Sample records for deep ocean basins

  1. Decadal trends in deep ocean salinity and regional effects on steric sea level

    NASA Astrophysics Data System (ADS)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  2. Mooring Measurements of the Abyssal Circulations in the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, F.

    2016-12-01

    A scientific observing network in the western tropical Pacific has initially been established by the Institute of Oceanology, Chinese Academy of Sciences (IOCAS). Using fifteen moorings that gives unprecedented measurements in the intermediate and abyssal layers, we present multi-timescale variations of the deep ocean circulations prior to and during 2015 El Niño event. The deep ocean velocities increase equatorward with high standard deviation and nearly zero mean. The deep ocean currents mainly flow in meridional direction in the central Philippine Basin, and are dominated by a series of alternating westward and eastward zonal jets in the Caroline Basin. The currents in the deep channel connecting the East and West Mariana Basins mainly flow southeastward. Seasonal variation is only present in the deep jets in the Caroline Basin, associating with vertical propagating annual Rossby wave. The high-frequency flow bands are dominated by diurnal, and semi-diurnal tidal currents, and near-inertial currents. The rough topography has a strong influence on the abyssal circulations, including the intensifications in velocity and internal tidal energy, and the formation of upwelling flow.

  3. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Emergence of the continents

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1978-01-01

    If early degassing of the Earth produced a global ocean several km deep overlying a global sialic crust, then late heavy bombardment of that crust by basin forming impacting bodies would have produced topography such that by 4 billion years ago dry continential landmasses would stand above sea level. From extrapolation of lunar crater statistics, at least 50% of an original global crust on the earth would have been converted into basins averaging 4 km deep after isostatic adjustment. These basins formed the sink into which such a global ocean would drain. If the ocean was initially 2 km deep, then approximately 50% of the early Earth would have stood above sea level when the late heavy bombardment came to a close.

  5. Geometrical constraint on the localization of deep water formation

    NASA Astrophysics Data System (ADS)

    Ferreira, D.; Marshall, J.

    2008-12-01

    That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and a large basin in the northern hemisphere).

  6. Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda

    USGS Publications Warehouse

    Cronin, T. M.; Holtz, T.R.; Whatley, R.C.

    1994-01-01

    Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions. ?? 1994.

  7. Availability of free oxygen in deep bottom water of some Archean-Early Paleoproterozoic ocean basins as derived from iron formation facies analyses

    NASA Astrophysics Data System (ADS)

    Beukes, N. J.; Smith, A.

    2013-12-01

    Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy in slightly oxygenated cold deep ocean water. Ferrihydrite, precipitated along the oxic-anoxic interface along the bottom of the buoyant plume could then settle to the floor of the basin without interference of dissolved ferrous iron. This model requires that oxygen, derived from photosynthesis in shallow water, circulated down to deep water creating a slightly oxygenated ocean basin system invaded by buoyant anoxic ferrous plumes. In areas where these plumes came in contact with the basin floor, magnetite and/or carbonate facies iron formation formed; the latter in areas of highest organic carbon influx. Extensive glacial diamictites in the Witwatersrand-Mozaan basin argues for climatic zonation in the Mesoarchean driving deep ocean currents. This model may explain why the rise of oxygen in the atmosphere was so long delayed after development of oxygenic photosynthesis; simply because in the dynamic ocean system oxygen could come into contact with much larger volumes of reduced species in the water column and along the ocean floor than in a static stratified system. It also impacts on reconstruction of microbial communities in Archean oceans.

  8. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi

    2018-02-01

    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  9. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Rae, James W. B.; Opdyke, Bradley N.; Eggins, Stephen M.

    2013-09-01

    We present new deep water carbonate ion concentration ([CO32-]) records, reconstructed using Cibicidoides wuellerstorfi B/Ca, for one core from Caribbean Basin (water depth = 3623 m, sill depth = 1.8 km) and three cores located at 2.3-4.3 km water depth from the equatorial Pacific Ocean during the Last Glacial-interglacial cycle. The pattern of deep water [CO32-] in the Caribbean Basin roughly mirrors that of atmospheric CO2, reflecting a dominant influence from preformed [CO32-] in the North Atlantic Ocean. Compared to the amplitude of ˜65 μmol/kg in the deep Caribbean Basin, deep water [CO32-] in the equatorial Pacific Ocean has varied by no more than ˜15 μmol/kg due to effective buffering of CaCO3 on deep-sea pH in the Pacific Ocean. Our results suggest little change in the global mean deep ocean [CO32-] between the Last Glacial Maximum (LGM) and the Late Holocene. The three records from the Pacific Ocean show long-term increases in [CO32-] by ˜7 μmol/kg from Marine Isotope Stage (MIS) 5c to mid MIS 3, consistent with the response of the deep ocean carbonate system to a decline in neritic carbonate production associated with ˜60 m drop in sea-level (the “coral-reef” hypothesis). Superimposed upon the long-term trend, deep water [CO32-] in the Pacific Ocean displays transient changes, which decouple with δ13C in the same cores, at the start and end of MIS 4. These changes in [CO32-] and δ13C are consistent with what would be expected from vertical nutrient fractionation and carbonate compensation. The observed ˜4 μmol/kg [CO32-] decline in the two Pacific cores at >3.4 km water depth from MIS 3 to the LGM indicate further strengthening of deep ocean stratification, which contributed to the final step of atmospheric CO2 drawdown during the last glaciation. The striking similarity between deep water [CO32-] and 230Th-normalized CaCO3 flux at two adjacent sites from the central equatorial Pacific Ocean provides convincing evidence that deep-sea carbonate dissolution dominantly controlled CaCO3 preservation at these sites in the past. Our results offer new and quantitative constraints from deep ocean carbonate chemistry to understand roles of various mechanisms in atmospheric CO2 changes over the Last Glacial-interglacial cycle.

  10. Volcanism and Tectonics of the Central Deep Basin, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Lelikov, E. P.; Emelyanova, T. A.; Pugachev, A. A.

    2018-01-01

    The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500-600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene-Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.

  11. Basin-Wide Oceanographic Array Bridges the South Atlantic

    NASA Astrophysics Data System (ADS)

    Ansorge, I. J.; Baringer, M. O.; Campos, E. J. D.; Dong, S.; Fine, R. A.; Garzoli, S. L.; Goni, G.; Meinen, C. S.; Perez, R. C.; Piola, A. R.; Roberts, M. J.; Speich, S.; Sprintall, J.; Terre, T.; Van den Berg, M. A.

    2014-02-01

    The meridional overturning circulation (MOC) is a global system of surface, intermediate, and deep ocean currents. The MOC connects the surface layer of the ocean and the atmosphere with the huge reservoir of the deep sea and is the primary mechanism for transporting heat, freshwater, and carbon between ocean basins. Climate models show that past changes in the strength of the MOC were linked to historical climate variations. Further research suggests that the MOC will continue to modulate climate change scenarios on time scales ranging from decades to centuries [Latif et al., 2006].

  12. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin

    2016-04-01

    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.

  13. Impact of opening of the Central America Seaway on climate in a coupled atmosphere-ocean-sea-ice model

    NASA Astrophysics Data System (ADS)

    Barrier, N.; Ferreira, D.; Marshall, J.

    2012-04-01

    We investigate the climatic impact of opening the Central America Seaway (CAS) in a coupled atmosphere-ocean-sea-ice model. A highly idealized land distribution is employed in which two meridional barriers extend from the North Pole in to the southern hemisphere, thus dividing the ocean in to a large basin, a small basin and a circumpolar flow around the South Pole. Such a configuration captures the essential zonal and inter-hemispheric asymmetries of the current climate. These simple geometrical constraints are sufficient to localize the deep-reaching meridional overturning circulation (MOC) to the northern extremity of the small basin. Given this reference experiment, we open up an analogue of the Central America Seaway on the western margin of the small basin north of the equator. Both deep and shallow passageways are considered. We find that although a major reorganization of ocean circulation occurs, along with significant local water-mass changes, global heat and freshwater meridional transports are largely unchanged, as are temperatures over the North Pole. In particular we do not observe a weakening of the MOC in the small basin, with salinity exchange between the large basin playing only a minor role. The simplicity of the geometrical configuration used in our experiments enables us to tease apart exactly what is going on. Experiments in which the salinity and temperature states of the small and large basins are interchanged, for example, show that our solutions are robust, with deep convection returning to the small basin after 800 years or so. Our experiments suggest to us that the closing of the CAS alone is not sufficient to lead to the onset of northern hemisphere glaciations 2 Ma years or so ago.

  14. Reversed flow of Atlantic deep water during the Last Glacial Maximum.

    PubMed

    Negre, César; Zahn, Rainer; Thomas, Alexander L; Masqué, Pere; Henderson, Gideon M; Martínez-Méndez, Gema; Hall, Ian R; Mas, José L

    2010-11-04

    The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.

  15. The Deep-Sea Benthos in the Gulf of Mexico.

    DTIC Science & Technology

    context has been a collection (by biological dredge) of rocks from the Sigsbee Knolls that date to Carboniferous age. Since the oldest rocks known...from any ocean basin up to this time are of Cretaceous age, the present discovery provides the oldest rock (318 million years) found in any ocean basin

  16. Dynamics of Oceanic Motions

    DTIC Science & Technology

    1997-09-30

    research is multiscale , interdisciplinary and generic. The methods are applicable to an arbitrary region of the coastal and/or deep ocean and across the...dynamics. OBJECTIVES General objectives are: (I) To determine for the coastal and/or coupled deep ocean the multiscale processes which occur: i) in...Straits and the eastern basin; iii) extension and application of our balance of terms scheme (EVA) to multiscale , interdisciplinary fields with data

  17. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean

    PubMed Central

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F.; McWilliams, James C.

    2016-01-01

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376

  18. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean.

    PubMed

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F; McWilliams, James C

    2016-03-15

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.

  19. Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic

    NASA Astrophysics Data System (ADS)

    Gage, John D.

    2004-07-01

    High diversity in macrobenthos in the deep sea still lacks satisfactory explanation, even if this richness may not be exceptional compared to that in coastal soft sediments. Explanations have assumed a highly ecologically interactive, saturated local community with co-existence controlled by either niche heterogeneity, or spatio-temporal heterogeneity embodying disturbance. All have failed to provide convincing support. Local/regional scale biodiversity relationships support the idea of local richness in macrobenthos being predominantly dependent on the larger, rather local scale. Local-scale ecological interactions seem unlikely to have overriding importance in co-existence of species in the deep sea, even for relatively abundant, 'core' species with wide distributions. Variety in observed larger-scale pattern and the strong inter-regional pattern, particularly in the poorly known southern hemisphere, seem to have a pluralistic causation. These include regional-scale barriers and extinctions (e.g., Arctic), and ongoing adaptive zone re-colonisation (e.g., Mediterranean), along with other historical constraints on speciation and migration of species caused by changes in ocean and ocean-basin geometry. At the global scale lack of knowledge of the Antarctic deep sea, for example, blocks coherent understanding of latitudinal species diversity gradients. We need to reconcile emerging understanding of large-scale historical variability in the deep-sea environment—with massive extinctions among microfossil indicators as recently as the Pliocene—to results from cladistic studies indicating ancient lineages, such as asellote isopods, that have evolved entirely within the deep sea. The degree to which the great age, diversity, and high degree of endemism in Antarctic shelf benthos might have enriched biodiversity in the adjacent deep seas basins remains unclear. Basin confluence with the Atlantic, Indian and Pacific Oceans may have encouraged northwards dispersion of species from and into the deep Antarctic basins so that any regional identity is superficial. Interpretation of the Antarctic deep sea as a diversity pump for global deep-sea biodiversity may simply reflect re-colonisation, via basin confluence, of northern hemisphere areas impoverished by the consequences of rapid environmental change during the Quaternary.

  20. Did hydrographic sampling capture global and regional deep ocean heat content trends accurately between 1990-2010?

    NASA Astrophysics Data System (ADS)

    Garry, Freya; McDonagh, Elaine; Blaker, Adam; Roberts, Chris; Desbruyères, Damien; King, Brian

    2017-04-01

    Estimates of heat content change in the deep oceans (below 2000 m) over the last thirty years are obtained from temperature measurements made by hydrographic survey ships. Cruises occupy the same tracks across an ocean basin approximately every 5+ years. Measurements may not be sufficiently frequent in time or space to allow accurate evaluation of total ocean heat content (OHC) and its rate of change. It is widely thought that additional deep ocean sampling will also aid understanding of the mechanisms for OHC change on annual to decadal timescales, including how OHC varies regionally under natural and anthropogenically forced climate change. Here a 0.25˚ ocean model is used to investigate the magnitude of uncertainties and biases that exist in estimates of deep ocean temperature change from hydrographic sections due to their infrequent timing and sparse spatial distribution during 1990 - 2010. Biases in the observational data may be due to lack of spatial coverage (not enough sections covering the basin), lack of data between occupations (typically 5-10 years apart) and due to occupations not closely spanning the time period of interest. Between 1990 - 2010, the modelled biases globally are comparatively small in the abyssal ocean below 3500 m although regionally certain biases in heat flux into the 4000 - 6000 m layer can be up to 0.05 Wm-2. Biases in the heat flux into the deep 2000 - 4000 m layer due to either temporal or spatial sampling uncertainties are typically much larger and can be over 0.1 Wm-2 across an ocean. Overall, 82% of the warming trend below 2000 m is captured by observational-style sampling in the model. However, at 2500 m (too deep for additional temperature information to be inferred from upper ocean Argo) less than two thirds of the magnitude of the global warming trend is obtained, and regionally large biases exist in the Atlantic, Southern and Indian Oceans, highlighting the need for widespread improved deep ocean temperature sampling. In addition to bias due to infrequent sampling, moving the timings of occupations by a few months generates relatively large uncertainty due to intra-annual variability in deep ocean model temperature, further strengthening the case for high temporal frequency observations in the deep ocean (as could be achieved using deep ocean autonomous float technologies). Biases due to different uncertainties can have opposing signs and differ in relative importance both regionally and with depth revealing the importance of reducing all uncertainties (both spatial and temporal) simultaneously in future deep ocean observing design.

  1. Deep inflow into the Mozambique Basin

    NASA Astrophysics Data System (ADS)

    Read, J. F.; Pollard, R. T.

    1999-02-01

    More than 200 conductivity-temperature-depth (CTD) stations were worked around the Southwest Indian Ridge and Del Caño Rise as part of the World Ocean Circulation Experiment. A selection of these data provides information about the inflow of bottom water into the Mozambique Basin. The basin is closed below 3000 m, yet the inflow is significantly large, of order 1 Sv (1 Sv = 106 m3 s-1). Estimates of the basin-scale upwelling at 4000 m suggest that the vertical velocity is also large, 10 × 10-5 cm s-1 or more, an order of magnitude greater than global ocean estimates. Examination of the characteristics of the bottom water in the Mozambique and Agulhas Basins and the Prince Edward Fracture Zone shows that bottom water enters the Mozambique Basin from the Agulhas Basin and also directly from the Enderby Basin. Most of the transport enters the Mozambique Basin via the Agulhas Basin, where two regions of northward flow below 4000 m are found. The major flow, on the eastern flank of the Mozambique Ridge, is through and above the deep, extending (5900 m) trench that connects the Agulhas and Mozambique Basins. The second, weaker flow enters the Transkei Basin along the deep eastern flank of the Agulhas Plateau, then turning east into the Mozambique Basin. The only source of bottom water to the Agulhas Basin is the Enderby Basin, but a more direct route between the Enderby and Mozambique Basins exists via the Prince Edward fracture, which extends deeper than 4000 m throughout its length and links the two basins directly across the Southwest Indian Ridge. Full depth CTD stations trace the changing characteristics of the deep and bottom water in the fracture, and moored current meter data show the strength and persistence of the throughflow. Strong mixing with the overlying deep water elevates the salt content of the bottom water by comparison with the other water in the Mozambique Basin. Thus two distinct bottom waters of the Mozambique Basin originate in the same place (the Enderby Basin), and their different characteristics are solely a function of the routes they have taken and the processes encountered along the different pathways.

  2. Abyssal Upwelling in Mid-Ocean Ridge Fracture Zones

    NASA Astrophysics Data System (ADS)

    Clément, Louis; Thurnherr, Andreas M.

    2018-03-01

    Turbulence in the abyssal ocean plays a fundamental role in the climate system by sustaining the deepest branch of the overturning circulation. Over the western flank of the Mid-Atlantic Ridge in the South Atlantic, previously observed bottom-intensified and tidally modulated mixing of abyssal waters appears to imply a counterintuitive densification of deep and bottom waters. Here we show that inside fracture zones, however, turbulence is elevated away from the seafloor because of intensified downward propagating near-inertial wave energy, which decays below a subinertial shear maximum. Ray-tracing simulations predict a decay of wave energy subsequent to wave-mean flow interactions. The hypothesized wave-mean flow interactions drive a deep flow toward lighter densities of up to 0.6 Sv over the mid-ocean ridge flank in the Brazil Basin, and the same process may also cause upwelling of abyssal waters in other ocean basins with mid-ocean ridges with fracture zones.

  3. Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.

    2017-08-01

    New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.Plain Language SummarySubmarine volcanism and associated hydrothermal systems are relevant processes for the evolution of the ocean basins, due their impact on the geochemistry of the oceans, their potential to form significant ore deposits, and their implications for global climate change, considering the heat transport, maturation of organic matter and the release of carbon-rich fluids associated to these systems. Hydrothermal vent complexes have been found all over the world in the fossil record related to large igneous provinces as those found in the North Atlantic margins. Nevertheless, studies focused on modern deep water magmatic hydrothermal systems are generally confined to ocean spreading centers, while scarce works address their study in deep oceanic intraplate basins. This study reports and documents for the first time the discovery of a recent deep water system of magmatic-induced hydrothermal vents at 4800-5200 m depth in an unexplored area of the Canary Basin (eastern central Atlantic), located about 500 km west of the Canary Islands. The analysis and interpretation of the newly acquired data set has shown that the study area is characterized by the presence of a huge magmatic complex of sills that intrudes the sedimentary sequence and exceptionally deep volcanoes so far unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrOce.161...19H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrOce.161...19H"><span>A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Chris W.; Williams, Joanne; Blaker, Adam; Coward, Andrew; Stepanov, Vladimir</p> <p>2018-02-01</p> <p>We show how, by focusing on bottom pressure measurements particularly on the global continental slope, it is possible to avoid the "fog" of mesoscale variability which dominates most observables in the deep ocean. This makes it possible to monitor those aspects of the ocean circulation which are most important for global scale ocean variability and climate. We therefore argue that such measurements should be considered an important future component of the Global Ocean Observing System, to complement the present open-ocean and coastal elements. Our conclusions are founded on both theoretical arguments, and diagnostics from a fine-resolution ocean model that has realistic amplitudes and spectra of mesoscale variability. These show that boundary pressure variations are coherent over along-slope distances of tens of thousands of kilometres, for several vertical modes. We illustrate the value of this in the model Atlantic, by determining the time for boundary and equatorial waves to complete a circuit of the northern basin (115 and 205 days for the first and second vertical modes), showing how the boundary features compare with basin-scale theoretical models, and demonstrating the ability to monitor the meridional overturning circulation using these boundary measurements. Finally, we discuss applicability to the real ocean and make recommendations on how to make such measurements without contamination from instrumental drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2291D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2291D"><span>Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durrieu de Madron, X.; Ramondenc, S.; Berline, L.; Houpert, L.; Bosse, A.; Martini, S.; Guidi, L.; Conan, P.; Curtil, C.; Delsaut, N.; Kunesch, S.; Ghiglione, J. F.; Marsaleix, P.; Pujo-Pay, M.; Séverin, T.; Testor, P.; Tamburini, C.</p> <p>2017-03-01</p> <p>The Gulf of Lions in the northwestern Mediterranean is one of the few sites around the world ocean exhibiting deep open-ocean convection. Based on 6 year long (2009-2015) time series from a mooring in the convection region, shipborne measurements from repeated cruises, from 2012 to 2015, and glider measurements, we report evidence of bottom thick nepheloid layer formation, which is coincident with deep sediment resuspension induced by bottom-reaching convection events. This bottom nepheloid layer, which presents a maximum thickness of more than 2000 m in the center of the convection region, probably results from the action of cyclonic eddies that are formed during the convection period and can persist within their core while they travel through the basin. The residence time of this bottom nepheloid layer appears to be less than a year. In situ measurements of suspended particle size further indicate that the bottom nepheloid layer is primarily composed of aggregates between 100 and 1000 µm in diameter, probably constituted of fine silts. Bottom-reaching open ocean convection, as well as deep dense shelf water cascading that occurred concurrently some years, lead to recurring deep sediments resuspension episodes. They are key mechanisms that control the concentration and characteristics of the suspended particulate matter in the basin, and in turn affect the bathypelagic biological activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29310121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29310121"><span>A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stolper, Daniel A; Keller, C Brenhin</p> <p>2018-01-18</p> <p>The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O 2 ) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe 3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Natur.553..323S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Natur.553..323S"><span>A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stolper, Daniel A.; Keller, C. Brenhin</p> <p>2018-01-01</p> <p>The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O2) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.1439P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.1439P"><span>Gyre-scale deep convection in the subpolar North Atlantic Ocean during winter 2014-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piron, A.; Thierry, V.; Mercier, H.; Caniaux, G.</p> <p>2017-02-01</p> <p>Using Argo floats, we show that a major deep convective activity occurred simultaneously in the Labrador Sea (LAB), south of Cape Farewell (SCF), and the Irminger Sea (IRM) during winter 2014-2015. Convection was driven by exceptional heat loss to the atmosphere (up to 50% higher than the climatological mean). This is the first observation of deep convection over such a widespread area. Mixed layer depths exceptionally reached 1700 m in SCF and 1400 m in IRM. The deep thermocline density gradient limited the mixed layer deepening in the Labrador Sea to 1800 m. Potential densities of deep waters were similar in the three basins (27.73-27.74 kg m-3) but warmer by 0.3°C and saltier by 0.04 in IRM than in LAB and SCF, meaning that each basin formed locally its own deep water. The cold anomaly that developed recently in the North Atlantic Ocean favored and was enhanced by this exceptional convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..277G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..277G"><span>Decadal Comparisons of Particulate Matter in Repeat Transects in the Atlantic, Pacific, and Indian Ocean Basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardner, W. D.; Mishonov, A. V.; Richardson, M. J.</p> <p>2018-01-01</p> <p>Basin-wide sections of beam cp (proxy for particle concentration) in ocean basins collected during numerous oceanographic programs over the last four decades record variable concentrations in euphotic surface waters, very low concentrations through most of the water column, and very low to very high concentrations near the seafloor. Sections resampled at decadal intervals show that intense benthic nepheloid layers (BNLs) recur in the same general locations in these repeat sections, most often where eddy kinetic energy (EKE: cm2 s-2) is high in overlying waters. Areas beneath regions of low surface EKE consistently have weak to no BNLs. The decadal persistence of the close connection between surface and benthic EKE and presence or absence of BNLs is clear. Understanding the location and causes of intense versus weak BNLs helps in assessing scavenging of adsorption-prone elements in the deep sea and quantifying the impact of deep ocean sediment dynamics on sediment redistribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP21A2267S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP21A2267S"><span>Dueling Deglacial Depth Transects: A Synthesis of Isotope Records from the South Atlantic and Pacific Oceans Provides Insight into Deglacial Ocean Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sikes, E. L.; Allen, K. A.; Lund, D. C.</p> <p>2016-12-01</p> <p>The end of the last ice age was marked by rapid increases in atmospheric CO2 and changes in ocean circulation and seawater δ13C and Δ14C, suggesting that enhanced ventilation of the deep ocean may have released sequestered CO2 to the atmosphere. Here we compare depth transects of Δ14C and high-resolution Cibicidoides sp. δ13C and δ18O records from the Southwest Pacific and the Southwest Atlantic to gain insight into the changing extent and composition of water masses in the Southern Hemisphere. Our vertical transects document that during the Last Glacial Maximum (LGM), water mass properties and boundaries in the Southwest Atlantic and Pacific were very different from one another and from their respective modern profiles. The shallow to deep δ13C difference (Δδ13C, 660- 2500 m) in the Pacific was 1.7‰, more than double the Holocene value ( 0.7‰) and a deep watermass boundary was situated above 1600m. LGM Δδ13C in the Atlantic was similar to the Pacific, but the deep geochemical front was situated at 2500 m (as observed previously; e.g. Hoffman and Lund, 2012). At the onset of Heinrich Stadial 1 (HS1; 18 - 14.5 ka), changes in the shallow isotope records (< 1500 m) from the two basins differed, indicating independent controls on intermediate water composition/formation in these two ocean basins. During HS1 in the Pacific, rapid δ13C and Δ14C enrichment above 1600 m coincided with δ13C depletion in Atlantic waters between 1500 m and 2500 m. Benthic δ13C below 2500 m in both basins and D14C in the Pacific remained depleted until the Antarctic Cold Reversal (ACR; 14.7 to 12.7 ka). During the ACR, Pacific Δ14C below 1600 m increased while both the Atlantic and Pacific experienced a rapid increase in δ13C and decrease in δ18O below 2500 m. These simultaneous isotopic shifts in the Pacific and Atlantic support the idea of a widespread pulse of deep-water ventilation driven by the resumption of North Atlantic Deep Water formation during the ACR. Overall, early shallow to intermediate ventilation differed between the two basins and simultaneous deep ventilation occurred later in the deglaciation, coincident with the reinitiation of deep overturning circulation during the Bølling-Allerød.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15616560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15616560"><span>Break-up of the Atlantic deep western boundary current into eddies at 8 degrees S.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dengler, M; Schott, F A; Eden, C; Brandt, P; Fischer, J; Zantopp, R J</p> <p>2004-12-23</p> <p>The existence in the ocean of deep western boundary currents, which connect the high-latitude regions where deep water is formed with upwelling regions as part of the global ocean circulation, was postulated more than 40 years ago. These ocean currents have been found adjacent to the continental slopes of all ocean basins, and have core depths between 1,500 and 4,000 m. In the Atlantic Ocean, the deep western boundary current is estimated to carry (10-40) x 10(6) m3 s(-1) of water, transporting North Atlantic Deep Water--from the overflow regions between Greenland and Scotland and from the Labrador Sea--into the South Atlantic and the Antarctic circumpolar current. Here we present direct velocity and water mass observations obtained in the period 2000 to 2003, as well as results from a numerical ocean circulation model, showing that the Atlantic deep western boundary current breaks up at 8 degrees S. Southward of this latitude, the transport of North Atlantic Deep Water into the South Atlantic Ocean is accomplished by migrating eddies, rather than by a continuous flow. Our model simulation indicates that the deep western boundary current breaks up into eddies at the present intensity of meridional overturning circulation. For weaker overturning, continuation as a stable, laminar boundary flow seems possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019019','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019019"><span>Modern benthic foraminifer distribution in the Amerasian Basin, Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ishman, S.E.; Foley, K.M.</p> <p>1996-01-01</p> <p>A total of 38 box cores were collected from the Amerasian Basin, Arctic Ocean during the U.S. Geological Survey 1992 (PI92-AR) and 1993 (PI93-AR) Arctic Cruises aboard the U.S. Coast Guard Icebreaker Polar Star. In addition, the cruises collected geophysical data, piston cores and hydrographic data to address the geologic and oceanographic history of the western Arctic Ocean. This paper reports the results of the quantitative analyses of benthic foraminifer distribution data of the total (live + dead) assemblages derived from 22 box core-top samples. The results show that a distinct depth distribution of three dominant benthic foraminifer assemblages, the Textularia spp. - Spiroplectammina biformis, Cassidulina teretis and Oridorsalis tener - Eponides tumidulus Biofacies are strongly controlled by the dominant water masses within the Canada Basin: the Arctic Surface Water, Arctic Intermediate Water and Canada Basin Deep Water. The faunal distributions and their oceanographic associations in the Canada Basin are consistent with observations of benthic foraminifer distributions from other regions within the Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25543942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25543942"><span>Nematocarcinus Milne Edwards, 1881 (Crustacea, Decapoda) from Southwestern Atlantic, including the Southern Mid-Atlantic Ridge area.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cardoso, Irene A; Burukovsky, Rudolf N</p> <p>2014-11-26</p> <p>The deep sea shrimp genus Nematocarcinus Milne Edwards, 1881 includes 47 species, ten of them have been recorded from the Atlantic Ocean. Herein, material sampled during three scientific projects (REVIZEE Central Fishery project; Campos Basin Deep Sea Environmental Project; Evaluation of Environmental Heterogeneity in the Campos Basin) made in the Southwestern Atlantic, off Brazil, is examined. In addition, material sampled from the South Mid Atlantic Ridge (MAR-ECO Project) was also examined. Four species are recorded for the first time to the southwestern Atlantic Ocean including Mid Atlantic Ridge area: Nematocarcinus faxoni Burukovsky, 2001; N. gracilipes Filhol, 1884; N. rotundus Crosnier & Forest, 1973 and N. tenuipes Spence-Bate, 1888.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28769035','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28769035"><span>Spiraling pathways of global deep waters to the surface of the Southern Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert</p> <p>2017-08-02</p> <p>Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26411339','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26411339"><span>Bacterial biogeography influenced by shelf-basin exchange in the Arctic surface sediment at the Chukchi Borderland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Dukki; Nam, Seung-Il; Ha, Ho Kyung; Kim, Hyoungjun; Sadowsky, Michael J; Lee, Yoo Kyung; Hur, Hor-Gil</p> <p>2016-02-01</p> <p>It has been known that continental shelves around the Arctic Ocean play a major role in the ventilation of the deep basins as a consequence of shelf-basin exchange. In the present study, we found that bacterial assemblage of the surface sediment was different from that of seawater while seawater harboured local bacterial assemblages in response to the Arctic hydrography. This finding suggests that the Arctic seafloor sediments may have distinctive bacterial biogeography. Moreover, the distribution of bacterial assemblages and physicochemical properties in surface sediments changed gradually from the Arctic continental shelf to deep-sea basin. Based on the results, bacterial biogeography in the Arctic seafloor sediments may be influenced by winnowing and re-deposition of surface sediments through the sediment gravity flow. The present study offers a deeper understanding of shelf convection and its role for the construction of bacterial assemblages in the Arctic Ocean. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910971T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910971T"><span>Pathways of upwelling deep waters to the surface of the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert</p> <p>2017-04-01</p> <p>Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51A1054E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51A1054E"><span>Deep ocean ventilation in the Central Fram Strait during the past 35 kyr</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ezat, M.; Rasmussen, T. L.; Skinner, L.; Zamelczyk, K.</p> <p>2017-12-01</p> <p>Ocean ventilation in the Arctic Mediterranean via transformation of northward inflowing warm Atlantic surface water into cold deep water affects regional climate, large-scale atmospheric circulation and carbon storage in the deep ocean. Radiocarbon dating of benthic foraminifera has been used to suggest a near-cessation of Arctic Ocean ventilation during the Last Glacial Maximum. During the last deglaciation episodic surges of this Arctic `aged' glacial deep water into the Nordic Seas and the subpolar North Atlantic Ocean may have occurred (Thornalley et al., 2011, 2015; Science). A recent study from the SE Norwegian Sea and the Iceland Basin has revealed large radiocarbon age differences between different benthic foraminiferal species during the last deglaciation (Ezat et al., 2017; Paleoceanography), which arguments for a re-evaluation of previous bottom-water radiocarbon ventilation age reconstructions from the region. Here, we present new species-specific benthic and planktic foraminiferal radiocarbon dates from the central Fram Strait and the SE Norwegian Sea for the past 35 kyr. Several lines of evidence in this new dataset demonstrate that the previously suggested `extreme aging' of >6000 14C years in the Arctic Mediterranean is most likely erroneous. In addition, benthic-planktic age offsets in the deep central Fram Strait display a remarkable decrease from 1300-2300 14C years in late Marine Isotope Stage (MIS) 3 to 0-500 14C year in MIS 2, which correlates with a decrease in benthic d13C and reduction in the benthic-planktic d18O gradient. We are in the process of compiling/screening published ventilation age reconstructions from the Arctic Mediterranean and the subpolar North Atlantic in the light of our new results in order to establish a basin-scale evolution of ocean ventilation since late MIS 3 in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA478893','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA478893"><span>Ocean Nowcast/Forecast Systems for Naval Undersea Capability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-01-01</p> <p>Tonkin to the Taiwan Strait is consistently nearly 70 m deep, averaging 150 km in width; the central deep basin is 1900 km along its major axis...shaped basin in the center, and numerous reef islands 5 and underwater plateaus scattered throughout. The shelf that extends from the Gulf of...connection between southeastern Asia, Malaysia, Sumatra , Java, and Borneo and reaches 100 m depth in the middle; the center of the Gulf of Thailand is about</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T31D0679L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T31D0679L"><span>Asymmetric Grenada Basin and its Relation with Aves Ridge and Lesser Antilles Arc : Preliminary Results from Cruise GARANTI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lallemand, S.; Lebrun, J. F.</p> <p>2017-12-01</p> <p>The Grenada Basin is a crescent-shape basin in a back-arc position relative to the Lesser Antilles arc. About 140 km wide, 3000 m deep and with a flat topography in its southern part, the basin shallows, narrows and becomes rougher northward. Its structural and genetic relations with the N-S-trending, ca.1000 m deep, Aves Ridge to the west, previously interpreted as the ante-Eocene remnant arc and the Lesser Antilles modern volcanic arc are debated. The GARANTI deep-seismic survey across the Grenada Basin (May-June 2017 French R/V L'Atalante), acquired two transverse (E-W) and one longitudinal (N-S), ca. 300 km long, wide-angle seismic lines shot using a 6473 in3 seismic source array, and recorded by 40 ocean bottom seismometers together with ca. 3500 km of 720-traces seismic reflection lines. This data set revealed a clear asymmetry along both N-S and E-W directions. To the North and to the West, the crust beneath the basin is rather thick and non-oceanic, whereas it is probably oceanic to the southeast. We pay special attention to structural relations between the basin itself and the Aves Ridge in one hand and the Antilles Arc in the other hand. The basin is filled by up to 7km of flat-lying sediments, thickening eastward and showing no apparent deformation. The Lesser Antilles arc margin is abrupt and does not appear to be the conjugate of the Aves Ridge margin. Fourteen dredges were collected, half of them were taken along the east flank of the Aves Ridge facing the deep Grenada basin. Evidences of past Cenozoic emersion of the Aves Ridge were found from drowned reef seamounts lying down to 1100 m bsl. Further analyses should better portrait the tectonic evolution of the Lesser Antilles back-arc area. GARANTI Scientific Team : A. Agranier, D. Arcay, F. Audemard, M.-A. Bassetti, M.-O. Beslier, M. Boucard, J.-J. Cornée, M. Fabre, A. Gay, D. Graindorge, A. Heuret, F. Klingelhoefer, M. Laigle, J.-L. Léticée, D. Malengros, B. Marcaillou, B. Mercier de Lépinay, P. Moréna, P. Münch, E. Oliot, D. Oregioni, C. Padron, M. Philippon, F. Quillévéré, G. Ratzov, L. Schenini, B. Yates, F. Zami</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.471...42K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.471...42K"><span>The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kerr, Joanna; Rickaby, Rosalind; Yu, Jimin; Elderfield, Henry; Sadekov, Aleksey Yu.</p> <p>2017-08-01</p> <p>Glacial-interglacial deep Indo-Pacific carbonate ion concentration ([CO32-]) changes were mainly driven by two mechanisms that operated on different timescales: 1) a long-term increase during glaciation caused by a carbonate deposition reduction on shelves (i.e., the coral reef hypothesis), and 2) transient carbonate compensation responses to deep ocean carbon storage changes. To investigate these mechanisms, we have used benthic foraminiferal B/Ca to reconstruct deep-water [CO32-] in cores from the deep Indian and Equatorial Pacific Oceans during the past five glacial cycles. Based on our reconstructions, we suggest that the shelf-to-basin shift of carbonate deposition raised deep-water [CO32-], on average, by 7.3 ± 0.5 (SE) μmol/kg during glaciations. Oceanic carbon reorganisations during major climatic transitions caused deep-water [CO32-] deviations away from the long-term trend, and carbonate compensation processes subsequently acted to restore the ocean carbonate system to new steady state conditions. Deep-water [CO32-] showed similar patterns to sediment carbonate content (%CaCO3) records on glacial-interglacial timescales, suggesting that past seafloor %CaCO3 variations were dominated by deep-water carbonate preservation changes at our studied sites.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/2006/189/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/2006/189/"><span>PRISM3 DOT1 Atlantic Basin Reconstruction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dowsett, Harry; Robinson, Marci; Dwyer, Gary S.; Chandler, Mark; Cronin, Thomas</p> <p>2006-01-01</p> <p>PRISM3 DOT1 (Pliocene Research, Interpretation and Synoptic Mapping 3, Deep Ocean Temperature 1) provides a three-dimensional temperature reconstruction for the mid-Pliocene Atlantic basin, the first of several regional data sets that will comprise a global mid-Pliocene reconstruction. DOT1 is an alteration of modern temperature values for the Atlantic Ocean in 4 degree x 5 degree cells in 13 depth layers for December 1 based on Mg/Ca-derived BWT estimates from seventeen DSDP and ODP Sites and SST estimates from the PRISM2 reconstruction (Dowsett et al., 1999). DOT1 reflects a vaguely modern circulation system, assuming similar processes of deep-water formation; however, North Atlantic Deep Water (NADW) production is increased, and Antarctic Bottom Water (AABW) production is decreased. Pliocene NADW was approximately 2 degreesC warmer than modern temperatures, and Pliocene AABW was approximately 0.3 degreesC warmer than modern temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T21A2522A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T21A2522A"><span>Deep structure of the Algerian continental margin in the region of the Great Kabylies - Insights from wide-angle seismic data modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aidi, Chafik; Klingelhoefer, F.; Yelles-Chaouche, A.; Beslier, M.; Bracene, R.; Philippe, S.; Djellit, H.; Galve, A.; Bounif, A.; Schenini, L.; Sage, F.; Charvis, P.</p> <p>2013-12-01</p> <p>During the Algerian-French SPIRAL cruise (Sismique Profonde et Investigation Régionale du Nord de l'Algérie) conducted onboard R/V Atalante (September-October 2009), one deep reflection and wide-angle seismic profile with total length of 140 km was acquired on the Algerian margin, offshore Greater Kabylia. 40 ocean bottom seismometers (OBS) were deployed on the profile, located perpendicular to the margin and it was additionally extended on land using 26 seismological stations. A 8350 in3 tuned air-gun array consisting of 10 Bolt air-guns was used to generate deep frequency shots to allow for a good penetration. A coincident multi-channel seismic profile was acquired using a 3040 in3 seismic source and a 4.5 km 360 channel digital seismic streamer. Underway geophysical measurements included gravimetric and magnetic data. The combined profile with a total length of about 260 km, crosses from north to south the Algero-Provençal basin, the central Algerian margin and onshore the crystalline basement of the Kabylides bloc up to the southward limit of the internal zones. We present results concerning the sedimentary and crustal structures in the study area using tomographic inversion, forward and gravimetric modelling. Modelling of the wide-angle and multi-channel seismic data reveals that the thickness of the sedimentary cover along the profile varies from several hundreds of metres onland in Tiziouzou basin (R. Bracéne 2001), to ~4 km at the foot of the margin and then decreasing northward to less than 3 km. The Messinian evaporitic units have been modelled by a high velocity layer, representing a velocity inversion with underlying pre-Messinian Miocene sedimentary layers. Progressive thinning of the continental crust towards the North is observed, with thicknesses decreasing from ~20 km at the foot of the margin to 4-5 km in the deep basin. Seismic velocities range between 6.2 and 6.6 km/s in the continental domain and 5.2 - 6.8 km/s in the deep basin. The uppermost crust of the deep margin is characterised by low velocities of only 4.5-5.0 km/s probably due to fracturing during the thinning of the crust. The transition between continental crust and crust of oceanic origin is located about 60 km from the coast. Its extension is very narrow (< 20 km) with a possibility of it being absent in this region. The crust underlying the basin at the foot of the continental slope is characterised by a thickness of only 3-5 km which is about 2 km thinner than normal oceanic crust. Seismic velocities however indicate that the crust is of oceanic origin and does not represent exhumed and partly serpentinised mantle material, although the presence of small amounts of mantle material in an otherwise igneous crust cannot be ruled out. Similar thin oceanic crust has been imaged in other Mediterranean Basins, such as the Liguro-Provençal basin (Gailler et al., 2009).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8879A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8879A"><span>Deep Segmentation from 2D Forward Modeling and 3D Tomography of the Maranhão-Barreirinhas-Ceará Margin, NW Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afonso Dias, Nuno; Afilhado, Alexandra; Schnürle, Philippe; Gallais, Flora; Soares, José; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Moulin, Maryline; Aslanian, Daniel; Matias, Luís; Evain, Mikael; Loureiro, Afonso</p> <p>2017-04-01</p> <p>The deep crustal structure of the North-East equatorial Brazilian margin, was investigated during the MAGIC (Margins of brAzil, Ghana and Ivory Coast) joint project, conducted in 2012. The main goal set to understand the fundamental processes leading to the thinning and finally breakup of the continental crust, in a context of a Pull-apart system with two strike-slip borders. The offshore Barreirinhas Basin, was probed by a set of 5 intersecting deep seismic wide-angle profiles, with the deployment of short-period OBS's from IFREMER and land stations from the Brazilian pool. The experiment was devoted to obtain the 2D structure along the directions of flow lines, parallel to margin segmentation and margin segmentation, from tomography and forward modeling. The OBS's deployed recorded also lateral shooting along some profiles, allowing a 3D tomography inversion complementing the results of 2D modeling. Due to the large variation of the water column thickness, heterogeneous crustal structure and Moho depth, several approaches were tested to generate initial input models, to set the grid parameterization and inversion parameters. The assessment of the 3D model was performed by standard synthetic tests and comparison with the obtained 2D forward models. The results evidence a NW-SE segmentation of the margin, following the opening direction of this pull-apart basin, and N-S segmentation that marks the passage between Basins II-III. The signature of the segmentation is evident in the tomograms, where the shallowing of the basement from Basin II towards the oceanic domain is well marked by a NW-SE velocity gradient. Both 2D forward modeling and 3D tomographic inversion indicate a N-S segmentation in the proto-oceanic and oceanic domains, at least at the shallow mantle level. In the southern area the mantle is much faster than on the north. In all profiles crossing Basin II, a deep layer with velocities of 7-4-7.6 km/s generates both refracted as well as reflected phases from its boundaries, in agreement with the 3D model, which indicate a much more gradual transition of crustal velocities to mantle-velocities, than in the remaining segments. The intersection of Basins II, III and proto-oceanic crust is well marked by the absence of seismic energy propagation at deep crust to mantle levels, with no lateral arrival being recorded. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA041643','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA041643"><span>Station Magnitude Bias - Its Determination, Causes, and Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1977-04-29</p> <p>TSK Tsukuba, Honshu, Japan TUC (W) Tucson, Arizona TUL (W) Tulsa, Oklahoma TVO Taravao, French Polynesia UBO* Uinta Basin , Utah VAH Vaihoa...8217 structures such as the western US, and lowest in stable regions such as shields and deep ocean basins . High attenuation further appears to be well</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27851735','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27851735"><span>Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nimmo, F; Hamilton, D P; McKinnon, W B; Schenk, P M; Binzel, R P; Bierson, C J; Beyer, R A; Moore, J M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E</p> <p>2016-12-01</p> <p>The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.482..126G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.482..126G"><span>Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.</p> <p>2018-01-01</p> <p>Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1199B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1199B"><span>Broadband acoustic wave propagation across sloping topography covered by sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badiey, M.; Wan, L.; Eickmeier, J.; Muenchow, A.; Ryan, P. A.</p> <p>2017-12-01</p> <p>The Canada Basin Acoustic Propagation Experiment (CANAPE) quantifies how sound generated in the deep Basin is received on the continental shelf. The two regimes, deep basin and shallow shelves, are separated by a 30-km wide region where the bottom changes from 1000-m to 100-m. This narrow region focuses and traps kinetic energy that surface wind forcing inputs into the ocean over a wide region with periodicities of days to months. As a result, ocean temperature and speed of sound are more variable near sloping topography than they are over either deep basins or shallow shelves. In contrast to companion CANAPE presentations in this session, here we use sound speed as input to predict likely propagation paths and transmission losses across the continental slope with a two-dimensional parabolic model (2D PE). Intensity fluctuations due to the changing bathymetry, water column oceanography, and the scattering from ice cover for broadband signals are checked against measured broadband acoustic signals that were collected simultaneously with the oceanographic measurements for a long period. Differences between measured and calculated transmission loss can be the result of out of plane acoustic paths requiring 3D PE modeling for future studies. [Work supported by ONR code 322 OA].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.U22A..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.U22A..05S"><span>New Radar Altimeter Missions are Providing a Dramatically Sharper Image of Global Marine Tectonics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandwell, D. T.; Müller, D.; Garcia, E.; Matthews, K. J.; Smith, W. H. F.; Zaron, E.; Zhang, S.; Bassett, D.; Francis, R.</p> <p>2015-12-01</p> <p>Marine gravity, derived from satellite radar altimetry, is a powerful tool for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. The ability to infer seafloor tectonics from space was first demonstrated in 1978 using Seasat altimeter data but the spatial coverage was incomplete because of the short three-month lifetime of the satellite. Most ocean altimeters have repeat ground tracks with spacings of hundreds of kilometers so they do not resolve tectonic structures. Adequate altimeter coverage became available in 1995 when the United States Navy declassified the Geosat radar altimeter data and the ERS-1 altimeter completed a 1-year mapping phase. These mid-1990's altimeter-derived images of the ocean basins remained static for 15 years because there were no new non-repeat altimeter missions. This situation changed dramatically in 2010 when CryoSat-2, with its advanced radar altimeter, was launched into a non-repeat orbit and continues to collect data until perhaps 2020. In addition the Jason-1 altimeter was placed into a 14-month geodetic phase at the end of its lifetime. More recently the 1.5 times higher precision measurements from the AltiKa altimeter aboard the SARAL spacecraft began to drift away from its 35-day repeat trackline. The Chinese HY-2 altimeter is scheduled to begin a dense mapping phase in early 2016. Moreover in 2020 we may enjoy significantly higher resolution maps of the ocean basins from the planned SWOT altimeter mission with its advanced swath mapping ability. All of this new data will provide a much sharper image of the tectonics of the deep ocean basins and continental margins. During this talk we will tour of the new tectonic structures revealed by CryoSat-2 and Jason-1 and speculate on the tectonic views of the ocean basins in 2020 and beyond.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814840S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814840S"><span>Towards a model-based understanding of the Mediterranean circulation during the Messinian Salinity Crisis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simon, Dirk; Meijer, Paul</p> <p>2016-04-01</p> <p>Today, the Atlantic-Mediterranean gateway (the Strait of Gibraltar) and the strong evaporative loss in the east let the Mediterranean Sea attain a salinity of 2-3 g/l higher than the Atlantic Ocean. During the winter months, strong cooling of surface waters in the north forms deep water, which mixes the Mediterranean, while during summer the water column is stratified. During the Messinian Salinity Crisis (MSC, 5.97-5.33Ma) the salt concentration was high enough to reach the saturation of gypsum (~130-160 g/l) and halite (~350 g/l). This caused large deposits of these evaporites all over the basin, capturing 6% of the World Ocean salt within the Mediterranean at the time. Although several mechanisms have been proposed as to how the Mediterranean circulation might have functioned, these mechanisms have yet to be rooted in physics and tested quantitatively. Understanding circulation during the MSC becomes particularly important when comparing Mediterranean marginal to deep basins. On the one hand, many of the marginal basins in the Mediterranean are well studied, like the Sorbas basin (Spain) or the Vena del Gesso basin (Italy). On the other hand, the deep Mediterranean is less well studied, as no full record of the whole deep sequence exists. This makes it very complicated to correlate marginal and deep basin records. Here we are presenting the first steps in working towards a physics-based understanding of the mixing and stratification bahaviour of the Mediterranean Sea during the MSC. The final goal is to identify the physical mechanism needed to form such a salt brine and to understand how it differs from today's situation. We are hoping to compare our results to, and learn from, the much smaller but best available analog to the MSC, the Dead Sea, where recent overturning has been documented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SciDr..21...17I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SciDr..21...17I"><span>IODP Expedition 337: Deep Coalbed Biosphere off Shimokita - Microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inagaki, Fumio; Hinrichs, Kai-Uwe; Kubo, Yusuke; IODP Expedition 337 Scientists</p> <p>2016-06-01</p> <p>The Integrated Ocean Drilling Program (IODP) Expedition 337 was the first expedition dedicated to subseafloor microbiology that used riser-drilling technology with the drilling vessel Chikyu. The drilling Site C0020 is located in a forearc basin formed by the subduction of the Pacific Plate off the Shimokita Peninsula, Japan, at a water depth of 1180 m. Primary scientific objectives during Expedition 337 were to study the relationship between the deep microbial biosphere and a series of ˜ 2 km deep subseafloor coalbeds and to explore the limits of life in the deepest horizons ever probed by scientific ocean drilling. To address these scientific objectives, we penetrated a 2.466 km deep sedimentary sequence with a series of lignite layers buried around 2 km below the seafloor. The cored sediments, as well as cuttings and logging data, showed a record of dynamically changing depositional environments in the former forearc basin off the Shimokita Peninsula during the late Oligocene and Miocene, ranging from warm-temperate coastal backswamps to a cool water continental shelf. The occurrence of small microbial populations and their methanogenic activity were confirmed down to the bottom of the hole by microbiological and biogeochemical analyses. The factors controlling the size and viability of ultra-deep microbial communities in those warm sedimentary habitats could be the increase in demand of energy and water expended on the enzymatic repair of biomolecules as a function of the burial depth. Expedition 337 provided a test ground for the use of riser-drilling technology to address geobiological and biogeochemical objectives and was therefore a crucial step toward the next phase of deep scientific ocean drilling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14H2898M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14H2898M"><span>Biogeochemical and physical controls on the distribution of dissolved organic carbon in the deep Gulf of Mexico and basins of the Caribbean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Margolin, A. R.; Hansell, D. A.</p> <p>2016-02-01</p> <p>Over the past two decades, significant advances have been made in understanding dissolved organic carbon (DOC) distributions in the Atlantic and throughout the global ocean. Surprisingly, however, little is known about DOC distributions in the Atlantic's neighboring Gulf of Mexico (GoM) and Caribbean due to few observations, especially in their deep layers. To address the dearth of DOC data in the GoM and Caribbean, samples were collected during multiple cruises spanning the region, allowing comparisons between the deep layers of the basins. Additionally, complementary biogeochemical (oxygen, nutrients) and physical (temperature, salinity) measurements were made to aid in DOC interpretation, which show clear distinctions between the deep waters of the GoM, basins of the Caribbean and Atlantic. The unique characteristics of these deep layers result from exchanges being restricted to narrow passages that separate the basins, limiting the deep water renewal to periodic overflows of relatively dense water, capable of penetrating below the 2000 m sill depths. Furthermore, hydrocarbon seeps (in GoM) and hydrothermal activity (in Caribbean), along with the offshore oil industry have the potential to alter deep DOC concentrations regionally, which are considered here. Samples collected below 250 m show that concentrations decrease with depth, ranging from 40-50 µmol kg-1. Compared to the Atlantic, the GoM and Venezuelan Basin concentrations are lower, while they are similar to the Atlantic in the Yucatan Basin; responsible processes are inferred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C12B..08T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C12B..08T"><span>The Southern Ocean's role in ocean circulation and climate transients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.</p> <p>2017-12-01</p> <p>The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T41C2610C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T41C2610C"><span>Deep Seismic Reflection Images across a Major Reactivated Fracture Zone in the Wharton Basin: Implications for the Location of the Plate Boundary between India and Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carton, H. D.; Singh, S. C.; Hananto, N. D.; Martin, J.; Djajadihardja, Y. S.; Udrekh, U.; Franke, D.; Gaedicke, C.</p> <p>2012-12-01</p> <p>The equatorial Indian Ocean has long been recognized to be hosting extensive "intra-plate" deformation. To west of the Ninety-East Ridge (NER), The Central Indian Ocean Basin is characterized by N-S compression in a broad region with E-W trending folds and high-angle reverse faulting. To the east of NER in the Wharton Basin, deformation mainly occurs along reactivated N5°E-trending oceanic fracture zones with left-lateral strike-slip motion. Near longitude 93°E in the Wharton Basin runs a major reactivated fracture zone, along which the epicenters of the two recent Mw=8.6 and Mw=8.2 strike-slip earthquakes of April 11, 2012, and an Mw=7.2 foreshock that occurred in January 2012 are aligned. The April 11 events are the largest known oceanic events occurring away from the main plate boundaries. They ruptured a 20-40 km thick section of the oceanic lithosphere, i.e. down to depths at which no direct images of fault zones have been obtained so far. Deep seismic reflection data acquired in the Mw=8.6 earthquake rupture zone ~100 km north of the epicenter shows the presence of sub-Moho reflectivity down to 37 km depth in the oceanic mantle. We interpret these events as reflections off the earthquake-generating fault plane in the oceanic mantle, in accordance with results suggesting that brittle deformation of the oceanic lithosphere extends well into the mantle down to the 600°C isotherm. The fracture zone near 93°E separates lithospheres of contrasting crustal thicknesses (3.5-4.5 km versus 6 km) with a 10 Ma age difference, and therefore seems to act as a rheological boundary. We find that the deep reflections could originate from either a plane trending approximately N105°E, at high angle to the fracture zone, or from the fracture zone itself if the dip of the fault surface decreases from nearly vertical in the sediments to about 45° in the oceanic mantle. We propose that this fracture zone is a major tectonic boundary in the Wharton Basin, and that the three 2012 earthquakes ruptured a large section of it as part of a poorly-defined diffuse plate boundary between the Indian and Australian plates, with slip occurring on this re-activated N-S fracture zone and on fossil E-W spreading-related faults. Over 1000 km of this plate boundary could have ruptured since the great 2004 Sumatra earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49..869F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49..869F"><span>Enhancement of the southward return flow of the Atlantic Meridional Overturning Circulation by data assimilation and its influence in an assimilative ocean simulation forced by CORE-II atmospheric forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujii, Yosuke; Tsujino, Hiroyuki; Toyoda, Takahiro; Nakano, Hideyuki</p> <p>2017-08-01</p> <p>This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10-15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29546245','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29546245"><span>Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim</p> <p>2018-03-01</p> <p>Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123.2090D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123.2090D"><span>Crustal Structure of the Ionian Basin and Eastern Sicily Margin: Results From a Wide-Angle Seismic Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dellong, David; Klingelhoefer, Frauke; Kopp, Heidrun; Graindorge, David; Margheriti, Lucia; Moretti, Milena; Murphy, Shane; Gutscher, Marc-Andre</p> <p>2018-03-01</p> <p>In the Ionian Sea (central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust of the subducting plate remains debated and could represent the last remnants of the Neo-Tethys ocean. The origin of the Ionian basin is also under discussion, especially concerning the rifting mechanisms as the Malta Escarpment could represent a remnant of this opening. This subduction retreats toward the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian basin. A major lateral slab tear fault is required to accommodate the slab roll-back. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the eastern Sicily margin and the Malta Escarpment. We present two two-dimensional P wave velocity models obtained from forward modeling of wide-angle seismic data acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment, which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AREPS..46..327F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AREPS..46..327F"><span>Atlantic-Pacific Asymmetry in Deep Water Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, David; Cessi, Paola; Coxall, Helen K.; de Boer, Agatha; Dijkstra, Henk A.; Drijfhout, Sybren S.; Eldevik, Tor; Harnik, Nili; McManus, Jerry F.; Marshall, David P.; Nilsson, Johan; Roquet, Fabien; Schneider, Tapio; Wills, Robert C.</p> <p>2018-05-01</p> <p>While the Atlantic Ocean is ventilated by high-latitude deep water formation and exhibits a pole-to-pole overturning circulation, the Pacific Ocean does not. This asymmetric global overturning pattern has persisted for the past 2–3 million years, with evidence for different ventilation modes in the deeper past. In the current climate, the Atlantic-Pacific asymmetry occurs because the Atlantic is more saline, enabling deep convection. To what extent the salinity contrast between the two basins is dominated by atmospheric processes (larger net evaporation over the Atlantic) or oceanic processes (salinity transport into the Atlantic) remains an outstanding question. Numerical simulations have provided support for both mechanisms; observations of the present climate support a strong role for atmospheric processes as well as some modulation by oceanic processes. A major avenue for future work is the quantification of the various processes at play to identify which mechanisms are primary in different climate states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26573375','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26573375"><span>Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Meng; Baker, Brett J; Anantharaman, Karthik; Jain, Sunit; Breier, John A; Dick, Gregory J</p> <p>2015-11-17</p> <p>Microbial activity is one of the most important processes to mediate the flux of organic carbon from the ocean surface to the seafloor. However, little is known about the microorganisms that underpin this key step of the global carbon cycle in the deep oceans. Here we present genomic and transcriptomic evidence that five ubiquitous archaeal groups actively use proteins, carbohydrates, fatty acids and lipids as sources of carbon and energy at depths ranging from 800 to 4,950 m in hydrothermal vent plumes and pelagic background seawater across three different ocean basins. Genome-enabled metabolic reconstructions and gene expression patterns show that these marine archaea are motile heterotrophs with extensive mechanisms for scavenging organic matter. Our results shed light on the ecological and physiological properties of ubiquitous marine archaea and highlight their versatile metabolic strategies in deep oceans that might play a critical role in global carbon cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030064112&hterms=impacts+ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dimpacts%2Bocean','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030064112&hterms=impacts+ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dimpacts%2Bocean"><span>Ejecta from Ocean Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kyte, Frank T.</p> <p>2003-01-01</p> <p>Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9668P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9668P"><span>Heat flow anomalies on the Western Mediterranean margins: first results from the WestMedFlux-2016 cruise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poort, Jeffrey; Lucazeau, Francis; Le Gal, Virginie; Rabineau, Marina; Dal Cin, Michela; Bouzid, Abderrezak; Palomino, Desirée; Leroux, Estelle; Akhmanov, Grigory; Battani, Anne; Bachir, Roza Si; Khlystov, Oleg; Koptev, Aleksandre</p> <p>2017-04-01</p> <p>While there is now a large consensus that Western Mediterranean basins developed in a Miocene back-arc setting due to slab roll-back and that some of its domains are floored by oceanic crust, there is still a lot of speculation on the configuration, nature and evolution of its margins and the ocean-continent transitions (OCT). A thick Messinian layer of evaporites in the deep basin obscures deep seismic reflectors, and only recently seismic refraction and wide-angle studies revealed a confident picture of basement configuration. In order to further constrain models of crustal structure and margin evolution, heat flow is one of the key parameters needed. Recent heat flow studies on other margins have shown the existence of a persistent thermal anomaly under rifted margins that urges to reconsider the classical models of its evolution. The young age of OCT and ceased oceanic formation in the Western Mediterranean make it an interesting test case for a thermo-mechanical study of its margins. The presence of halokinetic structuring and salt diapirs urges the need of close spaced heat flow measurement to evaluate heat refraction and advective heat transfer by fluid migration. During the WestMedFlux cruise on the research vessel L'Atalante, we collected a total of 150 new heat flow measurement (123 in pogo mode, 27 with a sediment corer) in the deep basin of the Western Mediterranean where heat flow data were sparse. Preliminary analysis of the heat flow data confirms two regional trends: in the southern Provencal basin an overall increase from west to east (from about 60 mW/m2 at the Golf of Lion towards 75 mW/m2 at the West-Sardinia margin), while in the northern part of the Algero-Balearic basin heat flow increases from east to west (from about 80 to 100 mW/m2). On this regional trends, several local anomalies are clearly differentiated. In the deep oceanic basin, strong anomalies seem to be merely associated to salt diapiric structures. On the OCT and on the rifted continent, both strongly reduced and elevated heat flow are observed and suggest other heat sink and sources. We will discuss on the different processes that might have affected the surface heat flow (e.g., bottom water currents, slope instabilities and focused fluid migrations) and try to link the large scale heat flow patterns with crustal nature, structuring of the margins and mantle dynamics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.U35A..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.U35A..01C"><span>Atlantic Ocean Circulation and Climate: The Current View From the Geological Record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curry, W.</p> <p>2006-12-01</p> <p>Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21894169','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21894169"><span>Under the sea: microbial life in volcanic oceanic crust.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edwards, Katrina J; Wheat, C Geoffrey; Sylvan, Jason B</p> <p>2011-09-06</p> <p>Exploration of the microbiology in igneous, 'hard rock' oceanic crust represents a major scientific frontier. The igneous crust harbours the largest aquifer system on Earth, most of which is hydrologically active, resulting in a substantial exchange of fluids, chemicals and microorganisms between oceanic basins and crustal reservoirs. Study of the deep-subsurface biosphere in the igneous crust is technically challenging. However, technologies have improved over the past decade, providing exciting new opportunities for the study of deep-seated marine life, including in situ and cross-disciplinary experimentation in microbiology, geochemistry and hydrogeology. In this Progress article, we describe the recent advances, available technology and remaining challenges in the study of the marine intraterrestrial microbial life that is harboured in igneous oceanic crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3114783','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3114783"><span>The Effects of Natural Iron Fertilisation on Deep-Sea Ecology: The Crozet Plateau, Southern Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wolff, George A.; Billett, David S. M.; Bett, Brian J.; Holtvoeth, Jens; FitzGeorge-Balfour, Tania; Fisher, Elizabeth H.; Cross, Ian; Shannon, Roger; Salter, Ian; Boorman, Ben; King, Nicola J.; Jamieson, Alan; Chaillan, Frédéric</p> <p>2011-01-01</p> <p>The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities. PMID:21695118</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.7898K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.7898K"><span>Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie</p> <p>2016-10-01</p> <p>IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcScD..11..979B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcScD..11..979B"><span>On the glacial and inter-glacial thermohaline circulation and the associated transports of heat and freshwater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.</p> <p>2014-03-01</p> <p>The change of the thermohaline circulation (THC) between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present day climate are explored using an Ocean General Circulation Model and stream functions projected in various coordinates. Compared to the present day period, the LGM circulation is reorganised in the Atlantic Ocean, in the Southern Ocean and particularly in the abyssal ocean, mainly due to the different haline stratification. Due to stronger wind stress, the LGM tropical circulation is more vigorous than under modern conditions. Consequently, the maximum tropical transport of heat is slightly larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes and reorganising the freshwater transport. The LGM circulation is represented as a large intrusion of saline Antarctic Bottom Water into the Northern Hemisphere basins. As a result, the North Atlantic Deep Water is shallower in the LGM simulation. The stream functions in latitude-salinity coordinates and thermohaline coordinates point out the different haline regimes between the glacial and interglacial period, as well as a LGM Conveyor Belt circulation largely driven by enhanced salinity contrast between the Atlantic and the Pacific basin. The thermohaline structure in the LGM simulation is the result of an abyssal circulation that lifts and deviates the Conveyor Belt cell from the area of maximum volumetric distribution, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimation of the turnover times reveal a deep circulation almost sluggish during the LGM, and a Conveyor Belt cell more vigorous due to the combination of stronger wind stress and shortened circulation route.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS51B1653Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS51B1653Z"><span>Characterization of double diffusive convection step and heat budget in the deep Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, S.; Lu, Y.</p> <p>2013-12-01</p> <p>In this paper, we explore the hydrographic structure and heat budget in deep Canada Basin using data measured with McLane-Moored-Profilers (MMPs), bottom-pressure-recorders (BPRs), and conductivity-temperature-depth (CTD) profilers. From the bottom upward, a homogenous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75oN, 150oW). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ~1.8×10-5 m 2s-1 while that of the other steps is ~10-6 m 2s-1. The vertical heat flux through DDC steps is evaluated with different methods. We find that the heat flux (0.1-11 mWm-2) is much smaller than geothermal heating (~50 mWm-2), which suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, while those of heat flux and effective diffusivity are found to be approximately log-normal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuation close to the sea floor distributed asymmetrically and skewed towards positive values, which provides direct indication that geothermal heating is transferred into ocean. Both BPR and CTD data suggest that geothermal heating, not the warming of upper ocean, is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent the vertical heat transfer, geothermal heating will be unlikely to have significant effect on the middle and upper oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRC..118.6672Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRC..118.6672Z"><span>Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Sheng-Qi; Lu, Yuan-Zheng</p> <p>2013-12-01</p> <p>In this paper, we explore the hydrographic structure and heat budget in the deep Canada Basin by using data measured with McLane-Moored-Profilers (MMP), bottom pressure recorders (BPR), and conductivity-temperature-depth (CTD) profilers. Upward from the bottom, a homogeneous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75°N,150°W). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ˜1.8 × 10-5 m2s-1, while that of the other steps is ˜10-6 m2s-1. The vertical heat flux through the DDC steps is evaluated by using different methods. We find that the heat flux (0.1-11 mWm -2) is much smaller than geothermal heating (˜50 mWm -2). This suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, whereas those of heat flux and effective diffusivity are found to be approximately lognormal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuations close to the sea floor were distributed asymmetrically and skewed toward positive values, which provide a direct observation that geothermal heating was transferred into the ocean. Both BPR and CTD data suggest that geothermal heating and not the warming of the upper ocean is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent vertical heat transfer, geothermal heating is unlikely to have a significant effect on the middle and upper Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PalOc..31..732G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PalOc..31..732G"><span>Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gambacorta, G.; Bersezio, R.; Weissert, H.; Erba, E.</p> <p>2016-06-01</p> <p>The upper Albian-lower Turonian pelagic successions of the Tethys record processes acting during the onset, core, and recovery from perturbed conditions across oceanic anoxic event (OAE) 1d, OAE 2, and the mid-Cenomanian event I (MCE I) relative to intervening intervals. Five sections from Umbria-Marche and Belluno Basins (Italy) were analyzed at high resolution to assess processes in surface and deep waters. Recurrent facies stacking patterns (SP) and their associations record periods of bottom current activity coupled with surface changes in trophic level. Climate changes appear to have been influential on deep circulation dynamics. Under greenhouse conditions, vigorous bottom currents were arguably induced by warm and dense saline deep waters originated on tropical shelves in the Tethys and/or proto-Atlantic Ocean. Tractive facies postdating intermittent anoxia during OAE 1d and in the interval bracketed by MCE I and OAE 2 are indicative of feeble bottom currents, though capable of disrupting stratification and replenish deep water with oxygen. The major warming at the onset of OAE 2 might have enhanced the formation of warm salty waters, possibly producing local hiatuses at the base of the Bonarelli Level and winnowing at the seafloor. Hiatuses detected at the top of the Bonarelli Level possibly resulted from most effective bottom currents during the early Turonian thermal maximum. Times of minimal sediment displacement correlate with cooler climatic conditions and testify a different mechanism of deep water formation, as further suggested by a color change to reddish lithologies of the post-OAE 1d and post-OAE 2 intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14B2758E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14B2758E"><span>NOAA Propagation Database Value in Tsunami Forecast Guidance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eble, M. C.; Wright, L. M.</p> <p>2016-02-01</p> <p>The National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami Research (NCTR) has developed a tsunami forecasting capability that combines a graphical user interface with data ingestion and numerical models to produce estimates of tsunami wave arrival times, amplitudes, current or water flow rates, and flooding at specific coastal communities. The capability integrates several key components: deep-ocean observations of tsunamis in real-time, a basin-wide pre-computed propagation database of water level and flow velocities based on potential pre-defined seismic unit sources, an inversion or fitting algorithm to refine the tsunami source based on the observations during an event, and tsunami forecast models. As tsunami waves propagate across the ocean, observations from the deep ocean are automatically ingested into the application in real-time to better define the source of the tsunami itself. Since passage of tsunami waves over a deep ocean reporting site is not immediate, we explore the value of the NOAA propagation database in providing placeholder forecasts in advance of deep ocean observations. The propagation database consists of water elevations and flow velocities pre-computed for 50 x 100 [km] unit sources in a continuous series along all known ocean subduction zones. The 2011 Japan Tohoku tsunami is presented as the case study</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4409B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4409B"><span>First images of the crustal structure across the eastern Algerian margin, from deep penetrating seismic data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouyahiaoui, Boualem; Abtout, Abdeslam; Sage, Françoise; Klingelhoeffer, Frauke; Collot, Jean-yves; Yelles-chaouche, Abdelkarim; Marok, Abbas; Djellit, Hamou; Galves, Audrey; Bracène, Rabah; Schnurle, Philippe; Graindorge, David; party, Scientific</p> <p>2013-04-01</p> <p>The Algerian continental margin North Africa presents one of only a few examples of a passive continental margin formed in a back-arc environment, which undergoes current compression and is proposed to be reactivated today. In the framework of the Algerian - French SPIRAL research program (Sismique Profonde et Investigation Regionale du nord de l'ALgérie), a seismic cruise was conducted on the R/V Atalante from September to November 2009. During the cruise, deep penetrating low frequency multichannel and wide-angle seismic data were acquired in order to study the deep structure of the Algerian margin. In this work, we present the preliminary results from wide-angle modeling of the North-east Algerian margin in the region of Annaba along a N-S transect using a data set of 42 OBS (ocean bottom seismometers) along a profile extending 117km, and 13 broadband seismological stations along a profile of 80 km length. Travel-time tomography and forward modeling were undertaken to model the velocity structure in this region. The resulting velocity models image the thickness of the sedimentary layers, which varies between a few hundred meters on the continental margin of more than 4 km in the basin. The crust is about 6 km thick in the basin, and thickens to 7-8 km between 40 and 60km distance from the margin toe. Crustal thickness increases to about 22 km at the continental slope over a distance of ~ 90 km. The nature of the crust was determined to be thin oceanic with abnormal velocity gradient in the basin, and thinned continental from around 30 km distance from the coast landward. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will help to better understand the structure of the Algerian margin and the adjacent oceanic basin in the Annaba region, and to discuss the numerous cinematic models proposed in literature regarding the formation of the north-Algerian basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1337247-tracking-ocean-heat-uptake-during-surface-warming-hiatus','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1337247-tracking-ocean-heat-uptake-during-surface-warming-hiatus"><span>Tracking ocean heat uptake during the surface warming hiatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liu, Wei; Xie, Shang -Ping; Lu, Jian</p> <p>2016-03-30</p> <p>Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1337247','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1337247"><span>Tracking ocean heat uptake during the surface warming hiatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Wei; Xie, Shang -Ping; Lu, Jian</p> <p></p> <p>Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009DSRI...56...32K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009DSRI...56...32K"><span>Glimpses of Arctic Ocean shelf-basin interaction from submarine-borne radium sampling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kadko, David; Aagaard, Knut</p> <p>2009-01-01</p> <p>Evidence of shelf-water transfer from temperature, salinity, and 228Ra/ 226Ra sampling from the nuclear submarine USS L. Mendel Rivers SCICEX cruise in October, 2000 demonstrates the heterogeneity of the Arctic Ocean with respect to halocline ventilation. This likely reflects both time-dependent events on the shelves and the variety of dispersal mechanisms within the ocean, including boundary currents and eddies, at least one of which was sampled in this work. Halocline waters at the 132 m sampling depth in the interior Eurasian Basin are generally not well connected to the shelves, consonant with their ventilation within the deep basins, rather than on the shelves. In the western Arctic, steep gradients in 228Ra/ 226Ra ratio and age since shelf contact are consistent with very slow exchange between the Chukchi shelf and the interior Beaufort Gyre. These are the first radium measurements from a nuclear submarine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41A0641P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41A0641P"><span>Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during NICE2015:salty surface mixed layer and active basal melt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Provost, C.; Koenig, Z.; Villacieros-Robineau, N.; Sennechael, N.; Meyer, A.; Lellouche, J. M.; Garric, G.</p> <p>2016-12-01</p> <p>IAOOS platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by 0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shedded eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 Wm-2 (mean of 150 Wm-2 over the continentalslope). Sea-ice melt events were associated with near 12-hour fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography and/or geostrophic adjustments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T53A..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T53A..05G"><span>Crustal structure of the Ionian basin and eastern Sicily margin : results from a wide angle seismic survey and implication for the crustal nature and origin of the basin, and the recent tear fault location</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutscher, M. A.; Dellong, D.; Klingelhoefer, F.; Kopp, H.; Graindorge, D.; Margheriti, L.; Moretti, M.</p> <p>2017-12-01</p> <p>In the Ionian Sea (Central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust and lithosphere of the subducting plate remain debated and could represent the last remnants of the Neo-Tethys ocean. The rifting mechanism that produced the Ionian basin are also still under discussion with the Malta escarpment representing a possible remnant of this opening. At present, this subduction is still retreating to the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian Basin. In order to accommodate slab roll-back, a major lateral slab tear fault is required. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the Eastern-Sicily margin and the Malta Escarpment by presenting two wide-angle velocity profiles crossing these structures roughly orthogonally. The data used for the forward velocity modeling were acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened in between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP51E1175B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP51E1175B"><span>Cenozoic Circulation History of the North Atlantic Ocean From Seismic Stratigraphy of the Newfoundland Ridge Drift Complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyle, P. R.; Romans, B.; Norris, R. D.; Tucholke, B. E.; Swift, S. A.; Sexton, P. F.</p> <p>2014-12-01</p> <p>In the North Atlantic Ocean, contour-following bottom currents have eroded regional unconformities and deposited contourite drifts that exceed two km in thickness and extend for 100s of km. The character of deep-water masses that are conveyed through ocean basins by such currents influence global heat transfer and ocean-atmosphere partitioning of CO2. The Newfoundland Ridge Drift Complex lies directly under the modern Deep Western Boundary Current southeast of Newfoundland, close to the site of overturning in the northwest Atlantic Ocean and at the intersection of the warm Gulf Stream and cool Labrador surface currents. To the south are regions of the western North Atlantic basin that are influenced by southern- as well as northern-sourced bottom waters. Here, we document the evolution of North Atlantic deep-water circulation by seismic-stratigraphic analysis of the long-lived and areally extensive Newfoundland Ridge Drift Complex. IODP Expedition 342 boreholes provide age control on seismic units, allowing sedimentation patterns to be placed in a temporal framework. We find three major phases of sedimentation: pre-contourite drift (~115-50 Ma), active contourite drift (~50-2.6 Ma), and late-contourite drift (~2.6-0 Ma). Bottom-current-controlled deposition of terrigenous-rich sediment began at ~50 Ma, which correlates to the onset of a long-term global cooling trend. A further change in deep circulation near the Eocene-Oligocene transition (~30 Ma) is indicated by more focused drift sedimentation with greatly increased accumulation rates and stratal architecture dominated by mud waves. At ~2.6 Ma to present the axis of drift accumulation shifted markedly towards shallower water depths, corresponding with the onset of Northern Hemisphere ice sheets. We discuss how these reorganizations of deep circulation correlate with results of other North Atlantic seismic stratigraphic studies to the north and south.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027395','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027395"><span>Mississippian carbonate buildups and development of cool-waterlike carbonate platforms in the Illinois Basin, Midcontinent U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lasemi, Z.; Norby, R.D.; Utgaard, J.E.; Ferry, W.R.; Cuffey, R.J.; Dever, G.R.</p> <p>2005-01-01</p> <p>Numerous biohermal buildups occur in Mississippian (Lower Carboniferous) strata in the Illinois Basin and adjacent regions. They developed as mud mounds, biodetrital calcisiltite mounds, and bryozoan frame thickets (fenestrate-frame coquina or rudstone) during the Kinderhookian and early Meramecian (Tournaisian and early Visean), and as microbial mud mounds, microbial- serpulidbryozoanboundstones, and solenoporoid (red algal) boundstones during the Chesterian (late Visean and Serpukhovian). True Waulsortian mounds did not develop in the Illinois Basin, but echinoderm (primarily crinoids)-bryozoan carbonate banks and bryozoan frame thickets generally occupied the same niche during the Kinderhookian-early Meramecian. Nutrient availability and the resulting increase in the productivity of echinoderms and bryozoans were apparently detrimental to Waulsortian mound development. Deposition of crinoidal-bryozoan carbonates during the Kinderhookian-Osagean initially occurred on a ramp setting that later evolved into a platform with a relatively steep margin through sediment aggradation and progradation. By mid-Osagean-early Meramecian, two such platforms, namely the Burlington Shelf and the Ullin Platform, developed adjacent to a deep, initially starved basin. Sedimentologic and petrographic characteristics of the Kinderhookian-earliest Meramecian carbonates resemble the modern cool-water Heterozoan Association. This is in contrast with post-earliest Meramecian carbonates, which are typically oolitic and peloidal with common peri tidal facies. The post-earliest Meramecian carbonates, therefore, resemble those of the warm-water Photozoan Association. The prevalence of Heterozoan carbonates in the Illinois Basin correlates with a rapid increase in the rate of subsidence and a major second-order eustatic sea-level rise that resulted in deep-water starved basins at this time. In the starved Illinois Basin, deposition was initially limited to a thin phosphatic shale that was followed later by deposition of up to 200 m of siliceous, spiculitic, and radiolarianbearing limestone. The starved basin was connected to the deep open ocean through a bathymetric depression, which was centered over the failed late Precambrian-Early Cambrian Reelfoot Rift, which extended from the deep-water Ouachita Trough in central Arkansas to southern Illinois, approximately parallel to the trend of the modern Mississippi River. We believe that upwelling of cool, nutrient- and silica-rich deep oceanic water, which entered the basin through this bathymetric depression, resulted in proliferation of pelmatozoans and bryozoans. The subsequent change from cool-water-like carbonates to warm-water-like carbonates appears to be related to decreased subsidence and gradual shallowing of the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29535333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29535333"><span>Atlantic deep water circulation during the last interglacial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luo, Yiming; Tjiputra, Jerry; Guo, Chuncheng; Zhang, Zhongshi; Lippold, Jörg</p> <p>2018-03-13</p> <p>Understanding how the Atlantic Meridional Overturning Circulation (AMOC) evolved during crucial past geological periods is important in order to decipher the interplay between ocean dynamics and global climate change. Previous research, based on geological proxies, has provided invaluable insights into past AMOC changes. However, the causes of the changes in water mass distributions in the Atlantic during different periods remain mostly elusive. Using a state-of-the-art Earth system model, we show that the bulk of NCW in the deep South Atlantic Ocean below 4000 m migrated from the western basins at 125 ka to the eastern basins at 115 ka, though the AMOC strength is only slightly reduced. These changes are consistent with proxy records, and it is mainly due to more penetration of the AABW at depth at 115 ka, as a result of a larger density of AABW formed at 115 ka. Our results show that depth changes in regional deep water pathways can result in large local changes, while the overall AMOC structure hardly changes. Future research should thus be careful when interpreting single proxy records in terms of large-scale AMOC changes, and considering variability of water-mass distributions on sub-basin scale would give more comprehensive interpretations of sediment records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://explore.noaa.gov/PublicAffairs/NewsRoom.aspx','SCIGOVWS'); return false;" href="http://explore.noaa.gov/PublicAffairs/NewsRoom.aspx"><span>NOAA Office of Exploration and Research > Public Affairs > News Room</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Atlantic seeps, deep-<em>sea</em> canyon diversity, off U.S. Northeast More... July 18 NOAA and Aquarium of the from the seafloor as NOAA and partners explore deep-<em>sea</em> volcanoes in the Lau Basin! More... August 17 through April 28, the public can watch live undersea video and listen in as ocean explorers at <em>sea</em> and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5851666','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5851666"><span>Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mountjoy, Joshu J.; Howarth, Jamie D.; Orpin, Alan R.; Barnes, Philip M.; Bowden, David A.; Rowden, Ashley A.; Schimel, Alexandre C. G.; Holden, Caroline; Horgan, Huw J.; Nodder, Scott D.; Patton, Jason R.; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim</p> <p>2018-01-01</p> <p>Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean—the ultimate sink—and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful “canyon flushing” event and turbidity current that traveled >680 km along one of the world’s longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year−1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean. PMID:29546245</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRC..117.5037V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRC..117.5037V"><span>Does the vorticity flux from Agulhas rings control the zonal pathway of NADW across the South Atlantic?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Sebille, Erik; Johns, William E.; Beal, Lisa M.</p> <p>2012-05-01</p> <p>As part of the global thermohaline circulation, some North Atlantic Deep Water (NADW) exits the Atlantic basin to the south of Africa. Observations have shown that there is a quasi-zonal pathway centered at 25°S carrying NADW eastward, connecting the Deep Western Boundary Current to the Cape Basin. However, it has been unclear what sets this pathway. In particular, waters must move southward through the Cape Basin, thereby crossing isolines of planetary vorticity, in order to exit the basin. Here, we find that an eddy thickness flux induced by Agulhas rings moving northwestward forces a circulation of NADW through the Cape Basin. The pathway at 25°S feeds the southeastward flow of this circulation while conserving potential vorticity. Using Lagrangian floats advected for 300 years in a 1/10° resolution ocean model, we show that the most common pathway for NADW in our model lies directly below the Agulhas ring corridor. By analyzing the velocity and density fields in the model, we find that the decay of these rings, and their forward tilt with depth, results in a southward velocity, across isolines of planetary vorticity, of 1 to 2 cm/s in the deep waters. The associated stream function pattern yields a deep circulation transporting 4 Sv of NADW from the Deep Western Boundary Current at 25°S to the southern tip of Africa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28650623','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28650623"><span>Spatial Distributions of DDTs in the Water Masses of the Arctic Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carrizo, Daniel; Sobek, Anna; Salvadó, Joan A; Gustafsson, Örjan</p> <p>2017-07-18</p> <p>There is a scarcity of data on the amount and distribution of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolites in intermediate and deep ocean water masses. Here, the distribution and inventories of DDTs in water of the Arctic shelf seas and the interior basin are presented. The occurrence of ∑ 6 DDT (0.10-66 pg L -1 ) in the surface water was dominated by 4,4'-DDE. In the Central Arctic Ocean increasing concentrations of DDE with depth were observed in the Makarov and Amundsen basins. The increasing concentrations down to 2500 m depth is in accordance with previous findings for PCBs and PBDEs. Similar concentrations of DDT and DDEs were found in the surface water, while the relative contribution of DDEs increased with depth, demonstrating a transformation over time and depth. Higher concentrations of DDTs were found in the European part of the Arctic Ocean; these distributions likely reflect a combination of different usage patterns, transport, and fate of these compounds. For instance, the elevated concentrations of DDTs in the Barents and Atlantic sectors of the Arctic Ocean indicate the northbound Atlantic current as a significant conveyor of DDTs. This study contributes to the very rare data on OCPs in the vast deep-water compartments and combined with surface water distribution across the Arctic Ocean helps to improve our understanding of the large-scale fate of DDTs in the Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089028&hterms=sponge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsponge','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089028&hterms=sponge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsponge"><span>Anomalous carbonate precipitates: is the Precambrian the key to the Permian?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grotzinger, J. P.; Knoll, A. H.</p> <p>1995-01-01</p> <p>Late Permian reefs of the Capitan complex, west Texas; the Magnesian Limestone, England; Chuenmuping reef, south China; and elsewhere contain anomalously large volumes of aragonite and calcite marine cements and sea-floor crusts, as well as abundant microbial precipitates. These components strongly influenced reef growth and may have been responsible for the construction of rigid, open reefal frames in which bryozoans and sponges became encrusted and structurally reinforced. In some cases, such as the upper biostrome of the Magnesian Limestone, precipitated microbialites and inorganic crusts were the primary constituents of the reef core. These microbial and inorganic reefs do not have modern marine counterparts; on the contrary, their textures and genesis are best understood through comparison with the older rock record, particularly that of the early Precambrian. Early Precambrian reefal facies are interpreted to have formed in a stratified ocean with anoxic deep waters enriched in carbonate alkalinity. Upwelling mixed deep and surface waters, resulting in massive seafloor precipitation of aragonite and calcite. During Mesoproterozoic and early Neoproterozoic time, the ocean became more fully oxidized, and seafloor carbonate precipitation was significantly reduced. However, during the late Neoproterozoic, sizeable volumes of deep ocean water once again became anoxic for protracted intervals; the distinctive "cap carbonates" found above Neoproterozoic tillites attest to renewed upwelling of anoxic bottom water enriched in carbonate alkalinity and 12C. Anomalous late Permian seafloor precipitates are interpreted as the product, at least in part, of similar processes. Massive carbonate precipitation was favored by: 1) reduced shelf space for carbonate precipitation, 2) increased flux of Ca to the oceans during increased continental erosion, 3) deep basinal anoxia that generated upwelling waters with elevated alkalinities, and 4) further evolution of ocean water in the restricted Delaware, Zechstein, and other basins. Temporal coincidence of these processes resulted in surface seawater that was greatly supersaturated by Phanerozoic standards and whose only precedents occurred in Precambrian oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.T12A..07O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.T12A..07O"><span>Paleoenvironments of the Jurassic and Cretaceous Oceans: Selected Highlights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogg, J. G.</p> <p>2007-12-01</p> <p>There are many themes contributing to the sedimentation history of the Mesozoic oceans. This overview briefly examines the roles of the carbonate compensation depth (CCD) and the associated levels of atmospheric carbon dioxide, of the evolution of marine calcareous microplankton, of major transgressive and regressive trends, and of super-plume eruptions. Initiation of Atlantic seafloor spreading in the Middle Jurassic coincided with an elevated carbonate compensation depth (CCD) in the Pacific-Tethys mega-ocean. Organic-rich sediments that would become the oil wealth of regions from Saudi Arabia to the North Sea were deposited during a continued rise in CCD during the Oxfordian-early Kimmeridgian, which suggests a possible increase in carbon dioxide release by oceanic volcanic activity. Deep-sea deposits in near-equatorial settings are dominated by siliceous shales or cherts, which reflect the productivity of siliceous microfossils in the tropical surface waters. The end-Jurassic explosion in productivity by calcareous microplankton contributed to the lowering of the CCD and onset of the chalk ("creta") deposits that characterize the Tithonian and lower Cretaceous in all ocean basins. During the mid-Cretaceous, the eruption of enormous Pacific igneous provinces (Ontong Java Plateau and coeval edifices) increased carbon dioxide levels. The resulting rise in CCD terminated chalk deposition in the deep sea. The excess carbon was progressively removed in widespread black-shale deposits in the Atlantic basins and other regions - another major episode of oil source rock. A major long-term transgression during middle and late Cretaceous was accompanied by extensive chalk deposition on continental shelves and seaways while the oceanic CCD remained elevated. Pacific guyots document major oscillations (sequences) of global sea level superimposed on this broad highstand. The Cretaceous closed with a progressive sea-level regression and lowering of the CCD that again enabled widespread carbonate deposition in the deep sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2017/1139/ofr20171139.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2017/1139/ofr20171139.pdf"><span>Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy</p> <p>2017-12-11</p> <p>The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.3771H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.3771H"><span>Arctic Deep Water Ferromanganese-Oxide Deposits Reflect the Unique Characteristics of the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hein, James R.; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe J.; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah R.; Till, Claire P.</p> <p>2017-11-01</p> <p>Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, and HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits. The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ˜15 Myr ago.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192032','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192032"><span>Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.</p> <p>2017-01-01</p> <p>Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3638160','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3638160"><span>Diverse stoichiometry of dissolved trace metals in the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thi Dieu Vu, Huong; Sohrin, Yoshiki</p> <p>2013-01-01</p> <p>Trace metals in seawater are essential to organisms and important as tracers of various processes in the ocean. However, we do not have a good understanding of the global distribution and cycling of trace metals, especially in the Indian Ocean. Here we report the first simultaneous, full-depth, and basin-scale section-distribution of dissolved (D) Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the Indian Ocean. Our data reveal widespread co-limitation for phytoplankton production by DFe and occurrence of redox-related processes. The stoichiometry of the DM/phosphorus ratio agrees within a factor of 5 between deep waters in the Indian and Pacific, whereas it shows variability up to a factor of 300 among water masses within the Indian Ocean. This indicates that a consistent mechanism controls the stoichiometry in the deep waters, which are significantly depleted in Mn, Fe, and Co compared to requirements for phytoplankton.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.137..307L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.137..307L"><span>Gene flow between Atlantic and Pacific Ocean basins in three lineages of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) and subsequent limited gene flow within the Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LaBella, Abigail Leavitt; Van Dover, Cindy L.; Jollivet, Didier; Cunningham, Clifford W.</p> <p>2017-03-01</p> <p>Pliocardiin (vesicomyid) clams rely on microbial symbionts for nutrition and are obligate inhabitants of deep-sea chemosynthetic ecosystems. Unlike many other invertebrate hosts of chemosynthetic microbes, pliocardiin clams are found in every ocean in a variety of reducing habitats, including hydrothermal vents, cold seeps, organic falls and deep-sea fans. The global distribution of pliocardiin clams suggests historical gene flow between ocean basins. We focus on 3 pliocardiin genera-'Pliocardia' I, Calyptogena and Abyssogena-each of which has a pair of sister clades in the Atlantic and Pacific. Our work tests the hypothesis that historical gene flow between the Atlantic and Pacific Oceans within these genera was interrupted by the closure of the Panamanian seaway and tests whether isolation between the ocean basins is the result of vicariance or past colonization. These questions are investigated in the context of fossil evidence, biogeography and phylogenetics. This study revealed a set of substitution rates consistent with other invertebrate studies (μ=0.8%/My/lineage), and a set consistent with much lower rates often attributed to deep-sea organisms (μ=0.3%/My/lineage). Among the Pacific/Atlantic sister pairs, 'Pliocardia' I COI divergence per lineage is intermediate (2.5%), Calyptogena is the highest (6.1%) and Abyssogena the lowest (0.8%). The substitution rates suggest that 'Pliocardia' I and Calyptogena have histories of at least 2.8 My in the Atlantic, with Calyptogena likely older. The slower rate, however, is inconsistent with both the maximum age of the family and several well studied fossils: leaving the faster rate preferred. With the faster rate, the Abyssogena southwardae clade diverged from its Pacific sister clade around 1 Mya, which likely post-dates the closure of the Isthmus of Panama and the opening of the Bering Strait. In light of this recent divergence, we test the previously proposed hypothesis that there is a high level of ongoing gene flow between Atlantic populations of A. southwardae. A. southwardae has colonized a broad geographic range of seep sites including the West Florida Escarpment, the Barbados Accretionary Prism, the Lobes of Congo, and the Mid-Atlantic Ridge north and south of the Romanche Transform Fault. Coalescent methods detect gene flow between Barbados and the Mid-Atlantic ridge; and between the West Florida Escarpment and the Lobes of Congo. All other comparisons failed to detect gene flow, contrary to prevailing interpretations of connectivity across the entire Atlantic Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15794819','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15794819"><span>Ocean climate and seal condition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Le Boeuf, Burney J; Crocker, Daniel E</p> <p>2005-03-28</p> <p>The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=oceanography&pg=2&id=EJ960318','ERIC'); return false;" href="https://eric.ed.gov/?q=oceanography&pg=2&id=EJ960318"><span>Investigating Continental Margins: An Activity to Help Students Better Understand the Continental Margins of North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Poli, Maria-Serena; Capodivacca, Marco</p> <p>2011-01-01</p> <p>Continental margins are an important part of the ocean floor. They separate the land above sea level from the deep ocean basins below and occupy about 11% of Earth's surface. They are also economically important, as they harbor both mineral resources and some of the most valuable fisheries in the world. In this article students investigate North…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Natur.540...94N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Natur.540...94N"><span>Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nimmo, F.; Hamilton, D. P.; McKinnon, W. B.; Schenk, P. M.; Binzel, R. P.; Bierson, C. J.; Beyer, R. A.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Beyer, R.; Binzel, R. P.; Buie, M.; Buratti, B.; Cheng, A.; Cruikshank, D.; Ore, C. Dalle; Earle, A.; Gladstone, R.; Grundy, W.; Howard, A. D.; Lauer, T.; Linscott, I.; Nimmo, F.; Parker, J.; Porter, S.; Reitsema, H.; Reuter, D.; Roberts, J. H.; Robbins, S.; Schenk, P. M.; Showalter, M.; Singer, K.; Strobel, D.; Summers, M.; Tyler, L.; White, O. L.; Umurhan, O. M.; Banks, M.; Barnouin, O.; Bray, V.; Carcich, B.; Chaikin, A.; Chavez, C.; Conrad, C.; Hamilton, D. P.; Howett, C.; Hofgartner, J.; Kammer, J.; Lisse, C.; Marcotte, A.; Parker, A.; Retherford, K.; Saina, M.; Runyon, K.; Schindhelm, E.; Stansberry, J.; Steffl, A.; Stryk, T.; Throop, H.; Tsang, C.; Verbiscer, A.; Winters, H.; Zangari, A.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.</p> <p>2016-12-01</p> <p>The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto’s tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin’s present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1447H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1447H"><span>Crustal structure of the Boreas Basin formed at ultraslow spreading Knipovich Ridge - Northern North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hermann, T.; Jokat, W.</p> <p>2012-04-01</p> <p>The Boreas Basin is located in Norwegian Greenland Sea bordered by the Greenland Fracture Zone in the south and the Hovgard Ridge in the north, respectively. In the east it adjoins the ultraslow mid-ocean Knipovich Ridge. Previous seismic reflection studies in the Boreas Basin have shown that the basement topography has a roughness, which is typical for ultraslow spreading ridges. This observation supports assumptions that the basin was formed at ultraslow spreading rates during its entire geological history. However, the detailed crustal structure remained unresolved. In summer 2009 new seismic refraction data were acquired in the Boreas Basin during the expedition ARK-XXIV/3 with the research vessel Polarstern. The deep seismic sounding line has a length of 340 km. Forward modelling of the data of 18 ocean bottom seismometers deployed along the NW-SE trending profile reveal an unusual 3.2 km thin oceanic crust. The crustal model is further constrained by S-wave and 2D gravity modelling. The P-wave velocity model shows a layered oceanic crust without oceanic layer 3 and with velocities less than 6.3 km/s except beneath a nearly 2000 m high seamount. Beneath the seamount velocities of up to 6.7 km/s were observed. The mantle velocities range between 7.5 km/s in the uppermost mantle and 8.0 km/s in almost 15 km depth. A serpentinisation of approximately 13% in the uppermost mantle decreasing downwards can explain the low mantle velocities. In summary, the transect confirms earlier models that the entire Boreas Basin was formed at ultraslow spreading rates. Indications for this are the basement roughness and the overall thin oceanic crust. Both observations are typical for ultraslow spreading systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994EOSTr..75..281O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994EOSTr..75..281O"><span>Exploring Arctic history through scientific drilling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>ODP Leg 151 Shipboard Scientific Party</p> <p></p> <p>During the brief Arctic summer of 1993, the Ocean Drilling Program's research vessel JOIDES Resolution recovered the first scientific drill cores from the eastern Arctic Ocean. Dodging rafts of pack ice shed from the Arctic ice cap, the science party sampled sediments north of 80°N latitude from the Yermak Plateau, as well as from sites in Fram Strait, the northeastern Greenland margin, and the Iceland Plateau (Figure 1).The sediments collected reveal the earliest history of the connection between the North Atlantic and Arctic Oceans through the Nordic Seas. The region between Greenland and Norway first formed a series of isolated basins, sometimes with restricted deep circulation, that eventually joined and allowed deep and surface Arctic Ocean water to invade the region. A record was also retrieved that shows major glaciation in the region began about 2.5 m.y.a.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984PhDT........18C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984PhDT........18C"><span>Post-Sonoman conodont biofacies of the Triassic of northwestern Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carey, S. P.</p> <p></p> <p>Biofacies interpretation of Star Peak and partly equivalent basinal conodonts is based upon sedimentologically and paleontologically determined lithofacies relationships as well as a regional shelf oceanic basin terranes model. Late Spathian transgression initiated Star Peak sedimentation. Deep shelf (basinal) conditions represented by the lower member of the Prida Formation supported an abundant neospathodid fauna (Neospathodus homeri and N. triangularis) succeeded by a neogondolellid fauna (Neogondolella jubata and N. timorensis). At the same time, restricted shallow marine waters to the east were sparsely populated by neogondolellids. During the Anisian, deep shelf (basinal) conditions characterized all of Star Peak deposition (Fossil Hill Member). Ladinian progradation of a carbonate platform across the shelf resulted in a diversification of environments. None was hospitable to conodonts. The platform slope lithology (upper Prida) is apparently barren. Rare neogondellids occur in restricted shallow marine deposits of the Home Station Member (Augusta Mountain Formation) but are absent from the supratidal Panther Canyon Member.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6611C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6611C"><span>Subglacial discharge-driven renewal of tidewater glacier fjords</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.</p> <p>2017-08-01</p> <p>The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000319','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000319"><span>Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robertson, Darrel</p> <p>2016-01-01</p> <p>Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (<250MT) asteroids in these simulations where they impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DSRI..134...55W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DSRI..134...55W"><span>Deep water characteristics and circulation in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin</p> <p>2018-04-01</p> <p>This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRI..126..103D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRI..126..103D"><span>Deep-water zooplankton in the Mediterranean Sea: Results from a continuous, synchronous sampling over different regions using sediment traps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danovaro, R.; Carugati, L.; Boldrin, A.; Calafat, A.; Canals, M.; Fabres, J.; Finlay, K.; Heussner, S.; Miserocchi, S.; Sanchez-Vidal, A.</p> <p>2017-08-01</p> <p>Information on the dynamics of deep-sea biota is extremely scant particularly for long-term time series on deep-sea zooplankton. Here, we present the results of a deep-sea zooplankton investigation over one annual cycle based on samples from sediment trap moorings in three sub-basins along the Mediterranean Sea. Deep-sea zooplankton assemblages were dominated by copepods, as in shallow waters, only in the Adriatic Sea (>60% of total abundance), but not in the deep Ionian Sea, where ostracods represented >80%, neither in the deep Alboran Sea, where polychaetes were >70%. We found that deep-sea zooplankton assemblages: i) are subjected to changes in their abundance and structure over time, ii) are characterized by different dominant taxa in different basins, and iii) display clear taxonomic segregation between shallow and near-bottom waters. Zooplankton biodiversity decreases with increasing water depth, but the equitability increases. We suggest here that variations of zooplankton abundance and assemblage structure are likely influenced by the trophic condition characterizing the basins. Our findings provide new insights on this largely unknown component of the deep ocean, and suggest that changes in the export of organic matter from the photic zone, such as those expected as a consequence of global change, can significantly influence zooplankton assemblages in the largest biome on Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.710...37K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.710...37K"><span>Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.</p> <p>2017-07-01</p> <p>Deep seismic studies of the Sea of Okhotsk region started in late 1950s. Since that time, wide-angle reflection and refraction data on more than two dozen profiles were acquired. Only five of those profiles either crossed or entered the deep-water area of the South-Okhotsk Basin (also known as the Kuril Basin or the South-Okhotsk Deep-Water Trough). Only P-waves were used to develop velocity-interface models in all the early research. Thus, all seismic and geodynamic models of the Okhotsk region were based only on the information on compressional waves. Nevertheless, the use of Vp/Vs ratio in addition to P-wave velocity allows discriminating felsic and mafic crustal layers with similar Vp values. In 2007 the Russian seismic service company Sevmorgeo acquired multi-component data with ocean bottom seismometers (OBS) along the 1700-km-long north-south 2-DV-M Profile. Only P-wave information was used previously to develop models for the entire profile. In this study, a multi-wave processing, analysis, and interpretation of the OBS data are presented for the 550-km-long southern segment of this Profile that crosses the deep-water South-Okhotsk Basin. Within this segment 50 seismometers were deployed with nominal OBS station spacing of 10-12 km. Shot point spacing was 250 m. Not only primary P-waves and S-waves but also multiples and P-S, S-P converted waves were analyzed in this study to constrain velocity-interface models by means of travel time forward modeling. In offshore deep seismic studies, thick water layer hinders an estimation of velocities in the sedimentary cover and in the upper consolidated crust. Primarily, this is due to the fact that refracted waves propagating in low-velocity solid upper layers interfere with high-amplitude direct water wave. However, in multi-component measurements with ocean bottom seismometers, it is possible to use converted and multiple waves for velocity estimations in these layers. Consequently, one can obtain P- and S-waves velocity models of the sedimentary strata and the upper consolidated crust. Velocity values in the upper consolidated crust beneath the South-Okhotsk Basin (Vp = 5.50-5.80 km/s, Vp/Vs = 1.74-1.76) allow interpretation of this 2.5-3.5-km-thick layer to be consistent with a felsic (granodioritic) crust. These results suggest that the Earth's crust in this region can be considered continental in nature, rather than previously accepted oceanic crust. Even though, the crust is thinned and stretched at this location.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990009283','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990009283"><span>A Preliminary Model Study of the Large-Scale Seasonal Cycle in Bottom Pressure Over the Global Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ponte, Rui M.</p> <p>1998-01-01</p> <p>Output from the primitive equation model of Semtner and Chervin is used to examine the seasonal cycle in bottom pressure (Pb) over the global ocean. Effects of the volume-conserving formulation of the model on the calculation Of Pb are considered. The estimated seasonal, large-scale Pb signals have amplitudes ranging from less than 1 cm over most of the deep ocean to several centimeters over shallow, boundary regions. Variability generally increases toward the western sides of the basins, and is also larger in some Southern Ocean regions. An oscillation between subtropical and higher latitudes in the North Pacific is clear. Comparison with barotropic simulations indicates that, on basin scales, seasonal Pb variability is related to barotropic dynamics and the seasonal cycle in Ekman pumping, and results from a small, net residual in mass divergence from the balance between Ekman and Sverdrup flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...743436H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...743436H"><span>Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopwood, Mark J.; Rapp, Insa; Schlosser, Christian; Achterberg, Eric P.</p> <p>2017-03-01</p> <p>Hydrogen peroxide (H2O2) is present ubiquitously in marine surface waters where it is a reactive intermediate in the cycling of many trace elements. Photochemical processes are considered the dominant natural H2O2 source, yet cannot explain nanomolar H2O2 concentrations below the photic zone. Here, we determined the concentration of H2O2 in full depth profiles across three ocean basins (Mediterranean Sea, South Atlantic and South Pacific Oceans). To determine the accuracy of H2O2 measurements in the deep ocean we also re-assessed the contribution of interfering species to ‘apparent H2O2’, as analysed by the luminol based chemiluminescence technique. Within the vicinity of coastal oxygen minimum zones, accurate measurement of H2O2 was not possible due to interference from Fe(II). Offshore, in deep (>1000 m) waters H2O2 concentrations ranged from 0.25 ± 0.27 nM (Mediterranean, Balearics-Algeria) to 2.9 ± 2.2 nM (Mediterranean, Corsica-France). Our results indicate that a dark, pelagic H2O2 production mechanism must occur throughout the deep ocean. A bacterial source of H2O2 is the most likely origin and we show that this source is likely sufficient to account for all of the observed H2O2 in the deep ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5339902','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5339902"><span>Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hopwood, Mark J.; Rapp, Insa; Schlosser, Christian; Achterberg, Eric P.</p> <p>2017-01-01</p> <p>Hydrogen peroxide (H2O2) is present ubiquitously in marine surface waters where it is a reactive intermediate in the cycling of many trace elements. Photochemical processes are considered the dominant natural H2O2 source, yet cannot explain nanomolar H2O2 concentrations below the photic zone. Here, we determined the concentration of H2O2 in full depth profiles across three ocean basins (Mediterranean Sea, South Atlantic and South Pacific Oceans). To determine the accuracy of H2O2 measurements in the deep ocean we also re-assessed the contribution of interfering species to ‘apparent H2O2’, as analysed by the luminol based chemiluminescence technique. Within the vicinity of coastal oxygen minimum zones, accurate measurement of H2O2 was not possible due to interference from Fe(II). Offshore, in deep (>1000 m) waters H2O2 concentrations ranged from 0.25 ± 0.27 nM (Mediterranean, Balearics-Algeria) to 2.9 ± 2.2 nM (Mediterranean, Corsica-France). Our results indicate that a dark, pelagic H2O2 production mechanism must occur throughout the deep ocean. A bacterial source of H2O2 is the most likely origin and we show that this source is likely sufficient to account for all of the observed H2O2 in the deep ocean. PMID:28266529</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980Tectp..70..237K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980Tectp..70..237K"><span>Tectonic types of marginal and inner seas; their place in the development of the crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khain, V. E.; Levin, L. E.</p> <p>1980-12-01</p> <p>Inner and marginal deep seas are of considerable interest not only for their genesis but also as "micromodels" of oceans. In the latter case it must be noted that some of them essentially differ from oceans in several parameters. They have a shorter period of development, thicker sedimentary cover, less distinct linear magnetic anomalies or an absence of them, high heat-flow values and seismic activity over their whole area. Consequently, the analogy with the oceans has certain limitations as the deep structure of such seas is not homogeneous and they probably vary in genesis. Only a few marginal seas are cut off from the principal areas of the oceans by island arcs formed, most probably, along transform faults. The origin of this type is more or less reliably demonstrated for the Bering Sea. Other types of marginal seas are more numerous. Some of them (such as the Gulf of Aden and the Gulf of California) are embryonic apophyses connected with the oceans. Others are atrophied (the Tasman and the Labrador seas) small oceans. The group of marginal and inner seas which lie in the inside zone of mature or young island arcs is even more numerous. Only a few basins of this group resulted from linear spreading imprinted in the system of magnetic anomalies (the Shikoku-Parese-Vela basin), the rest are supposed to have been formed in the process of diffusal or polyaxial spreading of recent time as in Afar. The majority of inner and marginal seas are younger than recent oceans. They are formed by rifting, oriented crosswise to continental margins of the Atlantic type or along the strike of margins of Andean type. More ancient basins of marginal and inner seas have been involved in Phanerozoic orogens or more rarely became parts of platforms (Ciscaspian syneclise).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13C..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13C..04M"><span>Reconstructing Deep Ocean Circulation in the North Atlantic from Bermuda Rise, and Beyond</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McManus, J. F.</p> <p>2016-12-01</p> <p>The large-scale subsurface circulation of the ocean is an important component of the Earth's climate system, and contributes to the global and regional transport of heat and mass. Assessing how this system has changed in the past is thus a priority for understanding natural climate variability. A long-coring campaign on Bermuda Rise has provided additional abundant high-quality sediments from this site of rapid accumulation in the deep western basin, situated beneath the subtropical gyre of the North Atlantic Ocean. These sediments allow the high-resolution reconstruction of deepwater chemistry and export from this key location throughout the last 150,000 years, covering the entire last glacial cycle in a continuous section of 35 meters in core KNR191-CDH19. The suite of proxy indicators analyzed includes uranium-series disequilibria, neodymium isotopes, and benthic stable isotopes. Combined with multiple previous studies of nearby cores on Bermuda Rise, the published and new proxy data from CDH19 confirm the variability of the deep circulation in the Atlantic Ocean in association with past climate changes. The multiple indicators, along with complementary data from other locations, display coherent evidence for contrasts between deep circulation during glacial and interglacial intervals, with persistent strong, deep ventilation only within the peak interglacial of marine isotope stage 5e (MIS 5e) and the Holocene. In contrast, repeated, dramatic variability in deep ocean circulation accompanied the millennial climate changes of the last glaciation and deglaciation. The largest magnitude circulation shifts occurred at the transitions into stadials associated with the Hudson strait iceberg discharges and between them and the ensuing northern interstadial warmings, significantly exceeding that of the overall glacial-interglacial difference, highlighting the potential oceanographic and climatic importance of short-term perturbations to the deep ocean circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016FrEaS...4...85R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016FrEaS...4...85R"><span>Molecular signatures of biogeochemical transformations in dissolved organic matter from ten World Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riedel, Thomas; Zark, Maren; Vähätalo, Anssi; Niggemann, Jutta; Spencer, Robert; Hernes, Peter; Dittmar, Thorsten</p> <p>2016-09-01</p> <p>Rivers carry large amounts of dissolved organic matter (DOM) to the oceans thereby connecting terrestrial and marine element cycles. Photo-degradation in conjunction with microbial turnover is considered a major pathway by which terrigenous DOM is decomposed. To reveal globally relevant patterns behind this process, we performed photo-degradation experiments and year-long bio-assays on DOM from ten of the largest world rivers that collectively account for more than one-third of the fresh water discharge to the global ocean. We furthermore tested the hypothesis that the terrigenous component in deep ocean DOM may be far higher than biomarker studies suggest, because of the selective photochemical destruction of characteristic biomolecules from vascular plants. DOM was molecularly characterized by a combination of non-targeted ultrahigh-resolution mass spectrometry and quantitative molecular tracer analyses. We show that the reactivity of DOM is globally related to broad catchment properties. Basins that are dominated by forest and grassland export more photo-degradable DOM than other rivers. Chromophoric compounds are mainly vascular plant-derived polyphenols, and partially carry a pyrogenic signature from vegetation fires. These forest and grassland dominated rivers lost up to 50% of dissolved organic carbon (DOC) during irradiation, and up to 85% of DOC was lost in total if subsequently bio-incubated for one year. Basins covered by cropland, on the other hand, export DOM with a higher proportion of photo-resistant and bio-available DOM which is enriched in nitrogen. In these rivers, 30% or less of DOC was photodegraded. Consistent with previous studies, we found that riverine DOM resembled marine DOM in its broad molecular composition after extensive degradation, mainly due to almost complete removal of aromatics. More detailed molecular fingerprinting analysis (based on the relative abundance of >4000 DOM molecular formulae), however, revealed clear differences between degraded riverine and deep-sea DOM (molecular Bray-Curtis dissimilarity of 50%). None of our experimental treatments enhanced the molecular similarity between the rivers and the deep ocean. We conclude that terrigenous DOM retains a specific molecular signature during photo-degradation on much longer time scales than previously assumed and that substantial, thus far unknown, molecular transformations occur prior to downward convection into the deep oceanic basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tectp.693..143I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tectp.693..143I"><span>Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inati, Lama; Zeyen, Hermann; Nader, Fadi Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, François</p> <p>2016-12-01</p> <p>This paper discusses the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated. Crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution were calculated by integrating surface heat flow data, free-air gravity anomaly, geoid and topography. Accordingly, two-dimensional, lithospheric models of the study area are discussed, demonstrating the presence of a progressively attenuated crystalline crust from E to W (average thickness from 35 to 8 km). The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Further to the west, the Herodotus Basin is believed to be underlain by an oceanic crust, with a thickness between 6 and 10 km. The Moho under the Arabian Plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. It appears to be situated at depths ranging between 20 and 23 km below the Levant Basin and 26 km beneath the Herodotus Basin, based on our proposed models. At the Levantine margin, the thinning of the crust in the transitional domain between the onshore and the offshore is gradual, indicating successive extensional regimes that did not reach the beak up stage. In addition, the depth to LAB is around 120 km under the Arabian and the Eurasian Plates, 150 km under the Levant Basin, and it plunges to 180 km under the Herodotus Basin. This study shows that detailed 2D lithosphere modeling using integrated geophysical data can help understand the mechanisms responsible for the modelled lithospheric architecture when constrained with geological findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013452','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013452"><span>Amino acid epimerization implies rapid sedimentation rates in Arctic Ocean cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sejrup, H.P.; Miller, G.H.; Brigham-Grette, J.; Lovlie, R.; Hopkins, D.</p> <p>1984-01-01</p> <p>The palaeooceanography of the Arctic Ocean is less well known than any other ocean basin, due to difficulties in obtaining cores and in providing a secure chronological framework for those cores that have been raised. Most recent investigators have suggested that low sedimentation rates (0.05-0.1 cm kyr-1) have characterized the deep basins over the past 5 Myr (refs 1,2) despite the glacial-marine character of the sediment and proximity to major centres of shelf glaciation. These calculations have been primarily based on the down-core pattern in the inclination of magnetic minerals, supported by uranium-series, 14C and micropalaeontological evidence. Here we analyse amino acid diagnesis in foraminifera from two gravity cores raised from the floor of the Arctic Ocean, our results suggest that these cores span <200 kyr., conflicting with the earlier estimate of 3 Myr based on palaeomagnetic data. The chronology of other Arctic Ocean cores and previous palaeoenvironmental interpretations need re-evaluation. ?? 1984 Nature Publishing Group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70177924','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70177924"><span>Sources, distributions and dynamics of dissolved organic matter in the Canada and Makarov Basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shen, Yuan; Benner, Ronald; Robbins, Lisa L.; Wynn, Jonathan</p> <p>2016-01-01</p> <p>A comprehensive survey of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) was conducted in the Canada and Makarov Basins and adjacent seas during 2010–2012 to investigate the dynamics of dissolved organic matter (DOM) in the Arctic Ocean. Sources and distributions of DOM in polar surface waters were very heterogeneous and closely linked to hydrological conditions. Canada Basin surface waters had relatively low DOC concentrations (69 ± 6 μmol L−1), CDOM absorption (a325: 0.32 ± 0.07 m−1) and CDOM-derived lignin phenols (3 ± 0.4 nmol L−1), and high spectral slope values (S275–295: 31.7 ± 2.3 μm−1), indicating minor terrigenous inputs and evidence of photochemical alteration in the Beaufort Gyre. By contrast, surface waters of the Makarov Basin had elevated DOC (108 ± 9 μmol L−1) and lignin phenol concentrations (15 ± 3 nmol L−1), high a325 values (1.36 ± 0.18 m−1), and low S275–295 values (22.8 ± 0.8 μm−1), indicating pronounced Siberian river inputs associated with the Transpolar Drift and minor photochemical alteration. Observations near the Mendeleev Plain suggested limited interactions of the Transpolar Drift with Canada Basin waters, a scenario favoring export of Arctic DOM to the North Atlantic. The influence of sea-ice melt on DOM was region-dependent, resulting in an increase (Beaufort Sea), a decrease (Bering-Chukchi Seas), and negligible change (deep basins) in surface DOC concentrations and a325 values. Halocline structures differed between basins, but the Canada Basin upper halocline and Makarov Basin halocline were comparable in their average DOC (65–70 μmol L−1) and lignin phenol concentrations (3–4 nmol L−1) and S275–295 values (22.9–23.7 μm−1). Deep-water DOC concentrations decreased by 6–8 μmol L−1 with increasing depth, water mass age, nutrient concentrations, and apparent oxygen utilization. Maximal estimates of DOC degradation rates (0.036–0.039 μmol L−1 yr−1) in the deep Arctic were lower than those in other ocean basins, possibly due to low water temperatures. DOC concentrations in bottom waters (>2500 m; 46 ± 2 μmol L−1) of the Canada and Makarov Basins were slightly lower than those reported for deep waters of the Eurasian Basin and Nordic Seas. Elevated a325 values (by 10–20%) were observed near the seafloor, indicating biological activity in Arctic basin sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcSci..14....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcSci..14....1B"><span>Bathymetry and oceanic flow structure at two deep passages crossing the Lomonosov Ridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Björk, Göran; Jakobsson, Martin; Assmann, Karen; Andersson, Leif G.; Nilsson, Johan; Stranne, Christian; Mayer, Larry</p> <p>2018-01-01</p> <p>The Lomonosov Ridge represents a major topographical feature in the Arctic Ocean which has a large effect on the water circulation and the distribution of water properties. This study presents detailed bathymetric survey data along with hydrographic data at two deep passages across the ridge: a southern passage (80-81° N), where the ridge crest meets the Siberian continental slope, and a northern passage around 84.5° N. The southern channel is characterized by smooth and flat bathymetry around 1600-1700 m with a sill depth slightly shallower than 1700 m. A hydrographic section across the channel reveals an eastward flow with Amundsen Basin properties in the southern part and a westward flow of Makarov Basin properties in the northern part. The northern passage includes an approximately 72 km long and 33 km wide trough which forms an intra-basin in the Lomonosov Ridge morphology (the Oden Trough). The eastern side of the Oden Trough is enclosed by a narrow and steep ridge rising 500-600 m above a generally 1600 m deep trough bottom. The deepest passage (the sill) is 1470 m deep and located on this ridge. Hydrographic data show irregular temperature and salinity profiles indicating that water exchange occurs as midwater intrusions bringing water properties from each side of the ridge in well-defined but irregular layers. There is also morphological evidence that some rather energetic flows may occur in the vicinity of the sill. A well expressed deepening near the sill may be the result of seabed erosion by bottom currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DSRII..99..103A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DSRII..99..103A"><span>New records of Primnoidae (Cnidaria: Octocorallia) in Brazilian deep waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arantes, Renata C. M.; Loiola, Livia L.</p> <p>2014-01-01</p> <p>The knowledge of octocorals occurring in Brazilian deep waters is still lacking, with only a few studies conducted so far, most of which focused on large-scale marine habitats characterization. Primnoidae are common and characteristic of seamounts and deepwater coral banks, often providing habitat for other marine species. Although primnoids occur in all ocean basins, only Primnoella and Plumarella species were recorded along the Brazilian coast before this study. Primnoid specimens were obtained through dredging and remotely operated vehicles (ROV) sampling, collected by research projects conducted off the Brazilian coast, between 15 and 34°S. Taxonomic assessment resulted in 5 new records of Primnoidae genera in Brazil: Calyptrophora, Candidella, Dasystenella, Narella and Thouarella. The occurrences of Narella-off Salvador and Vitória, and in Campos Basin (935-1700 m), and Calyptrophora-in Campos Basin (1059-1152 m), are herein reported for the first time in the South Atlantic. Calyptrophora microdentata was previously known in Lesser Antilles, New England and Corner Rise Seamounts, between 686 and 2310 m. Candidella imbricata geographical distribution includes Western and Eastern Atlantic (514-2063 m and 815-2139 m, respectively), being registered herein in Campos Basin, between 1059 and 1605 m. Dasystenella acanthina collected off Rio Grande do Sul state (810 m) and occurs also off Argentina and Southern Ocean, between 150 and 5087 m. Plumarella diadema, which type locality is off São Sebastião, Brazil, has its geographical range extended northwards, occurring in Campos Basin (650 m). Thouarella koellikeri previously known for Patagonia and Antartic Peninsula, is registered for the off Brazil for the first time, in Campos Basin and off São Sebastião (609-659 m). There is a lot of work yet to be done in terms of taxonomic knowledge of Brazilian deep-sea octocorals. Research projects focusing on the investigations, including ROV sampling, of other geographical regions and depth ranges along Brazilian coast will certainly reveal other new octocorals occurrences and species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA598305','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA598305"><span>A Factor of 2-4 Improvement in Marine Gravity and Predicted Bathymetry from CryoSat, Jason-1, and Envisat Radar Altimetry: Arctic and Coastal Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>dsandwell@ucsd.edu Award Number: N00014-12-1-0111 http://topex.ucsd.edu LONG-TERM GOALS • Improve our understanding of the ocean basins for...scientific research and Naval operations. OBJECTIVES • Improve global marine gravity maps by a factor of 2 in deep ocean areas and a factor of 4 in...arcsecond bathymetry model (SRTM30_PLUS). • Prepare the next generation of scientists for ocean research. APPROACH 1. Modify waveform</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA572953','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA572953"><span>A Factor of 2-4 Improvement in Marine Gravity and Predicted Bathymetry from CryoSat, Jason-1, and Envisat Radar Altimetry: Arctic and Coastal Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-30</p> <p>ucsd.edu Award Number: N00014-12-1-0111 http://topex.ucsd.edu LONG-TERM GOALS • Improve our understanding of the ocean basins for...scientific research and Naval operations. OBJECTIVES • Improve global marine gravity maps by a factor of 2 in deep ocean areas and a factor of 4 in the...arcsecond bathymetry model (SRTM30_PLUS). • Prepare the next generation of scientists for ocean research. APPROACH 1. Modify waveform retracking</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA083439','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA083439"><span>Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1979-01-01</p> <p>nannoplankton, a sparse to rich DITIBTO OF HORIZO C I foraminiferal fauna (simple arenaceous foramin - 5S SSftB / ifera, lagenids, epistominids, and primitive...Deep Sea Pessagno, E.A., Jr., Mesozoic Planctonic Foramin - DrillingP , 11, Washington (U.S. Govern- vera and Radiolaria, in Ewing, M., Worzel, L.J. ment...Strati- B.,er, W.H., Foramin ooze: solution at graphic Micropaleontology of Atlantic Basins depths, Science, 156, 383-385, 1967. and Borderlands</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP11B1036R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP11B1036R"><span>Southern Ocean Circulation: a High Resolution Examination of the Last Deglaciation from Deep-Sea Corals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, L. F.; Li, T.; Chen, T.; Burke, A.; Pegrum Haram, A.; Stewart, J.; Rae, J. W. B.; van de Flierdt, T.; Struve, T.; Wilson, D. J.</p> <p>2017-12-01</p> <p>Two decades ago it was first noted that the skeletal remains of deep-sea corals had the potential to provide absolutely dated archives of past ocean conditions. In the intervening twenty years this field has developed to the point where strategic collections and high throughput dating techniques now allow high resolution, well dated records of past deep sea behaviour to be produced. Likewise, efforts to improve understanding of biomineralisation and growth rates are leading to refinements in proxy tools useful for examining circulation, nutrient and carbon cycling, temperature and weathering processes. Deep-sea corals are particularly valuable archives in high latitude regions where radiocarbon-based age models are susceptible to large changes in surface reservoir ages. In this presentation we show new high resolution multiproxy records of the Southern Ocean (Drake Passage) made on U-Th dated corals spanning the last glacial cycle. With more than seventeen hundred reconnaissance ages, and around 200 precise isotope dilution U-Th ages, subtle changes in ocean behaviour can be identified during times of abrupt climate change. The geochemical signature of corals from the deepest sites, closest to modern day Lower Circumpolar Deep Waters, typically show a gradual shift from glacial to Holocene values during deglaciation, likely related to ventilation of the deep ocean. By contrast for the samples collected shallower in the water column (within sites currently bathed by Upper Circumpolar Deep Waters and Antarctic Intermediate and Mode Waters) the evidence points to a more complicated picture. Vertical zonation in the geochemical data suggests that periods of stratification are interspersed with mixing events within the upper 1500m of the water column. At the same time comparison to U-Th dated records from the low latitude Pacific and Atlantic points to an important role for the Southern Ocean in feeding the intermediate waters of both ocean basins throughout the deglaciation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26251871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26251871"><span>Global diversity and biogeography of deep-sea pelagic prokaryotes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Salazar, Guillem; Cornejo-Castillo, Francisco M; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Álvarez-Salgado, X Antón; Duarte, Carlos M; Gasol, Josep M; Acinas, Silvia G</p> <p>2016-03-01</p> <p>The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean's microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (~3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4817678','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4817678"><span>Global diversity and biogeography of deep-sea pelagic prokaryotes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Salazar, Guillem; Cornejo-Castillo, Francisco M; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Álvarez-Salgado, X Antón; Duarte, Carlos M; Gasol, Josep M; Acinas, Silvia G</p> <p>2016-01-01</p> <p>The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean's microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (~3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered. PMID:26251871</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3250512','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3250512"><span>The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rogers, Alex D.; Tyler, Paul A.; Connelly, Douglas P.; Copley, Jon T.; James, Rachael; Larter, Robert D.; Linse, Katrin; Mills, Rachel A.; Garabato, Alfredo Naveira; Pancost, Richard D.; Pearce, David A.; Polunin, Nicholas V. C.; German, Christopher R.; Shank, Timothy; Boersch-Supan, Philipp H.; Alker, Belinda J.; Aquilina, Alfred; Bennett, Sarah A.; Clarke, Andrew; Dinley, Robert J. J.; Graham, Alastair G. C.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura; Hilario, Ana; Huvenne, Veerle A. I.; Marsh, Leigh; Ramirez-Llodra, Eva; Reid, William D. K.; Roterman, Christopher N.; Sweeting, Christopher J.; Thatje, Sven; Zwirglmaier, Katrin</p> <p>2012-01-01</p> <p>Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised. PMID:22235194</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T43H..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T43H..05D"><span>Early Opening of Seychelles and India: the Gop Basin Revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dyment, J.; Vadakkeyakath, Y.; Bhattacharya, G.</p> <p>2012-12-01</p> <p>The deep offshore region located between the India-Pakistan continental margin and the Laxmi Ridge continental sliver contains valuable imprints of the early oceanic opening phase between India and the Seychelles. The acquisition of wide-angle deep seismic data by British scientists in 2003 provided new information about the deep structure and nature of the crust [1,2]. These data complement the large amount of seismic reflection profiles, altimetry-derived gravity and marine magnetic data which allow mapping the structure and determining the age of the oceanic crust [3,4,5]. Although these authors all agree on the oceanic nature of the Gop Basin, they surprisingly differ on the extent of the oceanic crust, the location of the extinct spreading center and the age of the basin. Here we re-evaluate published interpretations of the Gop Basin in light of all available data. The major discrepancy between [1,2,4] and [5] is the location of the extinct spreading center. [1,2,4] place it on an unnamed basement high located at 19°55'N, whereas [5] identify it with the Palitana Ridge at 19°25'N. Checking the location of the basement high of [1,2,4] on the basement isobath map of [3], based on many seismic reflection profiles, reveals that this basement high actually is an isolated feature of limited extent, which at best can be considered as part of a NE-SW trending basement high zone. This basement high locally coincides with a strong positive magnetic anomaly and a narrow gravity anomaly low but the trend of these anomalies is E-W, in contrast to the NE-SW trend of the basement in this area. For these reasons, this basement high probably is not the location of the Gop Basin extinct spreading center. Conversely, on the basement isobath map of [3], the Palitana Ridge appears as a prominent E-W high, located in the middle of a broad E-W graben, the Gop Basin. It extends over 200 km and is flanked on both sides by basement 2000 m deeper. On free air gravity anomaly maps, the Palitana Ridge lies in the center of the broad gravity high that delineates the Gop Basin. It corresponds, to the west, to a narrow gravity low, a typical signature of fossil spreading centers. The crustal structure determined by the wide angle seismic data of [1,2] shows that the base of the lower crust, the best seismically constrained interface (according to the ray diagram of [1]), is flat in the Arabian Basin, deeper under the Laxmi Ridge, shallower in the Gop Basin under the Palitana Ridge, and deeper again further north. For these reasons, the Palitana Ridge probably is the location of the Gop Basin extinct spreading centre. Further, the Gop Basin, being narrow, does not exhibit long sequences of magnetic anomalies, thereby making their interpretation difficult. Many models may fit the observed anomalies, so [4] and [5] each proposed different hypotheses. We note, however, that [4] consider a plausible (and preferred) model with "initial" spreading rates, i.e. just after break up, as fast as 68 mm/yr half-rate, which implies the Gop Basin to form in 1 Myr. Such a fast initial rate appears unrealistic, considering that initial spreading rates are usually much slower, about one fourth of that rate. [1] Minshull et al., Nature Geo., 2008 [2] Collier et al., JGR, 2009 [3] Malod et al., Tectonophys., 1997 [4] Collier et al., EPSL, 2008 [5] Yatheesh et al., EPSL, 2009</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeCoA..75..460W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeCoA..75..460W"><span>Dissolved iron anomaly in the deep tropical-subtropical Pacific: Evidence for long-range transport of hydrothermal iron</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Jingfeng; Wells, Mark L.; Rember, Robert</p> <p>2011-01-01</p> <p>Dissolved iron profiles along a north-south transect along 158°W in the tropical Pacific show evidence of two deepwater anomalies. The first extends from Station ALOHA (22.78°N) to the equator at ˜1000-1500 m and lies below the maximum apparent oxygen utilization and nutrient (N, P) concentrations. The feature is not supported by vertical export processes, but instead corresponds with the lateral dilution field of δ 3He derived from the Loihi seamount, Hawaii, though a sediment source associated with the Hawaiian Island Chain cannot be entirely ruled out. The second, deeper (2000-3000 m) anomaly occurs in tropical South Pacific waters (7°S) and also does not correlate with the depths of maximum nutrient concentrations or apparent oxygen utilization, but it does coincide closely with δ 3He emanating from the East Pacific Rise, more than 5000 km to the east. We hypothesize that these anomalies represent the long-range (>2000 km) transport of hydrothermal iron residuals, stabilized against scavenging by complexation with excess organic ligands in the plume source regions. Such trace leakage of hydrothermal iron to distal plume regions would have been difficult to identify in most hydrothermal vent mapping studies because low analytical detection limits were not needed for the proximal plume regions. These findings suggest that hydrothermal activity may represent a major source of dissolved iron throughout the South Pacific deep basin today, as well as other regions having high mid-ocean spreading rates in the geologic past. In particular, we hypothesize that high spreading rates along the South Atlantic and Southern Ocean mid-oceanic ridges, combined with the upwelling ventilation of these distal hydrothermal plumes, may have increased ocean productivity and carbon export in the Southern Ocean. Assessing the magnitude and persistence of dissolved hydrothermal iron in basin scale deep waters will be important for understanding the marine biogeochemistry of iron and, potentially, on ocean productivity and climate change during the geologic past.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T53A1416O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T53A1416O"><span>Tectonic Evolution of the Southern tip of the Parece Vela Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Okino, K.; Ohara, Y.; Fujiwara, T.; Lee, S.; Nakamura, Y.; Wu, S.</p> <p>2005-12-01</p> <p>The southern tip of the Parece Vela Basin was mapped using state-of-the-art instruments for the first time. The basin is known as an extinct backarc basin behind the Mariana arc-trench system and has developed from ~26 to 12 Ma. The backarc spreading consists of two stages: early east-west spreading and later NE-SW spreading accompanied by several oceanic core complexes. The remnant spreading center, the Parece Vela Rift, seems to connect the Yap Trench at its southern end (~12°N) and is not traceable in the southern tip of the basin (9~11°N) west of the Yap Trench. The evolution of the area seems to be linked to the collision of the Caroline Ridge to the Yap Trench, however no systematic mapping had been done before and the tectonics of the area remained enigmatic. New mapping/seismic reflection/dredging results reveal the complex structure of the area, which cannot be seen in northern part of the basin. Relatively continuous N-S fabrics are found in the northern part of the studied area and these fabrics develops within a V-shaped triangle zone. The short NW-SE abyssal hills offset by the NE-SW fracture zones are recognized in the very narrow area just east of the V-shaped area of N-S fabrics. These fabrics indicate the southward propagation of the N-S trending ridge and following NE-SW opening as same as seen in the northern part of the basin, although the eastern wing of the basin was lost. The western part of the area is completely different from the other part of the basin. The most prominent morphology is en echelon, curved deeps near the Kyushu-Palau Ridge. Two deeps are crescent-shaped and curve towards northward. The northern deep is ~6100 m and the abyssal hills seem approximately perpendicular to the deep. The southwestern extension of the northern deep is a narrow curved rift trending 030° and the rift develops within a topographic high. The southern deep is characterized with voluminous dome, which consists of branched topographic highs. The morphological pattern with curved deeps is very much like those of the Pito Deep in the Easter Microplate and of the Endeavor Deep in the Juan Fernandez Microplate. It is likely that the rotational deformation associated with continuous rift propagation and with some finite broad transform zone is related to the origin of the deeps. The area may be the remnant old lithosphere created before the Parece Vela Basin formation and indicate the robust magmatism in the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918852M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918852M"><span>Hydrology and circulation in the Algerian gyres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mallil, Katia; Mortier, Laurent; Louanchi, Ferial; Testor, Pierre; Bosse, Anthony; Le Goff, Hervé; Schroeder, Kathrin; Margirier, Félix</p> <p>2017-04-01</p> <p>Introduction: The exploitation of data collected during the SOMBA-GE2014 cruise on the R/V Tethys II [1], combined with data from other sources, has allowed to firmly evidence two large scale cyclonic gyres in the East and West of the Algerian basin (already suggested in [2]) and to highlight the hydrological characteristics of these gyres. In particular, the differential warming of the deep waters of the gyres can be shown. Main results: East-West salinity and temperature sections across the Algerian basin for 2008, 2010 and 2014, reveal a clear hydrological separation of the water properties in the basin at around 4° W, especially in the intermediate layer: Waters in this layer are warmer and saltier in the eastern part. This difference in the hydrological properties results in a more pronounced double diffusion phenomenon shown by well defined staircases in the eastern part of the basin (or eastern gyre). A heating of about 0.04 °C/year of the deep waters is observed considering the period of (1980 to 2015) - respectively 0.048°C/year in the eastern gyre and 0.032°C/year in the western one. Indeed, the difference in the double diffusion phenomenon in the two gyres (which is an effective way of heat export to the deep ocean) could explain the difference in deep layer heating trends. References: [1] Mortier Laurent, Ait-Ameur Nadira, and Taillandier Vincent (2014), SOMBA GE cruise, RV Téthys II, http://dx.doi.org/10.17600/14007500 [2] Testor P., Send U., Gascard J.-C., Millot C., Taupier-Letage I., and Béranger K. (2005), The mean circulation of the southwestern Mediterranean Sea - the Algerian Gyres, J. Geophys. Res.,110, C11017, doi:10.1029/2004JC002861 [3] Borghini M., Bryden H., Schroeder K., Sparnocchia S., and Vetrano A. (2014), The Mediterranean is becoming saltier. Ocean Sci., 10, 693-700, doi: 10.1029/2004jc002861</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915421R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915421R"><span>Sedimentary Markers : a window into deep geodynamic processes Examples from the Western Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabineau, Marina; Aslanian, Daniel; Leroux, Estelle; Pellen, Romain; Gorini, Christian; Moulin, Maryline; Droz, Laurence; Bache, Francois; Molliex, Stephane; Silenzario, Carmine; Rubino, Jean-Loup</p> <p>2017-04-01</p> <p>Deep Earth dynamics impact so strongly on surface geological processes that we can use sediment palaeo-markers as a window into the deeper Earth. Derived from climatic and tectonic erosive actions on the continents, and related to eustasy, subsidence and isostasy, the sediment in a deep basin is the main recorder of these processes. Nevertheless, defining and quantifying the relative roles of parameters that interact to give the final sedimentary architecture is not a simple task. Using a 3D-grid of seismic and wide-angle data, boreholes and numerical stratigraphic modelling, we propose here a quantification of post-rift vertical movements in the Provençal Basin (Western Mediterranean) involving three domains of subsidence: seaward tilting on the platform and the slope and purely vertical subsidence in the deep basin (Rabineau et al., 2014 ; Leroux et al., 2015). These domains fit the deeper crustal domains highlighted by previous geophysical data (Moulin et al., 2015 ; Afilhado et al., 2015). Post-break-up sedimentary markers may therefore be used to identify the initial hinge lines of the rifting phase, to quantify sedimentation rates and isostatic rebound (Rabineau et al., 2014) and redefine the subsidence laws. Similar work and results are obtained in the Valencia Basin (Pellen et al., 2016). This Western Mediterranean Sea is a natural laboratory with very high total subsidence rates that enable high sedimentation rates along the margin with sediments provided by the Rhône and Ebro rivers flowing from the Alps, the Pyrennees and Catalan chains, which in turn archives the detailed record of climate/tectonic evolution during the Neogene. The Western Mediterranean Sea could therefore further probe deep-earth and surface connections using deep drillings of this land-locked ocean basin transformed into a giant saline basin (Rabineau et al., 2015). Leroux, E., Aslanian, D., Rabineau, M., M. Moulin, D. Granjeon, C. Gorini, L. Droz, 2015. Sedimentary markers: a window to deep geodynamic processes. Terra Nova 27, 122-129. Moulin, M., Klingelhoefer, F., Afilhado, A., Feld, A., Aslanian, D., Schnurle, P., Nouzé, H., Rabineau, M. & Beslier, M.O., 2015. Deep crustal structure across an young passive margin from wide- angle and reflection seismic date (The SARDINIA Experiment) - I- Gulf of Lion's Margin BSGF, ILP Special Volume, 186 (4-5), pp. 309-330 Afilhado A., M. Moulin, F. Klingelhoefer, D. Aslanian, P. Schnurle, H. Nouzé, M. Rabineau & M.O. Beslier, 2015. Deep crustal structure across a young passive margin from wide- angle and reflection seismic data (The SARDINIA Experiment) - II. Sardinia's margin, BSGF, ILP Special Volume, 186 (4-5), p. 331-351 Pellen, R., Aslanian, D., Rabineau, M., Leroux, E., Gorini, C., Silenzario, C., Blanpied, C., Rubino, J-L., 2016. The Minorca Basin: a buffer zone between Valencia and Provençal Basins, Terra Nova, 28-4, p. 245-256. Rabineau, M., Leroux, E., Aslanian, D., Bache, F., Gorini, C., Moulin, M., Molliex, S., Droz, L., Dos Reis, T., Rubino, J-L., Olivet, J-L., 2014. Quantifying Subsidence and Isostasy using paleobathymetric markers : example from the Gulf of Lion, EPSL, vol. 288, p. 353- 366. http://dx.doi.org/10.1016/j.epsl.2013.11.059 Rabineau, M., S. Cloetingh, J. Kuroda, D. Aslanian, A Droxler, C. Gorini, D. Garcia-Castellanos, A. Moscariello, Y. Hello, E. Burov, F. Sierro, F. Lirer, F. Roure, P.A. Pezard, L. Matenco, Y. Mart, A. Camerlenghi, A. Tripati and the GOLD and DREAM Working Groups, 2015. Probing connections between deep earth and surface processes in a land-locked ocean basin transformed into a giant saline basin: the Mediterranean GOLD project, Marine and Petroleum Geology, Volume: 66 Pages: 6-17.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.728....1A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.728....1A"><span>Deep structure of the continental margin and basin off Greater Kabylia, Algeria - New insights from wide-angle seismic data modeling and multichannel seismic interpretation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aïdi, Chafik; Beslier, Marie-Odile; Yelles-Chaouche, Abdel Karim; Klingelhoefer, Frauke; Bracene, Rabah; Galve, Audrey; Bounif, Abdallah; Schenini, Laure; Hamai, Lamine; Schnurle, Philippe; Djellit, Hamou; Sage, Françoise; Charvis, Philippe; Déverchère, Jacques</p> <p>2018-03-01</p> <p>During the Algerian-French SPIRAL survey aimed at investigating the deep structure of the Algerian margin and basin, two coincident wide-angle and reflection seismic profiles were acquired in central Algeria, offshore Greater Kabylia, together with gravimetric, bathymetric and magnetic data. This 260 km-long offshore-onshore profile spans the Balearic basin, the central Algerian margin and the Greater Kabylia block up to the southward limit of the internal zones onshore. Results are obtained from modeling and interpretation of the combined data sets. The Algerian basin offshore Greater Kabylia is floored by a thin oceanic crust ( 4 km) with P-wave velocities ranging between 5.2 and 6.8 km/s. In the northern Hannibal High region, the atypical 3-layer crustal structure is interpreted as volcanic products stacked over a thin crust similar to that bordering the margin and related to Miocene post-accretion volcanism. These results support a two-step back-arc opening of the west-Algerian basin, comprising oceanic crust accretion during the first southward stage, and a magmatic and probably tectonic reworking of this young oceanic basement during the second, westward, opening phase. The structure of the central Algerian margin is that of a narrow ( 70 km), magma-poor rifted margin, with a wider zone of distal thinned continental crust than on the other margin segments. There is no evidence for mantle exhumation in the sharp ocean-continent transition, but transcurrent movements during the second opening phase may have changed its initial geometry. The Plio-Quaternary inversion of the margin related to ongoing convergence between Africa and Eurasia is expressed by a blind thrust system under the margin rising toward the surface at the slope toe, and by an isostatic disequilibrium resulting from opposite flexures of two plates decoupled at the continental slope. This disequilibrium is likely responsible for the peculiar asymmetrical shape of the crustal neck that may thus be a characteristic feature of inverted rifted margins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T23H..05I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T23H..05I"><span>Chukchi Borderland | Crustal Complex of the Amerasia Basin, Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilhan, I.; Coakley, B.; Houseknecht, D. W.</p> <p>2017-12-01</p> <p>In the Arctic Ocean, Chukchi Borderland separates the North Chukchi shelf and Toll deep basins to the west and Canada deep basin to the east. Existing plate reconstructions have attempted to restore this north-striking, fragments of the continental crust to all margins of the Amerasia Basin based on sparse geologic and geophysical measurements. Regional multi-channel seismic reflection and potential field geophysics, and geologic data indicate it is a high standing continental block, requiring special accommodation to create a restorable model of the formation of the Amerasia Basin. The Borderland is composed of the Chukchi Plateau, Northwind Basin, and Northwind Ridge divided by mostly north striking normal faults. These offset the basement and bound a sequence of syn-tectonic sediments. Equivalent strata are, locally, uplifted, deformed and eroded. Seaward dipping reflectors (SDRs) are observed in the juncture between the North Chukchi, Toll basins, and southern Chukchi Plateau underlying a regional angular unconformity. This reveals that this rifted margin was associated with volcanism. An inferred condensed section, which is believed to be Hauterivian-Aptian in age, synchronous with the composite pebble shale and gamma-ray zone of the Alaska North Slope forms the basal sediments in the North Chukchi Basin. Approximately 15 km of post-rift strata onlap the condensed section, SDRs and, in part, the wedge sequence on the Chukchi Plateau from west to east, thinning to the north. These post-Aptian sediments imply that the rifted margin subsided no later than the earliest Cretaceous, providing a plausible time constraint for the inferred pre-Cretaceous rifting in this region. The recognition of SDRs and Hauterivian—Aptian condensed section, and continuity of the Early—Late Cretaceous post-rift strata along the margins of the Borderland, strike variations of the normal faults, absence of observable deformation along the Northwind Escarpment substantially constrain tectonic models proposed for tectonic development of the Amerasia Basin. Models that require significant relative motion between the Chukchi Shelf and Borderland since the Early Cretaceous are precluded by these observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001DSRII..48.3737K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001DSRII..48.3737K"><span>A geochemical model of the Peru Basin deep-sea floor—and the response of the system to technical impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>König, Iris; Haeckel, Matthias; Lougear, André; Suess, Erwin; Trautwein, Alfred X.</p> <p></p> <p>A geochemical model of the Peru Basin deep-sea floor, based on an extensive set of field data as well as on numerical simulations, is presented. The model takes into account the vertical oscillations of the redox zonation that occur in response to both long-term (glacial/interglacial) and short-term (El Niño Southern Oscillation (ENSO) time scale) variations in the depositional flux of organic matter. Field evidence of reaction between the pore water NO 3- and an oxidizable fraction of the structural Fe(II) in the clay mineral content of the deep-sea sediments is provided. The conditions of formation and destruction of reactive clay Fe(II) layers in the sea floor are defined, whereby a new paleo-redox proxy is established. Transitional NO 3- profile shapes are explained by periodic contractions and expansions of the oxic zone (ocean bottom respiration) on the ENSO time scale. The near-surface oscillations of the oxic-suboxic boundary constitute a redox pump mechanism of major importance with respect to diagenetic trace metal enrichments and manganese nodule formation, which may account for the particularly high nodule growth rates in this ocean basin. These conditions are due to the similar depth ranges of both the O 2 penetration in the sea floor and the bioturbated high reactivity surface layer (HRSL), all against the background of ENSO-related large variations in depositional C org flux. Removal of the HRSL in the course of deep-sea mining would result in a massive expansion of the oxic surface layer and, thus, the shut down of the near-surface redox pump for centuries, which is demonstrated by numerical modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25278606','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25278606"><span>Marine geophysics. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sandwell, David T; Müller, R Dietmar; Smith, Walter H F; Garcia, Emmanuel; Francis, Richard</p> <p>2014-10-03</p> <p>Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins. Copyright © 2014, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T32A..01J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T32A..01J"><span>Sedimentary and Paleoceanographic Responses to the South China Sea Basin Evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jian, Z.; Liu, Z.; Jin, H.; Larsen, H. C.; Alvarez Zarikian, C. A.; Stock, J. M.; Sun, Z.; Klaus, A.</p> <p>2017-12-01</p> <p>As the largest marginal sea of the western Pacific, the South China Sea (SCS) has experienced a complete Wilson cycle, which had inevitably exerted a profound impact on the sedimentary environment and ocean circulation. Based on the results of four ODP/IODP expeditions to the SCS since 1999, together with other research data in this region, this study aims to explore the sedimentary and paleoceanographic responses to the tectonic events and basin evolution in the SCS. The early history of the SCS from land to deep sea was revealed by foraminiferal fauna: (1) The SCS evolved from continental shelf to an upper bathyal environment around the Oligocene/Eocene boundary, and significantly deepened at the turn of Oligocene/Miocene; (2) The early Oligocene SCS was deep but its shelf was narrow, evidenced by the Para-Tethys type deep-sea agglutinated benthic foraminifers and abundant transported shallow-water species at ODP Site 1148. Along with the SCS basin formation and the development of this semi-closed basin, the deep-sea benthic foraminiferal δ13C decreased when the Antarctic ice sheet began to reestablish at 14 Ma, the Indonesian Seaway and the southern SCS deep-water channel were closed at 10 Ma, the Luzon arc collided with Taiwan at 6.5 Ma, and the Bashi Strait was restricted at 1.2 Ma. Nd isotopes of shark teeth at ODP Site 1148 also support these inferences. An early to middle Miocene succession of red clay was found at all sites deeper than 3500 m water depth, which may be correlated to a basin-wide event related to deep circulation of oxygenated water from the western Pacific. After the earliest late Miocene carbonate crash, the red clay disappeared while the large carbonate platforms were drowned and remarkably shrank in the SCS. Late Miocene sediments display a succession of hemi-pelagic and turbidite deposits, indicating that the deep basin entered its modern state below the CCD. Frequent turbidites ended when Pliocene growth of deep-sea manganese-nodules reoccurred in the SCS. The data show that the SCS can serve as a natural laboratory to study the relationship between paleoceanographic changes and tectonic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14F2876K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14F2876K"><span>Seasonality of Red Sea Mixed-Layer Depth and Density Budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kartadikaria, A. R.; Cerovecki, I.; Krokos, G.; Hoteit, I.</p> <p>2016-02-01</p> <p>The Red Sea is an active area of water mass formation. Dense water initially formed in the northern Red Sea, in the Gulf of Aqaba and the Gulf of Suez, spreads southward and finally flows to the open ocean through the Gulf of Aden via the narrow strait of Bab Al Mandeb. The signature of this outflow can be traced until the southern Indian Ocean, and is characterized by potential density of σθ ≈ 27.4. This water mass is important because it represents a significant source of heat and salt for the Indian Ocean. Using a high-resolution 1km regional MITgcm ocean model for the period 1992-2001 configured for the Red Sea, we examine the spatio-temporal characteristics of water mass formation inside the basin by analyzing closed and complete temperature and salinity budgets. The deepest mixed-layers (MLD) always develop in the northern part of the basin where surface ocean buoyancy loss leads to the Red Sea Intermediate and Deep Water formation. As this water is advected south, it is strongly modified by diapycnal mixing of heat and salt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrOce.139...89B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrOce.139...89B"><span>A tale of two basins: An integrated physical and biological perspective of the deep Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bluhm, B. A.; Kosobokova, K. N.; Carmack, E. C.</p> <p>2015-12-01</p> <p>This review paper integrates the current knowledge, based on available literature, on the physical and biological conditions of the Amerasian and Eurasian basins (AB, EB) of the deep Arctic Ocean (AO) in a comparative fashion. The present day (Holocene) AO is a mediterranean sea that is roughly half continental shelf and half basin and ridge complex. Even more recently it is roughly two thirds seasonally and one third perennially ice-covered, thus now exposing a portion of basin waters to sunlight and wind. Basin boundaries and submarine ridges steer circulation pathways in overlying waters and limit free exchange in deeper waters. The AO is made integral to the global ocean by the Northern Hemisphere Thermohaline Circulation (NHTC) which drives Pacific-origin water (PW) through Bering Strait into the Canada Basin, and counter-flowing Atlantic-origin water (AW) through Fram Strait and across the Barents Sea into the Nansen Basin. As a framework for biogeography within the AO, four basic, large-scale circulation systems (with L > 1000 km) are noted; these are: (1) the large scale wind-driven circulation which forces the cyclonic Trans-Polar Drift from Siberia to the Fram Strait and the anticyclonic Beaufort Gyre in the southern Canada Basin; (2) the circulation of waters that comprise the halocline complex, composed largely of waters of Pacific and Atlantic origin that are modified during passage over the Bering/Chukchi and Barents/Siberian shelves, respectively; (3) the topographically-trapped Arctic Circumpolar Boundary Current (ACBC) which carries AW cyclonically around the boundaries of the entire suite of basins, and (4) the very slow exchange of Arctic Ocean Deep Waters. Within the basin domain two basic water mass assemblies are observed, the difference between them being the absence or presence of PW sandwiched between Arctic Surface Waters (ASW) above and the AW complex below; the boundary between these domains is the Atlantic/Pacific halocline front. Both domains have vertical stratification that constrains the transfer of nutrients to the surface layer (euphotic zone), thus leading to their oligotrophic state, particularly in the more strongly stratified Pacific Arctic where, despite high nutrient values in the inflow, convective reset of surface layer nutrients by haline convection in winter is virtually absent. First and multi-year sea ice drastically alters albedo and insulates the underlying water column from extreme winter heat loss while its mechanical properties (thickness, concentration, roughness, etc.) greatly affect the efficiency of momentum transfer from the wind to the underlying water. Biologically, sea ice algal growth in the basins is proportionally almost equal to or exceeding phytoplankton production, and is a habitat and transport platform for sympagic (ice-associated) fauna. Owing to nutrient limitation due to strong stratification and light limitation due to snow and ice cover and extreme sun angle, primary production in the two basin domains is very low compared to the adjacent shelves. Severe nutrient limitation and complete euphotic zone drawdown in the AB favors small phytoplankton, a ubiquitous deep chlorophyll maximum layer, a low f-ratio of new to recycled carbon fixation, and a low energy food web. In contrast, nutrients persist -albeit in low levels- in the western EB, even in summer, suggesting light limitation, heavy grazing or both. The higher stocks of nutrients in the EB are more conducive to marginal ice blooms than in the AB. The large-scale ocean currents (NHTC and ACBC) import substantial expatriate, not locally reproducing zooplankton biomass especially from the adjoining subarctic Atlantic (primarily Calanus finmarchicus), but also from the Pacific (e.g., Pseudocalanus spp., Neocalanus spp. and Metridia pacifica). These advective inputs serve both as source of food to resident pelagic and benthic biota within the basins, and as potential grazers exerting top down control on limited phytoplankton resources. Benthic organisms within the AO basin show previously unappreciated biodiversity and surprising dispersion of species given the isolation of individual basins and low vertical carbon flux and resulting biomass. Larval dispersion is aided by the large-scale flows and perhaps, we hypothesize in the deep benthos by convective updrafts driven by geothermal heating. Zooplankton diversity, in contrast, is low, but again faunal assemblages are equally distributed between the EB and AB. Species pools of both pelagic and benthic communities change more with water depth rather than laterally, with the exception of expatriates and rare species, with close ties to today's North Atlantic biogeographic region. Climate related change in the AO is thus manifest at significantly differing time scales. Throughout ∼90% of the Pleistocene the AO has existed in glacial mode, with narrow continental shelves, greatly restricted river inflow, thicker and perhaps immobile sea ice, and total blockage of exchange with the Pacific Ocean. During the Holocene, on shorter time scales of 1000-100 years, significant changes in high latitude climate are tied to changes in temperature and perhaps moisture delivery patterns. The Arctic also experiences significant multi-decadal variability; however, the pace of change over the past three decades has been without precedent. Within the basin interior the ice is now thinner and less compact, and thus more responsive to wind stress (forcing and mixing). Concurrent with sea ice melt and increased river flow, the accumulation of fresh water and the stratification have increased, thus constraining vertical nutrient flux affecting phytoplankton size distributions, limiting primary production in parts of the basins now and likely in the future, and increasing vulnerability to acidification. In addition, sea ice is now retreating on an annual basis past the shelf break, exposing basin waters directly to sunlight and wind forcing. Thus, upwelling favorable winds (generally from east to west) can now directly and efficiently drive shelf-break upwelling, and draw nutrients from subsurface basin waters onto the shelf; at the same time upwelling favorable winds will also create onshore pressure gradients over the slope and basin which will act to slow or block the flow of waters in the ACBC, and thus alter advective pathways of both abiotic and biotic materials. Given the opening of a new ocean to multiple user groups, we expect that the central AO will play an increasing larger role both in the research and political arenas in the future, and we encourage pan-Arctic international collaboration over focus on territorial boundaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016996','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016996"><span>East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Castillo, P.R.; Pringle, M.S.; Carlson, R.W.</p> <p>1994-01-01</p> <p>Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific. ?? 1994.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GCarp..65..433B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GCarp..65..433B"><span>Environmental Conditions in a Carpathian Deep Sea Basin During the Period Preceding Oceanic Anoxic Event 2 - A Case Study from the Skole Nappe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bąk, Krzysztof; Bąk, Marta; Górny, Zbigniew; Wolska, Anna</p> <p>2015-01-01</p> <p>Hemipelagic green clayey shales and thin muddy turbidites accumulated in a deep sea environment below the CCD in the Skole Basin, a part of the Outer Carpathian realm, during the Middle Cenomanian. The hemipelagites contain numerous radiolarians, associated with deep-water agglutinated foraminifera. These sediments accumulated under mesotrophic conditions with limited oxygen concentration. Short-term periodic anoxia also occurred during that time. Muddy turbidity currents caused deposition of siliciclastic and biogenic material, including calcareous foramini-fers and numerous sponge spicules. The preservation and diversity of the spicules suggests that they originate from disarticulation of moderately diversified sponge assemblages, which lived predominantly in the neritic-bathyal zone. Analyses of radiolarian ecological groups and pellets reflect the water column properties during the sedimentation of green shales. At that time, surface and also intermediate waters were oxygenated enough and sufficiently rich in nutri-ents to enable plankton production. Numerous, uncompacted pellets with nearly pristine radiolarian skeletons inside show that pelletization was the main factor of radiolarian flux into the deep basin floor. Partly dissolved skeletons indicate that waters in the Skole Basin were undersaturated in relation to silica content. Oxygen content might have been depleted in the deeper part of the water column causing periodic anoxic conditions which prevent rapid bacterial degra-dation of the pellets during their fall to the sea floor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26965790','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26965790"><span>Abrupt climate shift in the Western Mediterranean Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schroeder, K; Chiggiato, J; Bryden, H L; Borghini, M; Ben Ismail, S</p> <p>2016-03-11</p> <p>One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4786855','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4786855"><span>Abrupt climate shift in the Western Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schroeder, K.; Chiggiato, J.; Bryden, H. L.; Borghini, M.; Ben Ismail, S.</p> <p>2016-01-01</p> <p>One century of oceanographic measurements has evidenced gradual increases in temperature and salinity of western Mediterranean water masses, even though the vertical stratification has basically remained unchanged. Starting in 2005, the basic structure of the intermediate and deep layers abruptly changed. We report here evidence of reinforced thermohaline variability in the deep western basin with significant dense water formation events producing large amounts of warmer, saltier and denser water masses than ever before. We provide a detailed chronological order to these changes, giving an overview of the new water masses and following their route from the central basin interior to the east (toward the Tyrrhenian) and toward the Atlantic Ocean. As a consequence of this climate shift, new deep waters outflowing through Gibraltar will impact the North Atlantic in terms of salt and heat input. In addition, modifications in the Mediterranean abyssal ecosystems and biogeochemical cycles are to be expected. PMID:26965790</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1111854J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1111854J"><span>A high-resolution multi-proxy record of geo-environmental change during the last deglaciation in the East Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, J. H.; Kim, M. J.; Kim, J. H.; Um, I. K.; Bahk, J. J.; Kwon, Y. K.; Lee, K. E.; Khim, B. K.</p> <p>2009-04-01</p> <p>The East Sea (the Sea of Japan) is a marginal deep basin, almost enclosed by the landmass of Korea and Japan. It is connected with the North Pacific Ocean only by four small shallow straits, Korea and Tsushima Strait (140 m deep), Tsugaru Strait (130 m deep), Soya Strait (55 m deep) and Tartar Strait (12 m deep). For the glacial periods such as the last glaciation, the sea has experienced a large magnitude of sea level fall reinforcing isolation of the sea from the open ocean. The sea level falls can be recognized by presence of dark sediment layers whereas values of oxygen isotope on foraminfera tests are not well accordant with those recorded in open oceans. A 20 m-long sediment core was raised from a deep borehole located on the southern slope of the East Sea where sedimentation rates exceed 0.3 mm/yr for the last deglaciation period. The core was analyzed at a dense interval (ca. 5 cm) to reveal vertical variation of opal content, del values of oxygen and carbon, TOC and CaCO3 content and C/N ratio. Among them, the opal content somewhat mimics the trend of del value of oxygen isotopes in open oceans: low during the last glacial period, increase during the deglaciation and high in Holocene. A sharp negative depression also occurs during the Younger Dryas event. Hence the opal content could be a good proxy record for the environmental change during late Pleistocene to Holocene. A large-scale negative depression of the opal content is also shown during Holocene. The depression is not well matched with the trend of oxygen isotope records in open oceans, suggestive of a particular event in this local area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA157524','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA157524"><span>Naval Ocean Research and Development Activity Journal Index for 1976 thru 1984,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1985-03-01</p> <p>and Antibiotics. Venezuela Basin. Deep-Sea Research, v. 31, Botanica Marina, v. XXIV, p. 399-404. p. 403-414. Thompson, J. Dana (1978). Ocean Deserts...v. 29, n. 102, p. 286-295. Phytoplankton Extracellular Products. Botanica marina, v~. XXXVI, p. 375-381. Radl, C.J. and J.P. Welsh (1983). Inventory...Experiments tion and Antibiotics. Botanica Marina, v. XXIV, in the Indian River Estuary, Florida. Journal of p. 399-404. ?. Marine Research, v. 36, p, 569-593</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MarGR..38..341Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MarGR..38..341Y"><span>Deep thermal structure of Southeast Asia constrained by S-velocity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Chuanhai; Shi, Xiaobin; Yang, Xiaoqiu; Zhao, Junfeng; Chen, Mei; Tang, Qunshu</p> <p>2017-12-01</p> <p>Southeast Asia, located in the southeastern part of the Eurasian Plate, is surrounded by tectonically active margins, exhibiting intense seismicity and volcanism, contains complex geological units with a perplexing evolution history. Because tectonic evolution is closely related to the deep thermal structure, an accurate estimation of the lithosphere thermal structure and thickness is important in extracting information on tectonics and geodynamics. However, there are significant uncertainties in the calculated deep thermal state constrained only by the observed surface heat flow. In this study, in order to obtain a better-constrained deep thermal state, we first calculate the deep thermal structure of Southeast Asia by employing an empirical relation between S-velocity and temperature, and then we estimate the base of the thermal lithosphere from the calculated temperature-depth profiles. The results show that, in general, the temperature is higher than the dry mantle solidus below the top of the seismic low-velocity zone, possibly indicating the presence of partial melt in the asthenosphere, particularly beneath oceanic basins such as the South China Sea. The temperature at a depth of 80 km in rifted and oceanic basins such as the Thailand Rift Basin, Thailand Bay, Andaman Sea, and South China Sea is about 200 °C higher than in plateaus and subduction zones such as the Khorat Plateau, Sumatra Island, and Philippine Trench regions. We suggest that the relatively cold and thick lithosphere block of the Khorat Plateau has not experienced significant internal deformation and might be extruded and rotated as a rigid block in response to the Indo-Eurasia collision. Our results show that the surface heat flow in the South China Sea is mainly dominated by the deep thermal state. There is a thermal anomaly in the Leiqiong area and in the areas adjacent to the northern margin of the South China Sea, indicating the presence of a high-temperature and thin lithosphere in the area of the well-known and controversial Hainan plume. The thermal lithosphere-asthenosphere boundary uplift area along the Xisha and southeastern Vietnam margin, in the western margin of South China Sea, which corresponds to the volcanic belt around this area, might indicate upwelling of hot mantle materials. The temperature values at 100 and 120 km depths through most regions of Southeast Asia are about 1400-1500 and 1550-1600 °C, respectively, which are nearly uniform with a small temperature difference. Our results also show that the lithosphere becomes thinner from the continent blocks toward the oceanic basins, with the smaller thickness values of 65-70 km in the South China Sea. The estimated base of the lithosphere corresponds approximately to the 1400 °C isotherm and shows good correlation with the tectonic setting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T11A2290C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T11A2290C"><span>Seismic Imaging Reveals Deep-Penetrating Fault Planes in the Wharton Basin Oceanic Mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carton, H. D.; Singh, S. C.; Dyment, J.; Hananto, N. D.; Chauhan, A.</p> <p>2011-12-01</p> <p>We present images from a deep multi-channel seismic reflection survey acquired in 2006 over the oceanic lithosphere of the Wharton Basin offshore northern Sumatra, NW of Simeulue island. The main ~230-km long seismic profile is roughly parallel to the trench at ~32-66 km distance from the subduction front and crosses (at oblique angles to both flow line and isochron directions) an entire segment of 55-57 my-old fast-spread crust formed at the extinct Wharton spreading center, as well as two bounding ~N5°E trending fracture zones near its extremities; complementary data is provided by the oceanic portions of two margin-crossing profiles on either side shot during the same survey. This high-quality, 12-km streamer dataset acquired for deep reflection imaging (10000 cu in tuned airgun array and 15-m source and streamer depths) reveals the presence of mostly SE-dipping (20 to 40 degrees dip) events cutting across and extending below the oceanic Moho, down to a maximum depth below seafloor of ~37 km, at ~5 km spacing along the trench-parallel profile. Similar dipping mantle events are imaged on the oceanic portion of another long-offset profile acquired in 2009 offshore central Sumatra south of Pagai island, which will also be presented. Such events are unlikely to be imaging artefacts of the 2D acquisition, such as out-of-plane energy originating from sharp, buried basement reliefs trending obliquely to the profile. Due to their geometry, they do not seem to be associated with plate bending at the trench outer-rise, which has a relatively modest expression at the seafloor and within the incoming sedimentary section north of the Simeulue elbow. We propose that these deep-penetrating dipping reflectors are fossil fault planes formed due to compressive stresses at the beginning of the continent-continent collision between India and Eurasia, the early stages of which were responsible for the cessation of seafloor spreading at the Wharton ridge at ca 40 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PalOc..17.1004B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PalOc..17.1004B"><span>Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Billups, K.; Channell, J. E. T.; Zachos, J.</p> <p>2002-01-01</p> <p>At Ocean Drilling Program (ODP) Site 1090 on the Agulhas Ridge (subantarctic South Atlantic) benthic foraminiferal stable isotope records span the late Oligocene through the early Miocene (25-16 Ma) at a temporal resolution of ~10 kyr. In the same time interval a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity timescale (GPTS), thereby providing secure correlation of the isotope record to the GPTS. On the basis of the isotope-magnetostratigraphic correlation we provide refined age calibration of established oxygen isotope events Mi1 through Mi2 as well as several other distinctive isotope events. Our data suggest that the δ18O maximum commonly associated with the Oligocene/Miocene (O/M) boundary falls within C6Cn.2r (23.86 Ma). The δ13C maximum coincides, within the temporal resolution of our record, with C6Cn.2n/r boundary and hence to the O/M boundary. Comparison of the stable isotope record from ODP Site 1090 to the orbitally tuned stable isotope record from ODP Site 929 across the O/M boundary shows that variability in the two records is very similar and can be correlated at and below the O/M boundary. Site 1090 stable isotope records also provide the first deep Southern Ocean end-member for reconstructions of circulation patterns and late Oligocene to early Miocene climate change. Comparison to previously published records suggests that basin to basin carbon isotope gradients were small or nonexistent and are inconclusive with respect to the direction of deep water flow. Oxygen isotope gradients between sites suggest that the deep Southern Ocean was cold in comparison to the North Atlantic, Indian, and the Pacific Oceans. Dominance of cold Southern Component Deep Water at Site 1090, at least until 17 Ma, suggests that relatively cold circumpolar climatic conditions prevailed during the late Oligocene and early Miocene. We believe that a relatively cold Southern Ocean reflects unrestricted circumpolar flow through the Drake Passage in agreement with bathymetric reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T53D..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T53D..03L"><span>First images of the crustal structure across the central Algerian margin, off Tipaza (West Algiers) from deep penetrating seismic data: new information to constrain the opening of the Algerian basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leprêtre, A.; Deverchere, J.; Klingelhoefer, F.; Graindorge, D.; Schnurle, P.; Yelles, K.; Bracene, R.</p> <p>2011-12-01</p> <p>The origin of the Algerian margin remains one of the key questions still unresolved in the Western Mediterranean sea. This is related to the unknown nature and kinematics of this Neogene basin. Whereas the westernmost margin is generally assumed to have been shaped as a STEP-fault (Subduction-Transform Edge Propagator, transcurrent) margin by the westward displacement of the Alboran block, the central Algerian margin is believed to have involved a NW-SE basin opening related to a southward slab rollback. This work sheds insight on this issue, using data acquired in the context of the Algerian-French program SPIRAL (Sismique Profonde et Investigation Régionale en Algérie): a cruise conducted on the 'R/V L'Atalante' in October-November 2009. It has provided 5 new combined onshore-offshore wide-angle seismic profiles and an extensive multi-channel seismic dataset spread along the margin, from Oran to Annaba. In this work, the available structural information on the ~N-S wide-angle transect of Tipaza is presented, where the margin broadens due to the presence of a bathymetric high (the Khayr-Al-Din bank) which is assumed to represent a remaining titled block of the passive margin. Along the transect, 39 OBS and 13 landstations recorded 751 low frequency airgun shots. Travel-time tomography and forward modelling were computed using the software developed by Zelt and Barton (1998) and Zelt and Smith (1992), to obtain the velocity structure in the region. A set of multi-channel seismic reflection profiles including two coincident profiles with the wide-angle data allows a combined interpretation and extend the deep structure in the Bou Ismail Bay. MCS data outline the sedimentary sequence filling the Algerian basin depicting an intensive salt tectonic associated with the Messinan Salinity Crisis and allowing to image locally below the salt layer. The deep penetrating data SPIRAL allow to image the sedimentary sequence in the Algerian basin off Tipaza (West Algiers) and the crustal structure at the continent-ocean boundary. In the Algerian basin off Tipaza, the Moho discontinuity is identified using wide-angle modelling at 11-12 km depth which corresponds in two-way travel-time to 7-8 s. Wide-angle seismic modelling imaged a major thinning of the crust from more of 15 km in the upper margin (KADB) to only 5-6 km in the deep basin. This thinning also marks the rapid transition from a thinned continental crust at the Khayr-al-Din bank to an oceanic crust in the Algerian Basin, revealing a narrow transition zone (20-30 km) between the two domains. This work presents the deep structure of the margin West of Algiers from wide-angle and multichannel seismic data in order to discuss models of opening for the Algerian basin.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ERL....11i4013P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ERL....11i4013P"><span>Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.</p> <p>2016-09-01</p> <p>The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013E%26PSL.362..294S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013E%26PSL.362..294S"><span>Water column 230Th systematics in the eastern equatorial Pacific Ocean and implications for sediment focusing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Ajay K.; Marcantonio, Franco; Lyle, Mitchell</p> <p>2013-01-01</p> <p>In an effort to investigate the cause of higher-than-expected sediment inventories of 230Th in the Panama Basin, thorium isotopes were measured in eight deep-water casts within the Guatemala, Panama, and Peru Basins along a meridional transect at ˜86°W between 6.5°N and 8.5°S. Dissolved 230Th concentrations increase linearly from the surface to 1000 m at each transect station. Below 1000 m, the deep waters of the Panama Basin show the highest deficit (˜50%) of 230Th assuming a reversible exchange of 230Th between dissolved and sinking particulate matter, and in comparison with the globally averaged water-column 230Th. Peru Basin waters have a larger range of dissolved 230Th concentrations (7.9-16.5 fg/kg) than that within Panama Basin waters (5.7-7.1 fg/kg). There is a progressive decrease in average dissolved deep-water (>1000 m) 230Th concentrations from the southernmost sites in the Peru Basin toward the Panama Basin. We suggest that intense scavenging by upwelling-derived-productivity near the equator (±2°) and resuspension of ubiquitous Mn-rich particulates in Panama Basin sediments are the primary causes of the significant south-to-north lateral gradient in deep-water dissolved 230Th. Although 230Th from Peru Basin waters may be transported and then scavenged and ultimately buried in the Panama Basin, our calculations suggest that the quantity of advected 230Th is relatively small (between 15% and 30% of the total 230Th being produced within water column of the Panama Basin itself). Panama Basin sediment focusing factors greater than 1.3 cannot be explained by lateral export and excess scavenging of water column 230Th. Dissolved 232Th concentrations, in addition to being the lowest reported so far in the literature, fall within a very narrow range (6-26 pg/kg), and are generally invariable with depth. This invariability suggests the dissolution of dust in surface waters as a likely sole source of dissolved 232Th for the entire water column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C12B..01F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C12B..01F"><span>Interactions of the Greenland Petermann Glacier with the ocean: An initial perspective (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falkner, K. K.; Johnson, H. L.; Melling, H.; Muenchow, A.; Samelson, R. M.; Friends Of Petermann</p> <p>2010-12-01</p> <p>Petermann Glacier is major outlet glacier that drains 6% of the area of the Greenland Ice Sheet in western North Greenland. It is one of four major outlet glaciers on Greenland with a grounding line substantially below sea level (about 500m) and one of two such glaciers to retain a substantial floating tongue. The floating ice tongue of Petermann glacier is thought to lose at least 80% of its mass through ocean interaction. Based on three opportunistic ocean surveys in Petermann Fjord, we present an overview of circulation at the fjord mouth, hydrographic structure beneath the ice tongue, oceanic heat delivered to the under-ice cavity and the fate of the resulting melt water. We also present an historical perspective on the August 2010 major calving event. The 1100m-deep fjord is separated from neighboring Hall Basin by a sill that is inferred to lie between 350m and 450m deep. Hall Basin is a section of Nares Strait that connects the Arctic Ocean (at the Lincoln Sea proceeding southward through Robeson Channel, Hall Basin, Kennedy Channel, Kane Basin and Smith Sound) to Baffin Bay. Sills in the Lincoln Sea (290m) and in Kane Basin (220m) restrict communication with the Arctic Ocean and Baffin Bay. The net flux of seawater through Nares Strait is southward and relatively fresh, conditioned by sources and processes within the Arctic Ocean and locally. Within Petermann Fjord, glacial melt water appears on the northeast side at 200-600m. A cyclonic gyre occurs within the fjord mouth, with outflow on the northeast side. Oceanic heat fluxes into the fjord are sufficient to account for the observed rate of basal melting. Cold, low salinity water intrudes far under the ice and likely limits basal melting to the inland half of the tongue. The recent major calving event resulted in a loss of 300 km2 or about 20% of the total area of the floating tongue, most of which remained intact as an ice island that garnered much media attention. Available observations show calving to be sporadic on a decadal timescale. Multiple factors likely contribute to calving events. These include the geometry of the fjord, absence of sea ice, preconditioning of the glacier by crevassing and melt related cracking and occurrence of strong katabatic or orographically channeled winds. The recent event falls within the realm of previously documented calving rates but the remaining tongue length is the shortest ever directly observed. Gaps in the 134 year record preclude final judgment about whether the recent calving is entirely unprecedented. Rising surface temperature trends and changed sea ice and ocean circulation patterns in the Arctic could render the tongue susceptible to collapse. As this could contribute to accelerated ice mass flux from Greenland, it is important to continue to observe and clarify processes operative in this system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....9522193W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....9522193W"><span>Using the nutrient ratio NO/PO as a tracer of continental shelf waters in the central Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, Cara; Wallace, Douglas W. R.</p> <p>1990-12-01</p> <p>Historical nitrate, phosphate, and dissolved oxygen data from the central Arctic Ocean are examined with particular emphasis on the conservative parameters NO (9 * NO3 + O2) and PO (135 * PO4 + O2). The NO/PO ratio is shown to increase with depth in the Canada Basin, being ˜0.78 in Surface and Upper Halocline Waters and ˜1.0 in the Atlantic Layer and Deep Waters. Lower Halocline Water is marked by NO and PO minima and intermediate NO/PO. NO/PO ratios from the Arctic shelf seas are examined to determine possible source regions for the various water masses. The NO/PO ratio of Canada Basin Deep Water implies an upper bound of ˜11% shelf water contribution to this water mass. A slight oxygen maximum core in the Lower Halocline Water is identified at a salinity of S = 34.5 in the vicinity of the Alpha Ridge. This core appears to be diminished by diapycnal mixing and does not extend into the Beaufort Gyre.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.T51B1895B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.T51B1895B"><span>Impact of Vishnu Fracture Zone on Tectono-Stratigraphy of Kerala Deepwater Basin, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bastia, R.; Krishna, K. S.; Nathaniel, D. M.; Tenepalli, S.</p> <p>2008-12-01</p> <p>Integration of regional seismic data extending from coast to deep water with the gravity-magnetics reveals the expression and evolution of ridge systems and fracture zones in Indian Ocean. Kerala deepwater basin, situated in the south-western tip of India, is bounded by two prominent north-south oriented ocean fracture zones viz., Vishnu (west) and Indrani (east) of the Indian Ocean. Vishnu Fracture Zone (VFZ), which extends from the Kerala shelf southward to the Carlsberg-Ridge, over a length of more than 2500 km, has a strong bearing on the sedimentation as well as structural fabric of the basin. VFZ is identified as the transform plate margin formed during Late-Cretaceous-Tertiary separation of Seychelles from India. Represented by a highly deformed structural fabric, VFZ forms an abrupt boundary between ocean floors of about 65 MY in the west and 140 MY in the east, implying a great scope for sedimentary pile on this very older ocean floor. Armed with this premise of an older sedimentary pile towards east of VFZ, congenial for petroleum hunt, the implemented modern long offset seismic program with an objective to enhance sub-basalt (Deccan) imagery, gravity-magnetic modelling and plate-tectonic reconstructions unraveled huge Mesozoic Basin, unheard earlier. Multi-episodic rifting in western continental margin of India starting during Mid Jurassic Karoo rift along the western Madagascar, Kerala deepwater basin, and western Antarctica and conjugate margins of Africa forms the main corridor for sedimentation. Subsequent Late Cretaceous dextral oblique extension of Madagascar rift reactivated pre-existing structural framework creating major accommodation zones along the southern tip of India. Followed by separation of Seychelles during KT boundary led to the formation of VFZ (an oceanic fracture zone) forming a transform boundary between newly formed Tertiary oceanic crust to the west and older basin to the east. The pulses of right-lateral movement were associated with various degrees of transpression, transtension, uplift and erosion. This activity continued in stages until Mid.Miocene, subsequent to phase of India- Seychelles separation. As a result, Mesozoic stratigraphy was inverted along VFZ's eastern border, folded in the basin centers and finally shifted the Tertiary depo-center towards east of VFZ. Plate tectonic reconstruction of Late Jurassic to Early Cretaceous demonstrates that the basin as situated in the north-east part of Proto-Mozambique Ocean, with Antarctica as the major provenance of sediment supply under favorable conditions for organic enrichment of sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GBioC..31.1256J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GBioC..31.1256J"><span>Untangling biogeochemical processes from the impact of ocean circulation: First insight on the Mediterranean dissolved barium dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jullion, L.; Jacquet, S. H. M.; Tanhua, T.</p> <p>2017-08-01</p> <p>Based on an unprecedented dissolved barium (D_Ba) data set collected in the Mediterranean Sea during a zonal transect between the Lebanon coast and Gibraltar (M84/3 cruise, April 2011), we decompose the D_Ba distribution to isolate the contribution of biogeochemical processes from the impact of the oceanic circulation. We have built a simple parametric water mass analysis (Parametric Optimum Multiparameter analysis) to reconstruct the contribution of the different Mediterranean water masses to the thermohaline structure. These water mass fractions have then been used to successfully reconstruct the background vertical gradient of D_Ba reflecting the balance between the large-scale oceanic circulation and the biological activity over long time scales. Superimposed on the background field, several D_Ba anomalies have been identified. Positive anomalies are associated with topographic obstacles and may be explained by the dissolution of particulate biogenic barium (P_Ba barite) of material resuspended by the local currents. The derived dissolution rates range from 0.06 to 0.21 μmol m-2 d-1. Negative anomalies are present in the mesopelagic region of the western and eastern basins (except in the easternmost Levantine basin) as well as in the abyssal western basin. This represents the first quantification of the nonconservative component of the D_Ba signal. These mesopelagic anomalies could reflect the subtraction of D_Ba during P_Ba barite formation occurring during organic carbon remineralization. The deep anomalies may potentially reflect the transport of material toward the deep sea during winter deep convection and the subsequent remineralization. The D_Ba subtraction fluxes range from -0.07 to -1.28 μmol m-2 d-1. D_Ba-derived fluxes of P_Ba barite (up to 0.21 μmol m-2 d-1) and organic carbon (13 to 29 mmol C m-2 d-1) are in good agreement with other independent measurements suggesting that D_Ba can help constrain remineralization horizons. This study highlights the importance of quantifying the impact of the large-scale oceanic circulation in order to better understand the biogeochemical cycling of elements and to build reliable geochemical proxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36..167I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36..167I"><span>Depth of origin of ocean-circulation-induced magnetic signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik</p> <p>2018-01-01</p> <p>As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRI..130...47Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRI..130...47Y"><span>Distributions and fluxes of methylmercury in the East/Japan Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Jisook; Kim, Hyunji; Kang, Chang-Keun; Kim, Kyung-Ryul; Han, Seunghee</p> <p>2017-12-01</p> <p>The East/Japan Sea (EJS) is well ventilated to deep water via brine rejection from ice formations and thermohaline convection, resulting in a short overturning period in several decades. Due to these characteristics, the dissolved oxygen concentration in the EJS deep water is much higher (190-200 μg L-1 at 3000 m water depth) than that found at the same depths of the Northwestern Pacific (30 μg L-1) or anywhere in the Pacific Ocean. The total mercury (THg) and methylmercury (MeHg) distributions, and MeHg mass budgets were investigated to identify how the EJS's distinct circulation pattern affects Hg speciation. Whereas the THg concentration in the surface seawater (ranging from 0.20 to 1.2 pM, mean 0.59 ± 0.24 pM) showed no site variation between the Japan Basin and the Ulleung Basin, the MeHg concentration in the surface seawater was significantly higher (p < 0.05) in the Japan Basin (32 ± 24 fM) than in the Ulleung Basin (12 fM), with a south to north increasing gradient. This observation was supported by the mass budget estimation showing that upward diffusion as well as net methylation of Hg(II) was the primary source of MeHg in the surface seawater; the upward diffusion value was higher in the Japan Basin (3.2 nmol m-2 yr-1) than in the Ulleung Basin (1.9 nmol m-2 yr-1) due to the shallow thermocline depths in the Japan Basin. In contrast, the MeHg concentration in deep seawater (1000-3000 m) was similar between the Japan Basin (530 ± 87 fM) and the Ulleung Basin (610 ± 99 fM) and significantly (p < 0.05) higher than in the North Pacific (24 ± 40 fM) or North Atlantic (87 ± 96 fM) deep seawater. The Hg(II) methylation capacity, represented by the MeHg concentration normalized to apparent oxygen utilization, was also higher for the EJS deep water (0.0048) than the Northeastern Pacific (0.0030) and Northwestern Pacific (0.0025) intermediate waters, implying that the short overturning period of EJS may cause exclusively high MeHg concentrations in the deep water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51A1053K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51A1053K"><span>Glacial-Interglacial Variability of Nd isotopes in the South Atlantic and Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knudson, K. P.; Goldstein, S. L.; Pena, L.; Seguí, M. J.; Kim, J.; Yehudai, M.; Fahey, T.</p> <p>2017-12-01</p> <p>Understanding the relationship between meridional overturning circulation and climate is key to understanding the processes and feedbacks underlying future climate changes. North Atlantic Deep Water (NADW) represents a major water mass that participates in global oceanic circulation and undergoes substantial reorganization with climate changes on millennial and orbital timescales. Nd isotopes are semi-quantitative water mass tracers that reflect the mixing of end-member water masses, and their values in the Southern Ocean offer the ability to characterize NADW variability over time. Here, we present paleo-circulation records of Nd isotopes measured on fish debris and Fe-Mn encrusted foraminifera from ODP Sites 1090 (42° 54.82'S, 3702 m), and 1094 (53° 10.81'S, 2807 m). Site 1090 is located in the Cape Basin, SE Atlantic, near the lower boundary between NADW and Circumpolar Deep Water (CDW), while 1094 is in the Circumpolar Current. They are ideal locations to monitor changes in the export of NADW to the Southern Ocean. These new results build on previous work (Pena and Goldstein, 2014) to document meridional overturning changes in the Southern Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7247728-geologic-evolution-bering-sea-komandorksy-deep-basin','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7247728-geologic-evolution-bering-sea-komandorksy-deep-basin"><span>Geologic evolution of the Bering Sea Komandorksy deep basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bogdanov, N.A.</p> <p>1986-07-01</p> <p>The deep-water Komandorsky basin is located in the southwestern part of the Bering Sea. On the east, it is separated from the Aleutian basin by the submerged Shirshov Ridge; on the west, it is bordered by structures of the north Kamchatka accretionary prism. The Komandorsky basin is characterized by strongly dissected relief of it acoustic basement, which is overlain by a 1.5 to 2.0-km thick sedimentary cover. The western part of the basin is occupied by a rift zone, which is characterized by modern seismicity and high heat flow. It is considered to be the axial zone of Miocene-Pleistocene spreading.more » On the north terrace of the Komandorsky island arc, traced active volcanos provide evidence that subduction is occurring under the arc from the north. The spreading rift zone is reflected on the continent in Miocene-Pleistocene volcanic rocks, characterized by typical oceanic tholeiitic composition. The Komandorsky basin formed as a result of spreading during the Maestrichtian. Spreading within the basin occurred during the early and middle Oligocene and the late Miocene. East and west of the spreading axis, accretionary prisms formed. The latter are observed along the western flank of the Shirshov Ridge and on the eastern sides of the Kamchatka Peninsula and Koraginsky Island.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMPP31C1759K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMPP31C1759K"><span>Mechanism of climate change over South America during the LGM in coupled Ocean- Atmosphere model simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khodri, M.</p> <p>2006-12-01</p> <p>On a regional perspective the database of proxy information for South America during the Last Glacial Maximum (LGM) shows large and regionally extensive changes of the mean climate and vegetation types over the Amazon basin. In some instances these changes were associated with decrease in the mean precipitation amount (and most probably in moist deep convection) over the Amazonian and South East Brazil monsoon regions and wetter mean conditions in present day drought-prone regions such as Northeast of Brazil (Nordeste). These changes have been interpreted as local responses to shift in the mean position and intensity of the Atlantic ITCZ due to glacial extratropical forcings or to changes in the South American Monsoons. However there are still two issues is the path to further understand the mechanism of climate change over South America during the LGM. The first is incomplete knowledge in both the modeling and observational communities of how the moist deep convection over the Amazonian region respond to glacial boundary condition and how this changes might interact with the meridional shift of rainfall over Nordeste and Atlantic Ocean. The second is our understanding of how ocean-atmosphere changes that do occur in the tropical Pacific region influence the climate of the remainder of the planet and on a regional way over South America. Using PMIP-2 coupled Ocean-Atmosphere simulations for LGM and comparison to paleodata we show that hydrological cycle changes over the Amazon basin might be independent of their Atlantic Ocean counterpart, while teleconnections with Pacific Ocean might have played a significant role in the observed changes over tropical South America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMOS41D0519E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMOS41D0519E"><span>Geomorphology of the Southern Gulf of California Seafloor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eakins, B. W.; Lonsdale, P. F.; Fletcher, J. M.; Ledesma, J. V.</p> <p>2004-12-01</p> <p>A Spring 2004 multibeam sonar survey defined the seafloor geomorphology of the southern part of Gulf of California and the intersection of the East Pacific Rise with the North American continent. Survey goals included mapping structural patterns formed during the rifting that opened the Gulf and identifying the spatial transition from continental rifting to seafloor spreading. Multibeam sonar imagery, augmented with archival data and a subaerial DEM of Mexico, illuminates the principal features of this boundary zone between obliquely diverging plates: (i) active and inactive oceanic risecrests within young oceanic basins that are rich in evidence for off-axis magmatic eruption and intrusion; (ii) transforms with pull-apart basins and transpressive ridges along shearing continental margins and within oceanic crust; (iii) orphaned blocks of continental crust detached from sheared and rifted continental margins; and (iv) young, still-extending continental margins dissected by submarine canyons that in many cases are deeply drowned river valleys. Many of the canyons are conduits for turbidity currents that feed deep-sea fans on oceanic and subsided continental crust, and channel sediment to spreading axes, thereby modifying the crustal accretion process. We present a series of detailed bathymetric and seafloor reflectivity maps of this MARGINS Rupturing Continental Lithosphere focus site illustrating geomorphologic features of the southern part of the Gulf, from Guaymas Basin to the Maria Magdalena Rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51C2084G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51C2084G"><span>Observed Structure and Characteristics of Cold Pools over Tropical Oceans using Vector Wind Retrievals and WRF simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garg, P.; Nesbitt, S. W.; Lang, T. J.; Chronis, T.; Thayer, J. D.; Hence, D. A.</p> <p>2017-12-01</p> <p>Cold pools generated in the wake of convective activity can enhance the surface sensible heat flux, latent heat flux, and also changes in evaporation out of, and fresh water flux into, the ocean. Recent studies have shown that over the open ocean, cold pool outflow boundaries and their intersections can organize and initiate a spectrum of deep convective clouds, which is a key driver of shallow and deep convection over conditionally-unstable tropical oceans. The primary goal of this study is to understand the structure and characteristics of cold pools over the tropical oceans using observations. With the idea that cold pools will have strong wind gradients at their boundaries, we use ASCAT vector wind retrievals. We identify regions of steep gradients in wind vectors as gradient features (GFs), akin to cold pools. Corresponding to these GFs, sensible and latent heat fluxes were calculated using the observed winds and background temperatures from MERRA-2 reanalysis. To evaluate the proposed technique, cold pools were observed using S-PolKa radar from the DYNAMO/AMIE field campaign in the Indian Ocean for the period of 1 October 2011 to 31 March 2012 and were compared with ASCAT GFs. To relate the thermodynamic and kinematic characteristics of observed and simulated cold pools, simulations were carried out on WRF on a 3-km domain explicitly. The areas of cold pools were identified in the models using virtual temperature (Tv), which is a direct measure of air density, while GFs were identified using model simulated winds. Quantitative measures indicate that GFs are highly correspondent with model-simulated cold pools. In global measurements of cold pools from 2007-2015, it is possible to examine the characteristics of GFs across all tropical ocean basins, and relate them to meteorological conditions, as well as the characteristics of the parent precipitation systems. Our results indicate that while there is a general relationship between the amount of precipitation and the number of cold pools, the largest cold pools exist over the Eastern Pacific basin, where the most stratiform rain is produced from oceanic MCSs. It is anticipated that improved understanding of cold pools, which are a primary triggering mechanism of oceanic shallow and deep convection, will improve prediction of this important component of the climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMPP33C1596H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMPP33C1596H"><span>Modern Deep-sea Sponges as Recorders of Bottom Water Silicon Isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendry, K. R.; Georg, R. B.; Rickaby, R. E.; Robinson, L. F.; Halliday, A. N.</p> <p>2008-12-01</p> <p>Major zones of opal accumulation in the world oceans have experienced geographical shifts during the Cenozoic coincident with times of transition in oceanic circulation and climate. The global marine silica cycle is likely to respond to various large-scale changes including the distillation of Si and other nutrients in ocean basins; weathering and continental inputs; and biological productivity in surface waters. These processes could potentially be distinguished by their impact on the isotopic composition of dissolved silica in the world oceans. Although diatoms dominate uptake of silica in surface waters, box-modelling (de la Rocha and Bickle, 2005) suggests that sponges spicules have a greater potential to reflect whole ocean changes in the silica cycle, by recording deep-water silicon isotopes. Here, we introduce a new calibration study of modern deep- sea sponges collected on a transect cruise across the Drake Passage, in the Southern Ocean, from a range of depths and seawater silicic acid concentrations. Sponges were collected by benthic trawling, and dried immediately. The spicules were later isolated from cellular material and cleaned for surface contaminants, before dissolution and analysis by NuPlasma HR MC-ICP-MS in medium resolution mode. We discuss our preliminary data, the extent to which inter and intraspecies variations reflect environmental conditions, and the implications for palaeoreconstructions of the marine silicon cycle. de la Rocha, C. and M. Bickle (2005). Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Marine Geology 217, 267-282.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.459..145A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.459..145A"><span>Disentangling the record of diagenesis, local redox conditions, and global seawater chemistry during the latest Ordovician glaciation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahm, Anne-Sofie C.; Bjerrum, Christian J.; Hammarlund, Emma U.</p> <p>2017-02-01</p> <p>The Late Ordovician stratigraphic record integrates glacio-eustatic processes, water-column redox conditions and carbon cycle dynamics. This complex stratigraphic record, however, is dominated by deposits from epeiric seas that are susceptible to local physical and chemical processes decoupled from the open ocean. This study contributes a unique deep water basinal perspective to the Late Ordovician (Hirnantian) glacial record and the perturbations in seawater chemistry that may have contributed to the Hirnantian mass extinction event. We analyze recently drilled cores and outcrop samples from the upper Vinini Formation in central Nevada and report combined trace- and major element geochemistry, Fe speciation (FePy /FeHR and FeHR /FeT), and stable isotope chemostratigraphy (δ13COrg and δ34SPy). Measurements of paired samples from outcrop and core reveal that reactive Fe is preserved mainly as pyrite in core samples, while outcrop samples have been significantly altered as pyrite has been oxidized and remobilized by modern weathering processes. Fe speciation in the more pristine core samples indicates persistent deep water anoxia, at least locally through the Late Ordovician, in contrast to the prevailing interpretation of increased Hirnantian water column oxygenation in shallower environments. Deep water redox conditions were likely decoupled from shallower environments by a basinal shift in organic matter export driven by decreasing rates of organic matter degradation and decreasing shelf areas. The variable magnitude in the record of the Hirnantian carbon isotope excursion may be explained by this increased storage of isotopically light carbon in the deep ocean which, in combination with increased glacio-eustatic restriction, would strengthen lateral- and vertical gradients in seawater chemistry. We adopt multivariate statistical methods to deconstruct the spatial and temporal re-organization of seawater chemistry during the Hirnantian glaciation and attempt to isolate the latent magnitude and global perturbation in the carbon cycle. We speculate, using a two component mixing model and residual estimates from principal component analysis, that the secular open ocean Hirnantian C isotope excursion possibly amounts to only ∼ +1.5‰. Such an increase could be mechanistically driven by the combination of sea-level fall, persistent deep water anoxia, and cooler glacial temperatures that increased the organic carbon burial efficiency in the deeper basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015586','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015586"><span>Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.</p> <p>1989-01-01</p> <p>Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG21A0134L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG21A0134L"><span>New insights on the propagation of the Near Inertial Waves (NIW) governing the bottom dynamic of the Western Ionian Sea (Eastern Mediterranean Sea).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo Bue, N.; Artale, V.; Marullo, S.; Marinaro, G.; Embriaco, D.; Favali, P.; Beranzoli, L.</p> <p>2017-12-01</p> <p>The past general idea that the ocean-deep circulation is in quasi-stationary motion, has conditioned the observations of deep layers for a long time, excluding them from the majority of the surveys around the ocean world and influencing studies on the deep ocean processes. After the pioneering work of Munk (1966) highlighting the importance of bottom mixing processes, an underestimation of these issue has continued to persist for decades, due also to the difficulty to make reliable observations in the abyssal layers. The real awareness about the unsteady state of the abyssal layers has only risen recently and encourages us to wonder how the deep mechanisms can induce an internal instability and, consequently, affect the ocean circulation. The NIWs are characterized by a frequency near the inertial frequency f and can be generated by a variety of mechanisms, including wind, nonlinear interactions wave-shear flow and wave-topography, and geostrophic adjustments. NIWs represent one of the main high-frequency variabilities in the ocean, and they contain around half the kinetic energy observed in the oceans (Simmons et al. 2012) appearing as a prominent peak rising well above the Garrett & Munk (1975) continuum internal wave spectrum. As such, they upset the mixing processes in the upper ocean and they can interact strongly with mesoscale and sub-mesoscale motions. Likewise, NIWs likely affect the mixing of the deep ocean in ways that are just beginning to be understood. The analysis carried out on yearly time series collected by the bottom observatory SN1, the Western Ionian node of EMSO (European Multidisciplinary Seafloor and water column Observatory) Research Infrastructure, provides new important understanding on the role of the NIWs in the abyssal ocean. Also, this analysis is very useful to shed light on the possible mechanism that can trigger deep processes such as the abyssal vortex chains found by Rubino et al. (2012) in the Ionian abyssal plain of the Eastern Mediterranean (EM) basin. Finally, spectral analysis, including the Singular Spectrum Analysis (SSA) and Wavelet, allow us to explain how the NIWs can contributes to activate and increase the mixing in the bottom layers with significant impact on overall abyssal and deep circulation at local and regional scale (Mediterranean Sea).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.424..256W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.424..256W"><span>Quaternary climate modulation of Pb isotopes in the deep Indian Ocean linked to the Himalayan chemical weathering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, David J.; Galy, Albert; Piotrowski, Alexander M.; Banakar, Virupaxa K.</p> <p>2015-08-01</p> <p>We use reductive sediment leaching to extract lead (Pb) from the authigenic fraction of marine sediments and reconstruct the Pb isotope evolution of the deep central Indian Ocean over the past 250 thousand years at ∼3 kyr resolution. Temporal variations define a binary mixing line that is consistent with data from ferromanganese nodules and which records mixing between two well-defined endmembers through time. The unradiogenic endmember appears to represent a widely-distributed Pb source, from mid-ocean ridges or possibly volcanic aerosols, while the radiogenic endmember coincides with the composition of Ganges-Brahmaputra river sediments that are indicative of the Himalayan weathering inputs. Glacial-interglacial Pb isotope variations are striking and can be explained by an enhancement of Himalayan contributions by two to three times during interglacial periods, indicating that climate modulates the supply of dissolved elements to the ocean. While these changes could accurately record variations in the continental chemical weathering flux in response to warmer and wetter conditions during interglacials, the relative proportions of Pb derived from the Ganges and Brahmaputra appear to have been constant through time. This observation may point towards particulate-dissolved interactions in the estuary or pro-delta as a buffer of short timescale variability in the composition (and potentially flux) of the fluvial inputs. In addition, the changes are recorded at 3800 m water depth, and with the lack of deep water formation in the Bay of Bengal, a mechanism to transfer such a signature into the deep ocean could either be reversible scavenging of dissolved Pb inputs and/or boundary exchange on the deep sea fan. Unless the mechanism transferring the Pb isotope signature into the deep ocean was itself highly sensitive to global climate cycles, and with the absence of a precessional signal in our Pb isotope data, we suggest that the Indian climate and its influence on basin-scale chemical weathering were strongly modulated by glacial versus interglacial boundary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1619G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1619G"><span>Atlantic Water transformation in the Nordic Seas and its influence on the export rate of the Overflow Waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia Quintana, Yarisbel; Wiesner, Pia; Hu, Xianmin; Myers, Paul</p> <p>2017-04-01</p> <p>The Nordic Seas (NS) are the main gateway between the Arctic and the Atlantic Oceans. The basin can be considered as the headwaters for the Meridional Overturning Circulation (MOC), for it is there that the Denmark Strait Overflow Water (DSOW) and the Iceland-Scotland Overflow Water (ISOW) acquire their properties. Their inflow into the North Atlantic Ocean occurs across the Greenland-Scotland ridge. Together with Labrador Sea Water, DSOW and ISOW are the main components of the North Atlantic Deep Water (NADW), which ventilates the lower limb of the Atlantic MOC. In spite recent studies exploring the export rate and later pathways of the overflows, the question about what drives them, remains. Here we explore the transformation of the Atlantic Water (AW) as it enters the NS through Denmark Strait, Iceland Faroe Ridge and Faroe Schotland Channel, as well as its pathways within the basin. To do so, we use an eddy-permitting ocean general circulation model run over the period 2002 to 2015. Two different approaches are used to track the AW transformation in the NS: the well-tested off-line Lagrangian tool ARIANE and on-line passive tracers. In both cases we use the same definition of AW to tag its inflow through the three entering sections. The overflows directly impact circulation and water properties in much of the deep Atlantic Ocean, thus a better understanding of the physical processes behind their variability is crucial a asset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1923G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1923G"><span>Evidence for the Maintenance of Slowly Varying Equatorial Currents by Intraseasonal Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greatbatch, Richard J.; Claus, Martin; Brandt, Peter; Matthießen, Jan-Dirk; Tuchen, Franz Philip; Ascani, François; Dengler, Marcus; Toole, John; Roth, Christina; Farrar, J. Thomas</p> <p>2018-02-01</p> <p>Recent evidence from mooring data in the equatorial Atlantic reveals that semiannual and longer time scale ocean current variability is close to being resonant with equatorial basin modes. Here we show that intraseasonal variability, with time scales of tens of days, provides the energy to maintain these resonant basin modes against dissipation. The mechanism is analogous to that by which storm systems in the atmosphere act to maintain the atmospheric jet stream. We demonstrate the mechanism using an idealized model setup that exhibits equatorial deep jets. The results are supported by direct analysis of available mooring data from the equatorial Atlantic Ocean covering a depth range of several thousand meters. The analysis of the mooring data suggests that the same mechanism also helps maintain the seasonal variability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7973L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7973L"><span>High resolution evolution of post-rift terrigenous sediment yields in the Provence Basin (Western Mediterranean): relation with climate and tectonics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leroux, Estelle; Rabineau, Marina; Aslanian, Daniel; Gorini, Christian; Molliex, Stéphane; Bache, François; Robin, Cécile; Droz, Laurence; Moulin, Maryline; Poort, Jeffrey; Rubino, Jean-Loup; Suc, Jean-Pierre</p> <p>2017-04-01</p> <p>The correlation of stratigraphic markers between the shelf, the slope and the deep basin have enabled us to provide a complete and quantitative view of sediments fluxes for the last 6 Ma on the entire Gulf of Lions margin. Messinian units and Pliocene and Pleistocene chronostratigraphic markers have been correlated from the shelf to the deep basin and the total sediment thickness from the basement (20 Ma) to the present-day seafloor has also been mapped. After Time/Depth conversion and decompaction of each stratigraphic interval, sedimentary volumes were calculated. Sediment flux evolution shows that a dramatic terrigenous peak occurred during the Messinian Salinity Crisis. The Pliocene-Pleistocene average flux appears to have been three times higher than that of the Miocene, which seems in agreement with published measurements from the World's ocean. This study also highlights the Mid-Pleistocene Revolution around 0.9 Ma, which resulted in an almost doubling of sedimentary detrital fluxes in the Provencal Basin. These results are discussed in relation with world-wide climate and alpine tectonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PalOc..22.3207S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PalOc..22.3207S"><span>Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmittner, Andreas; Galbraith, Eric D.; Hostetler, Steven W.; Pedersen, Thomas F.; Zhang, Rong</p> <p>2007-09-01</p> <p>Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PalOc..29..454T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PalOc..29..454T"><span>Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian</p> <p>2014-05-01</p> <p>The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29035265','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29035265"><span>Hydrothermal impacts on trace element and isotope ocean biogeochemistry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H</p> <p>2016-11-28</p> <p>Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5069535','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5069535"><span>Hydrothermal impacts on trace element and isotope ocean biogeochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.</p> <p>2016-01-01</p> <p>Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035265</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrOce.135..156T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrOce.135..156T"><span>Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tecchio, Samuele; Coll, Marta; Sardà, Francisco</p> <p>2015-06-01</p> <p>Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate-driven reduction of marine snow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T41E2986K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T41E2986K"><span>Arctic Ocean Sedimentary Cover Structure, Based on 2D MCS Seismic Data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kireev, A.; Kaminsky, V.; Poselov, V.; Poselova, L.; Kaminsky, D.</p> <p>2016-12-01</p> <p>In 2016 the Russian Federation has submitted its partial revised Submission for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean. In order to prepare the Submission, in 2005 - 2014 the Russian organizations carried out a wide range of geological and geophysical studies, so that today over 23000 km of MCS lines and 4000 km of deep seismic sounding are accomplished. For correct time/depth conversion of seismic sections obtained with a short streamer in difficult ice conditions wide-angle reflection/refraction seismic sonobuoy soundings were used. All of these seismic data were used to refine the stratigraphy model, to identify sedimentary complexes and to estimate the total thickness of the sedimentary cover. Seismic stratigraphy model was successively determined for the Cenozoic and pre-Cenozoic parts of the sedimentary section and was based on correlation of the Russian MCS data and seismic data documented by boreholes. Cenozoic part of the sedimentary cover is based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin. Pre-Cenozoic part of the sedimentary cover is based on tracing major unconformities from boreholes on the Chukchi shelf (Crackerjack, Klondike, Popcorn) to the North-Chuckchi Trough and further to the Mendeleev Rise as well as to the Vilkitsky Trough and the adjacent Podvodnikov Basin. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to generalize all seismic surveys (top of acoustic basement correlation data) and bathymetry data in the sedimentary cover thickness map of the Arctic Ocean and adjacent Eurasian shelf, on which the structural prolongation of the shallow shelf into deep-water is obviously seen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS51C0998S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS51C0998S"><span>Tracing the source of deep water in the Arctic Ocean with 17Oexcess of dissolved O2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smethie, W. M., Jr.; Luz, B.; Barkan, E.; Broecker, W. S.</p> <p>2014-12-01</p> <p>The 17Oexcess of dissolved O2 (17Δ) in the ocean is a unique property which is useful for telling apart O2 produced by marine photosynthesis (bio-O2) from atmospheric O2. Unlike O2 concentration, 17Δ is not affected by respiration and thus behaves conservatively in the deep sea. In general, 17Δ in the oceanic mixed layer is low due to the dominance of air-sea gas exchange. In contrast, in the Arctic mixed-layer 17Δ is higher because sufficient light penetrates through the sea-ice cover and drives photosynthesis, but air-sea gas exchange is retarded by sea ice cover. We have preliminary 17Δ data from depth profiles in the Eurasian and Makarov basins. In both, the fraction of bio-O2 is about 20 % in the surface mixed layer. However, the vertical distribution beneath the mixed layer at the two stations is substantially different. In the Makarov Basin there is a layer of Pacific Water centered at about 100 m, which enters the Arctic Ocean through Bering Strait and is modified as it flows across the wide Chukchi and Siberian shelves. It has a strong maximum in 17Δ, equivalent to ~30% bio-O2. 17Δ then decreases through the underlying halocline to a minimum between 500 and 700 m, which lies within the Barents Sea Branch of Atlantic Water (BSBW) indicating ~15% bio-O2. At the Eurasian Basin station, 17Δ decreases from the mixed layer through the halocline reaching a minimum at the temperature maximum of Atlantic Water. This temperature maximum marks the core of the Fram Strait Branch of Atlantic Water (FSBW). 17Δ then increases to a maximum indicating ~20% bio-O2 between 500 and 700 m. The BSBW is produced as Atlantic Water flows through the shallow Barents Sea becoming denser than FSBW and enters the Eurasian Basin through the Santa Anna Trough beneath the FSBW. Our 17Δ measurements suggest that waters of Pacific and Atlantic origin that transit across the wide Arctic continental shelves acquire a high 17Δ signal indicative of photosynthesis in ice covered water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP42B..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP42B..08G"><span>Terrestrial paleoclimatic changes in northeast Asia during OAE 3 in the Late Cretaceous: Organic geochemical evidences from the Songliao paleo-lake Basin, northeast China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Y.; Wang, C.; Huang, H.</p> <p>2016-12-01</p> <p>Oceanic anoxic events (OAEs) in the Cretaceous greenhouse world record significant paleoclimatic changes and represent major disturbances in the global carbon cycle. The Coniacian-Santonian oceanic anoxic event (OAE 3), the last of the Cretaceous OAEs, is characterized by restricted black shale deposits in equatorial to mid-latitude Atlantic and adjacent basins. Continental hydroclimate on tropical Africa and South America was proved have a strong effect on carbon burial in ocean basins during OAE 3, although terrestrial paleoclimatic changes on the other continents were not well understood. The Continental Scientific Drilling Project of the Songliao paleo-lake Basin (northeast China) recovered 500m thick, continuous, dark-colored, deep lacustrine mudstone of the Qingshankou Formation, with the age of 92.0-86.2Ma tightly constrained by radiometric dating on volcanic ashes, magnetostratigraphy and cyclostratigraphy. These sediments thus provide an opportunity to study terrestrial paleoclimate changes in northeast Asia during OAE 3. Our high-resolution ( 1m interval) TOC and δ13Corg data of the Qingshankou Formation in the Songliao Basin show several positive δ13Corg excursions over the OAE 3 time period. Spectrum analysis shows remarkable Milankovich cycles including eccentricity cycles ( 400kyr) and precession cycles ( 20 kyr). These data suggest that dark-colored mudstone deposition in the Songliao paleo-lake was probably controlled by regional hydroclimatic changes which were influenced by orbital forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16672456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16672456"><span>Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dick, Gregory J; Lee, Yifan E; Tebo, Bradley M</p> <p>2006-05-01</p> <p>Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11778839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11778839"><span>Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Inagaki, F; Takai, K; Komatsu, T; Kanamatsu, T; Fujioka, K; Horikoshi, K</p> <p>2001-12-01</p> <p>A record of the history of the Earth is hidden in the Earth's crust, like the annual rings of an old tree. From very limited records retrieved from deep underground, one can infer the geographical, geological, and biological events that occurred throughout Earth's history. Here we report the discovery of vertically shifted community structures of Archaea in a typical oceanic subseafloor core sample (1410 cm long) recovered from the West Philippine Basin at a depth of 5719 m. Beneath a surface community of ubiquitous deep-sea archaea (marine crenarchaeotic group I; MGI), an unusual archaeal community consisting of extremophilic archaea, such as extreme halophiles and hyperthermophiles, was present. These organisms could not be cultivated, and may be microbial relicts more than 2 million years old. Our discovery of archaeal rDNA in this core sample, probably associated with the past terrestrial volcanic and submarine hydrothermal activities surrounding the West Philippine Basin, serves as potential geomicrobiological evidence reflecting novel records of geologic thermal events in the Pleistocene period concealed in the deep-sea subseafloor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512902S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512902S"><span>Partitioning of deformation along a reactivated rifted margin: example of the northern Ligurian margin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sage, Françoise; Beslier, Marie-Odile; Gaullier, Virginie; Larroque, Christophe; Dessa, Jean-Xavier; Mercier de Lepinay, Bernard; Corradi, Nicola; Migeon, Sébastien; Katz, Hélène; Ruiz Constan, Ana</p> <p>2013-04-01</p> <p>The northern Ligurian margin, of Oligo-Miocene age, is currently undergoing compression related to microplate motions and/or to gravity spreading of the Alpine chain located immediately north of it. Active thrust faults and folds have previously been identified below the margin, together with a global uplift of the continental edge, since at least the Messinian. The seismicity that goes with the present-day margin contraction (e.g. Mw 6.9, 1887/02/23) extends to the axis of the adjacent oceanic basin (e.g. ML 6.0, 1963/07/19; ML 5.4, 2011/07/07). However, we do not know of any recent or active crustal contractional structure within this oceanic domain. In this study, we use new 12-channel high-resolution seismic data (FABLES seismic cruise, 2012, R/V Tethys II) in order to image the sedimentary cover of the Ligurian oceanic basin, up to ~3km below the seabed, including the Plio-Quaternary and the Messinian sediment down to the bottom of the Messinian salt layer. Because the Messinian event is well dated (5.96-5.32 Ma) and well identified in the seismic data, it forms a clear marker that we use to characterize the recent deformation related to both mobile salt motion and crustal tectonics. About 50 km south of the margin offshore of Italy, we identify huge and complex salt walls that elongate SW-NE. Such salt walls, which cannot be explained by salt tectonics only, are interpreted as evidence of deep-seated crustal deformation. They form en echelon structures that are well expressed in the seabed morphology, and do not correspond to any significant vertical throw at the base of the salt layer. This suggests that within the deep basin, mainly strike-slip faulting accommodates long-term crustal deformation. It thus offers a contrast with the margin where deformation is mainly marked by shortening and reverse faulting, with vertical throws of several hundred meters. This discrepancy in the tectonic styles between the margin and the adjacent oceanic basin suggests some partitioning of the deformation. It may result from the difference in the topographic gradient of the main crustal interfaces between the steep margin and the adjacent oceanic domain, and/or to different mechanical behaviours of the adjacent lithospheric domains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29352137','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29352137"><span>Iron Biogeochemistry in the High Latitude North Atlantic Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Achterberg, Eric P; Steigenberger, Sebastian; Marsay, Chris M; LeMoigne, Frédéric A C; Painter, Stuart C; Baker, Alex R; Connelly, Douglas P; Moore, C Mark; Tagliabue, Alessandro; Tanhua, Toste</p> <p>2018-01-19</p> <p>Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world's ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (<0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250-300 km. Particulate Fe formed the dominant pool, as evidenced by 4-17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m -2 d -1 ) was at least ca. 4-10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26907101','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26907101"><span>Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sumida, Paulo Y G; Alfaro-Lucas, Joan M; Shimabukuro, Mauricio; Kitazato, Hiroshi; Perez, Jose A A; Soares-Gomes, Abilio; Toyofuku, Takashi; Lima, Andre O S; Ara, Koichi; Fujiwara, Yoshihiro</p> <p>2016-02-24</p> <p>Whale carcasses create remarkable habitats in the deep-sea by producing concentrated sources of organic matter for a food-deprived biota as well as places of evolutionary novelty and biodiversity. Although many of the faunal patterns on whale falls have already been described, the biogeography of these communities is still poorly known especially from basins other than the NE Pacific Ocean. The present work describes the community composition of the deepest natural whale carcass described to date found at 4204 m depth on Southwest Atlantic Ocean with manned submersible Shinkai 6500. This is the first record of a natural whale fall in the deep Atlantic Ocean. The skeleton belonged to an Antarctic Minke whale composed of only nine caudal vertebrae, whose degradation state suggests it was on the bottom for 5-10 years. The fauna consisted mainly of galatheid crabs, a new species of the snail Rubyspira and polychaete worms, including a new Osedax species. Most of the 41 species found in the carcass are new to science, with several genera shared with NE Pacific whale falls and vent and seep ecosystems. This similarity suggests the whale-fall fauna is widespread and has dispersed in a stepping stone fashion, deeply influencing its evolutionary history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...622139S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...622139S"><span>Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sumida, Paulo Y. G.; Alfaro-Lucas, Joan M.; Shimabukuro, Mauricio; Kitazato, Hiroshi; Perez, Jose A. A.; Soares-Gomes, Abilio; Toyofuku, Takashi; Lima, Andre O. S.; Ara, Koichi; Fujiwara, Yoshihiro</p> <p>2016-02-01</p> <p>Whale carcasses create remarkable habitats in the deep-sea by producing concentrated sources of organic matter for a food-deprived biota as well as places of evolutionary novelty and biodiversity. Although many of the faunal patterns on whale falls have already been described, the biogeography of these communities is still poorly known especially from basins other than the NE Pacific Ocean. The present work describes the community composition of the deepest natural whale carcass described to date found at 4204 m depth on Southwest Atlantic Ocean with manned submersible Shinkai 6500. This is the first record of a natural whale fall in the deep Atlantic Ocean. The skeleton belonged to an Antarctic Minke whale composed of only nine caudal vertebrae, whose degradation state suggests it was on the bottom for 5-10 years. The fauna consisted mainly of galatheid crabs, a new species of the snail Rubyspira and polychaete worms, including a new Osedax species. Most of the 41 species found in the carcass are new to science, with several genera shared with NE Pacific whale falls and vent and seep ecosystems. This similarity suggests the whale-fall fauna is widespread and has dispersed in a stepping stone fashion, deeply influencing its evolutionary history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009CliPa...5..537S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009CliPa...5..537S"><span>Glacial-interglacial atmospheric CO2 change: a possible "standing volume" effect on deep-ocean carbon sequestration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skinner, L. C.</p> <p>2009-09-01</p> <p>So far, the exploration of possible mechanisms for glacial atmospheric CO2 drawdown and marine carbon sequestration has tended to focus on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates). Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses) in influencing the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the marine carbon inventory via an increase in the volume of relatively cold and carbon-enriched deep water, analogous to modern Lower Circumpolar Deep Water (LCDW), filling the ocean basins. A set of simple box-model experiments confirm the expectation that a deep sea dominated by an expanded LCDW-like watermass holds more CO2, without any pre-imposed changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" (which operates by boosting the solubility- and biological pumps) might be as large as the contributions that have previously been attributed to carbonate compensation, terrestrial biosphere reduction or ocean fertilisation for example. By providing a means of not only enhancing but also driving changes in the efficiency of the biological- and solubility pumps, this standing volume mechanism may help to reduce the amount of glacial-interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.1297W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.1297W"><span>Modeling the intense 2012-2013 dense water formation event in the northwestern Mediterranean Sea: Evaluation with an ensemble simulation approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waldman, Robin; Somot, Samuel; Herrmann, Marine; Bosse, Anthony; Caniaux, Guy; Estournel, Claude; Houpert, Loic; Prieur, Louis; Sevault, Florence; Testor, Pierre</p> <p>2017-02-01</p> <p>The northwestern Mediterranean Sea is a well-observed ocean deep convection site. Winter 2012-2013 was an intense and intensely documented dense water formation (DWF) event. We evaluate this DWF event in an ensemble configuration of the regional ocean model NEMOMED12. We then assess for the first time the impact of ocean intrinsic variability on DWF with a novel perturbed initial state ensemble method. Finally, we identify the main physical mechanisms driving water mass transformations. NEMOMED12 reproduces accurately the deep convection chronology between late January and March, its location off the Gulf of Lions although with a southward shift and its magnitude. It fails to reproduce the Western Mediterranean Deep Waters salinification and warming, consistently with too strong a surface heat loss. The Ocean Intrinsic Variability modulates half of the DWF area, especially in the open-sea where the bathymetry slope is low. It modulates marginally (3-5%) the integrated DWF rate, but its increase with time suggests its impact could be larger at interannual timescales. We conclude that ensemble frameworks are necessary to evaluate accurately numerical simulations of DWF. Each phase of DWF has distinct diapycnal and thermohaline regimes: during preconditioning, the Mediterranean thermohaline circulation is driven by exchanges with the Algerian basin. During the intense mixing phase, surface heat fluxes trigger deep convection and internal mixing largely determines the resulting deep water properties. During restratification, lateral exchanges and internal mixing are enhanced. Finally, isopycnal mixing was shown to play a large role in water mass transformations during the preconditioning and restratification phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4291108','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4291108"><span>Colonization of the deep sea by fishes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Priede, I G; Froese, R</p> <p>2013-01-01</p> <p>Analysis of maximum depth of occurrence of 11 952 marine fish species shows a global decrease in species number (N) with depth (x; m): log10N = −0·000422x + 3·610000 (r2 = 0·948). The rate of decrease is close to global estimates for change in pelagic and benthic biomass with depth (−0·000430), indicating that species richness of fishes may be limited by food energy availability in the deep sea. The slopes for the Classes Myxini (−0·000488) and Actinopterygii (−0·000413) follow this trend but Chondrichthyes decrease more rapidly (−0·000731) implying deficiency in ability to colonize the deep sea. Maximum depths attained are 2743, 4156 and 8370 m for Myxini, Chondrichthyes and Actinopterygii, respectively. Endemic species occur in abundance at 7–7800 m depth in hadal trenches but appear to be absent from the deepest parts of the oceans, >9000 m deep. There have been six global oceanic anoxic events (OAE) since the origin of the major fish taxa in the Devonian c. 400 million years ago (mya). Colonization of the deep sea has taken place largely since the most recent OAE in the Cretaceous 94 mya when the Atlantic Ocean opened up. Patterns of global oceanic circulation oxygenating the deep ocean basins became established coinciding with a period of teleost diversification and appearance of the Acanthopterygii. Within the Actinopterygii, there is a trend for greater invasion of the deep sea by the lower taxa in accordance with the Andriashev paradigm. Here, 31 deep-sea families of Actinopterygii were identified with mean maximum depth >1000 m and with >10 species. Those with most of their constituent species living shallower than 1000 m are proposed as invasive, with extinctions in the deep being continuously balanced by export of species from shallow seas. Specialized families with most species deeper than 1000 m are termed deep-sea endemics in this study; these appear to persist in the deep by virtue of global distribution enabling recovery from regional extinctions. Deep-sea invasive families such as Ophidiidae and Liparidae make the greatest contribution to fish fauna at depths >6000 m. PMID:24298950</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P44A..06J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P44A..06J"><span>Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, B. C.; Bowling, T.; Trowbridge, A.; Freed, A. M.</p> <p>2016-12-01</p> <p>Since the New Horizons flyby, evidence has been mounting that Pluto's Sputnik Planum (SP; informal name) (1,2) is associated with a 800-1000 km diameter elliptical impact basin (3,4). Global tectonics and the location of SP suggests that Pluto reoriented to align the basin with its tidal axis (4,5). This indicates there is a large positive mass anomaly associated with SP (4,5). However, even with loading of 3-10 km of dense convecting N2 ice (6,7), a positive mass anomaly associated with the deep basin requires that Pluto has a liquid ocean and the ice shell under the basin is substantially thinned (4). Although the possibility of a slowly freezing current day subsurface ocean is supported by thermal modeling (8,9) and the ubiquity of young extensional tectonic features (1), the thickness of the putative ocean is unconstrained. Here, we simulate the SP basin-forming impact into targets with a range of thermal states and ocean thicknesses. We find that SP can only achieve a large positive mass anomaly if Pluto has a more than 100 km thick salty ocean (i.e. ocean density exceeding 1100 kg/m3). This conclusion may help us better understand the composition and thermal evolution of Pluto. 1. Moore, J. M. et al. Science 351,1284-1293 (2016). 2. Stern, S. A. et al. Science 350,aad1815-aad1815 (2015). 3. Schenk, P. M. et al. A Large Impact Origin for Sputnik Planum and Surrounding Terrains, Pluto? AAS/Division for Planetary Sciences Meeting Abstracts 47,(2015). 4. Nimmo, F. et al. Loading, Relaxation, and Tidal Wander at Sputnik Planum, Pluto. 47th Lunar and Planetary Science Conference 47,2207 (2016). 5. Keane, J. T. & Matsuyama, I. Pluto Followed Its Heart: True Polar Wander of Pluto Due to the Formation and Evolution of Sputnik Planum. 47th Lunar and Planetary Science Conference 47,2348 (2016). 6. Trowbridge, A. J., Melosh, H. J., Steckloff, J. K. & Freed, A. M. Nature 534,79-81 (2016). 7. McKinnon, W. B. et al. Nature 534,82-85 (2016). 8. Robuchon, G. & Nimmo, F. Icarus 216,426-439 (2011). 9. Hammond, N. P., Barr, A. C. & Parmentier, E. M. Geophys. Res. Lett. (2016). doi:10.1002/2016GL069220</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4165892','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4165892"><span>Large Spatial Scale Variability in Bathyal Macrobenthos Abundance, Biomass, α- and β-Diversity along the Mediterranean Continental Margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baldrighi, Elisa; Lavaleye, Marc; Aliani, Stefano; Conversi, Alessandra; Manini, Elena</p> <p>2014-01-01</p> <p>The large-scale deep-sea biodiversity distribution of the benthic fauna was explored in the Mediterranean Sea, which can be seen as a miniature model of the oceans of the world. Within the framework of the BIOFUN project (“Biodiversity and Ecosystem Functioning in Contrasting Southern European Deep-sea Environments: from viruses to megafauna”), we investigated the large spatial scale variability (over >1,000 km) of the bathyal macrofauna communities that inhabit the Mediterranean basin, and their relationships with the environmental variables. The macrofauna abundance, biomass, community structure and functional diversity were analysed and the α-diversity and β-diversity were estimated across six selected slope areas at different longitudes and along three main depths. The macrobenthic standing stock and α-diversity were lower in the deep-sea sediments of the eastern Mediterranean basin, compared to the western and central basins. The macrofaunal standing stock and diversity decreased significantly from the upper bathyal to the lower bathyal slope stations. The major changes in the community composition of the higher taxa and in the trophic (functional) structure occurred at different longitudes, rather than at increasing water depth. For the β-diversity, very high dissimilarities emerged at all levels: (i) between basins; (ii) between slopes within the same basin; and (iii) between stations at different depths; this therefore demonstrates the high macrofaunal diversity of the Mediterranean basins at large spatial scales. Overall, the food sources (i.e., quantity and quality) that characterised the west, central and eastern Mediterranean basins, as well as sediment grain size, appear to influence the macrobenthic standing stock and the biodiversity along the different slope areas. PMID:25225909</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25225909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25225909"><span>Large spatial scale variability in bathyal macrobenthos abundance, biomass, α- and β-diversity along the Mediterranean continental margin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baldrighi, Elisa; Lavaleye, Marc; Aliani, Stefano; Conversi, Alessandra; Manini, Elena</p> <p>2014-01-01</p> <p>The large-scale deep-sea biodiversity distribution of the benthic fauna was explored in the Mediterranean Sea, which can be seen as a miniature model of the oceans of the world. Within the framework of the BIOFUN project ("Biodiversity and Ecosystem Functioning in Contrasting Southern European Deep-sea Environments: from viruses to megafauna"), we investigated the large spatial scale variability (over >1,000 km) of the bathyal macrofauna communities that inhabit the Mediterranean basin, and their relationships with the environmental variables. The macrofauna abundance, biomass, community structure and functional diversity were analysed and the α-diversity and β-diversity were estimated across six selected slope areas at different longitudes and along three main depths. The macrobenthic standing stock and α-diversity were lower in the deep-sea sediments of the eastern Mediterranean basin, compared to the western and central basins. The macrofaunal standing stock and diversity decreased significantly from the upper bathyal to the lower bathyal slope stations. The major changes in the community composition of the higher taxa and in the trophic (functional) structure occurred at different longitudes, rather than at increasing water depth. For the β-diversity, very high dissimilarities emerged at all levels: (i) between basins; (ii) between slopes within the same basin; and (iii) between stations at different depths; this therefore demonstrates the high macrofaunal diversity of the Mediterranean basins at large spatial scales. Overall, the food sources (i.e., quantity and quality) that characterised the west, central and eastern Mediterranean basins, as well as sediment grain size, appear to influence the macrobenthic standing stock and the biodiversity along the different slope areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917022K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917022K"><span>Sedimentary Cover of the Central Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kireev, Artem; Poselov, Viktor; Butsenko, Viktor; Smirnov, Oleg</p> <p>2017-04-01</p> <p>Partial revised Submission of the Russian Federation for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean is made to include in the extended continental shelf of the Russian Federation, in accordance with article 76 of the Convention, the seabed and its subsoil in the central Arctic Ocean which is natural prolongation of the Russian land territory. To submit partial revised Submission in 2016, in 2005 - 2014 the Russian organizations carried out a wide range of geophysical studies, so that today over 23000 km of MCS lines, over hundreds of wide-angle reflection/refraction seismic sonobuoy soundings and 4000 km of deep seismic sounding are accomplished. All of these MCS and seismic soundings data were used to establish the seismic stratigraphy model of the Arctic region. Stratigraphy model of the sedimentary cover was successively determined for the Cenozoic and pre-Cenozoic parts of the section and was based on correlation of the Russian MCS data and seismic data documented by existing boreholes. Interpretation of the Cenozoic part of the sedimentary cover was based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin, while interpretation of the Pre-Cenozoic part of the sedimentary cover was based on correlation with MCS and boreholes data from Chukchi sea shelf. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to estimate the total thickness of the sedimentary cover of the Arctic Ocean and adjacent Eurasian shelf using top of acoustic basement correlation data and bathymetry data. Structural prolongation of the shallow shelf into deep-water could be observed on this sedimentary map.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMPP31C1357M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMPP31C1357M"><span>Carbon isotope evidence for a vigorous biological pump in the wake of end-Permian mass extinction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, K. M.; Yu, M.; Jost, A. B.; Payne, J.</p> <p>2009-12-01</p> <p>Ocean anoxia and euxinia have long been linked to the end-Permian mass extinction and the subsequent Early Triassic interval of delayed biotic recovery. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. To examine the nature of the end-Permian and Early Triassic biological production, we measured the carbon isotopic composition of carbonates from an exceptionally preserved carbonate platform in the Nanpanjiang Basin of south China. 13C of limestones from 5 stratigraphic sections displays a gradient of approximately 4‰ from shallow to deep water within the Lower Triassic. The limestones are systematically enriched in the platform interior relative to coeval slope and basin margin deposits by 2-4‰ at the peaks of correlative positive and negative δ13C excursions. This gradient subsequently collapses to less than 1‰ in the Middle Triassic, coincident with accelerated biotic recovery and cessation of δ13C excursions. Based on the relationship between δ18O and δ13C, trace metal analyses, and lithostratigraphic context, we conclude that the carbon isotope gradient is unlikely to reflect meteoric diagenesis, organic matter remineralization, or changes in the mixing ratio of sediment sources and minerals across the platform. Instead, we interpret the relatively depleted δ13C values toward the basin as reflecting DIC input from 13C-depleted deep waters during early diagenesis in a nutrient-rich, euxinic ocean. These observations suggest that a vigorous prokaryote-driven biological pump sustained Early Triassic ocean anoxia and inhibited recovery of animal ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3493524','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3493524"><span>Ancient Divergence in the Trans-Oceanic Deep-Sea Shark Centroscymnus crepidater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cunha, Regina L.; Coscia, Ilaria; Madeira, Celine; Mariani, Stefano; Stefanni, Sergio; Castilho, Rita</p> <p>2012-01-01</p> <p>Unravelling the genetic structure and phylogeographic patterns of deep-sea sharks is particularly challenging given the inherent difficulty in obtaining samples. The deep-sea shark Centroscymnus crepidater is a medium-sized benthopelagic species that exhibits a circumglobal distribution occurring both in the Atlantic and Indo-Pacific Oceans. Contrary to the wealth of phylogeographic studies focused on coastal sharks, the genetic structure of bathyal species remains largely unexplored. We used a fragment of the mitochondrial DNA control region, and microsatellite data, to examine genetic structure in C. crepidater collected from the Atlantic Ocean, Tasman Sea, and southern Pacific Ocean (Chatham Rise). Two deeply divergent (3.1%) mtDNA clades were recovered, with one clade including both Atlantic and Pacific specimens, and the other composed of Atlantic samples with a single specimen from the Pacific (Chatham Rise). Bayesian analyses estimated this splitting in the Miocene at about 15 million years ago. The ancestral C. crepidater lineage was probably widely distributed in the Atlantic and Indo-Pacific Oceans. The oceanic cooling observed during the Miocene due to an Antarctic glaciation and the Tethys closure caused changes in environmental conditions that presumably restricted gene flow between basins. Fluctuations in food resources in the Southern Ocean might have promoted the dispersal of C. crepidater throughout the northern Atlantic where habitat conditions were more suitable during the Miocene. The significant genetic structure revealed by microsatellite data suggests the existence of present-day barriers to gene flow between the Atlantic and Pacific populations most likely due to the influence of the Agulhas Current retroflection on prey movements. PMID:23145122</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24821948','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24821948"><span>Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joughin, Ian; Smith, Benjamin E; Medley, Brooke</p> <p>2014-05-16</p> <p>Resting atop a deep marine basin, the West Antarctic Ice Sheet has long been considered prone to instability. Using a numerical model, we investigated the sensitivity of Thwaites Glacier to ocean melt and whether its unstable retreat is already under way. Our model reproduces observed losses when forced with ocean melt comparable to estimates. Simulated losses are moderate (<0.25 mm per year at sea level) over the 21st century but generally increase thereafter. Except possibly for the lowest-melt scenario, the simulations indicate that early-stage collapse has begun. Less certain is the time scale, with the onset of rapid (>1 mm per year of sea-level rise) collapse in the different simulations within the range of 200 to 900 years. Copyright © 2014, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910097D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910097D"><span>Applying machine learning to global surface ocean and seabed data to reveal the controls on the distribution of deep-sea sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dutkiewicz, Adriana; Müller, Dietmar; O'Callaghan, Simon</p> <p>2017-04-01</p> <p>World's ocean basins contain a rich and nearly continuous record of environmental fluctuations preserved as different types of deep-sea sediments. The sediments represent the largest carbon sink on Earth and its largest geological deposit. Knowing the controls on the distribution of these sediments is essential for understanding the history of ocean-climate dynamics, including changes in sea-level and ocean circulation, as well as biological perturbations. Indeed, the bulk of deep-sea sediments comprises the remains of planktonic organisms that originate in the photic zone of the global ocean implying a strong connection between the seafloor and the sea surface. Machine-learning techniques are perfectly suited to unravelling these controls as they are able to handle large sets of spatial data and they often outperform traditional spatial analysis approaches. Using a support vector machine algorithm we recently created the first digital map of seafloor lithologies (Dutkiewicz et al., 2015) based on 14,400 surface samples. This map reveals significant deviations in distribution of deep-sea lithologies from hitherto hand-drawn maps based on far fewer data points. It also allows us to explore quantitatively, for the first time, the relationship between oceanographic parameters at the sea surface and lithologies on the seafloor. We subsequently coupled this global point sample dataset of 14,400 seafloor lithologies to bathymetry and oceanographic grids (sea-surface temperature, salinity, dissolved oxygen and dissolved inorganic nutrients) and applied a probabilistic Gaussian process classifier in an exhaustive combinatorial fashion (Dutkiewicz et al., 2016). We focused on five major lithologies (calcareous sediment, diatom ooze, radiolarian ooze, clay and lithogenous sediment) and used a computationally intensive five-fold cross-validation, withholding 20% of the data at each iteration, to assess the predictive performance of the machine learning method. We find that the occurrence of five major lithologies in the world's ocean can be predicted on the basis of just two or three parameters, notably sea-surface salinity and sea-surface temperature. These parameters control the growth and composition of plankton and specific salinities and temperatures are also associated with the influx of non-aerosol terrigenous material into the ocean. Bathymetry is an important parameter for discriminating the occurrence of calcareous sediment, clay and coarse lithogenous sediment from each other but it is not important for biosiliceous oozes. Consequently, radiolarian and diatom oozes are poor indicators of palaeo-depth. Contrary to widely held view, we find that calcareous and siliceous oozes are not linked to high surface productivity. Our analysis shows that small shifts in surface ocean conditions significantly affect the lithology of modern seafloor sediments on a global scale and that these relationships need to be incorporated into interpretations of the geological record of ocean basins. Dutkiewicz, A., Müller, R. D., O'Callaghan, S., and Jónasson, H., 2015, Census of seafloor sediments in the world's ocean: Geology, v. 43, no. 9, p. 795-798. Dutkiewicz, A., O'Callaghan, S., and Müller, R. D., 2016, Controls on the distribution of deep-sea sediments: Geochem. Geophys. Geosyst., v. 17, p. 1-24.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H13I1493S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H13I1493S"><span>Investigation of Deep Ocean Circulation and Mixing Using Ar-39 (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smethie, W. M.; Schlosser, P.</p> <p>2013-12-01</p> <p>Ar-39 is a radioactive noble gas that forms in the atmosphere by cosmic ray interaction with Ar-40. It has a half-life of 269 years and its production rate in the atmosphere has varied no more than 7% during the past 1000 years. It enters the surface ocean with an average equilibration time of about one month and thus the entire surface ocean, except for ice covered regions at high latitudes, is in quasi-equilibrium with the atmospheric Ar-39:Ar ratio. The well known input to the ocean, radioactive decay constant and chemical inertness make Ar-39 an ideal tracer of circulation and mixing in the deep ocean, where anthropogenic transient tracers such as CFCs and tritium have not yet penetrated. However, due to the difficult measurement, only about 125 oceanic Ar-39 samples have been measured to date. This was done by counting the decays of Ar-39 atoms and required a half liter of argon gas per sample, extracted from about 1500 liters of water. The 125 samples that have been measured provide a glimpse of the information that can be gained from Ar-39 observations. In the Pacific Ocean three vertical profiles show a decrease in Ar-39 from the surface mixed layer through the thermocline to a minimum at intermediate depths and an increase from there to the bottom. This reflects formation of bottom water around the Antarctic continent, spreading of this water northward and upwelling and mixing into intermediate depths. The lowest concentration was 6×4% modern which is equivalent to a 900-1600 year isolation time from the surface. In the Atlantic Ocean newly formed North Atlantic Deep Water has an Ar-39 concentration of about 85% modern compared to 55% modern for newly formed Antarctic Bottom Water and reach values as low as about 40% modern in the interior reflecting the more rapid ventilation of the deep Atlantic Ocean relative to the deep Pacific Ocean. In the Arctic Ocean the mean residence time of deep water in the Nansen, Amundsen and Makarov Basins based on Ar-39 are about 270, 190, and 330 years respectively. Radiocarbon also provides information on circulation and mixing in the deep ocean and thousands of measurements have been made. However, the distributions of Ar-39 and C-14 are different due to the large difference in their half-lives (269 years and 5730 years respectively). Measurement of both tracers provides information on the relative importance of advection and mixing in the deep ocean and provides more accurate transit times than can be obtained with only one of these tracers. In the Atlantic Ocean, where the deep water is roughly a two-end member mixture of northern component and southern component water, the age of the two components can be estimated from simultaneous measurement of Ar-39 and C-14. The few existing measurements suggest that the northern component water has an age range of 40-200 years and the southern component water a range of 60-600 years. Development of the ATTA method for measuring radioactive noble gases offers great potential to dramatically increase the number of samples that can be measured for Ar-39, which could greatly improve our understanding of mixing and circulation in the deep ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28256106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28256106"><span>Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoshino, T; Inagaki, F</p> <p>2017-05-01</p> <p>Carbon monoxide (CO) is the simplest oxocarbon generated by the decomposition of organic compounds, and it is expected to be in marine sediments in substantial amounts. However, the availability of CO in the deep subseafloor sedimentary biosphere is largely unknown even though anaerobic oxidation of CO is a thermodynamically favourable reaction that possibly occurs with sulphate reduction, methanogenesis, acetogenesis and hydrogenesis. In this study, we surveyed for the first time the distribution of the CO dehydrogenase gene (cooS), which encodes the catalytic beta subunit of anaerobic CO dehydrogenase (CODH), in subseafloor sediment-core samples from the eastern flank of the Juan de Fuca Ridge, Mars-Ursa Basin, Kumano Basin, and off the Shimokita Peninsula, Japan, during Integrated Ocean Drilling Program (IODP) Expeditions 301, 308 and 315 and the D/V Chikyu shakedown cruise CK06-06, respectively. Our results show the occurrence of diverse cooS genes from the seafloor down to about 390 m below the seafloor, suggesting that microbial communities have metabolic functions to utilize CO in anoxic microbial ecosystems beneath the ocean floor, and that the microbial community potentially responsible for anaerobic CO oxidation differs in accordance with possible energy-yielding metabolic reactions in the deep subseafloor sedimentary biosphere. Little is known about the microbial community associated with carbon monoxide (CO) in the deep subseafloor. This study is the first survey of a functional gene encoding anaerobic carbon monoxide dehydrogenase (CODH). The widespread occurrence of previously undiscovered CO dehydrogenase genes (cooS) suggests that diverse micro-organisms are capable of anaerobic oxidation of CO in the deep subseafloor sedimentary biosphere. © 2017 The Society for Applied Microbiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SciDr..20....1A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SciDr..20....1A"><span>IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrén, T.; Barker Jørgensen, B.; Cotterill, C.; Green, S.; IODP expedition 347 scientific party, the</p> <p>2015-12-01</p> <p>The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different settings of the Baltic Sea covering the last glacial-interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region with changing ice cover and major shifts in temperature, salinity, and biological communities. Using the Greatship Manisha as a European Consortium for Ocean Research Drilling (ECORD) mission-specific platform, we recovered 1.6 km of core from nine sites of which four were additionally cored for microbiology. The sites covered the gateway to the North Sea and Atlantic Ocean, several sub-basins in the southern Baltic Sea, a deep basin in the central Baltic Sea, and a river estuary in the north. The waxing and waning of the Scandinavian ice sheet has profoundly affected the Baltic Sea sediments. During the Weichselian, progressing glaciers reshaped the submarine landscape and displaced sedimentary deposits from earlier Quaternary time. As the glaciers retreated they left a complex pattern of till, sand, and lacustrine clay, which in the basins has since been covered by a thick deposit of Holocene, organic-rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly impacted by terrestrial runoff and nutrient fluxes. The Holocene deposits are recorded today to be up to 50 m deep and geochemically affected by diagenetic alterations driven by organic matter degradation. Many of the cored sequences were highly supersaturated with respect to methane, which caused strong degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to Holocene brackish mud. High-resolution sampling and analyses of interstitial water chemistry revealed the intensive mineralization and zonation of the predominant biogeochemical processes. Quantification of microbial cells in the sediments yielded some of the highest cell densities yet recorded by scientific drilling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27997834','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27997834"><span>Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Purser, Autun; Marcon, Yann; Hoving, Henk-Jan T; Vecchione, Michael; Piatkowski, Uwe; Eason, Deborah; Bluhm, Hartmut; Boetius, Antje</p> <p>2016-12-19</p> <p>Incirrate octopods (those without fins) are among the larger megafauna inhabiting the benthic environments of all oceans, commonly in water depths down to about 3,000 m. They are known to protect and brood their eggs until the juveniles hatch, but to date there is little published information on octopod deep-sea life cycles and distribution. For this study, three manganese-crust and nodule-abundant regions of the deep Pacific were examined by remote operated-vehicle and towed camera surveys carried out between 2011 and 2016. Here, we report that the depth range of incirrate octopods can now be extended to at least 4,290 m. Octopods (twenty-nine individuals from two distinct species) were observed on the deep Ka'ena and Necker Ridges of the Hawaiian Archipelago, and in a nodule-abundant region of the Peru Basin. Two octopods were observed to be brooding clutches of eggs that were laid on stalks of dead sponges attached to nodules at depths exceeding 4,000 m. This is the first time such a specific mineral-biota association has been observed for incirrate octopods. Both broods consisted of approximately 30 large (2.0-2.7 cm) eggs. Given the low annual water temperature of 1.5 o C, it is likely that egg development, and hence brooding, takes years [1]. Stalked-sponge fauna in the Peru Basin require the presence of manganese nodules as a substrate, and near total collapse of such sponge populations was observed following the experimental removal of nodules within the DISCOL (DISturbance and COLonisation) area of the Peru Basin [2]. Stalked fauna are also abundant on the hard substrates of the Hawaiian archipelago. The brooding behavior of the octopods we observed suggests that, like the sponges, they may also be susceptible to habitat loss following the removal of nodule fields and crusts by commercial exploitation. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA536542','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA536542"><span>Freshwater Export from the Arctic Ocean and its Downstream Effect on Labrador Sea Deep Convection in a High-Resolution Numerical Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-12-01</p> <p>Arctic has been observed in the northern Canadian Arctic Archipelago ( Bourke and McLaren 1992). There, thick multiyear ice of Arctic origin encounters...Affairs, 87(2), 63-77. 172 Bourke , R. H., and A. S. McLaren, 1992: Contour mapping of Arctic Basin ice draft and roughness parameters. J. Geophys</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.T22E..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.T22E..06S"><span>Seismic Reflection Images of Deep Lithospheric Faults and Thin Crust at the Actively Deforming Indo-Australian Plate Boundary in the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, S. C.; Carton, H.; Chauhan, A.; Dyment, J.; Cannat, M.; Hananto, N.; Hartoyo, D.; Tapponnier, P.; Davaille, A.</p> <p>2007-12-01</p> <p>Recently, we acquired deep seismic reflection data using a state-of-the-art technology of Schlumberger having a powerful source (10,000 cubic inch) and a 12 km long streamer along a 250 km long trench parallel line offshore Sumatra in the Indian Ocean deformation zone that provides seismic reflection image down to 40 km depth over the old oceanic lithosphere formed at Wharton spreading centre about 55-57 Ma ago. We observe deep penetrating faults that go down to 37 km depth (~24 km in the oceanic mantle), providing the first direct evidence for full lithospheric-scale deformation in an intra-plate oceanic domain. These faults dip NE and have dips between 25 and 40 degrees. The majority of faults are present in the mantle and are spaced at about 5 km, and do not seem cut through the Moho. We have also imaged active strike-slip fault zones that seem to be associated with the re-activation of ancient fracture zones, which is consistent with previous seismological and seafloor observations. The geometries of the deep penetrating faults neither seem to correspond to faulting associated with the plate bending at the subduction front nor with the re-activation of fracture zone that initiated about 7.5 Ma ago, and therefore, we suggest that these deep mantle faults were formed due to compressive stress at the beginning of the hard collision between India and Eurasia, soon after the cessation of seafloor spreading in the Wharton basin. We also find that the crust generated at the fast Wharton spreading centre 55-57 Ma ago is only 3.5-4.5 km thick, the thinnest crust ever observed in a fast spreading environment. We suggest that this extremely thin crust is due to 40-50°C lower than normal mantle temperature in this part of the Indian Ocean during its formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DyAtO..58...44W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DyAtO..58...44W"><span>The deep meridional overturning circulation in the Indian Ocean inferred from the GECCO synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Weiqiang; Köhl, Armin; Stammer, Detlef</p> <p>2012-11-01</p> <p>The deep time-varying meridional overturning circulation (MOC) in the Indian Ocean in the German “Estimating the Circulation and Climate of the Ocean” consortium efforts (GECCO) ocean synthesis is being investigated. An analysis of the integrated circulation suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200 m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500 m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ substantially from those obtained by inverse box models, which being based on individual hydrographic sections and due to the strong seasonal cycle are susceptible to aliasing. The GECCO solution shows a large seasonal variation in its deep MOC caused by the seasonal reversal of monsoon-related wind stress forcing. The associated seasonal variations of the deep MOC range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across the 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differs before and after 1980. GECCO shows a stable trend for the period 1960-1979 and substantial changes in the upper and bottom layer for the period 1980-2001. By means of an extended EOF analysis, the importance of Ekman dynamics as driving forces of the deep MOC of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contribute to the evolution of the Indian Ocean dipole (IOD) events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032251','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032251"><span>Petroleum prospectivity of the Canada Basin, Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grantz, Arthur; Hart, Patrick E.</p> <p>2012-01-01</p> <p>Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. ?? 2011 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHI41A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHI41A..06S"><span>Anthropogenic impacts on deep submarine canyons of the western Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanchez-Vidal, A.; Tubau, X.; Llorca, M.; Woodall, L.; Canals, M.; Farré, M.; Barceló, D.; Thompson, R.</p> <p>2016-02-01</p> <p>Submarine canyons are seafloor geomorphic features connecting the shallow coastal ocean to the deep continental margin and basin. Often considered biodiversity hotspots, submarine canyons have been identified as preferential pathways for water, sediment, pollutant and litter transfers from the coastal to the deep ocean. Here we provide insights on the presence of some of the most insidious man-made debris and substances in submarine canyons of the western Mediterranean Sea, which are relevant to achieve a "Good Environmental Status" by 2020 as outlined in the European Union's ambitious Marine Strategy Framework Directive. Ranked by size on a decreasing basis, we review the origin, distribution and transport mechanisms of i) marine litter, including plastic, lost fishing gear and metallic objects; ii) microplastics in the form of fibers of rayon, polyester, polyamide and acetates; and iii) persistent organic pollutants including the toxic and persistent perfluoroalkyl substances. This integrated analysis allows us to understand the pivotal role of atmospheric driven oceanographic processes occurring in Mediterranean deep canyons (dense shelf water cascading, coastal storms) in spreading any type of man-made compound to the deep sea, where they sink and accumulate before getting buried.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.2895S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.2895S"><span>Response of the North Atlantic dynamic sea level and circulation to Greenland meltwater and climate change in an eddy-permitting ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saenko, Oleg A.; Yang, Duo; Myers, Paul G.</p> <p>2017-10-01</p> <p>The response of the North Atlantic dynamic sea surface height (SSH) and ocean circulation to Greenland Ice Sheet (GrIS) meltwater fluxes is investigated using a high-resolution model. The model is forced with either present-day-like or projected warmer climate conditions. In general, the impact of meltwater on the North Atlantic SSH and ocean circulation depends on the surface climate. In the two major regions of deep water formation, the Labrador Sea and the Nordic Seas, the basin-mean SSH increases with the increase of the GrIS meltwater flux. This SSH increase correlates with the decline of the Atlantic meridional overturning circulation (AMOC). However, while in the Labrador Sea the warming forcing and GrIS meltwater input lead to sea level rise, in the Nordic Seas these two forcings have an opposite influence on the convective mixing and basin-mean SSH (relative to the global mean). The warming leads to less sea-ice cover in the Nordic Seas, which favours stronger surface heat loss and deep mixing, lowering the SSH and generally increasing the transport of the East Greenland Current. In the Labrador Sea, the increased SSH and weaker deep convection are reflected in the decreased transport of the Labrador Current (LC), which closes the subpolar gyre in the west. Among the two major components of the LC transport, the thermohaline and bottom transports, the former is less sensitive to the GrIS meltwater fluxes under the warmer climate. The SSH difference across the LC, which is a component of the bottom velocity, correlates with the long-term mean AMOC rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919042H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919042H"><span>OSCAR - Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hobbs, Richard</p> <p>2017-04-01</p> <p>The interdisciplinary OSCAR project is examining the heat and mass fluxes in the solid Earth and overlying ocean at the Costa Rica mid-ocean Ridge (CRR) in the Panama Basin. The 3500 m deep Panama basin is isolated from the wider Pacific Ocean below 2000 m by the Cocos and Carnegie Ridges except for a deep water channel along the Ecuador trench. This channel supplies cold abyssal water into the Basin at a rate of 0.35 Sv (million cubic metres per second)) at a temperature of 1.75°C. Within the basin the water is heated to 2°C. The energy for this heating is dominated by geothermal effects with a smaller contribution from mainly tidal induced mixing over the ridges. The main geophysical transect for the OSCAR survey links the CRR with the ODP 504B borehole which is drilled 2111 m into 5.9 Ma oceanic crust. Changes in the solid Earth properties from the CRR to 504B are mapped using a combination of seismic 2D- and 3D-refraction and synthetic-aperture reflection, magnetics, gravity, magnetotelluric data, swath bathymetry and heat-flow. Results show that the properties of layer 2 are variable and are more likely a function of changes in magma supply at the ridge rather than the effects of ageing. Of particular note is the abrupt change at 5 Ma. Older crust has a higher velocity and lower topography when compared with younger crust. Also the heat-flow over the older crust is largely through conduction whereas in the younger crust it is largely by advection. The physical oceanography data include conductivity temperature depth (CTD) casts, micro-structure casts, helium and other isotope data, together with seabed and moored temperature, pressure and Doppler current measurements. The inflowing water along the Ecuador trench initially mix with with the warmer water as it enters the basin. Mixing and heating continues as the water circulates into the western part of the basin where it shows no vertical density gradient for over 1000 m and an overall temperature increase of 0.25°C combined with a decrease of 0.01 psu in salinity. Evidence of hydrothermally driven plumes were also detected along the CRR but exact locations of their sources were not found. Our best estimate from the OSCAR data show that the geothermal contribution is over 70% to the abyssal water upwelling. This is the largest contribution yet observed in abyssal basins and is in line with a growing number of studies arguing that geothermal heating plays a significant role in driving the abyssal and global circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031367','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031367"><span>Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.</p> <p>2007-01-01</p> <p>Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911799N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911799N"><span>Sensitivity of the ocean overturning circulation to wind and mixing: theoretical scalings and global ocean models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nikurashin, Maxim; Gunn, Andrew</p> <p>2017-04-01</p> <p>The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025545','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025545"><span>Role of colloidal material in the removal of 234Th in the Canada basin of the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Baskaran, M.; Swarzenski, P.W.; Porcelli, D.</p> <p>2003-01-01</p> <p>The phase partitioning of 234Th between dissolved ( 200m, general equilibrium existed between total 234Th and 238U. The inventory of SPM and the specific activity of particulate 234Th in the Canada Basin was about an order of magnitude higher than the profile reported for the Alpha Ridge ice camp station. This higher concentration of SPM in the southwestern Canada Basin is likely derived from ice-rafted sedimentary particles. Inventories of nutrients, and dissolved organic carbon and nitrogen in the upper 100 m of the Canada Basin are comparable to the other estimates for the central Arctic Ocean. Comparison of the mass concentrations of colloidal and filter-retained particulate matter as well as the activity of 234Th in these phases indicates that only a very small component of the colloidal material is actively involved in Th scavenging. Lower values of the conditional partition coefficient between the colloidal and dissolved phase indicate that the Arctic colloids are less reactive than colloidal material from other regions. The conditional partition coefficient between the filter-retained and dissolved phases (Kf) is generally higher than that for other regions, which is attributed to the higher complexation capacity of glacio-marine sedimentary particles in these waters. The 234Th-derived export of POC for the shelf and deep Canada Basin ranges between 5.6 and 6.5 mmol m-2 d-1, and is in agreement with other estimates reported for the central Arctic Ocean and Beaufort Sea. ?? 2003 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41B1953S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41B1953S"><span>Circulation in the Ecologically Protected Lau Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simons, E.; Speer, K. G.; Weijer, W.</p> <p>2016-12-01</p> <p>The Lau Basin, located in the South Pacific, north of New Zealand and East of Fiji, is a back-arc basin with active hydrothermal vents and volcanoes. In September 2015, the New Zealand Ministry for the Environment announced the new Kermadec Ocean Sanctuary in the southern portion of the basin. The sanctuary, which covers more than 620,000 square kilometers, is the world's largest protected marine environment boasting endangered species from turtles, whales, and seabirds to corals, shellfish, and zooplankton. Though protections are in place for the ecological residents of the basin, little is known about the fluid circulation that permits such ecological diversity. Whitworth et al. (1999), explored the water-masses associated with the deep western boundary current (DWBC) in the Tonga-Kermadec Trench and found the trench to be a passageway for Circumpolar Deep Water (CDW) into the South Pacific. In this project, an analysis of Ridge 2000 Program floats and Argo floats show intrusion of water from the trench into the basin, potentially providing another pathway of CDW into the western edge of the South Pacific. Using a simple model developed by Stommel-Arons (1960) and expanded upon by Pedlosky (1989) for abyssal circulation, the bulk of the flow pattern observed from the floats is qualitatively described, including the well-defined DWBC, first observed in this data, along the Lau-Fiji ridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCry....8..877C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCry....8..877C"><span>Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cochran, J. R.; Jacobs, S. S.; Tinto, K. J.; Bell, R. E.</p> <p>2014-05-01</p> <p>Ice shelves play key roles in stabilizing Antarctica's ice sheets, maintaining its high albedo and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry are important for assessing ocean-ice interactions and modeling ice response to climate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces a large volume of meltwater, but is close to being in overall mass balance. Here we invert NASA Operation IceBridge (OIB) airborne gravity data over the Abbot region to obtain sub-ice bathymetry, and combine OIB elevation and ice thickness measurements to estimate ice draft. A series of asymmetric fault-bounded basins formed during rifting of Zealandia from Antarctica underlie the Abbot Ice Shelf west of 94° W and the Cosgrove Ice Shelf to the south. Sub-ice water column depths along OIB flight lines are sufficiently deep to allow warm deep and thermocline waters observed near the western Abbot ice front to circulate through much of the ice shelf cavity. An average ice shelf draft of ~200 m, 15% less than the Bedmap2 compilation, coincides with the summer transition between the ocean surface mixed layer and upper thermocline. Thick ice streams feeding the Abbot cross relatively stable grounding lines and are rapidly thinned by the warmest inflow. While the ice shelf is presently in equilibrium, the overall correspondence between draft distribution and thermocline depth indicates sensitivity to changes in characteristics of the ocean surface and deep waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28202958','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28202958"><span>Decline in global oceanic oxygen content during the past five decades.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin</p> <p>2017-02-15</p> <p>Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12  mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15  mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PApGe.171.3351F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PApGe.171.3351F"><span>Marshall Islands Fringing Reef and Atoll Lagoon Observations of the Tohoku Tsunami</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, Murray; Becker, Janet M.; Merrifield, Mark A.; Song, Y. Tony</p> <p>2014-12-01</p> <p>The magnitude 9.0 Tohoku earthquake on 11 March 2011 generated a tsunami which caused significant impacts throughout the Pacific Ocean. A description of the tsunami within the lagoons and on the surrounding fringing reefs of two mid-ocean atoll islands is presented using bottom pressure observations from the Majuro and Kwajalein atolls in the Marshall Islands, supplemented by tide gauge data in the lagoons and by numerical model simulations in the deep ocean. Although the initial wave arrival was not captured by the pressure sensors, subsequent oscillations on the reef face resemble the deep ocean tsunami signal simulated by two numerical models, suggesting that the tsunami amplitudes over the atoll outer reefs are similar to that in deep water. In contrast, tsunami oscillations in the lagoon are more energetic and long lasting than observed on the reefs or modelled in the deep ocean. The tsunami energy in the Majuro lagoon exhibits persistent peaks in the 30 and 60 min period bands that suggest the excitation of closed and open basin normal modes, while energy in the Kwajalein lagoon spans a broader range of frequencies with weaker, multiple peaks than observed at Majuro, which may be associated with the tsunami behavior within the more irregular geometry of the Kwajalein lagoon. The propagation of the tsunami across the reef flats is shown to be tidally dependent, with amplitudes increasing/decreasing shoreward at high/low tide. The impact of the tsunami on the Marshall Islands was reduced due to the coincidence of peak wave amplitudes with low tide; however, the observed wave amplitudes, particularly in the atoll lagoon, would have led to inundation at different tidal phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP21B..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP21B..05L"><span>South China Sea Tectonics and Magnetics: Constraints from IODP Expedition 349 and Deep-tow Magnetic Surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, J.; Li, C. F.; Kulhanek, D. K.; Zhao, X.; Liu, Q.; Xu, X.; Sun, Z.; Zhu, J.</p> <p>2014-12-01</p> <p>The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction. In January-March 2014, Expedition 349 of the International Ocean Discovery Program (IODP) drilled five sites in the deep basin of the SCS. Three sites (U1431, U1433, and U1434) cored into oceanic basement near the fossil spreading center on the East and Southwest Subbasins, whereas Sites U1432 and U1435 are located near the northern continent/ocean boundary of the East Subbasin. Shipboard biostratigraphy based on microfossils preserved in sediment directly above or within basement suggests that the preliminary cessation age of spreading in both the East and Southwest Subbasins is around early Miocene (16-20 Ma); however, post-cruise radiometric dating is being conducted to directly date the basement basalt in these subbasins. Prior to the IODP drilling, high-resolution near-seafloor magnetic surveys were conducted in 2012 and 2013 in the SCS with survey lines passing near the five IODP drilling sites. The deep-tow surveys revealed detailed patterns of the SCS magnetic anomalies with amplitude and spatial resolutions several times better than that of traditional sea surface measurements. Preliminary results reveal several episodes of magnetic reversal events that were not recognized by sea surface measurements. Together the IODP drilling and deep-tow magnetic surveys provide critical constraints for investigating the processes of seafloor spreading in the SCS and evolution of a mid-ocean ridge from active spreading to termination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21829722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21829722"><span>Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A</p> <p>2011-01-01</p> <p>The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the world's least investigated deep-ocean basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS53A1173Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS53A1173Z"><span>Improving OBS operations in ultra-deep ocean during the Southern Mariana Trench expeditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, X.; Lin, J.; Xu, M.; Zhou, Z.</p> <p>2017-12-01</p> <p>The Mariana Trench Research Initiative, led by the South China Sea Institute of Oceanology of the Chinese Academy of Sciences and through international collaboration, focuses on investigating the deep and shallow lithospheric structure, earthquake characteristics, extreme geological environments, and the controlling geodynamic mechanisms for the formation of Earth's deepest basins in the southern Mariana Trench. Two multidisciplinary research expeditions were executed during December 2016 and June 2017, respectively, on board R/V Shiyan 3. A main task of the Mariana Initiative is to conduct the Southern Mariana OBS Experiment (SMOE), the first OBS seismic experiment across the Challenger Deep. The SMOE expeditions include both active and passive source seismic experiments and employed a large number of broadband OBS instruments. Due to the deep water, rough weather, strong winds, and other unfavorable factors, it was challenging to deploy/recover the OBSs. During the two expeditions we developed and experimented with a number of ways to improve the success rate of OBS operations in the harsh ultra-deep ocean environment of the Southern Mariana Trench. All newly acquired OBSs underwent a series of uniquely designed deep-ocean tests to improve the instrument performance and maximize reliability during their deployment under the ultra-high pressure conditions. The OBS deployment and recovery followed a unified standard operation procedure and aided by an instrumental checklist, which were specifically designed and strictly enforced for operation during the expeditions. Furthermore, an advanced ship-based radio positioning system was developed to rapidly and accurately locate the OBS instruments when they reached the sea surface; the system proved its effectiveness even under extreme weather conditions. Through the development and application of the novel methods for operation in deep oceans, we overcame the rough sea and other unfavorable factors during the first two expeditions to the southern Mariana Trench and achieved a highly successful OBS operation program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3150416','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3150416"><span>Deep-Water Chemosynthetic Ecosystem Research during the Census of Marine Life Decade and Beyond: A Proposed Deep-Ocean Road Map</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>German, Christopher R.; Ramirez-Llodra, Eva; Baker, Maria C.; Tyler, Paul A.</p> <p>2011-01-01</p> <p>The ChEss project of the Census of Marine Life (2002–2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71°N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72°N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean – the largest contiguous habitat for life within Earth's biosphere, but also the world's least investigated deep-ocean basin. PMID:21829722</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51C0495P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51C0495P"><span>The Research of Tectonic Framework and the Fault Activity in Large Detachment Basin System on Northern Margin of South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, L., Sr.; Ren, J.</p> <p>2017-12-01</p> <p>The South China Sea (SCS) is one of the largest marginal sea on southeast Asia continental margin, developed Paleogene extension-rifting continental margin system which is rare in the world and preserving many deformed characterizes of this kind system. With the investigation of the SCS, guiding by the development of tectonics and geo-physics, especially the development of tectonics and the high quality seismic data based on the development of geo-physics, people gradually accept that the northern margin of the SCS has some detachment basin characterizes. After researching the northern margin of the SCS, we come up with lithosphere profiles across the shelf, slope and deep sea basin in the northeast of the SCS to confirm the tectonic style of ocean-continental transition and the property of the detachment fault. Furthermore, we describe the outline of large detachment basins at northern SCS. Based on the large number of high-quality 2D and 3D deep seismic profile(TWT,10s), drilling and logging data, combined with domestic and international relevant researches, using basin dynamics and tectono-stratigraphy theory, techniques and methods of geology and geophysics, qualitative and quantitative, we describe the formation of the detachment basin and calculate the fault activity rate, stretching factor and settlement. According to the research, we propose that there is a giant and complete detachment basin system in the northern SCS and suggest three conclusions. First of all, the detachment basin system can be divided into three domains: proximal domain covering the Yangjiang Sag, Shenhu uplift and part of Shunde Sag, necking zone covering part of the Shunde Sag and Heshan Sag, distal domain covering most part of Heshan Sag. Second, the difference of the stretching factor is observed along the three domains of the detachment basin system. The factor of the proximal domain is the minimum among them. On the other side, the distal domain is the maximum among them. This phenomenon can be concluded as the factor is gradually increasing from the continent to the ocean. Third, the development of detachment basin is episodic which can be divided into two stages approximately: the rifting and thermal subsidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T31D0645V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T31D0645V"><span>Inferring the thermal structure of the Panama Basin by seismic attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vargas-Jimenez, C. A.; Pulido, J. E.; Hobbs, R. W.</p> <p>2017-12-01</p> <p>Using recordings of earthquakes on Oceanic Bottom Seismographs and onshore stations on the coastal margins of Colombia, Panama, and Ecuador, we discriminate intrinsic and scattering attenuation processes in the upper lithosphere of the Panama Basin. The tomographic images of the derived coda-Q values are correlated with estimates of Curie Point Depth and measured and theoretical heat flow. Our study reveals three tectonic domains where magmatic/hydrothermal activity or lateral variations of the lithologic composition in the upper lithosphere can account for the modelled thermal structure and the anelasticity. We find that the Costa Rica Ridge and the Panama Fracture Zone are significant tectonic features in the study area. We interpret a large and deep intrinsic attenuation anomaly as related to the heat source at this ocean spreading center and show how interactions with regional fault systems cause contrasting attenuation anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4055836','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4055836"><span>Enhanced role of eddies in the Arctic marine biological pump</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Watanabe, Eiji; Onodera, Jonaotaro; Harada, Naomi; Honda, Makio C.; Kimoto, Katsunori; Kikuchi, Takashi; Nishino, Shigeto; Matsuno, Kohei; Yamaguchi, Atsushi; Ishida, Akio; Kishi, Michio J.</p> <p>2014-01-01</p> <p>The future conditions of Arctic sea ice and marine ecosystems are of interest not only to climate scientists, but also to economic and governmental bodies. However, the lack of widespread, year-long biogeochemical observations remains an obstacle to understanding the complicated variability of the Arctic marine biological pump. Here we show an early winter maximum of sinking biogenic flux in the western Arctic Ocean and illustrate the importance of shelf-break eddies to biological pumping from wide shelves to adjacent deep basins using a combination of year-long mooring observations and three-dimensional numerical modelling. The sinking flux trapped in the present study included considerable fresh organic material with soft tissues and was an order of magnitude larger than previous estimates. We predict that further reductions in sea ice will promote the entry of Pacific-origin biological species into the Arctic basin and accelerate biogeochemical cycles connecting the Arctic and subarctic oceans. PMID:24862402</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.6463E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.6463E"><span>Is The Oxygen Decreasing In The Mediterranean Sea ?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El Boukhary, M. S.; Ruiz-Pino, D.; Béthoux, J. P.</p> <p></p> <p>The Mediterranean Sea, surrounded by more than 300 million of inhabitants, is sub- jected to strong environmental perturbations. The nutrients (phosphorus, P and nitro- gen, N) external inputs increases by 3 % per year since the 1960s as a consequence of the local industrial and agricultural activities. Its led the increases of : deep P con- centrations (0.53 % per year) and N (0.56 % per year), new or exported production and the modifications of molar ratios in the Western basin (Béthoux et al., 2001). P/N/Si/C is about 1/22/21/154 in this basin; instead the classic world ocean molar ratio of 1/16/15/106. Associated to these biogeochemical changes, a drastic increase of the quantity of deep water formed in the Aegean Sea (Roether et al., 1996 ; Klein et al., 1999) has been occurred since 1988 probably induced by the climatic pertur- bation (Lascaratos et al., 1999). Both modifications, nutrients and circulation would lead to important changes in the oxygen content of Mediterranean deep waters. The long-term trends of the oxygen content were estimated by using the historical data existing between 1960 and 2000 in the following basins : Alboran, Algero Provençal, Tyrrhenian, Ionian, Levantine, Adriatic and Aegean (SELMEDAR, Ifremer database), MAST European program). A statistical treatment allowed simultaneously to define the confidence interval of the data distributed in different layers (surface (100 m), in- termediate (500 m), deep (1200 m) and very deep), and to estimate the significativity of the long term trend variation. A significant decrease (~0.2 % per year) of the oxy- gen is detectable in deep Alboran sea only. This intense oxygen decrease would be linked to the strong quantity of carbon which deposit in this sea, consequence of the intense primary productivity. The absence of the oxygen decrease in the other Mediter- ranean basins, in spite of the increases of exported production, could be connected to a more important contribution of oxygen during the Mediterranean deep water forma- tion compared to the oxygen consumed during the remineralization. The thermohaline circulation changes affect considerably the oxygen trends in both Western and Eastern basins. Then, that no decrease had been revealed in the Algero Provençal basin before 1988, it is a decrease of about 0.6 % per year that is estimated after this period. This decrease, would be the consequence of a contribution of an oxygen impoverished Lev- antine water; associated probably to the upwelling intensification (Lascaratos et al., 1999). At the contrary, in the Eastern basin, an oxygen increase from 0.3 to 1.3 % per year are respectively estimated for the Ionian and Levantine very deep waters. These two changes are associated to the oxygen input coming from the Aegean Sea new deep 1 water also. All these variations of the deep waters oxygen content affect considerably the remineralization and the preservation of the organic matter. The marked decrease in the Alboran sea would be in agreement with a very marked presence of sapropels in this basin from the late Pliocene to the Holocene (Béthoux and Pierre, 1999). The oxygen increase in the Eastern basin following the intensification of the deep water formation suggests a present trend which is opposite to the sapropel periods 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.6478E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.6478E"><span>Is The Oxygen Decreasing In The Mediterranean Sea ?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El Boukhary, M. S.; Ruiz-Pino, D.; Béthoux, J. P.</p> <p></p> <p>The Mediterranean Sea, surrounded by more than 300 million of inhabitants, is sub- jected to strong environmental perturbations. The nutrients (phosphorus, P and nitro- gen, N) external inputs increases by 3 % per year since the 1960s as a consequence of the local industrial and agricultural activities. Its led the increases of : deep P con- centrations (0.53 % per year) and N (0.56 % per year), new or exported production and the modifications of molar ratios in the Western basin (Béthoux et al., 2001). P/N/Si/C is about 1/22/21/154 in this basin; instead the classic world ocean molar ratio of 1/16/15/106. Associated to these biogeochemical changes, a drastic increase of the quantity of deep water formed in the Aegean Sea (Roether et al., 1996 ; Klein et al., 1999) has been occurred since 1988 probably induced by the climatic pertur- bation (Lascaratos et al., 1999). Both modifications, nutrients and circulation would lead to important changes in the oxygen content of Mediterranean deep waters. The long-term trends of the oxygen content were estimated by using the historical data existing between 1960 and 2000 in the following basins : Alboran, Algero Provençal, Tyrrhenian, Ionian, Levantine, Adriatic and Aegean (SELMEDAR, Ifremer database), MAST European program). A statistical treatment allowed simultaneously to define the confidence interval of the data distributed in different layers (surface (100 m), in- termediate (500 m), deep (1200 m) and very deep), and to estimate the significativity of the long term trend variation. A significant decrease (~0.2 % per year) of the oxy- gen is detectable in deep Alboran sea only. This intense oxygen decrease would be linked to the strong quantity of carbon which deposit in this sea, consequence of the intense primary productivity. The absence of the oxygen decrease in the other Mediter- ranean basins, in spite of the increases of exported production, could be connected to a more important contribution of oxygen during the Mediterranean deep water forma- tion compared to the oxygen consumed during the remineralization. The thermohaline circulation changes affect considerably the oxygen trends in both Western and Eastern basins. Then, that no decrease had been revealed in the Algero Provençal basin before 1988, it is a decrease of about 0.6 % per year that is estimated after this period. This decrease, would be the consequence of a contribution of an oxygen impoverished Lev- antine water; associated probably to the upwelling intensification (Lascaratos et al., 1999). At the contrary, in the Eastern basin, an oxygen increase from 0.3 to 1.3 % per year are respectively estimated for the Ionian and Levantine very deep waters. These two changes are associated to the oxygen input coming from the Aegean Sea new deep 1 water also. All these variations of the deep waters oxygen content affect considerably the remineralization and the preservation of the organic matter. The marked decrease in the Alboran sea would be in agreement with a very marked presence of sapropels in this basin from the late Pliocene to the Holocene (Béthoux and Pierre, 1999). The oxygen increase in the Eastern basin following the intensification of the deep water formation suggests a present trend which is opposite to the sapropel periods. 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010DSRII..57..111R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010DSRII..57..111R"><span>Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raskoff, K. A.; Hopcroft, R. R.; Kosobokova, K. N.; Purcell, J. E.; Youngbluth, M.</p> <p>2010-01-01</p> <p>In order to provide a baseline understanding of gelatinous zooplankton biodiversity and distribution in the rapidly changing Arctic Ocean, 12 stations were sampled across the Canada Basin, Northwind Ridge, and Chukchi Plateau with detailed deep-water ROV observations and multinet tows down to 3000 m. The complex, multi-origin water layers of the Arctic Ocean provided the backdrop for examining the vertical and horizontal distributions of the poorly understood meso and bathypelagic gelatinous taxa. Over 50 different gelatinous taxa were observed across the stations, with cnidarians being the most common group. Medusae accounted for 60% of all observations, siphonophores for 24%, larvaceans for 10%, ctenophores for 5%, and numerous interesting and rarer taxa constituted the remaining 1% of observations. Several new species were found and many major range extensions were observed. Both the vertical and horizontal distribution of species appear to be linked to water mass characteristics, as well as bottom topography and geographic location within the study area. Shallow slope and ridge areas around the Canada Basin and Chukchi Plateau appear to harbor substantially lower gelatinous zooplankton biomass and diversity than the deeper locations. Shallow stations not only show reduced abundance, but also different relative abundance of the major taxa, where the shallow water stations are dominated by large numbers of siphonophores and ctenophores, the deep stations are dominated by medusae. Taxonomic issues and ecological observations of several important species are discussed, aided by the live collection of many undamaged and fragile species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993Tectp.226..227B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993Tectp.226..227B"><span>Initiation and evolution of the Oligo-Miocene rift basins of southwestern Europe: Contribution of deep seismic reflection profiling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bois, C.</p> <p>1993-11-01</p> <p>Southwestern European Oligo-Miocene rift basins have recently been investigated by deep seismic reflection profiling. The study of these data, together with other geophysical and geological data, shows that the rifts, which run from the Rhinegraben to the western Mediterranean, do not form a single clearcut system. The N-trending rifts (Rhinegraben, Bresse and Limagne) were developed on a cold and rigid lithosphere affected by the Alpine collision. The NE-trending rifts (southeastern France, Gulf of Lions and Valencia Trough) were formed slightly later in a backarc basin associated with an active segment of the European-Iberian plate that was heated, affected by widespread calcalkaline volcanism and probably weakened. All the southwestern European rifts and basins together may, however, be related to a common heritage represented by the boundary between the European-Iberian and African-Apulian plates that was created in the Jurassic with the initiation of the Tethys Ocean. The present features of the southwestern European Oligo-Miocène rift basins may be explained by a combination of three geodynamic mechanisms: mechanical stretching of the lithosphere, active mantle uplifting, and subordinate lithospheric flexuring. All the rifts were probably initiated by passive stretching. A systematic discrepancy between stretching derived from fault analysis and attenuation of the crust has been observed in all the rifts. This suggests that these rifts were subsequently reworked by one or several active mantle upwelling events associated with late shoulder uplift, asthenosphere upwelling and anomalous P-wave velocities in the lowermost crust and the uppermost mantle. Crustal attenuation may have been achieved by mantle intrusion, metamorphism of the deep crust and/or its delamination. Some of the rifts were affected by lithospheric flexuring. Combinations, in various proportions, of a small number of geodynamic mechanisms probably controlled many basins in the world. This explains the unique characteristics of each basin, difficulties in basin classification and the frequent failure of single-mechanism models to explain the geological observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PrOce.155...28H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PrOce.155...28H"><span>Spatio-temporal dynamics of cod nursery areas in the Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hinrichsen, H.-H.; von Dewitz, B.; Lehmann, A.; Bergström, U.; Hüssy, K.</p> <p>2017-06-01</p> <p>In this study the drift of eastern Baltic cod larvae and juveniles spawned within the historical eastern Baltic cod spawning grounds was investigated by detailed drift model simulations for the years 1971-2010, to examine the spatio-temporal dynamics of environmental suitability in the nursery areas of juvenile cod settlement. The results of the long-term model scenario runs, where juvenile cod were treated as simulated passively drifting particles, enabled us to find strong indications for long-term variations of settlement and potentially the reproduction success of the historically important eastern Baltic cod nursery grounds. Only low proportions of juveniles hatched in the Arkona Basin and in the Gotland Basin were able to settle in their respective spawning ground. Ocean currents were either unfavorable for the juveniles to reach suitable habitats or transported the juveniles to nursery grounds of neighboring subdivisions. Juveniles which hatched in the Bornholm Basin were most widely dispersed and showed the highest settlement probability, while the second highest settlement probability and horizontal dispersal was observed for juveniles originating from the Gdansk Deep. In a long-term perspective, wind-driven transport of larvae/juveniles positively affected the settlement success predominately in the Bornholm Basin and in the Bay of Gdansk. The Bornholm Basin has the potential to contribute on average 54% and the Bay of Gdansk 11% to the production of juveniles in the Baltic Sea. Furthermore, transport of juveniles surviving to the age of settlement with origin in the Bornholm Basin contributed on average 13 and 11% to the total settlement in the Arkona Basin and in the Gdansk Deep, respectively. The time-series of the simulated occupied juvenile cod habitat in the Bornholm Basin and in the Gdansk Deep showed a similar declining trend as the Fulton's K condition factor of demersal 1-group cod, which may confirm the importance of oxygen-dependent habitat availability and its effect on density dependence as a process relevant for recruitment success.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4595C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4595C"><span>Morphotectonics of Sea of Marmara: A Basin on North Anatolian Continental Transform Plate Boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Çaǧatay, M. Namık; Uçarkuş, Gülsen; Eriş, K. Kadir; Henry, Pierre; Geli, Louis; Gasperini, Luca</p> <p>2017-04-01</p> <p>The Sea of Marmara is located the North Anatolian Fault (NAF), a continental transform plate boundary between the Eurasian and Anatolian-Aegean plates. The area is also under the influence of the N-S extensional Aegean regime. The 100 km-wide NAF zone in the Marmara region accommodates about 25 mm/yr dextral motion, with 70-80% of this displacement taking place along the northern branch of the NAF, the Main Marmara Fault in the Sea of Marmara. The main morphological elements of the Sea of Marmara consists of less than 100 m deep shelf areas, 1250 m three deep sub-basins (Tekirdaǧ, Central and Çınarcık) and two NE-trending pressure highs (Western and Central) separating the deep subbasins. The other elements are 800 m deep Kumburgaz Basin on the Central High, 400 m deep İmralı Basin in the south, and 100-200 m deep, E-W oriented gulfs or bays. The slopes connecting the shelf to the deep basins have slope angles ranging between 6° and 29°, and are incised by submarine canyons and marked by landslides scars. The basins have accumulated up to 6 km thick sediments. They are subsiding at a rate 5-6 mm/year and accumulating sediments at rates of 1-3 mm/yr over the last 15 ka, with the rates for the glacial periods being the 2-3 times that for interglacials. The sedimentation rates over the highs range between 0.2 and 0.4 mm/yr over the last 70 ka. The morphology of the Sea of Marmara is controlled by the NAF activity that was in turn guided a complex basement structure in the region. The basement of the Sea of Marmara region consists of various micro-continents (Istanbul Zone and Rhodope-Pontide and Sakarya continents), ophiolitic suture zones and the hydrocarbon bearing Eocene-Middle Miocene Thrace Basin on the southern margin of Rhodope-Pontide continent. After closure of the Intra-Pontide Ocean and the collision of the Sakarya and Rhodope-Pontide continents during the Oligocene-Early Miocene, the region was uplifted, and subjected to peneplanation during the mid-Late Miocene. The incipient NAF activity started about the same time, when the Marmara region was covered by shallow lakes. Initiation of crustal extension and strain localization in the Sea of Marmara area started in the Earliest Pliocene while shallow siliciclastic and carbonate sediment were deposited. Considering the rates of subsidence and sedimentation, the present day morphology of the Sea of Marmara, with its transtensional basins and the intervening highs between the splays of the NAF, developed mainly during the last 1-2 Ma. This geomorphic evolution is reviewed on the basis of published and unpublished data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.T23A1999L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.T23A1999L"><span>Sunda-Banda Arc Transition: Marine Multichannel Seismic Profiling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lueschen, E.; Mueller, C.; Kopp, H.; Djajadihardja, Y.; Ehrhardt, A.; Engels, M.; Lutz, R.; Planert, L.; Shulgin, A.; Working Group, S.</p> <p>2008-12-01</p> <p>After the Indian Ocean Mw 9.3 earthquake and tsunami on December 26, 2004, intensive research activities focussed on the Sunda Arc subduction system offshore Sumatra. For this area a broad database is now available interpreted in terms of plate segmentation and outer arc high evolution. In contrast, the highly active easternmost part of this subduction system, as indicated by the south of Java Mw 7.7 earthquake and tsunami on July 17, 2006, has remained almost unexplored until recently. During RV SONNE cruise SO190 from October until December 2006 almost 5000 km of marine geophysical profiles have been acquired at the eastern Sunda Arc and the transition to the Banda Arc. The SINDBAD project (Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition) comprises 30-fold multichannel reflection seismics with a 3-km streamer, wide-angle OBH/OBS refraction seismics for deep velocity control (see poster of Shulgin et al. in this session), swath bathymetry, sediment echosounder, gravimetric and geomagnetic measurements. We present data and interpretations of several 250-380 km long, prestack depth-migrated seismic sections, perpendicular to the deformation front, based on velocity models from focussing analysis and inversion of OBH/OBS refraction data. We focus on the variability of the lower plate and the tectonic response of the overriding plate in terms of outer arc high formation and evolution, forearc basin development, accretion and erosion processes at the base of the overriding plate. The subducting Indo-Australian Plate is characterized by three segments: i) the Roo Rise with rough topography offshore eastern Java ii) the Argo Abyssal Plain with smooth oceanic crust offshore Bali, Lombok, and Sumbawa, and iii) the Scott Plateau with continental crust colliding with the Banda island arc. The forearc responds to differences in the incoming oceanic plate with the absence of a pronounced forearc basin offshore eastern Java and with development of the 4000 m deep forearc Lombok Basin offshore Bali, Lombok, and Sumbawa. The eastern termination of the Lombok Basin is formed by Sumba Island, which shows evidence for recent uplift, probably associated with the collision of the island arc with the continental Scott Plateau. The Sumba area represents the transition from subduction to collision. Our seismic profiles image the bending of the oceanic crust seaward of the trench and associated normal faulting. Landward of the trench, they image the subducting slab beneath the outer arc high, where the former bending-related normal faults appear to be reactivated as reverse faults introducing vertical displacements in the subducting slab. The accretionary prism and the outer arc high are characterized by an ocean-verging system of imbricate thrust sheets with major thrust faults connecting seafloor and detachment. Compression results in shortening and steepening of the imbricated thrust sheets building up the outer arc high. Tilted piggy-back basins and downlaps of tilted sediments in the southern Lombok forearc basin indicate ongoing uplift of the entire outer arc high, abrupt displacements, and recent tectonic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.198..315K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.198..315K"><span>Spatial and temporal trends in Precambrian nitrogen cycling: A Mesoproterozoic offshore nitrate minimum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koehler, Matthew C.; Stüeken, Eva E.; Kipp, Michael A.; Buick, Roger; Knoll, Andrew H.</p> <p>2017-02-01</p> <p>Fixed nitrogen is an essential nutrient for eukaryotes. As N2 fixation and assimilation of nitrate are catalyzed by metalloenzymes, it has been hypothesized that in Mesoproterozoic oceans nitrate was limited in offshore environments by low trace metal concentrations and high rates of denitrification in anoxic and episodically euxinic deep water masses, restricting eukaryotes to near-shore environments and limiting their evolutionary innovation. To date this hypothesis has only been tested in the Belt Supergroup (∼1.4 Ga), with results that support an onshore-offshore nitrate gradient as a potential control on eukaryote ecology. Here we present bulk nitrogen and organic carbon isotopic data from non-isochronous cross-basinal facies across the Bangemall (∼1.5 Ga) and the Roper (∼1.4-1.5 Ga) basins to better understand the extent and variability of onshore-offshore nitrogen isotope gradients in the Mesoproterozoic. Both basins show an average ∼1-2‰ enrichment in δ15Nbulk from deep to shallow facies, with a maximum range from -1‰ offshore to +7.5‰ onshore. Unlike the Belt basin, the Bangemall and Roper basins show some offshore δ15Nbulk values that are enriched beyond the isotopic range associated with biological N2 fixation alone. This suggests a mixture of aerobic and anaerobic metabolisms offshore. In shallow waters, where δ15Nbulk enrichment peaks, an aerobic nitrogen cycle was evidently operating. Even though isotopic signatures of aerobic nitrogen cycling are seen in all parts of the Bangemall and Roper basins, our data are consistent with a lateral gradient in nitrate availability within the photic zone, with higher concentrations in near-shore environments than offshore. The variability in δ15Nbulk values in each depositional environment and the consistently low δ15Nbulk values from Mesoproterozoic units compared to the Paleoproterozoic and Neoproterozoic suggest that nitrate concentrations in the global ocean were likely low. This trend is now seen in all three Mesoproterozoic basins so far examined, and contrasts with the Paleoproterozoic and Neoproterozoic where nearly all δ15Nbulk data plot above the N2 fixation window. Thus, we propose that the Mesoproterozoic ocean was characterized by a nitrate minimum, with the lowest concentrations in offshore environments. This inference is consistent with a Mesoproterozoic O2 decline following a temporary Paleoproterozoic O2 peak, and it further supports the idea that nitrate limitation offshore may have contributed to the restriction of photosynthetic eukaryotes to near-shore environments, delaying their rise to ecological dominance until the Neoproterozoic Era.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918903V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918903V"><span>The Tethys Rifting of the Valencia Trough Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viñas, Marina; Ranero, César R.; Cameselle, Alejandra L.</p> <p>2017-04-01</p> <p>The western Mediterranean submarine realm is composed of several basin inferred to be formed by a common geodynamic process: upper plate extension during slab rollback of a retreating subduction zone. Although the time evolution of the geometry of the trenches is debated, all models assume that basins opened sequentially from NW (Gulf of Lions) towards the SE (Ligurian-Provençal and later Tyrrhenian basins) and SW (Valencia Trough and later Algerian-South Balearic and Alboran Basin) as trenches migrated. Basin opening history is key to reconstruct kinematics of slab retreat preferred in each model. However, the deep structure of basins is inadequately known due to the paucity of modern wide-angle and multichannel reflection seismic studies across entire systems, and absence of deep drilling in the deep-water regions of the basins, as a result, much of the opening evolution is inferred from indirect evidence. In the Valencia Trough Basin (VTB), drilling and vintage seismic data provide good knowledge of the shallow geology of the basin. However, crustal-scale information across the entire VTB has been limited to two studies (Figure 1): One in the late 80's (Valsis experiment) with three Expanded Spread Profiles that yielded local 1D velocity/depth models used to constrain 2D gravity modeling, and a few multichannel seismic profiles along the Iberian shelf and across segments of the basin. A second study in the early 90's (ESCI experiment) collected a low-resolution deep-penetration multichannel seismic reflection profile across the basin and a coincident wide-angle seismic line with numerous land stations in Iberia but a handful of widely-spaced Ocean Bottom Seismometers. In the absence of modern detailed crustal structure, the origin and evolution of the VTB is still debated. Industry multichannel seismic reflection profiles cover the SW segment of the VTB. This is a region where the basin sea floor is comparatively shallower and has numerous industry wells reaching deep into the sediment sequence, which provides an unprecedented view of the tectonic structure and distribution of synrift deposits across the entire basin, from the Iberian to the North Balearic margin (Figure 2). Here we first show that the seismic records provide full crustal-scale information. Later we discuss the tectonic and sedimentary structure that supports that crustal stretching and basin formation of the VTB occurred fundamentally during the Mesozoic times by strike-slip tectonics and not during Tertiary times by back-arc extension. We show that the current sea floor morphological configuration giving rise to the so-called Valencia Trough does not represent the changes in crystalline basement thickness related to rifting, but fundamentally a product of sediment dynamics, particularly by the development during post-Messinian times of the Ebro-river delta. Our results are significant to understand Tethyan rifting and need to be considered for plate kinematic reconstructions of the western Mediterranean.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1407001','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1407001"><span>Typical aqueous rare earth element behavior in co-produced Brines, Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nye, Charles; Quillinan, Scott; McLing, Travis</p> <p></p> <p>Normalization of Rare Earth Elements (REEs) is important to remove the distracting effects of the Oddo–Harkins rule and provide a meaningful baseline. Normalizations for rocks are well developed and include chondritic meteorites, UCC, PM, PAAS, and NASC. However normalizations for aqueous REEs are limited to oceanic regions such as the North Pacific Deep Water or North Atlantic Surface Water. This leaves water in contact with continental lithologies without a suitable normalization. We present a preliminary continental aqueous REE normalization derived from 38 deep basin hydrocarbon brines in Wyoming. The REEs in these waters are seven orders of magnitude more dilutemore » than NASC but with significant europium enrichment. Gromet 1984 reports NASC Eu/Eu* is 0.2179, whereas in the normalization offered here, Eu/Eu* is 3.868. These waters also are free from the distracting reduction-oxidation cerium behavior found in ocean normalizations. Because these samples exhibit both the uniform behavior of NASC and the absolute concentration of seawater, a normalization based upon them offers a unique combination of the advantages of both. We used single-peak gaussian analysis to quantify the mean values for each REE and estimate the distribution variability. Additional sample collection during the last year revealed that the Powder River Basin (PRB) is atypical relative to the other sampled basins of Wyoming. Those other basins are the Wind River Basin (WRB) Green River Basin (GRB) and Wamsutter Area (WA). A pre-normalization gadolinium anomaly (Gd/Gd*) of between 4 and 23 with a mean of 11.5, defines the PRB samples. Other basins in this study range from 1 to 7 with a mean of 2.8. Finally, we present a preliminary model for ligand-based behavior of REEs in these samples. This model identifies bicarbonate, bromide, and chloride as forming significant complexes with REEs contributing to REE solubility. The ligand model explains observed REEs in the sampled Cretaceous and Paleocene clastic reservoirs. However, the presence of more REEs than predicted in six samples suggests that there is an additional, unconsidered ligand contributing to REE dissolution. Further work will identify this ligand, which appears to be confined to calcium-cemented and dolostone systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914696K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914696K"><span>Global Mapping of Oceanic and Continental Shelf Crustal Thickness and Ocean-Continent Transition Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kusznir, Nick; Alvey, Andy; Roberts, Alan</p> <p>2017-04-01</p> <p>The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1788P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1788P"><span>Geological Structure and History of the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Pospelov, Igor; Tolmacheva, Tatiana; Petrov, Eugeny</p> <p>2016-04-01</p> <p>New data on geological structure of the deep-water part of the Arctic Basin have been integrated in the joint project of Arctic states - the Atlas of maps of the Circumpolar Arctic. Geological (CGS, 2009) and potential field (NGS, 2009) maps were published as part of the Atlas; tectonic (Russia) and mineral resources (Norway) maps are being completed. The Arctic basement map is one of supplements to the tectonic map. It shows the Eurasian basin with oceanic crust and submerged margins of adjacent continents: the Barents-Kara, Amerasian ("Amerasian basin") and the Canada-Greenland. These margins are characterized by strained and thinned crust with the upper crust layer, almost extinct in places (South Barents and Makarov basins). In the Central Arctic elevations, seismic studies and investigation of seabed rock samples resulted in the identification of a craton with the Early Precambrian crust (near-polar part of the Lomonosov Ridge - Alpha-Mendeleev Rise). Its basement presumably consists of gneiss granite (2.6-2.2 Ga), and the cover is composed of Proterozoic quartzite sandstone and dolomite overlain with unconformity and break in sedimentation by Devonian-Triassic limestone with fauna and terrigenous rocks. The old crust is surrounded by accretion belts of Timanides and Grenvillides. Folded belts with the Late Precambrian crust are reworked by Caledonian-Ellesmerian and the Late Mesozoic movements. Structures of the South Anuy - Angayucham ophiolite suture reworked in the Early Cretaceous are separated from Mesozoides proper of the Pacific - Verkhoyansk-Kolyma and Koryak-Kamchatka belts. The complicated modern ensemble of structures of the basement and the continental frame of the Arctic Ocean was formed as a result of the conjugate evolution and interaction of the three major oceans of the Earth: Paleoasian, Paleoatlantic and Paleopacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25368148','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25368148"><span>Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steiner, Zvi; Erez, Jonathan; Shemesh, Aldo; Yam, Ruth; Katz, Amitai; Lazar, Boaz</p> <p>2014-11-18</p> <p>Basin-scale calcification rates are highly important in assessments of the global oceanic carbon cycle. Traditionally, such estimates were based on rates of sedimentation measured with sediment traps or in deep sea cores. Here we estimated CaCO3 precipitation rates in the surface water of the Red Sea from total alkalinity depletion along their axial flow using the water flux in the straits of Bab el Mandeb. The relative contribution of coral reefs and open sea plankton were calculated by fitting a Rayleigh distillation model to the increase in the strontium to calcium ratio. We estimate the net amount of CaCO3 precipitated in the Red Sea to be 7.3 ± 0.4·10(10) kg·y(-1) of which 80 ± 5% is by pelagic calcareous plankton and 20 ± 5% is by the flourishing coastal coral reefs. This estimate for pelagic calcification rate is up to 40% higher than published sedimentary CaCO3 accumulation rates for the region. The calcification rate of the Gulf of Aden was estimated by the Rayleigh model to be ∼1/2 of the Red Sea, and in the northwestern Indian Ocean, it was smaller than our detection limit. The results of this study suggest that variations of major ions on a basin scale may potentially help in assessing long-term effects of ocean acidification on carbonate deposition by marine organisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4246267','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4246267"><span>Basin-scale estimates of pelagic and coral reef calcification in the Red Sea and Western Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Steiner, Zvi; Erez, Jonathan; Shemesh, Aldo; Yam, Ruth; Katz, Amitai; Lazar, Boaz</p> <p>2014-01-01</p> <p>Basin-scale calcification rates are highly important in assessments of the global oceanic carbon cycle. Traditionally, such estimates were based on rates of sedimentation measured with sediment traps or in deep sea cores. Here we estimated CaCO3 precipitation rates in the surface water of the Red Sea from total alkalinity depletion along their axial flow using the water flux in the straits of Bab el Mandeb. The relative contribution of coral reefs and open sea plankton were calculated by fitting a Rayleigh distillation model to the increase in the strontium to calcium ratio. We estimate the net amount of CaCO3 precipitated in the Red Sea to be 7.3 ± 0.4·1010 kg·y−1 of which 80 ± 5% is by pelagic calcareous plankton and 20 ± 5% is by the flourishing coastal coral reefs. This estimate for pelagic calcification rate is up to 40% higher than published sedimentary CaCO3 accumulation rates for the region. The calcification rate of the Gulf of Aden was estimated by the Rayleigh model to be ∼1/2 of the Red Sea, and in the northwestern Indian Ocean, it was smaller than our detection limit. The results of this study suggest that variations of major ions on a basin scale may potentially help in assessing long-term effects of ocean acidification on carbonate deposition by marine organisms. PMID:25368148</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28659874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28659874"><span>The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campeão, Mariana E; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L; Thompson, Cristiane C</p> <p>2017-01-01</p> <p>One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae , and Alcanivoracaceae ), archaea (e.g., Halobacteriaceae, Desulfurococcaceae , and Methanobacteriaceae ), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5468453','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5468453"><span>The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Campeão, Mariana E.; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L.; Thompson, Cristiane C.</p> <p>2017-01-01</p> <p>One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae), archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web. PMID:28659874</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP23D..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP23D..02M"><span>Millennial Variability of Eastern Equatorial Bottom Water Oxygenation and Atmospheric CO2 over the past 100 kyr</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marcantonio, F.; Loveley, M.; Wisler, M.; Hostak, R.; Hertzberg, J. E.; Schmidt, M. W.; Lyle, M. W.</p> <p>2017-12-01</p> <p>Storage of respired carbon in the deep ocean may play a significant role in lowering atmospheric CO2 concentrations by about 80 ppm during the last glacial maximum compared to pre-industrial times. The cause of this sequestration and the subsequent release of the deep respired carbon pool at the last termination remains elusive. Within the last glacial period, on millennial timescales, the relationship between the CO2 cycle and any waxing and waning of a deep respired pool also remains unclear. To further our understanding of the millennial variability in the storage of a deep-ocean respired carbon pool during the last glacial, we measure authigenic uranium and 230Th-derived non-lithogenic barium fluxes (xsBa flux) in two high-sedimentation-rate cores from the Panama Basin of the Eastern Equatorial Pacific (EEP) (8JC, 6° 14.0' N, 86° 02.6' W; 1993 m water depth; 17JC 00° 10.8' S, 85° 52.0' W; 2846 m water depth). Sediment authigenic U concentrations are controlled by the redox state of sediments which, in turn, is a function of the rain of organic material from the surface ocean and the oxygen content of bottom waters. At both 8JC and 17JC, the mismatch between xsBa fluxes, a proxy for the reconstruction of oceanic productivity, and authigenic uranium concentrations suggests that the primary control of the latter values is changes in bottom water oxygenation. Peak authigenic uranium concentrations occur during glacial periods MIS 2, 3, and 4, respectively, and are two to three times higher than those during interglacial periods, MIS 1 and 5. EEP bottom waters were likely suboxic during times of the last glacial period when atmospheric CO2 concentrations were at their lowest concentrations. In addition, the pattern of increased deep-water oxygenation during times of higher CO2 during the last glacial is similar to that reported in a study of authigenic U in sediments from the Antarctic Zone of the Southern Ocean (Jaccard et al., 2016). We suggest that a respired carbon pool existed within a large swath of the abyssal Southern and Pacific Oceans throughout the entire last glacial cycle, and that this respired carbon was periodically released through increased ventilation of deep ocean waters. Jaccard et al. (2016) Nature 530, 207-210.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.458..223L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.458..223L"><span>The transfer of bomb radiocarbon and anthropogenic lead to the deep North Atlantic Ocean observed from a deep sea coral</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Jong-Mi; Eltgroth, Selene F.; Boyle, Edward A.; Adkins, Jess F.</p> <p>2017-01-01</p> <p>Deep-ocean, Δ14C, Pb concentrations, and Pb isotopes were reconstructed from a deep-sea coral Enallopsammia rostrata from 1410 m depth off of Bermuda. Our high-resolution time series is created from closely spaced radial cross sections, with samples taken from the center of concentric coral growth bands that we show to be the oldest portion of the section. Prebomb radiocarbon ages from the coral demonstrate that the vertical growth rate of the coral is linear, and the age of the coral is estimated to be 560-630 yr old based on the growth rate. Using this age model to reconstruct Δ14C in deep seawater, we first detect bomb radiocarbon at the coral growth site around 1980, and show that Δ14C increased from - 80 ± 1 ‰ (average 1930-1979) to a plateau at - 39 ± 3 ‰ (1999-2001). Pb/Ca of the coral ranges between 1.1-4.5 nmol/mol during the 16th and 17th centuries, and Pb isotope ratios (206Pb/207Pb = 1.21, 208Pb/207Pb = 2.495) in this period agree with pre-anthropogenic values found in the pelagic sediments of the North Atlantic Ocean basin. Coral Pb/Ca is slightly elevated to 6.2 ± 0.9 nmol /mol between the 1740s and the 1850s and then increases to 25.1 ± 0.2 nmol /mol in the 1990s. The increase in coral Pb/Ca is accompanied by a decrease in coral 206Pb/207Pb and 208Pb/207Pb, indicating that the increase was caused by the infiltration of anthropogenic Pb to the coral growth site. Comparing our data to the surface coral Δ14C and Pb records from Bermuda reveals a time scale of tracer transport from the surface ocean to the coral growth site. Some characteristic features, e.g., the bomb-derived Δ14C increase, appear in the deep ocean approximately 25 yr later than the surface, but the overall increase of Δ14C and Pb in the deep ocean is smaller and slower than the surface, showing the importance of mixing during the transport of these tracers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5204157','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5204157"><span>A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2016-01-01</p> <p>Deep-sea hydrothermal vents and methane seeps are inhabited by members of the same higher taxa but share few species, thus scientists have long sought habitats or regions of intermediate character that would facilitate connectivity among these habitats. Here, a network analysis of 79 vent, seep, and whale-fall communities with 121 genus-level taxa identified sedimented vents as a main intermediate link between the two types of ecosystems. Sedimented vents share hot, metal-rich fluids with mid-ocean ridge-type vents and soft sediment with seeps. Such sites are common along the active continental margins of the Pacific Ocean, facilitating connectivity among vent/seep faunas in this region. By contrast, sedimented vents are rare in the Atlantic Ocean, offering an explanation for the greater distinction between its vent and seep faunas compared with those of the Pacific Ocean. The distribution of subduction zones and associated back-arc basins, where sedimented vents are common, likely plays a major role in the evolutionary and biogeographic connectivity of vent and seep faunas. The hypothesis that decaying whale carcasses are dispersal stepping stones linking these environments is not supported. PMID:27974524</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27811733','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27811733"><span>The rare deep-living hyperiid amphipod Megalanceoloides remipes (Barnard, 1932): complementary description and symbiosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gasca, Rebeca; Haddock, Steven H D</p> <p>2016-10-20</p> <p>A female ovigerous specimen of the rare deep-living hyperiid Megalanceoloides remipes (Barnard, 1932) was collected with a remotely operated submersible (ROV) at a depth of 2,094 m in the Farallon Basin, Gulf of California. The specimen was found to be symbiotically associated with the siphonophore Apolemia sp. Eschscholtz, 1829. Hitherto, this species was known only from two other specimens, one from the South Atlantic and another from the Indian Ocean; the present record is the first from the Pacific Ocean. Previous descriptions lacked morphological details of different appendages; these data are provided here. In addition, we present the first data on its symbiotic association from in situ observations. The colors of the hyperiid and of some parts of the Apolemid were very similar, thus supporting the notion that some hyperiids tend to mimic the color of its host.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27512389','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27512389"><span>Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Meng; Jain, Sunit; Dick, Gregory J</p> <p>2016-01-01</p> <p>Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4962555','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4962555"><span>Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Meng; Jain, Sunit; Dick, Gregory J.</p> <p>2016-01-01</p> <p>Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes. PMID:27512389</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3817589','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3817589"><span>Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Richter, Claudio</p> <p>2013-01-01</p> <p>Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century. PMID:24255810</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24255810','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24255810"><span>Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fillinger, Laura; Richter, Claudio</p> <p>2013-01-01</p> <p>Cold-water corals provide an important habitat for a rich fauna along the continental margins and slopes. Although these azooxanthellate corals are considered particularly sensitive to ocean acidification, their responses to natural variations in pH and aragonite saturation are largely unknown due to the difficulty of studying their ecology in deep waters. Previous SCUBA investigations have shown an exceptionally shallow population of the cold-water coral Desmophyllum dianthus in near-surface waters of Comau Fjord, a stratified 480 m deep basin in northern Chilean Patagonia with suboxic deep waters. Here, we use a remotely operated vehicle to quantitatively investigate the distribution of D. dianthus and its physico-chemical drivers in so far uncharted naturally acidified waters. Remarkably, D. dianthus was ubiquitous throughout the fjord, but particularly abundant between 20 and 280 m depth in a pH range of 8.4 to 7.4. The persistence of individuals in aragonite-undersaturated waters suggests that present-day D. dianthus in Comau Fjord may show pre-acclimation or pre-adaptation to conditions of ocean acidification predicted to reach over 70% of the known deep-sea coral locations by the end of the century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.484..329V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.484..329V"><span>Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko</p> <p>2018-02-01</p> <p>North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70116459','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70116459"><span>Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chaytor, Jason D.; ten Brink, Uri S.</p> <p>2015-01-01</p> <p>The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic conditions in ocean passages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tectp.691...31A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tectp.691...31A"><span>Insights into the crustal structure of the transition between Nares Strait and Baffin Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar</p> <p>2016-11-01</p> <p>The crustal structure and continental margin between southern Nares Strait and northern Baffin Bay were studied based on seismic refraction and gravity data acquired in 2010. We present the resulting P wave velocity, density and geological models of the crustal structure of a profile, which extends from the Greenlandic margin of the Nares Strait into the deep basin of central northern Baffin Bay. For the first time, the crustal structure of the continent-ocean transition of the very northern part of Baffin Bay could be imaged. We divide the profile into three parts: continental, thin oceanic, and transitional crust. On top of the three-layered continental crust, a low-velocity zone characterizes the lowermost layer of the three-layered Thule Supergroup underneath Steensby Basin. The 4.3-6.3 km thick oceanic crust in the southern part of the profile can be divided into a northern and southern section, more or less separated by a fracture zone. The oceanic crust adjacent to the continent-ocean transition is composed of 3 layers and characterized by oceanic layer 3 velocities of 6.7-7.3 km/s. Toward the south only two oceanic crustal layers are necessary to model the travel time curves. Here, the lower oceanic crust has lower seismic velocities (6.4-6.8 km/s) than in the north. Rather low velocities of 7.7 km/s characterize the upper mantle underneath the oceanic crust, which we interpret as an indication for the presence of upper mantle serpentinization. In the continent-ocean transition zone, the velocities are lower than in the adjacent continental and oceanic crustal units. There are no signs for massive magmatism or the existence of a transform margin in our study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......206G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......206G"><span>Mechanisms of Ocean Heat Uptake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garuba, Oluwayemi</p> <p></p> <p>An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1212244W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1212244W"><span>AURORA BOREALIS: a polar-dedicated European Research Platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolff-Boenisch, Bonnie; Egerton, Paul; Thiede, Joern; Roberto, Azzolini; Lembke-Jene, Lester</p> <p>2010-05-01</p> <p>Polar research and in particular the properties of northern and southern high latitude oceans are currently a subject of intense scientific debate and investigations, because they are subject to rapid and dramatic climatic variations. Polar regions react more rapidly and intensively to global change than other regions of the earth. A shrinking of the Arctic sea-ice cover, potentially leading to an opening of sea passages to the north of North America and Eurasia, on the long to a "blue" Arctic Ocean would additionally have a strong impact on transport, commerce and tourism bearing potential risk for humans and complex ecosystems in the future. In spite of their critical role processes and feedbacks, especially in winter but not exclusively, are virtually unknown: The Arctic Ocean for example, it is the only basin of the world's oceans that has essentially not been sampled by the drill ships of the Deep-Sea Drilling Project (DSDP) or the Ocean Drilling Program (ODP) and its long-term environmental history and tectonic structure is therefore poorly known. Exceptions are the ODP Leg 151 and the more recent very successful ACEX-expedition of the Integrated Ocean Drilling Program (IODP) in 2004. To help to address the most pressing questions regarding climate change and related processes, a Pan-European initiative in the field of Earth system science has been put in place: AURORA BOREALIS is the largest environmental research infrastructure on the ESFRI roadmap of the European Community. AURORA BOREALIS is a very powerful research icebreaker, which will enable year-round operations in the Arctic and the Antarctic as well as in the adjacent ocean basins. Equipped with its drilling rig, the vessel is also capable to explore the presently completely unknown Arctic deep-sea floor. Last but not least, the ship is a floating observatory and mobile monitoring platform that permits to measure on a long-term basis comprehensive time series in all research fields relevant to global climate change. Chances and challenges rest in securing the construction and operation costs that need a dedicated consortium of interested countries and institutions to help tackling the biggest challenges of the next decades.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS23A1179W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS23A1179W"><span>Testing the Role of Microbial Ecology, Redox-Mediated Deep Water Production and Hypersalinity on TEX86: Lipids and 16s Sequences from Archaea and Bacteria in the Water Column and Sediments of Orca Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warren, C.; Romero, I.; Ellis, G.; Goddard, E.; Krishnan, S.; Nigro, L. M.; Super, J. R.; Zhang, Y.; Zhuang, G.; Hollander, D. J.; Pagani, M.</p> <p>2014-12-01</p> <p>Mesophilic marine archaea and bacteria are known to substantially contribute to the oceanic microbial biomass and play critical roles in global carbon, nitrogen and nutrient cycles. The Orca Basin, a 2400 meter deep bathymetric depression on the continental slope of the north-central Gulf of Mexico, is an ideal environment to examine how redox-dependent biochemical processes control the input and cycling of bacterial and archaea-derived lipid compounds from formation in near-surface water, through secondary recycling processes operating at the redox-transition in the water column, to sedimentary diagenetic processes operating in oxic to anoxic zones within the basin. The lowermost 180 meters of the Orca Basin is characterized by an anoxic, hypersaline brine that is separated from the overlying oxic seawater by a well-defined redox sequence associated with a systematic increasing in salinity from 35 - 250‰. While surface water conditions are viewed as normal marine with a seasonally productive water column, the sub-oxic to anoxic transition zones within the deep-water column and the sediment spans over 200 m allowing the unique opportunity for discrete sampling of resident organisms and lipids. Here we present 16s rRNA sequence data of Bacteria and Archaea collected parallel to GDGT lipid profiles and in situ environmental measurements from the sediment and overlying water column in the intermediate zone of the basin, where movements of chemical transition zones are preserved. We evaluated GDGTs and corresponding taxa across the surface water, chlorophyll maximum, thermocline, and the deep redox boundary, including oxygenation, denitrification, manganese, iron and sulfate reduction zones, to determine if GDGTs are being produced under these conditions and how surface-derived GDGT lipids and the TEX86 signal may be altered. The results have implications for the application of the TEX86 paleotemperature proxy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H53G1793M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H53G1793M"><span>Characterizating Multi-layered Coastal Aquifer using Pneumatic Slug Tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malama, B.; Abere, M.; Mikenna, M.</p> <p>2016-12-01</p> <p>Results of pneumatic slug tests conducted in a monitoring wells of a shallow aquifer on the California Central Coast are presented. The aquifer is in the Los Osos groundwater basin on the California Central Coast, a semi-closed near-triangular groundwater basin bounded to the north and south by impermeable igneousbed rock and to the west by the Pacific Ocean. The groundwater basin is a multi-layered system comprising a perched, near-surface semi-confined, and a deep confined aquifer. The unincorporated community of Los Osos is wholly dependent on the groundwater basin that is threatened with seawater intrusion and nitratecontamination. The slug tests reported here were performed in the perched and semi-confined aquifers as part of a seawater intrusion characterization study. The semi-confined and confined aquifers show evidence of seawater intrusion with upconing in some deep aquifer municipal wells. The upconing has beeninterpreted by previous studies as evidence of preferential flow through a high permeability channel. The objective of the work was to test this hypothesis by mapping the horizontal and vertical spatial variability of hydraulic parameters across the basin and establish the extent of the high permeability unit.Here only preliminary results of slug tests conducted across the basin for vertically averaged hydraulic parameters are reported. The results provide an indication of the horizontal variability of hydraulic parameters. An additional study will be performed to characterize the vertical variability to investigate the probableexistsence of a high permeability channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914653R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914653R"><span>The morphology and nature of the East Arctic ocean acoustic basement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rekant, Pavel</p> <p>2017-04-01</p> <p>As the result of the thorough interpretation and cross-correlation of the large seismic dataset (>150000 km and >600 seismic lines), the depth structure map of the acoustic basement was constrained. Tectonic framework, basement surface morphology and linkage of the deep basin structures with shelves ones, was significantly clarified based on the map. It becomes clear that most morphostructures presently located within deep-water basin are tectonically connected with shelf structures. Acoustic basement contains a number of pre-Cambrian, Caledonian and Mesozoic consolidated blocks. The basement heterogeneity is highlighted by faults framework and basement surface morphology differences, as well thickness and stratigraphy of the sediment cover. The deepest basins of the East Arctic - Hanna Trough, North Chukchi and Podvodnikov Basins form a united mega-depression, wedged between pre-Cambrian continental blocks (Chukchi Borderland - Mendeleev Rise - Toll Saddle) from the north and the Caledonian deformation front from the south. The basement age/origin speculations are consistent with paleontological and U-Pb zircon ages from dredged rock samples. Most of morphological boundaries in the modern Arctic differ considerably from the tectonic framework. Only part of the Arctic morphostructures is constrained by tectonic boundaries. They are: eastern slope of the Lomonosov Ridge, continental slope in the Laptev Sea, upper continental slope in the Podvodnikov Basin, southern slope of the North Chukchi Basin and borders of the Chukchi Borderland. The rest significant part of modern morphological boundaries are caused by sedimentation processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996PalOc..11..579S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996PalOc..11..579S"><span>Can increased poleward oceanic heat flux explain the warm Cretaceous climate?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, Gavin A.; Mysak, Lawrence A.</p> <p>1996-10-01</p> <p>The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric latent heat transport, where an increased hydrological cycle (especially in the tropical sinking cases) contributes up to an extra 1 PW of poleward heat transport. Better constraints on the oceanic deepwater circulation during this period are necessary before the meridional circulation can be unambiguously described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021827','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021827"><span>Paleohydrogeology of the San Joaquin basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilson, A.M.; Garven, G.; Boles, J.R.</p> <p>1999-01-01</p> <p>Mass transport can have a significant effect on chemical diagenetic processes in sedimentary basins. This paper presents results from the first part of a study that was designed to explore the role of an evolving hydrodynamic system in driving mass transport and chemical diagenesis, using the San Joaquin basin of California as a field area. We use coupled hydrogeologic models to establish the paleohydrogeology, thermal history, and behavior of nonreactive solutes in the basin. These models rely on extensive geological information and account for variable-density fluid flow, heat transport, solute transport, tectonic uplift, sediment compaction, and clay dehydration. In our numerical simulations, tectonic uplift and ocean regression led to large-scale changes in fluid flow and composition by strengthening topography-driven fluid flow and allowing deep influx of fresh ground water in the San Joaquin basin. Sediment compaction due to rapid deposition created moderate overpressures, leading to upward flow from depth. The unusual distribution of salinity in the basin reflects influx of fresh ground water to depths of as much as 2 km and dilution of saline fluids by dehydration reactions at depths greater than ???2.5 km. Simulations projecting the future salinity of the basin show marine salinities persisting for more than 10 m.y. after ocean regression. Results also show a change from topography-to compaction-driven flow in the Stevens Sandstone at ca. 5 Ma that coincides with an observed change in the diagenetic sequence. Results of this investigation provide a framework for future hydrologic research exploring the link between fluid flow and diagenesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSOD14B2420L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSOD14B2420L"><span>The CARIACO Ocean Time-Series: two decades of oceanographic observations to understand linkages between biogeochemistry, ecology, and long-term environmental variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenzoni, L.; Muller-Karger, F. E.; Rueda-Roa, D. T.; Thunell, R.; Scranton, M. I.; Taylor, G. T.; benitez-Nelson, C. R.; Montes, E.; Astor, Y. M.; Rojas, J.</p> <p>2016-02-01</p> <p>The CARIACO Ocean Time-Series project, located in the Cariaco Basin off the coast of Venezuela, seeks to understand relationships between hydrography, primary production, community composition, microbial activity, particle fluxes, and element cycling in the water column, and how variations in these processes are preserved in sediments accumulating in this anoxic basin. CARIACO uses autonomous and shipboard measurements to understand ecological and biogeochemical changes and how these relate to regional and global climatic/ocean variability. CARIACO is a model for national ocean observing programs in Central/South America, and has been developed as a community facility platform with open access to all data (http://imars.marine.usf.edu/cariaco). Research resulting from this program has contributed to knowledge about the decomposition and cycling of particles, the biological pump, and to our understanding of the ecology and oceanography of oxygen minimum zones. Despite this basin being anoxic below 250m, remineralization rates of organic matter are comparable to those in well oxygenated waters. A dynamic microbial community significantly influences carbon and nutrient biogeochemical cycling throughout the water column. Since 1995, declining particulate organic carbon fluxes have been measured throughout the water column using sediment traps, likely in response to declining Chl-a concentrations and smaller phytoplankton which have replaced the larger taxa over the past decade. This community shift appears to be caused by regional changes in the physical regime. CARIACO also recorded marked long-term changes in surface and deep DIC in response to a combination of factors including surface water warming. The observations of CARIACO highlight the importance of a sustained, holistic approach to studying biodiversity, ecology and the marine carbon cycle to predict potential impacts of climate change on the ocean's ecosystem services and carbon sequestration efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036528','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036528"><span>Chapter 48: Geology and petroleum potential of the Eurasia Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Thomas E.; Pitman, Janet K.</p> <p>2011-01-01</p> <p>The Eurasia Basin petroleum province comprises the younger, eastern half of the Arctic Ocean, including the Cenozoic Eurasia Basin and the outboard part of the continental margin of northern Europe. For the USGS petroleum assessment (CARA), it was divided into four assessment units (AUs): the Lena Prodelta AU, consisting of the deep-marine part of the Lena Delta; the Nansen Basin Margin AU, comprising the passive margin sequence of the Eurasian plate; and the Amundsen Basin and Nansen Basin AUs which encompass the abyssal plains north and south of the Gakkel Ridge spreading centre, respectively. The primary petroleum system thought to be present is sourced in c. 50–44 Ma (Early to Middle Eocene) condensed pelagic deposits that could be widespread in the province. Mean estimates of undiscovered, technically recoverable petroleum resources include <1 billion barrels of oil (BBO) and about 1.4 trillion cubic feet (TCF) of nonassociated gas in Lena Prodelta AU, and <0.4 BBO and 3.4 TCF nonassociated gas in the Nansen Basin Margin AU. The Nansen Basin and Amundsen Basin AUs were not quantitatively assessed because they have less than 10% probability of containing at least one accumulation of 50 MMBOE (million barrels of oil equivalent).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816029K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816029K"><span>Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard</p> <p>2016-04-01</p> <p>The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping followed by subsequent interglacial carbon burn-down and CO2 release. Abyssal Northwest Pacific sediments may have served as glacial carbon reservoir in particular since the onset of systematic 100 kyr ice age cycles at the end of the Mid-Pleistocene transition (MPT). Stagnant glacial Antarctic Bottom Water, which expanded primarily into abyssal South Atlantic basins during the MPT interim phase, thereafter seemed to flow preferentially into the deeper and larger abyssal Indo-Pacific basins, where it may have enabled more efficient carbon-trapping. More intensive scavenging of the Northwest Pacific surface ocean by enhanced glacial Asian dust flux is suggested by parallel TOC and quartz contents, enhancing glacial carbon accumulation despite potentially lower export production. The magnetic records also identify numerous partly consistent tephra layers, which can be matched between most records of the core transect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1198M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1198M"><span>Shelf-Basin Exchange over the Continental Slope of the Chukchi Sea 2003/04 vs. 2016/17</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muenchow, A.; Elmer, C.; Badiey, M.; Eickmeier, J.; Ryan, P.</p> <p>2017-12-01</p> <p>The US Navy faces the "New Arctic" as a challenge to predict acoustic propagation from deep to shallow waters, because a less ice-covered Arctic Ocean is more dynamic and creates new and more complex sound channels. We here present context and preliminary results from the Canada Basin Acoustic Propagation Experiment (CANAPE) and focus on the Chukchi Sea between 100-m and 800-m isobaths. We explore temperature and density fields using ocean survey and mooring data that we collected in 2016 and 2017. We compare these "new" data to observations from prior decades.Remote sensing (SSMI and Sentinel-1) of sea ice, winds, and ocean hydrography all document change in large scale ocean forcing in our study area about 150 km west of Barrow, Alaska. The "new" surface forcing impacts both ocean dynamics and sound propagation over the Chukchi Slope. More specifically, we find warm water intrusions at 80-m depth near the 1026 kg/m3 density surface at 160 W longitude. Spatial extend and structure of this water varies both along and across the continental with eddy trains dispersing offshore. Temperature and sound speed signals exceed 1 C and 5 m/s, respectively, and have not been observed before. We note, that our study area is generally ice-covered in November, but was free of ice in 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6138531-structural-framework-hydrocarbon-potential-ross-sea-antarctica','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6138531-structural-framework-hydrocarbon-potential-ross-sea-antarctica"><span>Structural framework and hydrocarbon potential of Ross Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cooper, A.K.; Davey, F.J.</p> <p></p> <p>The 400 to 1100-m deep continental shelf of the Ross Sea is underlain by three major sedimentary basins (Eastern basin, Central trough, and Victoria Land basin), which contain 5 to 6 km of sedimentary rock of Late Cretaceous(.) and younger age. An addition 6 to 7 km of older sedimentary and volcanic rocks lie within the Victoria Land basin. Eroded basement ridges of early Paleozoic(.) and older rocks similar to those of onshore Victoria Land separate the basins. The three basins formed initially in late Mesozoic time during an early period of rifting between East and West Antarctica. The Easternmore » basin is a 300-km wide, asymmetric basement trough that structurally opens into the Southern Ocean. A seaward-prograding sequence of late Oligocene and younger glacial deposits covers a deeper, layered sequence of Paleogene(.) and older age. The Central trough, a 100-km wide depression, is bounded by basement block faults and is filled with a nearly flat-lying sedimentary section. A prominent positive gravity anomaly, possibly caused by rift-related basement rocks, lies along the axis of the basin. The Victoria Land basin, unlike the other two basins, additionally contains a Paleogene(.) to Holocene rift zone, the Terror Rift. Rocks in the rift, near the axis of the 150-km wide basement half-graben, show extensive shallow faulting and magmatic intrusion of the sedimentary section. The active Terror rift and older basin structures extend at least 300 km along the base of the Transantarctic Mountains. Petroleum hydrocarbons have not been reported in the Ross Sea region, with possible exception of ethane gas found in Deep Sea Drilling Project cores from the Eastern basin. Model studies indicate that hydrocarbons could be generated at depths of 3.5 to 6 km within the sedimentary section. The best structures for hydrocarbon entrapment occur in the Victoria Land basin and associated Terror Rift.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNG31A3787M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNG31A3787M"><span>Self-Organizing Maps method in recent Adriatic Sea environmental studies: applications and perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mihanovic, H.; Vilibic, I.</p> <p>2014-12-01</p> <p>Herein we present three recent oceanographic studies performed in the Adriatic Sea (the northernmost arm of the Mediterranean Sea), where Self-Organizing Maps (SOM) method, an unsupervised neural network method capable of recognizing patterns in various types of datasets, was applied to environmental data. The first study applied the SOM method to a long (50 years) series of thermohaline, dissolved oxygen and nutrient data measured over a deep (1200 m) Southern Adriatic Pit, in order to extract characteristic deep water mass patterns and their temporal variability. Low-dimensional SOM solutions revealed that the patterns were not sensitive to nutrients but were determined mostly by temperature, salinity and DO content; therefore, the water masses in the region can be traced by using no nutrient data. The second study encompassed the classification of surface current patterns measured by HF radars over the northernmost part of the Adriatic, by applying the SOM method to the HF radar data and operational mesoscale meteorological model surface wind fields. The major output from this study was a high correlation found between characteristic ocean current distribution patterns with and without wind data introduced to the SOM, implying the dominant wind driven dynamics over a local scale. That nominates the SOM method as a basis for generating very fast real-time forecast models over limited domains, based on the existing atmospheric forecasts and basin-oriented ocean experiments. The last study classified the sea ambient noise distributions in a habitat area of bottlenose dolphin, connecting it to the man-made noise generated by different types of vessels. Altogether, the usefulness of the SOM method has been recognized in different aspects of basin-scale ocean environmental studies, and may be a useful tool in future investigations of understanding of the multi-disciplinary dynamics over a basin, including the creation of operational environmental forecasting systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987PalOc...2..333R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987PalOc...2..333R"><span>Rainy Periods and Bottom Water Stagnation Initiating Brine Accumulation and Metal Concentrations: 1. The Late Quaternary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rossignol-Strick, Martine</p> <p>1987-06-01</p> <p>A working hypothesis is proposed to account for the present accumulation of brines in isolated pockets of the ocean floor and for the formation of the underlying organic and metal-rich sediments. These are the Tyro and Bannock basins in the East Mediterranean, the Red Sea Deeps, and the Orca Basin in the northern Gulf of Mexico. Initiation of brine-derived deposition in the Red Sea Deeps and Orca Basin occurred between 12,000 and 8000 years B.P. This time bracket also encompasses the formation of the latest East Mediterranean sapropel and the wettest global climate since the last glacial maximum. This wet period first appeared in the tropics around 12,000 years B.P, then in the subtropical and middle latitudes. During the same period, the 23,000 year precession cycle brought the summer insolation of the northern hemisphere to its peak at 11,000 years B.P. with retreating northern hemisphere ice sheets. The Red Sea Deeps and the Orca Basin became anoxic during this humid period, and metal-rich sapropel deposition then began. In contrast, the Tyro and Bannock basins began accumulating a brine long before and persisted beyond this climatic stage. The hypothesis involves two propositions: (1) As in the Eastern Mediterranean Sea, marine anoxia was mainly the consequence of the large influx of continental runoff and local precipitation. Longer residence time of bottom waters, so-called "stagnation," in silled rimmed basins would have resulted from lower salinity at the sea surface in areas of deep water formation in the Eastern Mediterranean, the Red Sea, and the Gulf of Mexico and (2) Miocene or older evaporites underlie these basins or outcrop on their flanks. Leaching from these evaporites was an ongoing process before the quasi-stagnation phase, but the initial leachate, much less saline than the present brines, was continuously flushed by bottom circulation. The climate-induced quiescence of bottom waters in these basins enabled the leachate to accumulate. The feedback of stagnation by increased density progressively raised the salinity of entrapped bottom waters to the present brine concentration. The high density has resisted brine removal by bottom circulation until present time, long after cessation of the initiating wet period. The brines therefore are stagnant, fossil waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMDI13A2629J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMDI13A2629J"><span>Facies And Bedding Analysis of Deep-Marine, Arc-Related, Sediementary Rocks Cored on International Ocean Drilling Program Expedition 351.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, K. E.; Marsaglia, K. M.</p> <p>2015-12-01</p> <p>The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading in the Shikoku Basin was initiated. This information will be combined with volcanic provenance and geochemical information from other studies, ultimately creating a deep-marine facies model for intraoceanic arc systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CliPa..14..303W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CliPa..14..303W"><span>Synchronizing early Eocene deep-sea and continental records - cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Westerhold, Thomas; Röhl, Ursula; Wilkens, Roy H.; Gingerich, Philip D.; Clyde, William C.; Wing, Scott L.; Bowen, Gabriel J.; Kraus, Mary J.</p> <p>2018-03-01</p> <p>A consistent chronostratigraphic framework is required to understand the effect of major paleoclimate perturbations on both marine and terrestrial ecosystems. Transient global warming events in the early Eocene, at 56-54 Ma, show the impact of large-scale carbon input into the ocean-atmosphere system. Here we provide the first timescale synchronization of continental and marine deposits spanning the Paleocene-Eocene Thermal Maximum (PETM) and the interval just prior to the Eocene Thermal Maximum 2 (ETM-2). Cyclic variations in geochemical data come from continental drill cores of the Bighorn Basin Coring Project (BBCP, Wyoming, USA) and from marine deep-sea drilling deposits retrieved by the Ocean Drilling Program (ODP). Both are dominated by eccentricity-modulated precession cycles used to construct a common cyclostratigraphic framework. Integration of age models results in a revised astrochronology for the PETM in deep-sea records that is now generally consistent with independent 3He age models. The duration of the PETM is estimated at ˜ 200 kyr for the carbon isotope excursion and ˜ 120 kyr for the associated pelagic clay layer. A common terrestrial and marine age model shows a concurrent major change in marine and terrestrial biota ˜ 200 kyr before ETM-2. In the Bighorn Basin, the change is referred to as Biohorizon B and represents a period of significant mammalian turnover and immigration, separating the upper Haplomylus-Ectocion Range Zone from the Bunophorus Interval Zone and approximating the Wa-4-Wa-5 land mammal zone boundary. In sediments from ODP Site 1262 (Walvis Ridge), major changes in the biota at this time are documented by the radiation of a <q>second generation</q> of apical spine-bearing sphenolith species (e.g., S. radians and S. editus), the emergence of T. orthostylus, and the marked decline of D. multiradiatus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770017803','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770017803"><span>Origin of the earth's ocean basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frex, H.</p> <p>1977-01-01</p> <p>The earth's original ocean basins were mare-type basins produced 4 billion years ago by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upwards from the observed number of lunar basins for the greater capture cross-section and impact velocity of the Earth indicates that at least 50 percent of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60 percent oceanic, 40 percent continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613907P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613907P"><span>Impact of CO2 and continental configuration on Late Cretaceous ocean dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puceat, Emmanuelle; Donnadieu, Yannick; Moiroud, Mathieu; Guillocheau, François; Deconinck, Jean-François</p> <p>2014-05-01</p> <p>The Late Cretaceous period is characterized by a long-term climatic cooling (Huber et al., 1995; Pucéat et al., 2003; Friedrich et al., 2012) and by major changes in continental configuration with the widening of the Atlantic Ocean, the initiation of the Tethyan ocean closure, and the deepening of the Central Atlantic Gateway. The Late Cretaceous also marks the end of the occurrence of Oceanic Anoxic Events (OAEs), that are associated to enhanced organic carbon burial, to major crises of calcifying organisms, and to possible ocean acidification (Jenkyns, 2010). It has been suggested that the evolution in continental configuration and climate occurring during the Late Cretaceous could have induced a reorganization in the oceanic circulation, that may have impacted the oxygenation state of the oceanic basins and contributed to the disappearance of OAEs (Robinson et al., 2010; Robinson and Vance, 2012). Yet there is no consensus existing on the oceanic circulation modes and on their possible evolution during the Late Cretaceous, despite recent improvement of the spatial and temporal coverage of neodymium isotopic data (ɛNd), a proxy of oceanic circulation (MacLeod et al., 2008; Robinson et al., 2010; Murphy and Thomas, 2012; Robinson and Vance, 2012; Martin et al., 2012; Moiroud et al., 2012). Using the fully coupled ocean-atmosphere General Circulation Model FOAM, we explore in this work the impact on oceanic circulation of changes in continental configuration between the mid- and latest Cretaceous. Two paleogeography published by Sewall et al. (2007) were used, for the Cenomanian/Turonian boundary and for the Maastrichtian. For each paleogeography, 3 simulations have been realized, at 2x, 4x, and 8x the pre-industrial atmospheric CO2 level, in order to test the sensitivity of the modelled circulation to CO2. Our results show for both continental configurations a bipolar mode for the oceanic circulation displayed by FOAM. Using the Cenomanian/Turonian land-sea mask, two major areas of deep-water production are simulated in the model, one located in the northern and northwestern Pacific area, and the other located in the southern Pacific. An additional area is present in the southern Atlantic Ocean, near the modern Weddell Sea area, but remains very limited. Using the Maastrichtian land-sea mask, the simulations show a major change in the ocean dynamic with the disappearance of the southern Pacific convection cell. The northern Pacific area of deep-water production is reduced to the northwestern Pacific region only. By contrast, the simulations show a marked development of the southern Atlantic deep-water production, that intensifies and extends eastward along the Antarctic coast. These southern Atlantic deep-waters are conveyed northward into the North Atlantic and eastward to the Indian Ocean. Importantly, changes in atmospheric CO2 level do not impact the oceanic circulation simulated by FOAM, at least in the range of tested values. The circulation simulated by FOAM is coherent with existing ɛNd data for the two studied periods and support an intensification of southern Atlantic deep-water production along with a reversal of the deep-water fluxes through the Carribean Seaway as the main causes of the decrease in ɛNd values recorded in the Atlantic and Indian deep-waters during the Late Cretaceous. The simulations reveal a change from a sluggish circulation in the south Atlantic simulated with the Cenomanian/Turonian paleogeography to a much more active circulation in this basin using the Maastrichtian paleogeography, that may have favoured the disappearance of OAEs after the Late Cretaceous. Friedrich, O., Norris, R.D., Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans - A 55 m.y. record of Earth's temperature and carbon cycle. Geology 40 (2), 107-110. Huber, B.T., Hodell, D.A., Hamilton, C.P., 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. of Am. Bull. 107, 1164-1191. Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems 11, doi:10.1029/2009GC002788. MacLeod, K.G., Martin, E.E., Blair, S.W., 2008. Nd isotopic excursion across Cretaceous Ocean Anoxic Event 2 (Cenomanian-Turonian) in the tropical North Atlantic. Geology 36 (10), 811-814. Martin, E.E., MacLeod, K.G., Jiménez Berrocoso, Á., Bourbon, E., 2012. Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth Planet. Sci. Lett. 327-328, 111-120. Moiroud, M., Pucéat, E., Donnadieu, Y., Bayon, G., Moriya, K., Deconinck, J.F., and Boyet, M., 2012. Evolution of the neodymium isotopic signature of neritic seawater on a northwestern Pacific margin: new constrains on possible end-members for the composition of deep-water masses in the Late Cretaceous ocean. Chemical Geology 356, p. 160-170. Murphy, D.P., Thomas, D.J., 2012. Cretaceous deep-water formation in the Indian sector of the Southern Ocean. Paleoceanography 27, doi:10.1029/2011PA002198. Pucéat, E., Lécuyer, C., Sheppard, S.M.F., Dromart, G., Reboulet, S., Grandjean, P., 2003. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18 (2), doi:10.1029/2002PA000823. Robinson, A., Murphy, D.P., Vance, D., Thomas, D.J., 2010. Formation of 'Southern Component Water' in the Late Cretaceous: evidence from Nd-isotopes. Geological Society of America 38 (10), 871-874 Robinson, S.A., Vance, D., 2012. Widespread and synchronous change in deep-ocean circulation in the North and South Atlantic during the Late Cretaceous. Paleoceanography 27, PA1102, doi:10.1029/2011PA002240. Sewall, J.O., van de Wal, R.S.W., can der Zwan, K., van Oosterhout, C., Dijkstra, H.A., and Scotese, C.R., 2007. Climate model boundary conditions for four Cretaceous time slices. Clim. Past 3, p. 647-657.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16499691','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16499691"><span>Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zardus, John D; Etter, Ron J; Chase, Michael R; Rex, Michael A; Boyle, Elizabeth E</p> <p>2006-03-01</p> <p>The deep-sea soft-sediment environment hosts a diverse and highly endemic fauna of uncertain origin. We know little about how this fauna evolved because geographic patterns of genetic variation, the essential information for inferring patterns of population differentiation and speciation are poorly understood. Using formalin-fixed specimens from archival collections, we quantify patterns of genetic variation in the protobranch bivalve Deminucula atacellana, a species widespread throughout the Atlantic Ocean at bathyal and abyssal depths. Samples were taken from 18 localities in the North American, West European and Argentine basins. A hypervariable region of mitochondrial 16S rDNA was amplified by polymerase chain reaction (PCR) and sequenced from 130 individuals revealing 21 haplotypes. Except for several important exceptions, haplotypes are unique to each basin. Overall gene diversity is high (h = 0.73) with pronounced population structure (Phi(ST) = 0.877) and highly significant geographic associations (P < 0.0001). Sequences cluster into four major clades corresponding to differences in geography and depth. Genetic divergence was much greater among populations at different depths within the same basin, than among those at similar depths but separated by thousands of kilometres. Isolation by distance probably explains much of the interbasin variation. Depth-related divergence may reflect historical patterns of colonization or strong environmental selective gradients. Broadly distributed deep-sea organisms can possess highly genetically divergent populations, despite the lack of any morphological divergence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T21A2532E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T21A2532E"><span>Syn-rift volcanism and seafloor-spreading in the northern Gulf of Mexico: results from the GUMBO marine seismic refraction project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eddy, D. R.; Van Avendonk, H. J.; Christeson, G. L.; Norton, I. O.; Karner, G. D.; Kneller, E. A.; Johnson, C. A.; Snedden, J.</p> <p>2013-12-01</p> <p>Continental rifting and seafloor-spreading between North America and the Yucatán Block during the Jurassic to early Cretaceous formed the small ocean basin known today as the Gulf of Mexico. The lack of deeply-penetrating geophysical data in the Gulf of Mexico limited early reconstructions of the timing and location of the rift-to-drift transition, particularly with respect to the influence of magmatism on the breakup of continental crust and the onset of seafloor-spreading. To better understand the deep structure of this economically important basin, we acquired four marine seismic refraction profiles in the northern Gulf of Mexico from the shelf to deep water as part of the 2010 Gulf of Mexico Basin Opening project (GUMBO). We use travel times from long-offset reflections and refractions to image compressional seismic velocities in the sediments, crystalline crust, and upper mantle using an iterative tomographic inversion. GUMBO Line 3 extends from offshore Alabama through the De Soto Canyon towards the central Gulf of Mexico. We interpret velocities >5.0 km/s in the sediment layer landward of the Florida Escarpment as a Lower Cretaceous carbonate platform. Crystalline crust with velocities between 5.5-7.5 km/s thins significantly from 23 km to 7 km across a narrow necking zone. A deep, localized region of anomalously high seismic velocities (>7.5 km/s) at the base of crystalline crust exceeds those of continental lower crust in the eastern US. We interpret this section of GUMBO 3 to represent mafic under-plating and/or infiltration of asthenospheric melts, common at volcanic rifted margins. The seaward end of GUMBO 3 has seismic velocities consistent with mafic ocean crust produced by normal seafloor-spreading (6.0-7.5 km/s); this observation is supported by a consistent crustal thickness of ~7 km and minimal lateral heterogeneities in velocity structure. GUMBO Line 2 extends from offshore Louisiana southward across the Sigsbee Escarpment. We find a massive sediment package with substantial lateral heterogeneities, which we attribute to salt tectonics. GUMBO 2 crust thins slightly from north to south, and varies greatly in thickness from 3-10 km with seismic velocities between 6.0-8.0 km/s. We interpret the majority of GUMBO 2 as oceanic crust formed by slow to ultraslow seafloor-spreading, with a volcanic rift margin closer to the present-day coastline than most prior reconstructions. This finding substantially increases the amount of ocean crust interpreted in the Gulf of Mexico. We invoke a ridge jump to explain asymmetry in oceanic crust between North America and the Yucatán peninsula. We further suggest that the effects of heat and asthenospheric melt were more impactful, and the rift-to-drift transition more immediate, in the eastern Gulf of Mexico than in the west. Heat and melt infiltrated and weakened the thick continental crust at GUMBO 3, defining a sharp transition from a volcanic rifted margin to ocean ridge basalt production. Variable ocean crust thicknesses suggest a lower melt supply and more slow-spreading crust at GUMBO 2. Proximity of the eastern margin to the origin of the Central Atlantic Magmatic Province, as well as abundant mid-ocean ridge basalt production in the Atlantic Ocean, may explain differences in melt supply and seafloor-spreading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26PSL.434...18W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26PSL.434...18W"><span>Deep circulation changes in the South Atlantic since the Last Glacial Maximum from Nd isotope and multi-proxy records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, R.; Abouchami, W.; Zahn, R.; Masque, P.</p> <p>2016-01-01</p> <p>We report down-core sedimentary Nd isotope (εNd) records from two South Atlantic sediment cores, MD02-2594 and GeoB3603-2, located on the western South African continental margin. The core sites are positioned downstream of the present-day flow path of North Atlantic Deep Water (NADW) and close to the Southern Ocean, which makes them suitable for reconstructing past variability in NADW circulation over the last glacial cycle. The Fe-Mn leachates εNd records show a coherent decreasing trend from glacial radiogenic values towards less radiogenic values during the Holocene. This trend is confirmed by εNd in fish debris and mixed planktonic foraminifera, albeit with an offset during the Holocene to lower values relative to the leachates, matching the present-day composition of NADW in the Cape Basin. We interpret the εNd changes as reflecting the glacial shoaling of Southern Ocean waters to shallower depths combined with the admixing of southward flowing Northern Component Water (NCW). A compilation of Atlantic εNd records reveals increasing radiogenic isotope signatures towards the south and with increasing depth. This signal is most prominent during the Last Glacial Maximum (LGM) and of similar amplitude across the Atlantic basin, suggesting continuous deep water production in the North Atlantic and export to the South Atlantic and the Southern Ocean. The amplitude of the εNd change from the LGM to Holocene is largest in the southernmost cores, implying a greater sensitivity to the deglacial strengthening of NADW at these sites. This signal impacted most prominently the South Atlantic deep and bottom water layers that were particularly deprived of NCW during the LGM. The εNd variations correlate with changes in 231Pa/230Th ratios and benthic δ13C across the deglacial transition. Together with the contrasting 231Pa/230Th: εNd pattern of the North and South Atlantic, this indicates a progressive reorganization of the AMOC to full strength during the Holocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSOD14B2410A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSOD14B2410A"><span>Tracking the Mediterranean Abyss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aracri, S.; Schroeder, K.; Chiggiato, J.; Bryden, H. L.; McDonagh, E.; Josey, S. A.; Hello, Y.; Borghini, M.</p> <p>2016-02-01</p> <p>The Mediterranean Sea is well known to be a miniature ocean with small enough timescales to allow the observation of main oceanographic events, e.g. deep water formation and overturning circulation, in a human life time. This renders the Mediterranean Sea the perfect observatory to study and forecast the behaviour of the world ocean. Considering the coherence between NAO (North Atlantic Oscillation), AMO (Atlantic Multidecadal Oscillation) and Mediterranean oscillation and bearing in mind that the Mediterranean outflow at Gibraltar constitutes a constant source of intermediate, warm and saline water, it has been suggested that "the system composed of the North Atlantic, the Mediterranean Sea/Gibraltar Strait and the Arctic Sea/Fram Strait might work as a unique oceanographic entity, with the physical processes within the straits determining the exchange of the fresh and salty waters between the marginal seas and the open ocean".In the light of the present knowledge the Mediterranean might, then, be considered as a key oceanographic observatory site. The deep sea is still challenging to monitor, especially given the latest years lack of fundings and ships availability. Therefore optimizing the existing methods and instrumentation has become a priority. This work is focused on the North-Western Mediterranean basin, where deep water formation events often occur in the Gulf of Lion as well as deep convection in the neighbour Ligurian Sea. A different application of submarine robots - Mermaids- designed to observe underwater seismic waves aiming to improve ocean tomography is presented. In order to improve our knowledge of the North-Western Mediterranean abyssal circulation we track Mermaids extracting their velocity, correcting it and comparing it with the historically estimated values and with the geostrophic velocity extracted from a 40 years long hydrographic datasets.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.641G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.641G"><span>Deep and shallow structures in the Arctic region imaged by satellite magnetic and gravity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaina, Carmen; Panet, Isabelle; Shephard, Grace</p> <p>2016-07-01</p> <p>The last decade has seen an increase in geoscientific data collection, which, together with available and older classified data made publicly available, is contributing to increasing our knowledge about Earth's structure and evolution. Despite this development, there are many gaps in data coverage in remote, hard-to-access regions. Satellite data have the advantage of acquiring measurements steadily and covering the entire globe. From a tectonics point of view, the specific heights of various satellites allow for the identification of moderate to large tectonic features, and can shed light on Earth's lower crust and lithosphere structure. In this contribution I discuss the use of magnetic and gravity models based on satellite data in deciphering the tectonic structure of remote areas. The present day Circum-Arctic region comprises a variety of tectonic settings: from active seafloor spreading in the North Atlantic and Eurasian Basin, and subduction in the North Pacific, to long-lived stable continental platforms in North America and Asia. A series of rifted margins, abandoned rifted areas and presumably extinct oceanic basins fringe these regions. Moreover, rifting- and seafloor spreading-related processes formed many continental splinters and terranes that were transported and docked at higher latitudes. Volcanic provinces of different ages have also been identified, from the Permian-Triassic Siberian traps at ca. 251 Ma to the (presumably) Cretaceous HALIP and smaller Cenozoic provinces in northern Greenland and the Barents Sea. We inspect global lithospheric magnetic data in order to identify the signature of the main volcanic provinces in the High Arctic. One of the most striking features in the Arctic domain is the strong magnetic anomaly close to the North Pole that correlates with a large, igneous oceanic plateau called the Alpha Mendeleev Ridge. The intensity and extent of the magnetic anomalies recorded by aircraft or satellites point towards a very thick, volcanic crust, but, as in the case of other oceanic Large Igneous Provinces, only deep sea drilling will be able to reveal the true nature of the underlying crust at the core of the Arctic. The oldest continental crust, usually found in the cratonic areas and as Proterozoic accreted crust, generates the largest positive magnetic anomalies. This crust contains large and deep volcanic bodies in the North American shield, Greenland, the Baltic shield in Eurasia and the Siberian platform in NE Asia, and are imaged by the satellite data. Furthermore, satellite data is not only restricted to revealing crustal and lithospheric depths. Recent workflows have shown that subducted remnants of ocean basins, now located in the lower mantle, as well as large, antipodal features on the core-mantle boundary, can be imaged by satellite gravity. Seismic tomography provides evidence for an extinct Mesozoic Arctic ocean lying around 1400 km under present-day Greenland. However, the variable resolution of seismic tomography at high latitudes, as well as ambiguity in plate reconstructions, renders the existence of the slab open to interpretation. Critically, the current location of the slab also matches perturbations in long-wavelength gravity gradients, providing further support for a deep density anomaly and a slab origin. Gravity data therefore provides a complementary and independent link in linking surface events and deep mantle structure in frontier regions like the Arctic. By revealing the present-day structure, satellite-derived magnetics and gravity offer a critical component in our understanding of Arctic history, over timescales of millions of years and scales of thousands of kilometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983DSRA...30..195J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983DSRA...30..195J"><span>Neogene sedimentation and erosion in the Amirante Passage, western Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, D. A.; Ledbetter, M. T.; Damuth, J. E.</p> <p>1983-02-01</p> <p>Twenty piston cores from the northern Mascarene Basin and Amirante Passage reflect the effects of the Deep Western Boundary Current (DWBC) upon the lithologic and stratigraphic record of the late Cenozoic. The cores span a depth interval of 3350 to 5200 m, representing the transition zone between modern North Atlantic Deep Water (NADW)-Circumpolar Water (CPW) and the underlying Antarctic Bottom Water (AABW). During the late Cretaceous and for much of the Paleogene, pelagic sedimentation occurred in the absence of significant bottom current activity. The formation of the global psychrosphere near the Eocene-Oligocene boundary initiated the DWBC, part of which could enter the Madagascar Basin via deep fractures in the Southwest Indian Ridge. The DWBC was well developed before the early Miocene, transporting course detrital sands northward into the passage from turbidite deposits along the continental margin of Madagascar. The DWBC was confined to depths below ˜ 4 km until the middle Miocene, when the flow strengthened and shoaled to depths <3300 m. Strong DWBC flow continued intermittently until the latest Pleistocene, producing extensive erosional surfaces. Today the flow of the DWBC is relatively weak, with strong only below ˜ 3850 m in the western channels. Pleistocene and late Tertiary erosion at intermediate depths (3 to 4 km) in the Indian Ocean contrasts with depositional continuity at the same depths farther 'upstream' in NADW. Fluctuations in the intensity of circumpolar flow rather than in the rate of production of NADW may have been the major controlling factor in the late Tertiary erosional history of the Amirante Passage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20192971','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20192971"><span>Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dick, Gregory J; Tebo, Bradley M</p> <p>2010-05-01</p> <p>Hydrothermal plumes are hot spots of microbial biogeochemistry in the deep ocean, yet little is known about the diversity or ecology of microorganisms inhabiting plumes. Recent biogeochemical evidence shows that Mn(II) oxidation in the Guaymas Basin (GB) hydrothermal plume is microbially mediated and suggests that the plume microbial community is distinct from deep-sea communities. Here we use a molecular approach to compare microbial diversity in the GB plume and in background deep seawater communities, and cultivation to identify Mn(II)-oxidizing bacteria from plumes and sediments. Despite dramatic differences in Mn(II) oxidation rates between plumes and background seawater, microbial diversity and membership were remarkably similar. All bacterial clone libraries were dominated by Gammaproteobacteria and archaeal clone libraries were dominated by Crenarchaeota. Two lineages, both phylogenetically related to methanotrophs and/or methylotrophs, were consistently over-represented in the plume. Eight Mn(II)-oxidizing bacteria were isolated, but none of these or previously identified Mn(II) oxidizers were abundant in clone libraries. Taken together with Mn(II) oxidation rates measured in laboratory cultures and in the field, these results suggest that Mn(II) oxidation in the GB hydrothermal plume is mediated by genome-level dynamics (gene content and/or expression) of microorganisms that are indigenous and abundant in the deep sea but have yet to be unidentified as Mn(II) oxidizers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037119','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037119"><span>Rapid climatic signal propagation from source to sink in a southern California sediment-routing system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Covault, J.A.; Romans, B.W.; Fildani, A.; McGann, M.; Graham, S.A.</p> <p>2010-01-01</p> <p>Terrestrial source areas are linked to deep-sea basins by sediment-routing systems, which only recently have been studied with a holistic approach focused on terrestrial and submarine components and their interactions. Here we compare an extensive piston-core and radiocarbon-age data set from offshore southern California to contemporaneous Holocene climate proxies in order to test the hypothesis that climatic signals are rapidly propagated from source to sink in a spatially restricted sediment-routing system that includes the Santa Ana River drainage basin and the Newport deep-sea depositional system. Sediment cores demonstrate that variability in rates of Holocene deep-sea turbidite deposition is related to complex ocean-atmosphere interactions, including enhanced magnitude and frequency of the North American monsoon and El Ni??o-Southern Oscillation cycles, which increased precipitation and fluvial discharge in southern California. This relationship is evident because, unlike many sediment-routing systems, the Newport submarine canyon-and-channel system was consistently linked tothe Santa Ana River,which maintained sediment delivery even during Holocene marine transgression and highstand. Results of this study demonstrate the efficiency of sediment transport and delivery through a spatially restricted, consistently linked routing system and the potential utility of deep-sea turbidite depositional trends as paleoclimate proxies in such settings. ?? 2010 by The University of Chicago.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.2293M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.2293M"><span>The Northwestern Atlantic Moroccan Margin From Deep Multichannel Seismic Reflection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malod, J. A.; Réhault, J. P.; Sahabi, M.; Géli, L.; Matias, L.; Zitellini, N.; Sismar Group</p> <p></p> <p>The NW Atlantic Moroccan margin, a conjugate of the Nova Scotia margin, is one of the oldest passive margins of the world. Continental break up occurred in the early Jurassic and the deep margin is characterized by a large salt basin. The SISMAR cruise (9 April to 4 May 2001) acquired 3667 km of 360 channel seismic reflection profiles. In addition, refraction data were recorded by means of 48 OBH/OBS deployments. Simultaneously, some of the marine profiles were extended onshore with 16 portable seismic land stations. WNW-ESE profiles 4 and 5 off El Jadida show a good section of the margin. The crustal thinning in this region is fairly abrupt. These profiles image the crust above a strong seismic reflector at about 12 s.twt., interpreted as the Moho. The crust exhibits several different characteristics from the continent towards the ocean.: - highly diffractive with a thickness larger than 25 km beneath the shelf. - stratified at a deep level and topped by few "tilted blocks" with a diffractive acoustic facies and for which 2 hypotheses are proposed: either continental crust tilted during the rifting or large landslides of crustal and sedimentary material slid down later. Liassic evapor- ites are present but seem less thick than to the south. - layered with seaward dipping reflectors: this type of crust correlates with the magnetic anomaly S1 and corresponds to the continent-ocean transition. - diffractive with an oceanic character. Oceanwards, the crust becomes more typically oceanic, but shows internal reflectors that may be re- lated to compressional reactivation during the Tertiary attested by large scale inverted basins. Our results allow us to discuss the nature and location of the continent-ocean transition at a regional scale and the rifting to spreading evolution of the very ma- ture continental margin off El Jadida. This provide us with some constraints for the initial reconstruction between Africa, North America and Iberia. Moreover, these re- sults help to assess the geological hazards linked to the neotectonic activity within the Africa-Eurasia plate boundary. * SISMAR Group includes the authors and Amhrar M., Camurri F., Contrucci I., Diaz J., El Archi A., Gutscher M.A., Jaffal M., Klingelhöfer F., Legall B., Maillard A., Mehdi K., Mercier E., Moulin M., Olivet J.L., Ouajhain B., Perrot J., Rolet J., Ruellan E., Sibuet J.C., Zourarah B.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.S31C0556M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.S31C0556M"><span>The Sunda-Banda Arc Transition: New Insights from Marine Multichannel Seismic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller, C.; Kopp, H.; Djajadihardja, Y.; Engels, M.; Flueh, E.; Gaedicke, C.; Lueschen, E.; Lutz, R.; Planert, L.; Shulgin, A.; Soemantri, D. D.</p> <p>2007-12-01</p> <p>After the Indian Ocean Mw 9.3 earthquake and tsunami on December 26, 2004, intensive research activities focussed on the Sunda Arc subduction system offshore Sumatra. For this area a broad database is now available interpreted in terms of plate segmentation and outer arc high evolution. In contrast, the highly active easternmost part of this subduction system, as indicated by the south of Java Mw 7.7 earthquake and tsunami on July 17, 2006, has remained almost unexplored until recently. During RV SONNE cruise SO190 from October until December 2006 almost 5000 km of marine geophysical profiles have been acquired at the eastern Sunda Arc and the transition to the Banda Arc. The SINDBAD project (Seismic and Geoacoustic Investigations along the Sunda-Banda Arc Transition) comprises 30-fold multichannel reflection seismics with a 3-km streamer, wide-angle OBH/OBS refraction seismics for deep velocity control (see poster of Planert et al. in this session), swath bathymetry, sediment echosounder, gravimetric and geomagnetic measurements. We present data and interpretations of several 250-380 km long, prestack depth-migrated seismic sections, perpendicular to the deformation front, based on velocity models from focussing analysis and inversion of OBH/OBS refraction data. We focus on the variability of the lower plate and the tectonic response of the overriding plate in terms of outer arc high formation and evolution, forearc basin development, accretion and erosion processes at the base of the overriding plate. The subducting Indo-Australian Plate is characterized by three segments: i) the Roo Rise with rough topography offshore eastern Java ii) the Argo Abyssal Plain with smooth oceanic crust offshore Bali, Lombok, and Sumbawa, and iii) the Scott Plateau with continental crust colliding with the Banda island arc. The forearc responds to differences in the incoming oceanic plate with the absence of a pronounced forearc basin offshore eastern Java and with development of the 4000 m deep forearc Lombok Basin offshore Bali, Lombok, and Sumbawa. The eastern termination of the Lombok Basin is formed by Sumba Island, which shows evidence for recent uplift, probably associated with the collision of the island arc with the continental Scott Plateau. The Sumba area represents the transition from subduction to collision. Our seismic profiles image the bending of the oceanic crust seaward of the trench and associated normal faulting. Landward of the trench, they image the subducting slab beneath the outer arc high, where the former bending-related normal faults appear to be reactivated as reverse faults introducing vertical displacements in the subducting slab. The accretionary prism and the outer arc high are characterized by an ocean-verging system of imbricate thrust sheets with major thrust faults connecting seafloor and detachment. Compression results in shortening and steepening of the imbricated thrust sheets building up the outer arc high. Tilted piggy-back basins and downlaps of tilted sediments in the southern Lombok forearc basin indicate ongoing uplift of the entire outer arc high, abrupt displacements, and recent tectonic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3504965','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3504965"><span>The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J</p> <p>2012-01-01</p> <p>Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3–4 times) and microbially mediated manganese oxidation rates (15–125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10–20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California. PMID:22695860</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22695860','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22695860"><span>The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J</p> <p>2012-12-01</p> <p>Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3-4 times) and microbially mediated manganese oxidation rates (15-125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10-20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS51B1664Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS51B1664Z"><span>The Atlantic Multidecadal Variability in surface and deep ocean temperature and salinity fields from unperturbed climate simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zanchettin, D.; Jungclaus, J. H.</p> <p>2013-12-01</p> <p>Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical propagation of temperature and salinity anomalies related to the AMV. In particular, we discuss the potential predictability of multidecadal fluctuations in North Atlantic SSTs based on indices derived from the sea-surface salinity field. We show how the two simulations provide AMV realizations with some distinguishable characteristics, e.g., the typical fluctuations' frequencies and the linkage with the North Atlantic meridional overturning and gyre circulations. We further show how information gained by investigating different definitions of the AMV [Zanchettin et al., 2013] helps designing numerical sensitivity studies for understanding the mechanism(s) behind this phenomenon, concerning both its origin and global impacts. References Dima, M., and G. Lohmann [2007], J. Clim., 20, 2706-2719, doi:10.1175/JCLI4174.1 Jungclaus, J.H., et al. [2005], J. Clim., 18, 4013- 4031, doi:10.1175/JCLI3462.1 Polyakov, I. V., et al. [2005], J. Clim., 18:4562-4581 Grossmann, I., and P. J. Klotzbach [2009], J. Geophys. Res., 114, D24107, doi:10.1029/2009JD012728 Zanchettin D., et al. [2013], Clim. Dyn., doi:10.1007/s00382-013-1669-0</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4928901','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4928901"><span>Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miles, Bertie W. J.; Stokes, Chris R.; Jamieson, Stewart S. R.</p> <p>2016-01-01</p> <p>The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974–1990, before switching to advance in every drainage basin during the two most recent periods, 1990–2000 and 2000–2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica. PMID:27386519</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27386519','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27386519"><span>Pan-ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miles, Bertie W J; Stokes, Chris R; Jamieson, Stewart S R</p> <p>2016-05-01</p> <p>The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974-1990, before switching to advance in every drainage basin during the two most recent periods, 1990-2000 and 2000-2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25831129','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25831129"><span>Plastic accumulation in the Mediterranean sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J Ignacio; Ubeda, Bárbara; Gálvez, José Á; Irigoien, Xabier; Duarte, Carlos M</p> <p>2015-01-01</p> <p>Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810679L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810679L"><span>Analysis of Marine Gravity Anomalies in the Ulleung Basin (East Sea/Sea of Japan) and Its Implications for the Architecture of Rift-Dominated Backarc Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Sang-Mook; Kim, Yoon-Mi</p> <p>2016-04-01</p> <p>Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a consequence of localized extension and extra crustal thinning at the time of basin formation. Alternative explanation is that they are the result of a small post-rift underplating at the base of the crust. Two important processes appear to have shaped the Ulleung Basin following its formation: post-rifting magmatism which occurred in the north, especially in the northeast sections of the Ulleung Basin, and the deflection of crust in response to preferential sediment loading towards the south. The median high in the basin may be a consequence of the flexural bending. Based on our evidence for almost-uniformly-thick crust, we argue that, unlike many other rift-dominated basins which exhibit large variations in crustal thickness, decompressional melting that took place during basin extension resulted in a widespread magmatic emplacement that not only smoothed but also enhanced the crustal thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....5938M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....5938M"><span>Indian-Southern Ocean Latitudinal Transect (ISOLAT): A proposal for the recovery of high-resolution sedimentary records in the western Indian Ocean sector of the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mackensen, A.; Zahn, R.; Hall, I.; Kuhn, G.; Koc, N.; Francois, R.; Hemming, S.; Goldstein, S.; Rogers, J.; Ehrmann, W.</p> <p>2003-04-01</p> <p>Quantifying oceanic variability at timescales of oceanic, atmospheric, and cryospheric processes are the fundamental objectives of the international IMAGES program. In this context the Southern Ocean plays a leading role in that it is involved, through its influence on global ocean circulation and carbon budget, with the development and maintenance of the Earth's climate system. The seas surrounding Antarctica contain the world's only zonal circum-global current system that entrains water masses from the three main ocean basins, and maintains the thermal isolation of Antarctica from warmer surface waters to the north. Furthermore, the Southern Ocean is a major site of bottom and intermediate water formation and thus actively impacts the global thermohaline circulation (THC). This proposal is an outcome of the IMAGES Southern Ocean Working Group and constitutes one component of a suite of new IMAGES/IODP initiatives that aim at resolving past variability of the Antarctic Circumpolar Current (ACC) on orbital and sub-orbital timescales and its involvement with rapid global ocean variability and climate instability. The primary aim of this proposal is to determine millennial- to sub-centennial scale variability of the ACC and the ensuing Atlantic-Indian water transports, including surface transports and deep-water flow. We will focus on periods of rapid ocean and climate change and assess the role of the Southern Ocean in these changes, both in terms of its thermohaline circulation and biogeochemical inventories. We propose a suite of 11 sites that form a latitudinal transect across the ACC in the westernmost Indian Ocean sector of the Southern Ocean. The transect is designed to allow the reconstruction of ACC variability across a range of latitudes in conjunction with meridional shifts of the surface ocean fronts. The northernmost reaches of the transect extend into the Agulhas Current and its retroflection system which is a key component of the THC warm water return flow to the Atlantic. The principal topics are: (i) the response of the ACC to climate variability; (ii) the history of the Southern Ocean surface ocean fronts during periods of rapid climate change; (iii) the history of North Atlantic Deep Water (NADW) export to the deep South Indian Ocean; (iv) the variability of Southern Ocean biogeochemical fluxes and their influence on Circumpolar Deep Water (CDW) carbon inventories and atmospheric chemistry; and (v) the variability of surface ocean fronts and the Indian-Atlantic surface ocean density flux. To achieve these objectives we will generate fine-scale records of palaeoceanographic proxies that are linked to a variety of climatically relevant ocean parameters. Temporal resolution of the records, depending on sedimentation rates, will range from millennial to sub-centennial time scales. Highest sedimentation rates are expected at coring sites located on current-controlled sediment drifts, whereas dense sampling of cores with moderate sedimentation rates will enable at least millennial-scale events to be resolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...516770F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...516770F"><span>Trends of pH decrease in the Mediterranean Sea through high frequency observational data: indication of ocean acidification in the basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flecha, Susana; Pérez, Fiz F.; García-Lafuente, Jesús; Sammartino, Simone; Ríos, Aida. F.; Huertas, I. Emma</p> <p>2015-11-01</p> <p>A significant fraction of anthropogenic carbon dioxide (CO2) released to the atmosphere is absorbed by the oceans, leading to a range of chemical changes and causing ocean acidification (OA). Assessing the impact of OA on marine ecosystems requires the accurate detection of the rate of seawater pH change. This work reports the results of nearly 3 years of continuous pH measurements in the Mediterranean Sea at the Strait of Gibraltar GIFT time series station. We document a remarkable decreasing annual trend of -0.0044 ± 0.00006 in the Mediterranean pH, which can be interpreted as an indicator of acidification in the basin based on high frequency records. Modeling pH data of the Mediterranean outflow allowed to discriminate between the pH values of its two main constituent water masses, the Levantine Intermediate Water (LIW) and the Western Mediterranean Deep Water (WMDW). Both water masses also exhibited a decline in pH with time, particularly the WMDW, which can be related to their different biogeochemical nature and processes occurring during transit time from formation sites to the Strait of Gibraltar.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoRL..36.2310B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoRL..36.2310B"><span>Deep electrical resistivity structure of northwestern Costa Rica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brasse, H.; Kapinos, G.; Mütschard, L.; Alvarado, G. E.; Worzewski, T.; Jegen, M.</p> <p>2009-01-01</p> <p>First long-period magnetotelluric investigations were conducted in early 2008 in northwestern Costa Rica, along a profile that extends from the coast of the Pacific Ocean, traverses the volcanic arc and ends currently at the Nicaraguan border. The aim of this study is to gain insight into the electrical resistivity structure and thus fluid distribution at the continental margin where the Cocos plate subducts beneath the Caribbean plate. Preliminary two-dimensional models map the only moderately resistive mafic/ultramafic complexes of the Nicoya Peninsula (resistivity of a few hundred Ωm), the conductive forearc and the backarc basins (several Ωm). Beneath the backarc basin the data image a poor conductor in the basement with a clear termination in the south, which may tentatively be interpreted as the Santa Elena Suture. The volcanic arc shows no pronounced anomaly at depth, but a moderate conductor underlies the backarc with a possible connection to the upper mantle. A conductor at deep-crustal levels in the forearc may reflect fluid release from the downgoing slab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4899926','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4899926"><span>Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pachiadaki, Maria G.; Rédou, Vanessa; Beaudoin, David J.; Burgaud, Gaëtan; Edgcomb, Virginia P.</p> <p>2016-01-01</p> <p>The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere. PMID:27375571</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27375571','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27375571"><span>Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pachiadaki, Maria G; Rédou, Vanessa; Beaudoin, David J; Burgaud, Gaëtan; Edgcomb, Virginia P</p> <p>2016-01-01</p> <p>The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GPC...140....9K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GPC...140....9K"><span>Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kováč, Michal; Plašienka, Dušan; Soták, Ján; Vojtko, Rastislav; Oszczypko, Nestor; Less, György; Ćosović, Vlasta; Fügenschuh, Bernhard; Králiková, Silvia</p> <p>2016-05-01</p> <p>The data about the Paleogene basin evolution, palaeogeography, and geodynamics of the Western Carpathian and Northern Pannonian domains are summarized, re-evaluated, supplemented, and newly interpreted. The presented concept is illustrated by a series of palinspastic and palaeotopographic maps. The Paleogene development of external Carpathian zones reflects gradual subduction of several oceanic realms (Vahic, Iňačovce-Kričevo, Szolnok, Magura, and Silesian-Krosno) and growth of the orogenic accretionary wedge (Pieniny Klippen Belt, Iňačovce-Kričevo Unit, Szolnok Belt, and Outer Carpathian Flysch Belt). Evolution of the Central Western Carpathians is characterized by the Paleocene-Early Eocene opening of several wedge-top basins at the accretionary wedge tip, controlled by changing compressional, strike-slip, and extensional tectonic regimes. During the Lutetian, the diverging translations of the northward moving Eastern Alpine and north-east to eastward shifted Western Carpathian segment generated crustal stretching at the Alpine-Carpathian junction with foundation of relatively deep basins. These basins enabled a marine connection between the Magura oceanic realm and the Northern Pannonian domain, and later also with the Dinaridic foredeep. Afterwards, the Late Eocene compression brought about uplift and exhumation of the basement complexes at the Alpine-Carpathian junction. Simultaneously, the eastern margin of the stretched Central Western Carpathians underwent disintegration, followed by opening of a fore-arc basin - the Central Carpathian Paleogene Basin. In the Northern Hungarian Paleogene retro-arc basin, turbidites covered a carbonate platform in the same time. During the Early Oligocene, the rock uplift of the Alpine-Carpathian junction area continued and the Mesozoic sequences of the Danube Basin basement were removed, along with a large part of the Eocene Hungarian Paleogene Basin fill, while the retro-arc basin depocentres migrated toward the east. The Rupelian basins gained a character of semi-closed sea spreading from the Magura Basin across the Central Western Carpathians up to the Hungarian Paleogene Basin. In the Late Oligocene, the Magura Basin connection with the Northern Hungarian Paleogene Basin remained open, probably along the northern edge of the Tisza microplate, and anoxic facies were substituted by open marine environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRC..116.1003J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRC..116.1003J"><span>Ocean circulation and properties in Petermann Fjord, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, H. L.; Münchow, A.; Falkner, K. K.; Melling, H.</p> <p>2011-01-01</p> <p>The floating ice shelf of Petermann glacier interacts directly with the ocean and is thought to lose at least 80% of its mass through basal melting. Based on three opportunistic ocean surveys in Petermann Fjord we describe the basic oceanography: the circulation at the fjord mouth, the hydrographic structure beneath the ice shelf, the oceanic heat delivered to the under-ice cavity, and the fate of the resulting melt water. The 1100 m deep fjord is separated from neighboring Hall Basin by a sill between 350 and 450 m deep. Fjord bottom waters are renewed by episodic spillover at the sill of Atlantic water from the Arctic. Glacial melt water appears on the northeast side of the fjord at depths between 200 m and that of the glacier's grounding line (about 500 m). The fjord circulation is fundamentally three-dimensional; satellite imagery and geostrophic calculations suggest a cyclonic gyre within the fjord mouth, with outflow on the northeast side. Tidal flows are similar in magnitude to the geostrophic flow. The oceanic heat flux into the fjord appears more than sufficient to account for the observed rate of basal melting. Cold, low-salinity water originating in the surface layer of Nares Strait in winter intrudes far under the ice. This may limit basal melting to the inland half of the shelf. The melt rate and long-term stability of Petermann ice shelf may depend on regional sea ice cover and fjord geometry, in addition to the supply of oceanic heat entering the fjord.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GPC...126...46G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GPC...126...46G"><span>Paleoceanographic changes during the Albian-Cenomanian in the Tethys and North Atlantic and the onset of the Cretaceous chalk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giorgioni, Martino; Weissert, Helmut; Bernasconi, Stefano M.; Hochuli, Peter A.; Keller, Christina E.; Coccioni, Rodolfo; Petrizzo, Maria Rose; Lukeneder, Alexander; Garcia, Therese I.</p> <p>2015-03-01</p> <p>During the mid-Cretaceous the Earth was characterized by peculiar climatic and oceanographic features, such as very high temperatures, smooth thermal meridional gradient, long-term rising sea level, and formation of oceanic gateways and seaways. At that time widespread deposition of micritic pelagic limestones, generally called chalk, occurred in deep pelagic settings as well as in epeiric seas, both at tropical and at high latitudes. The origin of such extensive chalk deposition in the mid-Cretaceous is a complex and still controversial issue, which involves the interaction of several different factors. In this work we address this topic from the paleoceanographic perspective, by investigating the contribution of major oceanic circulation changes. We characterize several stratigraphic sections from the Tethys and North Atlantic with litho-, bio-, and carbon isotope stratigraphy. Our data show a change between two different oceanic circulation modes happening in the Late Albian. The first is an unstable mode, with oceanographic conditions fluctuating frequently in response to rapid environmental and climatic changes, such as those driven by orbital forcing. The second mode is more stable, with better connection between the different oceanic basins, a more stable thermocline, more persistent current flow, better defined upwelling and downwelling areas, and a more balanced oceanic carbon reservoir. We propose that under the mid-Cretaceous paleogeographic and paleoclimatic conditions this change in oceanic circulation mode favored the beginning of chalk sedimentation in deep-water settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035221','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035221"><span>Pliocene three-dimensional global ocean temperature reconstruction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dowsett, H.J.; Robinson, M.M.; Foley, K.M.</p> <p>2009-01-01</p> <p>The thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3) multiproxy sea-surface temperature (SST) reconstruction with bottom water temperature estimates from 27 locations produced using Mg/Ca paleothermometry based upon the ostracod genus Krithe. Deep water temperature estimates are skewed toward the Atlantic Basin (63% of the locations) and represent depths from 1000m to 4500 m. This reconstruction, meant to serve as a validation data set as well as an initialization for coupled numerical climate models, assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW) was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW) production (relative to present day) as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period. ?? Author(s) 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrES...12...24Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrES...12...24Z"><span>Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yutong; Xu, Haiming; Qiao, Fangli; Dong, Changming</p> <p>2018-03-01</p> <p>The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIOESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simulation accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18239409','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18239409"><span>Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy</p> <p>2008-01-01</p> <p>The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatGe..10..501L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatGe..10..501L"><span>Substantial inorganic carbon sink in closed drainage basins globally</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yu; Zhang, Chengqi; Wang, Naiang; Han, Qin; Zhang, Xinzhong; Liu, Yuan; Xu, Lingmei; Ye, Wangting</p> <p>2017-07-01</p> <p>Arid and semi-arid ecosystems are increasingly recognized as important carbon storage sites. In these regions, extensive sequestration of dissolved inorganic carbon can occur in the terminal lakes of endorheic basins--basins that do not drain to external bodies of water. However, the global magnitude of this dissolved inorganic carbon sink is uncertain. Here we present isotopic, radiocarbon, and chemical analyses of groundwater, river water, and sediments from the terminal region of the endorheic Shiyang River drainage basin, in arid northwest China. We estimate that 0.13 Pg of dissolved inorganic carbon was stored in the basin during the mid-Holocene. Pollen-based reconstructions of basin-scale productivity suggest that the mid-Holocene dissolved inorganic carbon sink was two orders of magnitude smaller than terrestrial productivity in the basin. We use estimates of dissolved inorganic carbon storage based on sedimentary data from 11 terminal lakes of endorheic basins around the world as the basis for a global extrapolation of the sequestration of dissolved organic carbon in endorheic basins. We estimate that 0.152 Pg of dissolved inorganic carbon is buried per year today, compared to about 0.211 Pg C yr-1 during the mid-Holocene. We conclude that endorheic basins represent an important carbon sink on the global scale, with a magnitude similar to deep ocean carbon burial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1410681W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1410681W"><span>The Deep Meridional Overturning Circulation in the Indian Ocean Inferred from the GECCO Synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, W.; Koehl, A.; Stammer, D.</p> <p>2012-04-01</p> <p>The meridional overturning circulation in the Indian Ocean and its temporal variability in the GECCO ocean synthesis are being investigated. An analysis of the integrated circulation in different layers suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ significantly from those obtained by box inverse models, which, being based on individual hydrographic sections, are susceptible to aliasing. The GECCO solution has a large seasonal variation in its meridional overturning caused by the seasonal reversal of monsoon-related wind stress forcing. Associated seasonal variations of the deep meridional overturning range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differ before and after 1980. Notably, our analysis shows a rather stable trend for the period 1960-1979 and significant changes in the upper and bottom layer for the period 1980-2001. By means of a multivariate EOF analysis, the importance of Ekman dynamics as driving forces of the deep meridional overturning of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast contributes to evolution of IOD events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS53G..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS53G..04B"><span>AURORA BOREALIS - European Research Icebreaker With Drilling Capability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biebow, N.; Lembke-Jene, L.; Kunz-Pirrung, M.; Thiede, J.</p> <p>2008-12-01</p> <p>The polar oceans are the least known areas of the globe, in although they hold the key to many of our climate´s secrets. How does the sea ice coverage and the sea water properties change? How do plants and animals survive under the most extreme conditions of the earth? Which information of past climate change can be read from the sediments at the sea-floor and how can the future changing climate be predicted? In order to answer such and further questions, for the moment a hypermodern research vessel, the AURORA BOREALIS, is planned, which can handle the cool summers and freezing winters of the polar oceans and which can drill deep into the sea floor. AURORA BOREALIS will be the most advanced Research Icebreaker in the world with a multi-functional role of drilling in deep ocean basins and supporting climate/environmental research and decision support for stakeholder governments for the next 35-40 years. It will have a high icebreaking capacity to penetrate autonomously (single ship operation) into the central Arctic Ocean with more than 2.5 meters of ice cover, during all seasons of the year. The new technological features will include dynamic positioning in closed sea- ice cover, satellite navigation and ice-management support and the deployment and operation of Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUVs) from the twin moon-pools. A unique feature of the vessel is the deep-sea drilling rig, which will enable sampling of the ocean floor and sub-sea up to 5000 m water and 1000 m penetration at the most inhospitable places on earth. The drilling capability will be deployed in both Polar Regions on the long run and AURORA BOREALIS will be the only vessel worldwide that could undertake this type of scientific investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T53B..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T53B..08H"><span>Recognized Multiple Rifts of the Neoproterozoic in the Initiation of the Tarim Craton (NW China) and Their Tectonic Implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, B.; Jiao, C.; Huang, T.; Zhou, X.; Cai, Z.; Cao, Z.; Jiang, Z.; Cui, J.; Yu, Z.; Chen, W.</p> <p>2017-12-01</p> <p>The Tarim Basin is the largest, oil-bearing and superimposed basin in the northwest of China. The development and tectonic property of the initial Tarim basin have been acutely disputed and remain enigmatic. Urgently need to reveal the origin and formation dynamics of the Tarim Carton and evaluate the potential of the deep energy resources. However, covered by vast desert and huge-thickness sedimentary strata, suffered by multiple tectonic movements, seismic data with low signal- to- noise ratio in the deep are the critical difficulties. We analyse 4 field outcrops, 18 wells, 27 reprocessed seismic reflection profiles with high SNR across the basin and many ancillary ones and aeromagnetic data. We find about 20 normal fault-controlled rift depressions of the Cryogenian and Ediacaran scattered in the Tarim basin, which developed on the Precambrian metamorphic and crystalline basements and covered by the epeiric sea and basin facies sediments of the Lower Cambrian. The structural styles of the rifts are mainly half grabens, symmetrical troughs and horst-grabens. The regional differences exist obviously in spatial and temporal. The WNW-ESE-trending faults occur in the central part and northern of the basin and the NE, and the NEE-trending faults occur in the southern parts, which response with the anomaly of aeromagnetic. Some main faults of the Ediacaran inherited from the Cryogenian and some occurred newly, the more rifting depressions occurred during the Ediacaran. The extensional NNW-SSE-oriented and NNE-SSW-oriented paleostress field occurred simultaneously during rifting, and accompanied with the clockwise shearing. According to the activities of syn-sedimentary faults, magmatic events and sediments, the tectonic properties of the rifts are different depending on their locations in the Tarim craton. The rifting phases mainly occurred from 780 Ma to 615 Ma. The formation of rifts were associated with the opening of the South Tianshan Ocean and the South Altun-West Kunlun Oceans, which located at the north and south margin of the Tarim block, respectively, in response to break-up of the Rodinia supercontinent. The multiple rifts recognized reflect the fine-scale structure of the initiation of the Tarim craton and is the significant for understanding of the plate system and formation dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B13G0731R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B13G0731R"><span>Active subsurface cellular function in the Baltic Sea Basin, IODP Exp 347</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reese, B. K.; Zinke, L. A.; Bird, J. T.; Lloyd, K. G.; Marshall, I.; Amend, J.; Jørgensen, B. B.</p> <p>2016-12-01</p> <p>The Baltic Sea Basin is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of global temperature fluctuations over the course of several hundred thousand years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates (100-500 cm/1000 y) make this an ideal setting to understand the microbial structure of a deep biosphere community in a high-organic matter environment. The responses of deep sediment microbial communities to variations in conditions during and after deposition are poorly understood. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further define the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....10975W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....10975W"><span>Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weltje, G. J.; Prins, M. A.</p> <p>2003-04-01</p> <p>One of the outstanding problems of palaeoclimate reconstruction from physico-chemical properties of terrigenous deep-sea sediments is the fact that most basin fills are mixtures of sediment populations derived from different sources and transported to the site of deposition by different mechanisms. Conventional approaches to palaeoclimate reconstruction from deep-sea sediments, which ignore this common fact, often fail to recognise the true significance of variations in sediment properties. We formulate a set of requirements that each proposed palaeoenvironmental indicator should fulfil, and focus on the intrinsic coupling between grain size and chemical composition. A critical review of past achievements in grain-size analysis is given to provide a starting point for a conceptual model of spatio-temporal grain-size variation in terms of dynamic populations. Each dynamic population results from a characteristic combination of production and transport mechanisms that corresponds to a distinct subpopulation in the data analysed. The mathematical-statistical equivalent of the conceptual model may be solved by means of the end-member modelling algorithm EMMA. Applications of the model to several ocean basins are discussed, as well as methods to examine the validity of the palaeoclimate reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70058771','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70058771"><span>Basins in ARC-continental collisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio</p> <p>2012-01-01</p> <p>Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.6882D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.6882D"><span>Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David</p> <p>2017-07-01</p> <p>Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890009730','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890009730"><span>Multi-property modeling of ocean basin carbon fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Volk, Tyler</p> <p>1988-01-01</p> <p>The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRII.122..195C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRII.122..195C"><span>Depleted deep South China Sea δ13C paleoceanographic events in response to tectonic evolution in Taiwan-Luzon Strait since Middle Miocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Wen-Huang; Huang, Chi-Yue; Lin, Yen-Jun; Zhao, Quanhong; Yan, Yi; Chen, Duofu; Zhang, Xinchang; Lan, Qing; Yu, Mengming</p> <p>2015-12-01</p> <p>The most distinctive feature of the deep South China Sea (SCS) paleoceanography is the occurrence of long-term depleted deep-sea benthic foraminiferal δ13C values. They are lower than the global and the Pacific composite records in the last 16 Ma, especially at 13.2, 10.5, 6.5, 3.0 and 1.2-0.4 Ma. This distinct deep SCS paleoceanograhic history coincides with the subduction-collision history in the Taiwan region where waters of the West Pacific (WP) and the SCS exchange. The depleted deep-sea benthic foraminiferal δ13C events indicate that the SCS deep basin became progressively a stagnant environment in the last 16 Ma due to either closure of the connection with the WP bottom water or temporary reduction of the WP deep water flowing into the deep SCS. Both the Taiwan accretionary prism and the Luzon arc became the main tectono-morphological barriers for the WP bottom water flowing into the SCS deep basin when eastward subduction of the SCS oceanic lithosphere beneath the Philippine Sea Plate started from the Middle Miocene (18-16 Ma). This began a long-term trend of depleted SCS deep-sea benthic δ13C values in the last 16 Ma. The oblique arc-continent collision since ~6.5 Ma uplifted the Taiwan accretionary prism rapidly above sea level and further isolated the SCS from the open Pacific. The collision simultaneously causes backthrusting deformations in the North Luzon Trough forearc basin and sequentially closes interarc water gates between volcanic islands from north to south. The Loho and the Taitung interarc water gates in the advanced collision zone were closed at ~3.0 Ma and ~1.2 Ma, coinciding with the very low SCS deep-sea benthic δ13C events at 3.0 and 1.2-0.4 Ma, respectively. The Taitung Canyon between the Lutao and Lanyu volcanic islands in the incipient collision zone is semi-closed presently. These closure events also lead to the result that the WP deep water intrudes westward into the SCS principally through the Bashi Channel between the Lanyu and Batan volcanic islands in the subduction zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T41E2991S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T41E2991S"><span>The Lord Howe Rise continental ribbon: a fragment of eastern Gondwana that reveals the drivers of continental rifting and plate tectonics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, S.; Hackney, R. I.; Bryan, S. E.; Kimura, J. I.; Müller, D.; Arculus, R. J.; Mortimer, N. N.; Collot, J.; Tamura, Y.; Yamada, Y.</p> <p>2016-12-01</p> <p>Plate tectonics and resulting changes in crustal architecture profoundly influence global climate, oceanic circulation, and the origin, distribution and sustainability of life. Ribbons of continental crust rifted from continental margins are one product of plate tectonics that can influence the Earth system. Yet we have been unable to fully resolve the tectonic setting and evolution of huge, thinned, submerged, and relatively inaccessible continental ribbons like the Lord Howe Rise (LHR), which formed during Cretaceous fragmentation of eastern Gondwana. Thinned continental ribbons like the LHR are not easily explained or predicted by plate-tectonic theory. However, because Cretaceous rift basins on the LHR preserve the stratigraphy of an un-accreted and intact continental ribbon, they can help to determine whether plate motion is self-organised—passively driven by the pull of negatively-buoyant subducting slabs—or actively driven by convective flow in the mantle. In a self-organising scenario, the LHR formed in response to ocean-ward retreat of the long-lived eastern Gondwana subduction zone and linked upper-plate extension. In the mantle-driven scenario, the LHR resulted from rifting near the eastern edge of Gondwana that was triggered by processes linked to emplacement of a silicic Large Igneous Province. These scenarios can be distinguished using the ribbon's extensional history and the composition and tectonic affinity of igneous rocks within rift basins. However, current knowledge of LHR rift basins is based on widely-distributed marine and satellite geophysical data, limited dredge samples, and sparse shallow drilling (<600 m below-seafloor). This limits our ability to understand the evolution of extended continental ribbons, but a recent deep crustal seismic survey across the LHR and a proposed IODP deep stratigraphic well through a LHR rift basin provide new opportunities to explore the drivers behind rifting, continental ribboning and plate tectonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS41C1573L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS41C1573L"><span>Currents and Hydrographic Variability in Orphan Basin, 2004-2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loder, J. W.; Geshelin, Y.; Yashayaev, I.</p> <p>2010-12-01</p> <p>Orphan Basin is a deep (>3000m) and broad (>200km) indentation of the continental margin north of Flemish Cap which partially lies in the exit pathways of the Labrador Current (LC) and Deep Western Boundary Current (DWBC) from the Labrador Sea. Since 2004, the Bedford Institute of Oceanography has been carrying out a moored measurement and annual survey program to describe and understand currents and hydrographic variability in the area, with focus on ocean climate variability and energetic features relevant to oil and gas exploration. The observations have identified seasonal and interannual variability in water mass properties that can be linked to upstream variability on the AR7W line in the Labrador Sea, thereby helping to understand the fate of Labrador Sea Water and other DWBC waters. The moored measurements have confirmed the expectation that low-frequency currents and drift are equatorward and generally weak across the basin, but with some near-bottom intensification of the flow associated with the DWBC and a stronger barotropic intensification associated with the LC over the slope. The measurements have also identified two energetic and unexpected types of current features at higher frequencies - tall and isolated mesoscale eddies, and strong upper-ocean inertial oscillations. The eddies extend over the entire water column and drift with the flow in water depths of 2200-2800m, with radii of order 20 km, peak (cyclonic) currents of about 0.5 m/s at mid depths, and a local occurrence rate of about one eddy every few months. The intermittent inertial oscillations penetrate to 300-m depth, with near-surface speeds up to 1 m/s, persistence over periods up to 10-30 days, and horizontal coherence over distances exceeding 80 km. This presentation will provide an overview of the observed variability in Orphan Basin during 2004-2010 with focus on the features noted above.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918157F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918157F"><span>Geological controls on bedrock topography and ice sheet dynamics in the Wilkes Subglacial Basin sector of East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferraccioli, Fausto; Armadillo, Egidio; Young, Duncan; Blankenship, Donald; Jordan, Tom; Siegert, Martin</p> <p>2017-04-01</p> <p>The Wilkes Subglacial Basin extends for 1,400 km into the interior of East Antarctica and hosts several major glaciers that drain a large sector of the East Antarctic Ice Sheet. The deep northern Wilkes Subglacial Basin underlies the catchments of the Matusevich, Cook, Ninnis and Mertz Glaciers, which are largely marine-based and hence potentially particularly sensitive to past and also predicted future ocean and climate warming. Sediment provenance studies suggest that the glaciers flowing in this region may have retreated significantly compared to their modern configuration, as recently as the warm mid-Pliocene interval, potentially contributing several m to global sea level rise (Cook et al.,Nature Geosci., 2013). Here we combine airborne radar, aeromagnetic and airborne gravity observations collected during the international WISE-ISODYN and ICECAP aerogeophysical campaigns with vintage datasets to help unveil subglacial geology and deeper crustal architecture and to assess its influence on bedrock topography and ice sheet dynamics in the northern Wilkes Subglacial Basin. Aeromagnetic images reveal that the Matusevich Glacier is underlain by a ca 480 Ma thrust fault system (the Exiles Thrust), which has also been inferred to have been reactivated in response to intraplate Cenozoic strike-slip faulting. Further to the west, the linear Eastern Basins are controlled by the Prince Albert Fault System. The fault system continues to the south, where it provides structural controls for both the Priestley and Reeves Glaciers. The inland Central Basins continue in the coastal area underlying the fast flowing Cook ice streams, implying that potential ocean-induced changes could propagate further into the interior of the ice sheet. We propose based on an analogy with the Rennick Graben that these deep subglacial basins are controlled by the underlying horst and graben crustal architecture. Given the interpreted subglacial distribution of Beacon sediments and Ferrar tholeiites and uplifted Ross-age basement blocks, we propose that these grabens were reactivated in post-Jurassic times, as observed from geological studies in the Rennick Graben. A remarkable contrast in long-wavelength magnetic anomaly signatures is observed over the coastal and inland segments of the Cook ice stream glacial catchment. We attribute this, to the presence of several km thick early Cambrian to late Neoproterozoic(?) sedimentary basins in the coastal region, in contrast to a prominent Proterozoic basement high at the onset of fast glacial flow further inland. This suggests that there could also be a marked difference in geothermal heat flux at the base of the ice sheet in these two regions, which may in turn exert influences on basal melting and subglacial hydrology networks. Further west, the deep Western Basins provide key topographic controls on the Ninnis Glacier, which is interpreted here, as controlled by a major Paleoproterozoic crustal boundary, separating an inferred linear Archean crustal ribbon from Paleoproterozoic rift basins, which are partially exposed along the coastal segment of the Terre Adelie Craton. The ca 1.7 Ga Mertz Shear Zone flanks the Mertz Glacier, and is interpreted here as a fault splay associated with this major crustal boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRB..119...32C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRB..119...32C"><span>Deep seismic reflection images of the Wharton Basin oceanic crust and uppermost mantle offshore Northern Sumatra: Relation with active and past deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carton, Hélène; Singh, Satish C.; Hananto, Nugroho D.; Martin, James; Djajadihardja, Yusuf S.; Udrekh; Franke, Dieter; Gaedicke, Christoph</p> <p>2014-01-01</p> <p>present deep seismic reflection images along two profiles collected in 2006 in the Wharton Basin offshore Northern Sumatra. The main profile is located subparallel to the Sumatran trench at a distance of 32-66 km. Faulting of the entire sedimentary section (strike-slip deformation sometimes accompanied by a dip-slip component) is imaged over two fracture zones of the extinct Wharton Spreading Center that prior studies have shown to be reactivated as left-lateral faults. The western fracture zone is associated with a wide region of strong basement topography, a difference in crustal thickness of 1.5 km, and an age offset of 9 Ma. The epicenters of the 11 April 2012 Mw 8.6 great strike-slip earthquake, its Mw 7.2 foreshock, and Mw 8.2 aftershock align along this major structure > 100 km south of the profile intersection. Our high-quality long-offset seismic reflection data also reveal bright dipping reflections extending down to a maximum of 24 km into the oceanic mantle ( 37 km below sea level). Apparent dips are mostly 25-35°, corresponding to 30-55° along either N-S to NNE-SSW or E-W to WNW-ESE directions, which encompass the directions of plate fabric and nodal planes of the Mw 8.6 event. We suggest that these enigmatic reflections arise from presently inactive dip-slip fault planes reaching for the deepest ones to the base of the brittle layer. Possible origins include extension related to plate bending or an episode of now inactive thrust-type deformation reactivating paleonormal faults, similar to that taking place in the Central Indian Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN51A1829M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN51A1829M"><span>Particle Mass in Deep-Water Benthic Nepheloid Layers: a Global Synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishonov, A. V.; Gardner, W. D.; Richardson, M. J.</p> <p>2016-12-01</p> <p>The mass of particles in benthic nepheloid layers in the deep ocean is mapped using profiles of beam attenuation coefficient obtained with transmissometers interfaced with CTDs during WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and other programs during the last four decades using data from over 8000 profiles from >70 cruises. We map the maximum concentration of particle mass near the seafloor and integrate the particle mass throughout the benthic nepheloid layer. In the Atlantic Ocean particle mass is greater in areas where eddy kinetic energy is high in overlying waters. Areas of high bottom particle concentrations and integrated benthic nepheloid layer particle loads include the western North Atlantic beneath the Gulf Stream meanders and eddies, Argentine Basin, parts of the Southern Ocean and areas around South Africa. Particle concentrations are low in most of the Pacific and tropical and subtropical Atlantic away from margins. This synthesis is useful for GEOTRACES and other global programs where knowing particle distribution is critical for understanding trace metal absorption, sediment-water exchange and near-bottom processes. Additionally, our synthesis provides baseline data to identify where mining of metal-rich nodules and metal sulfides on the seafloor may impact the benthic environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2012/3075/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2012/3075/"><span>Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.</p> <p>2012-01-01</p> <p>During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.4569M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.4569M"><span>Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.</p> <p>2017-06-01</p> <p>Mixing and heat flux rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter heat flux values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large heat fluxes exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and heat flux rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles heat fluxes at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced heat flux rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases heat flux at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest heat flux rates observed: ice-ocean interface heat fluxes average 100 W m-2 during peak events and are associated with rapid basal sea ice melt, reaching 25 cm/d.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19278449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19278449"><span>Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forschner, Stephanie R; Sheffer, Roberta; Rowley, David C; Smith, David C</p> <p>2009-03-01</p> <p>The current understanding of microbes inhabiting deeply buried marine sediments is based largely on samples collected from continental shelves in tropical and temperate latitudes. The geographical range of marine subsurface coring was expanded during the Integrated Ocean Drilling Program Arctic Coring Expedition (IODP ACEX). This expedition to the ice-covered central Arctic Ocean successfully cored the entire 428 m sediment stack on the Lomonosov Ridge during August and September 2004. The recovered cores vary from siliciclastic sediment low in organic carbon (< 0.2%) to organic rich ( approximately 3%) black sediments that rapidly accumulated in the early middle Eocene. Three geochemical environments were characterized based on chemical analyses of porewater: an upper ammonium oxidation zone, a carbonate dissolution zone and a deep (> 200 m below sea floor) sulfate reduction zone. The diversity of microbes within each zone was assessed using 16S rRNA phylogenetic markers. Bacterial 16S rRNA genes were successfully amplified from each of the biogeochemical zones, while archaea was only amplified from the deep sulfate reduction zone. The microbial communities at each zone are phylogenetically different and are most closely related to those from other deep subsurface environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRC..108.3045B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRC..108.3045B"><span>Organic-rich sediments in ventilated deep-sea environments: Relationship to climate, sea level, and trophic changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertrand, P.; Pedersen, T. F.; Schneider, R.; Shimmield, G.; Lallier-Verges, E.; Disnar, J. R.; Massias, D.; Villanueva, J.; Tribovillard, N.; Huc, A. Y.; Giraud, X.; Pierre, C.; VéNec-Peyré, M.-T.</p> <p>2003-02-01</p> <p>Sediments on the Namibian Margin in the SE Atlantic between water depths of ˜1000 and ˜3600 m are highly enriched in hydrocarbon-prone organic matter. Such sedimentation has occurred for more than 2 million years and is geographically distributed over hundreds of kilometers along the margin, so that the sediments of this region contain a huge concentrated stock of organic carbon. It is shown here that most of the variability in organic content is due to relative dilution by buried carbonates. This reflects both export productivity and diagenetic dissolution, not differences in either water column or bottom water anoxia and related enhanced preservation of organic matter. These observations offer a new mechanism for the formation of potential source rocks in a well-ventilated open ocean, in this case the South Atlantic. The organic richness is discussed in terms of a suite of probable controls including local wind-driven productivity (upwelling), trophic conditions, transfer efficiency, diagenetic processes, and climate-related sea level and deep circulation. The probability of past occurrences of such organic-rich facies in equivalent oceanographic settings at the edge of large oceanic basins should be carefully considered in deep offshore exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS12B..05O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS12B..05O"><span>Oceanic core complexes in the Philippine Sea: results from Japan's extended continental shelf mapping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohara, Y.; Yoshida, T.; Nishizawa, A.</p> <p>2013-12-01</p> <p>The United Nations Commission on the Limits of the Continental Shelf (CLCS) issued its recommendations on Japan's extended continental shelf in April 2012, confirming Japan's rights over the vast areas within the Philippine Sea and Pacific Plates. Japan submitted information on the limits of its continental shelf beyond the EEZ to the CLCS on November 2008, which was the result of 25 years of nation's continental shelf survey project since 1983, involving all of Japan's agency relevant to geosciences. The huge geological and geophysical data obtained through the project give the scientists unprecedented opportunity to study the geology and tectonics of the Philippine Sea and Pacific Plates. In this contribution, we show such an example from the Philippine Sea Plate, relevant to the global mid-ocean ridge problem. Oceanic core complexes (OCC) are dome-shaped bathymetric highs identified in mid-ocean ridges, interpreted as portions of the lower crust and/or upper mantle denuded via low-angle detachment faulting. OCCs are characterized morphologically by axis-normal striations (corrugations, or mullion structure) on the dome, and exposures of mantle peridotite and/or lower crustal gabbro. A strikingly giant OCC (named 'Godzilla Megamullion') was discovered in the Parece Vela Basin by the continental shelf survey project in 2001. Godzilla Megamullion is morphologically the largest OCC in the world, consisting mainly of fertile mantle peridotite along its entire length of over 125 km. Following its discovery in 2001, several academic cruises investigated the structure in detail, providing numerous important findings relevant to mid-ocean ridge tectono-magmatic processes and Philippine Sea evolution, including the slow- to ultraslow-spreading environment for denudation of the detachment fault (< 2.5 cm/y) and associated decreasing degree of partial melting of the peridotites towards the termination of Godzilla Megamullion. In addition to Godzilla Megamullion, several potential OCCs have been discovered in the Philippine Sea Plate by the continental shelf survey project. These are: (1) the ones in the Shikoku Basin spreading axis at around 24 degrees north, (2) the Chaotic Terrain in the Parece Vela Basin, (3) Chaotic Terrain in the West Philippine Basin, near the CBF Rift (formerly known as the Central Basin Fault), (4) Chaotic Terrain in the Kita-Daito Basin, (5) the one in the Shikoku Basin floor to the east of Kyushu-Palau Ridge at 25 degrees north, (6) the Higashi-Ryusei Spur of the Kyushu-Palau Ridge at 26 degrees north, and (7) the one in the Daito Ridge adjoining to the Kida-Daito Basin. OCCs are commonly developed in slow-spreading ridges, providing excellent opportunities as tectonic windows to study the composition and structure of deep oceanic lithosphere. The OCCs in the Philippine Sea Plate in turn provide the opportunities to study the backarc basin lithosphere as well as the continental lithosphere (at the above examples 6 and 7). Although Godzilla Megamullion has been studied very well, the other OCCs are not well documented yet. The next step is to focus on these interesting targets to understand the lithospheric process in the Philippine Sea Plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T33C0734J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T33C0734J"><span>New seismic observation on the lithosphere and slab subduction beneath the Indo-Myanmar block: Implications for continent oblique subduction and transition to oceanic slab subduction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, M.; He, Y.; Zheng, T.; Mon, C. T.; Thant, M.; Hou, G.; Ai, Y.; Chen, Q. F.; Sein, K.</p> <p>2017-12-01</p> <p>The Indo-Myanmar block locates to the southern and southeastern of the Eastern Himalayan Syntax (EHS) and marks a torsional boundary of the collision between the Indian and Eurasian plates. There are two fundamental questions concerned on the tectonics of Indo-Myanmar block since the Cenozoic time. One is whether and how the oblique subduction is active in the deep; the other is where and how the transition from oceanic subduction and continental subduction operates. However, the two problems are still under heated debate mainly because the image of deep structure beneath this region is still blurring. Since June, 2016, we have executed the China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO) and deployed the first portable seismic array in Myanmar in cooperation with Myanmar Geosciences Society (MGS). This array contains 70 stations with a dense-deployed main profile across the Indo-Myanmar Range, Central Basin and Shan State Plateau along latitude of 22° and a 2-D network covering the Indo-Myanmar Range and the western part of the Central Basin. Based on the seismic data collected by the new array, we conducted the studies on the lithospheric structure using the routine surface wave tomography and receiver function CCP stacking. The preliminary results of surface wave tomography displayed a remarkable high seismic velocity fabric in the uppermost of mantle beneath the Indo-Myanmar Range and Central Basin, which was interpreted as the subducted slab eastward. Particularly, we found a low velocity bulk within the high-velocity slab, which was likely to be a slab window due to the slab tearing. The preliminary results of receiver function CCP stacking showed the obvious variations of the lithospheric structures from the Indo-Myanmar Range to the Central Basin and Shan State Plateau. The lithospheric structure beneath the Indo-Myanmar Range is more complex than that beneath the Central Basin and Shan State Plateau. Our resultant high-resolution images will provide important constrains for establishing the tectonic framework of Indian plate eastward subduction. This study is supported by the National Natural Science Foundation of China (grants 41490612, 41274002).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMGP21B..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMGP21B..02S"><span>Development of precise measurement systems for deep-sea electrical and magnetic explorations by ROV and AUV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sayanagi, K.; Goto, T.; Harada, M.; Kasaya, T.; Sawa, T.; Nakajima, T.; Isezaki, N.; Takeuchi, A.; Nagao, T.; Matsuo, J.</p> <p>2009-12-01</p> <p>It is generally not easy to obtain the fine-scale structure of the oceanic crust with accuracy better than several tens of meters, because the deep sea prevents us from approaching the bottom in most parts of the oceans. The necessity of such detailed information, however, has increased in researches and developments of the ocean floor. For instance, it is essential in development of ocean floor resources like sea-floor hydrothermal deposits and methane hydrate in order to estimate accurate abundance of those resources. Therefore, it is very important to develop some instruments for precise measurements of the oceanic crust. From this standpoint, we have developed new measurement systems for electrical and magnetic explorations by Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV). In our project, the main target is sea-floor hydrothermal deposits. We are working on research and development regarding measurement of the magnetic field with high resolution and high sampling rate, electrical exploration with accurately controlled source signals, electrical exploration tools for shallow and deep targets, versatile instruments of electrical and magnetic explorations with multi-platforms (deep-tow system, ROV, and AUV), comprehensive analyses of electrical, magnetic, acoustic and thermal data, and so on. We finished basic designs of the magnetic and electrical observation systems last year, and we have been manufacturing each instrument. So far, the first test of the magnetic exploration system was carried out in the Kumano Basin during the R/V Yokosuka cruise in July, 2009. In the test, a vector magnetometer on AUV “Urashima” and a scalar magnetometer hung below towing vehicle “Yokosuka Deep-Tow” successfully detected magnetic anomaly produced by an artificial magnetic body set up on the ocean floor. Details will be reported in another paper by Harada, M. et al. in this meeting. In addition, various performance tests will be planned for check and improvement of the observation systems. For instance, the vector magnetometer will be tested over a volcanic island using a helicopter. The electrical exploration system will be also tested using ROV “Kaiko 7000II” off the northeastern part of Japan during the R/V Kairei cruise. We will present the outline and the current state of the project in this presentation. Note that this project has been supported by the Ministry of Education, Culture, Sports, Science & Technology (MEXT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T23E..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T23E..01L"><span>The history and fate of three families of lithosphere on Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C. T.</p> <p>2016-12-01</p> <p>Based on compilations of surface heat flux to constrain the thermal boundary layer thickness, lithosphere thickness can be shown to have a trimodal distribution. In ocean basins, lithosphere thickness ranges from thin (<10 km) beneath young ocean basins, which dominate, to thick (<100 km) beneath old ocean basins, which are rare due to subduction. Continents have thicker lithospheres and define two additional peaks: 30%, reflecting most of the Archean cratons, are 180-220 km thick and 60% are 90-140 km thick. While ocean basins subduct after their lithospheres grow thick, continents do not, despite their thicker lithospheres. The insubductibility of continents is because the buoyancy of thick crust compensates for the thick cold lithosphere and because continental thermal boundary layers do not grow indefinitely. Lithospheric growth is understood to be limited by the onset of small-scale convective instabilities, but why then do continental lithospheres have two different critical thicknesses? Initial thickness, at the time of formation, is critical. Continental lithospheres less than 120 km thick are subject to magmatic modification (refertilization) in the form of thermo-chemical erosion, which gradually thins the lithosphere. Lithospheres greater than 120 km appear to be relatively immune to significant lithospheric thinning. This may in part be because refertilization-driven destabilization does not occur since deep melting is suppressed beneath thick lithosphere. To resist thermal thinning, it seems necessary that anomalously thick lithospheres were born with intrinsic strength, widely hypothesized to have been imparted by the unusual petrogenesis of cratonic mantle, wherein high degrees of melting early in Earth's history resulted in the formation of a dehydrated and strong chemical boundary layer. Another possibility is that cratonic mantle is characterized by the strengthening effects of larger grain size, owing to the high degrees of melting that decrease the number of clinopyroxene pinning points. In summary, a lithosphere's fate depends on the nature of its origin. Continental lithospheres born thick will have long, boring lives, continental lithospheres born thin will be forever tormented, and oceanic lithospheres are fated to have calm but brief lives at the Earth's surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11327163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11327163"><span>Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muss, A; Robertson, D R; Stepien, C A; Wirtz, P; Bowen, B W</p> <p>2001-03-01</p> <p>Many tropical reef fishes are divided into Atlantic and East Pacific taxa, placing similar species in two very different biogeographic regimes. The tropical Atlantic is a closed ocean basin with relatively stable currents, whereas the East Pacific is an open basin with unstable oceanic circulation. To assess how evolutionary processes are influenced by these differences in oceanography and geography, we analyze a 630-bp region of mitochondrial cytochrome b from 171 individuals in the blenniid genus Ophioblennius. Our results demonstrate deep genetic structuring in the Atlantic species, O. atlanticus, corresponding to recognized biogeographic provinces, with divergences of d = 5.2-12.7% among the Caribbean, Brazilian, St. Helena/Ascension Island, Gulf of Guinea, and Azores/Cape Verde regions. The Atlantic phylogeny is consistent with Pliocene dispersal from the western to eastern Atlantic, and the depth of these separations (along with prior morphological comparisons) may indicate previously unrecognized species. The eastern Pacific species, O. steindachneri, is characterized by markedly less structure than O. atlanticus, with shallow mitochondrial DNA lineages (dmax = 2.7%) and haplotype frequency shifts between locations in the Sea of Cortez, Pacific Panama, Clipperton Island, and the Galapagos Islands. No concordance between genetic structure and biogeographic provinces was found for O. steincdachneri. We attribute the phylogeographic pattern in O. atlanticus to dispersal during the reorganization of Atlantic circulation patterns that accompanied the shoaling of the Isthmus of Panama. The low degree of structure in the eastern Pacific is probably due to unstable circulation and linkage to the larger Pacific Ocean basin. The contrast in genetic signatures between Atlantic and eastern Pacific blennies demonstrates how differences in geology and oceanography have influenced evolutionary radiations within each region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5749L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5749L"><span>Dense water formation in the north-western Mediterranean area during HyMeX-SOP2 in 1/36° ocean simulations: Ocean-atmosphere coupling impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lebeaupin Brossier, Cindy; Léger, Fabien; Giordani, Hervé; Beuvier, Jonathan; Bouin, Marie-Noëlle; Ducrocq, Véronique; Fourrié, Nadia</p> <p>2017-07-01</p> <p>The north-western Mediterranean Sea is a key location for the thermohaline circulation of the basin. The area is characterized by intense air-sea exchanges favored by the succession of strong northerly and north-westerly wind situations (mistral and tramontane) in autumn and winter. Such meteorological conditions lead to significant evaporation and ocean heat loss that are well known as the main triggering factor for the Dense Water Formation (DWF) and winter deep convection episodes. During the HyMeX second field campaign (SOP2, 1 February to 15 March 2013), several platforms were deployed in the area in order to document the DWF and the ocean deep convection, as the air-sea interface conditions. This study investigates the role of the ocean-atmosphere coupling on DWF during winter 2012-2013. The coupled system, based on the NEMO-WMED36 ocean model (1/36° resolution) and the AROME-WMED atmospheric model (2.5 km resolution), was run during 2 months covering the SOP2 and is compared to an ocean-only simulation forced by AROME-WMED real-time forecasts and to observations collected in the north-western Mediterranean area during the HyMeX SOP2. The comparison shows small differences in terms of net heat, water, and momentum fluxes. On average, DWF is slightly sensitive to air-sea coupling. However, fine-scale ocean processes, such as shelf DWF and export or eddies and fronts at the rim of the convective patch, are significantly modified. The wind-current interactions constitute an efficient coupled process at fine scale, acting as a turbulence propagating vectors, producing large mixing and convection at the rim of the convective patch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.4861S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.4861S"><span>Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sevastou, K.; Lampadariou, N.; Polymenakou, P. N.; Tselepides, A.</p> <p>2013-07-01</p> <p>The long-held perception of the deep sea consisting of monotonous slopes and uniform oceanic basins has over the decades given way to the idea of a complex system with wide habitat heterogeneity. Under the prism of a highly diverse environment, a large dataset was used to describe and compare spatial patterns of the dominant small-size components of deep-sea benthos, metazoan meiofauna and microbes, from Mediterranean basins and slopes. A grid of 73 stations sampled at five geographical areas along the central-eastern Mediterranean Basin (central Mediterranean, northern Aegean Sea, Cretan Sea, Libyan Sea, eastern Levantine) spanning over 4 km in depth revealed a high diversity, irrespective of the benthic group or level of taxonomic analysis. A common decreasing bathymetric trend was detected for meiobenthic abundance, major taxa diversity and nematode genera richness, but no differences were found between the two habitats (basin vs slope). In contrast, microbial richness is significantly higher at the basin ecosystem and tends to increase with depth. Multivariate analyses (β- and δ-diversity and ordination analysis) complemented these results and underlined the high within-habitat variability of benthic communities. Meiofaunal communities in particular were found to change gradually and vary more towards the abyss. On the other hand, microbial communities were highly variable, even among samples of the same area, habitat and bathymetry. A significant proportion of the variation of benthic communities and their descriptors was explained by depth and proxies of food availability (sedimentary pigments and organic content), but the combination of predictor variables and the strength of the relationship varied depending on the data set used (based on type of habitat, benthic component, taxonomic level). This, along with the observed high within-habitat variability suggests that other factors, which tend to vary at local scale (hydrodynamics, substrate structure, geochemistry, food quality, etc.), may also relate to the observed benthic patterns. Overall, the results presented here suggest that differences in small-size benthos between the basin and slope habitats are neither strong nor consistent; it appears that within-habitat variability is high, differences among depth ranges are important and further investigation of possible environmental drivers of benthic patterns is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Tectp.451..290K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Tectp.451..290K"><span>Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.</p> <p>2008-04-01</p> <p>Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the early Carboniferous, allowing accumulation of a flysch complex in a long-evolving accretionary complex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7643G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7643G"><span>Is the Gop rift oceanic? A reevaluation of the Seychelles-India conjugate margins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guan, Huixin; Werner, Philippe; Geoffroy, Laurent</p> <p>2016-04-01</p> <p>Recent studies reevaluated the timing and evolution of the breakup process between the Seychelles continental ridge and India, and the relationship between this evolution and mantle melting associated with the Deccan Igneous Province1,2,3. Those studies, mainly based on gravity and seismic refraction surveys, point that the oceanic domain located between the Seychelles and the Laxmi Ridge (here designed as the Carlsberg Basin) is the youngest oceanic domain between India and the Seychelles. To the East of the Laxmi Ridge, the aborted Gop Rift is considered as an older highly magmatic extensional continental system with magmatism, breakup and oceanic spreading being coeval with or even predating the emplacement of the major pulse of the Deccan trapps. This interpretation on the oceanic nature of the Gop Rift conflicts with other extensive surveys based on magnetic and seismic reflection data4 which suggest that the Gop Rift is an extended syn-magmatic continental domain. In our work based (a) on the existing data, (b) on new deep-seismic reflection surveys (already published by Misra5) down to the Moho and underlying mantle and (c) on new concepts on the geometry of volcanic passive margins, we propose a distinct interpretation of the Seychelles-India system. As proposed by former authors6,7, the Indian margin suffered some continental stretching and thinning before the onset of the Deccan traps during the Mesozoic. Thus continental crust thickness cannot be used easily as a proxy of syn-magmatic stretching-thinning processes or even to infer the presence or not of oceanic-type crust based, solely, on crustal thickness. However, some remarkable features appear on some of the deep penetration seismic lines we studied. We illustrate that the whole Seychelles/India system, before the opening of the present-day "Carlsberg Basin" may simply be regarded as a pair of sub-symmetric conjugate volcanic passive margins (VPMs) with inner and outer SDR wedges dipping towards the Gop Rift axis. We propose that the conspicuous buoyant central part of the Gop Rift is likely associated with a continental C-Block as described in a recent paper on conjugated VPMs8, at least in the southern part of the Gop Rift. The crust below the Laxmi basin is probably transitional continental i.e. strongly intruded. West of India and west of the Laxmi Ridge, the transition to the Carlsberg Basin occurs along a clearly-expressed transform fault, not through an extended and thinned continental margin. We reinterpret the whole system based on those observations and propositions, giving some explanations on controversial magnetic anomalies based on similar observations from the southern Atlantic Ocean. 1: Collier et al., 2008. Age of the Seychelles-India break-up. Earth and Planetary Science Letters. 2: Minshull et al., 2008. The relationship between riftingand magmatism in the northeastern Arabian Sea. Nature Geoscience. 3 : Armitage et al., 2010. The importance of rift history for volcanic margin. Nature. 4 : Krishna et al., 2006. Nature of the crust in the Laxmi Basin (14 degrees-20 degrees N), western continental margin of India. Tectonics. 5 : Misra et al., 2015. Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Marine and Petroleum Geology. 6 : Biswas, 1982. Rift basins in the western margin of India and their hydrocarbon prospects. Bull. Am. Assoc. Pet. Geol. 7 : Chatterjee et al., 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research. 8 : Geoffroy et al., 2015. Volcanic passive margins: anotherway to break up continents. Scientific Reports.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....8202B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....8202B"><span>Late Neogene benthic stable isotope record of ODP Site 999: Implications for Caribbean paleoceanography, organic carbon burial and the Messininian salinity crisis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bickert, T.; Haug, G.; Tiedemann, R.</p> <p>2003-04-01</p> <p>The late Neogene closure of the seaway between the North and South American continents is thought to have caused extensive changes in ocean circulation and Northern Hemisphere climate. The timing and consequences of the emergence of the Isthmus of Panama for the ocean circulation have been addressed in several papers which indicate a marked reorganization of surface and deep ocean circulation starting 4.6 million years ago. However, the biogeographic development of marine faunas and floras on both sides of the Panama Isthmus suggests that the paleoceanographic changes related to the closing of the isthmus started much earlier. Furthermore, the closing history of the Panama Seaway overlaps with the tectonic evolution of other ocean gateways in the late Miocene, especially the closure of the Strait of Gibraltar, which led to a transient isolation of the Mediterranean Sea from the Atlantic Ocean, known as the Messinian Salinity Crisis. We report on epibenthic foraminiferal d18O and d13C and percentage sand records of the carbonate fraction from Caribbean ODP Site 999 (12°44´N, 78° 44´W, water depth 2828 m) spanning the interval from 8.6 to 5.3 Ma. Low epibenthic d13C values and low sand contents indicate a poorly ventilated deep Caribbean throughout the late Miocene. At this time the deep Caribbean was dominated by a nutrient-rich Southern Ocean water mass. A mostly constant d13C gradient between the Caribbean and deep Atlantic records suggests that the fluctuations in d13C reflect rather global changes in d13C of the dissolved inorganic carbon due to varying erosion of organic carbon from terrigenous soils and shelf sediments. The observed 100-ky cyclicity of epibenthic d13C is in well accordance with the variability of the terrigenous input to the equatorial Atlantic as recorded by susceptibility records of the Ceara Rise. However, some gradient changes between 6.8 and 5.6 Ma indicate a poorer ventilation of the deep Atlantic related to a reduced production of NADW. The Messinian Salinity Crisis between 6.0 and 5.3 Ma did not affect the intermediate to deep water gradient between the Caribbean and the Atlantic. Comparison to the Bahama platform record of ODP Site 1006, however, indicate a poorer ventilation of the shallower Northern Caribbean basins synchronous to the isolation of the Mediterranean Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SedG..261....1C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SedG..261....1C"><span>Identifying glacial influences on sedimentation in tectonically-active, mass flow dominated arc basins with reference to the Neoproterozoic Gaskiers glaciation (c. 580 Ma) of the Avalonian-Cadomian Orogenic Belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carto, Shannon L.; Eyles, Nick</p> <p>2012-06-01</p> <p>Neoproterozoic 'Avalonian-Cadomian' volcanic arc basins once lay peripheral to Gondwana and are now found around the North Atlantic Ocean in New England, Atlantic Canada and northwestern Europe as 'peri-Gondwanan terranes.' Their thick (up to 9 km) marine fills are dominated by turbidites, debrites (diamictites and variably graded conglomerates), slumps and olistostromes recording the dominance of mass flow processes in arc basins oversupplied with volcaniclastic sediment. Several diamictite horizons in these basins were identified as glacial tillites more than one hundred years ago on the basis of poor textural sorting, and the lack of any understanding of mass flow processes. An association with thin-bedded turbidite facies, then interpreted as glaciolacustrine varvites, was seen as evidence for widespread glacial conditions which is still the basis today of a near global 'Gaskiers glaciation' at c. 580 Ma, despite classic sedimentological work which shows that the 'tillites' and 'varvites' of these basins are deep marine sediment gravity flow deposits. Only in two basins (Gaskiers Formation, Avalon Peninsula in Newfoundland, and the Konnarock Formation of Virginia) is a distal and regionally-restricted glacial influence on marine sedimentation identified from ice-rafted, striated dropstones in turbidites but terrestrial 'ice-contact' facies are absent. As revealed in this study, terrestrial glacial facies may not have survived frequent volcanic activity such as seen today on glaciated active plate margin volcanoes such as Mount Rainier in Washington USA, and Cotopaxi Volcano in Ecuador where primary glacial sediment is frequently reworked by lahars, pyroclastic flows, debris avalanches and outburst floods. The weight of evidence presented in this study indicates that ice covers during the Gaskiers glaciation were not widespread across the Avalonian-Cadomian back arc basins; the deep marine Grenada Basin (Caribbean Sea) filled with turbidites, debrites (lahars) and debris avalanches from the adjacent Lesser Antilles Arc is identified here as a modern analogue for these ancient basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T12B..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T12B..04T"><span>Revisiting Seafloor-Spreading in the Red Sea: Basement Nature, Transforms and Ocean-Continent Boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tapponnier, P.; Dyment, J.; Zinger, M. A.; Franken, D.; Afifi, A. M.; Wyllie, A.; Ali, H. G.; Hanbal, I.</p> <p>2013-12-01</p> <p>A new marine geophysical survey on the Saudi Arabian side of the Red Sea confirms early inferences that ~ 2/3 of the eastern Red Sea is floored by oceanic crust. Most seismic profiles south of 24°N show a strongly reflective, landward-deepening volcanic basement up to ~ 100 km east of the axial ridge, beneath thick evaporitic deposits. This position of the Ocean-Continent Boundary (OCB) is consistent with gravity measurements. The low amplitudes and long wavelengths of magnetic anomalies older than Chrons 1-3 can be accounted for by low-pass filtering due to thick sediments. Seafloor-spreading throughout the Red Sea started around 15 Ma, as in the western Gulf of Aden. Its onset was coeval with the activation of the Aqaba/Levant transform and short-cutting of the Gulf of Suez. The main difference between the southern and northern Red Sea lies not in the nature of the crust but in the direction and modulus of the plate motion rate. The ~ 30° counterclockwise strike change and halving of the spreading rate (~ 16 to ~ 8 mm/yr) between the Hermil (17°N) and Suez triple junctions results in a shift from slow (≈ North Atlantic) to highly oblique, ultra-slow (≈ Southwest Indian) ridge type. The obliquity of spreading in the central and northern basins is taken up by transform discontinuities that stop ~ 40 km short of the coastline, at the OCB. Three large transform fault systems (Jeddah, Zabargad, El Akhawein) nucleated as continental transfer faults reactivating NNE-trending Proterozoic shear zones. The former two systems divide the Red Sea into three main basins. Between ~15 and ~5 Ma, for about 10 million years, thick evaporites were deposited directly on top of oceanic crust in deep water, as the depositional environment, modulated by climate, became restricted by the Suez and Afar/Bab-el-Mandeb volcano-tectonic 'flood-gates.' The presence of these thick deposits (up to ~ 8 km) suffices to account for the difference between the Red Sea and the Gulf of Aden. Widespread salt tectonics was triggered by the flow of large evaporite sheets and salt glaciers toward the ridge axis. Such flow was more pervasive in the north, where slower spreading resulted in a deeper trough, and was guided by the rugged topography of the oceanic seafloor. The Red Sea may represent the best model for comparably deep evaporitic basins along the Earth's passive margins, particularly in the South Atlantic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1978/1020/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1978/1020/report.pdf"><span>Hot, deep origin of petroleum: deep basin evidence and application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Price, Leigh C.</p> <p>1978-01-01</p> <p>Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMGP14A..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMGP14A..06L"><span>Paleolatitude Records of the Western Pacific as Determined From DSDP/ODP Basaltic Cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Q.; Zhao, X.; Yan, M.; Riisager, P.; Lo, C.</p> <p>2008-12-01</p> <p>We report here the new paleomagnetic, rock magnetic, and Ar-Ar geochronologic results of our recent completed project, which aims to determine the Cretaceous paleomagnetic paleolatitude record and the architecture of the volcanic basins in the western Pacific Ocean. The new results, in concert with our paleomagnetic research on ODP rocks recovered from the Ontong Java Plateau (OJP), suggest that various plateaus and basins in the western Pacific had similar plate-tectonic setting (paleolatitude) and ages with that of OJP at time of emplacement (~120 Ma). Basalts sampled from Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sites of the greater OJP as well as from obducted sections in the Solomon Islands of Malaita and Santa Isabel are strikingly uniform in petrologic and geochemical characteristics. Many of these cores, especially those from DSDP sites, have not been well-studied paleomagnetically and hence underutilized for tectonic study. We carefully re-sampled and systematic demagnetized and analyzed 925 basaltic cores from 15 sites drilled by10 DSDP/ODP Legs in the western and central Pacific, which represents a unique possibility for averaging out secular variation to obtain a well-defined paleolatitude estimate. The most important findings from this study include: (1). most basins formed during the Cretaceous long normal magnetic period with similar Ar-Ar ages as the OJP; (2) East Mariana, Pigafetta, the upper flow unit in the Nauru basin and Mid-Pacific Guyots all yielded similar paleolatitudes as those for OJP, suggesting the volcanic eruptions of flows in these basins are likely related to the emplacement of the OJP; and (3) the lower flow unit in the Nauru basin yields a paleolatitude that is ~10° further south and the age is more than 10 m.y. older than these of the OJP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.T53B1942C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.T53B1942C"><span>Crustal Structure of the Yakutat Microplate: Constraints from STEEP Wide-angle Seismic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christeson, G. L.; van Avendonk, H.; Gulick, S. P.; Worthington, L.; Pavlis, T.</p> <p>2008-12-01</p> <p>In Fall 2008 we will conduct a seismic program focusing on the Yakutat microplate. As part of this study we plan to acquire two wide-angle profiles: an onshore-offshore northwest-southeast oriented profile extending from the Bering glacier onto the continental shelf and across the Dangerous River Zone, and an offshore northeast-southwest oriented profile extending from the ocean basin across the Transition fault and into Yakutat Bay. The sound source will be the R/V Langseth's tuned 6600 cu. in., 36 air gun array. Ocean bottom seismometers will be positioned at ~15 km spacing, and Texan seismometers at 1-4 km spacing across the Bering Glacier. Coincident deep-penetrating seismic reflection data will be acquired on the marine portion of both profiles using a 8-km, 640-channel solid hydrophone streamer. Existing models for the Yakutat microplate disagree as to whether it is a continental fragment attached to normal oceanic crust or an oceanic plateau, and if the deep structure changes from west to east across the Dangerous River Zone. In the continental fragment model uplift is concentrated along crustal-scale thrust faulting at the ocean crust boundary (Dangerous River Zone?) resulting in focused and rapid erosion. In the oceanic plateau model more distributed, regional uplift is expected which will produce widespread exhumation with net erosion potentially coupled with glacial cycles. Thus distinguishing between these models, which we expect to accomplish with our planned seismic program, is vital for linking tectonics to erosion on both spatial and temporal scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SciDr..17....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SciDr..17....1M"><span>IODP Expedition 338: NanTroSEIZE Stage 3: NanTroSEIZE plate boundary deep riser 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, G. F.; Kanagawa, K.; Strasser, M.; Dugan, B.; Maeda, L.; Toczko, S.</p> <p>2014-01-01</p> <p>The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is designed to investigate fault mechanics and seismogenesis along a subduction megathrust, with objectives that include characterizing fault slip, strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout an active plate boundary system. Integrated Ocean Drilling Program (IODP) Expedition 338 was planned to extend and case riser Hole C0002F from 856 to 3600 meters below the seafloor (m b.s.f.). Riser operations extended the hole to 2005.5 m b.s.f., collecting logging-while-drilling (LWD) and measurement-while-drilling, mud gas, and cuttings data. Results reveal two lithologic units within the inner wedge of the accretionary prism that are separated by a prominent fault zone at ~ 1640 m b.s.f. Due to damage to the riser during unfavorable winds and strong currents, riser operations were suspended, and Hole C0002F left for re-entry during future riser drilling operations. Contingency riserless operations included coring at the forearc basin site (C0002) and at two slope basin sites (C0021 and C0022), and LWD at one input site (C0012) and at three slope basin sites (C0018, C0021 and C0022). Cores and logs from these sites comprehensively characterize the alteration stage of the oceanic basement input to the subduction zone, the early stage of Kumano Basin evolution, gas hydrates in the forearc basin, and recent activity of the shallow megasplay fault zone system and associated submarine landslides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP24A..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP24A..01H"><span>Depositional History of the Western Amundsen Basin, Arctic Ocean, and Implications for Neogene Climate and Oceanographic Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopper, J. R.; Castro, C. F.; Knutz, P. C.; Funck, T.</p> <p>2017-12-01</p> <p>Seismic reflection data collected in the western Amundsen Basin as part of the Law of the Sea program for the Kingdom of Denmark show a uniform and continuous cover of sediments over oceanic basement. An interpretation of seismic facies units shows that the depositional history of the basin reflects changing tectonic, climatic, and oceanographic conditions throughout the Cenozoic. In this contribution, the Miocene to present history is summarized. Two distinct changes in the depositional environment are proposed, first in response to the development of a deep water connection between the Arctic and North Atlantic, and the second in response to the onset of perennial sea ice cover in the Arctic. In the early to mid-Miocene, a buildup of contourite deposits indicates a distinct change in sedimentation that is particularly well developed near the flank of the Lomonosov Ridge. It is suggested that this is a response to the opening of the Fram Strait and the establishment of geostrophic bottom currents that flowed from the Laptev Sea towards Greenland. These deposits are overlain by a seismic facies unit characterized by buried channels and erosional features. These include prominent basinward levee systems that suggest a channel morphology maintained by overbank deposition of muddy sediments carried by suspension currents periodically spilling over the channel pathway. These deposits indicate a change to a much higher energy environment that is proposed to be a response to brine formation associated with the onset of perennial sea ice cover in the Arctic Ocean. This interpretation implies that the development of extensive sea ice cover results in a significant change in the energy environment of the ocean that is reflected in the depositional and erosional patterns observed. The lack of similar high energy erosional features and the presence of contourite deposits throughout most of the Miocene may indicate the Arctic Ocean was relatively ice-free until the very latest Miocene.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.1025R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.1025R"><span>The Sinking and Spreading of The Antarctic Deep Ice Shelf Water In The Ross Sea Studied By In Situ Observaions and Numerical Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rubino, A.; Budillon, G.; Pierini, S.; Spezie, G.</p> <p></p> <p>The sinking and spreading of the Deep Ice Shelf Water (DISW) in the Ross Sea are analyzed using in situ observations and the results of a nonlinear, reduced-gravity, frontal layered numerical "plume" model which is able to simulate the motion of a bottom-arrested current over realistic topography. The model is forced by prescribing the thickness of the DISW vein as well as its density structure at the southern model boundary. The ambient temperature and salinity are imposed using hydrographic data acquired by the Italian PNRA-CLIMA project. In the model water of the quiescent ambient ocean is allowed to entrain in the active deep layer due to a simple param- eterization of turbulent mixing. The importance of forcing the model with a realistic ambient density is demonstrated by carrying out a numerical simulation in which the bottom active layer is forced using an idealized ambient density. In a more realis- tic simulation the path and the density structure of the DISW vein flowing over the Challenger Basin are obtained and are found to be in good agreement with data. The evolution of the deep current beyond the continental shelf is also simulated. It provides useful information on the water flow and mixing in a region of the Ross Sea where the paucity of experimental data does not allow for a detailed description of the deep ocean dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044270','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044270"><span>Deep Arctic Ocean warming during the last glacial cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.</p> <p>2012-01-01</p> <p>In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG44A1962M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG44A1962M"><span>Large-scale deep-water seafloor mapping from the Rockall to the Hatton basins, NE Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monteys, X.; Thébaudeau, B.; Murcia, C.; Duncan, N.</p> <p>2016-02-01</p> <p>Multibeam data acquired in 2000 and 2001 during the Irish National Seabed Survey (INSS) are used for the first detailed investigation of the seabed geomorphology and sediment type in the Hatton-Rockall basin area of the North East Atlantic Ocean, covering an area of approximately 80,000 km². The original multibeam survey produced bathymetric and backscatter datasets that allowed the creation of a Digital Terrain Models of approximately 50 m in resolution in water depths between 500 and 3500 m. Near-surface sediments for the entire region haven been classified using features derived from multibeam angular backscatter data (12kHz) and robust unsupervised clustering techniques. Additionally, sub bottom data imaging the shallow stratigraphy and geomagnetic measurements collected at the time of the MBES survey are combined to further characterise some of the features identified. The features presented in detail include parts of the Hatton and Gardar contourite drifts, volcanic mounds identified by their morphology and magnetic signature, deep-water coral mounds, iceberg scours as well as canyons, gullies and escarpments along and down the slopes of the banks and mounds. This study highlights for the first time the variety and complexity of the seafloor present at the seabed in the Irish Hatton-Rockall basin area</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70009794','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70009794"><span>Thin and layered subcontinental crust of the great Basin western north America inherited from Paleozoic marginal ocean basins?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Churkin, M.; McKee, E.H.</p> <p>1974-01-01</p> <p>The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14...57R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14...57R"><span>Geodynamic models of the deep structure of the natural disaster regions of the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodnikov, A. G.; Sergeyeva, N. A.; Zabarinskaya, L. P.</p> <p>2012-04-01</p> <p>Investigation of the deep structure and creation of geodynamic models of natural disaster regions are important for understanding of the nature of such phenomena as earthquakes, eruptions of volcanoes, tsunami and others. Carrying out of such researches is necessary for definition of areas of potential risk, forecasting and the prevention of negative consequences of acts of nature. Research region is active continental margins of the Sea of Okhotsk, and especially the area of Neftegorsk earthquake which has occurred on May, 28th 1995 in the North Sakhalin and caused many victims and destructions. The geodynamic model of the lithosphere in the region of Neftegorsk earthquake has been constructed along the profile crossing the North Sakhalin Basin, Deryugin Basin and ophiolite complex between them. The Deryugin Basin was formed at the site of an ancient deep trench after the subduction of the Okhotsk Sea Plate under Sakhalin. The basin is located above a hot plume in the mantle at a depth of 25 km. The ophiolite belt of ultramafic magmatic rocks is an ancient (K2-Pg) paleosubduction zone separating the Deryugin basin from the North Sakhalin Basin. The thickness of the ancient seismic focal zone is 80 km. It is probably that the structures of the North Sakhalin have been formed in the following way. In the Late Cretaceous the oceanic Okhotsk Sea Plate subducted under Sakhalin, the eastern part of which was an andesite island arc. Approximately in Miocene the subduction of the plate apparently ceased. In that time the Tatar Rift Strait was formed. Ophiolite rocks of the subduction zones as a result of compression have been squeezed out on a surface. The ophiolite complex combined by the ultrabasic rocks, fixes position of ancient subduction zone. It is probable that the manifestation of the Neftegorsk earthquake was a result of activization of this ancient subduction zone. On a surface the subduction zone manifests itself as deep faults running along Sakhalin. The center of the Neftegorsk earthquake was directly formed by burst of activity of this ancient subduction zone. From a position of the ancient subduction zone under Sakhalin, which is a cause of strong earthquakes here, it follows that the region is one of seismic dangerous in Russia. Constructed on the basis of complex interpretation of the geologic-geophysical data the geodynamic models of natural disaster regions give the chance: to study a deep structure under seismic dangerous zones; to investigate a role of deep processes in the upper mantle in formation of structures of earth crust; to relate the geological features, tectonomagmatic, hydrothermal activity with the processes in the upper mantle; to plot maps in detail with zones of increasing risks to prevent active building or other economic activities in such dangerous regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29120416','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29120416"><span>Abyssal ocean overturning shaped by seafloor distribution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Lavergne, C; Madec, G; Roquet, F; Holmes, R M; McDougall, T J</p> <p>2017-11-08</p> <p>The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows-referred to as the abyssal overturning circulation-is key to quantifying the ocean's ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ARMS...10...71B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ARMS...10...71B"><span>The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balch, William M.</p> <p>2018-01-01</p> <p>Coccolithophores are major contributors to phytoplankton communities and ocean biogeochemistry and are strong modulators of the optical field in the sea. New discoveries are changing paradigms about these calcifiers. A new role for silicon in coccolithophore calcification is coupling carbonate and silicon cycles. Phosphorus and iron play key roles in regulating coccolithophore growth. Comparing molecular phylogenies with coccolith morphometrics is forcing the reconciliation of biological and geological observations. Mixotrophy may be a possible life strategy for deep-dwelling species, which has ramifications for biological pump and alkalinity pump paradigms. Climate, ocean temperatures, and pH appear to be affecting coccolithophores in unexpected ways. Global calcification is approximately 1-3% of primary productivity and affects CO2 budgets. New measurements of the backscattering cross section of coccolithophores have improved satellite-based algorithms and their application in case I and case II optical waters. Remote sensing has allowed the detection of basin-scale coccolithophore features in the Southern Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019323','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019323"><span>Expanded record of Quaternary oceanographic change: Amerasian Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ishman, S.E.; Polyak, L.V.; Poore, R.Z.</p> <p>1996-01-01</p> <p>Four sediment cores collected from the Northwind and Mendeleyev ridges, Arctic Ocean, from 1089 m to 1909 m water depth, provide an oceanographic record extending back into the Matuyama reversed polarity chron. Benthic foraminiferal analyses show four prominent assemblage zones: Bolivina arctica, Cassidulina teretis, Bulimina aculeata, and Oridorsalis tener from the upper Matuyama reversed polarity chronozone through the Brunhes normal polarity chronozone. These assemblage zones represent depth-dependent benthic foraminiferal biofacies changes associated with oceanographic events that occurred in the Amerasian basin at ??? 780 and 300 ka, and indicate oceanographic influence from the North Atlantic. Recognition of these benthic assemblage zones in Arctic cores from the Alpha Ridge indicates that the benthic foraminiferal zonations in intermediate to deep water (>1000 m) Arctic cores may be more useful than preexisting lithostratigraphic zonations and should provide important information pertaining to the Quaternary paleoceanographic evolution of the Arctic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9095S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9095S"><span>Seismic imaging of a transform segment of the Maranhão-Barreirinhas-Ceará margin, NW Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schnurle, Philippe; Moulin, Maryline; Gallais, Flora; Afilhado, Alexandra; Afonso Dias, Nuno; Soares, José; Loureiro, Afonso; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Matias, Luís; Evain, Mikael; Aslanian, Daniel</p> <p>2017-04-01</p> <p>The structure of the North-East equatorial Brazilian margin was investigated during the MAGIC (Margins of brAzil, Ghana and Ivory Coast) seismic experiment, a project conducted by IFREMER (Institut Francais de Recherche pour l'Exploration de la Mer), UnB (University of Brasilia), FCUL (Faculdade de Ciências da Universidade de Lisboa) and Petrobras. The survey consists of 5 deep seismic profiles totaling 1900 km of marine multi-channel seismic reflection and wide angle acquisition with 143 deployments of short-period OBS's from the IFREMER pool. Three of the profiles were extended into land using Land Seismic Stations (LSS) from the Brazilian pool at a total of 50 points. This study focuses on the MC1 and MC5 wide-angle profiles: MC5 spans NW-SE 720 km in length, from the São Paulo Double Fracture Zone to the Borborema-Cearà margin. MC-1 spans parallel east of MC5, 360 km in length, in the presumed oceanic domain. Our main objective is to understand the fundamental processes which lead to the thinning and finally to the breakup of the continental crust in a specific context of a pull-apart system with two strike-slip borders. The experiment was devised to obtain the 2D structure along the profiles from joint pre-stack depth migration of the reflection data, and tomography and forward modeling of the OBS records. Along the MC1/MC5 wide-angle transects, 5 major sectors are identified: - the São Paulo Double Fracture Zone and the volcanic line associated to the southern São Paulo strike-slip zone presenting a 4.5 km thick volcano-sedimentary basin on top of a 5.5 km thick basement; - the intermediate domain, formed by the 4.5 km thick Basin III, the 7.5 km thick Basin II (interleaved by a 0.5-1 km thick volcanic layer), and the 5.5 km thick Basin I composing the continental slope. While the crust remains about 6 km thick, its acoustic velocity evolves from two-layer typical (4.8-6 km/s and 6.1-6.8 km/s) beneath Basin III to two-layer high velocity (6.1-6.8 km/s and 7.2-7.4 km/s) beneath Basin II and I, interpreted as exhumed lower continental crust; - to the east, the oceanic crust, evolves to an 2 layers crust 5 km thick, characterized by typical oceanic crustal velocities and also overlain by 5.5 km of sedimentary deposits, spanning between the two main fracture zones that fringe the Maranhão-Barreirinhas-Ceará segment; - the 50 km wide necking zone, forming the Parnaiba Platform and associated Ceará Basins, where the upper and lower crust thin abruptly; - the Medio Coreaù and Ceará Central thrust belt, where the unthinned continental crust thickness reaches 32 km. Keywords: North-East equatorial Brazil, transform margin, deep seismic structure</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.200.1029B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.200.1029B"><span>Geophysical evidence for a transform margin offshore Western Algeria: a witness of a subduction-transform edge propagator?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badji, Rabia; Charvis, Philippe; Bracene, Rabah; Galve, Audrey; Badsi, Madjid; Ribodetti, Alessandra; Benaissa, Zahia; Klingelhoefer, Frauke; Medaouri, Mourad; Beslier, Marie-Odile</p> <p>2015-02-01</p> <p>For the first time, a deep seismic data set acquired in the frame of the Algerian-French SPIRAL program provides new insights regarding the origin of the westernmost Algerian margin and basin. We performed a tomographic inversion of traveltimes along a 100-km-long wide-angle seismic profile shot over 40 ocean bottom seismometers offshore Mostaganem (Northwestern Algeria). The resulting velocity model and multichannel seismic reflection profiles show a thin (3-4 km thick) oceanic crust. The narrow ocean-continent transition (less than 10 km wide) is bounded by vertical faults and surmounted by a narrow almost continuous basin filled with Miocene to Quaternary sediments. This fault system, as well as the faults organized in a negative-flower structure on the continent side, marks a major strike-slip fault system. The extremely sharp variation of the Moho depth (up to 45 ± 3°) beneath the continental border underscores the absence of continental extension in this area. All these features support the hypothesis that this part of the margin from Oran to Tenes, trending N65-N70°E, is a fossil subduction-transform edge propagator fault, vestige of the propagation of the edge of the Gibraltar subduction zone during the westward migration of the Alborán domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.484..253M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.484..253M"><span>Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Xiaolin; Tian, Jun; Ma, Wentao; Li, Ke; Yu, Jimin</p> <p>2018-02-01</p> <p>East Antarctic ice sheet expansion (EAIE) at ∼13.9 Ma in the middle Miocene represents a major climatic event during the long-term Cenozoic cooling, but ocean circulation and carbon cycle changes during this event remain unclear. Here, we present new fish teeth isotope (εNd) and benthic foraminiferal B/Ca records from the South China Sea (SCS), newly integrated meridional Pacific benthic foraminiferal δ18O and δ13C records and simulated results from a biogeochemical box model to explore the responses of deep Pacific Ocean circulation and carbon cycle across EAIE. The εNd and meridional benthic δ13C records reveal a more isolated Pacific Deep Water (PDW) and a sluggish Pacific meridional overturning circulation during the post-EAIE with respect to the pre-EAIE owing to weakened southern-sourced deep water formation. The deep-water [CO23-] and calcium carbonate mass accumulation rate in the SCS display markedly similar increases followed by recoveries to the pre-EAIE level during EAIE, which were probably caused by a shelf-basin shift of CaCO3 deposition and strengthened weathering due to a sea level fall within EAIE. The model results show that the ∼1‰ positive δ13C excursion during EAIE could be attributed to increased weathering of high-δ13C shelf carbonates and a terrestrial carbon reservoir expansion. The drawdown of atmospheric CO2 over the middle Miocene were probably caused by combined effects of increased shelf carbonate weathering, expanded land biosphere carbon storage and a sluggish deep Pacific meridional overturning circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP21A2278U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP21A2278U"><span>Evidence of Enhanced Respired Carbon in Eastern Equatorial Pacific Deep-Waters over the last 30,000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Umling, N. E.; Thunell, R.</p> <p>2016-12-01</p> <p>Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3261328','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3261328"><span>Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bik, Holly M.; Sung, Way; De Ley, Paul; Baldwin, James G.; Sharma, Jyotsna; Rocha-Olivares, Axayácatl; Thomas, W. Kelley</p> <p>2011-01-01</p> <p>Summary Microbial eukaryotes (nematodes, protists, fungi, etc., loosely referred to as meiofauna) are ubiquitous in marine sediments and likely play pivotal roles in maintaining ecosystem function. Although the deep-sea benthos represents one of the world’s largest habitats, we lack a firm understanding of the biodiversity and community interactions amongst meiobenthic organisms in this ecosystem. Within this vast environment key questions concerning the historical genetic structure of species remain a mystery, yet have profound implications for our understanding of global biodiversity and how we perceive and mitigate the impact of environmental change and anthropogenic disturbance. Using a metagenetic approach, we present an assessment of microbial eukaryote communities across depth (shallow water to abyssal) and ocean basins (deep-sea Pacific and Atlantic). Within the 12 sites examined, our results suggest that some taxa can maintain eurybathic ranges and cosmopolitan deep-sea distributions, but the majority of species appear to be regionally restricted. For OCTUs reporting wide distributions, there appears to be a taxonomic bias towards a small subset of taxa in most phyla; such bias may be driven by specific life history traits amongst these organisms. In addition, low genetic divergence between geographically disparate deep-sea sites suggests either a shorter coalescence time between deep-sea regions or slower rates of evolution across this vast oceanic ecosystem. While high-throughput studies allow for broad assessment of genetic patterns across microbial eukaryote communities, intragenomic variation in rRNA gene copies and the patchy coverage of reference databases currently present substantial challenges for robust taxonomic interpretations of eukaryotic datasets. PMID:21985648</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.6024U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.6024U"><span>Characterization of Paleoredox Changes In Nw-pacific Deep-sea Sediments Using Environmental Magnetic In Combination With Geochemical-mineralogic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urbat, M.; Pletsch, T.</p> <p></p> <p>The understanding of environmental and oceanic controls on deep-sea sediments in the NW Pacific Ocean (ODP Site 1149A, Nadezhda Basin) benefits from the inte- gration of environmental magnetic methodology with geochemical-mineralogic XRD (x-ray defraction) and XRF (x-ray fluorescence) data. Crucially, the inherently grad- ual diagenetic processes related to paleo-redox changes in the sediment column may be more sensitively monitored using the integration of non-magnetic and magnetic data, because they do reflect various aspects of the entire postdepositional alteration. The studied 32 m long quaternary interval at Hole ODP 1149A provides an expanded record of eolian dust supply from the Asian continent, siliceous plankton accumulation and varying contributions of both discrete ash layers and disperse ash to a truly deep- sea environment (Plank et al. 2000). Recurrent diagenetic intervals appear to be related to changes in the Ocean water circulation (Kuriosho current) and concomitant produc- tivity variations as a function of glacial-interglacial paleoclimatic changes. Diagenetic intervals correspond to paleo-redox boundaries, where suboxic conditions promoted the destruction of the primary magnetic signal (iron oxides) and the precipitation of rhodochrosite (MnCO3). We used simple normative calculations on the basis of of Al and Cr contents to discriminate between the major groups of components (terrigenous, volcanogenic, biogenic, diagenetic) in combination with our magnetic results. These results form the grounds for the discrimation and independent interpretation of the genetically various sediment components in the paleoceanograhic context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED43E0890P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED43E0890P"><span>Exploring the Unknown: Cabled Ocean Observatory Data and Discovery in University Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pelz, M.; Scherwath, M.; Riddell, D. J.; Hoeberechts, M.; Bourdeault-Fournier, A.; Schine, J.; Sammarco, P. M. P.</p> <p>2016-12-01</p> <p>Cabled ocean observatories, which supply continuous power and Internet connectivity to subsea instruments from the coast to the deep sea, enable us to extend our reach into unexplored regions of the ocean. Sensors become our eyes and ears in this mysterious world, allowing instructors and students to have a virtual presence in an environment that is otherwise inaccessible for human study. Networks of always-on sensors in habitats as diverse as submarine canyons, hypoxic marine basins, and active hydrothermal vent systems provide unprecedented opportunities for students to ask real scientific questions and to answer those questions with real data. Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates coastal and deep ocean cabled observatories, including VENUS and NEPTUNE off the west coast of British Columbia, Canada. ONC supports instructors in the creation of lab and course materials using observatory data. Data from the observatories are freely accessible through a web-based interface, which allows students to continue their investigations beyond the in-class activities. Here, we present three examples of the application of data from Ocean Networks Canada's cabled observatories in post-secondary education: an undergraduate lab in marine ecology in which students investigate the factors affecting spatial variation in benthic animal diversity using ocean sensor data and video footage from cameras on the seafloor; an undergraduate field course in acoustic ethnography in which students incorporate recordings from ONC's hydrophone arrays; and a graduate student "research derby" in which students propose hypotheses that can be investigated using ONC data in whole or in part, with rewards for those successful in publishing the results of their study in a peer-reviewed journal within two years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67.1313C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67.1313C"><span>Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro</p> <p>2017-10-01</p> <p>The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...47.3301J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...47.3301J"><span>The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.</p> <p>2016-11-01</p> <p>Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4382178','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4382178"><span>Plastic Accumulation in the Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.</p> <p>2015-01-01</p> <p>Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region. PMID:25831129</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T13D0494D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T13D0494D"><span>Arctic Ocean UNCLOS Article 76 Work for Greenland Starts on Land</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dahl-Jensen, T.; Marcussen, C.; Jackson, R.; Voss, P.</p> <p>2005-12-01</p> <p>One of the most lonely and desolate stretches of coastline on the planet has become the target for UNCLOS article 76 related research. The Danish Continental Shelf Project has launched a work program to investigate the possibilities for Greenland to claim an area outside the 200 nm limit in the Arctic Ocean. The role of the Lomonosov Ridge as a Natural Prolongation of Greenland/Canada is an important issue, and in order to better evaluate the connection between Greenland and the Lomonosov Ridge the nature of not only the ridge but also of Northern Greenland is the target of deep crustal investigations. The North Greenland Fold belt covers the ice-free part of North Greenland and continues west in the Canadian Arctic. The foldbelt was formed during the Ellesmerian orogeny, where sediments from the Franklinian Basin where compressed and deformed. The deep structure of basin and its subsequent closure are broadly unknown. Three broad band earthquake seismological stations where installed in North Greenland to supplement the existing stations at Alert (Canada) and Station Nord to the east, and the first data was available summer 2005. Crustal thickness data from these first results are presented. Plans for the spring 2006 consist of wide-angle acquisition on the sea ice from the Greenland-Canadian mainland out onto the Lomonosov Ridge, a joint Danish - Canadian project with a 400 km long profile over difficult ice conditions, 18 tons of explosives, three helicopters, a Twin Otter and about 30 participants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024056','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024056"><span>Deep sea mega-geomorphology: Progress and problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bryan, W. B.</p> <p>1985-01-01</p> <p>Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036719','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036719"><span>Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Heilweil, V.M.; Solomon, K.D.; Gingerich, S.B.; Verstraeten, Ingrid M.</p> <p>2009-01-01</p> <p>Stable isotopes (??18O, ??2H), tritium (3H), and helium isotopes (3He, 4He) were used for evaluating groundwater recharge sources, flow paths, and residence times of three watersheds in the Cape Verde Islands (West Africa). Stable isotopes indicate the predominance of high-elevation precipitation that undergoes little evaporation prior to groundwater recharge. In contrast to other active oceanic hotspots, environmental tracers show that deep geothermal circulation does not strongly affect groundwater. Low tritium concentrations at seven groundwater sites indicate groundwater residence times of more than 50 years. Higher tritium values at other sites suggest some recent recharge. High 4He and 3He/4He ratios precluded 3H/3He dating at six sites. These high 3He/4He ratios (R/Ra values of up to 8.3) are consistent with reported mantle derived helium of oceanic island basalts in Cape Verde and provided end-member constraints for improved dating at seven other locations. Tritium and 3H/3He dating shows that S??o Nicolau Island's Ribeira Faj?? Basin has groundwater residence times of more than 50 years, whereas Fogo Island's Mosteiros Basin and Santo Ant??o Island's Ribeira Paul Basin contain a mixture of young and old groundwater. Young ages at selected sites within these two basins indicate local recharge and potential groundwater susceptibility to surface contamination and/or salt-water intrusion. ?? Springer-Verlag 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DyAtO..81...30S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DyAtO..81...30S"><span>The impacts of the atmospheric annular mode on the AMOC and its feedback in an idealized experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santis, Wlademir; Aimola, Luis; Campos, Edmo J. D.; Castellanos, Paola</p> <p>2018-03-01</p> <p>The interdecadal variability of the atmospheric and oceanic meridional overturning circulation is studied, using a coupled model with two narrow meridional barriers representing the land and a flat bottomed Aquaplanet. Empirical orthogonal function (EOF) analysis are used in the atmospheric and oceanic meridional overturning cells, revealing the atmospheric interdecadal variability is dominated by an annular mode, in both hemispheres, which introduces in the ocean a set of patterns of variability. The most energetic EOFs in the ocean are the barotropic responses from the annular mode. The interaction between the heat anomalies, due to the barotropic response, and the thermohaline circulation of each basin leads to a resonance mechanism that feeds back to the atmospheric forcing, modulating the annular mode spectrum. Besides the barotropic response, the annular mode introduces anomalies of salinity and temperature in the subtropical Atlantic that affects its upper buoyancy. These anomalies are incorporated within the ocean circulation and advected until the areas of deep sinking in the northern Atlantic, impacting on its overturning circulation as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990DSRA...37.1425H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990DSRA...37.1425H"><span>A tracer study of the deep water renewal in the European polar seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heinze, Ch.; Schlosser, P.; Koltermann, K. P.; Meincke, J.</p> <p>1990-09-01</p> <p>A study of the deep water renewal in the European polar seas (Norwegian Sea, Greenland Sea and Eurasian Basin) based on the distribution of tritium ( 3H), 3He, chlorofluoromethane (F-11 = CCL 3F), salinity and potential temperature is presented. Four different versions of a kinematic box model calibrated with the tracer data yield production rates and turnover times due to deep convection for Greenland Sea Deep Water (0.47-0.59 Sv, 27-34 y) and Eurasian Basin Deep Water (0.97-1.07 Sv, 83-92 y). Model calculations with different deep advective flow patterns (exchange at equal rates between each of the deep water masses or an internal circuit Eurasian Basin-Greenland Sea-Norwegian Sea-Eurasian Basin) give estimates of the deep horizontal transports, resulting in a turnover time of 13-16 years for Norwegian Sea Deep Water. The total turnover times (convection and deep advection) of the Greenland Sea and the Eurasian Basin are estimated to about 10 and 50 years, respectively. Mean hydrographic characteristics of the source water for Greenland Sea Deep Water and Eurasian Basin Deep Water are estimated from minimization of the deviations between modelled and observed hydrographic deep water values. The fractions of surface waters and intermediate waters making up the deep water of the Greenland Sea are estimated to about 80 and 20%, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4529D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4529D"><span>First hyperspectral survey of the deep seafloor: DISCOL area, Peru Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dumke, Ines; Nornes, Stein M.; Ludvigsen, Martin</p> <p>2017-04-01</p> <p>Conventional hyperspectral seafloor surveys using airborne or satellite platforms are typically limited to shallow coastal areas. This limitation is due to the requirement for illumination by sunlight, which does not penetrate into deeper waters. For hyperspectral studies in deeper marine environments, such as the deep sea, a close-range, sunlight-independent survey approach is therefore required. Here, we present the first hyperspectral data from the deep seafloor. The data were acquired in 4200 m water depth in the DISCOL (disturbance-recolonization) area in the Peru Basin (SW Pacific). This area is characterized by seafloor manganese nodules and recolonization by benthic fauna after a seafloor disturbance experiment conducted in 1989, and was revisited in 2015 by the JPI Oceans cruise SO-242. The acquisition setup consisted of a new Underwater Hyperspectral Imager (UHI) mounted on a remotely operated vehicle (ROV), which provided illumination of the seafloor. High spatial and spectral resolution were achieved by an ROV altitude of 1 m and recording of 112 spectral bands between 380 nm and 800 nm (4 nm resolution). Spectral classification was performed to classify manganese nodules and benthic fauna and map their distribution in the study area. The results demonstrate the high potential of underwater hyperspectral imaging in mapping and classifying seafloor deposits and habitats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP23D..01J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP23D..01J"><span>Repeated Storage of Respired Carbon in the Equatorial Pacific Ocean Over the Last Three Glacial Cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobel, A. W.; McManus, J. F.; Anderson, R. F.; Winckler, G.</p> <p>2017-12-01</p> <p>As the largest reservoir of carbon actively exchanging with the atmosphere on glacial-interglacial timescales, the deep ocean has been implicated as the likely location of carbon dioxide sequestration during Pleistocene glaciations. Despite strong theoretical underpinnings for this expectation, it has been challenging to identify unequivocal evidence for respired carbon storage in the paleoceanographic record. Data on the rate of ocean ventilation derived from paired planktonic-benthic foraminifera radiocarbon ages conflict across the equatorial Pacific, and different proxy reconstructions contradict one another about the depth and origin of the watermass containing the respired carbon. Because any change in the storage of respiratory carbon must be accompanied by corresponding changes in dissolved oxygen concentrations, proxy data reflecting bottom water oxygenation are of value in addressing these apparent inconsistencies. We present new records of the redox sensitive metal uranium from the central equatorial Pacific to qualitatively identify intervals associated with respiratory carbon storage over the past 350 kyr. Our data reveal periods of deep ocean authigenic uranium deposition in association with each of the last three glacial maxima. Equatorial Pacific export productivity data show intervals with abundant authigenic uranium are not associated with local productivity increases, indicating episodic precipitation of authigenic uranium does not directly reflect increases in situ microbial respiration, but rather occurs in response to basin-wide decreases in deep water oxygen concentrations. We combine our new data with previously published results to propose a picture of glacial carbon storage and equatorial Pacific watermass structure that is internally consistent. We conclude that respired carbon storage in the Pacific was a persistent feature of Pleistocene glaciations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20577212','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20577212"><span>Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Johnson, Kenneth S; Riser, Stephen C; Karl, David M</p> <p>2010-06-24</p> <p>Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (<10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JAfES..43..275B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JAfES..43..275B"><span>Phanerozoic geological evolution of the Equatorial Atlantic domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basile, Christophe; Mascle, Jean; Guiraud, René</p> <p>2005-10-01</p> <p>The Phanerozoic geological evolution of the Equatorial Atlantic domain has been controlled since the end of Early Cretaceous by the Romanche and Saint Paul transform faults. These faults did not follow the PanAfrican shear zones, but were surimposed on Palæozoic basins. From Neocomian to Barremian, the Central Atlantic rift propagated southward in Cassiporé and Marajó basins, and the South Atlantic rift propagated northward in Potiguar and Benue basins. During Aptian times, the Equatorial Atlantic transform domain appeared as a transfer zone between the northward propagating tip of South Atlantic and the Central Atlantic. Between the transform faults, oceanic accretion started during Late Aptian in small divergent segments, from south to north: Benin-Mundaú, deep Ivorian basin-Barreirinhas, Liberia-Cassiporé. From Late Aptian to Late Albian, the Togo-Ghana-Ceará basins appeared along the Romanche transform fault, and Côte d'Ivoire-Parà-Maranhão basins along Saint Paul transform fault. They were rapidly subsiding in intra-continental settings. During Late Cretaceous, these basins became active transform continental margins, and passive margins since Santonian times. In the same time, the continental edge uplifted leading either to important erosion on the shelf or to marginal ridges parallel to the transform faults in deeper settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994DSRI...41.1091F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994DSRI...41.1091F"><span>Measurements within the Pacific-Indian oceans throughflow region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fieux, M.; Andrié, C.; Delecluse, P.; Ilahude, A. G.; Kartavtseff, A.; Mantisi, F.; Molcard, R.; Swallow, J. C.</p> <p>1994-07-01</p> <p>Two hydrographic (θ, S, O 2) and trichlorofluoromethane (F-11) sections were carried out between the Australian continental shelf and Indonesia, in August 1989, on board the R.V. Marion Dufresne. The sections lie in the easternmost part of the Indian Ocean where the throughflow between the Pacific Ocean and the Indian Ocean emerges. They allow us to describe the features of the water-property and circulation fields of the throughflow at its entrance in the Indian Ocean. Between the Australian continental shelf and Bali, the Subtropical and Central waters are separated from the waters of the Indonesian seas by a sharp hydrological front, located around 13°30 S, below the thermocline down to 700 m. Near the coast of Bali, upwelling occurs in the near-surface layer under the effect of the southeast monsoon; at depth, between 300 m to more than 800 m, a water mass of northern Indian Ocean origin was present. From the characteristics of the bottom water found in the Lombok basin, the maximum depth of the Java ridge which separates the Lombok basin from the Northwest Australian basin lies around 3650 m. Off Sumba, Savu, Roti and Timor channels a core of low salinity and high oxygen content near-surface water was found in the axis of each channel, which suggests strong currents from the interior Indonesian seas towards the Indian Ocean. The entrance of the deep water flowing in the opposite direction, from the Indian Ocean to the Timor basin, was marked below 1400 m to the sill depth, through an increase of salinity and oxygen content. The flow reversal, observed briefly by a Pegasus direct current profiler in the Timor strait, was located at 1200 m depth. During the southeast monsoon, the net (geostrophic + Ekman) transport calculated on the section Australia-Bali give an estimate of the throughflow between 0 and 500 m of 22 ± 4 × 10 6 m 3 s -1 towards the Indian Ocean, with a concentration of the transport in the upper layers (19 × 10 6 m 3 s -1 in 0-200 m) and near the Indonesian coast, north of 13°30 S. In this region of intense mixing, attempts to make a salinity budget were inconclusive but did not imply any reduction in estimated throughflow transport. Below 500 m the net transport is of the order of the uncertainty. The total estimated transport (0-1900 dbar, deepest sill depth) is 18.6 × 10 6 m 3 s -1 (±7) with a mean temperature of 23°C and a mean salinity of 34.0 psu (but may be as large as 23 × 10 6 m 3 s -1, with mean temperature of 20°C and mean salinity of 34.1 psu).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41B1954C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41B1954C"><span>Observing Crustal Magnetic Anomalies in Remote Ocean Regions: Filling in the Gaps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claus, B.; Kinsey, J. C.; Tominaga, M.; Tivey, M.</p> <p>2016-12-01</p> <p>The use of long duration ocean observing platforms is necessary for filling in broad gaps in the observational record of magnetic anomaly measurements in the ocean basins -- observations that are necessary for understanding a variety of geophysical processes. Such an instrument would need to gather 1000s of kilometers of magnetic data untended, requiring in-situ calibration methods and minimization of energy usage. In this work an autonomous underwater glider (AUG) has been equipped with a low power flux-gate magnetic sensor. Sensor integration was tested locally in shallow water followed by deep water trials to verify the calibration procedure in June of 2016. During this cruise a 160 kilometer magnetic tow was also collected across the East Coast Shelf Anomaly to the South-East of Cape Cod. Following these tests, the AUG was deployed such that it followed the trajectory of the towed magnetic survey to provide a baseline comparison against a known methodology. For these deployments an in-situ calibration procedure was used whereby the vehicle was commanded to perform descending and ascending spirals with its actuators at various discrete locations. When combined with a temperature model for the sensor the calibrated measurements were found to be in agreement with the towed data to within several 10's of nT. These comparative measurements demonstrate the utility of using directed long duration autonomous ocean observing platforms to gather medium wavelength crustal magnetic anomaly features. This ability is especially desirable for collecting measurements in remote ocean basins, such as the Southern Ocean, where presently only a few ship tracks exist and are likely to never be sampled by conventional research vessels surveys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T21A2294K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T21A2294K"><span>The MIRROR cruise (2011): Deep crustal structure of the Moroccan Atlantic Margin from wide-angle and reflection seismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klingelhoefer, F.; Aslanian, D.; Sahabi, M.; Moulin, M.; Schnurle, P.; Berglar, K.; Biari, Y.; Feld, A.; Graindorge, D.; Corela, C.; Mehdi, K.; Zourarah, B.; Perrot, J.; Alves Ribeiro, J.; Reichert, C. J.</p> <p>2011-12-01</p> <p>The study of conjugate margins is important to test different hypotheses of rifting and initial opening of an ocean. In this scope, seven wide-angle seismic profiles were acquired on the Moroccan Atlantic margin (at the latitudes between 32° and 33° N) together with coincident deep frequency reflection seismic data during the MIRROR cruise in May and June 2011. The main seismic profile is conjugate to an existing wide-angle seismic profile off Nova Scotia (SMART 2). Further objectives of the cruise were to image ocean-continent transition zone, to detect and eventually quantify exhumed upper mantle material present in this zone and to determine the origin of the high amplitude West African Magnetic Anomaly, which is conjugate to the north American East Coast Magnetic Anomaly and can be linked to the opening of the Atlantic. Two of the newly acquired profiles are located perpendicular and five parallel to the Moroccan margin. The seismic profiles are between 130 and 260 km in length and between 28 and 13 ocean-bottom seismometers were deployed on each one. One profile was extended on land by 15 landstations in order to better image the zone of continental thinning. A 4.5 km digital streamer and a 7200 cu inch tuned airgun array were used for the acquisition of the seismic data. Additionally magnetic, bathymetric and high resolution seismic data were acquired in the study region. Preliminary results from tomographic inversion of the first arrivals from the ocean-bottom seismometer data image the zone of crustal thinning from about 25 km to 6 km in the basin along about 70 kilometers of the profiles which are located perpendicular to the margin. The oceanic crust can be divided into 2 regions, based on the lower crustal velocities. Upper mantle velocities are about 8.0 km/s. The coincident reflection seismic data show the fine basement and sedimentary structures including salt tectonics in the basin. The comparative study of the two conjugate profiles on the Moroccan and Nova Scotia margin will give new insights into the original opening of the Atlantic ocean. Further work on this data set will include forward modelling of the wide-angle seismic data, gravity and magnetic modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612556L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612556L"><span>Observations of elevated Atlantic water heat fluxes at the boundary of the Arctic Basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lincoln, Benjamin; Rippeth, Tom; Lenn, Yueng; Bacon, Sheldon</p> <p>2014-05-01</p> <p>The well documented decline in Arctic Sea Ice cover over the past 30 years has outpaced global models as warming in Polar Regions occurs faster than the global mean. The thermohaline circulation brings warm water from the Atlantic Ocean into the Arctic basin. This Atlantic water circulates at depth and contains sufficient heat to melt the sea ice cover several times over. Recent studies have shown that this Atlantic water has warmed and shoaled over recent decades (Polyakov et al, 2010). The stability of the upper Arctic Ocean has also changed, with stratification reduced in the Eurasian basin but increased in the Canada basin. Along with an increased availability of heat the reduction in sea ice cover allows greater potential for wind to input energy to the ocean to vertically mix heat to the surface and further melt sea ice. Direct measurements of vertical mixing rates across the Arctic are essential to understanding the changes in this supply of heat from below, but are scarce due to the challenges of making such measurements in the harsh Arctic environment. We present measurements of turbulent kinetic energy dissipation (ɛ) within the top 500 m of the water column using microstructure measurements made both in open water and under ice during 4 different years. Mean rates of dissipation in the Atlantic water thermocline are calculated and compared for data collected in the European, Siberian and Canadian Arctic, including measurements from 2007 and 2012 when record minimum sea ice extents were recorded. Diapycnal heat fluxes from the mean Atlantic water dissipation rates were calculated from these mean dissipation rates and show significant variation across the Arctic Basin. Profiles in the deep basin generally revealed very low rates of dissipation were low ɛ<10-9Wkg-1 and as such heat fluxes of AW were correspondingly low Fh=0.1-0.5Wm-2. However double diffusive staircases were present in all such casts and so vertical transfer of heat may be increased by diffusive fluxes. Dissipation rates were enhanced by up to 3 orders of magnitude at the boundaries of the Arctic basin with the highest rates North of Svalbard and decreasing ɛ anticlockwise around the basin with low ɛ in the Canada basin. Enhanced heat fluxes at the boundaries ranged from 10-100 Wm-2 north of Svalbard decreasing to 2-5 Wm-2 along the Laptev shelf slope and less than 0.5 Wm-2 along the East Siberian slope and Lomonosov ridge. In the Canada basin heat fluxes at the boundary were less than 0.2 Wm-2. --- Arctic Ocean Warming Contributes to Reduced Polar Ice Cap Igor V. Polyakov, Leonid A. Timokhov, Vladimir A. Alexeev, Sheldon Bacon, Igor A. Dmitrenko, Louis Fortier, et al. in Journal of Physical Oceanography (2010)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987E%26PSL..85...28C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987E%26PSL..85...28C"><span>210Pb in the western Indian Ocean: distribution, disequilibrium, and partitioning between dissolved and particulate phases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chung, Y.</p> <p>1987-09-01</p> <p>Dissolved 210Pb profiles are presented for 13 GEOSECS stations in the western Indian Ocean. In surface water away from high southern latitudes, 210Pb is in excess over 226Ra due to the atmospheric fallout from decay of 222Rn. Except in the Circumpolar region, the dissolved 210Pb profiles display a gentle mid-depth maximum similar to the corresponding 226Ra profiles. The 210Pb/ 226Ra activity ratio ranges from 1.6 in the surface water east of Madagascar to 0.4 or less in the bottom water of all the basins. The lowest ratio observed was 0.1 in the Gulf of Aden very close to the continental land mass. A ratio of 0.6 divides the western Indian Ocean horizontally into two portions, with the contour at shallower depth in the north than in the south. The deep water disequilibrium is thus more extensive north of Madagascar than south of it. It appears that locality and bottom topography play a strong role in controlling the distributions of 210Pb and 226Ra as well as their extent of disequilibrium in the water column. The mean residence time for Pb with respect to particulate and boundary scavenging in the deep water ranges from about 15 to 75 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5361187','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5361187"><span>Near-surface Heating of Young Rift Sediment Causes Mass Production and Discharge of Reactive Dissolved Organic Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lin, Yu-Shih; Koch, Boris P.; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y.; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe</p> <p>2017-01-01</p> <p>Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life. PMID:28327661</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7213V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7213V"><span>Inter-annual variability of the Mediterranean thermohaline circulation in Med-CORDEX simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vittoria Struglia, Maria; Adani, Mario; Carillo, Adriana; Pisacane, Giovanna; Sannino, Gianmaria; Beuvier, Jonathan; Lovato, Tomas; Sevault, Florence; Vervatis, Vassilios</p> <p>2016-04-01</p> <p>Recent atmospheric reanalysis products, such as ERA40 and ERA-interim, and their regional dynamical downscaling prompted the HyMeX/Med-CORDEX community to perform hind-cast simulations of the Mediterranean Sea, giving the opportunity to evaluate the response of different ocean models to a realistic inter-annual atmospheric forcing. Ocean numerical modeling studies have been steadily improving over the last decade through hind-cast processing, and are complementary to observations in studying the relative importance of the mechanisms playing a role in ocean variability, either external forcing or internal ocean variability. This work presents a review and an inter-comparison of the most recent hind-cast simulations of the Mediterranean Sea Circulation, produced in the framework of the Med-CORDEX initiative, at resolutions spanning from 1/8° to 1/16°. The richness of the simulations available for this study is exploited to address the effects of increasing resolution, both of models and forcing, the initialization procedure, and the prescription of the atmospheric boundary conditions, which are particularly relevant in order to model a realistic THC, in the perspective of fully coupled regional ocean-atmosphere models. The mean circulation is well reproduced by all the simulations. However, it can be observed that the horizontal resolution of both atmospheric forcing and ocean model plays a fundamental role in the reproduction of some specific features of both sub-basins and important differences can be observed among low and high resolution atmosphere forcing. We analyze the mean circulation on both the long-term and decadal time scale, and the represented inter-annual variability of intermediate and deep water mass formation processes in both the Eastern and Western sub-basins, finding that models agree with observations in correspondence of specific events, such as the 1992-1993 Eastern Mediterranean Transient, and the 2005-2006 event in the Gulf of Lion. Long-term trends of the hydrological properties have been investigated at sub-basin scale and have been interpreted in terms of response to forcing and boundary conditions, detectable differences resulting mainly due either to the different initialization and spin up procedure or to the different prescription of Atlantic boundary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..854S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..854S"><span>Hot and sour in the deep ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabine, Christopher L.</p> <p>2017-12-01</p> <p>Stable layering in the ocean limits the rate that human-derived carbon dioxide can acidify the deep ocean. Now observations show that ocean warming, however, can enhance deep-ocean acidification through increased organic matter decomposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/943046-sources-transuranic-elements-plutonium-neptunium-arctic-marine-sediments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/943046-sources-transuranic-elements-plutonium-neptunium-arctic-marine-sediments"><span>Sources of the transuranic elements plutonium and neptunium in arctic marine sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cooper, L. W.; Kelley, J. M.; Bond, L. A.</p> <p>2000-01-01</p> <p>We report here thermal ionization mass spectrometry measurements of {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, and {sup 237}Np isolated from oceanic, estuarine, and riverine sediments from the Arctic Ocean Basin. {sup 238}Pu/{sup 239+240}Pu activity ratios are also reported for alpha spectrometric analyses undertaken on a subset of these samples. Our results indicate that the Pu in sediments on the Alaskan shelf and slope, as well as that in the deep basins (Amerasian and Eurasian) of the Arctic Ocean, has its origin in stratospheric and tropospheric fallout. Sediments from the Ob and Yenisei Rivers show isotopic Pu signatures thatmore » are distinctly different from those of northern-hemisphere stratospheric fallout and indicate the presence of weapons-grade Pu originating from nuclear fuel reprocessing wastes generated at Russian facilities within these river catchments. Consequently, sediments of the Eurasian Arctic Ocean, particularly those in the Barents and Kara Seas, probably contain a mixture of Pu from stratospheric fallout, tropospheric fallout, and fuel-reprocessing wastes of riverine origin. In particular, the {sup 241}Pu/{sup 239}Pu ratios observed in these sediments are inconsistent with significant contributions of Pu to the arctic sediments studied from western European reprocessing facilities, principally Sellafield in the UK. Several other potential sources of Pu to arctic sediments can also be excluded as significant based upon the transuranic isotope ratios presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GPC...125...A1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GPC...125...A1M"><span>The global relevance of the Scotia Arc: An introduction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maldonado, Andrés; Dalziel, Ian W. D.; Leat, Philip T.</p> <p>2015-02-01</p> <p>The Scotia Arc, situated between South America and Antarctica, is one of the Earth's most important ocean gateways and former land bridges. Understanding its structure and development is critical for the knowledge of tectonic, paleoenvironmental and biological processes in the southern oceans and Antarctica. It extends from the Drake Passage in the west, where the Shackleton Fracture Zone forms a prominent, but discontinuous, bathymetric ridge between the southern South American continent and the northern tip of the Antarctic Peninsula to the active intra-oceanic volcanic arc forming the South Sandwich Island in the east. The tectonic arc comprises the NSR to the north and to the south the South Scotia Ridge, both transcurrent plate margins that respectively include the South Georgia and South Orkney microcontinents. The Scotia and Sandwich tectonic plates form the major basin within these margins. As the basins opened, formation of first shallow sea ways and then deep ocean connections controlled the initiation and development of the Antarctic Circumpolar Current, which is widely thought to have been important in providing the climatic conditions for formation of the polar ice-sheets. The evolution of the Scotia Arc is therefore of global palaeoclimatic significance. The Scotia Arc has been the focus of increasing international research interest. Many recent studies have stressed the links and interactions between the solid Earth, oceanographic, paleoenvironmental and biological processes in the area. This special issue presents new works that summarize significant recent research results and synthesize the current state of knowledge for the Scotia Arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110875B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110875B"><span>Drilling through the Messinian evaporites: the beginning of a new adventure?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bassetti, M. A.; Lofi, J.</p> <p>2009-04-01</p> <p>The sensitivity of past environments tell us a lot about the nature of changes, either of climatic or geodynamic origin. In this respect, the Mediterranean basin represents the ideal natural laboratory for studying the interaction between deep processes, tectonics, sedimentary fluxes and sea-level oscillation that are at the origin of the sedimentary records. A spectacular example of reactivity of this system have been experienced less than 6 Myrs ago, when the pan-Mediterranean realm underwent rapid and abrupt changes of paleo-environmental parameters that led to the well known Messinian Salinity Crisis (MSC, Hsü et al., 1973). This short-term event at the geological scale (~5.96-5.32 Ma) results from the progressive closure of the two-way connection between the Atlantic Ocean and the Mediterranean Sea. The most important characteristics of this event are: (1) a reduction of the Atlantic water supply having as a consequence, an increased salinity and in the precipitation of thick evaporites within shallow water marginal basins (presently disconnected from the deep basins); (2) a subsequent major sea-level fall exceeding 2000 m and resulting in the massive erosion of the margins and the development of deep subaerial canyons; (3) the accumulation of the product of the erosion in the downslope domain of the margins; (4) the deposition of thick evaporites (up to 3000 m thick) above the deep Mediterranean abyssal plains and (5) and a very rapid refilling of the Mediterranean basin during the Latest Miocene/Lower Pliocene, following the re-connection between Atlantic and Mediterranean through the Gibraltar straight. Timing, causes and chronology of the MSC are not yet fully understood, but different scenarii have been proposed to explain in details the modalities of this catastrophic event. Certainly, the ongoing discussion about not fully conclusive interpretations are mainly linked to the fact that so far, only the deepest and buried Mediterranean basins might offer the most complete sequence from the Messinian to the Quaternary. Anywhere else, the MSC mostly generated a sedimentary/time lag corresponding to a widespread erosion surface extending from onshore down to the lower slopes of the margins. Onland, Messinian outcrops (e.g. Morocco, Cyprus, Spain, Italy…) are all incomplete and pre-date the drawdown phase and/or are tectonically/geometrically disconnected from the deep basin sequence. Correlations with the offshore depositional units are thus complex, preventing the construction of a coherent scenario of the MSC linking the outcropping evaporites, the erosion of the margins, and the deposition of clastics and deep evaporites in the abyssal plains. The discovery of the Messinian evaporites in the Mediterranenan is probably one of the major achievements of the DSDP program. Unfortunately, the Joides Resolution never drilled through evaporites because of technical impossibility (non-riser drilling vessel). Only the upper few meters of the pinch out of the deep basin sequence has been recovered. Thus, all hypothesis are based on onland outcropping evaporites and offshore seismic data interpretations. Improved quality of seismic data allowed some important advances in the recognition and understanding of Messinian markers (erosion surfaces, depositional units and bounding surfaces) but without the recovery of the full succession, all interpretations lack lithological and stratigraphical calibrations. At present, several basic questions are still open: - What are the true nature of the deep basin depositional units? What are their ages and chronologies? - What was the water depth before, during and after halite deposition in the deep basin? Did the basin(s) completely dried out? What are the associated amplitude and dynamics of the base-level changes? - Did the desiccation impact the regional climate and river run-off? What about climatic variability during the drawdown phase? - What was the balance between erosion and sedimentation during the crisis? What are the vertical movements (tectonic/isostatic responses) associated to margin unloading and basin loading? - What are the present-day fluid dynamics related to the salt layer? Their impact on the deep biosphere? The response to all of these questions would only come from drilling through the complete Messinian succession. It would represent an outstanding opportunity to unravel the history of extreme environmental changes during the Messinian and a unique chance to constrain the age, nature and paleo-environment of deposition of the deep-basin Messinian sequence. For that reason, in the framework of the IODP drilling program, we propose to sample and log two different sites in the western and eastern Mediterranean basins, with the new scientific riser drillship Chikyu perfectly adapted to overcome all safety problems. In order to promote a continuous sedimentary record of the MSC since the pre-crisis paleo-environmental changes, the sites should be drilled in areas where the Messinian salt is tabular and exempted of significant tectonic influence. A complete set of integrated studies (sedimentology, geochemistry, micropaleontology, bio-and cyclostratigraphy) should be carried out. This project opens the perspective of a new intellectual and scientific adventure that we expect to be as rich and exciting as the discovery of this unusual event was.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatGe..10...58V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatGe..10...58V"><span>Decrease in oceanic crustal thickness since the breakup of Pangaea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.</p> <p>2017-01-01</p> <p>Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V33A1165M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V33A1165M"><span>Not all Primordial Noble Gas Signatures are Associated with OIBs and Mantle Plumes - Mantle Heterogeneity, Primordial Shallow Sources and a Solar-like He, Ne Signature in an Ancient North American Craton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, L.; Castro, M. C.; Hall, C. M.</p> <p>2007-12-01</p> <p>The presence of primordial He and Ne components in ocean island basalts (OIBs) as well as a mantle He/heat flux ratio lower than the production ratio near mid-ocean ridges have historically been used to support the existence of a two-layer mantle convection model. This would comprise a lower, primordial, undegassed reservoir from which He removal to the upper degassed mantle would be impeded. Arguments based on He and heat transport have been recently invalidated by Castro et al. (2005) and should no longer be used to justify the presence of two such distinct mantle reservoirs. Indeed, it was shown that such low He/heat flux ratios are expected and do not reflect a He deficit in the original crust or mantle reservoir. By contrast, the occurrence of a He/heat flux ratio greater than the radiogenic production ratio can only result from a past mantle thermal event in which the released heat has already escaped while the released He remains, and is slowly rising to the surface. Such a high He/heat flux ratio is present in shallow groundwaters of the Michigan Basin. We now present results of a new noble gas study conducted in the Michigan Basin, in which 38 deep (0.5-3.6km) brine samples were collected and analyzed for all noble gas abundances and isotopic ratios. As expected from previously computed shallow high He/heat flux ratios, both He and Ne isotopic ratios clearly indicate the presence of a mantle component. Of greater significance is the primordial, solar-like signature, of this mantle component. It is also the first primordial signature ever recorded in crustal fluids in a continental region. Because no hotspots or hotspot tracks are known in the area, it is highly unlikely for such primordial, solar-like signature to result from a mantle plume-related mechanism originating deep in the mantle. We argue that such a primordial signature can be explained by a shallow noble gas reservoir in the subcontinental lithospheric mantle (SCLM) beneath the Michigan Basin, possibly created by a mechanism similar to that proposed by Anderson (1998) for oceanic regions. Indeed, the Michigan Basin, located within the ancient North American craton (~1.1->2.5Ga), lies on a very thick U-Th depleted SCLM, possibly allowing preservation of a primordial, residual, mantle reservoir beneath the continental crust. Recent reactivation of the old mid-continent rift transecting the crystalline basement is likely responsible for the release of this primordial signature into the basin. The solar-like He and Ne signatures present in the Michigan Basin fluids not only suggest that a deep primordial mantle reservoir is not required to explain the presence of such components, they also point to a very heterogeneous mantle as previously suggested by Anderson (1998), Albarede (2005), and others. Consequently, the presence of a primordial noble gas signature, at least if observed in a continental region, should not be used to conclude at the existence of a deep mantle source and thus, of a hotspot as typically defined. The SCLM underneath ancient cratons is a great candidate for hosting primitive ancient mantle reservoirs. Arguments based on He/heat flux ratios as well as the presence of a primordial noble gas signature should not be used to support the existence of a lower, primordial, versus an upper, degassed mantle reservoir. Our study provides the first observational case for long-term primordial lithospheric storage. Anderson, 1998, Proc. Natl. Acad. Sci. USA, 95, 9087-9092. Albarede, 2005, AGU Monograph, 160, 27-46. Castro et al., 2005, EPSL, 237, 893-910.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B23D2098H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B23D2098H"><span>Microbial stratification and microbially catalyzed processes along a hypersaline chemocline</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hyde, A.; Joye, S. B.; Teske, A.</p> <p>2017-12-01</p> <p>Orca Basin is the largest deep hypersaline anoxic basin in the world, covering over 400 km2. Located at the bottom of the Gulf of Mexico, this body of water reaches depths of 200 meters and is 8 times denser (and more saline) than the overlying seawater. The sharp pycnocline prevents any significant vertical mixing and serves as a particle trap for sinking organic matter. These rapid changes in salinity, oxygen, organic matter, and other geochemical parameters present unique conditions for the microbial communities present. We collected samples in 10m intervals throughout the chemocline. After filtering the water, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing to characterize the changing microbial community along the Orca Basin chemocline. The results reveal a dominance of microbial taxa whose biogeochemical function is entirely unknown. We then used metagenomic sequencing and reconstructed genomes for select samples, revealing the potential dominant metabolic processes in the Orca Basin chemocline. Understanding how these unique geochemical conditions shape microbial communities and metabolic capabilities will have implications for the ocean's biogeochemical cycles and the consequences of expanding oxygen minimum zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1532S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1532S"><span>Integrating surface and mantle constraints for palaeo-ocean evolution: a tour of the Arctic and adjacent regions (Arne Richter Award for Outstanding Young Scientists Lecture)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shephard, Grace E.</p> <p>2016-04-01</p> <p>Plate tectonic reconstructions heavily rely on absolute motions derived from hotspot trails or palaeomagnetic data and ocean-floor magnetic anomaies and fracture-zone geometries to constrain the detailed history of ocean basins. However, as oceanic lithosphere is progressively recycled into the mantle, kinematic data regarding the history of these now extinct-oceans is lost. In order to better understand their evolution, novel workflows, which integrate a wide range of complementary yet independent geological and geophysical datasets from both the surface and deep mantle, must be utilised. In particular, the emergence of time-dependent, semi or self-consistent geodynamic models of ever-increasing temporal and spatial resolution are revealing some critical constraints on the evolution and fate of oceanic slabs. The tectonic evolution of the circum-Arctic is no exception; since the breakup of Pangea, this enigmatic region has seen major plate reorganizations and the opening and closure of several ocean basins. At the surface, a myriad of potential kinematic scenarios including polarity, timing, geometry and location of subduction have emerged, including for systems along continental margins and intra-oceanic settings. Furthermore, recent work has reignited a debate about the origins of 'anchor' slabs, such as the Farallon and Mongol-Okhotsk slabs, which have been used to refine absolute plate motions. Moving to the mantle, seismic tomography models reveal a region peppered with inferred slabs, however assumptions about their affinities and subduction location, timing, geometry and polarity are often made in isolation. Here, by integrating regional plate reconstructions with insights from seismic tomography, satellite derived gravity gradients, slab sinking rates and geochemistry, I explore some Mesozoic examples from the palaeo-Arctic, northern Panthalassa and western margin of North America, including evidence for a discrete and previously undescribed slab under present-day Greenland. While regional in focus, the methods and insights described have global applications and illustrate the power of an integrated approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1346559','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1346559"><span>Campaign datasets for Observations and Modeling of the Green Ocean Amazon (GOAMAZON)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Martin,Scot; Mei,Fan; Alexander,Lizabeth; Artaxo,Paulo; Barbosa,Henrique; Bartholomew,Mary Jane; Biscaro,Thiago; Buseck,Peter; Chand,Duli; Comstock,Jennifer; Dubey,Manvendra; Godstein,Allen; Guenther,Alex; Hubbe,John; Jardine,Kolby; Jimenez,Jose-Luis; Kim,Saewung; Kuang,Chongai; Laskin,Alexander; Long,Chuck; Paralovo,Sarah; Petaja,Tuukka; Powers,Heath; Schumacher,Courtney; Sedlacek,Arthur; Senum,Gunnar; Smith,James; Shilling,John; Springston,Stephen; Thayer,Mitchell; Tomlinson,Jason; Wang,Jian; Xie,Shaocheng</p> <p>2016-05-30</p> <p>The hydrologic cycle of the Amazon Basin is one of the primary heat engines of the Southern Hemisphere. Any accurate climate model must succeed in a good description of the Basin, both in its natural state and in states perturbed by regional and global human activities. At the present time, however, tropical deep convection in a natural state is poorly understood and modeled, with insufficient observational data sets for model constraint. Furthermore, future climate scenarios resulting from human activities globally show the possible drying and the eventual possible conversion of rain forest to savanna in response to global climate change. Based on our current state of knowledge, the governing conditions of this catastrophic change are not defined. Human activities locally, including the economic development activities that are growing the population and the industry within the Basin, also have the potential to shift regional climate, most immediately by an increment in aerosol number and mass concentrations, and the shift is across the range of values to which cloud properties are most sensitive. The ARM Climate Research Facility in the Amazon Basin seeks to understand aerosol and cloud life cycles, particularly the susceptibility to cloud aerosol precipitation interactions, within the Amazon Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013959','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013959"><span>Oxidation state of marine manganese nodules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Piper, D.Z.; Basler, J.R.; Bischoff, J.L.</p> <p>1984-01-01</p> <p>Analyses of the bulk oxidation state of marine manganese nodules indicates that more than 98% of the Mn in deep ocean nodules is present as Mn(IV). The samples were collected from three quite different areas: the hemipelagic environment of the Guatemala Basin, the pelagic area of the North Pacific, and seamounts in the central Pacific. Results of the study suggest that todorokite in marine nodules is fully oxidized and has the following stoichiometry: (K, Na, Ca, Ba).33(Mg, Cu, Ni).76Mn5O22(H2O)3.2. ?? 1984.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S53A2826J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S53A2826J"><span>Problems of the active tectonics of the Eastern Black Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Javakhishvili, Z.; Godoladze, T.; Dreger, D. S.; Mikava, D.; Tvaliashvili, A.</p> <p>2016-12-01</p> <p>The Black Sea Basin is the part of the Arabian Eurasian Collision zone and important unit for understanding the tectonic process of the region. This complex basin comprises two deep basins, separated by the mid-Black Sea Ridge. The basement of the Black Sea includes areas with oceanic and continental crust. It was formed as a "back-arc" basin over the subduction zone during the closing of the Tethys Ocean. In the past decades the Black Sea has been the subject of intense geological and geophysical studies. Several papers were published about the geological history, tectonics, basement relief and crustal and upper mantle structure of the basin. New tectonic schemes were suggested (e. g. Nikishin et al 2014, Shillington et al. 2008, Starostenko et al. 2004 etc.). Nevertheless, seismicity of the Black Sea is poorly studied due to the lack of seismic network in the coastal area. It is considered, that the eastern basin currently lies in a compressional setting associated with the uplift of the Caucasus and structural development of the Caucasus was closely related to the evolution of the Eastern Black Sea Basin. Analyses of recent sequence of earthquakes in 2012 can provide useful information to understand complex tectonic structure of the Eastern Black Sea region. Right after the earthquake of 2012/12/23, National Seismic monitoring center of Georgia deployed additional 4 stations in the coastal area of the country, close to the epicenter area, to monitor aftershock sequence. Seismic activity in the epicentral area is continuing until now. We have relocated approximately 1200 aftershocks to delineate fault scarf using data from Georgian, Turkish and Russian datacenters. Waveforms of the major events and the aftershocks were inverted for the fault plane solutions of the events. For the inversion were used green's functions, computed using new 1D velocity model of the region. Strike-slip mechanism of the major events of the earthquake sequence indicates extensional features in the Eastern Black Sea Region as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SedG..301...26S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SedG..301...26S"><span>The Cretaceous Polar and Western Interior seas: paleoenvironmental history and paleoceanographic linkages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schröder-Adams, Claudia</p> <p>2014-03-01</p> <p>This study reviews the Cretaceous histories of the Polar and Western Interior seas as recorded in the Canadian High Arctic Sverdrup Basin, Beaufort-Mackenzie Basin of northwest Canada and Western Canadian Foreland Basin. Newly emerging stratigraphic, paleoclimatic and paleoenvironmental interpretations from the polar realm allow for a fresh look at the response of this oceanic system to global climatic trends and sea-level histories over 35 Ma. Sverdrup basin localities on Axel Heiberg and Ellef Ringnes islands represent shelf to slope environments that contrasted with the shallow water and low gradient settings of the Canadian Western Interior Sea. Both marine systems, connected throughout Aptian to Maastrichtian time, responded to global transgressive-regressive cycles resulting in dynamic paleogeographic changes. The upper Aptian to Campanian succession of the Polar Sea shows at least two unconformable boundaries; one at the Albian/Cenomanian transition and another within the upper Cenomanian. The shallow basin setting and in particular the forebulge and backbulge settings of the Western Canadian Foreland Basin are characterized by multiple erosional surfaces throughout the Cretaceous succession. The Upper Albian disconformity is widely discernible close to the entrance of the Western Interior Sea to the Polar Sea. This suggests a short-lived closure of the latest Albian Mowry Sea that might have been responsible for the large loss of benthic foraminiferal species at this time. Several oceanic anoxic events are documented in these basins representing their response to global climate dynamics. During the Late Cretaceous temperature maximum benthic foraminiferal communities were severely restricted by bottom water hypoxia in both basins. A stratified water column might have been the result of increased freshwater runoff under warm, humid conditions. These conditions supported vegetation up into the polar latitudes that added abundant organic matter to marine shelf systems. Conversely, the Canadian Western Interior Sea biotic communities were controlled by watermasses of two or maybe three different sources and physical properties including the Polar, Tethyan and a possibly third source from the emerging Labrador Sea through the Hudson Seaway. Where the southern and northern watermasses mixed, plankton might have been influenced by oceanic fronts, forming mass kills through sinking of dense waters. Migration of calcareous phyto- and zooplankton was controlled by a temperature and salinity gradient and did not invade northern regions. Siliceous plankton occurred and is more commonly found in the Sverdrup Basin, but taphonomic loss through deep burial needs to be taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP34B..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP34B..05G"><span>Meridional Transect of Atlantic Overturning Circulation across the Mid-Pleistocene Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldstein, S. L.; Pena, L. D.; Seguí, M. J.; Kim, J.; Yehudai, M.; Farmer, J. R.; Ford, H. L.; Haynes, L.; Hoenisch, B.; Raymo, M. E.; Ferretti, P.; Bickert, T.</p> <p>2016-12-01</p> <p>The Mid-Pleistocene Transition (MPT) marked a major transition in glacial-interglacial periodicity from dominantly 41 kyr to 100 kyr cycles between 1.3-0.7 Ma. From Nd isotope records in the South Atlantic, Pena and Goldstein (Science, 2014) concluded that the Atlantic overturning circulation circulation experienced major weakening between 950-850 ka (MIS 25-21), which generated the climatic conditions that intensified cold periods, prolonged their duration, and stabilized 100 kyr cycles. Such weakening would provide a mechanism for decreased atmospheric CO2 (Hönisch et al., Science, 2009) by allowing for additional atmospheric CO2 to be stored in the deep ocean. We present a summary of work in-progress to generate two dimensional representations of the Atlantic meridional overturning circulation, from the north Atlantic to the Southern Ocean, at different time slices over the past 2Ma, including the MPT, based on Nd isotope ratios measured on Fe-Mn-oxide encrusted foraminifera and fish debris. Thus far we are analyzing samples from DSDP/ODP Sites 607, 1063 from the North Atlantic, 926 from the Equatorial Atlantic, 1264, 1267, 1088, 1090 in the South Atlantic, and 1094 from the Southern Ocean. Our data generated thus far support important changes in the overturning circulation during the MPT, and greater glacial-interglacial variability in the 100 kyr world compared with the 40 kyr world. In addition, the data indicate a North Atlantic-sourced origin for the ocean circulation disruption during the MPT. Comparison with ɛNd records in different ocean basins and with benthic foraminiferal δ13C and B/Ca ratios will also allow us to understand the links between deep ocean circulation changes and the global carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4537J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4537J"><span>Using a global ocean circulation model to conduct a preliminary risk assessment of oil spills in the Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobs, Zoe; Popova, Katya; Hirschi, Joel; Coward, Andrew; Yool, Andrew; van Gennip, Simon; Anifowose, Babtunde; Harrington-Missin, Liam</p> <p>2017-04-01</p> <p>Although oil blowouts from deep-water drilling happen very rarely, they can cause catastrophic damage to the environment. Despite such potentially high impacts, relatively little research effort has gone into understanding subsurface oil plumes in the deep ocean. In this study, we demonstrate the significance of this problem and offer potential solutions using a novel approach based on a leading-edge, high-resolution global ocean circulation model. We present examples demonstrating: (a) the importance of ocean circulation in the propagation of oil spills; and (b) likely circulation footprints for oil spills at four key locations in the Atlantic Ocean that exist in different circulation regimes - the shelves of Brazil, the Gulf of Guinea, the Gulf of Mexico and the Faroe-Shetland Channel. In order to quantify the variability at each site on seasonal timescales, interannual timescales and at different depths, we utilize the Modified Hausdorff Distance (MHD), which is a shape-distance metric that measures the similarity between two shapes. The scale of the footprints across the four focus locations varies considerably and is determined by the main circulation features in their vicinity. For example, the hypothetical oil plume can be affected by variations in the speed and location of a particular current (e.g. Brazil Current at the Brazilian shelf site) or be influenced by different currents entirely depending on the release depth, month and year (e.g. Angola Current or Southern Equatorial Current at the Gulf of Guinea site). Overall, our results demonstrate the need to use state of the art global, or basin-scale, ocean circulation models when assessing the environmental impacts of proposed oil drilling activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP43C2343G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP43C2343G"><span>Outgassing of the Eastern Equatorial Pacific during the Pliocene period.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guillermic, M.; Tripati, A.</p> <p>2016-12-01</p> <p>The transition from the warm, ice-free conditions of the early Cenozoic to present-day glacial state with ice sheets in both hemispheres has been ascribed to long- and short-term changes in atmospheric CO2. The processes causing long-term changes in atmospheric CO2 levels are of debate. One possible explanation for changes in atmospheric CO2 relates to changes in air-sea exchange due to fluctuations in ocean carbon sources and sinks, as modulated by the stratification of surface waters. While nutrient consumption in low-latitude environments and associated export of CO2 to the deep sea works to sequester CO2 in the ocean interior, the return of deep water to the surface in the high latitudes and upwelling at the equator and in the eastern portion of ocean basins releases CO2. Quantitative estimates for surface water pH and pCO2 in different regions of the ocean and identification of CO2-sources and sinks are needed to better understand the role of the ocean in driving and/or amplifying variations in the atmospheric CO2 reservoir and climate change. Here we present preliminary results of surface water pH for the early Pliocene to Holocene based on boron isotope measurements of planktic foraminifera for the Eastern Equatorial Pacific. We develop records of B/Ca, Mg/Ca ratios, boron isotopes, and oxygen isotopes measurements in foraminifera tests (Globigeneroides sacculifer, Globigeneroides ruber, Neogloboquadrina dutertrei). We reconstruct changes in ocean CO2 outgassing in the Eastern Equatorial Pacific using records from ODP Site 847 (0°N, 95°W, 3373 m water depth). These data are used to examine if there is evidence for changes in stratification and CO2 outgassing during the early Pliocene warm period and during Pliocene intensification of Northern Hemisphere glaciation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011E%26PSL.309...33S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011E%26PSL.309...33S"><span>Sediment focusing in the Panama Basin, Eastern Equatorial Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Ajay K.; Marcantonio, Franco; Lyle, Mitchell</p> <p>2011-09-01</p> <p>Age-model derived sediment mass accumulation rates (MARs) are consistently higher than 230Th-normalized MARs in the Equatorial Pacific Ocean during the past 25 ka. The offset, being highest in the Panama Basin, suggests a significant role for deep-sea sediment redistribution (i.e., sediment focusing) in this region. Here, we test the hypothesis that downslope transport of sediments from topographically high regions that surround the Panama Basin is the cause of higher-than-expected xs 230Th inventories over the past 25 ka in the deeper parts of the basin. We find little difference in xs 230Th inventories between the highest and lowest reaches of the basin. Furthermore, there is no correlation between xs 230Th-derived sediment focusing factors and water depth which suggests that the topographic highs do not serve as a source of xs 230Th. A spatial analysis suggests that there may be an enhanced scavenging effect on xs 230Th concentrations in sediment closest to the equator where productivity is the highest, although further data is necessary to corroborate this. At the equator xs 230Th-derived focusing factors are high and range from about 1 to 5 during the Holocene and about 1 to 11 during the last glacial. In contrast, non-equatorial cores show a smaller range in variability from about 0.7 to 2.8 during the Holocene and from 0.7 to 3.6 during the last glacial. Based on 232Th flux measurements, we hypothesize that the location at which eolian detrital fluxes surpass the riverine detrital fluxes is approximately 300 km from the margin. While riverine fluxes from coastal margins were higher during the Holocene, eolian fluxes were higher during the last glacial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411644M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411644M"><span>Late tectonic uplift of an inverted oceanic basin in South East Asia: the case of Palawan Island (western Philippines)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meresse, F.; Savva, D.; Pubellier, M.; Steuer, S.; Franke, D.; Cordey, F.; Muller, C.; Sapin, F.; Mouly, B.; Auxiètre, J.-L.</p> <p>2012-04-01</p> <p>The elongated island of Palawan, bounded by two marginal basins, the South China Sea to the North and the Sulu Sea to the South is composed of remnants of an inverted basin (Proto-South China Sea) thrusted onto the margin of a continental terrane which rifted away from the Chinese-Vietnamese margin. Based on field observations coupled with seismic and drill-holes data, our study focuses on the structural architecture of the island in order to decipher the geodynamic evolution of the southern margin of the South China Sea. Structurally, the Palawan Island consists of: (i) the Palawan wedge, which extends towards the South China Sea is composed of deformed slope to deep ocean deposits of Cretaceous (north Palawan) to Tertiary (central and south Palawan) ages. This accretionnary wedge is characterized by small wavelength folds of mainly NE-SW trend. Offshore, the unconformable Middle-Late Miocene Tabon limestones unit postdates the last stages of the Palawan wedge growth/setting; (ii) On top of this wedge lie thrust slices of ophiolite bodies comprising ribbon cherts of Albian age as indicated by radiolarians.; these bodies are likely to be relicts of the now-subducted Proto South China Sea; (iii) The central and southern parts of the Palawan island are characterized by a large wavelength antiform of NE-SW trend. This structure is sealed by the slightly tilted Early Pliocene marls unit; (iv) The island also presents necking zones bordered by N-S trending transform faults. This area witnessed the geodynamic evolution of the South East Asia which consists of a succession of opening/closure of oceanic basins and block accretions. The Palawan Island therefore results of the closing of the Proto-South China Sea which once formed both the Palawan accretionary wedge and the overlying ophiolite tectonic slices. During a later compressive event, the rifted continental margin which composes the basement of the Island was inverted, inducing the uplift and the large scale folding of the Palawan Island. In a final stage, the strain relaxing results in the formation of the necking zones, probably reactivating the inherited transform faults of the Proto-South China Sea. Keywords: Palawan Island; South China Sea; oceanic basin; inverted margin; Ophiolite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24555308','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24555308"><span>Does Arctic sea ice reduction foster shelf-basin exchange?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ivanov, Vladimir; Watanabe, Eiji</p> <p>2013-12-01</p> <p>The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of salt flux leads to a threefold increase of shelf-slope volume flux below the warm core of Atlantic water. This threefold increase would be a sufficient substitute for a similar amount of dense water that currently forms in the Greenland, Iceland, and Norwegian (GIN) seas but is expected to decrease in a warming climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022515','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022515"><span>Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Banakar, V.K.; Hein, J.R.</p> <p>2000-01-01</p> <p>A deep-water ferromanganese crust from a Central Indian Ocean seamount dated previously by 10Be and 230Th(excess) was studied for compositional and textural variations that occurred throughout its growth history. The 10Be/9Be dated interval (upper 32 mm) yields an uniform growth rate of 2.8 ?? 0.1 mm/Ma [Frank, M., O'Nions, R.K., 1998. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion. Earth Planet. Sci. Lett., 158, pp. 121-130.] which gives an extrapolated age of ~ 26 Ma for the base of the crust at 72 mm and is comparable to the maximum age derived from the Co-model based growth rate estimates. This study shows that Fe-Mn oxyhydroxide precipitation did not occur from the time of emplacement of the seamount during the Eocene (~ 53 Ma) until the late Oligocene (~ 26 Ma). This paucity probably was the result of a nearly overlapping palaeo-CCD and palaeo-depth of crust formation, increased early Eocene productivity, instability and reworking of the surface rocks on the flanks of the seamount, and lack of oxic deep-water in the nascent Indian Ocean. Crust accretion began (older zone) with the formation of isolated cusps of Fe-Mn oxide during a time of high detritus influx, probably due to the early-Miocene intense erosion associated with maximum exhumation of the Himalayas (op. cit.). This cuspate textured zone extends from 72 mm to 42 mm representing the early-Miocene period. Intense polar cooling and increased mixing of deep and intermediate waters at the close of the Oligocene might have led to the increased oxygenation of the bottom-water in the basin. A considerable expansion in the vertical distance between the seafloor depth and the CCD during the early Miocene in addition to the influx of oxygenated bottom-water likely initiated Fe-Mn crust formation. Pillar structure characterises the younger zone, which extends from 40 mm to the surface of the crust, i.e., ~ 15 Ma to Present. This zone is characterised by > 25% higher content of oxide-bound elements than in the older zone, possibly corresponding to further increased oxygenation of bottom-waters, increased stability of the seamount slope, and gradually reduced input of continental detritus from the erosion of the Himalayas. Middle Miocene Antarctic glaciation, which peaked ~ 12-13 Ma ago, increased the oxic bottom-water influx to the basin resulting in accretion of the crust with low detritus. Therefore, the younger crust started to accrete in response to a shift in bottom-water circulation towards the contemporary pattern, which produced a uniform growth rate and pillar structure up to the present. (C) 2000 Published by Elsevier Science B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T51K..08P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T51K..08P"><span>International Tectonic Map of the Circumpolar Arctic and its Significance for Geodynamic Interpretations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrov, O. V.; Morozov, A.; Shokalsky, S.; Leonov, Y.; Grikurov, G.; Poselov, V.; Pospelov, I.; Kashubin, S.</p> <p>2011-12-01</p> <p>In 2003 geological surveys of circum-arctic states initiated the international project "Atlas of Geological Maps of Circumpolar Arctic at 1:5 000000 scale". The project received active support of the UNESCO Commission for the Geological Map of the World (CGMW) and engaged a number of scientists from national academies of sciences and universities. Magnetic and gravity maps were prepared and printed by the Norwegian Geological Survey, and geological map was produced by the Geological Survey of Canada. Completion of these maps made possible compilation of a new Tectonic Map of the Arctic (TeMAr), and this work is now in progress with Russian Geological Research Institute (VSEGEI) in the lead of joint international activities. The map area (north of 60o N) includes three distinct roughly concentric zones. The outer onshore rim is composed of predominantly mature continental crust whose structure and history are illustrated on the map by the age of consolidation of craton basements and orogenic belts. The zone of offshore shelf basins is unique in dimensions with respect to other continental margins of the world. Its deep structure can in most cases be positively related to thinning and rifting of consolidated crust, sometimes to the extent of disruption of its upper layer, whereas the pre-rift evolution can be inferred from geophysical data and extrapolation of geological evidence from the mainland and island archipelagoes. The central Arctic core is occupied by abyssal deeps and intervening bathymetric highs. The Eurasia basin is commonly recognized as a typical oceanic opening separating the Barents-Kara and Lomonosov Ridge passive margins, but geodynamic evolution of Amerasia basin are subject to much controversy, despite significant intensification of earth science researchin the recent years. A growing support to the concept of predominance in the Amerasia basin of continental crust, particularly in the area concealed under High Arctic Large Igneous Province, is based on two lines of evidence: (1) seismic studies and gravity modeling of deep structure of the Earth's crust suggesting a continuity of its main layers from Central Arctic bathymetric highs to the adjoining shelves, and (2) geochrolology and isotope geochemistry of bottom rocks in the central Arctic Ocean indicating the likely occurrence here of Paleozoic supracrustal bedrock possibly resting on a Precambrian basement. In the process of compilation activities all possible effort will be made to reflect in the new international tectonic map our current understanding of present-day distribution of crust types in the Arctic. It will be illustrated by smaller-scale insets depicting, along with the crust types, additional information used for their recognition (e.g. depth to Moho, total sediment thickness, geotransects, etc. This will help to integrate geological history of Central Arctic Ocean with its continental rim and provide a sound basis for testing various paleogeodynamic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Sci...350..766L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Sci...350..766L"><span>The deep ocean under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levin, Lisa A.; Le Bris, Nadine</p> <p>2015-11-01</p> <p>The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGD.....917539S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGD.....917539S"><span>Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sevastou, K.; Lampadariou, N.; Polymenakou, P. N.; Tselepides, A.</p> <p>2012-12-01</p> <p>The long held perception of the deep sea consisting of monotonous slopes and uniform oceanic basins has over the decades given way to the idea of a complex system with wide habitat heterogeneity. Under the prism of a highly diverse environment, a large dataset was used to describe and compare spatial patterns of the dominant small-size components of deep-sea benthos, metazoan meiofauna and bacteria, from Mediterranean basins and slopes. A grid of 73 stations sampled at five geographical areas along the central-eastern Mediterranean basin (central Mediterranean, northern Aegean Sea, Cretan Sea, Libyan Sea, eastern Levantine) spanning over 4 km in depth revealed a high diversity in terms of both metazoan meiofauna and microbial communities. The higher meiofaunal abundance and richness observed in the northern Aegean Sea highlights the effect of productivity on benthic patterns. Non parametric analyses detected no differences for meiobenthic standing stocks and major taxa diversity (α, β, γ and δ components) between the two habitats (basin vs. slope) for the whole investigated area and within each region, but revealed significant bathymetric trends: abundance and richness follow the well-known gradient of decreasing values with increasing depth, whereas differentiation diversity (β- and δ-diversity) increases with depth. In spite of a similar bathymetric trend observed for nematode genera richness, no clear pattern was detected with regard to habitat type; the observed number of nematode genera suggests higher diversity in slopes, whereas richness estimator Jack1 found no differences between habitats. On the other hand, δ-diversity was higher at the basin habitat, but no differences were found among depth ranges, though turnover values were high in all pairwise comparisons of the different depth categories. Results of multivariate analysis are in line with the above findings, indicating high within habitat variability of meiofaunal communities and a gradual change of meiofaunal structure towards the abyssal stations. In contrast to meiobenthic results, microbial richness is significantly higher at the basin ecosystem and tends to increase with depth, while community structure varies greatly among samples regardless of the type of habitat, depth or area. The results presented here suggest that differences in benthic parameters between the two habitats are neither strong nor consistent; it appears that within habitat variability is high and differences among depth ranges are more important.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA610738','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA610738"><span>Estimation of the Barrier Layer Thickness in the Indian Ocean Using Aquarius Salinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-07-08</p> <p>number of temperature and salinity measurements in ocean basins . In 2005, buoy coverage in the Indian Ocean began meeting Argo program sampling...distribution of salinity in the Indian Ocean is unique when compared to the other basins with higher salinity in the western contrasted Journal of...eastern regions of the basin (Figure 2). In the Arabian Sea, evaporation (E) greatly exceeds precipitation (P) resulting in high salinity (>36 PSU</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GGG.....6.9K10S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GGG.....6.9K10S"><span>Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sclater, John G.; Grindlay, Nancy R.; Madsen, John A.; Rommevaux-Jestin, Celine</p> <p>2005-09-01</p> <p>Between 25°E and 35°E, a suite of four transform faults, Du Toit, Andrew Bain, Marion, and Prince Edward, offsets the Southwest Indian Ridge (SWIR) left laterally 1230 km. The Andrew Bain, the largest, has a length of 750 km and a maximum transform domain width of 120 km. We show that, currently, the Nubia/Somalia plate boundary intersects the SWIR east of the Prince Edward, placing the Andrew Bain on the Nubia/Antarctica plate boundary. However, the overall trend of its transform domain lies 10° clockwise of the predicted direction of motion for this boundary. We use four transform-parallel multibeam and magnetic anomaly profiles, together with relocated earthquakes and focal mechanism solutions, to characterize the morphology and tectonics of the Andrew Bain. Starting at the southwestern ridge-transform intersection, the relocated epicenters follow a 450-km-long, 20-km-wide, 6-km-deep western valley. They cross the transform domain within a series of deep overlapping basins bounded by steep inward dipping arcuate scarps. Eight strike-slip and three dip-slip focal mechanism solutions lie within these basins. The earthquakes can be traced to the northeastern ridge-transform intersection via a straight, 100-km-long, 10-km-wide, 4.5-km-deep eastern valley. A striking set of seismically inactive NE-SW trending en echelon ridges and valleys, lying to the south of the overlapping basins, dominates the eastern central section of the transform domain. We interpret the deep overlapping basins as two pull-apart features connected by a strike-slip basin that have created a relay zone similar to those observed on continental transforms. This transform relay zone connects three closely spaced overlapping transform faults in the southwest to a single transform fault in the northeast. The existence of the transform relay zone accounts for the difference between the observed and predicted trend of the Andrew Bain transform domain. We speculate that between 20 and 3.2 Ma, an oblique accretionary zone jumping successively northward created the en echelon ridges and valleys in the eastern central portion of the domain. The style of accretion changed to that of a transform relay zone, during a final northward jump, at 3.2 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8267V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8267V"><span>Implementation and validation of a current model system in the greatest sound in the North East Atlantic archipelago of the Faroe Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vagsheyg Erenbjerg, Sissal; Albretsen, Jon; Asplin, Lars; Joensen, Erna; Sandvik, Anne; Simonsen, Knud; Kaas, Eigil</p> <p>2017-04-01</p> <p>The location of the Faroe Islands on the Greenland-Scotland ridge puts the oceanography on the boundary of deep water and shelf and fjord dynamics. This placement in close proximity of the deep ocean currents, important for heat transport towards the Arctic, makes the Faroe Islands higly exposed to climate change. Therefore it is important to understand the interaction of deep water oceanography and fjord dynamics in general, to be able to predict potential impact, due to changes in ocean parameters. The Faroe Islands consist of 18 islands. The topographic characteristics are typical for an ice sheet shaped land surface with long and slim islands, steep mountain sides divided by narrow and relatively deep fjords. This highly complex topography is greatly influenced by wind conditions. Sundalagið separates the two largest islands: Streymoy and Eysturoy and has three fjordarms and two main basins. The northern part (SUN) is 15km long and 100m-1.6km wide. The sound is bound to the north by a 9m deep sill. Towards the south by a narrowing of a 100 meter wide and around four meter deep sill, depending on tidal conditions. The southern part (SUS) is not as clearly constricted but contains three major basins with depths ranging from 70-100m (Hansen et al., 1990). We have implemented a nested model system using high resolution bathymetry in the fjords and the entire shelf as well as the open-source hydrodynamical model ROMS (Regional Ocean Modeling System, http://myroms.org). The Faroe Islands model applications are using triply, one way nested grids with 800 → 160 → 32 meter resolutions in the horizontal. This gives us the opportunity to both simulate the deep water oceanography applying 800m resolution as well as the dynamics in the shallow regions using finer resolution models. A particular interest in the area is the influence of the tidal regime. In SUN the tidal dynamics are quite limited due to the location of an amphidromeice point in the Nolsoy fjord (M2=10.4cm (www.dmi.dk)) whereas SUN is heavily dominated by tidal dynamics (M2=63.1cm). The general observation is a more pronounced stratification in SUN and higher vertical mixing in the water column in SUS (2016 CTD mesurements). Our ROMS simulations are run for the year 2013 (only part of the year for the 32m resolution) and forced with high-resolution atmospheric conditions (WRF-1km), large-scale ocean fields (ROMS 4km) of currents, hydrography and sea level (Lien et al., 2014), global tides (TPXO7.2) and climatological freshwater discharges including the main rivers. In this study we validate the model simulations using in-situ data coverage (ACDP) in the local area. A well-functioning dynamical model system is highly important for the Faroe Islands where aquaculture is by far the greatest industry. Linking this to a particle tracking module will further increase the understanding of climate impact in the Faroes in particular with regards to the changes for the biological cycle and mitigation of sea lice (a challenging parasite for the aquaculture) by temperature changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53E0939H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53E0939H"><span>Impact of Seawater Nonlinearities on Nordic Seas Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.</p> <p>2017-12-01</p> <p>The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26217326','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26217326"><span>Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gutierrez, Tony; Biddle, Jennifer F; Teske, Andreas; Aitken, Michael D</p> <p>2015-01-01</p> <p>Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrochemical derivatives in coastal and open ocean environments. However, there is a paucity of knowledge on the diversity and function of these organisms in deep-sea sediment. Here we used stable-isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate polycyclic aromatic hydrocarbon (PAH)-degrading bacteria under aerobic conditions in sediments from Guaymas Basin with uniformly labeled [(13)C]-phenanthrene (PHE). The dominant sequences in clone libraries constructed from (13)C-enriched bacterial DNA (from PHE enrichments) were identified to belong to the genus Cycloclasticus. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Cycloclasticus to determine their abundance in sediment incubations amended with unlabeled PHE and showed substantial increases in gene abundance during the experiments. We also isolated a strain, BG-2, representing the SIP-identified Cycloclasticus sequence (99.9% 16S rRNA gene sequence identity), and used this strain to provide direct evidence of PHE degradation and mineralization. In addition, we isolated Halomonas, Thalassospira, and Lutibacterium sp. with demonstrable PHE-degrading capacity from Guaymas Basin sediment. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of PAH-degrading bacteria in the deep-sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4493657','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4493657"><span>Cultivation-dependent and cultivation-independent characterization of hydrocarbon-degrading bacteria in Guaymas Basin sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gutierrez, Tony; Biddle, Jennifer F.; Teske, Andreas; Aitken, Michael D.</p> <p>2015-01-01</p> <p>Marine hydrocarbon-degrading bacteria perform a fundamental role in the biodegradation of crude oil and its petrochemical derivatives in coastal and open ocean environments. However, there is a paucity of knowledge on the diversity and function of these organisms in deep-sea sediment. Here we used stable-isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate polycyclic aromatic hydrocarbon (PAH)-degrading bacteria under aerobic conditions in sediments from Guaymas Basin with uniformly labeled [13C]-phenanthrene (PHE). The dominant sequences in clone libraries constructed from 13C-enriched bacterial DNA (from PHE enrichments) were identified to belong to the genus Cycloclasticus. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Cycloclasticus to determine their abundance in sediment incubations amended with unlabeled PHE and showed substantial increases in gene abundance during the experiments. We also isolated a strain, BG-2, representing the SIP-identified Cycloclasticus sequence (99.9% 16S rRNA gene sequence identity), and used this strain to provide direct evidence of PHE degradation and mineralization. In addition, we isolated Halomonas, Thalassospira, and Lutibacterium sp. with demonstrable PHE-degrading capacity from Guaymas Basin sediment. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of PAH-degrading bacteria in the deep-sea. PMID:26217326</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615810K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615810K"><span>Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kusznir, Nick; Alvey, Andy</p> <p>2014-05-01</p> <p>The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins consistent with these basins being oceanic. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Crustal basement thicknesses of 10-15 km are predicted under the Laptev Sea which is interpreted as highly thinned continental crust formed at the eastward continuation of Eurasia Basin sea-floor spreading. Thin continental or oceanic crust of thickness 7 km or less is predicted under the North Chukchi Basin and has major implications for understanding the Mesozoic and Cenozoic plate tectonic history of the Siberian and Chukchi Amerasia Basin margins. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test and refine plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic and N Atlantic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. We interpret gravity inversion crustal thicknesses underneath Morris Jessop Rise & Yermak Plateau as continental crust which provided a barrier to the tectonic and palaeo-oceanic linkage between the Arctic & North Atlantic until the Oligocene. Before this time, we link the seafloor spreading within the Eurasia Basin to that in Baffin Bay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994ClDy...10..313H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994ClDy...10..313H"><span>A zonally averaged, three-basin ocean circulation model for climate studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hovine, S.; Fichefet, T.</p> <p>1994-09-01</p> <p>A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70°N at a rate of about 17 Sv (1 Sv=106 m3 s-1) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions (i.e., a restoring condition on sea-surface temperature and flux condition on sea-surface salinity) are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake Passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916685G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916685G"><span>From rifting to spreading - seismic structure of the rifted western Mariana extinct arc and the ParceVela back-arc basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grevemeyer, Ingo; Kodaira, Shuichi; Fujie, Gou; Takahashi, Narumi</p> <p>2017-04-01</p> <p>The proto Izu-Ogasawara (Bonin)-Mariana (IBM) Island arc was created when subduction of the Pacific plate began during the Eocene. Today, the Kyushu-Palau Ridge (KPR) at the centre of the Philippine Sea and the western Mariana Ridge (WMR) are considered to be a remnant of the proto IBM Island arc. The KPR and WMR were separated when back-arc spreading began at 30 to 29 Ma in the Shikoku Basin and ParceVela Basin (PVB). Volcanic activity along the arcs diminished at 27 Ma and there is little evidence of volcanic activity between 23-17 Ma. Arc volcanism was reactivated at 15 Ma, when the opening of the Shikoku Basin and PVB ceased. At about 5 Ma the Mariana Basin opened, rifting the WMR from the Mariana arc. Here, we report results from the seismic refraction and wide-angle profile MR101c shot in summer of 2003 by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) aboard the RV KAIYO during the cruise KY03-06, extending from the PVB across the WMR and terminating just to the east of the WMR. Along MR101c 46 OBS recorded shots from an airgun array of 12,000 cubic inches (197 litres); 44 OBS provided excellent P-wave data, including arrivals sampling the crust (Pg), the crust/mantle boundary (PmP), the uppermost mantle (Pn) and a deep reflection (PnP) under the WMR. To yield the seismic velocity structure, we used a joint reflection and refraction tomography, revealing the crustal and mantle P-wave velocity structure, the seismic Moho, and a deep-seated reflector. Distinct features are a 14 km thick crust forming the WMR, a high-velocity lower crust in both transition zones to the ParceVela Basin and Mariana Basin, and a reflector at 24 km depth, which shallows to 18 km in the transition zone to the Mariana Basin, perhaps reflecting rifting-related thinning of the entire lithosphere. The deep-reflector, however, did not occur under the PVB. Upper mantle velocity below the WMR is <7.5 km/s. High velocities of the lower crust of the WMR flanking the adjacent basins mimic the structure found in the Lau Basin - Tonga Arc system, perhaps indicating entrainment of hydrous melts from the adjacent arc governing early seafloor spreading when the spreading centre was at close distant to the volcanic arc. Upper mantle below the PVB shows typical mantle properties, supporting a P-wave velocity of >8 km/s. However, with respect to oceanic crust sampled in the Pacific Basin, PVB crust is with 5 km thinner and seismic velocities in the lower crust are with 6.7 km/s much lower.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.3106F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.3106F"><span>Late Quaternary Palaeoceanographic Changes in Sea Surface Conditions in the Tropical Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischel, Andrea; Seidenkrantz, Marit-Solveig; Kuijpers, Antoon; Nürnberg, Dirk</p> <p>2013-04-01</p> <p>Palaeoceanographic changes and the variability in surface water mass hydrography are reconstructed in order to track tropical ocean and climate variability and inter-hemispheric heat exchange through the last 42,000 year BP. Our studies are based on the relative abundance of planktonic foraminifera combined with sea surface temperature approximation based Mg/Ca measurements, XRF scanning and stable oxygen isotope analyses in a 5 m long gravity core Ga307-Win-12GC (17°50.80N, 64°48.7290W), retrieved in the Virgin Island Basin in approx. 3,960 m water depth. The Virgin Island Basin is the deepest part of the Anegada-Jungfern Passage in the northeast Caribbean, one of the most important pathways for water mass exchange between the Central Atlantic and the Caribbean Sea. Due to its bathymetry surface waters as well as deep water mass strata from the northern and southern hemisphere enter the basin, comprising Caribbean Surface Water (CSW), Antarctic Intermediate Water (AAIW), Atlantic Intermediate Water (AIW) and North Atlantic Deep Water (NADW). The planktonic foraminiferal assemblage suggests rather stable sea-surface conditions during the Holocene in the NE Caribbean. However, major changes in the hydrographic setting could be identified within the glacial period. During the glacial period, clear millennial-scale variability in sea-surface temperature and productivity are present. Fluctuations in the relative abundance of Globigerinoides ruber in the sediment core may be correlated to Dansgaard-Oeschger events in the northern North Atlantic. Furthermore an increase in relative abundance of Globorotalia rubescens occurs synchronous with ice rafted debris layers described from the North Atlantic. The faunal changes in the tropical Atlantic may thus be correlated to major climate changes in the North Atlantic, mainly D-O cyclicity as well as Heinrich events. Thus, the synchronous change in water mass distribution and hydrographic cyclicity suggests a possible linkage between tropical and North Atlantic Ocean variability during the Late Quaternary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Geote..42..105S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Geote..42..105S"><span>Generations of spreading basins and stages of breakdown of Wegener's Pangea in the geodynamic evolution of the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shipilov, E. V.</p> <p>2008-03-01</p> <p>Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5784397-forearc-sedimentation-terraba-trough-costa-rica-central-america','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5784397-forearc-sedimentation-terraba-trough-costa-rica-central-america"><span>Forearc sedimentation in Terraba Trough, Costa Rica, Central America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yuan, P.B.; Lowe, D.R.</p> <p>1987-05-01</p> <p>Sedimentary rocks of Terraba Trough, Costa Rica, were deposited in a forearc basin developed at an ocean-ocean convergent boundary. The basin developed in the middle to late Eocene when the Farallon plate began its subduction beneath the Caribbean plate. Shallow-water carbonates of the Brito Formation were deposited on shoals of basement blocks. These were surrounded by deeper marine areas in which volcaniclastics and carbonate debris accumulated. The Brito Formation consists of algal-foraminiferal packstone to grainstone, rudstone, and rare wackestone formed in fore-slope, carbonate buildup, and open platform environments in a warm, tropical sea. The Eocene Brito Formation is overlain bymore » rocks of the upper Oligocene Rio Claro Member of the Terraba Formation. It is composed of rhodolite and bioclastic grainstone deposited in shallow water. A combination of little subsidence, mild volcanism, and possible erosion at about 30 Ma during a global drop of sea level may be responsible for the absence of lower Oligocene rocks in the study area. After the deposition of the Rio Claro Member, the area subsided rapidly to become a trough possibly deeper than 2000 m. Sedimentation took place in deep water from sediment gravity flows. In the early to early middle Miocene, coarser sediments and thicker sand units containing coal fragments became more abundant, suggesting that the basin was gradually filled. This study indicates that the timing and degree of subsidence of the fore-arc basin and the vertical variation in lithology are closely related to the variation in convergence rate between lithospheric plates in this part of Central America and the eastern Pacific.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26564845','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26564845"><span>The deep ocean under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Levin, Lisa A; Le Bris, Nadine</p> <p>2015-11-13</p> <p>The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP13A1412M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP13A1412M"><span>Sulfur speciation and isotope analysis of the 2.7 Ga shallow- and deep-facies black shales from Pilbara, Western Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minami, H.; Yamaguchi, K. E.; Naraoka, H.</p> <p>2014-12-01</p> <p>It has been widely believed that Great Oxidation Event (GOE: Holland, 1994) occurred at ~2.4-2.2 Ga ago. However, some previous studies have found evidence for oxic ocean and atmosphere from earlier rock records (e.g., Hoashi et al., 2009). In order to explore if such oxic environment was local or global and if there was redox heterogeneity in a sedimentary basin before the inferred GOE, using the 2.7 Ga pyrite-bearing drillcore black shales (deep-facies WRL1 and shallow-facies RHDH2A drillcores) from Pilbara, Western Australia, we separately quantified abundance of S-bearing species (SAVS (acid-volatile sulfide), Spy (pyrite), SSO4 (sulfate), Sorg (organic-S), and S0 (elemental S) and Fe-bearing species (Fecarb, Feox, and Femag) by using sequential extraction methods. These samples were previously used by Brocks et al. (1999), Yamaguchi (2002), Yamaguchi et al. (2005), and Eigenbrode and Freeman (2006). The shallow samples have high S contents and are interpreted to have deposited in relatively anoxic environment, but most of deep samples with elevated Fe contents deposited in relatively oxic environment. The DOP values and δ34Spy values are relatively higher in shallow samples, suggesting active bacterial sulfate reduction in reducing environment created due to near-complete consumption of dissolved O2by decomposition of organic matter produced by photosynthesizers living in the surface ocean. All of these observations consistently suggest that the shallower part was anoxic and deeper part was oxic in the 2.7 Ga ocean. The surface ocean would have been oxygenated due to activity of oxygenic photosynthesis. Such redox stratification of the ocean, i.e., development of mid-depth (shallow) OMZ in an essentially oxic ocean, is typically seen in highly productive regions in the modern ocean. Modern-style oceanic redox structure could have existed as far back as 2.7 Ga ago, much earlier than the inferred GOE at ~2.4-2.2 Ga. Brocks et al. (1999) Science 285, 1033-1036; Eigenbrode & Freeman (2006) PNAS 103, 15759-15764; Hoashi et al. (2009) Nature Geosc. 2, 301-306; Holland (1994) Early Life on Earth, Columbia Univ. Press; Yamaguchi (2002) Ph.D. dissertation, Penn State Univ.; Yamaguchi et al. (2005) Chem. Geol. 218, 135- 169.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T51A2562N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T51A2562N"><span>Crustal architecture of the eastern margin of Japan Sea: back-arc basin opening and contraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>No, T.; Sato, T.; Takahashi, N.; Kodaira, S.; Kaneda, Y.; Ishiyama, T.; Sato, H.</p> <p>2012-12-01</p> <p>Although large earthquakes such as the 1964 Niigata earthquake (M 7.5), 1983 Nihonkai-Chubu earthquake (M 7.8), and 1993 Hokkaido Nansei-Oki earthquake (M 7.8) have caused large amounts of damage to the eastern margin of the Japan Sea, a substantial number of seismic studies have been conducted for the seismogenic zone on the Pacific Ocean side of Japan. In addition, the detail of the source fault model for the eastern margin of the Japan Sea is not well defined for all cases. This highlights the need for further studies to investigate seismic imaging. Therefore, we have collaborated with other Japanese research institutions for a project titled "Priority Investigations of Strain Concentration Areas" (which is funded by Special Coordination Funds for Promoting Science and Technology, Japan). This project has conducted seismic surveys from 2009 to 2012 using the deep-sea research vessel, Kairei, from the Japan Agency for Marine-Earth Science and Technology. There is a strain concentration area in the eastern part of the survey area (Okamura et al., 1995). The western part of the survey area includes the Yamato Basin and Japan Basin. It is very important to study the crustal structure in the seismotectonic studies of the eastern margin of the Japan Sea. We conducted a marine seismic survey by using a multichannel seismic (MCS) system and ocean bottom seismographs (OBSs) along the eastern margin of the Japan Sea. Seismic data were acquired along 42 lines with a total length of approximately 9,000 km. The following results were obtained from seismic imaging. On the basis of the results of the MCS imaging, active reverse faults and folds were observed in the margin of the Toyama Trough; however, the sedimentary layers in the trough were flat. In the sedimentary layers and crusts of the Sado Ridge, Mogami Trough, and source area of the 1964 Niigata earthquake located north of the Sado Island, greater deformation was observed. The deformation weakened toward the Yamato Basin and Japan Basin; however, the development of an asymmetric anticline and its associated reverse fault was observed off Akita prefecture, which could indicate a very recent growth structure. This development is associated with an active structure on the southern extension of the fault that caused the 1983 Nihonkai-Chubu Earthquake. On the other hand, the results from the seismic refraction/wide-angle reflection imaging using OBSs indicated that the area from the basin to the continental shelf, including the source area of the 1964 Niigata Earthquake, and the island arc crust had a large lateral variation in the upper and middle crust. In contrast, beneath the source area of the 1983 Nihonkai-Chubu Earthquake, the crustal structure is interpreted as a transitional crust between oceanic and island arc crusts, with larger variation in the P-wave velocity than those of the surrounding areas. Furthermore, the crust of the Yamato Basin area is thicker than a typical oceanic crust, whereas the crust of the Japan Basin area is similar to a typical oceanic crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMNH13C1391P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMNH13C1391P"><span>Analysis of Tropical Cyclone Tracks in the North Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patwardhan, A.; Paliwal, M.; Mohapatra, M.</p> <p>2011-12-01</p> <p>Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMOS12B..03A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMOS12B..03A"><span>Control of Atmospheric CO2 by the Ocean's Biological Pump and Shelf-Basin Fractionation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, R. F.; Fleisher, M. Q.; Mix, A. C.</p> <p>2006-12-01</p> <p>Identifying the cause of the dramatic correlation between atmospheric CO2 concentrations and past climate variability has been one of the principal goals of paleoclimate research over the past quarter century. Several plausible mechanisms have been proposed, and each has been rejected as being incapable by itself of accounting for the full range (80 to 100 ppm) of glacial to interglacial variability of atmospheric CO2 concentration. Consequently, recent studies have focused on scenarios by which a combination of mechanisms work synergistically to account for the full range of CO2 variability. We will present evidence from equatorial Pacific sediment cores that increased strength of the ocean's biological pump was primarily responsible for drawdown of atmospheric CO2 during the early stages of glaciation, and that increased ocean alkalinity (or, more specifically, an increase in the ocean carbonate ion concentration) led to a further reduction of atmospheric CO2 during maximum glaciation. Increased strength of the biological pump is manifest as increasing differences between the carbon isotope composition of planktonic and benthic foraminifera during early stages of glaciation, as predicted a quarter century ago in classic works by Broecker and by Shackleton. Increased carbonate ion concentration is manifest by increased preservation and burial of calcium carbonate in deep equatorial Pacific sediments. The carbon isotope record is noisy, but the pattern is repeated over each of the past three glacial cycles, lending confidence to its reliability. Increased preservation and burial of CaCO3 occurred each time the oxygen isotope composition of benthic foraminifera rose above a threshold value corresponding to a sea level lowering of roughly 70 m below present. This relationship is reproduced systematically throughout the past 450 kyr, again lending confidence to the finding and supporting the view that shelf-basin fractionation, or the shift in CaCO3 deposition from continental shelves to the deep sea, was involved. There is substantial uncertainty in the sensitivity of atmospheric CO2 to each of these factors, but the records suggest roughly equal CO2 drawdown by each process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9765J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9765J"><span>Deep Bering Sea Circulation and Variability, 2001-2016, From Argo Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Gregory C.; Stabeno, Phyllis J.</p> <p>2017-12-01</p> <p>The mean structure, seasonal cycle, and interannual variability of temperature and salinity are analyzed in the deep Bering Sea basin using Argo profile data collected from 2001 to 2016. Gyre transports are estimated using geostrophic stream function maps of Argo profile data referenced to a 1,000 dbar nondivergent absolute velocity stream function mapped from Argo parking pressure displacement data. Relatively warm and salty water from the North Pacific enters the basin through the Near Strait and passages between Aleutian Islands to the east. This water then flows in a cyclonic (counterclockwise) direction around the region, cooling (and freshening) along its path. Aleutian North Slope Current transports from 0 to 1,890 dbar are estimated at 3-6 Sverdrups (1 Sv = 106 m3 s-1) eastward, feeding into the northwestward Bering Slope Current with transports of mostly 5-6 Sv. The Kamchatka Current has transports of ˜6 Sv north of Shirshov Ridge, increasing to 14-16 Sv south of the ridge, where it is augmented by westward flow from Near Strait. Temperature exhibits strong interannual variations in the upper ocean, with warm periods in 2004-2005 and 2015-2016, and cold periods around 2009 and 2012. In contrast, upper ocean salinity generally decreases from 2001 to 2016. As a result of this salinity decrease, the density of the subsurface temperature minimum decreased over this time period, despite more interannual variability in the minimum temperature value. The subsurface temperature maximum also exhibits interannual variability, but with values generally warmer than those previously reported for the 1970s and 1980s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T33C4704G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T33C4704G"><span>The Tectonic Boundary Between Eastern Subbaisin and South-West Subbasin of the South China Sea Revealed from the Normalized Magnetic Source Strength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, L.; Meng, X.</p> <p>2014-12-01</p> <p>The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, is one of the largest marginal seas in the Western Pacific. It was formed by the interaction of the three plates and the seafloor spreading during Late Oligocene time to Early Miocene time. The boundary between Eastern Subbaisin and South-west Subbasin of the SCS has long been debated in the literature. Refining the boundary is one of the crucial tasks for correctly understanding the seafloor spreading model of the SCS. Due to few drills on the deep ocean basin of the SCS, magnetic data become important information for refining the boundary. However, the interpretation of magnetic data in the SCS suffers from the remanent magnetization of ocean crust as well as igneous rock and seamounts. The conventional reduction-to-pole anomalies at low latitudes usually neglect the remanent magnetization, making the interpretation incorrect. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then did a special transformation of the TMI anomalies with a varying magnetic inclinations algorithm to obtain the normalized source strength (NSS). The NSS has advantage of insensitivity to remanent magnetization, benefitting correct interpretation. The NSS presents discriminative features from east to west in the ocean basin. The boundary of the discriminative features is clear and just ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank. These imply that magnetic structure and tectonic features in the crust are discriminative between both sides of this boundary. It can be deduced that this boundary is the tectonic boundary between Eastern Subbaisin and South-west Subbasin. We acknowledge the financial support of the National Natural Science Foundation of China (41374093) and the SinoProbe-01-05 project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20738618','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20738618"><span>Resource utilization by deep-sea sharks at the Le Danois Bank, Cantabrian Sea, north-east Atlantic Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Preciado, I; Cartes, J E; Serrano, A; Velasco, F; Olaso, I; Sánchez, F; Frutos, I</p> <p>2009-10-01</p> <p>The feeding habits of birdbeak dogfish Deania calcea, velvet belly lantern shark Etmopterus spinax and blackmouth catshark Galeus melastomus at Le Danois Bank, Cantabrian Sea, south Bay of Biscay were studied in relation to their bathymetric distribution. Deep-sea sharks were collected during two multidisciplinary surveys carried out in October 2003 and April 2004 at the Le Danois Bank. Two different habitats were defined: (1) the top of the bank, ranging from 454 to 642 m depth and covered by fine-sand sediments with a low percentage of organic matter, and (2) the inner basin located between the bank and the Cantabrian Sea's continental shelf, at depths of 810-1048 m, which was characterized by a high proportion of silt and organic matter. Deania calcea was not present at the top of the bank but was abundant below 642 m, while E. spinax was abundant in the shallower top of the bank but was not found in the deeper inner basin. There was almost no bathymetric overlap between these two deep-sea shark species. Galeus melastomus was found over the whole depth range. There seemed to be an ontogenetic segregation with depth for this species, however, since 80% of the specimens collected at the top of the bank were < 600 mm total length (L(T)) (mean 510 mm L(T)), whereas larger individuals (mean 620 mm L(T)) inhabited deeper zones. Galeus melastomus exhibited a significantly higher feeding intensity than both E. spinax at the top of the bank and D. calcea in the inner basin. Little dietary overlap between D. calcea and G. melastomus in the inner basin was found, with D. calcea being an ichthyophagous predator while the diet of G. melastomus at these depths was composed of a variety of meso-bathypelagic shrimps (e.g. Acantephyra pelagica, Pasiphaea spp. and Sergia robusta), cephalopods and fishes. The diets of E. spinax and G. melastomus at the top of the bank showed a high dietary overlap of euphausiids, which represented the main prey taxa for both species. Euphausiids declined in abundance with depth which was reflected in the diet of G. melastomus. The cluster analysis of prey affinities among hauls depicted two major groups, corresponding to the two different habitats (top of the bank and inner basin). Redundancy analysis also indicated top-basin segregation, with euphausiids representing the main prey taxa at the top of the bank and bathypelagic shrimps in the inner basin. Euphausiids and Micromesistius poutassou were key prey within the Le Danois Bank ecosystem since they were positively selected by the three deep-sea shark species. These results show that the feeding ecology of these predators in Le Danois Bank ecosystem is highly influenced by depth-related variables, as a result of changes in prey availability. Overall results were analysed in relation to the deep-sea Le Danois ecosystem structure and functioning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IzAOP..48..222D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IzAOP..48..222D"><span>The specific features of pollution spread in the northwest Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dianskii, N. A.; Gusev, A. V.; Fomin, V. V.</p> <p>2012-04-01</p> <p>We present two calculations of pollutant dispersal in the Pacific Ocean: (1) during possible ship-wrecks in the process of spent nuclear fuel transportation from Petropavlovsk-Kamchatsky and (2) pollutant spread from the Japanese coast after the Fukushima-1 nuclear disaster on March 11, 2011. The circulation was calculated using a σ model of ocean hydrothermodynamics developed at the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS); it is adapted to cover the Pacific Ocean basin from the equator to the Bering Strait with a high (1/8)° spatial resolution and it is capable of reproducing the mesoscale ocean variations. The pollutant dispersal in the case of possible shipwrecks was estimated for currents characteristic for a statistically average year with atmospheric forcing in accordance with the so-called normal CORE year data. The pollution spread from the Fukushima-1 nuclear power plant (NPP) was estimated by calculating the circulation with the real atmospheric forcing in accordance with the NCEP analysis data obtained from the Hydrometeorological Centre of Russia. It is noteworthy that a simplified assimilation of the observed sea surface temperature (SST) was performed. In both cases the currents were calculated simultaneously with the transport calculation of the pollutant as a passive admixture, which corresponds to a real-time calculation of pollutant transport. A map analysis of pollution dispersal shows that the horizontal transport is substantially more intense in the upper ocean layers than in deep ones. Therefore, like in the North branch of Kuroshio, pollutants can be delivered to the deep layers not through deep-water horizontal transport, but rather as a result of vertical downwelling from the already contaminated upper layers. However, the complex three-dimensional structure of the horizontal and vertical transport may lead to reverse situations. A calculation of pollution transport from the Fukushima-1 NPP showed that radioactive pollution would propagate eastward and not present the danger for Russian territory. Moreover, even for an exaggerated scenario of pollution emission, the background pollution level will be exceeded only in a narrow region within 50 km of the Japanese coast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO44C3161B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO44C3161B"><span>Role of the Southwest Tropical Indian Ocean on the Modulation of Tropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burns, J. M.; Bulusu, S.</p> <p>2016-02-01</p> <p>The Seychelles-Chagos Thermocline Ridge (SCTR), located in the Indian Ocean and bound by 55°E-65°E and 5°S-12°S, is a key region for air-sea interaction. This feature inhabits one of the seven ocean basins where tropical cyclones regularly form and is unique in that the variability of the subsurface can influence cyclogenesis. Tropical cyclone days for this region span from November through April, with peaks in the months of January and February. The influence of thermocline variation is particularly strong during the months of December through May and it is known that a high correlation exists between the depth of the thermocline and sea surface temperature (key ingredient for cyclogenesis). Past research provides evidence that more tropical cyclone days are observed in Southwest Tropical Indian Ocean (SWTIO) during austral summers with a deep thermocline ridge than in austral summers when a shallow thermocline ridge exists. The formation and thickness of the Barrier layer (BL) have also been shown to impact tropical cyclones in this region. BL formation is an important parameter for surface heat exchange. The amount of salt in the boundary layer may also effect heat exchange and thus cyclones. Other ocean basins have verified that salt-stratified barrier layers influence the intensification of tropical cyclones, however, the role that salinity in SWTIO plays in the modulation of tropical cycles has still yet to be explored. This study further explores how the dynamic properties of the SCTR influence the modulation of cyclones. Primarily Argo observations of salinity and temperature along with Soil Moisture Ocean Salinity (SMOS) and Aquarius salinity, and Hybrid Coordinate Ocean Model (HYCOM) simulations are used to examine this influence of the BL and salinity on cyclone formation and intensity in this region. This study is progressed with a particular focus on the austral summer of 2012/2013 when seven tropical cyclones developed in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3972868','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3972868"><span>Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tenzer, R.; Gladkikh, V.</p> <p>2014-01-01</p> <p>We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3. PMID:24744686</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JGR...10526117G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JGR...10526117G"><span>Meridional overturning and large-scale circulation of the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganachaud, Alexandre; Wunsch, Carl; Marotzke, Jochem; Toole, John</p> <p>2000-11-01</p> <p>The large scale Indian Ocean circulation is estimated from a global hydrographic inverse geostrophic box model with a focus on the meridional overturning circulation (MOC). The global model is based on selected recent World Ocean Circulation Experiment (WOCE) sections which in the Indian Basin consist of zonal sections at 32°S, 20°S and 8°S, and a section between Bali and Australia from the Java-Australia Dynamic Experiment (JADE). The circulation is required to conserve mass, salinity, heat, silica and "PO" (170PO4+O2). Near-conservation is imposed within layers bounded by neutral surfaces, while permitting advective and diffusive exchanges between the layers. Conceptually, the derived circulation is an estimate of the average circulation for the period 1987-1995. A deep inflow into the Indian Basin of 11±4 Sv is found, which is in the lower range of previous estimates, but consistent with conservation requirements and the global data set. The Indonesian Throughflow (ITF) is estimated at 15±5 Sv. The flow in the Mozambique Channel is of the same magnitude, implying a weak net flow between Madagascar and Australia. A net evaporation of -0.6±0.4 Sv is found between 32°S and 8°S, consistent with independent estimates. No net heat gain is found over the Indian Basin (0.1 ± 0.2PW north of 32°S) as a consequence of the large warm water influx from the ITF. Through the use of anomaly equations, the average dianeutral upwelling and diffusion between the sections are required and resolved, with values in the range 1-3×10-5 cm s-1 for the upwelling and 2-10 cm2 s-1 for the diffusivity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3505Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3505Z"><span>Application of interleaving models to describe intrusive layers in the Deep Polar Water of the Arctic Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhurbas, Nataliya; Kuzmina, Natalia; Lyzhkov, Dmitry; Izvekova, Yulia N.</p> <p>2016-04-01</p> <p>Interleaving models of pure thermohaline and baroclinic frontal zones of finite width are applied to describe intrusions at the fronts found in the upper part of the Deep Polar Water, the Eurasian basin, under stable-stable thermohaline stratification. It is assumed that differential mixing is the main mechanism of the intrusion formation. Different parameterizations of differential mixing (Merrryfield, 2002; Kuzmina et al., 2011) are used in the models. Important parameters of interleaving such as the growth rate, vertical scale, and slope of the most unstable modes are calculated. It is found that the interleaving model of a pure thermohaline front can satisfactory describe the important parameters of intrusions observed at a thermohaline, very low baroclinicity front in the Eurasian basin, just in accordance to Merryfield (2002) findings. In the case of baroclinic front, satisfactory agreement over all the interleaving parameters is found between the model calculations and observations provided that the vertical momentum diffusivity significantly exceeds the corresponding mass diffusivity. Under specific (reasonable) constraints of the vertical momentum diffusivity, the most unstable mode has a vertical scale approximately two-three times smaller than the vertical scale of the observed intrusions. A thorough discussion of the results is presented. References Kuzmina N., Rudels B., Zhurbas V., Stipa T. On the structure and dynamical features of intrusive layering in the Eurasian Basin in the Arctic Ocean. J. Geophys. Res., 2011, 116, C00D11, doi:10.1029/2010JC006920. Merryfield W. J. Intrusions in Double-Diffusively Stable Arctic Waters: Evidence for Differential mixing? J. Phys. Oceanogr., 2002, 32, 1452-1439.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2319E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2319E"><span>Lithospheric Response of the Anatolian Plateau in the Realm of the Black Sea and the Eastern Mediterranean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ergun, Mustafa</p> <p>2016-04-01</p> <p>The Eastern Mediterranean and the Middle East make up the southern boundary of the Tethys Ocean for the last 200 Ma by the disintegration of the Pangaea and closure of the Tethys Ocean. It covers the structures: Hellenic and Cyprus arcs; Eastern Anatolian Fault Zone; Bitlis Suture Zone and Zagros Mountains. The northern boundary of the Tethys Ocean is made up the Black Sea and the Caspian Sea, and it extends up to Po valley towards the west (Pontides, Caucasus). Between these two zones the Alp-Himalayan orogenic belt is situated where the Balkan, Anatolia and the Iran plateaus are placed as the remnants of the lost Ocean of the Tethys. The active tectonics of the eastern Mediterranean is the consequences of the convergence between the Africa, Arabian plates in the south and the Eurasian plate in the north. These plates act as converging jaws of vise forming a crustal mosaic in between. The active crustal deformation pattern reveals two N-S trending maximum compression or crustal shortening syntaxes': (i) the eastern Black Sea and the Arabian plate, (ii) the western Black Sea and the Isparta Angle. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. The boundary between the African plate and the Aegean/Anatolian microplate is in the process of transition from subduction to collision along the Cyprus Arc. Since the Black Sea has oceanic lithosphere, it is actually a separate plate. However it can be considered as a block, because the Black Sea is a trapped oceanic basin that cannot move freely within the Eurasian Plate. Lying towards the northern margin of orogenic belts related to the closure of the Tethys Ocean, it is generally considered to be a result of back-arc extension associated with the northward subduction of the Tethyan plate to the south. Interface oceanic lithosphere at the leading edge of the northward moving African Plate in the eastern Mediterranean Sea and the deforming Aegean-Anatolian Plate continental lithosphere forms the northward dipping Hellenic and Cyprean subduction zones in the south. Since there is a velocity differential between the northward motion of African and Arabian Plates (10 mm/yr and 18 mm/yr, respectively), this difference is accommodated along the sinistral strike-slip Dead Sea Fault that forms the plate boundary between the African and the Arabian Plates. Continental crust forms from structurally thickened remnants of oceanic crust and overlying sediments, which are then invaded by arc magmatism. Understanding this process is a first order problem of lithospheric dynamics. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. Mountains are subject to erosion, which can disturb isostatic compensation. If the eroded mountains are no longer high enough to justify their deep root-zones, the topography is isostatically overcompensated. Similarly, the buoyancy forces that result from overcompensation of mountainous topography cause vertical uplift. The Eastern Mediterranean Basin, having 100 milligal gravity values lower than other isostatically compensated oceans, it is in general overcompensated. Normally the Eastern Mediterranean Basin should rise under its present isostatic condition. It is known, however, that the Eastern Mediterranean Basin with its thick sediment-filled basins is actually sinking. Anatolia, having 100 milligals gravity values higher than other isostatically compensated zones of the world, is in general undercompensated. Normal isostatic conditions require that Anatolia should sink. It is known, however, that Anatolia, with the exception of local grabens, is rising. While the Black Sea, having 100-milligal lower gravity value than other isostatically compensated oceans, it is in general overcompensated and The Black Sea basin with very thick sedimentary cover (more than 12-14 km thick) is actually sinking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA490244','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA490244"><span>Demonstration of Remotely Operated Vehicles to Aid Underwater Inspection of Corps of Engineers Navigation Structures. Winfield Locks and Dam 13-17 August 2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-09-01</p> <p>2 Deep Ocean Engineering Triggerfish ...Figures Figure 1. Deep Ocean Engineering Triggerfish ROV carried by two divers (top)................................... 4 Figure 2. SeaBotix...the physical parameters and approximate costs of the systems as tested. Deep Ocean Engineering Triggerfish Figure 1 shows the Deep Ocean</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.313...27S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.313...27S"><span>Morphology and shallow structure of seafloor mounds in the Canary Basin (Eastern Central Atlantic Ocean)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanchez-Guillamón, O.; Vázquez, J. T.; Palomino, D.; Medialdea, T.; Fernández-Salas, L. M.; León, R.; Somoza, L.</p> <p>2018-07-01</p> <p>The increasing volume of high-resolution multibeam bathymetry data collected along continental margins and adjacent deep seafloor regions is providing further opportunities to study new morphological seafloor features in deep water environments. In this paper, seafloor mounds have been imaged in detail with multibeam echosounders and parametric sub-bottom profilers in the deep central area of the Canary Basin ( 350-550 km west off El Hierro Island) between 4800 and 5200 mbsl. These features have circular to elongated shapes with heights of 10 to 250 m, diameters of 2-24 km and with flank slopes of 2-50°. Based on their morphological features and the subsurface structures these mounds have been classified into five different types of mounds that follow a linear correlation between height and slope but not between height and size. The first, second (Subgroup A), and third mound-types show heights lower than 80 m and maximum slopes of 35° with extension ranging from 2 to 400 km2 and correspond to domes formed at the surface created by intrusions located at depth that have not outcropped yet. The second (Subgroup B), fourth, and fifth mound-types show higher heights up to 250 m high, maximum slopes of 47° and sizes between 10 and 20 km2 and are related to the expulsion of hot and hydrothermal fluids and/or volcanics from extrusive deep-seated systems. Based on the constraints on their morphological and structural analyses, we suggest that morphostructural types of mounds are intimately linked to a specific origin that leaves its footprint in the morphology of the mounds. We propose a growth model for the five morphostructural types of mounds where different intrusive and extrusive phenomena represent the dominant mechanisms for mound growth evolution. These structures are also affected by tectonics (bulge-like structures clearly deformed by faulting) and mass movements (slide scars and mass transport deposits). In this work, we report how intrusive and extrusive processes may affect the seafloor morphology, identifying a new type of geomorphological feature as 'intrusive' domes that have, to date, only been reported in fossil environments but might extend to other oceanic areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS31A1999K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS31A1999K"><span>Possibility of AABW source originating from meddle size polynyas along the coast of Australian-Antarctic Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kitade, Y.; Keishi, S.; Yuki, O.; Aoki, S.; Kobayashi, T.; Suga, T.; Ohshima, K. I.</p> <p>2016-12-01</p> <p>Antarctic Bottom Water (AABW) is the densest water in the ocean and globally significant; its production at the Antarctic margin is a key component of the global overturning circulation [eg. Marshall and Speer, 2012]. AABW originating from a middle size polynya called Vincennes Bay Polynya (VBP) was discovered recently [Kitade et al., 2014]. The fact that a middle size polynya can be a formation site of AABW suggests the possibility that the unknown formation area further exists along the coast of Australian-Antarctic Basin. A deep profiling float, called "Deep NINJA" which is able to observe temperature and salinity at depths up to 4,000 m, was developed by Japan Agency for Marine-Earth Science and Technology and Tsurumi-Seiki Co. [Kobayashi et al., 2015]. Five deep floats were deployed along 110oE in Jan. 2014. One of them drifted west almost along the continental rise and has been observing 40 profiles within two years. However, no signal of newly formed AABW has been observed except in the region off VBP, which is consistent with the BROKE results [eg. Bindoff et al., 2000) and our analysis result of BROKE data. Although these observations do not completely negate the additional formation of AABW originating from middle size polynyas located west of VBP, their formation volume of AABW is suggested to be much smaller than that from VBP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAESc.121..139H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAESc.121..139H"><span>Crustal structure across the post-spreading magmatic ridge of the East Sub-basin in the South China Sea: Tectonic significance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Enyuan; Zhao, Minghui; Qiu, Xuelin; Sibuet, Jean-Claude; Wang, Jian; Zhang, Jiazheng</p> <p>2016-05-01</p> <p>The 140-km wide last phase of opening of the South China Sea (SCS) corresponds to a N145° direction of spreading with rift features identified on swath bathymetric data trending N055° (Sibuet et al., 2016). These N055° seafloor spreading features of the East Sub-basin are cut across by a post-spreading volcanic ridge oriented approximately E-W in its western part (Zhenbei-Huangyan seamounts chain). The knowledge of the deep crustal structure beneath this volcanic ridge is essential to elucidate not only the formation and tectonic evolution of the SCS, but also the mechanism of emplacement of the post-spreading magmatism. We use air-gun shots recorded by ocean bottom seismometers to image the deep crustal structure along the N-S oriented G8G0 seismic profile, which is perpendicular to the Zhenbei-Huangyan seamounts chain but located in between the Zhenbei and Huangyan seamounts, where topographic changes are minimum. The velocity structure presents obvious lateral variations. The crust north and south of the Zhenbei-Huangyan seamounts chain is ca. 4-6 km in thickness and velocities are largely comparable with those of normal oceanic crust of Atlantic type. To the south, the Jixiang seamount with a 7.2-km thick crust, seems to be a tiny post-spreading volcanic seamount intruded along the former extinct spreading ridge axis. In the central part, a 1.5-km thick low velocity zone (3.3-3.7 km/s) in the uppermost crust is explained by the presence of extrusive rocks intercalated with thin sedimentary layers as those drilled at IODP Site U1431. Both the Jixiang seamount and the Zhenbei-Huangyan seamounts chain started to form by the intrusion of decompressive melt resulting from the N-S post-spreading phase of extension and intruded through the already formed oceanic crust. The Jixiang seamount probably formed before the emplacement of the E-W post-spreading seamounts chain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044191','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044191"><span>Antarctic and Southern Ocean influences on Late Pliocene global cooling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McKay, Robert; Naish, Tim; Carter, Lionel; Riesselman, Christina; Dunbar, Robert; Sjunneskog, Charlotte; Winter, Diane; Sangiorgi, Francesca; Warren, Courtney; Pagani, Mark; Schouten, Stefan; Willmott, Veronica; Levy, Richard; DeConto, Robert; Powell, Ross D.</p> <p>2012-01-01</p> <p>The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ~3.3 Ma, followed by a coastal sea surface temperature cooling of ~2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3340021','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3340021"><span>Antarctic and Southern Ocean influences on Late Pliocene global cooling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McKay, Robert; Naish, Tim; Carter, Lionel; Riesselman, Christina; Dunbar, Robert; Sjunneskog, Charlotte; Winter, Diane; Sangiorgi, Francesca; Warren, Courtney; Pagani, Mark; Schouten, Stefan; Willmott, Veronica; Levy, Richard; DeConto, Robert; Powell, Ross D.</p> <p>2012-01-01</p> <p>The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ∼3.3 Ma, followed by a coastal sea surface temperature cooling of ∼2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world. PMID:22496594</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70180852','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70180852"><span>Lakes and lake-like waters of the Hawaiian Archipelago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Maciolek, J.A.</p> <p>1982-01-01</p> <p>This summary of Hawaiian lacustrine limnology is based on 12 years of field and literature surveys of archipelagic inland waters. Lakes here are distinguished from other standing waters by limits on surface oceanic area (> 0.1 ha) and depth (> 2 m), and by the absence of flatural surface oceanic connection. A variety of extinct and existing water bodies, sometimes referred to as lakes, are noted. Six lakes are described. Five of them are in crater basins, 3 are freshwater, and 2 are elevated (highest = 3969 m). The scarcity of elevated lakes results from general permeability of the substrata. Among the 6 lakes, surface areas range from 0.22 to 88 ha and maximum depths from 3 to 248 m. Naturally occurring aquatic biota generally is low in species diversity except for phytoplankton; fishes and submersed vascular plants are absent. Two lowland lakes, freshwater Green (Wai a Pele) and saline Kauhak6, are described for the first time. Profundal Kauhak6, 248 m deep, has a surface area of only 0.35 ha, which results in an extraordinary relative depth of 370%. It is permanently stratified, a condition apparently due primarily to the unique morphometry of its basin. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI23C..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI23C..01K"><span>Pacific Array of, by and for Global Deep Earth Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawakatsu, H.</p> <p>2016-12-01</p> <p>Recent advances in ocean bottom geophysical observations, together with advances in the analysis methodology, have now enabled us to resolve the regional 1-D structure of the entire lithosphere- asthenosphere system (LAS), from the surface to a depth of ˜200km, including seismic anisotropy (azimuthal), with deployments of ˜10-15 BBOBSs & OBEMs each for a year or so (Takeo et al, 2013, 2016; Baba et al., 2013; Lin et al. 2016). Thus the in-situ characterization of the physical properties of the entire oceanic LAS without a priori assumption for the shallow-most structure, the assumption often made for global studies, has become possible. We are now entering a new stage that a large scale array experiment in the ocean (e.g., Pacific Array: http://gachon.eri.u-tokyo.ac.jp/ hitosi/PArray/) has become approachable: having 10-15 BBOBSs as an array unit for a 1-2-year deployment, and repeating such deployments in a leap-frog way or concurrently (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such array observations not only by giving regional constraints on the 1-D structure (including seismic anisotropy), but also by sharing waveform data for global scale waveform tomography (e.g., Fichtner et al. 2010; French et al. 2013; Zhu & Tromp 2013), would drastically increase our knowledge of how plate tectonics works beneath oceanic basins, as well as of the large scale picture of the interior of the Earth. For such an array of arrays to be realized, international collaboration seems essential. If three or four countries collaborate together, it may be achieved within a 10-year time frame that makes this concept attractive. It is also essential that global seismology, geodynamics, and deep earth (GSGD) communities work closely with the ocean science community for Pacific Array to be realized, as they would get most benefit from it. While unit array deployments may have their own scientific goals, it is important that they are planned to fit within a larger international Pacific Array structure. The GSGD community should take a lead in providing such an umbrella, as well as stimulating collaborations between different disciplines .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.7950S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.7950S"><span>Observations of a diapycnal shortcut to adiabatic upwelling of Antarctic Circumpolar Deep Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silvester, J. Mead; Lenn, Yueng-Djern; Polton, Jeff A.; Rippeth, Tom P.; Maqueda, M. Morales</p> <p>2014-11-01</p> <p>In the Southern Ocean, small-scale turbulence causes diapycnal mixing which influences important water mass transformations, in turn impacting large-scale ocean transports such as the Meridional Overturning Circulation (MOC), a key controller of Earth's climate. We present direct observations of mixing over the Antarctic continental slope between water masses that are part of the Southern Ocean MOC. A 12 h time series of microstructure turbulence measurements, hydrography, and velocity observations off Elephant Island, north of the Antarctic Peninsula, reveals two concurrent bursts of elevated dissipation of O(10-6) W kg-1, resulting in heat fluxes ˜10 times higher than basin-integrated Drake Passage estimates. This occurs across the boundary between adjacent adiabatic upwelling and downwelling overturning cells. Ray tracing to nearby topography shows mixing between 300 and 400 m is consistent with the breaking of locally generated internal tidal waves. Since similar conditions extend to much of the Antarctic continental slope where these water masses outcrop, diapycnal mixing may contribute significantly to upwelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150019489','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150019489"><span>Mid-Pliocene Atlantic Meridional Overturning Circulation Not Unlike Modern</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Z.-S.; Nisancioglu, K. H.; Chandler, M. A.; Haywood, A. M.; Otto-Bliesner, B. L.; Ramstein, G.; Stepanek, C.; Abe-Ouchi, A.; Chan, W. -L.; Sohl, L. E.</p> <p>2013-01-01</p> <p>In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.2471W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.2471W"><span>Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Gongjie; Cheng, Lijing; Abraham, John; Li, Chongyin</p> <p>2018-04-01</p> <p>Inconsistent global/basin ocean heat content (OHC) changes were found in different ocean subsurface temperature analyses, especially in recent studies related to the slowdown in global surface temperature rise. This finding challenges the reliability of the ocean subsurface temperature analyses and motivates a more comprehensive inter-comparison between the analyses. Here we compare the OHC changes in three ocean analyses (Ishii, EN4 and IAP) to investigate the uncertainty in OHC in four major ocean basins from decadal to multi-decadal scales. First, all products show an increase of OHC since 1970 in each ocean basin revealing a robust warming, although the warming rates are not identical. The geographical patterns, the key modes and the vertical structure of OHC changes are consistent among the three datasets, implying that the main OHC variabilities can be robustly represented. However, large discrepancies are found in the percentage of basinal ocean heating related to the global ocean, with the largest differences in the Pacific and Southern Ocean. Meanwhile, we find a large discrepancy of ocean heat storage in different layers, especially within 300-700 m in the Pacific and Southern Oceans. Furthermore, the near surface analysis of Ishii and IAP are consistent with sea surface temperature (SST) products, but EN4 is found to underestimate the long-term trend. Compared with ocean heat storage derived from the atmospheric budget equation, all products show consistent seasonal cycles of OHC in the upper 1500 m especially during 2008 to 2012. Overall, our analyses further the understanding of the observed OHC variations, and we recommend a careful quantification of errors in the ocean analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020218','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020218"><span>A history of early geologic research in the Deep River Triassic Basin, North Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clark, T.W.</p> <p>1998-01-01</p> <p>The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMPP31A2014R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMPP31A2014R"><span>Carbon and Neodymium Isotopic Fingerprints of Atlantic Deep Ocean Circulation During the Warm Pliocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riesselman, C. R.; Scher, H.; Robinson, M. M.; Dowsett, H. J.; Bell, D. B.</p> <p>2012-12-01</p> <p>Earth's future climate may resemble the mid-Piacenzian Age of the Pliocene, a time when global temperatures were sustained within the range predicted for the coming century. Surface and deep water temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm surface temperature anomaly in the mid-Piacenzian (3.264 - 3.025 Ma), accompanied by increased evaporation. The anomaly is detected in deep waters at 46°S, suggesting enhanced meridional overturning circulation and more southerly penetration of North Atlantic Deep Water (NADW) during the PRISM interval. However deep water temperature proxies are not diagnostic of water mass and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy investigation of Atlantic deep ocean circulation during the warm mid-Piacenzian, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic composition of fossil fish teeth (ɛNd) as a proxy for water mass source and mixing. This reconstruction utilizes both new and previously published data from DSDP and ODP cores along equatorial (Ceara Rise), southern mid-latitude (Walvis Ridge), and south Atlantic (Meteor Rise/Agulhas Ridge) depth transects. Additional end-member sites in the regions of modern north Atlantic and Southern Ocean deep water formation provide a Pliocene baseline for comparison. δ13C throughout the Atlantic basin is remarkably homogenous during the PRISM interval. δ13C values of Cibicidoides spp. and C. wuellerstorfi largely range between 0‰ and 1‰ at North Atlantic, shallow equatorial, southern mid-latitude, and south Atlantic sites with water depths from 2000-4700 m; both depth and latitudinal gradients are generally small (~0.3‰). However, equatorial Ceara Rise sites below 3500 m diverge, with δ13C values as low as -1.2‰ at ~3.15 Ma. The uniquely negative δ13C values at deep Ceara rise sites suggest that, during PRISM warmth, the oldest Atlantic deep waters may have resided along the modern deep western boundary current, while younger deep water masses were concentrated to the south and east. In the modern Atlantic, the ɛNd value of southern-sourced waters is more radiogenic than that of northern-sourced waters, providing a complimentary means to characterize Pliocene water mass geometry. ɛNd values from shallow (2500 m) and deep (4700 m) Walvis Ridge sites average -10 and -11 respectively; the shallow site is somewhat more radiogenic than published coretop ɛNd (-12), suggesting enhanced Pliocene influence of southern-sourced water masses. Ongoing analytical efforts will fingerprint Piacenzian ɛNd from north and south deep water source regions and will target additional depth transect ɛNd, allowing us to investigate the possibility that "older" carbon isotopic signatures at western equatorial sites reflect entrainment of proto-NADW while "younger" signatures at southern and eastern sites reflect the influence of southern-sourced deep water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711423W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711423W"><span>Sensitivity of simulated deep ocean natural radiocarbon to gas exchange velocity and historical atmospheric Δ14C variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, Hannes; Koeve, Wolfgang; Kriest, Iris; Oschlies, Andreas</p> <p>2015-04-01</p> <p>Simulated deep ocean natural radiocarbon is frequently used to assess model performance of deep ocean ventilation in Ocean General Circulation Models (OGCMs). It has been shown to be sensitive to a variety of model parameters, such as the mixing parameterization, convection scheme and vertical resolution. Here we use three different ocean models (MIT2.8, ECCO, UVic) to evaluate the sensitivity of simulated deep ocean natural radiocarbon to two other factors, while keeping the model physics constant: (1) the gas exchange velocity and (2) historic variations in atmospheric Δ^1^4C boundary conditions. We find that simulated natural Δ^1^4C decreases by 14-20 ‰ throughout the deep ocean and consistently in all three models, if the gas exchange velocity is lowered by 30 % with respect to the OCMIP-2 protocol, to become more consistent with newer estimates of the oceans uptake of bomb derived ^1^4C. Simulated deep ocean natural Δ^1^4C furthermore decreases by 3-9 ‰ throughout the deep Pacific, Indian and Southern Oceans and consistently in all three models, if the models are forced with the observed atmospheric Δ^1^4C history, instead of an often made pragmatic assumption of a constant atmospheric Δ^1^4C value of zero. Applying both improvements (gas exchange reduction, as well as atmospheric Δ^1^4C history implementation) concomitantly and accounting for the present uncertainty in gas exchange velocity estimates (between 10 and 40 % reduction with respect to the OCMIP-2 protocol) simulated deep ocean Δ^1^4C decreases by 10-30 ‰ throughout the deep Pacific, Indian and Southern Ocean. This translates to a ^1^4C-age increase of 100-300 years and indicates, that models, which in former assessments (based on the OCMIP-2 protocol) had been identified to have an accurate deep ocean ventilation, should now be regarded as rather having a bit too sluggish a ventilation. Models, which on the other hand had been identified to have a bit too fast a deep ocean ventilation, should now be regarded as rather having a more accurate ventilation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP11B1348F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP11B1348F"><span>Enhanced deep ocean ventilation and oxygenation with global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.</p> <p>2014-12-01</p> <p>Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T23B2388A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T23B2388A"><span>Bathymetry, Chirp and Deep Crustal Structure of the Santos Basin SÃO Paulo Ridge Complex (sbspr)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aslanian, D.; Klingelhoefer, F.; Moulin, M.; Schnurle, P.; Rabineau, M.; Afilhado, A.; Roest, W. R.; Feld, A.; Evain, M.; Rochat, A.; Rousic, D.; Rigoti, C. A.; Capechi, E.; Bochenek, G.; Viana, A. R.; Magnavita, L. P.; Szatmari, P.; Neto, M.; Soares, J. P.; Fuck, R. A.; Paula Ribas, M.; De Lima, M.; Corela, C.; Duarte, J.; Matias, L. M.; OBS Team of Sanba Cruise</p> <p>2011-12-01</p> <p>The SanBa (Santos Basin- Seismic Research experiment) research experiment is a joint project of the Department of Marine Geosciences (IFREMER: Institut Français de Recherche pour l'Exploitation de la MER, France), the Laboratory of "Oceanic Domain" (Institut Universitaire et Européen de la Mer, France), the Faculdade de Ciências da Universidade de Lisboa (Lattex and CGUL, Portugal), the Universidade de Brasilia (Brazil) and PETROBRAS. Its aim is to test hypotheses that have been proposed such as the existence of failed rift and a micro-block (Moulin et al., GSL submitted) or the presence of exhumed mantle on its south-eastern part (Zalan et al., AAPG 2009). Six wide-angle seismic data were acquired together with coincident deep frequency reflection seismic data during the SanBa cruise in Dec 2010 - Jan. 2011 (total > 850 Nm). Chirp and Bathymetry were also acquired during the cruise. The preliminary results suggest a very thin crust (< 5km) in the center and in the south-eastern part of the SBSPR. Both refraction and reflection data present a clear signal of the Moho in the distalmost part of the study area, which seems to preclude the exhumed mantle hypothesis."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..708Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..708Z"><span>Changes in Bottom Water Physical Properties Above the Mid-Atlantic Ridge Flank in the Brazil Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jian; Thurnherr, Andreas M.</p> <p>2018-01-01</p> <p>Warming of abyssal waters in recent decades has been widely documented around the global ocean. Here repeat hydrographic data collected in 1997 and 2014 near a deep fracture zone canyon in the eastern Brazil Basin are used to quantify the long-term change. Significant changes are found in the Antarctic Bottom Water (AABW) within the canyon. The AABW in 2014 was warmer (0.08 ± 0.06°C), saltier (0.01 ± 0.005), and less dense (0.005 ± 0.004 kg m-3) than in 1997. In contrast, the change in the North Atlantic Deep Water has complicated spatial structure and is almost indistinguishable from zero at 95% confidence. The resulting divergence in vertical displacement of the isopycnals modifies the local density stratification. At its peak, the local squared buoyancy frequency (N2) near the canyon is reduced by about 20% from 1997 to 2014. Similar reduction is found in the basinwide averaged profiles over the Mid-Atlantic Ridge flank along 25°W in years 1989, 2005, and 2014. The observed changes in density stratification have important implications for internal tide generation and dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T11C4575B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T11C4575B"><span>Slab Roll-Back and Trench Retreat As Controlling Factor for Island-Arc Related Basin Evolution: A Case Study from Southern Central America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandes, C.; Winsemann, J.</p> <p>2014-12-01</p> <p>Slab roll-back and trench retreat are important factors for basin subsidence, magma generation and volcanism in arc-trench systems. From the sedimentary and tectonic record of the Central American island-arc it is evident that repeated slab roll-back and trench retreats occurred since the Late Cretaceous. These trench retreats were most probably related to the subduction of oceanic plateaus and seamounts. Evidence for trench retreats is given by pulses of uplift in the outer-arc area, followed by subsidence in both the fore-arc and back-arc basins. The first slab roll-back probably occurred during the Early Paleocene indicated by the collapse of carbonate platforms, and the re-deposition of large carbonate blocks into deep-water turbidites. At this time the island-arc was transformed from an incipient non-extensional stage into an extensional stage. A new pulse of uplift or decreased subsidence, respectively during the Late Eocene is attributed to subduction of rough crust, a subsequent slab detachment and the establishment of a new subduction zone further westward. Strong uplift especially affected the outer arc of the North Costa Rican arc segment. In the Sandino Fore-arc basin very coarse-grained deep-water channel-levee complexes were deposited. These deposits contain large well-rounded andesitic boulders and are rich in reworked shallow-water carbonates pointing to uplift of the inner fore-arc. Evidence for the subsequent trench retreat is given by an increased subsidence during the early Oligocene in the Sandino Fore-arc Basin and the collapse of the Barra Honda platform in North Costa Rica. Another trench retreat might have occurred in Miocene times. A phase of higher subsidence from 18 to 13 Ma is documented in the geohistory curve of the North Limon Back-arc Basin. After a short pulse of uplift the subsidence increased to approx. 300 m/myr.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999Tectp.313..243T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999Tectp.313..243T"><span>Sedimentary record of late Paleozoic to Recent tectonism in central Asia — analysis of subsurface data from the Turan and south Kazak domains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, J. C.; Cobbold, P. R.; Shein, V. S.; Le Douaran, S.</p> <p>1999-11-01</p> <p>The Turan and south Kazak domains (TSK) are in central Asia, between the Caspian Sea and the Tien Shan. The area is covered by sediments, deposited since the Late Permian during a series of tectonic events closely related to the history of two oceanic domains, Paleotethys and Neotethys. Sedimentary basins on the TSK therefore provide constraints on the tectonic development of the southern margin of Eurasia since the Late Permian. Our study is based on structure-contour maps and isopach maps of five key stratigraphic markers, of Late Permian to Tertiary age. Isopach maps help locate major faults and delimit sedimentary basins, providing information on vertical motions and, in some instances, horizontal motions. Subsidence associated with extension appears to have dominated the TSK, from the Late Permian to the Eocene. The extension may have been of back-arc type in southern Eurasia, next to the active margin, where the Paleotethys and Neotethys successively subducted toward the north. Here, sedimentary basins are both wide and deep (up to 15 km). During the Mesozoic, two compressional events of regional significance occurred in association with accretion of continental blocks at the southern margin of Eurasia. The first one, at the end of the Triassic, led to strong selective inversion of basins over the Turan domain. The second one, during the Late Jurassic-Early Cretaceous, had weaker effects. Since the Oligocene, following collision of both India and Arabia with Eurasia, inversion has become more generalized and compressional basins have formed on the TSK. Throughout the entire history of development of the TSK, from the Late Permian to the Tertiary, structures of Paleozoic and early Mesozoic age have exerted a strong control on sedimentation and especially on the location of depocenters. The south Kazak domain has registered little subsidence, in comparison with the Turan domain, where some basins have become very deep.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010QSRv...29.1228H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010QSRv...29.1228H"><span>Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.</p> <p>2010-05-01</p> <p>Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43B2055Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43B2055Y"><span>Multimillennium changes in dissolved oxygen under global warming: results from an AOGCM and offline ocean biogeochemical model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.</p> <p>2016-12-01</p> <p>Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMOS21C1140S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMOS21C1140S"><span>Latitudinal and Longitudinal Basin-scale Surface Salinity Contrasts and Freshwater Transport by Ocean Thermohaline Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seidov, D.; Haupt, B. J.</p> <p>2003-12-01</p> <p>The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.1251G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.1251G"><span>Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gouiza, Mohamed; Hall, Jeremy</p> <p>2013-04-01</p> <p>The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second model uses depth-dependent extension of a 20 km thick crust characterized by a strong upper crust and a weak lower crust. Both models raise secondary issues that are discussed around the order of rifting events and the original crustal thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMED43A0929P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMED43A0929P"><span>Engaging Middle School Students with Google Earth Technology to Analyze Ocean Cores as Evidence for Sea Floor Spreading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prouhet, T.; Cook, J.</p> <p>2006-12-01</p> <p>Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME44E0896M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME44E0896M"><span>The Response of a Branch of Puget Sound, Washington to the 2014 North Pacific Warm Anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mickett, J.; Newton, J.; Devol, A.; Krembs, C.; Ruef, W.</p> <p>2016-02-01</p> <p>The flow of the unprecedentedly-warm upper-ocean North Pacific "Blob" water into Puget Sound, Washington, caused local extreme water property anomalies that extended from the arrival of the water inshore in the fall of 2014 through 2015. Here we report on moored and seaplane observations from Hood Canal, a branch of Puget Sound, where temperature was more than 2σ above climatology for much of the year with maximum temperature anomalies at depth and at the surface +2.5 °C and +7 °C respectively. The low density of the oceanic warm "Blob" water resulted in weak deep water flushing in Hood Canal in the fall of 2014, which combined with a lack of wintertime flushing to result in anomalously-low dissolved oxygen (DO) concentrations at depth. Late-summer 2015 DO values were the lowest in a decade of mooring observations and more than 2σ below climatology. The anomalously low density of the deep basin water allowed a very early onset of the annually-occurring, late-summer intrusion, which first entered Hood Canal at the end of July compared to the usual arrival in early to mid-September. In late August this intrusion conspired with an early fall storm to lift the very low DO deep water to surface at the south end of Hood Canal, causing a significant fish kill event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A12E..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A12E..02F"><span>The Vertical Profile of Ocean Mixing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.</p> <p>2014-12-01</p> <p>The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41D..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41D..07R"><span>Estimates of Phytoplankton Community Composition in the Productive Coastal Waters of Antarctica and Potential Impacts on Carbon Cycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randolph, K. L.; Dierssen, H. M.; Schofield, O.; Munro, D. R.</p> <p>2016-12-01</p> <p>As a region of exchange between the major ocean basins and between the surface and deep oceans, the Southern Ocean regulates the global transport of heat, carbon, and macronutrients and thus has a profound influence on global climate. Primary production plays a fundamental role in controlling the partial pressure of carbon dioxide in the surface ocean and thus the exchange of carbon dioxide between ocean and atmosphere. Here, we evaluated the relationship between phytoplankton community composition and the optical and biogeochemical properties of the water column in the Drake Passage and along the Western Antarctic Peninsula. Profile measurements of inherent optical properties (i.e., spectral absorption, scattering and backscattering), HPLC pigments, and hyperspectral remote sensing reflectance were collected from the ARSV Gould in January 2016 near the Western Antarctic Peninsula and in the Drake Passage as a part of the Oxygen/nitrogen Ratio and Carbon dioxide Airborne Southern Ocean (ORCAS) experiment and the Palmer Long Term Ecological Research Project. Measured inherent optical properties were used to investigate phytoplankton abundance, distribution and community composition. These data were also used to assess the accuracy of algorithms to retrieve chlorophyll, absorption, and backscattering and to evaluate how carbonate chemistry can be influenced by the phytoplankton composition in this dynamic region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13B0526L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13B0526L"><span>Comprehensive analysis of Curie-point depths and lithospheric effective elastic thickness at Arctic Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Y.; Li, C. F.</p> <p>2017-12-01</p> <p>Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1980/0268/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1980/0268/report.pdf"><span>Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Amato, Roger V.; Bebout, John W.</p> <p>1980-01-01</p> <p>The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PalOc..29.1046P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PalOc..29.1046P"><span>The intensification of northern component deepwater formation during the mid-Pleistocene climate transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poirier, Robert K.; Billups, Katharina</p> <p>2014-11-01</p> <p>We reconstruct mid-Pleistocene (marine isotope stages (MISs) 13-18) deepwater hydrography at Ocean Drilling Program Site 1063 (4583 m water depth, subtropical North Atlantic) using benthic foraminiferal stable isotope records. These new records complete an 900 kyr long stratigraphy spanning MISs 8-29 ( 250-1030 Ka) when combined with previously published records from Site 1063. The results indicate a change in the circulation regime of the abyssal subtropical North Atlantic during MIS 17. Prior to MIS 17, no significant glacial or interglacial δ13C gradients are evident between Site 1063 and the deep South Atlantic. After MIS 17, interglacial intervals at Site 1063 are characterized by δ13C values that consistently approach those recorded in the deep North Atlantic. Comparing Site 1063 δ13C values to 26 additional published records throughout the entire Atlantic basin supports the idea that this δ13C increase is unique to the deep North Atlantic. After MIS 17, the basin-wide influence of higher δ13C values suggests an increased relative flux of northern sourced bottom waters during interglacial periods. The timing of northern sourced water influence at Site 1063 is consistent with the timing of a shift in the orientation of the Arctic Front. Thus, this shift may signify a link between the northward penetration of relatively warm, saline surface waters into the Norwegian-Greenland Seas stimulating deep convection. Our findings fit well with the model of Imbrie et al. (1993) for the importance of the Nordic heat pump in establishing strong 100 kyr cyclicity in late Pleistocene glacial cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.204..140K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.204..140K"><span>Phosphorus burial in sediments of the sulfidic deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kraal, Peter; Dijkstra, Nikki; Behrends, Thilo; Slomp, Caroline P.</p> <p>2017-05-01</p> <p>Sedimentary burial of the essential nutrient phosphorus (P) under anoxic and sulfidic conditions is incompletely understood. Here, we use chemical and micro-scale spectroscopic methods to characterize sedimentary P burial along a water column redox transect (six stations, 78-2107 m water depth) in the Black Sea from the shelf with its oxygenated waters to the anoxic and sulfidic deep basin. Organic P is an important P pool under all redox regimes, accounting for up to 60% of P burial. We find a general down-core increase in the relative importance of organic P, especially on the shelf where P bound to iron (Fe) and manganese (Mn) (oxyhydr)oxides is abundant in the uppermost sediment but rapidly declines in concentration with sediment depth. Our chemical and spectroscopic data indicate that the carbonate-rich sediments (Unit I, ∼3000 years, ∼0-30 cm depth) of the sulfidic deep Black Sea contain three major P pools: calcium phosphate (apatite), organic P and P that is strongly associated with CaCO3 and possibly clay surfaces. Apatite concentrations increase from 5% to 25% of total P in the uppermost centimeters of the deep basin sediments, highlighting the importance of apatite formation for long-term P burial. Iron(II)-associated P (ludlamite) was detected with X-ray absorption spectroscopy but was shown to be a minor P pool (∼5%), indicating that lateral Fe-P transport from the shelf ("shuttling") likely occurs but does not impact the P burial budget of the deep Black Sea. The CaCO3-P pool was relatively constant throughout the Unit I sediment interval and accounted for up to 55% of total P. Our results highlight that carbonate-bound P can be an important sink for P in CaCO3-rich sediments of anoxic, sulfidic basins and should also be considered as a potential P sink (and P source in case of CaCO3 dissolution) when reconstructing past ocean P dynamics from geological records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMPP41B1194B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMPP41B1194B"><span>Biomarker Evidence From Demerara Rise for Surface and Deep Water Redox Conditions in the mid Cretaceous Western Equatorial Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beckmann, B.; Hofmann, P.; Schouten, S.; Sinninghe Damsté, J. S.; Wagner, T.</p> <p>2006-12-01</p> <p>Oceanic Anoxic Events (OAEs) provide deep insights into rapid climate change and atmosphere-land ocean interactions during an extremely warm mode of the Earth system. We present results from ODP Leg 207 at Demerara Rise deposited in the western tropical Atlantic during transition from the Turonian OAE 2 to the Santonian OAE 3. Molecular markers in organic matter-rich black shale identify the composition of primary producers and provide detailed information on the oxygenation state of surface and deep waters. This information is relevant to infer the dynamics and controls of sedimentation leading to black shale in the tropical Atlantic. Bulk organic geochemical data suggest the dominance of lipid-rich marine organic matter throughout the study section. Biomarkers from the aliphatic fraction instead reveal variable contributions of e.g., archaea, diatoms, and dinoflagellates supporting changes in the community of primary producers that thrived in the oxic part of the photic zone in response to changing environmental conditions similar to modern high productive areas along continental margins. Also comparable to modern high productive areas the sea floor remained generally oxygen-depleted throughout the Turonian to Santonian as supported by elevated lycopane contents along with an enrichment of redox-sensitive elements and documented by persistent high TOC concentrations (1 to 14%). Isorenieratane derivates indicative of photic zone euxinia (PZE) were only detected in low abundances in the lowest part of the study section. This observation contrasts biomarker records from the eastern low latitude Atlantic where PZE was a temporal feature determining black shale formation. The new biomarker data from Leg 207 support progressive weakening of upwelling intensity along with oxygenation of surface and possibly mid waters from the upper Coniacian on. Different from black shale sites in many semi-sheltered sub-basins along the Equatorial Atlantic, Demerara Rise was fully exposed to open marine currents throughout the mid-Cretaceous. Increasing ocean circulation along with the widening of the Equatorial Atlantic probably had a significant effect on shallow ocean oxygenation off tropical S-America. Notably deep ocean oxygenation was decoupled from these processes posing the general question what maintained anoxia at the sea floor over millions of years in the aftermath of OAE 2 at Demerara Rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/41291','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/41291"><span>Preliminary bathymetry of Aialik Bay and Neoglacial changes of Aialik and Pederson glaciers, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Post, Austin</p> <p>1980-01-01</p> <p>Preliminary bathymetry (at 1:20,000 scale) and scientific studies of Aialik Bay, Alaska, by the Research Vessel Growler in 1978 disclose that the head of the bay consists of a deep basin enclosed by a terminal-moraine shoal. A much smaller basin, into which Aialik Glacier discharges icebergs, is located west of two islands and a submarine ridge. Comparison of 1978 soundings with U.S. Coast and Geodetic Survey (now National Oceanic and Atmospheric Administration) data obtained in 1912 shows shoaling of about 64 feet in the deepest part of the small basin nearest the glacier and of about 40 feet in the large basin. The time of retreat of Aialik Glacier from the moraine bar is unknown; a faint ' trimline ' is still visible in the forest on the east side of the fiord, and a carbon-14 date suggests the retreat could have taken place as recently as 1800. The time of Aialik Glcier 's neoglacial advance to the moraine is unknown. Pederson Glacier, which terminates in part in a tidal lagoon or lake, has retreated about 0.90 mile from a moraine judged by Grant and Higgins to have been in contact with the ice about 1896. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036381','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036381"><span>Chapter 50: Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grantz, A.; Hart, P.E.; Childers, V.A.</p> <p>2011-01-01</p> <p>Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean-continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72??N, 165 Wabout 145.5-140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha-Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89-75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin. ?? 2011 The Geological Society of London.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40095','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40095"><span>An analysis of the carbon balance of the Arctic Basin from 1997 to 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>A.D. McGuire; D.J. Hayes; D.W. Kicklighter; M. Manizza; Q. Zhuang; M. Chen; M.J. Follows; K.R. Gurney; J.W. McClelland; J.M. Melillo; B.J. Peterson; R.G. Prinn</p> <p>2010-01-01</p> <p>This study used several model-based tools to analyze the dynamics of the Arctic Basin between 1997 and 2006 as a linked system of land-ocean-atmosphere C exchange. The analysis estimates that terrestrial areas of the Arctic Basin lost 62.9 Tg C yr-1 and that the Arctic Ocean gained 94.1 Tg C yr-1. Arctic lands and oceans...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PEPS....2...41S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PEPS....2...41S"><span>Authigenic carbonate precipitation at the end-Guadalupian (Middle Permian) in China: Implications for the carbon cycle in ancient anoxic oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saitoh, Masafumi; Ueno, Yuichiro; Isozaki, Yukio; Shibuya, Takazo; Yao, Jianxin; Ji, Zhansheng; Shozugawa, Katsumi; Matsuo, Motoyuki; Yoshida, Naohiro</p> <p>2015-12-01</p> <p>Carbonate precipitation is a major process in the global carbon cycle. It was recently proposed that authigenic carbonate (carbonate precipitated in situ at the sediment-water interface and/or within the sediment) played a major role in the carbon cycle throughout Earth's history. The carbon isotopic composition of authigenic carbonates in ancient oceans have been assumed to be significantly lower than that of dissolved inorganic carbon (DIC) in seawater, as is observed in the modern oceans. However, the δ13Ccarb values of authigenic carbonates in the past has not been analyzed in detail. Here, we report authigenic carbonates in the uppermost Guadalupian (Middle Permian) rocks at Chaotian, Sichuan, South China. Monocrystalline calcite crystals <20 mm long are common in the black mudstone/chert sequence that was deposited on a relatively deep anoxic slope/basin along the continental margin. Textures of the crystals indicate in situ precipitation on the seafloor and/or within the sediments. The calcite precipitation corresponds stratigraphically with denitrification and sulfate reduction in the anoxic deep-water mass, as indicated by previously reported nitrogen and sulfur isotope records, respectively. Relatively high δ13Ccarb values of the authigenic carbonates (largely -1 ‰) compared with those of organic matter in the rocks (ca. -26 ‰) suggest that the main carbon source of the carbonates was DIC in the water column. The calcite crystals precipitated in an open system with respect to carbonate, possibly near the sediment-water interface rather than deep within the sediments. The δ13Ccarb values of the carbonates were close to the δ13CDIC value of seawater due to mixing of 13C-depleted remineralized organic carbon (that was released into the water column by the water-mass anaerobic respiration) with the large DIC pool in the oceans. Our results imply that δ13Ccarb values of authigenic carbonates in the anoxic oceans might have been systematically different from the values in the oxic oceans in Earth's history, controlled by the depth of the redoxcline in the water column and sediments. If our model is correct, authigenic carbonates with relatively high δ13Ccarb values in the ancient anoxic oceans may have had a less substantial influence on the bulk δ13Ccarb values in geologic records than has been previously suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19901326','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19901326"><span>Climate, carbon cycling, and deep-ocean ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S</p> <p>2009-11-17</p> <p>Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3755984','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3755984"><span>Large-Scale Distribution and Activity of Prokaryotes in Deep-Sea Surface Sediments of the Mediterranean Sea and the Adjacent Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Giovannelli, Donato; Molari, Massimiliano; d’Errico, Giuseppe; Baldrighi, Elisa; Pala, Claudia; Manini, Elena</p> <p>2013-01-01</p> <p>The deep-sea represents a substantial portion of the biosphere and has a major influence on carbon cycling and global biogeochemistry. Benthic deep-sea prokaryotes have crucial roles in this ecosystem, with their recycling of organic matter from the photic zone. Despite this, little is known about the large-scale distribution of prokaryotes in the surface deep-sea sediments. To assess the influence of environmental and trophic variables on the large-scale distribution of prokaryotes, we investigated the prokaryotic assemblage composition (Bacteria to Archaea and Euryarchaeota to Crenarchaeota ratio) and activity in the surface deep-sea sediments of the Mediterranean Sea and the adjacent North Atlantic Ocean. Prokaryotic abundance and biomass did not vary significantly across the Mediterranean Sea; however, there were depth-related trends in all areas. The abundance of prokaryotes was positively correlated with the sedimentary concentration of protein, an indicator of the quality and bioavailability of organic matter. Moving eastwards, the Bacteria contribution to the total prokaryotes decreased, which appears to be linked to the more oligotrophic conditions of the Eastern Mediterranean basins. Despite the increased importance of Archaea, the contributions of Crenarchaeota Marine Group I to the total pool was relatively constant across the investigated stations, with the exception of Matapan-Vavilov Deep, in which Euryarchaeota Marine Group II dominated. Overall, our data suggest that deeper areas of the Mediterranean Sea share more similar communities with each other than with shallower sites. Freshness and quality of sedimentary organic matter were identified through Generalized Additive Model analysis as the major factors for describing the variation in the prokaryotic community structure and activity in the surface deep-sea sediments. Longitude was also important in explaining the observed variability, which suggests that the overlying water masses might have a critical role in shaping the benthic communities. PMID:24039667</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194864','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194864"><span>Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Murray, R.W.; Buchholtz ten Brink, Marilyn R.; Gerlach, David C.; Russ III, G. Price; Jones, David L.</p> <p>1992-01-01</p> <p>Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~ 11% NASC, Atlantic chert ~ 17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for ∑REE, approximations of Laex (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest Laex (85% of Latotal) and SHL chert the least (38% of Latotal). As shown by interelement associations, this Laex is most likely an adsorbed component onto aluminosilicate and phosphatic phases.Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert CeCe*⪡ 1 and LanYbn ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., LanYbn ~ 0.4), which increases the LanYbn ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and LanYbn">LanYbn ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited CeCe*~1">CeCe*~1 and inherited LanYbn">LanYbn values of ~1.2–1.4.CeCe*">~1.2–1.4.CeCe* does not vary with age, either throughout the entire data base or within a particular basin. Overall, CeCe*">CeCe* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.This and previous studies of the large-scale controlling parameters of sedimentary REEs across ocean basins collectively indicate that REE indices of depositional regime (e.g., CeCe*">CeCe*, LanYbn">LanYbn, Laex) are reproducible in a variety of sediment and rock lithologies, ages, and ocean basins, and present a coherent tool for paleoceanographic and tectonic basin reconstructions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8444G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8444G"><span>A 35-year hindcast for the Baltic Sea (1980-2014) - a statistical analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gräwe, Ulf; Holtermann, Peter</p> <p>2015-04-01</p> <p>The Baltic Sea is a semi-enclosed sea with limited water exchange. The most important process that leads to deep water renewal of the Baltic Sea are inflows of dense, saline North Sea water. These water masses have to pass narrow channels and sills in the Danish Straits and three basins with increasing depth. Along this path, the inflowing gravity currents are subject to entrainment, vertical and horizontal mixing. Thus, physical and numerical mixing are crucial for the proper propagation of these inflows. Additionally, a permanent halocline and a summer thermocline are challenging for state of the art ocean models. Moreover, Holtermann et al (2014) could show, that boundary mixing in the deep basins dominates the vertical mixing of tracers. To tackle these challenges, we used the General Estuarine Transport Model (GETM) to give a state estimate for the Baltic Sea for the period 1980-2014. The setup has a horizontal resolution of 1 nm. In the vertical, terain following coordinates are used. A special feature of GETM is that it can run with vertical adaptive coordinates. Here we use an adaptation towards stratification. The minimum layer thickness is limited to 30 cm. We also include the effects of wind waves (by radiation stresses, and changes in the bottom stresses) into our simulations. The atmospheric forcing is taken from the global reanalysis of the NCEP-CFSR (Saha et al 2011) with a spatial resolution of 30 km and hourly values. The model validation at selected stations in the Baltic Sea shows an average Bias of ±0.15 psu and a RMSE of 0.4 psu. These values are similar to the data assimilation runs of Fu et al (2011) or Liu et al (2013). However, one has to note that our simulations are free runs without any nudging or data assimilation. Driven by the good performance of the model, we use the model output to provide a state estimate of the actual climate period (1980-2010). The analysis includes a quantification and estimation of: surge levels with a 30-year return period temperature maxima with a return period of 30 years (in the surface and bottom waters) duration of heat waves warming and desalination trends age of water masses with last surface contact. The presented model results might act as a reference to compare climate projections with the present state of the Baltic Sea. Moreover, the model system will act as inner core of a coupled hydrodynamic-biogeochemical model (ERGOM). References: Fu, W., She, J. & Dobrynin, M. A 20-year reanalysis experiment in the Baltic Sea using three-dimensional variational (3DVAR) method. Ocean Sci. 8, 827--844 (2012). Holtermann, P. L., Burchard, H., Gräwe, U., Klingbeil, K. & Umlauf, L. Deep-water dynamics and boundary mixing in a nontidal stratified basin: A modeling study of the Baltic Sea. J. Geophys. Res. Ocean. 119, 1465--1487 (2014). Liu, Y., Meier, H. E. M. & Axell, L. Reanalyzing temperature and salinity on decadal time scales using the ensemble optimal interpolation data assimilation method and a 3D ocean circulation model of the Baltic Sea. J. Geophys. Res. Ocean. 118, 5536--5554 (2013). Saha, S. et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91, 1015--1057 (2010).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPP44B..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPP44B..05S"><span>Ediacaran Redox Fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.</p> <p>2013-12-01</p> <p>Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcMod.104..112G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcMod.104..112G"><span>Characteristics of the Nordic Seas overflows in a set of Norwegian Earth System Model experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Chuncheng; Ilicak, Mehmet; Bentsen, Mats; Fer, Ilker</p> <p>2016-08-01</p> <p>Global ocean models with an isopycnic vertical coordinate are advantageous in representing overflows, as they do not suffer from topography-induced spurious numerical mixing commonly seen in geopotential coordinate models. In this paper, we present a quantitative diagnosis of the Nordic Seas overflows in four configurations of the Norwegian Earth System Model (NorESM) family that features an isopycnic ocean model. For intercomparison, two coupled ocean-sea ice and two fully coupled (atmosphere-land-ocean-sea ice) experiments are considered. Each pair consists of a (non-eddying) 1° and a (eddy-permitting) 1/4° horizontal resolution ocean model. In all experiments, overflow waters remain dense and descend to the deep basins, entraining ambient water en route. Results from the 1/4° pair show similar behavior in the overflows, whereas the 1° pair show distinct differences, including temperature/salinity properties, volume transport (Q), and large scale features such as the strength of the Atlantic Meridional Overturning Circulation (AMOC). The volume transport of the overflows and degree of entrainment are underestimated in the 1° experiments, whereas in the 1/4° experiments, there is a two-fold downstream increase in Q, which matches observations well. In contrast to the 1/4° experiments, the coarse 1° experiments do not capture the inclined isopycnals of the overflows or the western boundary current off the Flemish Cap. In all experiments, the pathway of the Iceland-Scotland Overflow Water is misrepresented: a major fraction of the overflow proceeds southward into the West European Basin, instead of turning westward into the Irminger Sea. This discrepancy is attributed to excessive production of Labrador Sea Water in the model. The mean state and variability of the Nordic Seas overflows have significant consequences on the response of the AMOC, hence their correct representations are of vital importance in global ocean and climate modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5674146','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5674146"><span>Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wiklund, Helena; Taylor, John D.; Dahlgren, Thomas G.; Todt, Christiane; Ikebe, Chiho; Rabone, Muriel; Glover, Adrian G.</p> <p>2017-01-01</p> <p>Abstract We present the first DNA taxonomy publication on abyssal Mollusca from the Clarion-Clipperton Zone (CCZ), central Pacific ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area ‘UK-1’ in the eastern CCZ. This is the third paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Taxonomic data are presented for 21 species from 42 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 3 heterodont bivalves, 5 protobranch bivalves, 4 pteriomorph bivalves, 1 caudofoveate, 1 monoplacophoran, 1 polyplacophoran, 4 scaphopods and 2 solenogastres. Gastropoda were recovered but will be the subject of a future study. Seven taxa matched published morphological descriptions for species with deep Pacific type localities, and our sequences provide the first genetic data for these taxa. One taxon morphologically matched a known cosmopolitan species but with a type locality in a different ocean basin and was assigned the open nomenclature ‘cf’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. One taxon is here described as a new species, Ledella knudseni sp. n. For the remaining 12 taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. PMID:29118626</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS53C..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS53C..01L"><span>Recent Multidisciplinary Research Initiatives and IODP Drilling in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, J.; Li, C. F.; Wang, P.; Kulhanek, D. K.</p> <p>2016-12-01</p> <p>The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction, serving as a natural laboratory for studying the linkages between tectonic, volcanic, and oceanic processes. The last several years have witnessed significant progress in investigation of the SCS through comprehensive research programs using multidisciplinary approaches and enhanced international collaboration. The International Ocean Discovery Program (IODP) Expedition 349 drilled and cored five sites in the SCS in 2014. The expedition successfully obtained the first basaltic rock samples of the SCS relict spreading center, discovered large and frequent deep-sea turbidity events, and sampled multiple seamount volcaniclastic layers. In addition, high-resolution near-seafloor magnetic surveys were conducted in the SCS with survey lines passing near some of the IODP drilling sites. Together the IODP drilling and deep-tow magnetic survey results confirmed, for the first time, that the entire SCS basin might have stopped seafloor spreading at similar ages in early Miocene, providing important constraints on marginal sea geodynamic models. In 2007, IODP Expeditions 367 and 368 will drill the northern margin of the SCS to investigate the mechanisms of rifting to spreading processes. Meanwhile, major progress in studying the SCS processes has also been made through comprehensive multidisciplinary programs, for example, the eight-year-long "South China Sea Deep" initiative, which also supports and encourages strong international collaboration. This presentation will highlight the recent multidisciplinary research initiatives in investigation of the SCS and the important role of international collaboration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tectp.691..171L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tectp.691..171L"><span>The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Lu; Stephenson, Randell; Clift, Peter D.</p> <p>2016-11-01</p> <p>Both the Canada Basin (a sub-basin within the Amerasia Basin) and southwest (SW) South China Sea preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the SW South China Sea but our results for the Canada Basin are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow and, accordingly, a lower crust that extends far more the upper crust are suggested for both basins. Extension in the COT may have continued even after seafloor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T31D2548P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T31D2548P"><span>Evaluating Rifean Corridor Closure using Detrital Zircon Sediment Provenance of the Taza-Guercif Basin, Morocco</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pratt, J. R.; Barbeau, D. L.; Emran, A.</p> <p>2013-12-01</p> <p>In the late Miocene, the connection between the Mediterranean Sea and Atlantic Ocean was tectonically severed leading to severe evaporative draw down of Mediterranean sea level such that the entire basin was desiccated or near desiccated in an event from ~5.96-5.33 Ma known as the Messinian Salinity Crisis (MSC). The MSC sequestered 6% of global ocean salinity into evaporite deposits, created a deep, dry and hot basin that altered global atmospheric circulation, opened passageways for mammal migration between Europe, Africa and Arabia and ended in the largest flood observed in the geologic record. The combined effects of the Messinian Salinity Crisis make it the most important oceanic event in the last 20 million years, yet despite the dramatic ramifications of the MSC, the exact nature of its cause has remained both elusive and controversial. By examining the sedimentary provenance of Rifean Corridor, this research evaluates the progression of corridor closure and the tectonic context of the initiation of the Messinian Salinity Crisis. The difficulty in evaluating the progression of closure is due to the tectonic complexity of the Africa-Eurasia convergent plate boundary in north-central Morocco. The shortening associated with the tectonic convergence is accommodated by two genetically and tectonically distinct orogenic systems, the Rif and Atlas mountain belts, which lie in juxtaposition to the slab-rollback dominated Alboran Sea. The basins of the Rifean corridor lie between these two orogens and as such shortening and uplift associated with either or both ranges could be the cause of the corridor closure. Several hypotheses have been posited for the tectonic controls on basin emergence including slab-rollback related delamination on the Alboran margin, domal uplift of the Middle Atlas as well as a more traditional propagation of the Rifean orogenic wedge. This research provides the first quantitative provenance data for the Taza-Guercif basin in the form of LA-ICP-MS detrital zircon analysis of 10 samples from the basin-fill and 3 samples from two separate domains within the Rif. The new data reveal a lack of dramatic shifts in provenance within the basin-fill tied to corridor closure but instead reveal more subtle changes in peak zircon ages. Peak age shifts from 600 Ma to 700 Ma periodically within the strata in both open marine marls and within turbidites derived from the Middle Atlas in a pattern consistent with changes in basin bathymetry. Basin samples show an age-distribution consistent with the Rifean samples, which acquire an slight overprinting of Middle Atlas ages in the latter half of the succession. The data point to a progressive closure of the corridor through the advancement of the Rifean orogenic wedge with minor influence from uplift within the core of the Middle Atlas without a major shift in provenance during rapid basin emergence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112639R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112639R"><span>On the Mediterranean Sea inter-basin exchanges and nutrient dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rupolo, V.; Ribera D'Alcalà, M.; Iudicone, D.; Artale, V.</p> <p>2009-04-01</p> <p>The Mediterranean Sea is an evaporative basin in which the deficit of water is supplied by the inflow from the Gibraltar Strait of Atlantic Water. The net result of the air sea interactions in the entire basin is an outflow at Gibraltar of a salty water that is mainly constituted by the Levantin Intermediate Water, formed in the eastern part of the basin. Despite this simplified pattern, the circulation in the Mediterranean is rather complex. Most of the Mediterranean sub-basins are characterized by water mass formation processes and the presence of sills and straits strongly influence both the spreading and the mixing of intermediate and deep waters. In this context a Lagrangian diagnostics applied to numerical results was used to quantify mass transport in the main pathways of the upper and lower cells of the Mediterranean thermohaline circulation as they results from OGCM simulations. Lagrangian diagnostics reveals to be very useful to quantify both transports between different regions and the associated spectrum of transit times by means of pdf distribution of particles transit times between the different regions of the basin. This method is very effective to estimate the contribution of different water masses in isopycnal and diapycnal transformation processes and in reconstructing the fate of tracers. We use here these previous results on the basin circulation for better understanding the nutrient dynamics within the basin where the inputs from the different sources (atmosphere, runoff and open ocean) have similar order of magnitude. This, to the aim of building scenarios on the impact of climate driven changes in elemental fluxes to the basin on the internal nutrient dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T11C2097D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T11C2097D"><span>Full 40 km crustal reflection seismic datasets in several Indonesian basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dinkelman, M. G.; Granath, J. W.; Christ, J. M.; Emmet, P. A.; Bird, D. E.</p> <p>2010-12-01</p> <p>Long offset, deep penetration regional 2D seismic data sets have been acquired since 2002 by GX Technology in a number of regions worldwide (www.iongeo.com/Data_Libraries/Spans/). Typical surveys consist of 10+ lines located to image specific critical aspects of basin structure. Early surveys were processed to 20 km, but more recent ones have extended to 40-45 km from 16 sec records. Pre-stack time migration is followed by pre-stack depth migration using gravity and in some cases magnetic modeling to constrain the velocity structure. We illustrate several cases in the SE Asian and Australasian area. In NatunaSPAN™ two generations of inversion can be distinguished, one involving Paleogene faults with Neogene inversion and one involving strike slip-related uplift in the West Natuna Basin. Crustal structure in the very deep Neogene East Natuna Basin has also been imaged. The JavaSPAN™ program traced Paleogene sediments onto oceanic crust of the Flores Sea, thus equating back arc spreading there to the widespread Eocene extension. It also imaged basement in the Makassar Strait beneath as much as 6 km of Cenozoic sedimentary rocks that accumulated Eocene rift basins (the North and South Makassar basins) on the edge of Sundaland, the core of SE Asia. The basement is seismically layered: a noisy upper crust overlies a prominent 10 km thick transparent zone, the base of which marks another change to slightly noisier reflectivity. Eocene normal faults responsible for the opening of extensional basins root in the top of the transparent layer which may be Moho or a brittle-ductile transition within the extended continental crust. Of particular significance is the first image of thick Precambrian basins comprising the bulk of continental crust under the Arafura Sea in the ArafuraSPAN™ program. Four lines some 1200 km long located between Australia and New Guinea on the Arafura platform image a thin Phanerozoic section overlying a striking Precambrian basement composed of sedimentary and burial metamorphosed sedimentary rock that we divide into two packages on the basis of seismic character. The upper is 8-15 km of undeformed late Precambrian sediments the top of which ties Eocambrian rocks in wells in offshore New Guinea. This package appears to correlate to the Wessel Group in northern Australia. The lower package is composed of 10-15 km of strongly bedded, presumably burial metamorphosed rocks that make up the bulk of the lower crust. These may equate to any of a number of northern Australian Mesoproterozoic basins. This lower package offlaps ‘pods’ of seismically transparent basement (?Paleoproterozoic or Archean) that make up at most the lowermost 15 km of the 40 km PSDM line. Both Precambrian packages appear to be craton-margin sedimentary wedges, the younger overlapping the older. The SE extent of the lowermost package is deformed in a thrust system which may mark the event that detached it from its original underlying oceanic or transitional crust during cratonization. The SPAN programs are important new data sets to clarify and in some cases solve outstanding problems in basin architecture and tectonic evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.730...81V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.730...81V"><span>Thermal structure of the Panama Basin by analysis of seismic attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vargas, Carlos A.; Pulido, José E.; Hobbs, Richard W.</p> <p>2018-04-01</p> <p>Using recordings of earthquakes on Oceanic Bottom Seismographs and onshore stations on the coastal margins of Colombia, Panama, and Ecuador, we estimate attenuation parameters in the upper lithosphere of the Panama Basin. The tomographic images of the derived coda-Q values are correlated with estimates of Curie Point Depth and measured and theoretical heat flow. Our study reveals three tectonic domains where magmatic/hydrothermal activity or lateral variations of the lithologic composition in the upper lithosphere can account for the modeled thermal structure and the anelasticity. We find that the Costa Rica Ridge and the Panama Fracture Zone are significant tectonic features probably related to thermal anomalies detected in the study area. We interpret a large and deep intrinsic attenuation anomaly as related to the heat source at the Costa Rica Ridge and show how interactions with regional fault systems cause contrasting attenuation anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3233691','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3233691"><span>Dubinectes infirmus, a new species of deep-water Munnopsidae (Crustacea, Isopoda, Asellota) from the Argentine Basin, South Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Malyutina, Marina; Brandt, Angelika</p> <p>2011-01-01</p> <p>Abstract Dubinectes infirmus sp. n., Munnopsidae, is described from the Argentine Basin, southwest Atlantic, at depths between 4586–4607 m. The new species is distinguished by a narrow rim of the pleotelson posterior margin which is not raising over its dorsal surface; article 3 of the antennula is subequal in length to article 2; distomedial lobes of male pleopod 1 are of same size as distolateral lobes; stylet of male pleopod 2 is subequal in length to protopod; uropod exopod is more than a half of endopod length. Some generic characters which are weakly pronounced in the new species or have different state are defined more precisely in the revised diagnosis of Dubinectes. The modified diagnosis of the genus, a key to the species of Dubinectes as well as the distribution of the genus are presented. PMID:22207784</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010063895','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010063895"><span>Global Bathymetric Prediction For Ocean Modeling and Marine Geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandwell, David T.; Smith, Walter H. F.; Sichoix, Lydie; Frey, Herbert V. (Technical Monitor)</p> <p>2001-01-01</p> <p>We proposed to construct a complete bathymetric map of the oceans at a 3-10 km resolution by combining all of the available depth soundings collected over the past 30 years with high resolution marine gravity information provided by the Geosat, ERS-1/2, and Topex/Poseidon altimeters. Detailed bathymetry is essential for understanding physical oceanography and marine geophysics. Currents and tides are controlled by the overall shapes of the ocean basins as well as the smaller sharp ocean ridges and seamounts. Because erosion rates are low in the deep oceans, detailed bathymetry reveals the mantle convection patterns, the plate boundaries, the cooling/subsidence of the oceanic lithosphere, the oceanic plateaus, and the distribution of off-ridge volcanoes. We proposed to: (1) Accumulate all available depth soundings collected over the past 30 years; (2) Use the short wavelength (< 160 km) satellite gravity information to interpolate between sparse ship soundings; (3) Improve the resolution of the marine gravity field using enhanced estimates along repeat altimeter profiles together with the dense altimeter measurements; (4) Refine/improve bathymetric predictions using the improved resolution gravity field and also by investigating computer-intensive methods for bathymetric prediction such as inverse theory; and (5) Produce a 'Globe of the Earth' similar to the globe of Venus prepared by the NASA Magellan investigation. This will also include the best available digital land data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP53E..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP53E..07L"><span>Surface ocean carbon isotope anomalies on glacial terminations: An alternative view</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lund, D. C.; Cote, M.; Schmittner, A.</p> <p>2016-12-01</p> <p>Late Pleistocene glacial terminations are characterized by surface ocean carbon isotope minima on a global scale. During the last deglaciation (i.e. Termination 1), planktonic foraminiferal δ13C anomalies occurred in the Atlantic, Indian, Pacific, and Southern Oceans. Despite the apparently ubiquitous nature of δ13C anomalies on glacial terminations, their cause remains a matter of ongoing debate. The prevailing view is that isotopically light carbon from the abyss was upwelled in the Southern Ocean, resulting in outgassing of 13C-depleted carbon to the atmosphere and its advection to lower latitudes via mode and intermediate waters (Spero and Lea, 2002). Alternatively, carbon isotope minima may be driven by weakening of the biological pump related to circulation-driven changes in the oceanic preformed nutrient budget (Schmittner and Lund, 2015). Here we assess the deep upwelling and biological pump hypotheses using a new compilation of 70 globally-distributed planktonic δ13C records from the published literature. We find that 1) the mean deglacial δ13C anomaly is similar in all ocean basins, 2) the eastern tropical Pacific yields smaller mean δ13C anomalies than the western tropical Pacific, and 3) δ13C anomalies in the Southern Ocean decrease with increasing latitude. Our results are generally inconsistent with the deep upwelling hypothesis, which predicts that the δ13C signal should be largest in the Southern Ocean and upwelling regions. Instead, the spatial pattern in δ13C anomalies supports the biological pump hypothesis, which predicts that reduced export of light carbon from the euphotic zone triggers negative carbon isotope anomalies in the surface ocean and positive anomalies at intermediate depths. Upwelling of relatively 13C-enriched intermediate waters tends to moderate carbon isotope minima in upwelling regions. Our results suggest that the initial rise in atmospheric CO2 during Termination 1 was likely due to weakening of the biological pump associated with a reduction in the Atlantic Meridional Overturning Circulation, consistent with model results (Schmittner and Lund, 2015). Spero, H., and D. Lea (2002) Science 296, 522-525. Schmittner, A., and D. Lund (2015) Climate of the Past 11, 135-152.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMM24A0427H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMM24A0427H"><span>Deep-Sea Microbes: Linking Biogeochemical Rates to -Omics Approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herndl, G. J.; Sintes, E.; Bayer, B.; Bergauer, K.; Amano, C.; Hansman, R.; Garcia, J.; Reinthaler, T.</p> <p>2016-02-01</p> <p>Over the past decade substantial progress has been made in determining deep ocean microbial activity and resolving some of the enigmas in understanding the deep ocean carbon flux. Also, metagenomics approaches have shed light onto the dark ocean's microbes but linking -omics approaches to biogeochemical rate measurements are generally rare in microbial oceanography and even more so for the deep ocean. In this presentation, we will show by combining metagenomics, -proteomics and biogeochemical rate measurements on the bulk and single-cell level that deep-sea microbes exhibit characteristics of generalists with a large genome repertoire, versatile in utilizing substrate as revealed by metaproteomics. This is in striking contrast with the apparently rather uniform dissolved organic matter pool in the deep ocean. Combining the different -omics approaches with metabolic rate measurements, we will highlight some major inconsistencies and enigmas in our understanding of the carbon cycling and microbial food web structure in the dark ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T23A2640X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T23A2640X"><span>The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiong, X.; Gao, R.; Li, Q.; Wang, H.</p> <p>2012-12-01</p> <p>The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7033664-sequence-stratigraphy-monterey-formation-santa-barbara-county-integration-physical-chemical-biofacies-data-from-outcrop-subsurface','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7033664-sequence-stratigraphy-monterey-formation-santa-barbara-county-integration-physical-chemical-biofacies-data-from-outcrop-subsurface"><span>Sequence stratigraphy of the Monterey Formation, Santa Barbara County: Integration of physical, chemical, and biofacies data from outcrop and subsurface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bohacs, K.M.</p> <p>1990-05-01</p> <p>Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T31A2148R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T31A2148R"><span>New constraints on the crustal structure in the eastern part of northern Baffin Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reichert, C. J.; Damm, V.; Altenbernd, T.; Berglar, K.; Block, M.; Ehrhardt, A.; Schnabel, M.</p> <p>2010-12-01</p> <p>The northern Baffin Bay is a key area for testing plate kinematic models for the Paleocene-Eocene motion of Greenland relative to North America and to decipher the evolution of the thick sedimentary basins in this area. In summer 2010, a multidisciplinary marine geoscientific expedition focusing on the Greenland part of northern Baffin Bay was performed under the direction of the Federal Institute for Geosciences and Natural Resources Hannover, Germany in cooperation with the Alfred-Wegener Institute Bremerhaven. Using 70 days ship time onboard the German R/V Polarstern a comprehensive data set was acquired along profiles extending from the deep oceanic basin in the central part of North Baffin Bay onto the Greenland continental margin in an area which was bordered by the Kane Basin in the North and Disco Island in the South. By means of multi-channel seismic, wide angle seismic, gravimetric and magnetic methods the structural inventory of the crust in the NW Baffin Bay was investigated. Additionally, heat flow data and sediment cores were collected at selected positions along lines across the Greenland continental margin. The cores were extracted for geochemical and geomicrobiological analysis to be used for basin modeling and studying the hydrocarbon potential. Aeromagnetic data was acquired covering part of the marine survey area to investigate magnetic signatures of the oceanic crust and the continental margin. In our presentation we will give an overview of the first results of the expedition with special focus on multi-channel seismic data. With a total length of 3500 km, the initial interpretation of multi-channel seismic data shows that the West Greenland margin is a typical passive continental margin with large rotated basement blocks, listric faults facing mainly seaward, and deep syn-rift-basins in between. The most prominent reflector under the shelf and the slope probably indicates the transition from rifting to drifting and therefore the beginning of seafloor spreading in the Baffin Bay. This is suggested by erosion on top of basement blocks, subsidence along the slope area, and termination of the prominent reflector in the area of the ocean-continent boundary. The syn-rift sediments were deposited in two single phases, which could be imaged along several sections of the newly acquired seismic lines. The Quaternary and late Pliocene glacial deposits are characterized by prograding sequences on the western shelf and the upper slope. Some lines show that the NNW striking Melville Ridge is a compression structure generated by thrusting of the Melville graben sedimentary fill on its western edge. We interpret the compression as a result of strike slip faulting in conjunction with the northward movement of Greenland in the second drift phase starting in the Eocene. At some segments of the crustal margin the opening of the Baffin Bay might be associated with volcanic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...101.2895N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...101.2895N"><span>Heat flow in the western abyssal plain of the Gulf of Mexico: Implications for thermal evolution of the old oceanic lithosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nagihara, S.; Sclater, J. G.; Phillips, J. D.; Behrens, E. W.; Lewis, T.; Lawver, L. A.; Nakamura, Y.; Garcia-Abdeslem, J.; Maxwell, A. E.</p> <p>1996-02-01</p> <p>The seafloor depth of an oceanic basin reflects the average temperature of the lithosphere. Thus the western abyssal plain of the Gulf of Mexico, which has tectonically subsided much (>1 km) deeper than other basins of comparable ages (late Jurassic), should be underlain by an anomalously cold lithosphere. In order to examine this hypothesis, we made suites of high-accuracy heat flow measurements at 10 sites along a line connecting Deep Sea Drilling Project (DSDP) sites 90 and 91 in the Sigsbee abyssal plain. The new heat flow sites were initially surveyed by 3.5-kHz echo sounding, 4-channel seismic reflection, seismic refraction with eight ocean bottom seismometers, and nine piston cores. We occupied a total of 48 heat flow stations along the seismic survey line (3 to 6 at each site), including 28 where we measured in situ thermal conductivities over the practical depth interval (4 m) of the new multioutrigger bow heat flow probe. We determined the heat flow associated with the lithosphere by correcting the values measured at the seafloor (41 to 45 mW/m2) for (1) the thermal effect of the sedimentation and (2) the additional heat from the radioactive elements within the sediments. The sedimentation history, required for the first, was reconstructed at each heat flow site based on ages and thicknesses of the major seismic stratigraphical sequences, age data from the DSDP cores, 3.5-kHz subbottom reflectors, and correlation of turbidite units found in the piston cores. Radiogenic heat production was measured for 55 sediment samples from four DSDP holes in the gulf, whose age ranged from present to Early Cretaceous (0.83 μW/m3 on the average). This provided the correction for the second. The effects of these two secondary factors approximately cancel one another. The lithospheric heat flow under the abyssal plain thus estimated ranges from 40 to 47 mW/m2. These heat flow values are among the lowest in the Mesozoic ocean basins where highly reliable data (45 to 55 mW/m2) have been reported. Therefore the lithosphere under the gulf seems indeed colder than that under other old ocean basins. However, it is not as cold as expected from the large tectonic subsidence. The inconsistency between the depth and heat flow may imply an anomaly in the regional thermal isostasy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018795','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018795"><span>Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cronin, T. M.; Dwyer, Gary S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M.; ,</p> <p>1996-01-01</p> <p>The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for palaeoceanographic study. Shells from the Polar Surface Water (−1 to −1.5°C) had Mg:Ca molar ratios of about 0.006–0.008; shells from Arctic Intermediate Water (+0.3 to +2.0°C) ranged from 0.09 to 0.013. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2 = 0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from Arctic and Nordic seas from water depths <900 m. Late Quaternary Krithe Mg:Ca ratios were analysed downcore using material from the Gakkel Ridge (water depths 3047 and 3899 m), the Lomonosov Ridge (water depth 1051 m) and the Amundsen Basin (water depth 4226 m) to test the core-top Mg:Ca temperature calibration. Cores from the Gakkel and Lomonosov ridges display a decrease in Mg:Ca ratios during the interval spanning the last glacial/deglacial transition and the Holocene, perhaps related to a decrease in bottom water temperatures or other changes in benthic environments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://jfr.geoscienceworld.org/content/29/4/465.abstract','USGSPUBS'); return false;" href="http://jfr.geoscienceworld.org/content/29/4/465.abstract"><span>Sensitivity of the North Atlantic Basin to cyclic climatic forcing during the early Cretaceous</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dean, W.E.; Arthur, M.A.</p> <p>1999-01-01</p> <p>Striking cyclic interbeds of laminated dark-olive to black marlstone and bioturbated white to light-gray limestone of Neocomian (Early Cretaceous) age have been recovered at Deep Sea Drilling Project (DSDP) and Ocean Drilling Project (ODP) sites in the North Atlantic. These Neocomian sequences are equivalent to the Maiolica Formation that outcrops in the Tethyan regions of the Mediterranean and to thick limestone sequences of the Vocontian Trough of France. This lithologic unit marks the widespread deposition of biogenic carbonate over much of the North Atlantic and Tethyan seafloor during a time of overall low sealevel and a deep carbonate compensation depth. The dark clay-rich interbeds typically are rich in organic carbon (OC) with up to 5.5% OC in sequences in the eastern North Atlantic. These eastern North Atlantic sequences off northwest Africa, contain more abundant and better preserved hydrogen-rich, algal organic matter (type II kerogen) relative to the western North Atlantic, probably in response to coastal upwelling induced by an eastern boundary current in the young North Atlantic Ocean. The more abundant algal organic matter in sequences in the eastern North Atlantic is also expressed in the isotopic composition of the carbon in that organic matter. In contrast, organic matter in Neocomian sequences in the western North Atlantic along the continental margin of North America has geochemical and optical characteristics of herbaceous, woody, hydrogen-poor, humic, type III kerogen. The inorganic geochemical characteristics of the dark clay-rich (80% CaCO3) interbeds in both the eastern and western basins of the North Atlantic suggest that they contain minor amounts of relatively unweathered eolian dust derived from northwest Africa during dry intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAESc.127..119C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAESc.127..119C"><span>Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao</p> <p>2016-09-01</p> <p>Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The previous hypothesis that regional groundwater flow from the piedmont groundwater recharge zone predominantly discharges at the coastline may therefore be false. A more reliable alternative might be to conceptualize deep groundwater below the coastal plains a hydrodynamically stagnant zone, responding gradually to landscape and hydrological change on geologic timescales. This study brings a new and original understanding of the groundwater flow system in an important regional basin, in the context of its geometry and evolution over geological timescales. There are important implications for the sustainability of the ongoing high rates of groundwater extraction in the NCB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.212.1696M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.212.1696M"><span>Deep structure of the Mid-Norwegian continental margin (the Vøring and Møre basins) according to 3-D density and magnetic modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maystrenko, Yuriy Petrovich; Gernigon, Laurent; Nasuti, Aziz; Olesen, Odleiv</p> <p>2018-03-01</p> <p>A lithosphere-scale 3-D density/magnetic structural model of the Møre and Vøring segments of the Mid-Norwegian continental margin and the adjacent areas of the Norwegian mainland has been constructed by using both published, publically available data sets and confidential data, validated by the 3-D density and magnetic modelling. The obtained Moho topography clearly correlates with the major tectonic units of the study area where a deep Moho corresponds to the base of the Precambrian continental crust and the shallower one is located in close proximity to the younger oceanic lithospheric domain. The 3-D density modelling agrees with previous studies which indicate the presence of a high-density/high-velocity lower-crustal layer beneath the Mid-Norwegian continental margin. The broad Jan Mayen Corridor gravity low is partially related to the decreasing density of the sedimentary layers within the Jan Mayen Corridor and also has to be considered in relation to a possible low-density composition- and/or temperature-related zone in the lithospheric mantle. According to the results of the 3-D magnetic modelling, the absence of a strong magnetic anomaly over the Utgard High indicates that the uplifted crystalline rocks are not so magnetic there, supporting a suggestion that the entire crystalline crust has a low magnetization beneath the greater part of the Vøring Basin and the northern part of the Møre Basin. On the contrary, the crystalline crust is much more magnetic beneath the Trøndelag Platform, the southern part of the Møre Basin and within the mainland, reaching a culmination at the Frøya High where the most intensive magnetic anomaly is observed within the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T31D2925C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T31D2925C"><span>Bathymetry, Crustal Imaging and Tectonics in the South of Islas Marias (Nayarit, Mexico)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrillo de la Cruz, J. L.; Nunez, D.; Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Gonzalez-Fernandez, A.; Escalona, F.; Danobeitia, J.</p> <p>2016-12-01</p> <p>The seismic activity of the Mexican Pacific margin is principally due to the subduction process of the Rivera plate beneath the North America plate and Jalisco Block. In 2014, the TSUJAL geophysical experiment provided new data to archive a better knowledge about the crustal structure and their implications in seismic and tsunamigenic potential hazards. In this study, we present the processed and analyzed bathymetric, WAS and MCS data along the TS11 seismic transect (115 km length) across the southern of Islas Marías. The seismic sources used in this work correspond to the airgun shots provided by RRS James Cook every 120 s and 50 m to recover WAS and MCS data, respectively. These sources were registered by a network of 4 OBS and 30 land seismic stations and the MCS data were acquired with a 5.85 km length streamer with a 468 active channels. Meanwhile, the bathymetric data were obtained with 2 multibeam echo sounders, EM120 and EM710, obtaining a 75 - 80 m of grid resolution. After data processing and interpretation, we have obtained information about two basins (De la Cruz Basin and Tres Marias basin) delimitated with geological lineaments alongside the Sierra de Cleofas from bathymetry, being Tres Marias basin the deepest zone in the area. Moreover, the main canyon founded in this study (De la Cruz Canyon) has been classified as type 3, according to Harris & Whiteway (2011). From seismic data, we have determined the shallow and deep crustal structure of the northern part of Rivera plate subduction with a dip angle between 6° and 8°. In this region, the oceanic crust is 10 km deep, increasing up to 20 km, while the deepest layers of the upper mantle have been determined at 45-50 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.156..316K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.156..316K"><span>Moho depth variations over the Maldive Ridge and adjoining Arabian and Central Indian Basins, Western Indian Ocean, from three dimensional inversion of gravity anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kunnummal, Priyesh; Anand, S. P.; Haritha, C.; Rama Rao, P.</p> <p>2018-05-01</p> <p>Analysis of high resolution satellite derived free air gravity data has been undertaken in the Greater Maldive Ridge (GMR) (Maldive Ridge, Deep Sea Channel, northern limit of Chagos Bank) segment of the Chagos Laccadive Ridge and the adjoining Arabian and Central Indian Basins. A Complete Bouguer Anomaly (CBA) map was generated from the Indian Ocean Geoidal Low removed Free Air Gravity (hereinafter referred to as "FAG-IOGL") data by incorporating Bullard A, B and C corrections. Using the Parker method, Moho topography was initially computed by inverting the CBA data. From the CBA the Mantle Residual Gravity Anomalies (MRGA) were computed by incorporating gravity effects of sediments and lithospheric temperature and pressure induced anomalies. Further, the MRGA was inverted to get Moho undulations from which the crustal thickness was also estimated. It was found that incorporating the lithospheric thermal and pressure anomaly correction has provided substantial improvement in the computed Moho depths especially in the oceanic areas. But along the GMR, there was not much variation in the Moho thickness computed with and without the thermal and pressure gravity correction implying that the crustal thickness of the ridge does not depend on the oceanic isochrones used for the thermal corrections. The estimated Moho depths in the study area ranges from 7 km to 28 km and the crustal thickness from 2 km to 27 km. The Moho depths are shallower in regions closer to Central Indian Ridge in the Arabian Basin i.e., the region to the west of the GMR is thinner compared to the region in the east (Central Indian Basin). The thickest crust and the deepest Moho are found below the N-S trending GMR segment of the Chagos-Laccadive Ridge. Along the GMR the crustal thickness decreases from north to south with thickness of 27 km below the Maldives Ridge reducing to ∼9 km at 3°S and further increasing towards Chagos Bank. Even though there are similarities in crustal thickness between Maldive Ridge and other regions like Mascarene Plateau which was recently interpreted as underlain by continental crust, much more geoscientific work including drilling has to be undertaken to finally confirm the exact nature of the ridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.479..206R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.479..206R"><span>Intracontinental mantle plume and its implications for the Cretaceous tectonic history of East Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ryu, In-Chang; Lee, Changyeol</p> <p>2017-12-01</p> <p>A-type granitoids, high-Mg basalts (e.g., picrites), adakitic rocks, basin-and-range-type fault basins, thinning of the North China Craton (NCC), and southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan during the Cretaceous are attributed to the passive upwelling of deep asthenospheric mantle or ridge subduction. However, the genesis of these features remains controversial. Furthermore, the lack of ridge subduction during the Cretaceous in recently suggested plate reconstruction models poses a problem because the Cretaceous adakites in southern Korea and southwestern Japan could not have been generated by the subduction of the old Izanagi oceanic plate. Here, we speculate that plume-continent (intracontinental plume-China continent) and subsequent plume-slab (intracontinental plume-subducted Izanagi oceanic plate) interactions generated the various intracontinental magmatic and tectonic activities in eastern China, Korea, and southwestern Japan. We support our proposal using three-dimensional numerical models: 1) An intracontinental mantle plume is dragged into the mantle wedge by corner flow of the mantle wedge, and 2) the resultant channel-like flow of the mantle plume in the mantle wedge apparently migrated from southwest to northeast because of the northeast-to-southwest migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. Our model calculations show that adakites and I-type granitoids can be generated by increased slab-surface temperatures because of the channel-like flow of the mantle plume in the mantle wedge. We also show that the southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan can be attributable to the opposite migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. This correlation implies that an intracontinental mantle plume existed in eastern China during the Cretaceous and that the mantle plume was entrained into the mantle wedge as a channel-like flow. An intracontinental mantle plume can explain the adakitic rocks, A-type granitoids, high-Mg basalts, and basin-and-range-type fault basins distributed in eastern China. Thus, the mantle plume and its interaction with the overlying continent and subducting slab through time plausibly explain the Cretaceous tectonic history of East Asia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860055915&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplate%2Btectonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860055915&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplate%2Btectonics"><span>Plate tectonic history of the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burke, K.</p> <p>1984-01-01</p> <p>Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120013534&hterms=Warming+global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWarming%2Bglobal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120013534&hterms=Warming+global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWarming%2Bglobal"><span>Deep Ocean Warming Assessed from Altimeters, GRACE, 3 In-situ Measurements, and a Non-Boussinesq OGCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Song, Y. Tony; Colberg, Frank</p> <p>2011-01-01</p> <p>Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS23E..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS23E..01L"><span>First high-resolution near-seafloor survey of magnetic anomalies of the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, J.; Xu, X.; Li, C.; Sun, Z.; Zhu, J.; Zhou, Z.; Qiu, N.</p> <p>2013-12-01</p> <p>We successfully conducted the first high-resolution near-seafloor magnetic survey of the Central, Southwest, and Northern Central Basins of the South China Sea (SCS) during two cruises on board Chinese R/V HaiYangLiuHao in October-November 2012 and March-April 2013, respectively. Measurements of magnetic field were made along four long survey lines, including (1) a NW-SE across-isochron profile transecting the Southwest Basin and covering all ages of the oceanic crust (Line CD); (2) a N-S across-isochron profile transecting the Central Basin (Line AB); and (3) two sub-parallel NE-SW across-isochron profiles transecting the Northern Central Basin of the SCS (Lines D and E). A three-axis magnetometer was mounted on a deep-tow vehicle, flying within 0.6 km above the seafloor. The position of the tow vehicle was provided by an ultra-short baseline navigation system along Lines D and E, while was estimated using shipboard GPS along Lines AB and CD. To investigate crustal magnetization, we first removed the International Geomagnetic Reference Field (IGRF) of 2010 from the measured magnetic data, and then downward continued the resultant magnetic field data to a horizontal plane at a water depth of 4.5 km to correct for variation due to the fishing depth of the deep-tow vehicle. Finally, we calculated magnetic anomalies at various water depths after reduction-to-the-pole corrections. We also constructed polarity reversal block (PRB) models of crustal magnetization by matching peaks and troughs of the observed magnetic field anomaly. Our analysis yielded the following results: (1) The near-bottom magnetic anomaly showed peak-to-trough amplitudes of more than 2,500 nT, which are several times of the anomaly amplitudes at the sea surface, illustrating that deep-tow measurements acquired much higher spatial resolutions. (2) The deep-tow data revealed several distinctive magnetic anomalies with wavelengths of 5-15 km and amplitudes of several hundred nT. These short-wavelength anomalies were unrecognized in sea surface measurements. (3) Preliminary results showed that the study regions might have experienced several episodes of magnetic reversal events that were not recognized in existing models. (4) We are currently investigating the geomagnetic timing of these relatively short-duration events to determine the detailed spreading history of the sub-basins of the SCS. These high-resolution near-seafloor magnetic survey lines are located close to the planned drilling sites of IODP Expedition 349 scheduled for January-March 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17752757','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17752757"><span>Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laxon, S; McAdoo, D</p> <p>1994-07-29</p> <p>The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1213875S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1213875S"><span>Arctic Ocean circulation during the anoxic Eocene Azolla event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan</p> <p>2010-05-01</p> <p>The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and through seawater inflow). Excess vanadium accumulation during the Azolla event (80 ppm), basin volume and surface area, average vanadium sea (1.8 ppb) and river water (1.0 ppb) concentrations, together indicate that an inflow of Nordic Sea water of 0.2 Sv is needed to sustain vanadium levels. The same calculation using molybdenum gives an inflow of only 0.02 Sv. These low inflow rates imply Arctic Ocean (deep) water residence times of 2000 - 20000 years, respectively. Based on climate modeling we calculated a summed net amount of precipitation for the Eocene Arctic Basin (Precipitation - Evaporation + Runoff) of 0.46 Sv. Together these notions indicate that a compensating inflow of saline North Atlantic water occurred, accompanied by an outflow of more fresh waters, resulting in a bi-directional, two-layer flow through the (proto-) Fram Strait. Consequently, the limited exchange of water through the Fram Strait implies that a relatively low export productivity would have been sufficient to render Arctic bottom waters anoxic. Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O'Regan, M., Brinkhuis, H., King, J., Moran, K. (2007). The early Miocene onset of a ventilated circulation regimen in the Arctic Ocean. Nature 447, 986-990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..334S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..334S"><span>Microbial decomposition of marine dissolved organic matter in cool oceanic crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.</p> <p>2018-05-01</p> <p>Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005bios.book.....M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005bios.book.....M"><span>Biostratigraphy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGowran, Brian</p> <p>2005-10-01</p> <p>Using fossils to tell geological time, biostratigraphy balances biology with geology. In modern geochronology - meaning timescale-building and making correlations between oceans, continents and hemispheres - the microfossil record of speciations and extinctions is integrated with numerical dates from radioactive decay, geomagnetic reversals through time, and the cyclical wobbles of the earth-sun-moon system. This important modern synthesis follows the development of biostratigraphy from classical origins into petroleum exploration and deep-ocean drilling. It explores the three-way relationship between species of microorganisms, their environment and their evolution through time as expressed in skeletons preserved as fossils. This book is essential reading for advanced students and researchers working in basin analysis, sequence stratigraphy, palaeoceanography, palaeobiology and related fields. Now recognised as an important disciplinary subject, biostratigraphy is treated here in much greater detail than in other major modern texts Brings together biological and geological research in an accessible way Discusses applications as well as theory</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1490S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1490S"><span>Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.</p> <p>2018-02-01</p> <p>Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150007120&hterms=water+meter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwater%2Bmeter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150007120&hterms=water+meter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwater%2Bmeter"><span>Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Villanueva, G. L.; Mumma, M. J.; Novak, R. E.; Käufl, H. U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. D.</p> <p>2015-01-01</p> <p>We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Natur.551..181D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Natur.551..181D"><span>Abyssal ocean overturning shaped by seafloor distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Lavergne, C.; Madec, G.; Roquet, F.; Holmes, R. M.; McDougall, T. J.</p> <p>2017-11-01</p> <p>The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows—referred to as the abyssal overturning circulation—is key to quantifying the ocean’s ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985Tectp.111..283M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985Tectp.111..283M"><span>Saudi Arabian refraction profile: Crustal structure of the Red Sea-Arabian shield transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milkereit, B.; Flüh, E. R.</p> <p>1985-02-01</p> <p>An interpretation of deep seismic sounding measurements across the ocean-continent transition of the Red Sea-Saudi Arabian Shield is presented. Using synthetic seismograms based on ray tracing we achieve a good fit to observed traveltimes and some of the characteristic amplitudes of the record sections. Crustal thickness varies along the profile from 15 km in the Red Sea Shelf to 40-45 km beneath the Asir Mountains and the Saudi Arabian Shield. Based on the computation of synthetic seismograms our model requires a velocity inversion in the Red Sea-Arabian Shield transition. High-velocity oceanic mantle material is observed above continental crust and mantle, thereby forming a double-layered Moho. Our results indicate a thick sedimentary basin in the shelf area, and zone of high velocities within the Asir Mountains (probably uplifted lower crust). Prominent secondary low-frequency arrivals are interpreted as multiples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25745065','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25745065"><span>Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Villanueva, G L; Mumma, M J; Novak, R E; Käufl, H U; Hartogh, P; Encrenaz, T; Tokunaga, A; Khayat, A; Smith, M D</p> <p>2015-04-10</p> <p>We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep. Copyright © 2015, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2012/5275/sir2012-5275.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2012/5275/sir2012-5275.pdf"><span>Hydrogeologic framework and estimates of groundwater storage for the Hualapai Valley, Detrital Valley, and Sacramento Valley basins, Mohave County, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Truini, Margot; Beard, L. Sue; Kennedy, Jeffrey; Anning, Dave W.</p> <p>2013-01-01</p> <p>We have investigated the hydrogeology of the Hualapai Valley, Detrital Valley, and Sacramento Valley basins of Mohave County in northwestern Arizona to develop a better understanding of groundwater storage within the basin fill aquifers. In our investigation we used geologic maps, well-log data, and geophysical surveys to delineate the sedimentary textures and lithology of the basin fill. We used gravity data to construct a basin geometry model that defines smaller subbasins within the larger basins, and airborne transient-electromagnetic modeled results along with well-log lithology data to infer the subsurface distribution of basin fill within the subbasins. Hydrogeologic units (HGUs) are delineated within the subbasins on the basis of the inferred lithology of saturated basin fill. We used the extent and size of HGUs to estimate groundwater storage to depths of 400 meters (m) below land surface (bls). The basin geometry model for the Hualapai Valley basin consists of three subbasins: the Kingman, Hualapai, and southern Gregg subbasins. In the Kingman subbasin, which is estimated to be 1,200 m deep, saturated basin fill consists of a mixture of fine- to coarse-grained sedimentary deposits. The Hualapai subbasin, which is the largest of the subbasins, contains a thick halite body from about 400 m to about 4,300 m bls. Saturated basin fill overlying the salt body consists predominately of fine-grained older playa deposits. In the southern Gregg subbasin, which is estimated to be 1,400 m deep, saturated basin fill is interpreted to consist primarily of fine- to coarse-grained sedimentary deposits. Groundwater storage to 400 m bls in the Hualapai Valley basin is estimated to be 14.1 cubic kilometers (km3). The basin geometry model for the Detrital Valley basin consists of three subbasins: northern Detrital, central Detrital, and southern Detrital subbasins. The northern and central Detrital subbasins are characterized by a predominance of playa evaporite and fine-grained clastic deposits; evaporite deposits in the northern Detrital subbasin include halite. The northern Detrital subbasin is estimated to be 600 m deep and the middle Detrital subbasin is estimated to be 700 m deep. The southern Detrital subbasin, which is estimated to be 1,500 m deep, is characterized by a mixture of fine- to coarse-grained basin fill deposits. Groundwater storage to 400 m bls in the Detrital Valley basin is estimated to be 9.8 km3. The basin geometry model for the Sacramento Valley basin consists of three subbasins: the Chloride, Golden Valley, and Dutch Flat subbasins. The Chloride subbasin, which is estimated to be 900 m deep, is characterized by fine- to coarse-grained basin fill deposits. In the Golden Valley subbasin, which is elongated north-south, and is estimated to be 1,300 m deep, basin fill includes fine-grained sedimentary deposits overlain by coarse-grained sedimentary deposits in much of the subbasin. The Dutch Flat subbasin is estimated to be 2,600 m deep, and well-log lithologic data suggest that the basin fill consists of interlayers of gravel, sand, and clay. Groundwater storage to 400 m bls in the Sacramento Valley basin is estimated to be 35.1 km3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP33B0902A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP33B0902A"><span>Transition from Subduction to Strike-Slip in the Southeast Caribbean: Effects on Lithospheric Structures and Overlying Basin Evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alvarez, T.; Mann, P.; Wood, L. J.; Vargas, C. A.; Latchman, J. L.</p> <p>2013-12-01</p> <p>Topography, basin structures and geomorphology of the southeast Caribbean-northeast South American margin are controlled by a 200-km-long transition from westward-directed subduction of South American lithosphere beneath the Caribbean plate, to east-west strike-slip motion of the Caribbean and South American plates. Our study of structures and basins present in the transitional area integrates a tomographic study of the lithospheric structures associated with lateral variations in the subduction of the South American lithosphere and orientation of the slab beneath the Caribbean plate as well as the evolution of overlying sedimentary basins imaged with deep-penetration seismic data kindly provided by the oil industry and Trinidad & Tobago government agencies. We use an earthquake dataset containing more than 700 events recorded by the eastern Caribbean regional seismograph network to build travel-time and attenuation tomography models used to image the mantle to depths of 100 km beneath transition zone. Approximately 10,000 km of 2D seismic reflection lines which are recorded to depths > 12 seconds TWT are used to interpret basin scale structures including tectono-stratigraphic sequences and structures which deform and displace sedimentary sequences. We use the observed satellite gravity to generate a gravity model for key sections traversing the tectonic transitional zone and to determine depth to basement in basins with sedimentary fill > 12 km. Within the study area, the dip of subducted South American oceanic lithosphere imaged on tomographic images is variable from ~44 to ~24 degrees. There is a distinct low gravity, low velocity, high attenuation, northwest - southeast trending lineation located east of Trinidad which defines the location of a Mesozoic oceanic fracture zone which accommodated the opening of the Central Atlantic during the Jurassic to Middle Cretaceous. This feature is also coincident with the present-day continent-ocean boundary and acts as a lithospheric weakness during subduction. We propose that this fracture zone is a key transition point between the subduction of South American/Atlantic oceanic lithosphere; which descends into the mantle, to the northeast, and the under-thrusting of transitional to continental South American lithosphere which resists subduction to the southwest. Maps of South American basement and its overlying Cretaceous passive margin illustrates a northwesterly basement dip with a distinct change in angle of the northwest dip across the paleo-fracture zone consistent with our tomographic model. We propose that flexure of the subducting South American plate at this location exerts a critical control on the formation and evolution of the basins and the lateral distribution of Cretaceous through Pleistocene stratigraphic fill. East of the fracture zone, the overlying strata is deformed by active subduction and accretionary prism processes with a wider zone of shortening with lower overall topography, while to the west of the fracture zone there is active oblique collision with a narrower zone of shortening and greater uplift.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030063259&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D5S','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030063259&hterms=5S&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D5S"><span>Were Ocean Impacts an Important Mechanism to Deliver Meteoritic Organic Matter to the Early Earth? Some Inferences from Eltanin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kyte, Frank T.; Gersonde, Rainer; Kuhn. Gerhard</p> <p>2002-01-01</p> <p>Several workers have addressed the potential for extraterrestrial delivery of volatles, including water and complex organic compounds, to the early Earth. For example, Chyba and Sagan (1992) argued that since impacts would destroy organic matter, most extraterrestrial organics must be delivered in the fine-fractions of interplanetary dust. More recent computer simulations (Pierazzo and Chyba, 1999), however, have shown that substantial amounts of amino acids may survive the impacts of large (km-sized) comets and that this may exceed the amounts derived from IDPs or Miller-Urey synthesis in the atmosphere. Once an ocean developed on the early Earth, impacts of small ,asteroids and comets into deep-ocean basins were potentially common and may have been the most likely events to deliver large amounts of organics. The deposits of the late Pliocene impact of the Eltanin asteroid into the Bellingshausen Sea provide the only record of a deep-ocean (approx. 5 km) impact that can be used to constrain models of these events. This impact was first discovered in 1981 as an Ir anomaly in sediment cores collected by the USNS Eltanin in 1965 (Kyte et al., 1981). In 1995, Polarstem expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5S, 91 W) contained well-preserved impact deposits that include disturbed ocean sediments and meteoritic impact ejecta (Gersonde et al., 1997). The latter is composed of shock- melted asteroidal materials and unmelted meteorites. In 2001, the FS Polarstem returned to the impact area during expedition ANT XVIII/5a. At least 16 cores were recovered that contain ejecta deposits. These cores and geophysical data from the expedition can be used to map the effects of the impact over a large region of the ocean floor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2265117','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2265117"><span>Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McFadden, Kathleen A.; Huang, Jing; Chu, Xuelei; Jiang, Ganqing; Kaufman, Alan J.; Zhou, Chuanming; Yuan, Xunlai; Xiao, Shuhai</p> <p>2008-01-01</p> <p>Recent geochemical data from Oman, Newfoundland, and the western United States suggest that long-term oxidation of Ediacaran oceans resulted in progressive depletion of a large dissolved organic carbon (DOC) reservoir and potentially triggered the radiation of acanthomorphic acritarchs, algae, macroscopic Ediacara organisms, and, subsequently, motile bilaterian animals. However, the hypothesized coupling between ocean oxidation and evolution is contingent on the reliability of continuous geochemical and paleontological data in individual sections and of intercontinental correlations. Here we report high-resolution geochemical data from the fossil-rich Doushantuo Formation (635–551 Ma) in South China that confirm trends from other broadly equivalent sections and highlight key features that have not been observed in most sections or have received little attention. First, samples from the lower Doushantuo Formation are characterized by remarkably stable δ13Corg (carbon isotope composition of organic carbon) values but variable δ34SCAS (sulfur isotope composition of carbonate-associated sulfate) values, which are consistent with a large isotopically buffered DOC reservoir and relatively low sulfate concentrations. Second, there are three profound negative δ13Ccarb (carbon isotope composition of carbonate) excursions in the Ediacaran Period. The negative δ13Ccarb excursions in the middle and upper Doushantuo Formation record pulsed oxidation of the deep oceanic DOC reservoir. The oxidation events appear to be coupled with eukaryote diversity in the Doushantuo basin. Comparison with other early Ediacaran basins suggests spatial heterogeneity of eukaryote distribution and redox conditions. We hypothesize that the distribution of early Ediacaran eukaryotes likely tracked redox conditions and that only after ≈551 Ma (when Ediacaran oceans were pervasively oxidized) did evolution of oxygen-requiring taxa reach global distribution. PMID:18299566</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025610','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025610"><span>Geology of the continental margin beneath Santa Monica Bay, Southern California, from seismic-reflection data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fisher, M.A.; Normark, W.R.; Bohannon, R.G.; Sliter, R.W.; Calvert, A.J.</p> <p>2003-01-01</p> <p>We interpret seismic-reflection data, which were collected in Santa Monica Bay using a 70-in3 generator-injector air gun, to show the geologic structure of the continental shelf and slope and of the deep-water, Santa Monica and San Pedro Basins. The goal of this research is to investigate the earthquake hazard posed to urban areas by offshore faults. These data reveal that northwest of the Palos Verdes Peninsula, the Palos Verdes Fault neither offsets the seafloor nor cuts through an undeformed sediment apron that postdates the last sea level rise. Other evidence indicates that this fault extends northwest beneath the shelf in the deep subsurface. However, other major faults in the study area, such as the Dume and San Pedro Basin Faults, were active recently, as indicated by an arched seafloor and offset shallow sediment. Rocks under the lower continental slope are deformed to differing degrees on opposite sides of Santa Monica Canyon. Northwest of this canyon, the continental slope is underlain by a little-deformed sediment apron; the main structures that deform this apron are two lower-slope anticlines that extend toward Point Dume and are cored by faults showing reverse or thrust separation. Southeast of Santa Monica Canyon, lower-slope rocks are deformed by a complex arrangement of strike-slip, normal, and reverse faults. The San Pedro Escarpment rises abruptly along the southeast side of Santa Monica Canyon. Reverse faults and folds underpinning this escarpment steepen progressively southeastward. Locally they form flower structures and cut downward into basement rocks. These faults merge downward with the San Pedro Basin fault zone, which is nearly vertical and strike slip. The escarpment and its attendant structures diverge from this strike-slip fault zone and extend for 60 km along the margin, separating the continental shelf from the deep-water basins. The deep-water Santa Monica Basin has large extent but is filled with only a thin (less than 1.5-km) section of what are probably post-Miocene rocks and sediment. Extrapolating ages obtained from Ocean Drilling Program site 1015 indicates that this sedimentary cover is Quaternary, possibly no older than 600 ka. Folds and faults along the base of the San Pedro Escarpment began to form during 8-13 ka ago. Refraction-velocity data show that high-velocity rocks, probably the Catalina Schist or Miocene volcanic rocks, underlie the sedimentary section. The San Pedro Basin developed along a strike-slip fault, widens to the southeast, and is deformed by faults having apparent reverse separation and by folds near Redondo Canyon and the Palos Verdes Peninsula.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MarGR.tmp...26D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MarGR.tmp...26D"><span>The crustal structure of the Enderby Basin, East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davis, Joshua K.; Lawver, Lawrence A.; Norton, Ian O.; Dalziel, Ian W. D.; Gahagan, Lisa M.</p> <p>2018-05-01</p> <p>The passive margin and ocean crust of the Enderby Basin, East Antarctica preserves a record of the breakup of East Gondwana. Using a suite of public domain geophysical data, we have examined and described the crustal morphology of the basin. Based on our geophysical observations, we divide the Enderby Basin into three distinct morphologic domains. The Eastern Domain demonstrates the most volcanic morphology of the basin, with abundant seaward dipping reflector packages and anomalously thick oceanic crust. These features suggest an early influence by the Kerguelen Hotspot on continental breakup within the domain. The Central Domain is characterized by two regions of oceanic crust of varying morphology segregated by a high amplitude magnetic anomaly. Geophysical observations suggest that the basement directly inboard of this magnetic anomaly is composed of thin, rugged, and poorly structured, proto-oceanic crust, similar in morphology to oceanic crust formed at ultraslow/slow mid-ocean ridged. Outboard of this anomaly, oceanic crust appears to be well-structured and of normal thickness. We offer three, non-exclusive, explanations for the observed change in ocean crustal structure: (1) melt production was initially low at the time of continental breakup, and the progressive decompression of the mantle led to a gradual increase in melt production and ocean crust thickness, (2) melt production was initially low to due lower extension rates and that melt production increased following a change in spreading rate, (3) a change in spreading ridge geometry led to more effective seafloor spreading rate and concurrent increase in melt production. The Western Domain of the Enderby Basin is characterized by abundant fracture zones and anomalously thin oceanic crust. We believe these features arose as a geometric consequence of the originally oblique orientation of continental rifting relative to the extension direction within the domain. Together these observations suggest that the breakup of East Gondwana was highly variable, with notable along-strike differences in crustal deformation and seafloor spreading processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP41C1406G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP41C1406G"><span>Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.</p> <p>2014-12-01</p> <p>Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJEaS.106..917G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJEaS.106..917G"><span>Tectono-stratigraphic evolution and crustal architecture of the Orphan Basin during North Atlantic rifting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gouiza, Mohamed; Hall, Jeremy; Welford, J. Kim</p> <p>2017-04-01</p> <p>The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia-Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic-Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4-16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002GeoRL..29.1800S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002GeoRL..29.1800S"><span>On the role of inter-basin surface salinity contrasts in global ocean circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seidov, D.; Haupt, B. J.</p> <p>2002-08-01</p> <p>The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (TOC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. Ocean-wide inter-basin SSS contrasts serve as the major controlling element in global TOC. These contrasts are shown to be at least as important as high-latitudinal freshwater impacts. It is also shown that intra-basin longitudinal distribution of sea surface salinity, as well as intra- and inter-basin longitudinal distribution of sea surface temperature, is not crucial to conveyor functionality if only inter-basin contrasts in sea surface salinity are retained. This is especially important for paleoclimate and future climate simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2914020','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2914020"><span>Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J.; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios</p> <p>2010-01-01</p> <p>Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity. PMID:20689848</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20689848','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20689848"><span>Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios</p> <p>2010-08-02</p> <p>Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP53A2356P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP53A2356P"><span>Characterization of the Lower Wolfcamp, Midland Basin, Texas, using subsurface stratigraphic and geochemical datasets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perlman, Z. S.; Ryan, P. T.; Baldwin, P.; Lucas, J.; McGlue, M. M.; Waite, L.; Woodruff, O. P.</p> <p>2016-12-01</p> <p>In recent years, the Midland Basin of west Texas has resurfaced as a strong and viable unconventional oil field, especially within the late Pennsylvanian-Early Permian section. In addition to exploring for hydrocarbons, studying this basin allows for a better understanding of the paleoceanographic and paleoenvironmental conditions that prevailed during deposition. This research focuses on subsurface data from the Lower Wolfcamp interval of the northern Midland Basin proximal to the Horseshoe Atoll. Chemostratigraphic and lithostratigraphic analyses were conducted on 388 ft of continuous drill core extracted from Martin County, Texas. Comprehensive analyses revealed repetitive stacking of organic-rich siliceous mudrocks, aluminum-rich clayey mudrocks, and diverse carbonate facies. High resolution energy dispersive X-ray fluorescence data demonstrate cyclic variability in silicon, aluminum, and calcium weight percentages. These data suggest that during the time of deposition, the Midland Basin was a mixed siliciclastic-carbonate system influenced by a global icehouse climate with high frequency glacio-eustatic sea level fluctuations. Organic carbon preservation at this time was at least partially influenced by bottom water redox conditions. Elemental trace metal data suggests the potential for anoxia and possibly euxinia, likely influenced by recharge from the Panthalassic Ocean. Stratal evidence for bottom water conditions and patterns of organic enrichment vary across the basin and in vertical succession; these factors may be explained by evolving oceanographic processes and environmental gradients within the basin. The timing of Lower Wolfcamp deposition may be Late Pennsylvanian, based on correlations to fusulinids in shelfal carbonates. Thus, our preliminary interpretations focus on Lower Wolfcamp strata as a condensed package of deep-basin cyclothems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25883355','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25883355"><span>Ocean chemistry. Dilution limits dissolved organic carbon utilization in the deep ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arrieta, Jesús M; Mayol, Eva; Hansman, Roberta L; Herndl, Gerhard J; Dittmar, Thorsten; Duarte, Carlos M</p> <p>2015-04-17</p> <p>Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. Copyright © 2015, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614521L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614521L"><span>Orphan Basin crustal structure from a dense wide-angle seismic profile - layered modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lau, K. W. Helen; Watremez, Louise; Louden, Keith E.; Nedimović, Mladen R.; Karner, Garry D.</p> <p>2014-05-01</p> <p>The Orphan Basin is a large, deep water basin to the east of Newfoundland and northwest of Flemish Cap, Canada. It contains a considerably wide series of rift basins that provides an excellent opportunity to study continental crustal deformations under varying degrees of extension. We present a 500-km-long P-wave velocity model across the complete rift system of the Orphan Basin, from Flemish Cap to the Bonavista Platform, using high-resolution refraction and wide-angle reflection data from 89 ocean-bottom seismometers (OBS). This layered model builds on a first-arrival traveltime tomography model (Watremez et al., this session) and is formed using additional constraints from a coincident multichannel seismic reflection profile, gravity data and borehole data from three wells. The layered model helps detail deep sediment and crustal variations across this wide region of extended continental crust. The sedimentary section contains post-rift Tertiary (vp~1.7-3.5 km/s) and syn-rift Cretaceous and Jurassic (vp~4-5.4 km/s) layers within both the eastern and the western sub-basins, separated by three basement highs, suggesting that the two sub-basins may have opened during a single, extended rifting event. The crust is composed of three layers with vp of 5.4-6.1, 6.1-6.5 and 6.3-7.1 km/s of highly variable combined thicknesses, from 32 km beneath Flemish Cap and the Bonavista Platform to <10 km beneath both western and eastern sub-basins. The shape of the crustal thinning appears highly asymmetrical across the two sub-basins. Flemish Cap crust thins westward within the eastern sub-basin into a narrow zone (35 km) of hyperextended crust (<10 km thick) beneath an 8-km-deep sedimentary basin. In contrast, the Bonavista Platform crust thins eastward within the western sub-basin into a wider zone (116 km) of hyperextended crust. Separating the two rift basins is a central section with two distinctive zones of thicker (10-16 km) crust, where muted topography characterizes the eastern part and large basement highs in the western part, separated by the eastward dipping White Sail Fault cutting through the whole crust to the Moho. Higher velocities are, however, found within the lower crustal hanging wall relative to its footwall counterpart to its west. Since such structure cannot be explained by displacement along the fault alone, lateral ductile flow may be responsible for such depth-dependant stretching (DDS). Discrepancies between upper crustal thinning (γuc) and lower crustal thinning (γlc) are consistently observed, but only create a small deficit (~7% or 1.5 km) in the lower crust. Reconstruction of the North Atlantic at M0 time suggests a complex connection between Rockall Trough and the West Orphan Basin, Porcupine Bank and the East Orphan Basin, and the Central Orphan High and Porcupine Bank. Unlike the Rockall and Porcupine Basins, no evidence for partial serpentinization of the upper mantle is observed beneath the E. Orphan trough. However, hyperextension (crustal thickness < 10 km) only occurs over a very narrow zone (~ 30 km wide) in the E. Orphan trough, which might have allowed the basement to have been covered by syn-rift sediment that inhibited the flow of water down the faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800034324&hterms=mechanical+engineering&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmechanical%2Bengineering','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800034324&hterms=mechanical+engineering&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmechanical%2Bengineering"><span>DUMAND Summer Workshop, University of California, La Jolla, Calif., July 24-September 2, 1978, Proceedings. Volume 3 - Oceanographic and ocean engineering studies. [Deep Underwater Muon and Neutrino Detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilkins, G.</p> <p>1979-01-01</p> <p>The DUMAND (Deep Underwater Muon and Neutrino Detector) array, a hexagon 800 m on a side, 673 m high, and consisting of 22,698 sensor modules, is designed to detect neutrinos in the TeV range, hadronic cascades, muons and Cerenkov radiation. Its engineering, signal processing, and logistic aspects are considered, as are its optical detection (photomultiplier tubes) system and electronics. Geological and bottom current surveys were made at two proposed sites for the array (the Maui and Keahole Point basins of Hawaii), and a study of the steady-state response of a sensor string to current drag forces is reported. Biological interference with the DUMAND array, including mechanical entanglement by large animals, bioluminescence, and especially biofouling are considered, as well as the deployment, implantment and maintenance of the array.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3804K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3804K"><span>Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks - a potential climate feedback mechanism?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kroeger, K. F.; Funnell, R. H.</p> <p>2012-04-01</p> <p>Surface and deep sea temperatures from late Paleocene to early Eocene until the Early Eocene climatic Optimum increased by 5 - 10° C. This change was associated with a negative δ13C trend which implies major changes in global carbon cycling and enrichment of surface systems in isotopically light carbon. The degree of change in sedimentary δ13C requires emission of >10,000 gigatonnes of isotopically light carbon into the ocean. We reveal a relationship between global warming and increased petroleum generation in sedimentary basins operating on 100 kyr to Myr time scales that may explain the observed isotope shift. We use TEX86-based surface temperature data1 to predict how change in surface temperature influences the temperature evolution and resultant petroleum generation in four southwest Pacific sedimentary basins. Models predict an up to 50% increase in oil and gas expulsion rates in response to the increase in temperatures from late Paleocene to early Eocene in the region. Such an increase in petroleum generation would have significantly increased leakage of light hydrocarbons and oil degeneration products into surface systems. We propose that our modelling results are representative of a large number of sedimentary basins world-wide and that early Eocene warming has led to a synchronization of periods of maximum petroleum generation and enhanced generation in otherwise unproductive basins through extension of the volume of source rock within the oil and gas window. Extrapolating our modelling results to hundreds of sedimentary basins worldwide suggests that globally increased leakage could have led to the release of an amount of CH4, CO2 and light petroleum components into surface systems compatible with the observed changes in δ13C. We further suggest that this is a significant feedback effect, enhancing early Eocene climate warming. 1Bijl, P. K., S. Schouten, A. Sluijs, G.-J. Reichart, J. C. Zachos, and H. Brinkhuis (2009), Early Palaeogene temperature evolution of the southwest Pacific Ocean, Nature, 461, 776-779.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6570B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6570B"><span>The oceanic variability of the Lofoten basin: first results from the glider activity of the ProVoLo project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosse, Anthony; Fer, Ilker</p> <p>2017-04-01</p> <p>Located in the northern Norwegian Sea at high latitude between 68°N and 73°N, the Lofoten basin is one of the world's most energetic areas regarding the ocean dynamics. It hosts the largest and deepest pool of warm Atlantic Waters in the Nordic Seas, thus leading to very intense air-sea energy fluxes and deep convection in winter. Understanding the physical processes involved in the water mass transformations of this very productive area is thus of crucial interest in a climate perspective, as well as for the fishery economics. The ProVoLo project aims at quantifying the energy pathways from the large-scale circulation to the (sub-)mesoscale, and eventually to the dissipation scale. To this end, the project is largely devoted to in situ observations involving R/V cruises (CTD, LADCP, microstructure), mooring lines, gliders (CTD and microstructure) and RAFOS floats. Collecting data with gliders in such a dynamical environment is a challenge. We present results from two completed Seaglider missions of 8-months duration each, started in May 2016, as well as from three ongoing missions. The observations enable the description of two key features of the Lofoten basin circulation: 1 - The Lofoten Basin eddy, which is permanent anticyclonic vortex that has been regularly detected in the center of the basin over the last decades. The vortex has very intense subsurface peak velocities exceeding 0.7 m/s and a small radius of about 15 km. The collected data also enable a description of the seasonal variability associated with the vortex, and give insight into its interaction with higher frequency flows. 2 - The frontal region situated along the Mohn ridge. The front is characterized by a narrow ( 15 km) and intense baroclinic jet separating the warm Atlantic waters from the cold waters coming from the Arctic. The observations from intensive sampling of this front, testify an important variability, at both seasonal time scale and from meso to submesoscale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22174131','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22174131"><span>The Southern Ocean's role in carbon exchange during the last deglaciation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burke, Andrea; Robinson, Laura F</p> <p>2012-02-03</p> <p>Changes in the upwelling and degassing of carbon from the Southern Ocean form one of the leading hypotheses for the cause of glacial-interglacial changes in atmospheric carbon dioxide. We present a 25,000-year-long Southern Ocean radiocarbon record reconstructed from deep-sea corals, which shows radiocarbon-depleted waters during the glacial period and through the early deglaciation. This depletion and associated deep stratification disappeared by ~14.6 ka (thousand years ago), consistent with the transfer of carbon from the deep ocean to the surface ocean and atmosphere via a Southern Ocean ventilation event. Given this evidence for carbon exchange in the Southern Ocean, we show that existing deep-ocean radiocarbon records from the glacial period are sufficiently depleted to explain the ~190 per mil drop in atmospheric radiocarbon between ~17 and 14.5 ka.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17779379','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17779379"><span>Deep-ocean basalts: inert gas content and uncertainties in age dating.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Noble, C S; Naughton, J J</p> <p>1968-10-11</p> <p>The radiogenic argon and helium contents of three basalts erupted into the deep ocean from an active volcano (Kilauea) have been measured. Ages calculated from these measurements increase with sample depth up to 22 million years for lavas deduced to be recent. Caution is urged in applying dates from deep-ocean basalts in studies on ocean-floor spreading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7125Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7125Y"><span>Nature and tectonic implications of uneven sedimentary filling of the South China Sea oceanic basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Shaoru; Li, Jiabiao; Ding, Weiwei; Fang, Yinxia</p> <p>2017-04-01</p> <p>The IODP Expedition 349 in 2014, for the first time, illustrated significant differences of sediment rate and lithology in the central South China Sea (SCS) oceanic basin. Based on seismic reflection profiles tied to IODP349 drilling data, we investigated characteristics of sedimentary filling of the whole SCS oceanic basin, and examined their implications for tectonics. Results show that sediments fill the SCS oceanic basin mainly in three depositional patterns. Firstly, during the Oligocene to middle Miocene, sediments amassed almost solely and then connected like a band parallel to the continent in a low average sediment rate (<10 m/Myr) in the northern oceanic basin. These sediments were deposited mainly in the form of submarine fans and mass transport deposits. Sediments were predominately supplied by the Red and Pearl Rivers and the Dongsha Islands. The sedimentary characteristics likely reflect the latest early Miocene end of seafloor spreading of the SCS and the first-phase rapid uplift of the Tibetan Plateau. Secondly, during the late Miocene, deposition mainly occurred in the Northwest Sub-basin and extended southeastward with a middle average sediment rate ( 30 m/Myr). Sediments were mostly transported by the Red River and Xisha Trough and deposited in the form of submarine fans. The abnormal increase of sediment rate in the Northwest Sub-basin reflects late Miocene slip reversal of the Red River Fault. Finally, since the Pliocene, sediments gradually propagated northeastward in the Southwestern Sub-basin, and accumulated rapidly in the southeastern and northeastern basin, especially in the northern Manila Trench during the Quaternary, in an average sediment rate about 60-80 m/Myr. These sediments were transported mainly by submarine canyons and settled in the form of submarine fans and canyon-overbank deposition. Sediments came from four major sources, including Taiwan, Dongsha Islands, Mekong River, and northern Palawan. The Pliocene to Quaternary explosion of uneven sedimentary filling in the SCS oceanic basin points to the combined action of local and regional tectonics, including the two-phase rapid uplift of the Tibetan Plateau, the Pliocene to Quaternary increased northwestward movement of the Philippine Sea plate and Dongsha event. This study exhibits hitherto most completed observation of sedimentary filling of the SCS oceanic basin and provides new geophysical evidences for the local and regional important tectonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GGG....17.5036P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GGG....17.5036P"><span>Madagascar's escape from Africa: A high-resolution plate reconstruction for the Western Somali Basin and implications for supercontinent dispersal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phethean, Jordan J. J.; Kalnins, Lara M.; van Hunen, Jeroen; Biffi, Paolo G.; Davies, Richard J.; McCaffrey, Ken J. W.</p> <p>2016-12-01</p> <p>Accurate reconstructions of the dispersal of supercontinent blocks are essential for testing continental breakup models. Here, we provide a new plate tectonic reconstruction of the opening of the Western Somali Basin during the breakup of East and West Gondwana. The model is constrained by a new comprehensive set of spreading lineaments, detected in this heavily sedimented basin using a novel technique based on directional derivatives of free-air gravity anomalies. Vertical gravity gradient and free-air gravity anomaly maps also enable the detection of extinct mid-ocean ridge segments, which can be directly compared to several previous ocean magnetic anomaly interpretations of the Western Somali Basin. The best matching interpretations have basin symmetry around the M0 anomaly; these are then used to temporally constrain our plate tectonic reconstruction. The reconstruction supports a tight fit for Gondwana fragments prior to breakup, and predicts that the continent-ocean transform margin lies along the Rovuma Basin, not along the Davie Fracture Zone (DFZ) as commonly thought. According to our reconstruction, the DFZ represents a major ocean-ocean fracture zone formed by the coalescence of several smaller fracture zones during evolving plate motions as Madagascar drifted southwards, and offshore Tanzania is an obliquely rifted, rather than transform, margin. New seismic reflection evidence for oceanic crust inboard of the DFZ strongly supports these conclusions. Our results provide important new constraints on the still enigmatic driving mechanism of continental rifting, the nature of the lithosphere in the Western Somali Basin, and its resource potential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSAES..84..351L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSAES..84..351L"><span>Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loureiro, A.; Schnürle, P.; Klingelhöfer, F.; Afilhado, A.; Pinheiro, J.; Evain, M.; Gallais, F.; Dias, N. A.; Rabineau, M.; Baltzer, A.; Benabdellouahed, M.; Soares, J.; Fuck, R.; Cupertino, J. A.; Viana, A.; Matias, L.; Moulin, M.; Aslanian, D.; Vinicius Aparecido Gomes de Lima, M.; Morvan, L.; Mazé, J. P.; Pierre, D.; Roudaut-Pitel, M.; Rio, I.; Alves, D.; Barros Junior, P.; Biari, Y.; Corela, C.; Crozon, J.; Duarte, J. L.; Ducatel, C.; Falcão, C.; Fernagu, P.; Le Piver, D.; Mokeddem, Z.; Pelleau, P.; Rigoti, C.; Roest, W.; Roudaut, M.; Salsa Team</p> <p>2018-07-01</p> <p>Twelve combined wide-angle refraction and coincident multi-channel seismic profiles were acquired in the Jequitinhonha-Camamu-Almada, Jacuípe, and Sergipe-Alagoas basins, NE Brazil, during the SALSA experiment in 2014. Profiles SL11 and SL12 image the Jequitinhonha basin, perpendicularly to the coast, with 15 and 11 four-channel ocean-bottom seismometers, respectively. Profile SL10 runs parallel to the coast, crossing profiles SL11 and SL12, imaging the proximal Jequitinhonha and Almada basins with 17 ocean-bottom seismometers. Forward modelling, combined with pre-stack depth migration to increase the horizontal resolution of the velocity models, indicates that sediment thickness varies between 3.3 km and 6.2 km in the distal basin. Crustal thickness at the western edge of the profiles is of around 20 km, with velocity gradients indicating a continental origin. It decreases to less than 5 km in the distal basin, with high seismic velocities and gradients, not compatible with normal oceanic crust nor exhumed upper mantle. Typical oceanic crust is never imaged along these about 200 km-long profiles and we propose that the transitional crust in the Jequitinhonha basin is a made of exhumed lower continental crust.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>