage in a critical scientific debate.
The volcanism of the Comores archipelago: mantle plume or lithosperic deformation?
NASA Astrophysics Data System (ADS)
Michon, Laurent
2015-04-01
The development of the Comores archipelago in the Mozambique channel has been diversely interpreted since the 1970's. The two end-members causes are, on the one hand, a deep mantle plume that developed a hotspot track from the Seychelles Plateau to the Grande Comore, and, on the other hand, a lithospheric deformation that reactivated transform faults and controlled the magma path. The present work first surveys the sparse geological, geophysical and geochronological data available for this archipelago, re-evaluates the age of the magmatic activity and integrates this evolution at a regional scale. Combining realistic magma production rates, the volume of each edifice and the geochronological, it is showed that the magmatic activity started first in Mayotte about 20 Ma and second, almost simultaneously, in Anjouan, Mohéli and Grande Comore about 10 Ma ago. This magmatism, coeval with magmatic periods in areas surrounding the Mozambic channel, the southern East African rift and Madagascar, is organised in three periods since Late Oligocene. Magmatic provinces are now superimposed with seismic zones and graben structures. In consequence, the Comores archipelago is tentatively interpret as part of the East African rift rather than related to a distinct deep mantle plume.
Plate-Tectonic Circulation is Driven by Cooling From the Top and is Closed Within the Upper Mantle
NASA Astrophysics Data System (ADS)
Hamilton, W. B.
2001-12-01
Subduction drives plate tectonics and is due to cooling from the top: circulation is self-organized, and likely is closed above the discontinuity near 660 km. The contrary consensus that plate tectonics is driven by bottom heating and involves the entire mantle combines misunderstood kinematics with flawed concepts of through-the-mantle plumes and subduction. Plume conjecture came from the Emperor-Hawaii progression, the 45 Ma inflection in which was assumed to mark a 60-degree change in direction of that part of the Pacific plate over a fixed plume. Smooth spreading patterns around the east and south margin of the Pacific plate, and paleomagnetic data, disprove such a change. Speculations that plumes move, jump, etc. do not revive falsified conjecture. Geochemical distinctions between enriched island and depleted ridge basalts (which overlap) are expected products of normal upper-mantle processes, not plumes. MORB traverses solidus-T asthenosphere, whereas OIB zone-refines through subsolidus lithosphere and crust, crystallizing refractories to retain T of diminishing melt while assimilating and retaining fusibles. Tomographic inference of deep-mantle subduction is presented misleadingly and may reflect methodological and sampling artifacts (downward smearing, and concentration of recorded body waves in bundles within broad anomalies otherwise poorly sampled). Planetological and other data require hot Earth accretion, and thorough early fractionation, from material much more refractory than primitive meteorites, and are incompatible with the little-fractionated lower mantle postulated to permit whole-mantle circulation. The profound seismic discontinuity near 660 km is a thermodynamic and physical barrier to easy mass transfer in either direction. Refractory lower mantle convects slowly, perhaps in layers, and loses primarily original heat, whereas upper mantle churns rapidly, and the 660 decoupling boundary must have evolved into a compositional barrier also. Plate motions are driven by subduction, the passive falling away of oceanic lithosphere which is negatively buoyant because of top-down cooling. Slabs have top and bottom rolling hinges and sink subvertically (inclinations of slabs mark their positions, not trajectories) into the transition zone, where they are laid down on, and depress, the 660-km discontinuity. Rollback of upper hinges into subducting plates is required by plate behavior at all scales. That fronts of overriding plates advance at rollback velocity is required by common preservation atop their thin leading edges of little-deformed fore-arc basins. Convergence velocity also commonly equals rollback but is faster in some arcs. Steeply-sinking inclined slabs push sublithospheric upper mantle forward into the shrinking ocean from which they came, forcing seafloor spreading therein, and pull overriding plates behind them. Continental plates pass over sunken slabs like tanks above their basal treads, and material from, and displaced rearward by, sunken slabs is cycled into pull-apart oceans opening behind the continents, thus transferring mantle from shrinking to enlarging oceans. Hot mantle displaced above slabs enables backarc spreading. Spreading ridges, in both shrinking and enlarging oceans, are passive byproducts of subduction, and migrate because it is more energy efficient to process new asthenosphere than to get partial melt from increasingly distant sources. A plate-motion framework wherein hinges roll back, ridges migrate, Antarctica is approximately fixed, and intraplate deformation is integrated may approximate an absolute reference to sluggish lower mantle, whereas the hotspot frame is invalid, and the no-net-rotation frame minimizes trench and ridge motions.
Seismic structure of the central US crust and upper mantle: Uniqueness of the Reelfoot Rift
Pollitz, Fred; Mooney, Walter D.
2014-01-01
Using seismic surface waves recorded with Earthscope's Transportable Array, we apply surface wave imaging to determine 3D seismic velocity in the crust and uppermost mantle. Our images span several Proterozoic and early Cambrian rift zones (Mid-Continent Rift, Rough Creek Graben—Rome trough, Birmingham trough, Southern Oklahoma Aulacogen, and Reelfoot Rift). While ancient rifts are generally associated with low crustal velocity because of the presence of thick sedimentary sequences, the Reelfoot Rift is unique in its association with low mantle seismic velocity. Its mantle low-velocity zone (LVZ) is exceptionally pronounced and extends down to at least 200 km depth. This LVZ is of variable width, being relatively narrow (∼50km">∼50km wide) within the northern Reelfoot Rift, which hosts the New Madrid Seismic Zone (NMSZ). We hypothesize that this mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively low elastic plate thickness, which would tend to concentrate tectonic stress within this zone. No other intraplate ancient rift zone is known to be associated with such a deep mantle low-velocity anomaly, which suggests that the NMSZ is more susceptible to external stress perturbations than other ancient rift zones.
NASA Astrophysics Data System (ADS)
de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.
1999-09-01
Incorporating upper mantle differentiation through decompression melting in a numerical mantle convection model, we demonstrate that a compositionally distinct root consisting of depleted peridotite can grow and remain stable during a long period of secular cooling. Our modeling results show that in a hot convecting mantle partial melting will produce a compositional layering in a relatively short time of about 50 Ma. Due to secular cooling mantle differentiation finally stops before 1 Ga. The resulting continental root remains stable on a billion year time scale due to the combined effects of its intrinsically lower density and temperature-dependent rheology. Two different parameterizations of the melting phase-diagram are used in the models. The results indicate that during the Archaean melting occurred on a significant scale in the deep regions of the upper mantle, at pressures in excess of 15 GPa. The compositional depths of continental roots extend to 400 km depending on the potential temperature and the type of phase-diagram parameterization used in the model. The results reveal a strong correlation between lateral variations of temperature and the thickness of the continental root. This shows that cold regions in cratons are stabilized by a thick depleted root.
Mantle Structure Beneath East Africa and Zambia from Body Wave Tomography
NASA Astrophysics Data System (ADS)
Mulibo, G.; Nyblade, A.; Tugume, F.
2011-12-01
In this study, P and S travel time residuals from teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are being inverted, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds variations extending to a depth of 1200 km. Preliminary results show that at depths of 200 km of less, low wave speed anomalies are well developed beneath the Eastern and Western Branches of the East African Rift System. At deep depths, the low wave speed anomalies focus under the center and southern part of the East African Plateau and extend into the transition zone. At transition zone depths and within the top part of the lower mantle, the low wave speed anomaly shifts to the southwest beneath Zambia, indicating that the low wave speed anomaly is continuous across the transition zone and that it extends into the lower mantle. This result suggests that the upper mantle low wave speed anomaly beneath East Africa is connected to the African superplume anomaly in the lower mantle beneath southern Africa.
NASA Astrophysics Data System (ADS)
Keller, Tobias; Katz, Richard F.
2015-04-01
Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES HK96 Hirth & Kohlstedt (1996), Earth Planet Sci Lett DH06 Dasgupta & Hirschmann (2006), doi:10.1038/nature04612. H10 Hirschmann (2010), doi:10.1016/j.pepi.2009.12.003. DH10 Dasgupta & Hirschmann (2010), doi:10.1016/j.epsl.2010.06.039. McK84 McKenzie (1984), J Pet KW12 Katz & Weatherley (2012), doi: 10.1016/j.epsl.2012.04.042. RBS11 Rudge, Bercovici & Spiegelman (2011), doi: 10.1111/j.1365-246X.2010.04870.x
Predicting seismic anisotropy in D'' from global mantle flow models
NASA Astrophysics Data System (ADS)
Nowacki, A. J.; Walker, A.; Forte, A. M.; Wookey, J.; Kendall, J. M.
2010-12-01
The strong seismic anisotropy of D'' revealed by measurement of shear wave splitting is commonly considered a signature of convectional flow in the lowermost mantle. However, the relationship between the nature of mantle flow and the seismic observations is unclear. In order to test the hypothesis that anisotropy is caused by a deformation-induced crystallographic preferred orientation, we combine 3D models of mantle flow, simulations of the deformation of polycrystalline composites, and new seismic data. We make use of an emerging suite of models of mantle dynamics, which invert data from mineral physics experiments, seismic P- and S-wave travel times, and geodynamic surface observations, to produce an estimate of the current global scale 3D flow in the silicate Earth. Seismic tomography---and hence these dynamic models---is particularly well-constrained beneath Central America because of fortuitous earthquake and seismometer locations. We trace particles through the flow models within three different regions of D'' beneath Central and North America and use the strain field from this tracing as boundary conditions for visco-plastic modelling of texture development in representative polycrystalline samples. In order to simulate texture development we calculate the orientation of each crystal in each sample at each step in the flow. Grain interactions are described using a self-consistent approach, where the crystal is considered embedded in a homogenous effective medium, representing the surrounding grains as an average of the whole sample. Parameters describing the single crystal plasticity (e.g. slip system activities) are chosen to agree with existing experimental results for the deformation of lower mantle minerals, or are taken from parameterisations of the Peierls-Nabarro model of dislocations parameterised using density functional theory. The calculated textures are then used to predict the elastic properties of the deforming lowermost mantle, and thus the magnitude and orientation of shear wave splitting accrued by S waves traversing this region in different directions. We present the first results, and compare them to recent multi-azimuth observations. This allows us to test the efficacy of proposed phase assemblages and slip systems to explain D'' anisotropy. Whilst there are large uncertainties in physical parameters of the deep Earth, we anticipate that the constraints we are able to place on these may allow us in the future to directly map deformation in D'' with anisotropy measurements, hence testing models of deep mantle thermodynamics.
Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks
NASA Astrophysics Data System (ADS)
Gangopadhyay, A.; Walker, R. J.
2006-12-01
The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly, however, the high-precision initial Os isotopic compositions of the majority of ultramafic systems show strikingly uniform initial ^{187}Os/^{188}Os ratios, consistent with their derivation from sources that had Os isotopic evolution trajectory very similar to that of carbonaceous chondrites. In addition, the Os isotopic evolution trajectories of the mantle sources for most komatiites show resolvably lower average Re/Os than that estimated for the Primitive Upper Mantle (PUM), yet significantly higher than that obtained in some estimates for the modern convecting upper mantle, as determined via analyses of abyssal peridotites. One possibility is that most of the komatiites sample mantle sources that are unique relative to the sources of abyssal peridotites and MORB. Previous arguments that komatiites originate via large extents of partial melting of relatively deep upper mantle, or even lower mantle materials could, therefore, implicate a source that is different from the convecting upper mantle. If so, this source is remarkably uniform in its long-term Re/Os, and it shows moderate depletion in Re relative to the PUM. Alternatively, if the komatiites are generated within the convective upper mantle through relatively large extents of partial melting, they may provide a better estimate of the Os isotopic composition of the convective upper mantle than that obtained via analyses of MORB, abyssal peridotites and ophiolites.
Deep Crustal Melting and the Survival of Continental Crust
NASA Astrophysics Data System (ADS)
Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.
2017-12-01
Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in <10 million years. This cycle of burial, partial melting, rapid ascent, and crystallization/cooling preserves the continents from being recycled into the mantle by convergent tectonic processes over geologic time. Migmatite domes commonly preserve a record of high-T - low-P metamorphism. Domes may also contain rocks or minerals that record high-T - high-P conditions, including high-P metamorphism broadly coeval with host migmatite, evidence for the deep crustal origin of migmatite. There exists a spectrum of domes, from entirely deep-sourced to mixtures of deep and shallow sources. Controlling factors in deep vs. shallow sources are relative densities of crustal layers and rate of extension: fast extension (cm/yr) promotes efficient ascent of deep crust, whereas slow extension (mm/yr) produces significantly less exhumation. Recognition of the importance of migmatite (gneiss) domes as archives of orogenic deep crust is applicable to determining the chemical and physical properties of continental crust, as well as mechanisms and timescales of crustal differentiation.