Automated variance reduction for MCNP using deterministic methods.
Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B
2005-01-01
In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.
The Auto-Gopher: A Wireline Rotary-Percussive Deep Sampler
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Zacny, Kris; Badescu, Mircea; Lee, Hyeong Jae; Sherrit, Stewart; Bao, Xiaoqi; Paulsen, Gale L.; Beegle, Luther
2016-01-01
Accessing regions on planetary bodies that potentially preserved biosignatures or are presently habitable is vital to meeting NASA solar system "Search for Life" exploration objectives. To address these objectives, a wireline deep rotary-percussive corer called Auto-Gopher was developed. The percussive action provides effective material fracturing and the rotation provides effective cuttings removal. To increase the drill's penetration rate, the percussive and rotary motions are operated simultaneously. Initially, the corer was designed as a percussive mechanism for sampling ice and was demonstrated in 2005 in Antarctica reaching about 2 m deep. The lessons learned suggested the need to use a combination of rotation and hammering to maximize the penetration rate. This lesson was implemented into the Auto-Gopher-I deep drill which was demonstrated to reach 3-meter deep in gypsum. The average drilling power that was used has been in the range of 100-150 Watt, while the penetration rate was approximately 2.4 m/hr. Recently, a task has started with the goal to develop Auto-Gopher-II that is equipped to execute all the necessary functions in a single drilling unit. These functions also include core breaking, retention and ejection in addition drilling. In this manuscript, the Auto-Gopher-II, its predecessors and their capability are described and discussed.
In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.
Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma
2016-01-20
Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.
NASA Astrophysics Data System (ADS)
KIM, Jong Woon; LEE, Young-Ouk
2017-09-01
As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.
Estimating maximum depth distribution of seagrass using underwater videography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, J.G.; Wyllie-Echeverria, S.
1997-06-01
The maximum depth distribution of eelgrass (Zostera marina) beds in Willapa Bay, Washington appears to be limited by light penetration which is likely related to water turbidity. Using underwater videographic techniques we estimated that the maximum depth penetration in the less turbid outer bay was -5.85 ft (MILW) and in the more turbid inner bay was only -1.59 ft (MLLW). Eelgrass beds had well defined deepwater edges and no eelgrass was observed in the deep channels of the bay. The results from this study suggest that aerial photographs taken during low tide periods are capable of recording the majority ofmore » eelgrass beds in Willapa Bay.« less
NASA Technical Reports Server (NTRS)
Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.
2012-01-01
Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature increase during the heating. By stopping during the excavation, it is possible to measure thermal conductivities at different depths. The gas jets are turned off when the penetrating cone reaches the target depth. Then, the stem pushes the needle sensor into the undisturbed soil at the bottom of the hole and carries out a thermal conductivity measurement. When the measurement is complete, the system resumes excavation. RTDs, placed along the stem at short (approx 30 cm) intervals, will monitor long-term temperature stability of the subsurface. Temperature in the shallow subsurface would fluctuate with the diurnal, annual, and precession cycles of the Moon. These thermal waves penetrate to different depths into the regolith. Longterm monitoring of the subsurface temperature would allow us to accurately delineate these cyclic signals and separate them from the signal associated with the outward flow of the Moon s endogenic heat. Further, temperature toward bottom of the 3-m hole should be fairly stable after the heat generated during the excavation dissipates into the surrounding soil. The geothermal gradient may be determined reliably from temperature measurements at the RTDs near the bottom. In order to minimize the heat conduction along the stem from affecting the geothermal gradient measurements, we plan to use low-conductive materials for the stem and develop a mechanism to achieve close coupling between the RTDs and the wall of the excavated hole.
Cardiovascular Imaging Using Two-Photon Microscopy
Scherschel, John A.; Rubart, Michael
2008-01-01
Two-photon excitation microscopy has become the standard technique for high resolution deep tissue and intravital imaging. It provides intrinsic three-dimensional resolution in combination with increased penetration depth compared to single-photon confocal microscopy. This article will describe the basic physical principles of two-photon excitation and will review its multiple applications to cardiovascular imaging, including second harmonic generation and fluorescence laser scanning microscopy. In particular, the capability and limitations of multiphoton microscopy to assess functional heterogeneity on a cellular scale deep within intact, Langendorff-perfused hearts are demonstrated. It will also discuss the use of two-photon excitation-induced release of caged compounds for the study of intracellular calcium signaling and intercellular dye transfer. PMID:18986603
[Search for life in deep biospheres].
Naganuma, Takeshi
2003-12-01
The life in deep biospheres bridges conventional biology and future exobiology. This review focuses the microbiological studies from the selected deep biospheres, i.e., deep-sea hydrothermal vents, sub-hydrothermal vents, terrestrial subsurface and a sub-glacier lake. The dark biospheres facilitate the emergence of organisms and communities dependent on chemolithoautotrophy, which are overwhelmed by photoautotrophy (photosynthesis) in the surface biospheres. The life at deep-sea hydrothermal vents owes much to chemolithoautotrophy based on the oxidation of sulfide emitted from the vents. It is likely that similarly active bodies such as the Jovian satellite Europa may have hydrothermal vents and associated biological communities. Anoxic or anaerobic condition is characteristic of deep subsurface biospheres. Subsurface microorganisms exploit available oxidants, or terminal electron acceptors (TEA), for anaerobic respiration. Sulfate, nitrate, iron (III) and CO2 are the representative TEAs in the deep subsurface. Below the 3000-4000 m-thick glacier on Antarctica, there have been >70 lakes with liquid water located. One of such sub-glacial lakes, Lake Vostok, is about to be drill-penetrated for microbiological studies. These deep biosphere "platforms" provide new knowledge about the diversity and potential of the Earth's life. The expertise obtained from the deep biosphere expeditions will facilitate the capability of exobiologial exploration.
NASA Astrophysics Data System (ADS)
Zhao, H.; Baker, D. N.; Califf, S.; Li, X.; Jaynes, A. N.; Leonard, T.; Kanekal, S. G.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.; Reeves, G. D.; Spence, H. E.
2017-12-01
Using measurements from the Van Allen Probes, a penetration event of tens to hundreds of keV electrons and tens of keV protons into the low L shells (L < 4) is studied. Timing and magnetic local time (MLT) differences of energetic particle deep penetration are unveiled and underlying physical processes are examined. During this event, both proton and electron penetrations are MLT asymmetric. The observed MLT difference of proton penetration is consistent with convection of plasma sheet protons, suggesting enhanced convection during geomagnetic active times to be the cause of energetic proton deep penetration during this event. The observed MLT difference of tens to hundreds of keV electron penetration is completely different from tens of keV protons and cannot be well explained by inward radial diffusion, convection of plasma sheet electrons, or transport of trapped electrons by enhanced convection electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L shells, should be MLT localized.
NASA Astrophysics Data System (ADS)
Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.
2012-10-01
Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.
AURORA BOREALIS - European Research Icebreaker With Drilling Capability
NASA Astrophysics Data System (ADS)
Biebow, N.; Lembke-Jene, L.; Kunz-Pirrung, M.; Thiede, J.
2008-12-01
The polar oceans are the least known areas of the globe, in although they hold the key to many of our climate´s secrets. How does the sea ice coverage and the sea water properties change? How do plants and animals survive under the most extreme conditions of the earth? Which information of past climate change can be read from the sediments at the sea-floor and how can the future changing climate be predicted? In order to answer such and further questions, for the moment a hypermodern research vessel, the AURORA BOREALIS, is planned, which can handle the cool summers and freezing winters of the polar oceans and which can drill deep into the sea floor. AURORA BOREALIS will be the most advanced Research Icebreaker in the world with a multi-functional role of drilling in deep ocean basins and supporting climate/environmental research and decision support for stakeholder governments for the next 35-40 years. It will have a high icebreaking capacity to penetrate autonomously (single ship operation) into the central Arctic Ocean with more than 2.5 meters of ice cover, during all seasons of the year. The new technological features will include dynamic positioning in closed sea- ice cover, satellite navigation and ice-management support and the deployment and operation of Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUVs) from the twin moon-pools. A unique feature of the vessel is the deep-sea drilling rig, which will enable sampling of the ocean floor and sub-sea up to 5000 m water and 1000 m penetration at the most inhospitable places on earth. The drilling capability will be deployed in both Polar Regions on the long run and AURORA BOREALIS will be the only vessel worldwide that could undertake this type of scientific investigation.
Numerical Analysis of Projectile Impact and Deep Penetration into Earth Media
1975-08-01
Soil ) :ind ?.vr2 (Shai h.) SECTION III COMPII1TAT IONAL METIIOD 3.1 lAVF-L CODlP The NA \\VL code was employed for these calculations. WAV.-L is a...8217,gh the computational grid. For these calculations, the prtjectile/target interface *a- assumed to be frictionless. A lithostatic field in the soil was...generated by pre’scribing initially compressed soil states. .3.2 GRID DECOUPLiN; The sliding interface formulation in WAVE-L includes the capability
Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhm, Han S.; Lim, Jin P.; Li, Shou Z.
2007-06-25
Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.
Flexible deep brain neural probes based on a parylene tube structure
NASA Astrophysics Data System (ADS)
Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong
2018-01-01
Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.
NASA Astrophysics Data System (ADS)
Prasad, Paras N.
2017-02-01
This talk will focus on design and applications of nanomaterials exhibiting strong multiphoton upconversion for multiphoton microscopy as well as for image-guided and light activated therapy .1-3 Such processes can occur by truly nonlinear optical interactions proceeding through virtual intermediate states or by stepwise coupled linear excitations through real intermediate states. Multiphoton processes in biocompatible multifunctional nanoparticles allow for 3D deep tissue imaging. In addition, they can produce in-situ photon conversion of deep tissue penetrating near IR light into a needed shorter wavelength light for photo-activated therapy at a targeted site, thus overcoming the limited penetration of UV or visible light into biological media. We are using near IR emitters such as silicon quantum dots which also exhibit strong multiphoton excitation for multiphoton microscopy. Another approach involves nonlinear nanocrystals such as ZnO which can produce four wave mixing, sum frequency generation as well as second harmonic generation to convert a deep tissue penetrating Near IR light at the targeted biological site to a desired shorter wavelength light suitable for bio imaging or activation of a therapy. We have utilized this approach to activate a photosensitizer for photodynamic therapy. Yet another type of upconversion materials is rare-earth ion doped optical nanotransformers which transform a Near IR (NIR) light from an external source by sequential single photon absorption, in situ and on demand, to a needed wavelength. Applications of these nanotransformers in multiphoton photoacoustic imaging will also be presented. An exciting direction pursued by us using these multiphoton nanoparticles, is functional imaging of brain. Simultaneously, they can effect optogenetics for regioselective stimulation of neurons for providing an effective intervention/augmentation strategy to enhance the cognitive state and lead to a foundation for futuristic vision of super human capabilities. Challenges and opportunities will be discussed.
Yong, Paul J
2017-10-01
Endometriosis is a common chronic disease affecting 1 in 10 women of reproductive age, with half of women with endometriosis experiencing deep dyspareunia. A review of research studies on endometriosis indicates a need for a validated question or questionnaire for deep dyspareunia. Moreover, placebo-controlled randomized trials have yet to demonstrate a clear benefit for traditional treatments of endometriosis for the outcome of deep dyspareunia. The reason some patients might not respond to traditional treatments is the multifactorial nature of deep dyspareunia in endometriosis, which can include comorbid conditions (eg, interstitial cystitis and bladder pain syndrome) and central sensitization underlying genito-pelvic pain penetration disorder. In general, there is a lack of a framework that integrates these multifactorial causes to provide a standardized approach to deep dyspareunia in endometriosis. To propose a clinical framework for deep dyspareunia based on a synthesis of pain mechanisms with genito-pelvic pain penetration disorder according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Narrative review after literature search with the terms (endometriosis AND dyspareunia) OR (dyspareunia AND deep) and after analysis of placebo-controlled randomized trials. Deep dyspareunia presence or absence or deep dyspareunia severity on a numeric rating scale or visual analog scale. Four types of deep dyspareunia are proposed in women with endometriosis: type I that is directly due to endometriosis; type II that is related to a comorbid condition; type III in which genito-pelvic pain penetration disorder is primary; and type IV that is secondary to a combination of types I to III. Four types of deep dyspareunia in endometriosis are proposed, which can be used as a framework in research studies and in clinical practice. Research trials could phenotype or stratify patients by each type. The framework also could give rise to more personalized care for patients by targeting appropriate treatments to each deep dyspareunia type. Yong PJ. Deep Dyspareunia in Endometriosis: A Proposed Framework Based on Pain Mechanisms and Genito-Pelvic Pain Penetration Disorder. Sex Med Rev 2017;5:495-507. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers
NASA Astrophysics Data System (ADS)
Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart
Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influence of the green wavelength on energy coupling during heat conduction welding and deep penetration welding as well as the influence on the weld shape has been investigated.
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Plaut, J. J.; Gurnett, D. A.; Picardi, G.
2004-01-01
The penetration of the MARSIS radar signal into the polar ice mass is modeled to determine the capability of the instrument to locate sub-glacial aquifers. As a ground penetrating radar, the orbiting MARSIS transmits a signal greater than 1 W between 1-5 MHz. In this work we will investigate the effect of ice conductive losses on the radar-detection of subsurface aquifers. Based on wave propagation analysis, it is found that for a bulk ice conductivity below 10-5 S/m, conductive losses in the medium are not significant. However, if the bulk ice conductivity is relatively large (greater than 10-5 S/m), the reflected signal from any deep aquifer will be absorbed as it propagates in the lossy ice medium limiting the probing depth.
NASA Astrophysics Data System (ADS)
Goodge, J. W.; Severinghaus, J. P.
2014-12-01
The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.
Objectives and Capabilities of the Deep Space 2 (DS2) Evolved Water Experiment
NASA Astrophysics Data System (ADS)
Yen, A. S.; Murray, B.; Zent, A. P.
1999-09-01
The New Millennium Deep Space 2 (DS2) Mars Microprobes will impact the surface of Mars at a latitude of approximately 75 degrees South on December 3, 1999. The primary objective of this mission is to demonstrate penetrator technologies for future scientific applications. Nonetheless, measurements will be obtained with the goal of characterizing the atmospheric structure during entry as well as the penetrability, thermal conductivity, and water ice content of the polar layered terrains. In addition to demonstrating the ability to collect a subsurface sample, the evolved water experiment will test models of the south polar regions which indicate that water ice is stable at depths of 4 to 20 cm and greater [Paige and Keegan, 1994]. This prediction for the presence of ice is in contrast to atmospheric circulation models which suggest that water is irreversibly lost from southern latitudes and that the only extensive, permanent ice deposits are located in the northern hemisphere [Houben et al., 1997]. Furthermore, MOC images from the 1998 aerobraking phase suggest a rougher and perhaps more devolatilized surface than inferred from Viking and Mariner 9 data. Thus, the direct determination of the presence or absence of near-surface ice by the DS2 probes is important in the resolution of the fundamental questions about Mars regarding the global inventory of water and the climate history. In pursuit of these objectives, a 160 milliliter soil sample will be actively collected by a miniature drill and analyzed for water ice both thermally and spectroscopically. Specific capabilities and detection limits for the abundance of water ice will be presented at the meeting.
Deep-seated intramuscular lipoma penetrates the intercostal muscle
Hwang, Jinwook; Min, Byoung-Ju; Shin, Jae Seung
2015-01-01
Deep-seated intramuscular lipomas are rare, and most exhibit an infiltrating behavior. This study reports serial radiographs of a lipoma in chest wall muscles which penetrated the intercostal muscle for a 6-year period. Although this lipoma did not involve the parietal pleura, it compressed lung. To the authors’ knowledge, the present study is the first report to show the growth of a deep-seated chest wall lipoma into the thoracic cavity through serial radiographs. We consider the surgical treatment is needed before deep-seated intramuscular chest wall lipoma compress intrathoracic structures. PMID:26623127
NASA Technical Reports Server (NTRS)
Lockwood, H. E.
1973-01-01
Nine film-filter combinations have been tested for effectiveness in recording water subsurface detail when exposed from an aerial platform over a typical water body. An experimental 2-layer positive color film, a 2-layer (minus blue layer) film, a normal 3-layer color film, a panchromatic black-and-white film, and an infrared film with selected filters were tested. Results have been tabulated to show the relative capability of each film-filter combination for: (1) image contrast in shallow water (0 to 5 feet); (2) image contrast at medium depth (5 to 10 feet); (3) image contrast in deep water (10 feet plus); (4) water penetration; maximum depth where detail was discriminated; (5) image color (the spectral range of the image); (6) vegetation visible above a water background; (7) specular reflections visible from the water surface; and (8) visual compatibility; ease of discriminating image detail. Recommendations for future recording over water bodies are included.
Hu, Chuan; Cun, Xingli; Ruan, Shaobo; Liu, Rui; Xiao, Wei; Yang, Xiaotong; Yang, Yuanyuan; Yang, Chuanyao; Gao, Huile
2018-06-01
Chemotherapy remains restricted by poor drug delivery efficacy due to the heterogenous nature of tumor. Herein, we presented a novel nanoparticle that could not only response to the tumor microenvironment but also modulate it for deep tumor penetration and combination therapy. The intelligent nanoparticle (IDDHN) was engineered by hyaluronidase (HAase)-triggered size shrinkable hyaluronic acid shells, which were modified with NIR laser sensitive nitric oxide donor (HN), small-sized dendrimeric prodrug (IDD) of doxorubicin (DOX) as chemotherapy agent and indocyanine green (ICG) as photothermal agent into a single nanoparticle. IDDHN displayed synergistic deep penetration both in vitro and in vivo, owing to the enzymatically degradable HN shell mediated by HAase and laser-enhanced NO release triggered deep penetration upon strong hyperthermia effect of ICG under the NIR laser irradiation. The therapeutic effect of IDDHN was verified in 4T1 xenograft tumor model, and IDDHN showed a much better antitumor efficiency with few side effects upon NIR laser irradiation. Therefore, the valid of this study might provide a novel tactic for engineering nanoparticles both response to and modulate the tumor microenvironment for improving penetration and heterogeneity distribution of therapeutic agents in tumor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Grandhi, Ramesh; Hunnicutt, Christopher T; Harrison, Gillian; Zwagerman, Nathan T; Snyderman, Carl H; Gardner, Paul A; Hartman, Douglas J; Horowitz, Michael
2015-07-01
To assess Onyx (Covidien, Irvine, California, United States) efficacy as a preoperative embolic agent for neoplasms of the head, neck, and spine, and to compare angiographic and histologic evidence of tumor penetration as predictors of intraoperative blood loss. Retrospective analysis of preoperative Onyx embolization procedures for treatment of head, neck, and spine tumors from 2009 to 2011. Patient demographics and information relating to the embolization procedure and operation were recorded. Measures of Onyx efficacy included intraoperative blood loss and length of surgery. Angiographic and histologic penetration, in addition to percentage of tumor devascularization, were assessed as predictors of efficacy. A total of 22 patients with 17 head or neck and 5 spinal lesions underwent trans-arterial preoperative Onyx embolization. Good angiographic penetration was reported in 41% of tumors and central histologic penetration in 59%, with mean tumor devascularization of 85.3% (standard deviation [SD]: 12.6%). There was no relationship between angiographic and histologic Onyx penetrance. Mean surgical blood loss was 1342 mL (SD: 1327 mL), and length of surgery was 289 minutes (SD: 162 minutes). Neither angiographic, nor histologic Onyx penetration predicted intraoperative blood loss (p = 0.38 and p = 0.32, respectively) or surgical length (p = 0.62 and 0.90, respectively). Devascularization was not associated with blood loss (p = 0.62), but it was a negative predictor of surgical length (p = 0.013). Preoperative Onyx embolization of head, neck, and spine tumors is capable of deep histologic tumor penetration, even when not visualized on angiography. The lack of association between measures of procedural adequacy suggests that using angiographic devascularization as a measure of procedural efficacy may be of limited utility. Georg Thieme Verlag KG Stuttgart · New York.
Real-Time Penetrating Particle Analyzer (PAN)
NASA Astrophysics Data System (ADS)
Wu, X.; Ambrosi, G.; Bertucci, B.
2018-02-01
The PAN can measure penetrating particles with great precision to study energetic particles, solar activities, and the origin and propagation of cosmic rays. The real-time monitoring of penetrating particles is crucial for deep space human travel.
Tracking ocean heat uptake during the surface warming hiatus
Liu, Wei; Xie, Shang -Ping; Lu, Jian
2016-03-30
Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less
Tracking ocean heat uptake during the surface warming hiatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Xie, Shang -Ping; Lu, Jian
Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less
Lai, Yen-Ho; Chiang, Chih-Sheng; Kao, Tzu-Hsun; Chen, San-Yuan
2018-01-01
Deep penetration of large-sized drug nanocarriers into tumors is important to improve the efficacy of tumor therapy. In this study, we developed a size-changeable "Trojan Horse" nanocarrier (THNC) composed of paclitaxel (PTX)-loaded Greek soldiers (GSs; ~20 nm) assembled in an amphiphilic gelatin matrix with hydrophilic losartan (LST) added. With amphiphilic gelatin matrix cleavage by matrix metalloproteinase-2, LST showed fast release of up to 60% accumulated drug at 6 h, but a slow release kinetic (~20%) was detected in the PTX from the GSs, indicating that THNCs enable controllable release of LST and PTX drugs for penetration into the tumor tissue. The in vitro cell viability in a 3D tumor spheroid model indicated that the PTX-loaded GSs liberated from THNCs showed deeper penetration as well as higher cytotoxicity, reducing a tumor spheroid to half its original size and collapsing the structure of the tumor microenvironment. The results demonstrate that the THNCs with controlled drug release and deep penetration of magnetic GSs show great potential for cancer therapy.
New Era of Scientific Ocean Drilling
NASA Astrophysics Data System (ADS)
Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.
2014-12-01
The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.
DOT National Transportation Integrated Search
2006-11-01
The objectives of this study are to: (1) quantify the effects of frost penetration on pavement performance in climates with deep sustained frost as compared to environments with multiple freeze-thaw cycles, (2) investigate the effect that local adapt...
Nd-glass laser for deep-penetration welding and hardening
NASA Astrophysics Data System (ADS)
Kayukov, Serguei V.; Yaresko, Sergey I.; Mikheyev, Pavel A.
2000-04-01
Pulsed Nd-glass lasers usually have low beam quality (200 - 300 mm-mrad), and are used only for surface hardening of metals. However, high pulse energy make them feasible for deep penetration welding if their beam quality could be improved. We investigated beam properties of Nd-glass laser with unstable resonator with semitransparent output coupler (URSOC). We had found that beam divergence of the laser with URSOC was an order of magnitude smaller than that of the laser with stable resonator. The achieved beam quality (40 - 50 mm-mrad) permitted to perform deep penetration welding with the aspect ratio of approximately 8. For beam divergence of 3 mrad melt depth of 6.3 mm was achieved with the ratio of depth to pulse energy of 0.27 mm/J.
The Secret to Successful Deep-Sea Invasion: Does Low Temperature Hold the Key?
Smith, Kathryn E.; Thatje, Sven
2012-01-01
There is a general consensus that today’s deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients. PMID:23227254
The secret to successful deep-sea invasion: does low temperature hold the key?
Smith, Kathryn E; Thatje, Sven
2012-01-01
There is a general consensus that today's deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients.
Exploratory Development of Weld Quality Definition and Correlation with Fatigue Properties
1975-04-01
006-Inch-Thick Lack-of-Penetration Defect in Specimen 6-4 ..... 135 51188 0. 030 to 0. 045-Inch- Deep Lack-of-Penetration Defect in Specimen P5-3 .. 135...PAW-UCX-3 (Figure 25) contained 0.011 inch undercut. Further increases in orifice gas flow resulted in the generation of C. 022-inch- deep undercut...oonsisted of a sh**M butt ont produced by a full-length par- tial-penetralloa (0. 060-Inch deep ) looking pass (Weld 4ED2-C-10) or a full-length
Monopole, astrophysics and cosmic ray observatory at Gran Sasso
NASA Technical Reports Server (NTRS)
Demarzo, C.; Enriquez, O.; Giglietto, N.; Posa, F.; Attolini, M.; Baldetti, F.; Giacomelli, G.; Grianti, F.; Margiotta, A.; Serra, P.
1985-01-01
A new large area detector, MACRO was approved for installation at the Gran Sasso Laboratory in Italy. The detector will be dedicated to the study of naturally penetrating radiation deep underground. It is designed with the general philosophy of covering the largest possible area with a detector having both sufficient built-in redundancy and use of complementary techniques to study very rare phenomena. The detector capabilities will include monopole investigations significantly below the Parker bound; astrophysics studies of very high energy gamma ray and neutrino point sources; cosmic ray measurements of single and multimuons; and the general observation of rare new forms of matter in the cosmic rays.
NASA Astrophysics Data System (ADS)
Fontaine, Arjun K.; Kirchner, Matthew S.; Caldwell, John H.; Weir, Richard F.; Gibson, Emily A.
2018-02-01
Two-photon microscopy is a powerful tool of current scientific research, allowing optical visualization of structures below the surface of tissues. This is of particular value in neuroscience, where optically accessing regions within the brain is critical for the continued advancement in understanding of neural circuits. However, two-photon imaging at significant depths have typically used Ti:Sapphire based amplifiers that are prohibitively expensive and bulky. In this study, we demonstrate deep tissue two-photon imaging using a compact, inexpensive, turnkey operated Ytterbium fiber laser (Y-Fi, KM Labs). The laser is based on all-normal dispersion (ANDi) that provides short pulse durations and high pulse energies. Depth measurements obtained in ex vivo mouse cortex exceed those obtainable with standard two-photon microscopes using Ti:Sapphire lasers. In addition to demonstrating the capability of deep-tissue imaging in the brain, we investigated imaging depth in highly-scattering white matter with measurements in sciatic nerve showing limited optical penetration of heavily myelinated nerve tissue relative to grey matter.
Wolf, Martin; Halper, Maria; Pribyl, Raffaela; Baurecht, Dieter; Valenta, Claudia
2017-03-15
The spatial distribution of exogenous substances in the stratum corneum (SC) could have an influence on their skin irritation potential. In this study it was possible to monitor the distribution of phospholipids with their phosphatidylcholine scaffold on porcine ear skin by combining tape stripping and in vitro ATR-FTIR spectroscopy. Significant vibrational modes in the spectra could be successfully assigned to the functional groups of the molecules. Thus it was possible to track the phospholipids without the need of their deuterated form by calculating difference spectra from the treated - untreated skin samples. The correlation between four characteristic bands (R 2 ≥0.9909) revealed the excellent suitability of this semi-quantitative method for deep profiling analysis. The penetration capabilities of aqueous suspensions of the different phospholipid compositions as well as two monoacyl-phosphatidylcholine based liposome formulations were investigated using this method. Nevertheless, differences in the distribution of the investigated phospholipid species, having different amounts of monoacyl-phosphatidylcholine, could not be found. It could be clearly shown that the deepest skin penetration was seen in the irritating anionic SDS (sodium dodecyl sulfate) out of the aqueous solution. The aqueous suspensions based on different phospholipid surfactants showed the same range of penetration depth (10-15% of SC), whereas the smallest skin penetration depth was observed after the application of liposomal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Margolin, A. R.; Hansell, D. A.
2016-02-01
Over the past two decades, significant advances have been made in understanding dissolved organic carbon (DOC) distributions in the Atlantic and throughout the global ocean. Surprisingly, however, little is known about DOC distributions in the Atlantic's neighboring Gulf of Mexico (GoM) and Caribbean due to few observations, especially in their deep layers. To address the dearth of DOC data in the GoM and Caribbean, samples were collected during multiple cruises spanning the region, allowing comparisons between the deep layers of the basins. Additionally, complementary biogeochemical (oxygen, nutrients) and physical (temperature, salinity) measurements were made to aid in DOC interpretation, which show clear distinctions between the deep waters of the GoM, basins of the Caribbean and Atlantic. The unique characteristics of these deep layers result from exchanges being restricted to narrow passages that separate the basins, limiting the deep water renewal to periodic overflows of relatively dense water, capable of penetrating below the 2000 m sill depths. Furthermore, hydrocarbon seeps (in GoM) and hydrothermal activity (in Caribbean), along with the offshore oil industry have the potential to alter deep DOC concentrations regionally, which are considered here. Samples collected below 250 m show that concentrations decrease with depth, ranging from 40-50 µmol kg-1. Compared to the Atlantic, the GoM and Venezuelan Basin concentrations are lower, while they are similar to the Atlantic in the Yucatan Basin; responsible processes are inferred.
Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu
2015-01-01
A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery.
Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu
2015-01-01
A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery. PMID:26379789
Plasma pharmacokinetics and synovial concentrations of S-flurbiprofen plaster in humans.
Yataba, Ikuko; Otsuka, Noboru; Matsushita, Isao; Kamezawa, Miho; Yamada, Ichimaro; Sasaki, Sigeru; Uebaba, Kazuo; Matsumoto, Hideo; Hoshino, Yuichi
2016-01-01
The purpose of this study is to investigate the pharmacokinetics and deep tissue penetration capability of the newly developed S-flurbiprofen plaster (SFPP) in humans. Study 1: SFPP tape-type patch (2-60 mg) was applied to the lower back for 24 h in healthy adult volunteers. S-flurbiprofen (SFP) plasma concentration was measured over time to examine SFP pharmacokinetics. Study 2: SFPP (20 mg) was applied for 12 h to the affected knee of osteoarthritis (OA) patients who were scheduled for total knee arthroplasty. Deep tissues (synovial tissue and synovial fluid) were collected during surgery to compare SFP concentrations after application of SFPP or a commercially available flurbiprofen (FP) gel-type patch. Study 1: The plasma concentration of SFP was sustained during 24-h topical application of the SFPP, showing a high percutaneous absorption ratio of 51.4-72.2 %. Cmax and AUC0-∞ were dose-proportional. Study 2: After application of the SFPP for 12 h, SFP concentrations in the synovial tissue and synovial fluid were 14.8-fold (p = 0.002) and 32.7-fold (p < 0.001) higher, respectively, than those achieved by the FP patch. Sustained plasma concentration of SFP and high percutaneous absorption ratio was observed after 24-h topical application of the SFPP. Compared to the FP patch, the SFPP showed superior percutaneous absorption and greater tissue penetration of SFP into the synovial tissue. Greater tissue penetration of the SFPP seemed to be primarily due to its formulation. Thus, SFPP is expected to show higher efficacy for the treatment of knee OA.
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi
2012-01-01
NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms will be reviewed and discussed including the configurations, capabilities, and challenges.
Thermal Impacts in Vibration-assisted Laser Deep Penetration Welding of Aluminum
NASA Astrophysics Data System (ADS)
Radel, T.
Mechanical vibrations affect the nucleation and grain growth conditions during welding. In order to understand the vibration-induced influences on the grain formation conditions in laser beam welding of aluminum the thermal impacts of simultaneously applied vibrations are analyzed in this study. Therefore, laser deep penetration welding at vibration frequencies between 0.5 kHz and 5 kHz is investigated. Besides full penetration, partial penetration experiments were carried out. The results show that the thermal and absorption efficiencies are not significantly affected by the applied excitation. The solidification time increases in case of applied excitation which is rather disadvantageous regarding grain refinement. Thus, mechanical-metallurgical and not thermal-metallurgical effects should be responsible for the change in grain nucleation and grain growth conditions in laser beam welding with simultaneously applied vibrations.
Simulation of interaction of damage agents of different shape with shaped-charge munition
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Tukaev, A. M.
2017-01-01
The present paper studies the influence of the shape of projectile (damage agent) on its penetration capability. Steel projectiles of different shape have been considered as damage agents: sphere, regular tetrahedron, cube, cylinder and plate. The weight of projectiles has been kept the same. Antitank grenade has been used as a target. The study has been conducted by means of numerical simulation using finite element analysis. The simulation is three-dimensional. Behavior of materials has been described by elasto-plastic model taking into consideration the fracture and fragmentation of interacting bodies. The speed of interaction has been considered within the range of 800 to 2000 m/s. Research results demonstrated significant influence of the projectile shape on its penetration capability. Projectile in the shape of elongated cylinder has shown better penetration capability. Considering the weight of damage agents (except for sphere and plate) their maximum penetration capability has been reached at the speed of 1400 m/s. Increase of the speed of interaction has been followed by intensive fracture of damage agents and their penetration capability thus has worsened.
Hudak, Paul F
2018-02-01
A groundwater flow and mass transport model tested the capability of shallow excavations filled with coarse, reactive media to remediate a hypothetical unconfined aquifer with a maximum saturated thickness of 5 m. Modeled as contaminant sinks, the rectangular excavations were 10 m downgradient of an initial contaminant plume originating from a source at the top of the aquifer. The initial plume was approximately 259 m long, 23 m wide, and 5 m thick, with a downgradient tip located approximately 100 m upgradient of the site boundary. The smallest trench capable of preventing offsite migration was 11 m long (measured perpendicular to groundwater flow), 4 m wide (measured parallel to groundwater flow), and 3 m deep. Results of this study suggest that shallow trenches filled with coarse filter media that partially penetrate unconfined aquifers may be a viable alternative for remediating contaminated groundwater at some sites.
Simple electrical model and initial experiments for intra-body communications.
Gao, Y M; Pun, S H; Du, M; Mak, P U; Vai, M I
2009-01-01
Intra-Body Communication(IBC) is a short range "wireless" communication technique appeared in recent years. This technique relies on the conductive property of human tissue to transmit the electric signal among human body. This is beneficial for devices networking and sensors among human body, and especially suitable for wearable sensors, telemedicine system and home health care system as in general the data rates of physiologic parameters are low. In this article, galvanic coupling type IBC application on human limb was investigated in both its mathematical model and related experiments. The experimental results showed that the proposed mathematical model was capable in describing the galvanic coupling type IBC under low frequency. Additionally, the calculated result and experimental result also indicated that the electric signal induced by the transmitters of IBC can penetrate deep into human muscle and thus, provide an evident that IBC is capable of acting as networking technique for implantable devices.
Simulator Studies of the Deep Stall
NASA Technical Reports Server (NTRS)
White, Maurice D.; Cooper, George E.
1965-01-01
Simulator studies of the deep-stall problem encountered with modern airplanes are discussed. The results indicate that the basic deep-stall tendencies produced by aerodynamic characteristics are augmented by operational considerations. Because of control difficulties to be anticipated in the deep stall, it is desirable that adequate safeguards be provided against inadvertent penetrations.
Zhang, Mingjun; Chen, Genyu; Zhou, Yu; Li, Shichun
2013-08-26
Keyhole formation is a prerequisite for deep penetration laser welding. Understanding of the keyhole dynamics is essential to improve the stability of the keyhole. Direct observation of the keyhole during deep penetration laser welding of a modified "sandwich" specimen with a 10 kW fiber laser is presented. A distinct keyhole wall and liquid motion along the wall are observed directly for the first time. The moving liquid "shelf" on the front keyhole wall and the accompanying hydrodynamic and vapor phenomena are observed simultaneously. Micro-droplets torn off the keyhole wall and the resultant bursts of vapor are also visualized. The hydrodynamics on the keyhole wall has a dominant effect on the weld defects. The emission spectrum inside the keyhole is captured accurately using a spectrometer to calculate the characteristics of the keyhole plasma plume.
NASA Astrophysics Data System (ADS)
Zou, J. L.; He, Y.; Wu, S. K.; Huang, T.; Xiao, R. S.
2015-12-01
The deep penetration-welding threshold (DPWT) is the critical value that describes the welding mode transition from the thermal conduction to the deep penetration. The objective of this research is to clarify the DPWT induced by the lasers with wavelength of 1 μm (1-μm laser), based on experimental observation and theoretical analysis. The experimental results indicated that the DPWT was the ratio between laser power and laser spot diameter (P/d) rather than laser power density (P/S). The evaporation threshold was smaller than the DPWT, while the jump threshold of the evaporated mass flux in the molten pool surface was consistent with the DPWT. Based on the force balance between the evaporation recoil pressure and the surface tension pressure at the gas-liquid interface of the molten pool as well as the temperature field, we developed a self-focusing model, which further confirmed the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2005-09-30
This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.« less
Partial liquid-penetration inside a deep trench by film flowing over it
NASA Astrophysics Data System (ADS)
Nguyen, Phuc-Khanh; Dimakopoulos, Yiannis; Tsamopoulos, John
2014-11-01
Liquid film flow along substrates featuring a deep trench may not wet the trench floor, but create a second gas-liquid interface inside the trench. The liquid penetration inside the trench depends on the location and shape of this inner interface. The penetration increases by decreasing the two three-phase contact lines between the inner interface and the two side-walls or the flow rate and depends on the liquid properties. This partial-penetration is studied by employing the Galerkin / finite element method to solve the two-dimensional steady-state Navier-Stokes equations in a physical domain that is adaptively remeshed. Multiple branches of steady solutions connected via turning points are revealed by pseudo arc-length continuation. Flow hysteresis may occur in a certain range of liquid penetration depth, when the interaction of the two interfaces changes qualitatively. This induces an abrupt jump of penetration distance and deformation amplitude of the outer interface. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.
Recent Advances of Light-Mediated Theranostics
Ai, Xiangzhao; Mu, Jing; Xing, Bengang
2016-01-01
Currently, precision theranostics have been extensively demanded for the effective treatment of various human diseases. Currently, efficient therapy at the targeted disease areas still remains challenging since most available drug molecules lack of selectivity to the pathological sites. Among different approaches, light-mediated therapeutic strategy has recently emerged as a promising and powerful tool to precisely control the activation of therapeutic reagents and imaging probes in vitro and in vivo, mostly attributed to its unique properties including minimally invasive capability and highly spatiotemporal resolution. Although it has achieved initial success, the conventional strategies for light-mediated theranostics are mostly based on the light with short wavelength (e.g., UV or visible light), which may usually suffer from several undesired drawbacks, such as limited tissue penetration depth, unavoidable light absorption/scattering and potential phototoxicity to healthy tissues, etc. Therefore, a near-infrared (NIR) light-mediated approach on the basis of long-wavelength light (700-1000 nm) irradiation, which displays deep-tissue penetration, minimized photo-damage and low autofluoresence in living systems, has been proposed as an inspiring alternative for precisely phototherapeutic applications in the last decades. Despite numerous NIR light-responsive molecules have been currently proposed for clinical applications, several inherent drawbacks, such as troublesome synthetic procedures, low water solubility and limited accumulation abilities in targeted areas, heavily restrict their applications in deep-tissue therapeutic and imaging studies. Thanks to the amazing properties of several nanomaterials with large extinction coefficient in the NIR region, the construction of NIR light responsive nanoplatforms with multifunctions have become promising approaches for deep-seated diseases diagnosis and therapy. In this review, we summarized various light-triggered theranostic strategies and introduced their great advances in biomedical applications in recent years. Moreover, some other promising light-assisted techniques, such as photoacoustic and Cerenkov radiation, were also systemically discussed. Finally, the potential challenges and future perspectives for light-mediated deep-tissue diagnosis and therapeutics were proposed. PMID:27877246
Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, L.L.; Hendricks, J.S.
1983-01-01
The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays.
Numerical simulation of the interaction of elements of active protection with metal barriers
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.
2017-10-01
The present paper is aimed at working out the algorithm of multi-contact interaction of solid bodies; it studies the influence of the shape of projectile (damage agent) on its penetration capability. Steel projectiles of different shape have been considered as damage agents: sphere, regular tetrahedron, cube, cylinder and plate. The weight of projectiles has been kept the same. Antitank grenade has been used as a target. The study has been conducted by means of numerical simulation using finite element analysis. The simulation is three-dimensional. Behavior of materials has been described by elasto-plastic model taking into consideration the fracture and fragmentation of interacting bodies. The speed of interaction has been considered within the range of 800 to 2000 m/s. Research results demonstrated significant influence of the projectile shape on its penetration capability. Projectile in the shape of elongated cylinder has shown better penetration capability. Considering the weight of damage agents (except for sphere and plate) their maximum penetration capability has been reached at the speed of 1400 m/s. Increase of the speed of interaction has been followed by intensive fracture of damage agents and their penetration capability thus has worsened.
Interaction of the stream of the striking elements with barriers and cumulative ammunition
NASA Astrophysics Data System (ADS)
Radchenko, A. V.; Radchenko, P. A.; Batuev, S. P.
2018-01-01
This paper is aimed at working out the algorithm of multi-contact interaction of solid bodies; it studies the influence of the shape of projectile (damage agent) on its penetration capability. Steel projectiles of different shape have been considered as damage agents: sphere, regular tetrahedron, cube, cylinder and plate. The weight of projectiles has been kept the same. Antitank grenade has been used as a target. The study has been conducted by means of numerical simulation using finite element analysis. The simulation is three-dimensional. Behavior of materials has been described by elastic-plastic model taking into consideration the fracture and fragmentation of interacting bodies. The speed of interaction has been considered within the range of 800 to 2000 m/s. Research results demonstrated significant influence of the projectile shape on its penetration capability. Projectile in the shape of elongated cylinder has shown better penetration capability. Considering the weight of damage agents (except for sphere and plate) their maximum penetration capability has been reached at the speed of 1400 m/s. Increase of the speed of interaction has been followed by intensive fracture of damage agents and their penetration capability thus has worsened.
Development of high definition OCT system for clinical therapy of skin diseases
NASA Astrophysics Data System (ADS)
Baek, Daeyul; Seo, Young-Seok; Kim, Jung-Hyun
2018-02-01
OCT is a non-invasive imaging technique that can be applied to diagnose various skin disease. Since its introduction in 1997, dermatology has used OCT technology to obtain high quality images of human skin. Recently, in order to accurately diagnose skin diseases, it is essential to develop OCT equipment that can obtain high quality images. Therefore, we developed the system that can obtain a high quality image by using a 1300 nm light source with a wide bandwidth and deep penetration depth, high-resolution image, and a camera capable of high sensitivity and high speed processing. We introduce the performance of the developed system and the clinical application data.
Applications of multiphoton microscopy in the field of colorectal cancer
NASA Astrophysics Data System (ADS)
Wang, Shu; Li, Lianhuang; Zhu, Xiaoqin; Zheng, Liqin; Zhuo, Shuangmu; Chen, Jianxin
2018-06-01
Multiphoton microscopy (MPM) is a powerful tool for visualizing cellular and subcellular details within living tissue by its unique advantages of being label-free, its intrinsic optical sectioning ability, near-infrared excitation for deep penetration depth into tissue, reduced photobleaching and phototoxicity in the out-of-focus regions, and being capable of providing quantitative information. In this review, we focus on applications of MPM in the field of colorectal cancer, including monitoring cancer progression, detecting tumor metastasis and microenvironment, evaluating the cancer therapy response, and visualizing and ablating pre-invasive cancer cells. We also present one of the major challenges and the future research direction to exploit a colorectal multiphoton endoscope.
An effective approach for road asset management through the FDTD simulation of the GPR signal
NASA Astrophysics Data System (ADS)
Benedetto, Andrea; Pajewski, Lara; Adabi, Saba; Kusayanagi, Wolfgang; Tosti, Fabio
2015-04-01
Ground-penetrating radar is a non-destructive tool widely used in many fields of application including pavement engineering surveys. Over the last decade, the need for further breakthroughs capable to assist end-users and practitioners as decision-support systems in more effective road asset management is increasing. In more details and despite the high potential and the consolidated results obtained over years by this non-destructive tool, pavement distress manuals are still based on visual inspections, so that only the effects and not the causes of faults are generally taken into account. In this framework, the use of simulation can represent an effective solution for supporting engineers and decision-makers in understanding the deep responses of both revealed and unrevealed damages. In this study, the potential of using finite-difference time-domain simulation of the ground-penetrating radar signal is analyzed by simulating several types of flexible pavement at different center frequencies of investigation typically used for road surveys. For these purposes, the numerical simulator GprMax2D, implementing the finite-difference time-domain method, was used, proving to be a highly effective tool for detecting road faults. In more details, comparisons with simplified undisturbed modelled pavement sections were carried out showing promising agreements with theoretical expectations, and good chances for detecting the shape of damages are demonstrated. Therefore, electromagnetic modelling has proved to represent a valuable support system in diagnosing the causes of damages, even for early or unrevealed faults. Further perspectives of this research will be focused on the modelling of more complex scenarios capable to represent more accurately the real boundary conditions of road cross-sections. Acknowledgements - This work has benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen
2017-01-01
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antaris, Alexander L.; Chen, Hao; Diao, Shuo
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging
Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...
2017-05-19
Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9).
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-03-15
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab's fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.
Initial Parameter Estimation for Inverse Thermal Analysis of Ti-6Al-4V Deep Penetration Welds
2014-05-16
theory, for the case of deep-penetration welding, is simulation of the coupling of keyhole formation, melting, fluid flow in the weld melt pool and...isothermal boundaires, e.g., TTB and TM. A specific procedure for interpolation, however, has not been considered. For the present study, the close ...Clarendon Press, Oxford, 2nd ed, 374, 1959. 19. R. Rai, J.W. Elmer, T.A. Palmer, T. DebRoy, Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding
An intelligent algorithm for autonomous scientific sampling with the VALKYRIE cryobot
NASA Astrophysics Data System (ADS)
Clark, Evan B.; Bramall, Nathan E.; Christner, Brent; Flesher, Chris; Harman, John; Hogan, Bart; Lavender, Heather; Lelievre, Scott; Moor, Joshua; Siegel, Vickie
2018-07-01
The development of algorithms for agile science and autonomous exploration has been pursued in contexts ranging from spacecraft to planetary rovers to unmanned aerial vehicles to autonomous underwater vehicles. In situations where time, mission resources and communications are limited and the future state of the operating environment is unknown, the capability of a vehicle to dynamically respond to changing circumstances without human guidance can substantially improve science return. Such capabilities are difficult to achieve in practice, however, because they require intelligent reasoning to utilize limited resources in an inherently uncertain environment. Here we discuss the development, characterization and field performance of two algorithms for autonomously collecting water samples on VALKYRIE (Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer), a glacier-penetrating cryobot deployed to the Matanuska Glacier, Alaska (Mission Control location: 61°42'09.3''N 147°37'23.2''W). We show performance on par with human performance across a wide range of mission morphologies using simulated mission data, and demonstrate the effectiveness of the algorithms at autonomously collecting samples with high relative cell concentration during field operation. The development of such algorithms will help enable autonomous science operations in environments where constant real-time human supervision is impractical, such as penetration of ice sheets on Earth and high-priority planetary science targets like Europa.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-02
... Commission also deferred the date for initial distribution of Automatic Location Identification (ALI)-capable... activating new ALI-capable handsets; deferred the date by which a carrier must achieve full penetration of ALI-capable handsets by one year; modified the manner in which the Commission defined full penetration...
NASA Astrophysics Data System (ADS)
Valent, Philip J.; Riggins, Michael
1989-04-01
An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-01-01
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle. PMID:28295018
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)
NASA Astrophysics Data System (ADS)
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-03-01
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.
Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics
NASA Astrophysics Data System (ADS)
Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.
2018-02-01
Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.
Application and calibration of the subsurface mapping capability of SIR-B in desert regions
NASA Technical Reports Server (NTRS)
Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Grolier, M. J.; Issawi, B.; Haynes, C. V.; Mchugh, W.; Walker, A. S.; Blom, R.
1984-01-01
The penetration capability of the shuttle imaging radar (SIR-B) sensor in desert regions is investigated. Refined models to explain this penetration capability in terms of radar physics and regional geologic conditions are devised. The sand-buried radar-rivers discovered in the Western Desert in Egypt and Sudan are defined. Results and procedures developed during previous SIR-A investigation of the same area are extrapolated.
Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging
NASA Astrophysics Data System (ADS)
Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel
2018-02-01
Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.
NASA Astrophysics Data System (ADS)
Obayashi, M.; Fukao, Y.; Yoshimitsu, J.
2015-12-01
A great shock occurred at an unusual depth of 678 km far away from the well-defined Wadati-Benioff zone of the Izu-Bonin arc (Fig.1). To the north of this region the slab is stagnant above the 660 km discontinuity and to the south it penetrates the discontinuity (Fig.2). Thus, the slab in this region can be viewed as in a transitional state from the stagnant to penetrating slab. Here, the steeply dipping part of the slab bends sharply to horizontal and the great shock happened at the lowest corner of this bending. The CMT indicates a pure normal faulting with the trench-normal near horizontal tensional axis and the near vertical compressional axis (Fig.1). We suggest that this mechanism reflects a transitional state of slab deformation from the bending-dominant mode to the penetration-dominant mode. The mechanism is consistent with either of these two two modes. We show that the mechanism is also consistent with the resultant stress field generated by many deep shocks occurring along the Wadati-Benioff zone. The calculated stress field changes rapidly along a trench-normal profile at a depth of 680 km and becomes similar to that generated by the great shock at points near the hypocenter (Fig.3). Thus, the stress field due to the Wadati-Benioff zone earthquakes works to enhance the occurrence of deep shocks of the type of the 2015 great shock, which represents slab deformation associated with the transition from stagnant to penetrating slab.
In vivo optoacoustic monitoring of calcium activity in the brain (Conference Presentation)
NASA Astrophysics Data System (ADS)
Deán-Ben, Xose Luís.; Gottschalk, Sven; Sela, Gali; Lauri, Antonella; Kneipp, Moritz; Ntziachristos, Vasilis; Westmeyer, Gil G.; Shoham, Shy; Razansky, Daniel
2017-03-01
Non-invasive observation of spatio-temporal neural activity of large neural populations distributed over the entire brain of complex organisms is a longstanding goal of neuroscience [1,2]. Recently, genetically encoded calcium indicators (GECIs) have revolutionized neuroimaging by enabling mapping the activity of entire neuronal populations in vivo [3]. Visualization of these powerful sensors with fluorescence microscopy has however been limited to superficial regions while deep brain areas have so far remained unreachable [4]. We have developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains [5]. The developed methodology can render 100 volumetric frames per second across scalable fields of view ranging between 50-1000 mm3 with respective spatial resolution of 35-150µm. Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically-encoded calcium indicator GCaMP5G demonstrated, for the first time, the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the depth barrier of optical imaging in scattering brains [6]. It was further possible to monitor calcium transients in a scattering brain of a living adult transgenic zebrafish expressing GCaMP5G calcium indicator [7]. Fast changes in optoacoustic traces associated to GCaMP5G activity were detectable in the presence of other strongly absorbing endogenous chromophores, such as hemoglobin. The results indicate that the optoacoustic signal traces generally follow the GCaMP5G fluorescence dynamics and further enable overcoming the longstanding optical-diffusion penetration barrier associated to scattering in biological tissues [6]. The new functional optoacoustic neuroimaging method can visualize neural activity at penetration depths and spatio-temporal resolution scales not covered with the existing neuroimaging techniques. Thus, in addition to the well-established capacity of optoacoustics to resolve vascular anatomy and multiple hemodynamic parameters deep in scattering tissues, the newly developed methodology offers unprecedented capabilities for functional whole brain observations of fast calcium dynamics.
NASA Technical Reports Server (NTRS)
Safaeinili, A.; Asphaug, E.; Rodriquez, E.; Gurrola, E.; Belton, M.; Klaasen, K.; Ostro, S.; Plaut, J.; Yeomans, D.
2005-01-01
Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT) in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that some NEOs are rubble piles rather than consolidated bodies. Our mission s RRT technique is analogous to doing a CAT scan of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and to measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate greater than 1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Ion thruster propulsion is utilized by Deep Interior to enable tomographic radar mapping of multiple asteroids. Within the Discovery AO scheduling parameters we identify two targets, S-type 1999 ND43 (approximately 500 m diameter) and V-type 3908 Nyx (approximately 1 km), asteroids whose compositions bracket the diversity of solar system materials that we are likely to encounter, from undifferentiated to highly evolved. The 5-15 MHz radar is capable of probing more primitive bodies (e.g. comets or C-types) that may be available given other launch schedules. 5 MHz radar easily penetrates, with the required SNR , greater than 1 km of basalt (a good analog for Nyx). Basalt has a greater loss tangent than expected for most asteroids, although iron-rich M-types are probably not appropriate targets. 15 MHz radar penetrates the outer approximately 100 m of rocky 1 km asteroids and the deep interiors of comets. Laboratory studies of the most common NE0 materials expected (S-, C- and V-type meteorite analogs) will commence in 2005.
Phase-transitional Fe3O4/perfluorohexane Microspheres for Magnetic Droplet Vaporization.
Wang, Ronghui; Zhou, Yang; Zhang, Ping; Chen, Yu; Gao, Wei; Xu, Jinshun; Chen, Hangrong; Cai, Xiaojun; Zhang, Kun; Li, Pan; Wang, Zhigang; Hu, Bing; Ying, Tao; Zheng, Yuanyi
2017-01-01
Activating droplets vaporization has become an attractive strategy for ultrasound imaging and physical therapy due to the significant increase in ultrasound backscatter signals and its ability to physically damage the tumor cells. However, the current two types of transitional droplets named after their activation methods have their respective limitations. To circumvent the limitations of these activation methods, here we report the concept of magnetic droplet vaporization (MDV) for stimuli-responsive cancer theranostics by a magnetic-responsive phase-transitional agent. This magnetic-sensitive phase-transitional agent-perfluorohexane (PFH)-loaded porous magnetic microspheres (PFH-PMMs), with high magnetic-thermal energy-transfer capability, could quickly respond to external alternating current (AC) magnetic fields to produce thermal energy and trigger the vaporization of the liquid PFH. We systematically demonstrated MDV both in vitro and in vivo. This novel trigger method with deep penetration can penetrate the air-filled viscera and trigger the vaporization of the phase-transitional agent without the need of pre-focusing lesion. This unique MDV strategy is expected to substantially broaden the biomedical applications of nanotechnology and promote the clinical treatment of tumors that are not responsive to chemical therapies.
Observed Eastward Progression of the Fukushima 134Cs Signal Across the North Pacific
NASA Astrophysics Data System (ADS)
Yoshida, S.; Macdonald, A. M.; Jayne, S. R.; Rypina, I.; Buesseler, K.
2015-12-01
Radionuclide samples taken as part of hydrographic surveys at 30°N in the North Pacific reveal that the easternmost edge of Fukushima-derived 134Cs observed at 174.3°W in 2012 had progressed eastward across the basin to 160.6°W by 2013. The 2013 30°N observations indicate surface 134Cs concentrations of 3-5 Bq/m3 between 160°E and 160°W, slightly lower concentrations west of 160°E and no detectable signal east of 160.6°W. Profile samples show 134Cs penetration to 500 m west of 180° with shoaling penetration depth toward to the east. The near-uniform vertical distribution of 137Cs between 152°W and 121.3°W in the top 500 m is indicative of trace amounts of radionuclides remaining from weapons testing. The physical processes responsible for the deep 134Cs penetration in the western Pacific appear to be related to distinct water mass subduction pathways, however the timing and rapidity of deep penetration over the broad scales observed has yet to be clarified.
[Microbes on the edge of global biosphere].
Naganuma, T
2000-12-01
The search for life on the edge of global biosphere is a frontier to bridge conventional bio/ecology and exo/astrobiology. This communication reviews the foci of microbiological studies on the inhabitants of the selected "edges", i.e., deep-sea, deep subsurface and Antarctic habitats. The deep-sea is characterized as the no-light (non-photosynthetic) habitat, and the primary production is mostly due to the chemosynthetic autotrophy at the hydrothermal vents and methane-rich seeps. Formation of the chemosynthesis-dependent animal communities in the deep leads to the idea that such communities may be found in "ocean" of the Jovian satellite, Europa. The oxygen minimal layer (OML) in mid-water provides another field of deep-sea research. Modern OML is a relatively thin layer, found between the water depth of 200 and 1000 m, but was much thicker during the periods of oceanic anoxia events (OAEs) in the past. The history of oceanic biosphere is regarded as the cycle of OAE and non-OAE periods, and the remnants of the past OAEs may be seen in the modem OML. Anoxic (no-O2) condition is also characteristic of deep subsurface biosphere. Microorganisms in deep subsurface biosphere exploit every available oxidant, or terminal electron acceptor (TEA), for anaerobic respiration. Sulfate, nitrate, iron (III) and CO2 are the representative TEAs in the deep subsurface. Subsurface of hydrothermal vents, or sub-vent biosphere, may house brine (high salt) habitats and halophilic microorganisms. Some sub-vent halophiles were phylogenetically closely similar to the ones found in the Antarctic habitats which are extremely dry by the liophilizing climate. Below the 3000-4000 m-thick glacier on Antarctica, there have been >70 lakes with liquid water located. One of such sub-glacial lakes, Lake Vostok, has been a target of "life in extreme environments" and is about to be drill-penetrated for microbiological studies. These 'microbiological platforms' will provide new knowledge about the diversity and potential of the Earth's life and facilitate the capability of astrobiologial exploration.
Cao, Jie; Ge, Ruifen; Zhang, Min; Xia, Junfei; Han, Shangcong; Lu, Wei; Liang, Yan; Zhang, Tingting; Sun, Yong
2018-05-17
Functional theranostic systems for drug delivery capable of concurrent near-infrared (NIR) fluorescence imaging, active tumor targeting and anticancer therapies are desired for concise cancer diagnosis and treatment. Dendrimers with controllable size and surface functionalities are good candidates for such platforms. However, integration of active targeting ligands and imaging agents separately on the surface or encapsulation of the imaging agents in the inner core of the dendrimers will result in a more complex composition or reduced drug loading efficiency. Herein, we reported a PAMAM-based theranostic system, with a simple integrin-specific imaging ligand prepared from two motifs. One motif is a NIR carbocyanine fluorescent dye (Cyp) for precise in vivo monitoring of the system and identification of tumor or cancer cells, and the other is a novel tumor-penetrating cyclic peptide (CRGDKGPDC, abbreviated iRGD). BSA was non-covalently bonded with Cyp to reduce NIR agent fluorescence-quenching aggregates and enhance imaging signals. The chemotherapy effect of these dendritic systems was achieved by encapsulating paclitaxel into the hydrophobic interior of the dendrimers. In vitro and in vivo targeting and penetrating studies revealed that a significantly high amount of the dendritic systems was endocytosed by HepG2 cells and enhanced accumulation and penetration at tumor sites. Our safety evaluation showed that masking of cationic-end groups of PAMAM to neutral or anionic groups has resulted in decreased or even zero-toxicity. The preliminary antitumor efficacy of the dendritic system was evaluated. In vitro and in vivo studies confirmed that paclitaxel-encapsulated functionalized PAMAM can efficiently kill HepG2 cancer cells. In conclusion, our functionalized theranostic dendritic system could be a promising nanocarrier to effectively deliver drugs to deep tumor regions for anticancer therapy.
Gettings, Mark E.; Bultman, Mark W.
2005-01-01
Some aquifers of the southwestern Colorado Plateaus Province are deeply buried and overlain by several impermeable shale layers, and so recharge to the aquifer probably is mainly by seepage down penetrative-fracture systems. The purpose of this 2-year study, sponsored by the U.S. National Park Service, was to map candidate deep penetrative fractures over a 120,000-km2 area, using gravity and aeromagnetic-anomaly data together with surficial-fracture data. The study area was on the Colorado Plateau south of the Grand Canyon and west of Black Mesa; mapping was carried out at a scale of 1:250,000. The resulting database constitutes a spatially registered estimate of deep-fracture locations. Candidate penetrative fractures were located by spatial correlation of horizontal- gradient and analytic-signal maximums of gravity and magnetic anomalies with major surficial lineaments obtained from geologic, topographic, side-looking-airborne-radar, and satellite imagery. The maps define a subset of candidate penetrative fractures because of limitations in the data coverage and the analytical technique. In particular, the data and analytical technique used cannot predict whether the fractures are open or closed. Correlations were carried out by using image-processing software, such that every pixel on the resulting images was coded to uniquely identify which datasets are correlated. The technique correctly identified known and many new deep fracture systems. The resulting penetrative-fracture-distribution maps constitute an objectively obtained, repeatable dataset and a benchmark from which additional studies can begin. The maps also define in detail the tectonic fabrics of the southwestern Colorado Plateaus Province. Overlaying the correlated lineaments on the normalized-density-of-vegetation-index image reveals that many of these lineaments correlate with the boundaries of vegetation zones in drainages and canyons and so may be controlling near-surface water availability in some places. Many derivative products can be produced from the database, such as fracture-density-estimate maps, and maps with the number of correlations color-coded to estimate the possible quality of correlation. The database contained in this report is designed to be used in a geographic information system and image-processing systems, and most data layers are in georeferenced tagged image format (Geotiff) or ARC grids. The report includes 163 map plates and various metadata, supporting, and statistical diagram files.
Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei
2014-01-01
In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM. PMID:24876996
NASA Astrophysics Data System (ADS)
Xu, Jingjiang; Song, Shaozhen; Men, Shaojie; Wang, Ruikang K.
2017-11-01
There is an increasing demand for imaging tools in clinical dermatology that can perform in vivo wide-field morphological and functional examination from surface to deep tissue regions at various skin sites of the human body. The conventional spectral-domain optical coherence tomography-based angiography (SD-OCTA) system is difficult to meet these requirements due to its fundamental limitations of the sensitivity roll-off, imaging range as well as imaging speed. To mitigate these issues, we demonstrate a swept-source OCTA (SS-OCTA) system by employing a swept source based on a vertical cavity surface-emitting laser. A series of comparisons between SS-OCTA and SD-OCTA are conducted. Benefiting from the high system sensitivity, long imaging range, and superior roll-off performance, the SS-OCTA system is demonstrated with better performance in imaging human skin than the SD-OCTA system. We show that the SS-OCTA permits remarkable deep visualization of both structure and vasculature (up to ˜2 mm penetration) with wide field of view capability (up to 18×18 mm2), enabling a more comprehensive assessment of the morphological features as well as functional blood vessel networks from the superficial epidermal to deep dermal layers. It is expected that the advantages of the SS-OCTA system will provide a ground for clinical translation, benefiting the existing dermatological practice.
Implications of slab mineralogy for subduction dynamics
NASA Astrophysics Data System (ADS)
Bina, Craig R.; Stein, Seth; Marton, Frederic C.; Van Ark, Emily M.
2001-12-01
Phase relations among mantle minerals are perturbed by the thermal environment of subducting slabs, both under equilibrium and disequilibrium (metastable) conditions. Such perturbations yield anomalies not only in seismic velocities but also in density. The buoyancy forces arising from these density anomalies may exert several important effects. They contribute to the stress field within the slab, in a fashion consistent with observed patterns of seismicity. They may affect subduction rates, both by inducing time-dependent velocity changes under equilibrium conditions and by imposing velocity limits through a thermal feedback loop under disequilibrium conditions. They may affect slab morphology, possibly inhibiting penetration of slabs into the lower mantle and allowing temporary stagnation of deflected or detached slabs. Latent heat release from phase transitions under disequilibrium conditions in slabs can yield isobaric superheating, which may generate adiabatic shear instabilities capable of triggering deep seismicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2003-10-01
This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less
Three dimensional amorphous silicon/microcrystalline silicon solar cells
Kaschmitter, James L.
1996-01-01
Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.
Three dimensional amorphous silicon/microcrystalline silicon solar cells
Kaschmitter, J.L.
1996-07-23
Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.
NASA Astrophysics Data System (ADS)
Schmerwitz, S.; Doehler, H.-U.; Ellis, K.; Jennings, S.
2011-06-01
The DLR project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites) is devoted to demonstrating and evaluating the characteristics of sensors for helicopter operations in degraded visual environments. Millimeter wave radar is one of the many sensors considered for use in brown-out. It delivers a lower angular resolution compared to other sensors, however it may provide the best dust penetration capabilities. In cooperation with the NRC, flight tests on a Bell 205 were conducted to gather sensor data from a 35 GHz pencil beam radar for terrain mapping, obstacle detection and dust penetration. In this paper preliminary results from the flight trials at NRC are presented and a description of the radars general capability is shown. Furthermore, insight is provided into the concept of multi-sensor fusion as attempted in the ALLFlight project.
Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey
Poppe, Lawrence J.; Poppe, Lawrence J.
1981-01-01
In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.
Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps
Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.
2015-01-01
Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624
Delayed presentation of deep penetrating trauma to the subaxial cervical spine.
Zaldivar-Jolissaint, Julien Francisco; Bobinski, Lukas; Van Dommelen, Yaelle; Levivier, Marc; Simon, Christian; Duff, John Michael
2015-05-01
To present a rare case of deep penetrating neck trauma in which a retained foreign body in the cervical spine (a broken knife blade) resulted in delayed radicular injury. We describe the surgical management using a retrojugular approach. Our patient sustained a stab wound to the supraclavicular triangle from a small pocketknife. He was initially managed in a local hospital by simple primary wound closure without any radiological examinations, and was discharged home. The patient re-consulted in a delayed fashion with mild local persistent neck pain. Subsequent radiological investigations revealed a foreign body (the broken blade of a pocket knife) embedded in the left neural foramen between the C6 and C7 vertebrae penetrating the disc space. The blade was lying between the left C7 nerve root and the ipsilateral vertebral artery (VA) at the transition of V1 and V2 segments. Initial neurological evaluation was normal. Some days later, the patient developed a delayed left C7 radicular deficit. We undertook urgent exploration along the wound corridor through a retrojugular, transforaminal approach with successful removal of the blade. To our knowledge, this is a unique case where a retained foreign body penetrated the soft tissues of the neck, embedding deep in the vertebral column without vascular, aerodigestive or significant primary neurological injury, while causing delayed neck pain and delayed onset radicular injury. We describe our surgical management for removal of the retained blade. The retrojugular approach gives excellent access to all of the important anatomical structures of the neck from an anterolateral approach.
Gettings, M.E.; Bultman, M.W.
2005-01-01
Some aquifers of the southwest Colorado Plateau, U.S.A., are deeply buried and overlain by several impermeable units, and thus recharge to the aquifer is probably mainly by seepage down penetrative fracture systems. This purpose of this study was to develop a method to map the location of candidate deep penetrative fractures over a 120,000 km2 area using gravity and aeromagnetic anomaly data together with surficial fracture data. The resulting database constitutes a spatially registered estimate of recharge location. Candidate deep fractures were obtained by spatial correlation of horizontal gradient and analytic signal maxima of gravity and magnetic anomalies vertically with major surficial lineaments obtained from geologic, topographic, side-looking airborne radar, and satellite imagery. The maps define a sub-set of possible penetrative fractures because of limitations of data coverage and the analysis technique. The data and techniques employed do not yield any indication as to whether fractures are open or closed. Correlations were carried out using image processing software in such a way that every pixel on the resulting grids was coded to uniquely identify which datasets correlated. The technique correctly identified known deep fracture systems and many new ones. Maps of the correlations also define in detail the tectonic fabrics of the Southwestern Colorado Plateau. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.
Nondestructive Evaluation Methods for Characterization of Corrosion: State of the Art Review
1988-12-01
form molecules of hydrogen gas damage is characterized by surface discolora- and leave the surface. Under some circum- tion and deep gouges or pits...large electromagnet and low operating granular corrosion without stress-related crack- frequencies resulted in deep penetration of ing can produce a...focus, and then the spray al. (11) showed that thermography was able to and the focus were moved together down the detect 3-mm deep , 50-mm diameter
NASA Technical Reports Server (NTRS)
Kaminska, M.; Parsey, J. M.; Lagowski, J.; Gatos, H. C.
1982-01-01
Current oscillations thermally activated by the release of electrons from deep levels in undoped semiinsulating GaAs were observed for the first time. They were attributed to electric field-enhanced capture of electrons by the dominant deep donor EL2 (antisite AsGa defect). This enhanced capture is due to the configurational energy barrier of EL2, which is readily penetrated by hot electrons.
Dual-excitation wavelength resonance Raman explosives detector
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; Sluch, Mikhail; Wu, Hai-Shan; Martin, Robert; McCormick, William; Ice, Robert; Lemoff, Brian E.
2013-05-01
Deep-ultraviolet resonance Raman spectroscopy (DUVRRS) is a promising approach to stand-off detection of explosive traces due to: 1) resonant enhancement of Raman cross-section, 2) λ-4-cross-section enhancement, and 3) fluorescence and solar background free signatures. For trace detection, these signal enhancements more than offset the small penetration depth due to DUV absorption. A key challenge for stand-off sensors is to distinguish explosives, with high confidence, from a myriad of unknown background materials that may have interfering spectral peaks. To address this, we are developing a stand-off explosive sensor using DUVRRS with two simultaneous DUV excitation wavelengths. Due to complex interplay of resonant enhancement, self-absorption and laser penetration depth, significant amplitude variation is observed between corresponding Raman bands with different excitation wavelengths. These variations with excitation wavelength provide an orthogonal signature that complements the traditional Raman signature to improve specificity relative to single-excitation-wavelength techniques. As part of this effort, we are developing two novel CW DUV lasers, which have potential to be compact, and a compact dual-band high throughput DUV spectrometer, capable of simultaneous detection of Raman spectra in two spectral windows. We have also developed a highly sensitive algorithm for the detection of explosives under low signal-to-noise situations.
Energetics Applications for the Oil and Gas Industry
Brinsden, Mark; Boock, Andrea; Baum, Dennis
2015-08-07
Here, early motivation and use of energetic materials in the Western World by Alfred Nobel was intended to facilitate mining, construction, and demolition activities. The motivation for the work was the recognized need for a safer energetic material as an alternate to unstabilized nitroglycerine. The invention of dynamite by Nobel was widely adopted in the civilian world and brought a fortune to Nobel, resulting in the formation of the annual Nobel Prize awards, recognizing significant achievements across many fields of endeavour. Nonetheless, further development of energetics was primarily motivated by and funded for military purposes, rather than civilian usage. Andmore » indeed much investment has been given to the development and characterization of military energetics and their application. An example application is the precision shaped charge, primarily developed as a means of focusing energy in a narrow metallic jet for deep penetration of heavy armor. However, the largest costumer today and for many years for shaped charges is not the military, but rather the oil and gas industry, which has adapted the military technology for perforation of oil and gas wells. While there are similar aspects to desired penetration capabilities in both applications, there are enough differences to warrant energetics R & D focused on oil and gas industry needs.« less
Intensified diapycnal mixing in the midlatitude western boundary currents.
Jing, Zhao; Wu, Lixin
2014-12-10
The wind work on oceanic near-inertial motions is suggested to play an important role in furnishing the diapycnal mixing in the deep ocean which affects the uptake of heat and carbon by the ocean as well as climate changes. However, it remains a puzzle where and through which route the near-inertial energy penetrates into the deep ocean. Using the measurements collected in the Kuroshio extension region during January 2005, we demonstrate that the diapycnal mixing in the thermocline and deep ocean is tightly related to the shear variance of wind-generated near-inertial internal waves with the diapycnal diffusivity 6 × 10(-5) m(2)s(-1) almost an order stronger than that observed in the circulation gyre. It is estimated that 45%-62% of the local near-inertial wind work 4.5 × 10(-3) Wm(-2) radiates into the thermocline and deep ocean and accounts for 42%-58% of the energy required to furnish mixing there. The elevated mixing is suggested to be maintained by the energetic near-inertial wind work and strong eddy activities causing enhanced downward near-inertial energy flux than earlier findings. The western boundary current turns out to be a key region for the penetration of near-inertial energy into the deep ocean and a hotspot for the diapycnal mixing in winter.
NASA Astrophysics Data System (ADS)
Belfield, Kevin D.; Yue, Xiling; Morales, Alma R.; Githaiga, Grace W.; Woodward, Adam W.; Tang, Simon; Sawada, Junko; Komatsu, Masanobu; Liu, Xuan
2016-03-01
Observation of the activation and inhibition of angiogenesis processes is important in the progression of cancer. Application of targeting peptides, such as a small peptide that contains adjacent L-arginine (R), glycine (G) and L-aspartic acid (D) residues can afford high selectivity and deep penetration in vessel imaging. To facilitate deep tissue vasculature imaging, probes that can be excited via two-photon absorption (2PA) in the near-infrared (NIR) and subsequently emit in the NIR are essential. In this study, the enhancement of tissue image quality with RGD conjugates was investigated with new NIR-emitting pyranyl fluorophore derivatives in two-photon fluorescence microscopy. Linear and nonlinear photophysical properties of the new probes were comprehensively characterized; significantly the probes exhibited good 2PA over a broad spectral range from 700-1100 nm. Cell and tissue images were then acquired and examined, revealing deep penetration and high contrast with the new pyranyl RGD-conjugates up to 350 μm in tumor tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for themore » high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.« less
Modeling connected and autonomous vehicles in heterogeneous traffic flow
NASA Astrophysics Data System (ADS)
Ye, Lanhang; Yamamoto, Toshiyuki
2018-01-01
The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.
Simulating Afterburn with LLNL Hydrocodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, L D
2004-06-11
Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effortmore » is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.« less
Seismicity, shear failure and modes of deformation in deep subduction zones
NASA Technical Reports Server (NTRS)
Lundgren, Paul R.; Giardini, Domenico
1992-01-01
The joint hypocentral determination method is used to relocate deep seismicity reported in the International Seismological Center catalog for earthquakes deeper than 400 km in the Honshu, Bonin, Mariannas, Java, Banda, and South America subduction zones. Each deep seismic zone is found to display planar features of seismicity parallel to the Harvard centroid-moment tensor nodal planes, which are identified as planes of shear failure. The sense of displacement on these planes is one of resistance to deeper penetration.
Dye penetrant indications caused by superficial surface defects in 2014 aluminum alloy welds.
NASA Technical Reports Server (NTRS)
Hocker, R. G.; Wilson, K. R.
1971-01-01
Demonstration that dye penetrant indications on the heat-affected zone of 2014-T6 aluminum GMA weldments are frequently caused by superficial surface conditions and are less than 0.007 in. deep. The following methods are suggested for minimization of these surface defects: stabilization of the arc, application of dc ?GTA' welding procedures, reduction of the caustic etch time, and use of fine grain materials.
Deep penetration of light into biotissue
NASA Astrophysics Data System (ADS)
Bearden, Edward D.; Wilson, James D.; Zharov, Vladimir P.; Lowery, Curtis L.
2001-07-01
The results of a study of deep (several centimeters) light penetration into biological tissue are presented in order to estimate its significance to potentially photosensitive structures and processes including the fetal eyes. In order to accomplish this goal, samples of various tissues (fat, muscle, and uterus) from surgical patients and autopsies were examined with a double integrating sphere arrangement to determine their optical properties. The results were implemented in a Monte Carlo modeling program. Next, optical fiber probes were inserted into the uterus and abdominal wall of patients undergoing laparoscopic procedures. The fibers were couples to a photomultiplier tube with intervening filters allowing measurements of light penetration at various wavelengths. To determine the feasibility of stimulation in utero, a xenon lamp and waveguide were used to transilluminate the abdomen of several labor patients. Light in the range of 630 to 670 nm where the eye sensitivity and penetration depth are well matched, will likely provide the best chance of visual stimulation. Fetal heart rate, fetal movement, and fetal magnetoencephalography (SQUID) and electroencephalography (EEG) were observed in different studies to determine if stimulation has occurred. Since internal organs and the fetus are completely dark adapted, the amount of light required to simulate in our opinion could be on the order of 10(superscript -8 Watts.
Modular detector for deep underwater registration of muons and muon groups
NASA Technical Reports Server (NTRS)
Demianov, A. I.; Sarycheva, L. I.; Sinyov, N. B.; Varadanyan, I. N.; Yershov, A. A.
1985-01-01
Registration and identification of muons and muon groups penetrating into the ocean depth, can be performed using a modular multilayer detector with high resolution bidimensional readout - deep underwater calorimeter (project NADIR). Laboratory testing of a prototype sensor cell with liquid scintillator in light-tight casing, testifies to the practicability of the full-scale experiment within reasonable expences.
Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.
2015-12-01
Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a total system dynamic range of 180 dB in order to provide significant penetration.
NASA Astrophysics Data System (ADS)
Li, Jiao; Zhang, Songhe; Chekkoury, Andrei; Glasl, Sarah; Vetschera, Paul; Koberstein-Schwarz, Benno; Omar, Murad; Ntziachristos, Vasilis
2017-03-01
Multispectral optoacoustic mesoscopy (MSOM) has been recently introduced for cancer imaging, it has the potential for high resolution imaging of cancer development in vivo, at depths beyond the diffusion limit. Based on spectral features, optoacoustic imaging is capable of visualizing angiogenesis and imaging cancer heterogeneity of malignant tumors through endogenous hemoglobin. However, high-resolution structural and functional imaging of whole tumor mass is limited by modest penetration and image quality, due to the insufficient capability of ultrasound detectors and the twodimensional scan geometry. In this study, we introduce a novel multi-spectral optoacoustic mesoscopy (MSOM) for imaging subcutaneous or orthotopic tumors implanted in lab mice, with the high-frequency ultrasound linear array and a conical scanning geometry. Detailed volumetric images of vasculature and oxygen saturation of tissue in the entire tumors are obtained in vivo, at depths up to 10 mm with the desirable spatial resolutions approaching 70μm. This unprecedented performance enables the visualization of vasculature morphology and hypoxia conditions has been verified with ex vivo studies. These findings demonstrate the potential of MSOM for preclinical oncological studies in deep solid tumors to facilitate the characterization of tumor's angiogenesis and the evaluation of treatment strategies.
Marshall, John W; Dahlstrom, Dean B; Powley, Kramer D
2011-06-01
To satisfy the Criminal Code of Canada's definition of a firearm, a barreled weapon must be capable of causing serious bodily injury or death to a person. Canadian courts have accepted the forensically established criteria of "penetration or rupture of an eye" as serious bodily injury. The minimal velocity of nonconventional ammunition required to penetrate the eye including airsoft projectiles has yet to be established. To establish minimal threshold requirements for eye penetration, empirical tests were conducted using a variety of airsoft projectiles. Using the data obtained from these tests, and previous research using "air gun" projectiles, an "energy density" parameter was calculated for the minimum penetration threshold of an eye. Airsoft guns capable of achieving velocities in excess of 99 m/s (325 ft/s) using conventional 6-mm airsoft ammunition will satisfy the forensically established criteria of "serious bodily injury." The energy density parameter for typical 6-mm plastic airsoft projectiles is 4.3 to 4.8 J/cm². This calculation also encompasses 4.5-mm steel BBs.
Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal
2006-09-30
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal; Paul Gigl; Mark Hunt
2007-07-31
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
Contrast-enhanced photoacoustic imaging with an optical wavelength of 1064 nm
NASA Astrophysics Data System (ADS)
Kim, Jeesu; Park, Sara; Park, Gyeong Bae; Choi, Wonseok; Jeong, Unyong; Kim, Chulhong
2018-02-01
Photoacoustic (PA) imaging is a biomedical imaging method that can provide both structural and functional information of living tissues beyond the optical diffusion limit by combining the concepts of conventional optical and ultrasound imaging methods. Although endogenous chromophores can be utilized to acquire PA images of biological tissues, exogenous contrast agents that absorb near-infrared (NIR) lights have been extensively explored to improve the contrast and penetration depth of PA images. Here, we demonstrate Bi2Se3 nanoplates, that strongly absorbs NIR lights, as a contrast agent for PA imaging. In particularly, the Bi2Se3 nanoplates produce relatively strong PA signals with an optical wavelength of 1064 nm, which has several advantages for deep tissue imaging including: (1) relatively low absorption by other intrinsic chromophores, (2) cost-effective light source using Nd:YAG laser, and (3) higher available energy than other NIR lights according to American National Standards Institute (ANSI) safety limit. We have investigated deep tissue imaging capability of the Bi2Se3 nanoplates by acquiring in vitro PA images of microtubes under chicken breast tissues. We have also acquired in vivo PA images of bladders, gastrointestinal tracts, and sentinel lymph nodes in mice after injection of the Bi2Se3 nanoplates to verify their applicability to a variety of biomedical research. The results show the promising potential of the Bi2Se3 nanoplates as a PA contrast agent for deep tissue imaging with an optical wavelength of 1064 nm.
Transurethral illumination probe design for deep photoacoustic imaging of prostate
NASA Astrophysics Data System (ADS)
Ai, Min; Salcudean, Tim; Rohling, Robert; Abolmaesumi, Purang; Tang, Shuo
2018-02-01
Photoacoustic (PA) imaging with internal light illumination through optical fiber could enable imaging of internal organs at deep penetration. We have developed a transurethral probe with a multimode fiber inserted in a rigid cystoscope sheath for illuminating the prostate. At the distal end, the fiber tip is processed to diffuse light circumferentially over 2 cm length. A parabolic cylinder mirror then reflects the light to form a rectangular-shaped parallel beam which has at least 1 cm2 at the probe surface. The relatively large rectangular beam size can reduce the laser fluence rate on the urethral wall and thus reduce the potential of tissue damage. A 3 cm optical penetration in chicken tissue is achieved at a fluence rate around 7 mJ/cm2 . For further validation, a prostate phantom was built with similar optical properties of the human prostate. A 1.5 cm penetration depth is achieved in the prostate mimicking phantom at 10 mJ/cm2 fluence rate. PA imaging of prostate can potentially be carried out in the future by combining a transrectal ultrasound transducer and the transurethral illumination.
NASA Astrophysics Data System (ADS)
Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral
2010-05-01
During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.
Recent scientific and operational achievements of D/V Chikyu
NASA Astrophysics Data System (ADS)
Taira, Asahiko; Toczko, Sean; Eguchi, Nobu; Kuramoto, Shin'ichi; Kubo, Yusuke; Azuma, Wataru
2014-12-01
The D/V Chikyu, a scientific drilling vessel, is equipped with industry-standard riser capabilities. Riser drilling technology enables remarkable drilling and downhole logging capabilities and provides unprecedented hole-stability, enabling the shipboard team to retrieve high-quality wire-line logging data as well as well-preserved core samples. The 11 March 2011 Tohoku Oki mega-earthquake and tsunami cost over 18,000 casualties in NE Japan. Chikyu, docked in the Port of Hachinohe, was damaged by the tsunami. By April 2012, the ship was back in operation; drilling the toe of the Japan Trench fault zone where topographic surveys suggested there was up to 50 m eastward motion, the largest earthquake rupture ever recorded. During Integrated Ocean Drilling Program (IODP) Expeditions 343 and 343 T, Chikyu drilled 850 m below sea floor (mbsf) in 6,900+ m water depth and recovered core samples of a highly brecciated shear zone composed of pelagic claystone. A subseafloor observatory looking for temperature signatures caused by the fault friction during the earthquake, was installed and later successfully recovered. The recovered temperature loggers recorded data from which the level of friction during the mega-earthquake slip could be determined. Following Exp. 343, Chikyu began IODP Exp. 337, a riser drilling expedition into the Shimokita coal beds off Hachinohe, to study the deep subsurface biosphere in sedimentary units including Paleogene-Neogene coal beds. New records in scientific ocean drilling were achieved in deepest penetration (drilling reached 2,466 mbsf) and sample recovery. Currently Chikyu is conducting deep riser drilling at the Nankai Trough in the final stage of the NanTroSEIZE campaign. During the years 2011 to 2013, including drilling in the Okinawa Hydrothermal System, Chikyu's operational and scientific achievements have demonstrated that the ship's capabilities are vital for opening new frontiers in earth and biological sciences.
Intensified Diapycnal Mixing in the Midlatitude Western Boundary Currents
Jing, Zhao; Wu, Lixin
2014-01-01
The wind work on oceanic near-inertial motions is suggested to play an important role in furnishing the diapycnal mixing in the deep ocean which affects the uptake of heat and carbon by the ocean as well as climate changes. However, it remains a puzzle where and through which route the near-inertial energy penetrates into the deep ocean. Using the measurements collected in the Kuroshio extension region during January 2005, we demonstrate that the diapycnal mixing in the thermocline and deep ocean is tightly related to the shear variance of wind-generated near-inertial internal waves with the diapycnal diffusivity 6 × 10−5 m2s−1 almost an order stronger than that observed in the circulation gyre. It is estimated that 45%–62% of the local near-inertial wind work 4.5 × 10−3 Wm−2 radiates into the thermocline and deep ocean and accounts for 42%–58% of the energy required to furnish mixing there. The elevated mixing is suggested to be maintained by the energetic near-inertial wind work and strong eddy activities causing enhanced downward near-inertial energy flux than earlier findings. The western boundary current turns out to be a key region for the penetration of near-inertial energy into the deep ocean and a hotspot for the diapycnal mixing in winter. PMID:25491363
NASA Capabilities That Could Impact Terrestrial Smart Grids of the Future
NASA Technical Reports Server (NTRS)
Beach, Raymond F.
2015-01-01
Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability. Potential Deep Space Vehicle Power system characteristics: power 10 kilowatts average; two independent power channels with multi-level cross-strapping; solar array power 24 plus kilowatts; multi-junction arrays; lithium Ion battery storage 200 plus ampere-hours; sized for deep space or low lunar orbit operation; distribution120 volts secondary (SAE AS 5698); 2 kilowatt power transfer between vehicles.
Requirements and capabilities for planetary missions. Volume 2: Mars polar orbiter penetrator 1981
NASA Technical Reports Server (NTRS)
Ball, G. G.; Bird, T. H.
1976-01-01
The Mars Polar Orbiter/Penetrator 1981 mission, intended to investigate the manner in which Mars has evolved, and which surveys its geochemistry, performs climatological investigations, and attempts to determine the planet's gravitational field, was described. The spacecraft, modified from the Viking Orbiter design, carries a new remote-sensing payload and six penetrators. The penetrators are released from a 2.46-h, 1000-km sun synchronous circular orbit and interrogated daily throughout the 2-year orbital mission. X-band telemetry is used to increase data return.
Dual-mode imaging with radiolabeled gold nanorods
NASA Astrophysics Data System (ADS)
Agarwal, Ashish; Shao, Xia; Rajian, Justin R.; Zhang, Huanan; Chamberland, David L.; Kotov, Nicholas A.; Wang, Xueding
2011-05-01
Many nanoparticle contrast agents have difficulties with deep tissue and near-bone imaging due to limited penetration of visible photons in the body and mineralized tissues. We are looking into the possibility of mediating this problem while retaining the capabilities of the high spatial resolution associated with optical imaging. As such, the potential combination of emerging photoacoustic imaging and nuclear imaging in monitoring of antirheumatic drug delivery by using a newly developed dual-modality contrast agent is investigated. The contrast agent is composed of gold nanorods (GNRs) conjugated to the tumor necrosis factor (TNF-α) antibody and is subsequently radiolabeled by 125I. ELISA experiments designed to test TNF-α binding are performed to prove the specificity and biological activity of the radiolabeled conjugated contrast agent. Photoacoustic and nuclear imaging are performed to visualize the distribution of GNRs in articular tissues of the rat tail joints in situ. Findings from the two imaging modalities correspond well with each other in all experiments. Our system can image GNRs down to a concentration of 10 pM in biological tissues and with a radioactive label of 5 μCi. This study demonstrates the potential of combining photoacoustic and nuclear imaging modalities through one targeted contrast agent for noninvasive monitoring of drug delivery as well as deep and mineralized tissue imaging.
Enabling kinetic micro-penetrator technology for Solar System research
NASA Astrophysics Data System (ADS)
Gowen, R. A.
2008-09-01
Whilst the concept of high speed impacting penetrator probes is not new, recent highly successful ground test results have considerably improved the perception that these can be a viable and useful addition to the current toolbox of planetary probes. Previous developments only led to a single deployment (Deep Space-2 to Mars on the ill fated NASA Mars Polar Lander mission in 1999) where neither the soft lander nor penetrator was ever heard from, which is not a logical basis for dismissing penetrator technology. Other space penetrator programmes have included the Russian Mars'96 ~80m/s penetrators for which the whole mission was lost before the spacecraft left Earth orbit, and the Japanese Lunar-A program which was cancelled after a lengthy development program which however saw multiple successful ground trials. The Japanese penetrators were designed for ~300m/s impact. The current UK penetrator developments are actively working towards full space qualification for a Lunar penetrators (MoonLITE mission), which would also provide a significant technical demonstration towards the development of smaller, shorter lived penetrators for exploring other solar system objects. We are advocating delivered micro-penetrators in the mass range ~4-10Kg, (preceded by ~13Kg Lunar penetrator MoonLITE development program), impacting at around 100-500m/s and carrying a scientific payload of around 2Kg. Additional mass is required to deliver the probes from `orbit' to surface which is dependent upon the particular planetary body in question. The mass per descent module therefore involves and additional element which, for a descent through an atmosphere could be quite modest, while for a flyby deployment, can be substantial. For Europa we estimate a descent module mass of ~13 Kg, while for Enceladus the value is ~40Kg for Enceladus since a deceleration of ~3.8 kms-1 is needed from a Titan orbit. The delivery system could consist of a rocket deceleration motor and attitude control system, to e.g. simple fins for bodies with atmospheres Whilst a 2Kg payload may be considered to be very low mass we propose that it is sufficient to carry out a comprehensive range of scientific investigations of the highest priority, and can include a chemistry package (e.g. mass spectrometer with drill, doped optical fibres), micro-seismometers and accelerometers, together with a package of environment sensors capable of measuring temperature, heat flow, dielectric constant, radiation levels, magnetic fields, and a descent camera. Other very low mass options also include a subsurface mineralogy/astrobiology camera; simple redox and pH instruments; and a beeping transmitter to allow radio interferometery from Earth to detect surface motions whether seismic or tidally induced. At present most of these payload instruments either have good space heritage but no impact qualification; are very simple; or have been fully space qualified with the previous space hardware developments. The UK penetrator consortium is currently actively pursuing a program to provide full space qualification for most of the above instruments, of which sensor elements of the mass spectrometer, prototype drill component, micro-seismometers, magnetometer, radiation sensors have currently survived the recent (May 2008) impact test at 310ms-1with a worst case 8- 10 degrees attack angle (offset between velocity vector and normal incidence angle) where forces in excess of 10Kgee were experienced. Such a payload is capable of significant sub-surface chemical inventory identification including refactory, organic materials; seismic investigations of the interior of active bodies; sub-surface mechanical information including layering from accelerometers and mineralogy/astrobiology camera, and ground truth from orbiting experiments such as dielectric constant which is particularly relevant to orbiting ground penetrating radar measurements. A descent camera can provide both impact site geophysical context as well as public media images. These penetrators are ideal for vangard investigations of planetary bodies, or exploration of multiple sites where low mass is of particular benefit. They can provide a substantial scientific standalone capability; ground truth to orbiting instrument; provide concurrent missions with key data at other geographical locations; and provide broad scientific information to guide follow-on missions to more highly focused science investigations with more capable soft landed scientific instruments. Solar system bodies which are applicable to penetrator investigations are numerous and include the Moon, and the current ESA Cosmic Vision proposed missions to Europa, Titan and Enceladus. Other bodies would also include Near Earth Objects (NEOs) for which accelerometers in particular could be EPSC Abstracts, Vol. 3, EPSC2008-A-00526, 2008 European Planetary Science Congress, Author(s) 2008 instrumental in determining whether such objects are solid rock or loose rubble piles as currently thought. Though Mars already has a fairly mature and heavy investigative program both current and planned, the ability to implant a planet wide seismic network would be advantageous as well as extending astrobiologic investigations to new sites. The MoonLITE mission is a proposed UK led lunar mission which is planned to complete a phase-A study in the spring of 2009 with a possible launch in 2013. MoonLITE would comprise of 4 13 kg penetrators distributed widely upon the Moon including shaded polar craters and the far side. An orbiter would relay signals between penetrator and Earth. Key additional steps to enable exploration of other solar system bodies includes impact into harder (icy) and rough surfaces; increased radiation environments; and communications where a trailing aerial to mitigate signal attenuation through more heavily attenuating materials may be more prevalent. Also, significant is the desire to reduce the probe mass, which is envisaged to arise from a reduced lifetime of hours to weeks compared with ~1 year on the Moon, and by adopting new materials and technologies. Delivery of the probes is also likely to differ for each world, whether airless or with atmosphere, and the technology to deliver smaller probes, and with widely varying delta-V requirements requiring shorter and longer flight times. Surprisingly, operation in very cold environments is shared with the Moon's permanently shadowed craters.
Liu, Hsiao-Chuan; Li, Ying; Chen, Ruimin; Jung, Hayong; Shung, K Kirk
2017-04-01
Single-beam acoustic tweezers (SBATs) represent a new technology for particle and cell trapping. The advantages of SBATs are their deep penetration into tissues, reduction of tissue damage and ease of application to in vivo studies. The use of these tools for applications in drug delivery in vivo must meet the following conditions: large penetration depth, strong trapping force and tissue safety. A reasonable penetration depth for SBATs in the development of in vivo applications was established in a previous study conducted in water with zero velocity. However, capturing objects in flowing fluid can provide more meaningful results. In this study, we investigated the capability of SBATs to trap red blood cells (RBCs) and polystyrene microspheres in flowing RBC suspensions. Two different types of RBC suspension were prepared in this work: an RBC phosphate-buffered saline (PBS) suspension and an RBC plasma suspension. The results indicated that SBATs successfully trapped RBCs and polystyrene microspheres in a flowing RBC PBS suspension with an average steady velocity of 1.6 cm/s in a 2-mm-diameter polyimide. Furthermore, SBATs were found able to trap RBCs in a flowing RBC PBS suspension at speeds as high as 7.9 cm/s in a polyimide tube, which is higher than the velocity in capillaries (0.03 cm/s) and approaches the velocity in arterioles and venules. Moreover, the results also indicated that polystyrene microspheres can be trapped in an RBC plasma suspension, where aggregation is observed. This work represents a step forward in using this tool in actual in vivo experimentation. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Babaeva, Natalia Yu.; Naidis, George V.; Kushner, Mark J.
2016-09-01
Streamer discharges in air intersecting with liquids are being investigated to produce reactivity in the liquid. In this talk, we discuss results from a 2-d computational investigation of streamers in air intersecting an isolated liquid, air filled bubble floating on a liquid surface. The 15 mm diameter bubble is conducting water (ɛ /ɛ0 = 80 , σ = 7 . 5 ×10-4Ω-1cm-1) or transformer oil (ɛ /ɛ0 = 2 . 2 , σ = 1 . 5 ×10-13Ω-1cm-1). A needle electrode is positioned d =0-10 mm from the bubble center. With a water bubble (d =0) the streamer slides along the external surface but does not penetrate the bubble due to electric field screening by the conducting shell. If the electrode is shifted (d =3-10 mm) the streamer deviates from the vertical and adheres to the bubble. If the electrode is inserted inside the bubble, the streamer path depends on how deep the electrode penetrates. For shallow penetration, the streamer propagates along the inner surface of the bubble. For deep penetration the streamer takes the shortest path down through the gas. Due to the low conductivity of the oil bubble shell the electric field penetrates into the interior of the bubble. The streamer can then be re-initiated inside the bubble. Charge accumulation on both sides of the bubble shell and perforation of the shell will be also discussed. NYB, GVN supported by Russian Sci. Found. (14-12-01295). MJK by US Natl. Sci. Found. and Dept. of Energy.
NASA Astrophysics Data System (ADS)
Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.
2017-03-01
Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.
Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.
Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong
2018-05-18
Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.
Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent
2011-11-01
Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.
Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy
NASA Astrophysics Data System (ADS)
Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent
2011-11-01
Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.
NASA Technical Reports Server (NTRS)
Delory, G. T.; Grimm, R. E.
2003-01-01
Low-frequency electromagnetic soundings of the subsurface can identify liquid water at depths ranging from hundreds of meters to approx. 10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low-frequency electric and magnetic field sensors capable of being deployed from a lander or rover such that horizontal and vertical components of the fields can be measured free of structural or electrical interference. Under a NASA Planetary Instrument Definition and Development Program (PIDDP), we are currently engaged in the prototype stages of low frequency sensor implementations that will enable this technique to be performed autonomously within the constraints of a lander platform. Once developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, as the latter may not be able to identify subsurface water without significant ambiguities. Low frequency EM methods can play a crucial role as a ground truth measurement, performing deep soundings at sites identified as high priority areas by orbital radars. Alternatively, the penetration depth and conductivity discrimination of low-frequency methods may enable detection of subsurface water in areas that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest.
NASA Astrophysics Data System (ADS)
Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.
2014-06-01
High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration occurs. Penetration is achieved when craters of both sides are connected. Crater diameter on the opposite side is larger than that on the impact side. More fragments are ejected from the opposite side than from the impact side. We present a qualitative explanation for the shapes of Martian deep pit craters.
Rymarczuk, George N; Davidson, Laurence; Severson, Meryl A; Armonda, Rocco A
2015-10-01
Wartime penetrating brain injury can result in deep-seated parenchymal and intraventicular shrapnel, bullets, and bone. Large fragments pose a risk of secondary injury from migration, infection, and metal toxicity. It has been recommended that aggressive removal of fragments be avoided. The goal of this study is to report our technique of minimally invasive removal of select deep-seated fragments using a tubular retractor system. A retrospective review of our database of service members presenting with penetrating traumatic brain injuries incurred during Operations Iraqi Freedom and Enduring Freedom and treated at the Walter Reed Army Medical Center and the National Naval Medical Center was performed. Six individuals were identified in which the Vycor ViewSite retractor system (Vycor Medical, Boca Raton, Florida, USA) was used to remove a ventricular or deep intraparenchymal fragment. All patients were male and ranged in age from 21 to 29 years. Fragment location included the foramen of Monro; the atrium of the right lateral ventricle; parasagittally within the right occipital lobe; the occipital horn of the right lateral ventricle; the deep white matter of the dominant temporal lobe; and within the posterior right temporal lobe deep to the junction of the transverse and sigmoid dural venous sinuses. Fragments included in-driven bone, shrapnel from improvised explosive devices, and bullets. In all cases the fragment was successfully removed. No patient had worsening of their neurologic condition following surgery. Deep parenchymal and intraventricular fragments can be safely removed using a tubular retractor system. Published by Elsevier Inc.
Small Spacecraft for Planetary Science
NASA Astrophysics Data System (ADS)
Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew
2016-07-01
As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.
Closed loop control of penetration depth during CO₂ laser lap welding processes.
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.
Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646
NASA Astrophysics Data System (ADS)
Hatano, Y.; Yumizuru, K.; Koivuranta, S.; Likonen, J.; Hara, M.; Matsuyama, M.; Masuzaki, S.; Tokitani, M.; Asakura, N.; Isobe, K.; Hayashi, T.; Baron-Wiechec, A.; Widdowson, A.; contributors, JET
2017-12-01
Energy spectra of β-ray induced x-rays from divertor tiles used in ITER-like wall campaigns of the Joint European Torus were measured to examine tritium (T) penetration into tungsten (W) layers. The penetration depth of T evaluated from the intensity ratio of W(Lα) x-rays to W(Mα) x-rays showed clear correlation with poloidal position; the penetration depth at the upper divertor region reached several micrometers, while that at the lower divertor region was less than 500 nm. The deep penetration at the upper part was ascribed to the implantation of high energy T produced by DD fusion reactions. The poloidal distribution of total x-ray intensity indicated higher T retention in the inboard side than the outboard side of the divertor region.
Miniaturization technology for Lunar penetrator mission
NASA Astrophysics Data System (ADS)
Hayashi, T.; Saito, H.; Orii, T.; Masumoto, Y.
1993-10-01
The ISAS will launch Lunar-A in 1997 to study internal structure of the moon by seismometric measurements. A mother spacecraft which holds three penetrators will be launched by newly developed M-V rocket. Three penetrators will be released from the mother spacecraft orbiting around the moon. These penetrators make hard landing on the moon with shock of about 10,000 G and will penetrate about 1-3 m in depth into the soil. Three axis seismometer, heat flow meter, data handling subsystem, communications subsystem, power subsystem are installed in a penetrator. These penetrators will be placed at three different sites on the moon and expected to operate more than one year using super lithium primary batteries and will send data to the earth via the mother spacecraft. Weight of the penetrator is limited within 13 kg because of the rocket capability. To achieve the mission, it is absolutely necessary to develop miniaturizing technology in the size and power reduction for penetrator equipment in addition to special assembly technique to withstand extremely high-G environment.
Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers
NASA Technical Reports Server (NTRS)
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2012-01-01
Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.
Filter Enhances Fluorescent-Penetrant-Inspecting Borescope
NASA Technical Reports Server (NTRS)
Molina, Orlando G.
1990-01-01
Slip-on eyepiece for commercial ultraviolet-light borescope reduces both amount of short-wave ultraviolet light that reaches viewer's eye and apparent intensity of unwanted reflections of white light from surfaces undergoing inspection. Fits on stock eyepiece of borescope, which illuminates surface inspected with intense ultraviolet light. Surface, which is treated with fluorescent dye, emits bright-green visible light wherever dye penetrates - in cracks and voids. Eyepiece contains deep-yellow Wratten 15 (G) filter, which attenuates unwanted light strongly but passes yellow-green fluorescence so defects seen clearly.
NASA Technical Reports Server (NTRS)
Parker, Bradford, H.
2009-01-01
Historically both sensitivity level 3 and sensitivity level 4 fluorescent penetrants have been used to perform NASA Standard Level inspections of aerospace hardware. In April 2008, NASA-STD-5009 established a requirement that only sensitivity level 4 penetrants were acceptable for inspections of NASA hardware. Having NASA contractors change existing processes or perform demonstration tests to certify sensitivity level 3 penetrants posed a potentially huge cost to the Agency. This study was conducted to directly compare the probability of detection sensitivity level 3 and level 4 penetrants using both Method A and Method D inspection processes. The study results strongly support the conclusion that sensitivity level 3 penetrants are acceptable for NASA Standard Level inspections
NASA Technical Reports Server (NTRS)
Parker, Bradford H.
2011-01-01
In April 2008, NASA-STD-5009 established a requirement that only sensitivity level 4 penetrants are acceptable for NASA Standard Level liquid penetrant inspections. Having NASA contractors change existing processes or perform demonstration tests to certify sensitivity level 3 penetrants posed a potentially huge cost to the Agency. This study was conducted to directly compare the probability of detection (POD) of sensitivity level 3 and level 4 penetrants using both Method A and Method D inspection processes. POD demonstration tests were performed on 6061-Al, Haynes 188 and Ti-6Al-4V crack panel sets. The study results strongly support the conclusion that sensitivity level 3 penetrants are acceptable for NASA Standard Level inspections.
NASA Astrophysics Data System (ADS)
Rukmana, Y. Y.; Ridwan, M.
2018-01-01
This paper presents the results of soil investigation on the residual soil at Gayungan Surabaya. The methodology of the research consists of Drilling + Standard Penetration Test (ASTM D1586-99), sampling and laboratory test for index properties & mechanical of soil, then analyzed for Soil Bearing Capacity (Meyerhoff, 1976). Field test analysis data showed that Bore Hole.01(BH.01) and Bore Hole.03 (BH.03) were dominated by Sand / Sandy clay layer with Standart Penetration Test (SPT) values: 6-68, whereas in BH.02 was dominated by Clayey sand layer with Standard Penetration Test (SPT) values: 32-68. Based on Soil classification according to Unified Soil Classification System (USCS), the soil type at the research area consisted of ML (Silt with Low plasticity), CL ( Clay with low plasticity), MH (Silt with High plasticity), and SP (Sand with Poor gradation). Based on the borlog data and soil bearing capacity analysis of the research area is recommended: for The Deep foundation to reaches at least 16 meters depth with Qa = 1160.40-2032.80 kN / m2, and Shallow foundation reaches at least 1-2 meters deep with Qa = 718.25 kN / M2.
Corneal transplantation trends in France from 2004 to 2015: A 12-year review.
Bigan, Guillaume; Puyraveau, Marc; Saleh, Maher; Gain, Philippe; Martinache, Isabelle; Delbosc, Bernard; Gauthier, Anne-Sophie
2018-04-01
The aim of this study was to report the 12-year longitudinal trends in indication and corneal transplantation techniques in France from 2004 to 2015. The records of all corneal transplantations performed from 2004 to 2015 in France were retrospectively reviewed. The patient indications and types of transplant performed were analyzed. A total of 46,658 corneal transplantations were performed between 2004 and 2015, with 34,187 (73.3%) penetrating keratoplasty and 10,452 (22.4%) lamellar keratoplasty. The leading surgical indications were secondary endothelial failure (24.3%), keratoconus (18.8%), regraft (13.5%), and Fuchs endothelial corneal dystrophy (15.1%). Endothelial keratoplasty became the preferred technique for endothelial diseases and deep anterior lamellar keratoplasty the preferred technique for keratoconus, surpassing penetrating keratoplasty in 2013. Secondary endothelial failure is the top indication for performing a keratoplasty over the 12-year period. There was a shift from penetrating keratoplasty to endothelial keratoplasty performed for Fuchs endothelial corneal dystrophy and secondary endothelial failure, and to deep anterior lamellar keratoplasty, performed for keratoconus. This highlights an important shift in managing corneal diseases toward the application of selective and more conservative surgeries and changes in indications in corneal transplantation.
Gioia, Sara; Bacci, Mauro; Lancia, Massimo; Carlini, Luigi; Suadoni, Fabio
2014-03-01
We present a peculiar autopsy case of a transorbital penetrating head injury, in a male worker, after an accidental fall onto a screw not completely stuck into a wooden board. A 13-cm screw entered the cranium 9.5 cm deep, penetrating with the flat end, a condition defined in literature as "reverse penetration." The death was instantaneous and caused by a neurogenic shock due to injuries to the brain stem and the right cerebellar hemisphere. These injuries, enabled by the length of the screw, are generally described in literature as due to nontransorbital penetrations, frequently associated with posterior entry and a large intracranial injury. The ocular globe has been, furthermore, perfectly preserved thanks to its mobility in the orbit. Even the dynamic of the incident is peculiar because of the stationary nature of the penetrating object, which the victim actively fell on by accident. To the best of our knowledge, the matter is therefore a very peculiar mortal case of transorbital intracranial penetration, whose verified injuries and dynamics are absolutely atypical. The case is now under discussion, and a review of pertinent literature is performed.
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Pengfei; Wang, Lihong V.
2018-02-01
Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.
Monitoring of tissue modification with optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhang, Wei; Luo, Qingming; Yao, Lei; Cheng, Haiying; Zeng, Shaoqun
2002-04-01
An experimental monitoring of tissue modification of in vitro and in vivo rabbit dura mater with administration of osmotical agents, 40% glucose solution and glycerol, using optical coherence tomography was presented. The preliminary results of experimental study of influence of osmotical liquids (glucose solutions, glycerol) of rabbit dura mater were reported. The significant decreasing of the light from surface and increasing of the light from the deep of dura mater under action of osmotical solutions and the increasing of OCT imaging depth were demonstrated. Experiments showed that administration of osmolytes to dura mater allowed for effective and temporary control of its optical characteristics, which made dura mater more transparent, increased the ability of light penetrating the tissue, and consequently improved the optical imaging depth. It is a significant study, which can improve penetration of optical imaging of cerebral function and acquire more information of the deep brain tissue.
Bending-related faulting and mantle serpentinization at the Middle America trench.
Ranero, C R; Morgan, J Phipps; McIntosh, K; Reichert, C
2003-09-25
The dehydration of subducting oceanic crust and upper mantle has been inferred both to promote the partial melting leading to arc magmatism and to induce intraslab intermediate-depth earthquakes, at depths of 50-300 km. Yet there is still no consensus about how slab hydration occurs or where and how much chemically bound water is stored within the crust and mantle of the incoming plate. Here we document that bending-related faulting of the incoming plate at the Middle America trench creates a pervasive tectonic fabric that cuts across the crust, penetrating deep into the mantle. Faulting is active across the entire ocean trench slope, promoting hydration of the cold crust and upper mantle surrounding these deep active faults. The along-strike length and depth of penetration of these faults are also similar to the dimensions of the rupture area of intermediate-depth earthquakes.
Monitoring controlled graves representing common burial scenarios with ground penetrating radar
NASA Astrophysics Data System (ADS)
Schultz, John J.; Martin, Michael M.
2012-08-01
Implementing controlled geophysical research is imperative to understand the variables affecting detection of clandestine graves during real-life forensic searches. This study focused on monitoring two empty control graves (shallow and deep) and six burials containing a small pig carcass (Sus scrofa) representing different burial forensic scenarios: a shallow buried naked carcass, a deep buried naked carcass, a deep buried carcass covered by a layer of rocks, a deep buried carcass covered by a layer of lime, a deep buried carcass wrapped in an impermeable tarpaulin and a deep buried carcass wrapped in a cotton blanket. Multi-frequency, ground penetrating radar (GPR) data were collected monthly over a 12-month monitoring period. The research site was a cleared field within a wooded area in a humid subtropical environment, and the soil consisted of a Spodosol, a common soil type in Florida. This study compared 2D GPR reflection profiles and horizontal time slices obtained with both 250 and 500 MHz dominant frequency antennae to determine the utility of both antennae for grave detection in this environment over time. Overall, a combination of both antennae frequencies provided optimal detection of the targets. Better images were noted for deep graves, compared to shallow graves. The 250 MHz antenna provided better images for detecting deep graves, as less non-target anomalies were produced with lower radar frequencies. The 250 MHz antenna also provided better images detecting the disturbed ground. Conversely, the 500 MHz antenna provided better images when detecting the shallow pig grave. The graves that contained a pig carcass with associated grave items provided the best results, particularly the carcass covered with rocks and the carcass wrapped in a tarpaulin. Finally, during periods of increased soil moisture levels, there was increased detection of graves that was most likely related to conductive decompositional fluid from the carcasses.
The JPL roadmap for Deep Space navigation
NASA Technical Reports Server (NTRS)
Martin-Mur, Tomas J.; Abraham, Douglas S.; Berry, David; Bhaskaran, Shyam; Cesarone, Robert J.; Wood, Lincoln
2006-01-01
This paper reviews the tentative set of deep space missions that will be supported by NASA's Deep Space Mission System in the next twenty-five years, and extracts the driving set of navigation capabilities that these missions will require. There will be many challenges including the support of new mission navigation approaches such as formation flying and rendezvous in deep space, low-energy and low-thrust orbit transfers, precise landing and ascent vehicles, and autonomous navigation. Innovative strategies and approaches will be needed to develop and field advanced navigation capabilities.
Shell-NASA Vibration-Based Damage Characterization
NASA Technical Reports Server (NTRS)
Rollins, John M.
2014-01-01
This article describes collaborative research between Shell International Exploration and Production (IE&P) scientists and ISAG personnel to investigate the feasibility of ultrasonic-based characterization of spacecraft tile damage for in-space inspection applications. The approach was proposed by Shell personnel in a Shell-NASA "speed-matching" session in early 2011 after ISAG personnel described challenges inherent in the inspection of MMOD damage deep within spacecraft thermal protection system (TPS) tiles. The approach leveraged Shell's relevant sensor and analytical expertise. The research addressed the difficulties associated with producing 3D models of MMOD damage cavities under the surface of a TPS tile, given that simple image-based sensing is constrained by line of sight through entry holes that have diameters considerably smaller than the underlying damage cavities. Damage cavity characterization is needed as part of a vehicle inspection and risk reduction capability for long-duration, human-flown space missions. It was hoped that cavity characterization could be accomplished through the use of ultrasonic techniques that allow for signal penetration through solid material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TerraTek
2007-06-30
A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance ofmore » drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.« less
Dealing with the Surgical and Medical Challenges of Penetrating Brain Injuries
Syrmos, Nikolaos; Ganau, Mario; De Carlo, Antonella; Prisco, Lara; Ganau, Laura; Valadakis, Vasileios; Grigoriou, Kostantinos; Iliadis, Charalampos; Arvanitakis, Dimitrios
2013-01-01
Peacetime has reduced the overall incidence of penetrating brain injuries (PBI), and those related to missile penetration are not common anymore at least in western countries. Nevertheless, PBI still occur, and car crashes or work accidents are their main causes. The management of such cases is characterized by many challenges, not only from a surgical and medical point of view, but also for the different and sometimes bizarre dynamics by which they present. Herein we report an unusual deep penetrating brain injury, due to a high-energy crash against a metallic rod in a construction site, with a good surgical outcome despite dramatic clinical conditions on admission. A discussion of the surgical results and functional outcome related to PBI, as found in the English medical literature, is provided. Moreover the most common postoperative complications along with the diagnostic flow charts and therapeutic options useful to prevent inappropriate treatment are highlighted. PMID:23365777
AURORA BOREALIS - Development of a New Research Icebreaker with Drilling Capability
NASA Astrophysics Data System (ADS)
Thiede, J.; Biebow, N.; Egerton, P.; Kunz-Pirrung, M.; Lembke-Jene, L.
2007-12-01
Polar research both on land and in the sea cannot achieve the needed progress without novel and state of the art technologies and infrastructure. In addition, we have the obligation to equip the upcoming young and courageous generation of polar researchers with the most modern and safest research platforms the 21st century can provide. This effort will require major investments, both in terms of generating new tools, as well as maintaining and renovating existing infrastructure. There are many different novel tools under development for polar research, we will concentrate on the presently largest one, the planning for a new type of research icebreaker, the AURORA BOREALIS with an all-season capability of operations in permanently ice-covered waters and with the possibility to carry out deep-sea drilling in ice-covered deep-sea basins. AURORA BOREALIS will be the most advanced Polar Research Vessel in the world with a multi-functional role of drilling in deep ocean basins and supporting climate and environmental research and decision support for stakeholder governments for the next 35 to 40 years. The vessel is planned as a large research icebreaker with 44,000 tons displacement and a length of up to 196 m, with about 50 Megawatt propulsion power. Advanced technological features will include azimuth propulsion systems, extensive instrumental and airborne ice- management support, and the routine operation of Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUVs) from two moon-pools. An unique feature of this icebreaker will be the drilling rig that will enable sampling of the ocean floor and sub-sea down to 5000 m water depth and 1000 m penetration at the most inhospitable places on earth. The possibility to flexibly equip the ship with laboratory and supply containers, and the variable arrangement of other modular infrastructure (in particular, winches, cranes, etc.), free deck- space, and separate protected deck areas, will allow the planned research vessel to cover the needs of most disciplines in marine research. aurora-borealis.eu/en/about_aurora_borealis/
Subinertial Slope-Trapped Waves in the Northeastern Gulf of Mexico
2009-06-01
describe low-frequency varia- bility in the GOM and its interaction with the topo- graphy. Oey and Lee (2002) describe modeled deep eddy kinetic...deep energy can penetrate onto the upper part of the slope in this region; Oey and Lee (2002) state that their model cannot adequately resolve...slope topography in the NE GOM is described by Cames et al. (2008), Hamilton and Lee (2005), and Wang et al. (2003). Hamilton and Lee (2005) found
Experimental studies on nonpenetrating filtration surgery using the CO2 laser.
Assia, Ehud I; Rotenstreich, Yigal; Barequet, Irina S; Apple, David J; Rosner, Mordechai; Belkin, Michael
2007-06-01
This study evaluated the use of a CO2 laser for performing deep sclerectomy in nonpenetrating filtration surgery. Three experimental models were performed: enucleated sheep and cow eyes (n=18) to determine optimal irradiation parameters, live rabbit eyes (n=20) to test feasibility, and cadaver eyes (40 procedures in 20 eyes) to study effects in human eyes tissue. After a half-thickness scleral flap was created, deep sclerectomy was performed by CO2 laser applications on the scleral bed down to the trabeculo-Descemet's membrane. Fluid percolation was repeatedly achieved without penetration in sheep and cow eyes using scanned laser energy of 5-10 W at a pulse duration of 200 micros and a working distance of 35 cm. In live rabbits, deep sclerectomy was achieved without perforation in 19/20 eyes. Intraocular pressure was significantly decreased on the first postoperative day (10.3+/-5.1 mmHg lower, on average, than in the nonoperated fellow eye; P<0.001), and this persisted for 21 days. Operations on all cadaver eyes resulted in effective fluid percolation. Penetration of the scleral wall occurred in five cases only after repeated laser applications with high energy. Histologically, a thin sclerocorneal intact wall was demonstrated at the sclerectomy bed. Collateral tissue damage did not extend beyond 100 microm, and adjacent structures remained unharmed. CO2 laser-assisted deep sclerectomy is a feasible and apparently safe procedure.
A checklist of the deep sea fishes of the Levant Sea, Mediterranean Sea.
Goren, Menachem; Galil, Bella S
2015-08-04
We list sixty five fish species collected at depths greater than 500 m in the Levant Basin, including 10 depth records. The Levantine bathyal ichthyofauna is characterized by its eurybathy, with an upper bathymetric boundary that permitted penetration of the shallow Gibraltar and Siculo-Tunisian sills, and a much lower bathymetric boundary than recorded for conspecifics elsewhere. The opportunistic and resilient ichthyofauna re-colonized recently the deep-sea following the last anoxic event (~ 6 kyr), forming assemblages notably distinct from those in the western Mediterranean. The exploration and production of deep seabed hydrocarbons have raised the specter of severe direct impacts to the deep habitats. There is an urgent need for documenting the full extent of deep-sea biodiversity, and for providing information for the development of competent and pragmatic management plans and effective conservation policies.
Penetrating the Blood-Brain Barrier: Promise of Novel Nanoplatforms and Delivery Vehicles.
Ali, Iqbal Unnisa; Chen, Xiaoyuan
2015-10-27
Multifunctional nanoplatforms combining versatile therapeutic modalities with a variety of imaging options have the potential to diagnose, monitor, and treat brain diseases. The promise of nanotechnology can only be realized by the simultaneous development of innovative brain-targeting delivery vehicles capable of penetrating the blood-brain barrier without compromising its structural integrity.
Target Detection Routine (TADER). User’s Guide.
1987-09-01
o System range capability subset (one record - omitted for standoff SLAR and penetrating system) o System inherent detection probability subset ( IELT ...records, i.e., one per element type) * System capability modifier subset/A=1, E=1 ( IELT records) o System capability modifier subset/A=1, E=2 ( IELT ...records) s System capability modifier subset/A=2, E=1 ( IELT records) o System capability modifier subset/A=2, E=2 ( IELT records) Unit Data Set (one set
Transcranial magnetic stimulation: Improved coil design for deep brain investigation
NASA Astrophysics Data System (ADS)
Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.
2011-04-01
This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems.
Glover, Jack L; Hudson, Lawrence T
2016-06-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard.
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems
Glover, Jack L.; Hudson, Lawrence T.
2016-01-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in a US national aviation security standard. PMID:27499586
An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems
NASA Astrophysics Data System (ADS)
Glover, Jack L.; Hudson, Lawrence T.
2016-06-01
The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in an international aviation security standard.
Shape-Dependent Skin Penetration of Silver Nanoparticles: Does It Really Matter?
Tak, Yu Kyung; Pal, Sukdeb; Naoghare, Pravin K.; Rangasamy, Sabarinathan; Song, Joon Myong
2015-01-01
Advancements in nano-structured materials have facilitated several applications of nanoparticles (NPs). Skin penetration of NPs is a crucial factor for designing suitable topical antibacterial agents with low systemic toxicity. Available reports focus on size-dependent skin penetration of NPs, mainly through follicular pathways. Herein, for the first time, we demonstrate a proof-of-concept study that entails variations in skin permeability and diffusion coefficients, penetration rates and depth-of-penetration of differently shaped silver NPs (AgNPs) via intercellular pathways using both in vitro and in vivo models. The antimicrobial activity of AgNPs is known. Different shapes of AgNPs may exhibit diverse antimicrobial activities and skin penetration capabilities depending upon their active metallic facets. Consideration of the shape dependency of AgNPs in antimicrobial formulations could help developing an ideal topical agent with the highest efficacy and low systemic toxicity. PMID:26584777
Bolenz, Christian; Trojan, Lutz; Gabriel, Ute; Honeck, Patrick; Wendt-Nordahl, Gunnar; Schaaf, Axel; Alken, Peter; Michel, Maurice Stephan
2008-10-01
To evaluate cellular uptake and urothelial penetration of oligodeoxynucleotides (ODNs) in transitional cell carcinoma (TCC) cell lines and in a porcine ex vivo model, respectively. A panel of human TCC cell lines (RT 112, HT 1197 and UM-UC3) were exposed tofluorescein-labeled ODNs. Transfection rates were assessed byfluorescence microscopy and fluorescence-activated cell sorting (FACS). Intravesical treatment with ODNs was performed in a porcine ex vivo model. Urothelial penetration was evaluated using fluorescence microscopy of cryosections. Treatment with ODNs provided transfection rates of at least 96.8% of TCC cells, irrespective of use of a transfection agent. Effective urothelial penetration by ODNs was detected when compared with controls (p = 0.0325). The addition of a liposomal transfection agent significantly increased the penetration depth, allowing affection of deep urothelial cell layers (p = 0.0082). High transfection rates of ODNs can be achieved in TCC cells. Urothelial penetration of ODNs was observed down to the deepest cell layers when a transfection agent is added, suggesting a high potential for complementing the chemoresection effects on residual tumor areas during intravesical therapy of non-muscle-invasive TCC.
How to improve healthcare? Identify, nurture and embed individuals and teams with "deep smarts".
Eljiz, Kathy; Greenfield, David; Molineux, John; Sloan, Terry
2018-03-19
Purpose Unlocking and transferring skills and capabilities in individuals to the teams they work within, and across, is the key to positive organisational development and improved patient care. Using the "deep smarts" model, the purpose of this paper is to examine these issues. Design/methodology/approach The "deep smarts" model is described, reviewed and proposed as a way of transferring knowledge and capabilities within healthcare organisations. Findings Effective healthcare delivery is achieved through, and continues to require, integrative care involving numerous, dispersed service providers. In the space of overlapping organisational boundaries, there is a need for "deep smarts" people who act as "boundary spanners". These are critical integrative, networking roles employing clinical, organisational and people skills across multiple settings. Research limitations/implications Studies evaluating the barriers and enablers to the application of the deep smarts model and 13 knowledge development strategies proposed are required. Such future research will empirically and contemporary ground our understanding of organisational development in modern complex healthcare settings. Practical implications An organisation with "deep smarts" people - in managerial, auxiliary and clinical positions - has a greater capacity for integration and achieving improved patient-centred care. Originality/value In total, 13 developmental strategies, to transfer individual capabilities into organisational capability, are proposed. These strategies are applicable to different contexts and challenges faced by individuals and teams in complex healthcare organisations.
Imaging assessment of penetrating injury of the neck and face.
Offiah, Curtis; Hall, Edward
2012-10-01
Penetrating trauma of the neck and face is a frequent presentation to acute emergency, trauma and critical care units. There remains a steady incidence of both gunshot penetrating injury to the neck and face as well as non-missile penetrating injury-largely, but not solely, knife-related. Optimal imaging assessment of such injuries therefore remains an on-going requirement of the general and specialised radiologist. The anatomy of the neck and face-in particular, vascular, pharyngo-oesophageal, laryngo-tracheal and neural anatomy-demands a more specialised and selective management plan which incorporates specific imaging techniques. The current treatment protocol of injuries of the neck and face has seen a radical shift away from expectant surgical exploration in the management of such injuries, largely as a result of advances in the diagnostic capabilities of multi-detector computed tomography angiography (MDCTA), which is now the first-line imaging modality of choice in such cases. This review aims to highlight ballistic considerations, differing imaging modalities, including MDCTA, that might be utilised to assist in the accurate assessment of these injuries as well as the specific radiological features and patterns of specific organ-system injuries that should be considered and communicated to surgical and critical care teams. TEACHING POINTS : • MDCTA is the first-line imaging modality in penetrating trauma of the neck and, often, of the face • The inherent deformability of a bullet is a significant factor in its tissue-damaging capabilities • MDCTA can provide accurate assessment of visceral injury of the neck as well as vascular injury • Penetrating facial trauma warrants radiological assessment of key adjacent anatomical structures • In-driven fragments of native bone potentiate tissue damage in projectile penetrating facial trauma.
GPR application on construction foundation study
NASA Astrophysics Data System (ADS)
Amran, T. S. T.; Ismail, M. P.; Ismail, M. A.; Amin, M. S. M.; Ahmad, M. R.; Basri, N. S. M.
2017-11-01
Extensive researches and studies have been carried on radar system for commercialisation of ground penetrating radar (GPR) technology pioneered in construction, and thus claimed its rightful place in the vision of future. The application of ground penetrating radar in construction study is briefly reviewed. Based on previous experimentation and studies, this paper is focus on reinforcement bar (rebar) investigation on construction. The various data through previous references used to discuss and analyse the capability of ground penetrating radar for further improvement in construction projects especially in rebar placement in works.
Pioneer Mars surface penetrator mission. Mission analysis and orbiter design
NASA Technical Reports Server (NTRS)
1974-01-01
The Mars Surface Penetrator mission was designed to provide a capability for multiple and diverse subsurface science measurements at a low cost. Equipment required to adapt the Pioneer Venus spacecraft for the Mars mission is described showing minor modifications to hardware. Analysis and design topics which are similar and/or identical to the Pioneer Venus program are briefly discussed.
Caselli, Federico; Corradi, Antonio
2018-01-01
The relevance of effective and efficient solutions for vehicle traffic surveillance is widely recognized in order to enable advanced strategies for traffic management, e.g., based on dynamically adaptive and decentralized traffic light management. However, most related solutions in the literature, based on the powerful enabler of cooperative vehicular communications, assume the complete penetration rate of connectivity/communication technologies (and willingness to participate in the collaborative surveillance service) over the targeted vehicle population, thus making them not applicable nowadays. The paper originally proposes an innovative solution for cooperative traffic surveillance based on vehicular communications capable of: (i) working with low penetration rates of the proposed technology and (ii) of collecting a large set of monitoring data about vehicle mobility in targeted areas of interest. The paper presents insights and lessons learnt from the design and implementation work of the proposed solution. Moreover, it reports extensive performance evaluation results collected on realistic simulation scenarios based on the usage of iTETRIS with real traces of vehicular traffic of the city of Bologna. The reported results show the capability of our proposal to consistently estimate the real vehicular traffic even with low penetration rates of our solution (only 10%). PMID:29522427
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Herique, A.; Plettemeier, D.
2015-12-01
Very little is known till now about the interior of asteroids. The information available has been so far mainly obtained through remote observations of the surface and inferred from theoretical modeling. Observations of asteroids deep interior and regolith structure are needed to better understand the asteroid accretion and dynamical evolution, and to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) deflection and other risk mitigation techniques. Radar operating from a spacecraft is the only technique capable of characterizing the internal structure and heterogeneity from submetric to global scale for the benefit of science as well as for planetary defence or exploration. Access to the deep interior structure requires a low-frequency radar (LFR) that is able to penetrate and propagate throughout the complete body. The LFR will be a bi-static radar similar to the CONSERT radar designed for the Rosetta mission and will perform a tomography of the asteroid. On the other hand, the characterization of the first tens of meters of the subsurface with a submetric resolution will be achieved by a monostatic radar operating at higher frequencies (HFR). It will allow the identification of the layering and the reconnection of the surface features to the internal structure. Its design will be based on the design of the WISDOM radar developped for the ExoMars mission. This presentation reviews, in the context of the AIDA/AIM mission, the benefits of radar measurements performed from a spacecraft. The concept of both HFR and LFR are presented as well as the expected performances of the instruments.
Peguero-Pina, José Javier; Gil-Pelegrín, Eustaquio; Morales, Fermín
2009-01-01
The existence of major vertical gradients within the leaf is often overlooked in studies of photosynthesis. These gradients, which involve light heterogeneity, cell composition, and CO(2) concentration across the mesophyll, can generate differences in the maximum potential PSII efficiency (F (V)/F (M) or F (V)/F (P)) of the different cell layers. Evidence is presented for a step gradient of F (V)/F (P) ratios across the mesophyll, from the adaxial (palisade parenchyma, optimal efficiencies) to the abaxial (spongy parenchyma, sub-optimal efficiencies) side of Quercus coccifera leaves. For this purpose, light sources with different wavelengths that penetrate more or less deep within the leaf were employed, and measurements from the adaxial and abaxial sides were performed. To our knowledge, this is the first report where a low photosynthetic performance in the abaxial side of leaves is accompanied by impaired F (V)/F (P) ratios. This low photosynthetic efficiency of the abaxial side could be related to the occurrence of bundle sheath extensions, which facilitates the penetration of high light intensities deep within the mesophyll. Also, leaf morphology (twisted in shape) and orientation (with a marked angle from the horizontal plane) imply direct sunlight illumination of the abaxial side. The existence of cell layers within leaves with different photosynthetic efficiencies makes appropriate the evaluation of how light penetrates within the mesophyll when using Chl fluorescence or gas exchange techniques that use different wavelengths for excitation and/or for driving photosynthesis.
NASA Astrophysics Data System (ADS)
Xu, Huijing; Weltman Hirschberg, Ahuva; Scholten, Kee; Berger, Theodore William; Song, Dong; Meng, Ellis
2018-02-01
Objective. The success of a cortical prosthetic device relies upon its ability to attain resolvable spikes from many neurons in particular neural networks over long periods of time. Traditionally, lifetimes of neural recordings are greatly limited by the body’s immune response against the foreign implant which causes neuronal death and glial scarring. This immune reaction is posited to be exacerbated by micromotion between the implant, which is often rigid, and the surrounding, soft brain tissue, and attenuates the quality of recordings over time. Approach. In an attempt to minimize the foreign body response to a penetrating neural array that records from multiple brain regions, Parylene C, a flexible, biocompatible polymer was used as the substrate material for a functional, proof-of-concept neural array with a reduced elastic modulus. This probe array was designed and fabricated to have 64 electrodes positioned to match the anatomy of the rat hippocampus and allow for simultaneous recordings between two cell-body layers of interest. A dissolvable brace was used for deep-brain penetration of the flexible array. Main results. Arrays were electrochemically characterized at the benchtop, and a novel insertion technique that restricts acute insertion injury enabled accurate target placement of four, bare, flexible arrays to greater than 4 mm deep into the rat brain. Arrays were tested acutely and in vivo recordings taken intra-operatively reveal spikes in both targeted regions of the hippocampus with spike amplitudes and noise levels similar to those recorded with microwires. Histological staining of a sham array implanted for one month reveals limited astrocytic scarring and neuronal death around the implant. Significance. This work represents one of the first examples of a penetrating polymer probe array that records from individual neurons in structures that lie deep within the brain.
Maurino, Vincenzo; Allan, Bruce D S; Stevens, Julian D; Tuft, Stephen J
2002-02-01
To describe three cases of fixed dilated pupil and presumed iris ischemia (Urrets-Zavalia syndrome) after anterior chamber air/gas injection after deep lamellar keratoplasty for keratoconus. Interventional case series. Three eyes of three patients with keratoconus underwent deep lamellar keratoplasty and intraoperative or postoperative injection of air/gas in the anterior chamber to appose the host-donor lamellar graft interface. Urrets-Zavalia syndrome was diagnosed on clinical grounds in three cases and was associated with the Descemet membrane microperforation intraoperatively and introduction of air/gas into the anterior chamber intraoperatively or postoperatively. A fixed dilated pupil is an uncommon complication of penetrating keratoplasty for keratoconus that can also develop after deep lamellar keratoplasty. Leaving an air or gas bubble in the anterior chamber of a phakic eye after deep lamellar keratoplasty is a risk factor and should therefore be avoided.
Defense Industrial Base Capabilities Study: Battlespace Awareness
2004-01-01
not production capacity or workforce issues. It considers the best capabilities in both the domestic and foreign components of the industrial base...www.maliburesearch.com Ground Penetrating Radar MARIMATECH 1989 Aarhus, Denmark n.a. n.a. www.marimatech.com Sonar Maser Technology (NZ) Ltd. 1983 Auckland , New
Design and fabrication of a large area freestanding compressive stress SiO2 optical window
NASA Astrophysics Data System (ADS)
Van Toan, Nguyen; Sangu, Suguru; Ono, Takahito
2016-07-01
This paper reports the design and fabrication of a 7.2 mm × 9.6 mm freestanding compressive stress SiO2 optical window without buckling. An application of the SiO2 optical window with and without liquid penetration has been demonstrated for an optical modulator and its optical characteristic is evaluated by using an image sensor. Two methods for SiO2 optical window fabrication have been presented. The first method is a combination of silicon etching and a thermal oxidation process. Silicon capillaries fabricated by deep reactive ion etching (deep RIE) are completely oxidized to form the SiO2 capillaries. The large compressive stress of the oxide causes buckling of the optical window, which is reduced by optimizing the design of the device structure. A magnetron-type RIE, which is investigated for deep SiO2 etching, is the second method. This method achieves deep SiO2 etching together with smooth surfaces, vertical shapes and a high aspect ratio. Additionally, in order to avoid a wrinkling optical window, the idea of a Peano curve structure has been proposed to achieve a freestanding compressive stress SiO2 optical window. A 7.2 mm × 9.6 mm optical window area without buckling integrated with an image sensor for an optical modulator has been successfully fabricated. The qualitative and quantitative evaluations have been performed in cases with and without liquid penetration.
Berson, Diane S.; Cohen, Joel L.; Roberts, Wendy E.; Starker, Isaac; Wang, Beatrice
2010-01-01
Chemical peeling is a popular, relatively inexpensive, and generally safe method for treatment of some skin disorders and to refresh and rejuvenate skin. This article focuses on chemical peels and their use in routine clinical practice. Chemical peels are classified by the depth of action into superficial, medium, and deep peels. The depth of the peel is correlated with clinical changes, with the greatest change achieved by deep peels. However, the depth is also associated with longer healing times and the potential for complications. A wide variety of peels are available, utilizing various topical agents and concentrations, including a recent salicylic acid derivative, β-lipohydroxy acid, which has properties that may expand the clinical use of peels. Superficial peels, penetrating only the epidermis, can be used to enhance treatment for a variety of conditions, including acne, melasma, dyschromias, photodamage, and actinic keratoses. Medium-depth peels, penetrating to the papillary dermis, may be used for dyschromia, multiple solar keratoses, superficial scars, and pigmentary disorders. Deep peels, affecting reticular dermis, may be used for severe photoaging, deep wrinkles, or scars. Peels can be combined with other in-office facial resurfacing techniques to optimize outcomes and enhance patient satisfaction and allow clinicians to tailor the treatment to individual patient needs. Successful outcomes are based on a careful patient selection as well as appropriate use of specific peeling agents. Used properly, the chemical peel has the potential to fill an important therapeutic need in the dermatologist's and plastic surgeon's armamentarium. PMID:20725555
Air-guided manual deep lamellar keratoplasty.
Caporossi, A; Simi, C; Licignano, R; Traversi, C; Balestrazzi, A
2004-01-01
To evaluate the efficacy of a new modified technique of deep lamellar keratoplasty (DLK). Nine eyes of eight patients with keratoconus of moderate degree were included. All patients underwent DLK with manual dissection from a limbal side port after an air bubble injection in the anterior chamber. The patients underwent a complete ophthalmologic examination 6 months after the suture removal, evaluating best-corrected visual acuity, corneal thickness, endothelial cell count, and topographic astigmatism. One case (11.1%) was converted to penetrating keratoplasty because of microperforation. In the eight successful cases, 7 eyes (77.8%) achieved 20/30 or better visual acuity 6 months after suture removal. Mean postoperative pachymetry was 604.76 microm (SD 46.76). Specular microscopy 6 months after suture removal revealed average endothelial cell count of 2273/mm2 (SD 229). This modified DLK technique is a safe and effective procedure and could facilitate, after a short learning curve, this kind of surgery with a low risk of conversion to penetrating keratoplasty.
Ratfish (Chimaera) spine injuries in fishermen.
Hayes, A J; Sim, A J W
2011-08-01
An occupational hazard peculiar to fishermen, is an injury from a sharp fish spine. Such spines can cause envenomation injury, infectious sequelae or trauma to anatomical structures. The management of two fishermen with penetrating ratfish (Chimaera) spine injuries to the lower limb is described. Both were managed by removal of the spine under general anaesthesia. In the second patient, the spine was embedded adjacent to the left femoral artery, highlighting the potential for major haemorrhage and supporting the use of surgical wound exploration when important structures may be involved. Herein, we describe the first report in English of Chimaera spine injury. In addition, we surveyed nine northeast Atlantic deep-sea fishermen to gain information on exposure to, and injuries from, this type of fish. The most commonly identified species was Chimaera monstrosa. Five fishermen reported injuries to their feet or hands from Chimaera spines and two had sought medical attention. The evidence indicates that deep-sea trawler fishermen of the northeast Atlantic frequently encounter Chimaera species and can suffer dangerous penetrating wounds from its dorsal spine.
Stereoscopic, thermal, and true deep cumulus cloud top heights
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.
2004-05-01
We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.
NASA Technical Reports Server (NTRS)
Kuiper, T. B. H.; Resch, G. M.
2000-01-01
The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.
Gas-Stabilizing Gold Nanocones for Acoustically Mediated Drug Delivery.
Mannaris, Christophoros; Teo, Boon M; Seth, Anjali; Bau, Luca; Coussios, Constantin; Stride, Eleanor
2018-06-01
The efficient penetration of drugs into tumors is a major challenge that remains unmet. Reported herein is a strategy to promote extravasation and enhanced penetration using inertial cavitation initiated by focused ultrasound and cone-shaped gold nanoparticles that entrap gas nanobubbles. The cones are capable of initiating inertial cavitation under pressures and frequencies achievable with existing clinical ultrasound systems and of promoting extravasation and delivery of a model large therapeutic molecule in an in vitro tissue mimicking flow phantom, achieving penetration depths in excess of 2 mm. Ease of functionalization and intrinsic imaging capabilities provide gold with significant advantages as a material for biomedical applications. The cones show neither cytotoxicity in Michigan Cancer Foundation (MCF)-7 cells nor hemolytic activity in human blood at clinically relevant concentrations and are found to be colloidally stable for at least 5 d at 37 °C and several months at 4 °C. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluconazole penetration in cerebral parenchyma in humans at steady state.
Thaler, F; Bernard, B; Tod, M; Jedynak, C P; Petitjean, O; Derome, P; Loirat, P
1995-01-01
We studied fluconazole penetration in the brain in five patients who had a deep cerebral tumor whose removal required the excision of healthy brain tissue. Plasma and brain samples were simultaneously obtained after oral ingestion of 400 mg of fluconazole daily for 4 days (90% of steady state). Fluconazole penetration in healthy cerebral parenchyma was determined. Plasma and brain samples were assayed by high-pressure liquid chromatography. Concentrations in plasma and brain tissue were 13.5 +/- 5.5 micrograms/ml and 17.6 +/- 6.6 micrograms/g, respectively. The average ratio of concentrations in the brain and plasma (four patients) was 1.33 (range, 0.70 to 2.39). Despite the lack of data concerning the penetration of fluconazole in brain abscesses, these results should permit the use of a daily dose of 400 mg of fluconazole in prospective clinical studies that evaluate the effectiveness of this drug in the treatment of brain abscesses due to susceptible species of fungi. PMID:7625804
Internal-illumination photoacoustic computed tomography
NASA Astrophysics Data System (ADS)
Li, Mucong; Lan, Bangxin; Liu, Wei; Xia, Jun; Yao, Junjie
2018-03-01
We report a photoacoustic computed tomography (PACT) system using a customized optical fiber with a cylindrical diffuser to internally illuminate deep targets. The traditional external light illumination in PACT usually limits the penetration depth to a few centimeters from the tissue surface, mainly due to strong optical attenuation along the light propagation path from the outside in. By contrast, internal light illumination, with external ultrasound detection, can potentially detect much deeper targets. Different from previous internal illumination PACT implementations using forward-looking optical fibers, our internal-illumination PACT system uses a customized optical fiber with a 3-cm-long conoid needle diffuser attached to the fiber tip, which can homogeneously illuminate the surrounding space and substantially enlarge the field of view. We characterized the internal illumination distribution and PACT system performance. We performed tissue phantom and in vivo animal studies to further demonstrate the superior imaging depth using internal illumination over external illumination. We imaged a 7.5-cm-deep leaf target embedded in optically scattering medium and the beating heart of a mouse overlaid with 3.7-cm-thick chicken tissue. Our results have collectively demonstrated that the internal light illumination combined with external ultrasound detection might be a useful strategy to improve the penetration depth of PACT in imaging deep organs of large animals and humans.
A tumor-penetrating peptide enhances circulation-independent targeting of peritoneal carcinomatosis
Sugahara, Kazuki N.; Scodeller, Pablo; Braun, Gary B.; de Mendoza, Tatiana Hurtado; Yamazaki, Chisato M.; Kluger, Michael D.; Kitayama, Joji; Alvarez, Edwin; Howell, Stephen B.; Teesalu, Tambet; Ruoslahti, Erkki; Lowy, Andrew M.
2015-01-01
Peritoneal carcinomatosis is a major source of morbidity and mortality in patients with advanced abdominal neoplasms. Intraperitoneal chemotherapy (IPC) is an area of intense interest given its efficacy in ovarian cancer. However, IPC suffers from poor drug penetration into peritoneal tumors. As such, extensive cytoreductive surgery is required prior to IPC. Here, we explore the utility of iRGD, a tumor-penetrating peptide, for improved tumor-specific penetration of intraperitoneal compounds and enhanced IPC in mice. Intraperitoneally administered iRGD significantly enhanced penetration of an attached fluorescein into disseminated peritoneal tumor nodules. The penetration was tumor-specific, circulation-independent, and mediated by the neuropilin-binding RXXK tissue-penetration peptide motif of iRGD. Q-iRGD, which fluoresces upon cleavage, including the one that leads to RXXK activation, specifically labeled peritoneal metastases displaying different growth patterns in mice. Importantly, iRGD enhanced intratumoral entry of intraperitoneally co-injected dextran to approximately 300% and doxorubicin to 250%. Intraperitoneal iRGD/doxorubicin combination therapy inhibited the growth of bulky peritoneal tumors and reduced systemic drug toxicity. iRGD delivered attached fluorescein and co-applied nanoparticles deep into fresh human peritoneal metastasis explants. These results indicate that intraperitoneal iRGD co-administration serves as a simple and effective strategy to facilitate tumor detection and improve the therapeutic index of IPC for peritoneal carcinomatosis. PMID:26071630
Ball Bearing (BB) Guns, Ease of Purchase and Potential for Significant Injury
Grocock, C; McCarthy, R; Williams, DJ
2006-01-01
INTRODUCTION Ball bearing guns are used in the UK for war games, but they have the potential to cause severe injury if used incorrectly. MATERIALS AND METHODS A search was made for availability of these weapons, the ease of purchase and the potential for tissue damage. RESULTS These weapons are widely available on the Internet and are easy to purchase with no security checks. Once fully charged, an electric BB gun is capable of penetrating a cadaveric animal model at distances up to 5 m (1 m = 25 mm penetration, 3 m = 20 mm penetration, 5 m = 15 mm penetration). CONCLUSIONS BB guns are not toys and have a significant potential to cause injury. PMID:16834864
Olimpio, Joseph R.
2000-01-01
Ground-penetrating radar was used to measure the depth and extent of existing and infilled scour holes and previous scour surfaces at seven bridges in New Hampshire from April 1996 to November 1998. Ground-penetrating-radar survey techniques initially were used by the U.S. Geological Survey to study streambed scour at 30 bridges. Sixteen of the 30 bridges were re-surveyed where floods exceeded a 2-year recurrence interval. A 300-megahertz signal was used in the ground-penetrating radar system that penetrated through depths as great as 20 feet of water and as great as 32 feet of streambed materials. Existing scour-hole dimensions, infilled thickness, previous scour surfaces, and streambed materials were detected using ground-penetrating radar. Depths to riprap materials and pier footings were identified and verified with bridge plans. Post data-collection-processing techniques were applied to assist in the interpretation of the data, and the processed data were displayed and printed as line plots. Processing included distance normalization, migration, and filtering but processing was kept to a minimum and some interference from multiple reflections was left in the record. Of the 16 post-flood bridges, 22 ground-penetrating-radar cross sections at 7 bridges were compared and presented in this report. Existing scour holes were detected during 1996 (pre-flood) data collection in nine cross sections where scour depths ranged from 1 to 3 feet. New scour holes were detected during 1998 (post-flood) data collection in four cross sections where scour depths were as great as 4 feet deep. Infilled scour holes were detected in seven cross sections, where depths of infilling ranged from less than 1 to 4 feet. Depth of infilling by means of steel rod and hammer was difficult to verify in the field because of cobble and boulder streambeds or deep water. Previous scour surfaces in streambed materials were identified in 15 cross sections and the depths to these surfaces ranged from 1 to 10 feet below the streambed. Riprap materials or pier footings were identified in all cross sections. Calculated record depths generally agree with bridge plans. Pier footings were exposed at two bridges and steel pile was exposed at one bridge. Exposures were verified by field observations.
Review of GaN-based devices for terahertz operation
NASA Astrophysics Data System (ADS)
Ahi, Kiarash
2017-09-01
GaN provides the highest electron saturation velocity, breakdown voltage, operation temperature, and thus the highest combined frequency-power performance among commonly used semiconductors. The industrial need for compact, economical, high-resolution, and high-power terahertz (THz) imaging and spectroscopy systems are promoting the utilization of GaN for implementing the next generation of THz systems. As it is reviewed, the mentioned characteristics of GaN together with its capabilities of providing high two-dimensional election densities and large longitudinal optical phonon of ˜90 meV make it one of the most promising semiconductor materials for the future of the THz emitters, detectors, mixers, and frequency multiplicators. GaN-based devices have shown capabilities of operation in the upper THz frequency band of 5 to 12 THz with relatively high photon densities in room temperature. As a result, THz imaging and spectroscopy systems with high resolution and deep depth of penetration can be realized through utilizing GaN-based devices. A comprehensive review of the history and the state of the art of GaN-based electronic devices, including plasma heterostructure field-effect transistors, negative differential resistances, hetero-dimensional Schottky diodes, impact avalanche transit times, quantum-cascade lasers, high electron mobility transistors, Gunn diodes, and tera field-effect transistors together with their impact on the future of THz imaging and spectroscopy systems is provided.
Ducourthial, Guillaume; Leclerc, Pierre; Mansuryan, Tigran; Fabert, Marc; Brevier, Julien; Habert, Rémi; Braud, Flavie; Batrin, Renaud; Vever-Bizet, Christine; Bourg-Heckly, Geneviève; Thiberville, Luc; Druilhe, Anne; Kudlinski, Alexandre; Louradour, Frédéric
2015-01-01
We present a two-photon microendoscope capable of in vivo label-free deep-tissue high-resolution fast imaging through a very long optical fiber. First, an advanced light-pulse spectro-temporal shaping device optimally precompensates for linear and nonlinear distortions occurring during propagation within the endoscopic fiber. This enables the delivery of sub-40-fs duration infrared excitation pulses at the output of 5 meters of fiber. Second, the endoscopic fiber is a custom-made double-clad polarization-maintaining photonic crystal fiber specifically designed to optimize the imaging resolution and the intrinsic luminescence backward collection. Third, a miniaturized fiber-scanner of 2.2 mm outer diameter allows simultaneous second harmonic generation (SHG) and two-photon excited autofluorescence (TPEF) imaging at 8 frames per second. This microendoscope’s transverse and axial resolutions amount respectively to 0.8 μm and 12 μm, with a field-of-view as large as 450 μm. This microendoscope’s unprecedented capabilities are validated during label-free imaging, ex vivo on various fixed human tissue samples, and in vivo on an anesthetized mouse kidney demonstrating an imaging penetration depth greater than 300 μm below the surface of the organ. The results reported in this manuscript confirm that nonlinear microendoscopy can become a valuable clinical tool for real-time in situ assessment of pathological states. PMID:26673905
Zhang, Hairong; Salo, Daniel; Kim, David M; Komarov, Sergey; Tai, Yuan-Chuan; Berezin, Mikhail Y
2016-12-01
Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte–Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm; however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent.
Prajapati, Deepesh; Nayak, Rashmi; Pai, Deepika; Upadhya, Nagraj; K Bhaskar, Vipin; Kamath, Pujan
2017-01-01
To evaluate the effectiveness of resin infiltration on artificial caries lesion by assessing the depth of resin penetration and the change in microhardness of lesion postinfiltration. Totally 45 human extracted premolars were used to create an artificial demineralized lesion in enamel using demineralizing solution. A total of 15 samples (group I) were infiltrated with resin. The depth of resin penetration was studied using scanning electron microscope (SEM). Other half (n = 30) of samples was equally divided into three subgroups and Vickers hardness number (VHN) values were obtained to measure the surface microhardness as group 11 a-before demineralization, 11 b-after demineralization, IIc-postresin infiltration. Mean depth of penetration in group I was 516.8 urn. There was statistically significant increase in VHN values of demineralized lesion postresin infiltration (independent Student's t-test, p < 0.001). Penetration depth of the resin infiltrant was deep enough to render beneficial effects, while significant increase in microhardness was observed postresin infiltration. Infiltrant used can be considered as a valid treatment option for noncavitated lesions. Prajapati D, Nayak R, Pai D, Upadhya N, Bhaskar VK, Kamath P. Effect of Resin Infiltration on Artificial Caries: An in vitro Evaluation of Resin Penetration and Microhardness. Int J Clin Pediatr Dent 2017;10(3):250-256.
Comb-push Ultrasound Shear Elastography (CUSE) with Various Ultrasound Push Beams
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Greenleaf, James F.; Chen, Shigao
2013-01-01
Comb-push Ultrasound Shear Elastography (CUSE) has recently been shown to be a fast and accurate two-dimensional (2D) elasticity imaging technique that can provide a full field-of- view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE – Focused CUSE (F-CUSE) and Marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g. kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging. PMID:23591479
Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams.
Song, Pengfei; Urban, Matthew W; Manduca, Armando; Zhao, Heng; Greenleaf, James F; Chen, Shigao
2013-08-01
Comb-push ultrasound shear elastography (CUSE) has recently been shown to be a fast and accurate 2-D elasticity imaging technique that can provide a full field-of-view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE-focused CUSE (F-CUSE) and marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g., kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2-D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE, and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2-D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging.
Sensitivity and comparison evaluation of Saturn 5 liquid penetrants
NASA Technical Reports Server (NTRS)
Jones, G. H.
1973-01-01
Results of a sensitivity and comparison evaluation performed on six liquid penetrants that were used on the Saturn 5 vehicle and other space hardware to detect surface discontinuities are described. The relationship between penetrant materials and crack definition capabilities, the optimum penetrant materials evaluation method, and the optimum measurement methods for crack dimensions were investigated. A unique method of precise developer thickness control was envolved, utilizing clear radiographic film and a densitometer. The method of evaluation included five aluminum alloy, 2219-T87, specimens that were heated and then quenched in cold water to produce cracks. The six penetrants were then applied, one at a time, and the crack indications were counted and recorded for each penetrant for comparison purposes. Measurements were made by determining the visual crack indications per linear inch and then sectioning the specimens for a metallographic count of the cracks present. This method provided a numerical approach for assigning a sensitivity index number to the penetrants. Of the six penetrants evaluated, two were not satisfactory (one was not sufficiently sensitive and the other was to sensitive, giving false indications). The other four were satisfactory with approximately the same sensitivity in the range of 78 to 80.5 percent of total cracks detected.
Light penetration structures the deep acoustic scattering layers in the global ocean.
Aksnes, Dag L; Røstad, Anders; Kaartvedt, Stein; Martinez, Udane; Duarte, Carlos M; Irigoien, Xabier
2017-05-01
The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.
NASA Astrophysics Data System (ADS)
Golubev, Vladimir S.; Banishev, Alexander F.; Azharonok, V. V.; Zabelin, Alexandre M.
1994-09-01
A qualitative analysis of the role of some hydrodynamic flows and instabilities by the process of laser beam-metal sample deep penetration interaction is presented. The forces of vapor pressure, melt surface tension and thermocapillary forces can determined a number of oscillatory and nonstationary phenomena in keyhole and weld pool. Dynamics of keyhole formation in metal plates has been studied under laser beam pulse effect ((lambda) equals 1.06 micrometers ). Velocities of the keyhole bottom motion have been determined at 0.5 X 105 - 106 W/cm2 laser power densities. Oscillatory regime of plate break- down has been found out. Small-dimensional structures with d-(lambda) period was found on the frozen cavity walls, which, in our opinion, can contribute significantly to laser beam absorption. A new form of periodic structure on the frozen pattern being a helix-shaped modulation of the keyhole walls and bottom relief has been revealed. Temperature oscillations related to capillary oscillations in the melt layer were discovered in the cavity. Interaction of the CW CO2 laser beam and the matter by beam penetration into a moving metal sample has been studied. The pulsed and thermodynamic parameters of the surface plasma were investigated by optical and spectroscopic methods. The frequencies of plasma jets pulsations (in 10 - 105 Hz range) are related to possible melt surface instabilities of the keyhole.
Biophotonic applications of eigenchannels in a scattering medium (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kim, Moonseok; Choi, Wonjun; Choi, Youngwoon; Yoon, Changhyeong; Choi, Wonshik
2016-03-01
When waves travel through disordered media such as ground glass and skin tissues, they are scattered multiple times. Most of the incoming energy bounces back at the superficial layers and only a small fraction can penetrate deep inside. This has been a limiting factor for the working depth of various optical techniques. We present a systematic method to enhance wave penetration to the scattering media. Specifically, we measured the reflection matrix of a disordered medium with wide angular coverage for each orthogonal polarization states. From the reflection matrix, we identified reflection eigenchannels of the medium, and shaped the incident wave into the reflection eigenchannel with smallest eigenvalue, which we call anti-reflection mode. This makes reflectance reduced and wave penetration increased as a result of the energy conservation. We demonstrated transmission enhancement by more than a factor of 3 by the coupling of the incident waves to the anti-reflection modes. Based on the uneven distribution of eigenvalues of reflection eigenchannels, we further developed an iterative feedback control method for finding and coupling light to anti-reflection modes. Since this adaptive control method can keep up with sample perturbation, it promotes the applicability of exploiting reflection eigenchannels. Our approach of delivering light deep into the scattering media will contribute to enhancing the sensitivity of detecting objects hidden under scattering layers, which is universal problem ranging from geology to life science.
Use of surface-geophysical methods to assess riverbed scour at bridge piers
Gorin, S.R.; Haeni, F.P.
1989-01-01
A ground-penetrating-radar system, and three seismic systems--color fathometer, tuned transducer, and black-and-white fathometer--were used to evaluate river-bed scour at the Charter Oak, Founder 's and Bulkeley Bridges in Hartford, Connecticut. Cross-sections of the channel and some lateral sections were run at each bridge in June and July 1987, and significant scour at piers supporting each of these bridges was recorded. Each of the four geophysical systems proved to have advantages and limitations. The ground penetrating radar system used single and dual 80 megahertz antennae floating in the water to transmit and receive the signal. The method was successful in water less than 25 ft deep, and in resistive earth materials. The geometry of existing scour holes and the extent of post-scour sedimentation were clearly defined. The color fathometer, operating at a signal frequency of 20 kilohertz, delineated existing scour-hole geometry, detected infilling of scour holes, and provided qualitative information about the physical properties of sediments. The tuned transducer, operating at a signal frequency of 14 kilohertz, defined scour-hole geometry and the extent of post-scour sediment deposition. Both of these systems were effective in water greater than 5 ft deep. At a signal frequency of 200 kilohertz, the black-and-white fathometer could not penetrate post-scour deposits, but it was useful in defining existing scour-holed geometry in water of any depth. (USGS)
The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2017-01-01
This work joins two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for other required deep space exploration capabilities. These other capabilities include landers, stages and more. We mature the concept of costed baseball cards, adding cost estimates to NASAs space systems baseball cards.
None Available
2018-02-06
To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.
Abestos in Buildings: The State Role.
ERIC Educational Resources Information Center
Neilander, Dennis K.; Sacarto, Douglas M.
1988-01-01
The widespread use of asbestos for several decades in building construction has created major public health concerns for state governments. If asbestos is not thoroughly bound in cement, plaster, resin or some other stable material, it will flake and powder, releasing countless microscopic fibers into the air. Asbestos fibers penetrate deep into…
38 CFR 4.56 - Evaluation of muscle disabilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., the cardinal signs and symptoms of muscle disability are loss of power, weakness, lowered threshold of... signs or symptoms of muscle disability as defined in paragraph (c) of this section. (iii) Objective... injury. Through and through or deep penetrating wound of short track from a single bullet, small shell or...
38 CFR 4.56 - Evaluation of muscle disabilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., the cardinal signs and symptoms of muscle disability are loss of power, weakness, lowered threshold of... signs or symptoms of muscle disability as defined in paragraph (c) of this section. (iii) Objective... injury. Through and through or deep penetrating wound of short track from a single bullet, small shell or...
Preliminary geologic map of the Wadi As Sirhan Quadrangle, sheet 30C, Kingdom of Saudi Arabia
Meissner, C.R.; Griffin, M.B.; Riddler, G.P.; Van Eck, Marcel; Aspinall, N.C.; Farasani, A.M.; Dini, S.M.
1990-01-01
Several deep drill holes in the Wadi as Sirhan depression have penetrated thick sequences of marine rocks that are potential sources of oil and gas. Geological and geophysical conditions are favorable for the accumulation of hydrocarbons, and additional exploration is recommended.
NASA Technical Reports Server (NTRS)
Taranik, J. V.; Slemmons, D. B.; Bell, E. J.; Borengasser, M.; Lugaski, T. P.; Vreeland, H.; Vreeland, P.; Kleiner, E.; Peterson, F. F.; Kleiforth, H.
1984-01-01
The measurement capability provided by the Shuttle Imaging Radar (SIR-B) was used to determine: (1) the relationships between radar illumination geometry and depth of penetration in different climatic and physiographic environments in Nevada; and, (2) the relationships between radar illumination geometry and detection and analysis of structural features in different climatic and physiographic environments in Nevada.
Miller, G. Wilson; Song, Ji; Louttit, Cameron; Klibanov, Alexander L; Shih, Ting-Yu; Swaminathan, Ganesh; Tamargo, Rafael J.; Woodworth, Graeme F.; Hanes, Justin; Price, Richard J.
2014-01-01
The blood-brain barrier (BBB) presents a significant obstacle for the treatment of many central nervous system (CNS) disorders, including invasive brain tumors, Alzheimer’s, Parkinson’s and stroke. Therapeutics must be capable of bypassing the BBB and also penetrate the brain parenchyma to achieve a desired effect within the brain. In this study, we test the unique combination of a noninvasive approach to BBB permeabilization with a therapeutically relevant polymeric nanoparticle platform capable of rapidly penetrating within the brain microenvironment. MR-guided focused ultrasound (FUS) with intravascular microbubbles (MBs) is able to locally and reversibly disrupt the BBB with submillimeter spatial accuracy. Densely poly(ethylene-co-glycol) (PEG) coated, brain-penetrating nanoparticles (BPNs) are long-circulating and diffuse 10-fold slower in normal rat brain tissue compared to diffusion in water. Following intravenous administration of model and biodegradable BPN in normal healthy rats, we demonstrate safe, pressure-dependent delivery of 60 nm BPNs to the brain parenchyma in regions where the BBB is disrupted by FUS and MBs. Delivery of BPNs with MR-guided FUS has the potential to improve efficacy of treatments for many CNS diseases, while reducing systemic side effects by providing sustained, well-dispersed drug delivery into select regions of the brain. PMID:24979210
NASA Astrophysics Data System (ADS)
Chen, Weiying; Xue, Guoqiang; Khan, Muhammad Younis; Li, Hai
2017-03-01
Huoqiu iron deposit is a typical Precambrian banded iron-formation (BIF) field which is located in the North China Craton (NCC). To detect the deep ore bodies around Dawangzhuang Village in Yingshang County, north of the Huoqiu deposit field, electromagnetic methods were tested. As the ore bodies are buried under very thick conductive Quaternary sediments, the use of EM methods is a great challenge. Short-offset transient electromagnetic method (SOTEM) was applied in the area as we wanted to test due to its detection depth and resolution. A 2D model was first built according to the geology information and magnetic measurement results. Then, 2D forward and 1D inversion were carried out using FDTD and Occam's algorithm, respectively. The synthetic modeling results helped us with the survey design and interpretation. Two 1400-m-long survey lines with offset of 500 and 1000 m were laid perpendicular to the BIF's strike, and the transmitting parameters were selected by a test measurement at the vicinity of a local village. Finally, the structure of survey area and BIF bodies were determined based on the 1D inversion results of real data, and showed a consistency with the subsequent drill results. Our application of SOTEM in detecting hidden BIF buried under very thick conductive layer has shown that the method is capable of penetrating great depth more than 1000 m even in a very conductive environment and will be an effective tool for deep resources investigation.
Advantages of Science Cubesat and Microsat Deployment Using DSG Deep Space Exploration Robotics
NASA Astrophysics Data System (ADS)
Shaw, A.; Rembala, R.; Fulford, P.
2018-02-01
Important scientific missions can be accomplished with cubesats/microsats. These missions would benefit from advantages offered by having an independent cubesat/microsat deployment capability as part of Deep Space Gateway's Deep Space Exploration Robotics system.
Dopant-Engineered Wide-Band Gap Semiconductors for Deep Tissue Bioimaging
NASA Astrophysics Data System (ADS)
Raghavendra, Achyut; Gregory, Wren; Slonecki, Tyler; Bruce, Terri; Podila, Ramakrishna
Optical spectroscopy promises improved lateral resolution for in vivo imaging but is limited by background fluorescence and photon attenuation. There is clearly an unmet clinical need for new hybrid approaches that use fluorescence to identify cancer margins intraoperatively during the initial operation. An efficient strategy to increase the imaging depth and diagnostic capability, beyond what two-photon absorption (2PA) offers, is to use longer excitation wavelengths outside the water absorption window through three-photon absorption (3PA). Although a variety of existing fluorescent dyes, fluorescent proteins, and calcium indicators could be used in 3PA, they have low or moderate 3PA cross-sections and suffer from photobleaching. The non-linear 3PA coefficient of such fluorescent probes is often low necessitating high excitation powers, which could cause overheating, photodamage, and photo-induced toxicity. To address this demand we have designed dopant-engineered ZnO nanoparticles (d-ZnO NPs) for enabling 3PA with higher penetration depth, lower background noise, and improved spatial resolution (<1 um) at powers below 5 mW.
Improved transcranial magnetic stimulation coil design with realistic head modeling
NASA Astrophysics Data System (ADS)
Crowther, Lawrence; Hadimani, Ravi; Jiles, David
2013-03-01
We are investigating Transcranial magnetic stimulation (TMS) as a noninvasive technique based on electromagnetic induction which causes stimulation of the neurons in the brain. TMS can be used as a pain-free alternative to conventional electroconvulsive therapy (ECT) which is still widely implemented for treatment of major depression. Development of improved TMS coils capable of stimulating subcortical regions could also allow TMS to replace invasive deep brain stimulation (DBS) which requires surgical implantation of electrodes in the brain. Our new designs allow new applications of the technique to be established for a variety of diagnostic and therapeutic applications of psychiatric disorders and neurological diseases. Calculation of the fields generated inside the head is vital for the use of this method for treatment. In prior work we have implemented a realistic head model, incorporating inhomogeneous tissue structures and electrical conductivities, allowing the site of neuronal activation to be accurately calculated. We will show how we utilize this model in the development of novel TMS coil designs to improve the depth of penetration and localization of stimulation produced by stimulator coils.
NASA Astrophysics Data System (ADS)
Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe
2007-09-01
A nonequilibrium Ar /O2 plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar /O2 plasma jet at an exposure distance of 0.5-1.5cm ranges from 5 to 57s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.
Recent developments in organic redox flow batteries: A critical review
NASA Astrophysics Data System (ADS)
Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.
2017-08-01
Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.
X-ray Tomography and Chemical Imaging within Butterfly Wing Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Jianhua; Lee Yaochang; Tang, M.-T.
2007-01-19
The rainbow like color of butterfly wings is associated with the internal and surface structures of the wing scales. While the photonic structure of the scales is believed to diffract specific lights at different angle, there is no adequate probe directly answering the 3-D structures with sufficient spatial resolution. The NSRRC nano-transmission x-ray microscope (nTXM) with tens nanometers spatial resolution is able to image biological specimens without artifacts usually introduced in sophisticated sample staining processes. With the intrinsic deep penetration of x-rays, the nTXM is capable of nondestructively investigating the internal structures of fragile and soft samples. In this study,more » we imaged the structure of butterfly wing scales in 3-D view with 60 nm spatial resolution. In addition, synchrotron-radiation-based Fourier transform Infrared (FT-IR) microspectroscopy was employed to analyze the chemical components with spatial information of the butterfly wing scales. Based on the infrared spectral images, we suggest that the major components of scale structure were rich in protein and polysaccharide.« less
Spacecraft Applications of Compact Optical and Mass Spectrometers
NASA Technical Reports Server (NTRS)
Davinic, N. M.; Nagel, D. J.
1995-01-01
Optical spectrometers, and mass spectrometers to a lesser extent, have a long and rich history of use aboard spacecraft. Space mission applications include deep space science spacecraft, earth orbiting satellites, atmospheric probes, and surface landers, rovers, and penetrators. The large size of capable instruments limited their use to large, expensive spacecraft. Because of the novel application of micro-fabrication technologies, compact optical and mass spectrometers are now available. The new compact devices are especially attractive for spacecraft because of their small mass and volume, as well as their low power consumption. Dispersive optical multi-channel analyzers which cover the 0.4-1.1 micrometer wavelength are now commercially available in packages as small as 3 x 6 x 18 mm exclusive of drive and recording electronics. Mass spectrometers as small as 3 x 3 mm, again without electronics, are under development. A variety of compact optical and mass spectrometers are reviewed in this paper. A number of past space applications are described, along with some upcoming opportunities that are likely candidate missions to fly this new class of compact spectrometers.
Jang, Mooseok; Ruan, Haowen; Judkewitz, Benjamin; Yang, Changhuei
2014-01-01
The time-reversed ultrasonically encoded (TRUE) optical focusing technique is a method that is capable of focusing light deep within a scattering medium. This theoretical study aims to explore the depth limits of the TRUE technique for biological tissues in the context of two primary constraints – the safety limit of the incident light fluence and a limited TRUE’s recording time (assumed to be 1 ms), as dynamic scatterer movements in a living sample can break the time-reversal scattering symmetry. Our numerical simulation indicates that TRUE has the potential to render an optical focus with a peak-to-background ratio of ~2 at a depth of ~103 mm at wavelength of 800 nm in a phantom with tissue scattering characteristics. This study sheds light on the allocation of photon budget in each step of the TRUE technique, the impact of low signal on the phase measurement error, and the eventual impact of the phase measurement error on the strength of the TRUE optical focus. PMID:24663917
NASA Astrophysics Data System (ADS)
Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V.
2013-07-01
Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy.
Analysis methods for wind turbine control and electrical system dynamics
NASA Technical Reports Server (NTRS)
Hinrichsen, E. N.
1995-01-01
The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.
Deep Charging Evaluation of Satellite Power and Communication System Components
NASA Technical Reports Server (NTRS)
Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.
2016-01-01
A set of deep charging tests has been carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. The samples, which included solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, were placed in passive and active (powered) circuit configurations and exposed to electron radiation. The energy of the electron radiation was chosen to deeply penetrate insulating (dielectric) materials on each sample. Each circuit configuration was monitored to determine if potentially damaging electrostatic discharge events (arcs) were developed on the coupon as a result of deep charging. The motivation for the test, along with charging levels, experimental setup, sample details, and results will be discussed.
NASA's Space Launch System: SmallSat Deployment to Deep Space
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Creech, Stephen D.
2017-01-01
Leveraging the significant capability it offers for human exploration and flagship science missions, NASA's Space Launch System (SLS) also provides a unique opportunity for lower-cost deep-space science in the form of small-satellite secondary payloads. Current plans call for such opportunities to begin with the rocket's first flight; a launch of the vehicle's Block 1 configuration, capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO), which will send the Orion crew vehicle around the moon and return it to Earth. On that flight, SLS will also deploy 13 CubeSat-class payloads to deep-space destinations. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. While the SLS Program is making significant progress toward that first launch, preparations are already under way for the second, which will see the booster evolve to its more-capable Block 1B configuration, able to deliver 105t to LEO. That configuration will have the capability to carry large payloads co-manifested with the Orion spacecraft, or to utilize an 8.4-meter (m) fairing to carry payloads several times larger than are currently possible. The Block 1B vehicle will be the workhorse of the Proving Ground phase of NASA's deep-space exploration plans, developing and testing the systems and capabilities necessary for human missions into deep space and ultimately to Mars. Ultimately, the vehicle will evolve to its full Block 2 configuration, with a LEO capability of 130 metric tons. Both the Block 1B and Block 2 versions of the vehicle will be able to carry larger secondary payloads than the Block 1 configuration, creating even more opportunities for affordable scientific exploration of deep space. This paper will outline the progress being made toward flying smallsats on the first flight of SLS, and discuss future opportunities for smallsats on subsequent flights.
Towards Fast Tracking of the Keyhole Geometry
NASA Astrophysics Data System (ADS)
Brock, C.; Hohenstein, R.; Schmidt, M.
We describe a sensor principle permitting the fast online measurement of the position of the optical process emissions in deep penetration laser welding. Experiments show a strong correlation between the position of the vapour plume and the keyhole geometry, demonstrated here by varying the penetration depth of the weld. In order to achieve an absolute position measurement, the sensor was calibrated using a light source with well defined characteristics. The setup for the calibration measurements and the corresponding data evaluation methods are discussed. The precision of the calibration with a green LED is 6 μm in lateral and 55 μm in axial direction, for a working distance of 200 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Large areas of south facing glass allow winter sunlight to penetrate the building, while overhangs provide summer shading. High ceilings allow deep penetration of this light for space heating and natural lighting. Massive construction stores solar radiation for evening warmth and provides a buffer from extreme temperature fluctuations. Natural ventilation will provide cooling. The system consists of 720 square feet of roof-mounted, liquid, flat plate solar collectors and three 350 gallon fiberglass storage tanks. The acceptance and performance tests are discussed. Also discusseed are: collector selection, construction contract, costs, and economics.
NASA Astrophysics Data System (ADS)
Sire, Stéphane; Marya, Surendar
This Note presents ways to improve the weld penetration potential of TIG process by optimising silica application around the joints in a plain carbon steel and an aluminium alloy 5086. Whereas for plain carbon steels, full coverage of joint improves penetration, the presence of a blank zone around the joint in the flux coating on aluminium 5086 using AC-TIG seems to be the best solution for cosmetic and deep welds. To cite this article: S. Sire, S. Marya, C. R. Mecanique 330 (2002) 83-89.
Disinfection of heat-sensitive material by low-temperature steam and formaldehyde
Alder, V. G.; Brown, Anne M.; Gillespie, W. A.
1966-01-01
Steam under subatmospheric pressure at temperatures below 90°C. rapidly killed nonsporing organisms after air had been removed by a high-vacuum pump. Most bacterial spores were killed but small proportions of the populations were very resistant. The destruction of spores was not logarithmic. The addition of formaldehyde vapour to the steam greatly increased its sterilizing power, with deep penetration into fabrics and destruction of spores. Penetration into wide tubes was good, but was poor in narrow tubes. Most fabrics, plastics, and instruments were unharmed. Low-temperature steam with formaldehyde is probably as efficient a sterilizing agent as ethylene oxide. PMID:5904988
NASA Astrophysics Data System (ADS)
Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.
2018-02-01
Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L; Beegle, Luther; Bao, Xiaoqi
2012-01-01
The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface.
Deep tissue penetration of nanoparticles using pulsed-high intensity focused ultrasound
NASA Astrophysics Data System (ADS)
You, Dong Gil; Yoon, Hong Yeol; Jeon, Sangmin; Um, Wooram; Son, Sejin; Park, Jae Hyung; Kwon, Ick Chan; Kim, Kwangmeyung
2017-11-01
Recently, ultrasound (US)-based drug delivery strategies have received attention to improve enhanced permeation and retention (EPR) effect-based passive targeting efficiency of nanoparticles in vitro and in vivo conditions. Among the US treatment techniques, pulsed-high intensity focused ultrasound (pHIFU) have specialized for improving tissue penetration of various macromolecules and nanoparticles without irreversible tissue damages. In this study, we have demonstrated that pHIFU could be utilized to improve tissue penetration of fluorescent dye-labeled glycol chitosan nanoparticles (FCNPs) in femoral tissue of mice. pHIFU could improve blood flow of the targeted-blood vessel in femoral tissue. In addition, tissue penetration of FCNPs was specifically increased 5.7-, 8- and 9.3-folds than that of non-treated (0 W pHIFU) femoral tissue, when the femoral tissue was treated with 10, 20 and 50 W of pHIFU, respectively. However, tissue penetration of FCNPs was significantly reduced after 3 h post-pHIFU treatment (50 W). Because overdose (50 W) of pHIFU led to irreversible tissue damages, including the edema and chapped red blood cells. These overall results support that pHIFU treatment can enhance the extravasation and tissue penetration of FCNPs as well as induce irreversible tissue damages. We expect that our results can provide advantages to optimize pHIFU-mediated delivery strategy of nanoparticles for further clinical applications.
Zhang, Hairong; Salo, Daniel; Kim, David M.; Komarov, Sergey; Tai, Yuan-Chuan; Berezin, Mikhail Y.
2016-01-01
Abstract. Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte–Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm; however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent. PMID:27930773
ERIC Educational Resources Information Center
Journal of College Science Teaching, 2005
2005-01-01
A team of researchers who just finished analyzing 20 years of data from locales around Los Angeles said that particulate matter less than 2.5 micrometers in diameter poses the greatest risk of causing early death as it can penetrate deep into the lungs and sometimes even enter the bloodstream. Such particles are often found in smoke, vehicle…
ERIC Educational Resources Information Center
Lu, Hsin-Min
2010-01-01
Deep penetration of personal computers, data communication networks, and the Internet has created a massive platform for data collection, dissemination, storage, and retrieval. Large amounts of textual data are now available at a very low cost. Valuable information, such as consumer preferences, new product developments, trends, and opportunities,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
..., but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B... surveys [WAZ]), and ocean bottom surveys [OBS], and (2) high resolution surveys. Deep Seismic Surveys For... seismic surveys (2D, 3D, or WAZ) are typically deeper penetrating than high resolution surveys and may...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Shaochun; Vongehr, Sascha; Wang Yang
Highly uniform, porous {beta}-Co(OH){sub 2} nanostructures with an appearance reminding of certain spherical corals were synthesized via a facile, one-step hydrothermal route using ethanol-water mixtures as solvents. The rough surfaces of the nanostructures consist of numerous randomly distributed, interconnecting nanoflakes, resulting in a network-like structure with many cavities. The coral-like product has a high Brunauer-Emmet-Teller specific surface area of 163 m{sup 2}/g. The diameter of the coral-like {beta}-Co(OH){sub 2} nanostructures is adjustable from 800 nm to 2 {mu}m. The effects of the ethanol/water ratio, the Co{sup 2+} concentration, the hydrothermal temperature, and the reaction time on the formation of themore » coral-like structures were investigated. Cyclic voltammetry and galvanostatic charge-discharge tests show that the {beta}-Co(OH){sub 2} possesses excellent capacitive properties. This is mainly attributed to the high porosity, which allows a deep penetration by electrolytes. - Abstract: Coral-like {beta}-Co(OH){sub 2} nanostructures were synthesized via a facile ethanol-assisted hydrothermal route. Their high porosity facilitates a deep penetration by electrolytes and thus contributes to the excellent capacitive properties.« less
Meyer, F.W.
1988-01-01
A 2,811-foot deep test well was drilled during 1980 in The Everglades along Alligator Alley as part of the Floridan Regional Aquifer Systems Analysis project. The well was cased 895 feet deep. Hydraulic packers were used to isolate selected zones in the open hole for water samples and measurement of water levels. The well penetrated the surficial and intermediate aquifers into the Floridan aquifer system. The top of the Floridan aquifer system occurs at 770 feet and includes limestone ranging in age from Oligocene to early Eocene. About 67 percent of the total thickness of the Floridan aquifer system was penetrated by the well. The chief water-producing zones in the Floridan aquifer system occur at about 1,030 feet and at about 2,560 feet. The 1,030-foot zone contains brackish artesian groundwater, and the 2,560-foot zone contains salty artesian groundwater similar in composition to seawater. The static water geothermal gradient is indicated, and radiocarbon activities suggest that the saltwater in the lower zone is younger than brackish groundwater in the upper zone. (USGS)
Deep Space 2: The Mars Microprobe Mission
NASA Astrophysics Data System (ADS)
Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana
The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.
NASA Technical Reports Server (NTRS)
Williamsen, Joel; Evans, Hilary; Bohl, Bill; Evans, Steven; Parker, Nelson (Technical Monitor)
2001-01-01
The increase of the orbital debris environment in low-earth orbit has prompted NASA to develop analytical tools for quantifying and lowering the likelihood of crew loss following orbital debris penetration of the International Space Station (ISS). NASA uses the Manned Spacecraft and Crew Survivability (MSCSurv) computer program to simulate the events that may cause crew loss following orbital debris penetration of ISS manned modules, including: (1) critical cracking (explosive decompression) of the module; (2) critical external equipment penetration (such as hydrazine and high pressure tanks); (3) critical internal system penetration (guidance, control, and other vital components); (4) hazardous payload penetration (furnaces, pressure bottles, and toxic substances); (5) crew injury (from fragments, overpressure, light flash, and temperature rise); (6) hypoxia from loss of cabin pressure; and (7) thrust from module hole causing high angular velocity (occurring only when key Guidance, Navigation, and Control (GN&C) equipment is damaged) and, thus, preventing safe escape vehicle (EV) departure. MSCSurv is also capable of quantifying the 'end effects' of orbital debris penetration, such as the likelihood of crew escape, the probability of each module depressurizing, and late loss of station control. By quantifying these effects (and their associated uncertainties), NASA is able to improve the likelihood of crew survivability following orbital debris penetration due to improved crew operations and internal designs.
Our Human Journey to Mars - The Next Steps
NASA Technical Reports Server (NTRS)
Singer, Jody
2016-01-01
The United States National Aeronautics and Space Administration (NASA) will be launching the super-heavy-lift Space Launch System (SLS) by the end of the decade. This launch marks the next steps of human exploration of Mars and continues the journey that began over 50 years ago with Mariner and most recently ExoMars. SLS is the only rocket with the power capable of sending humans to deep space and the large systems necessary for human exploration all the way to Mars. Exploration Mission (EM)-1 will be the first integrated flight of the SLS rocket and Orion spacecraft - journeying farther into space than Apollo. NASA will also expand the science and exploration capability of SLS by deploying thirteen small satellites into deep space for the first time. These small satellites, created through partnerships with small businesses, Universities and international partners, will carry out various scientific missions to better understand our universe and the challenges of living and working in deep space. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also for payload accommodations, ground processing and on-orbit operations. The results of this mission will validate capabilities for sending explorers to Mars and create the opportunity to pioneer solutions to challenges to deep space exploration. SLS's versatile design will evolve for future exploration needs and accommodate bigger payloads, such as large aperture telescopes for scientific research or manned human deep space exploration missions to Mars. The achievement of EM-1 will demonstrate NASA's commitment and capability to extend human existence to deep space and inspire the world to pursue greatness in the exploration of our universe.
NASA Astrophysics Data System (ADS)
Sharova, A. S.; Maklygina, YU S.; Lisichkin, G. V.; Mingalev, P. G.; Loschenov, V. B.
2016-08-01
The spectroscopic properties of potentially perspective nanostructure: diamond nanoparticles with a surface layer of IR-photosensitizer, bacteriochlorin, were experimentally investigated in this study. Such specific structure of the object encourages enhancement of the drug tropism to the tumor, as well as increasing of photodynamic penetration depth. The size distribution spectra of diamond nanoparticles; diamond nanoparticles, artificially covered with bacteriochlorin molecules layer, in aqueous solution, were obtained during the study. Based on the absorption and fluorescence spectra analysis, the benefits of functional nanostructure as a drug for deep-lying tumor diagnostics and therapy were reviewed.
Deep ultraviolet semiconductor light sources for sensing and security
NASA Astrophysics Data System (ADS)
Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis
2009-09-01
III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.
Remote modulation of neural activities via near-infrared triggered release of biomolecules.
Li, Wei; Luo, Rongcong; Lin, Xudong; Jadhav, Amol D; Zhang, Zicong; Yan, Li; Chan, Chung-Yuan; Chen, Xianfeng; He, Jufang; Chen, Chia-Hung; Shi, Peng
2015-10-01
The capability to remotely control the release of biomolecules provides an unique opportunity to monitor and regulate neural signaling, which spans extraordinary spatial and temporal scales. While various strategies, including local perfusion, molecular "uncaging", or photosensitive polymeric materials, have been applied to achieve controlled releasing of neuro-active substances, it is still challenging to adopt these technologies in many experimental contexts that require a straightforward but versatile loading-releasing mechanism. Here, we develop a synthetic strategy for remotely controllable releasing of neuro-modulating molecules. This platform is based on microscale composite hydrogels that incorporate polypyrrole (PPy) nanoparticles as photo-thermal transducers and is triggered by near-infrared-light (NIR) irradiation. Specifically, we first demonstrate the utility of our technology by recapitulating the "turning assay" and "collapse assay", which involve localized treatment of chemotactic factors (e.g. Netrin or Semaphorin 3A) to subcellular neural elements and have been extensively used in studying axonal pathfinding. On a network scale, the photo-sensitive microgels are also validated for light-controlled releasing of neurotransmitters (e.g. glutamate). A single NIR-triggered release is sufficient to change the dynamics of a cultured hippocampal neuron network. Taking the advantage of NIR's capability to penetrate deep into live tissue, this technology is further shown to work similarly well in vivo, which is evidenced by synchronized spiking activity in response to NIR-triggered delivery of glutamate in rat auditory cortex, demonstrating remote control of brain activity without any genetic modifications. Notably, our nano-composite microgels are capable of delivering various molecules, ranging from small chemicals to large proteins, without involving any crosslinking chemistry. Such great versatility and ease-of-use will likely make our optically-controlled delivery technology a general and important tool in cell biology research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Machine Learning and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Chapline, George
The author has previously pointed out some similarities between selforganizing neural networks and quantum mechanics. These types of neural networks were originally conceived of as away of emulating the cognitive capabilities of the human brain. Recently extensions of these networks, collectively referred to as deep learning networks, have strengthened the connection between self-organizing neural networks and human cognitive capabilities. In this note we consider whether hardware quantum devices might be useful for emulating neural networks with human-like cognitive capabilities, or alternatively whether implementations of deep learning neural networks using conventional computers might lead to better algorithms for solving the many body Schrodinger equation.
Simulation of noisy dynamical system by Deep Learning
NASA Astrophysics Data System (ADS)
Yeo, Kyongmin
2017-11-01
Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.
NASA Technical Reports Server (NTRS)
Wiggert, J. D.; Jones, B. H.; Dickey, T. D.; Brink, K. H.; Weller, R. A.; Marra, J.; Codispoti, L. A.
2000-01-01
In the northern Arabian Sea, atmospheric conditions during the Northeast (winter) Monsoon lead to deep convective mixing. Due to the proximity of the permanent pyncnocline to the sea surface, this mixing does not penetrate below 125 m. However, a strong nitracline is also present and the deep convection results in significant nitrate flux into the surface waters. This leads to nitrate concentrations over the upper 100 m that exceed 4 micrometers toward the end of the Monsoon. During the 1994/1995 US JGOFS/Arabian Sea expedition, the mean areal gross primary production over two successive Northeast Monsoons was determined to be 1.35gC/sq m/d. Thus, despite the deep penetrative convection, high rates of primary productivity were maintained. An interdisciplinary model was developed to elucidate the biogeochemical processes involved in supporting the elevated productivity. This model consists of a 1-D mixed-layer model coupled to a set of equations that tracked phytoplankton growth and the concentration of the two major nutrients (nitrate and ammonium). Zooplankton grazing was parameterized by rate constant determined by shipboard experiments. Model boundary conditions consist of meteorological time-series measured from the surface buoy that was part of the ONR Arabian Sea Experiment's central mooring. Our numerical experiments show that elevated surface evaporation, and the associated salinization of the mixed layer, strongly contributes to the frequency and penetration depth of the observed convective mixing. Cooler surface temperatures, increased nitrate entrainment, reduced water column stratification, and lower near-surface chlorophyll a concentrations all result from this enhanced mixing. The model also captured a dependence on regenerated nitrogen observed in nutrient uptake experiments performed during the Northeast Monsoon. Our numerical experiments also indicate that variability in mean pycnocline depth causes up to a 25% reduction in areal chlorophyll a concentration. We hypothesize that such shifts in pycnocline depth may contribute to the interannual variations in primary production and surface chlorophyll a concentration that have been previously observed in this region.
Improved Hybrid Modeling of Spent Fuel Storage Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bibber, Karl van
This work developed a new computational method for improving the ability to calculate the neutron flux in deep-penetration radiation shielding problems that contain areas with strong streaming. The “gold standard” method for radiation transport is Monte Carlo (MC) as it samples the physics exactly and requires few approximations. Historically, however, MC was not useful for shielding problems because of the computational challenge of following particles through dense shields. Instead, deterministic methods, which are superior in term of computational effort for these problems types but are not as accurate, were used. Hybrid methods, which use deterministic solutions to improve MC calculationsmore » through a process called variance reduction, can make it tractable from a computational time and resource use perspective to use MC for deep-penetration shielding. Perhaps the most widespread and accessible of these methods are the Consistent Adjoint Driven Importance Sampling (CADIS) and Forward-Weighted CADIS (FW-CADIS) methods. For problems containing strong anisotropies, such as power plants with pipes through walls, spent fuel cask arrays, active interrogation, and locations with small air gaps or plates embedded in water or concrete, hybrid methods are still insufficiently accurate. In this work, a new method for generating variance reduction parameters for strongly anisotropic, deep penetration radiation shielding studies was developed. This method generates an alternate form of the adjoint scalar flux quantity, Φ Ω, which is used by both CADIS and FW-CADIS to generate variance reduction parameters for local and global response functions, respectively. The new method, called CADIS-Ω, was implemented in the Denovo/ADVANTG software. Results indicate that the flux generated by CADIS-Ω incorporates localized angular anisotropies in the flux more effectively than standard methods. CADIS-Ω outperformed CADIS in several test problems. This initial work indicates that CADIS- may be highly useful for shielding problems with strong angular anisotropies. This is a benefit to the public by increasing accuracy for lower computational effort for many problems that have energy, security, and economic importance.« less
Bessel light sheet structured illumination microscopy
NASA Astrophysics Data System (ADS)
Noshirvani Allahabadi, Golchehr
Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in confocal quality images in thick tissue. The technique was applied to live transgenic zebra fish tg(kdrl:GFP), and the sub-cellular structure of fish vasculature genetically labeled with GFP was captured in 3D. The superior speed of the microscope enables us to acquire signal from 200 layers of a thick sample in 4 minutes. The compact microscope uses exclusively off-the-shelf components and offers a low-cost imaging solution for studying small animal models or tissue samples.
NASA Astrophysics Data System (ADS)
Lee, Yi-Kang
2017-09-01
Nuclear decommissioning takes place in several stages due to the radioactivity in the reactor structure materials. A good estimation of the neutron activation products distributed in the reactor structure materials impacts obviously on the decommissioning planning and the low-level radioactive waste management. Continuous energy Monte-Carlo radiation transport code TRIPOLI-4 has been applied on radiation protection and shielding analyses. To enhance the TRIPOLI-4 application in nuclear decommissioning activities, both experimental and computational benchmarks are being performed. To calculate the neutron activation of the shielding and structure materials of nuclear facilities, the knowledge of 3D neutron flux map and energy spectra must be first investigated. To perform this type of neutron deep penetration calculations with the Monte Carlo transport code, variance reduction techniques are necessary in order to reduce the uncertainty of the neutron activation estimation. In this study, variance reduction options of the TRIPOLI-4 code were used on the NAIADE 1 light water shielding benchmark. This benchmark document is available from the OECD/NEA SINBAD shielding benchmark database. From this benchmark database, a simplified NAIADE 1 water shielding model was first proposed in this work in order to make the code validation easier. Determination of the fission neutron transport was performed in light water for penetration up to 50 cm for fast neutrons and up to about 180 cm for thermal neutrons. Measurement and calculation results were benchmarked. Variance reduction options and their performance were discussed and compared.
NASA Technical Reports Server (NTRS)
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2012-01-01
Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None Available
To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.
Multidisciplinary surgical management of an unusual penetrating foreign body of the face.
Villarmé, A; Savoldelli, C; Jean-Baptiste, E; Guevara, N
2018-06-07
Facial injuries by penetrating foreign body are unusual and require specific multidisciplinary surgical management. This case report concerns a 20-year-old man who experienced a penetrating injury by a piece of wood to the face and describes the surgical approach to remove the wood and repair the injury. The foreign body had penetrated the infratemporal fossa, with an entry wound situated below the right eye and an exit wound in the neck, in contact with the left internal carotid artery. An adapted surgical strategy was necessary in view of the site of the foreign body. The internal carotid artery was controlled in order to follow the foreign body as far as its entry into the base of the skull. The proximity of the eye and carotid and jugular vessels and the deep penetration of the foreign body required the participation of interventional radiologists, head and neck and vascular surgeons and ophthalmologists. The site of the foreign body, precisely determined preoperatively, justified management by a multidisciplinary team to ensure rapid extraction, while limiting the risk of additional lesions. With a follow-up of 6 months, the patient did not present any sequelae of his facial injury. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Shaoran; Liu, Yanmin; Gong, Zhiwu; Yuan, Yujie; Yu, Lu; Wang, Yanyong; Xu, Yan; Deng, Junyu
2018-02-01
In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow (SWF) formations during deepwater drilling. We define `sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed (penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.
The Effect of Arrow Mass and Shape on Penetration into a Target
NASA Astrophysics Data System (ADS)
Shyam, S.; Gurram, A.; Madireddy, S.
2016-12-01
We conducted an archery experiment in order to quantify how aerodynamic design impacted the depth of arrow impact. Research shows that the smaller the surface area of an object, the more easily it travels through the air and the deeper it penetrates a target (Benson 2014). Momentum also affects how far and fast the arrow will go and therefore, how deep it will penetrate into the target. Therefore, a combination of an arrow with greater momentum and better aerodynamics will help the arrow fly faster and penetrate the target deeper. Mass, velocity, momentum, acceleration, force, and drag are the factors that acted on our experiment and produced its results. We hypothesized that the arrow with a thin shaft and pointed arrowhead would penetrate deepest, as opposed to both arrows with no arrowheads or arrows with thick shafts and blunt arrowheads. We tested our hypothesis by having a well-trained archer shoot different types of arrows into a target. We used arrows with shaft lengths of 7 cm and 5.3 cm, coupled with either pointed, blunt, or no arrowhead. We measured the time to target and arrow penetration (in cm) to see which style reached the target the fastest and penetrated the deepest. The results demonstrated that arrows with thin shafts and pointed arrowheads penetrated our target the deepest, followed by arrows with thick shafts and blunt arrowheads. Arrows with thin shafts and blunt arrowheads came after, and arrows with thick shafts and pointed arrowheads came last in depth of penetration. The arrows with no arrowheads either barely penetrated the target, or bounced back. We were able to conclude that the thinner the shaft and the more pointed the arrowhead, the better the arrow cuts the air. This is because, according to the principles of aerodynamics, it creates less drag since the surface area is smaller. However, mass also plays an important role in force through momentum, which also significantly affected our results.
NASA Astrophysics Data System (ADS)
Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel
2016-04-01
For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital Filtering," in Geoscience and Remote Sensing, IEEE Transactions on , vol.44, no.9, pp.2393-2406, Sept. 2006 .
NASA Astrophysics Data System (ADS)
Singh, S. C.; Carton, H.; Chauhan, A.; Dyment, J.; Cannat, M.; Hananto, N.; Hartoyo, D.; Tapponnier, P.; Davaille, A.
2007-12-01
Recently, we acquired deep seismic reflection data using a state-of-the-art technology of Schlumberger having a powerful source (10,000 cubic inch) and a 12 km long streamer along a 250 km long trench parallel line offshore Sumatra in the Indian Ocean deformation zone that provides seismic reflection image down to 40 km depth over the old oceanic lithosphere formed at Wharton spreading centre about 55-57 Ma ago. We observe deep penetrating faults that go down to 37 km depth (~24 km in the oceanic mantle), providing the first direct evidence for full lithospheric-scale deformation in an intra-plate oceanic domain. These faults dip NE and have dips between 25 and 40 degrees. The majority of faults are present in the mantle and are spaced at about 5 km, and do not seem cut through the Moho. We have also imaged active strike-slip fault zones that seem to be associated with the re-activation of ancient fracture zones, which is consistent with previous seismological and seafloor observations. The geometries of the deep penetrating faults neither seem to correspond to faulting associated with the plate bending at the subduction front nor with the re-activation of fracture zone that initiated about 7.5 Ma ago, and therefore, we suggest that these deep mantle faults were formed due to compressive stress at the beginning of the hard collision between India and Eurasia, soon after the cessation of seafloor spreading in the Wharton basin. We also find that the crust generated at the fast Wharton spreading centre 55-57 Ma ago is only 3.5-4.5 km thick, the thinnest crust ever observed in a fast spreading environment. We suggest that this extremely thin crust is due to 40-50°C lower than normal mantle temperature in this part of the Indian Ocean during its formation.
Koga, Shunsaku; Barstow, Thomas J; Okushima, Dai; Rossiter, Harry B; Kondo, Narihiko; Ohmae, Etsuko; Poole, David C
2015-06-01
Near-infrared assessment of skeletal muscle is restricted to superficial tissues due to power limitations of spectroscopic systems. We reasoned that understanding of muscle deoxygenation may be improved by simultaneously interrogating deeper tissues. To achieve this, we modified a high-power (∼8 mW), time-resolved, near-infrared spectroscopy system to increase depth penetration. Precision was first validated using a homogenous optical phantom over a range of inter-optode spacings (OS). Coefficients of variation from 10 measurements were minimal (0.5-1.9%) for absorption (μa), reduced scattering, simulated total hemoglobin, and simulated O2 saturation. Second, a dual-layer phantom was constructed to assess depth sensitivity, and the thickness of the superficial layer was varied. With a superficial layer thickness of 1, 2, 3, and 4 cm (μa = 0.149 cm(-1)), the proportional contribution of the deep layer (μa = 0.250 cm(-1)) to total μa was 80.1, 26.9, 3.7, and 0.0%, respectively (at 6-cm OS), validating penetration to ∼3 cm. Implementation of an additional superficial phantom to simulate adipose tissue further reduced depth sensitivity. Finally, superficial and deep muscle spectroscopy was performed in six participants during heavy-intensity cycle exercise. Compared with the superficial rectus femoris, peak deoxygenation of the deep rectus femoris (including the superficial intermedius in some) was not significantly different (deoxyhemoglobin and deoxymyoglobin concentration: 81.3 ± 20.8 vs. 78.3 ± 13.6 μM, P > 0.05), but deoxygenation kinetics were significantly slower (mean response time: 37 ± 10 vs. 65 ± 9 s, P ≤ 0.05). These data validate a high-power, time-resolved, near-infrared spectroscopy system with large OS for measuring the deoxygenation of deep tissues and reveal temporal and spatial disparities in muscle deoxygenation responses to exercise. Copyright © 2015 the American Physiological Society.
Experimental evaluation of penetration capabilities of a Geiger-mode APD array laser radar system
NASA Astrophysics Data System (ADS)
Jonsson, Per; Tulldahl, Michael; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars
2017-10-01
Laser radar 3D imaging has the potential to improve target recognition in many scenarios. One case that is challenging for most optical sensors is to recognize targets hidden in vegetation or behind camouflage. The range resolution of timeof- flight 3D sensors allows segmentation of obscuration and target if the surfaces are separated far enough so that they can be resolved as two distances. Systems based on time-correlated single-photon counting (TCSPC) have the potential to resolve surfaces closer to each other compared to laser radar systems based on proportional mode detection technologies and is therefore especially interesting. Photon counting detection is commonly performed with Geigermode Avalanche Photodiodes (GmAPD) that have the disadvantage that they can only detect one photon per laser pulse per pixel. A strong return from an obscuring object may saturate the detector and thus limit the possibility to detect the hidden target even if photons from the target reach the detector. The operational range where good foliage penetration is observed is therefore relatively narrow for GmAPD systems. In this paper we investigate the penetration capability through semi-transparent surfaces for a laser radar with a 128×32 pixel GmAPD array and a 1542 nm wavelength laser operating at a pulse repetition frequency of 90 kHz. In the evaluation a screen was placed behind different canvases with varying transmissions and the detected signals from the surfaces for different laser intensities were measured. The maximum return from the second surface occurs when the total detection probability is around 0.65-0.75 per pulse. At higher laser excitation power the signal from the second surface decreases. To optimize the foliage penetration capability it is thus necessary to adaptively control the laser power to keep the returned signal within this region. In addition to the experimental results, simulations to study the influence of the pulse energy on penetration through foliage in a scene with targets behind vegetation are presented. The optimum detection of targets occurs here at a slightly higher total photon count rate probability because a number of pixel have no obscuration in front the target in their field of view.
Livny, Eitan; Bahar, Irit; Hammel, Naama; Nahum, Yoav
2018-04-01
In this study, we examined a novel variant of 'big-bubble' deep anterior lamellar keratoplasty using trypan-blue-stained viscoelastic device for the creation of a pre-descemetic bubble. Ten corneoscleral rims were mounted on an artificial anterior chamber (AC). The AC was filled with air through a limbal paracentesis. A Melles' triangulated spatula was inserted through the paracentesis, with its tip penetrating the AC, was then slightly retracted and pushed into the deep stroma above the roof of the paracentesis. A mixture of trypan blue and viscoelastic device (Healon, Abbott Medical Optics, Abbott Park, Illinois) was injected into this intra-stromal pocket using a 27-G cannula to create a pre-descemetic separation bubble. Bubble type and visualization of dyed viscoelastic device were noted. The method was later employed in three cases. In all 10 corneoscleral rims, the technique successfully created a visible pre-descemetic (type 1) bubble that could be expanded up to the predicted diameter of trephination. Subsequent trephination and the removal of corneal stroma were uneventful. In two out of four clinical cases, a type 1 bubble was created, while in two others, visco-dissection failed and dyed viscoelastic was seen in the AC. The presented technique holds promise of being a relatively easy to perform, predictable and well-controlled alternative for achieving a type 1 bubble during deep anterior lamellar keratoplasty surgery. The trypan-blue-stained viscoelastic device facilitates proper visualization and control of the separation bubble and assists in identifying the penetrance to the separation bubble prior to removal of the stromal cap. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Exploring Principal Capacity to Lead Reform of Teaching and Learning Quality in Thailand
ERIC Educational Resources Information Center
Hallinger, Philip; Lee, Moosung
2013-01-01
In 1999 Thailand passed an ambitious national educational law that paved the way for major reforms in teaching, learning and school management. Despite the ambitious vision of reform embedded in this law, recent studies suggest that implementation progress has been slow, uneven, and lacking deep penetration onto classrooms. Carried out ten years…
Tilting at Windmills: School Reform, San Diego, and America?s Race to Renew Public Education
ERIC Educational Resources Information Center
Colvin, Richard Lee
2013-01-01
A book that draws equally on Richard Lee Colvin's deep acquaintance with contemporary education reform and the unique circumstances of the San Diego experience, "Tilting at Windmills" is a penetrating and invaluable account of Alan Bersin's contentious superintendency. Between 1998, when Alan Bersin became superintendent of the San Diego…
NASA's Space Launch System: Deep-Space Delivery for SmallSats
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Norris, George
2017-01-01
Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). Planning is underway for smallsat accomodations on future configurations of the vehicle, which will present additional opportunities. This paper will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the current and future opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.
NASA Technical Reports Server (NTRS)
Moore, H. J.
1991-01-01
Three distinct soillike materials sampled by the Viking landers (VL) on Mars are (in order of increasing strength): (1) drift; (2) crusty to cloddy; and (3) blocky. Relative strengths of these materials are manifested by footpad penetrations during landing (VL 1), depths of deep holes, motor currents during sampling, sampler backhoe penetrations, comminutor motor currents, impact pits, trench tailings, and successful acquisitions of the coarse fraction (only blocky material). Cementation by S Cl compounds probably contributes to the relative strengths. This is shown where the weight pct. of SO3 + Cl of each material is plotted against their relative strengths. A similar result is obtained using SO3 alone, but not with Cl which is deficient in VL 2 samples.
NASA Astrophysics Data System (ADS)
Morris, Michael D.; Goodship, Allen E.; Draper, Edward R. C.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.
2004-07-01
We show that Raman spectroscopy with visible lasers, even in the deep blue is possible with time-gated Raman spectroscopy. A 4 picosec time gate allows efficient fluorescence rejection, up to 1000X, and provides almost background-free Raman spectra with low incident laser power. The technology enables spectroscopy with better than 10X higher scattering efficiency than is possible with the NIR (785 nm and 830 nm) lasers that are conventionally used. Raman photon migration is shown to allow depth penetration. We show for the first time that Kerr-gated Raman spectra of bone tissue with blue laser excitation enables both fluorescence rejection and depth penetration.
Space Radar Image of Safsaf Oasis, Egypt
1999-04-15
This three-frequency space radar image of south-central Egypt demonstrates the unique capability of imaging radar to penetrate thin sand cover in arid regions to reveal hidden details below the surface.
Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite
Komor, S.C.; Valley, J.W.
1990-01-01
The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high-temperature exchange may have been a post-impact event involving impact-heated fluids, or a post-magmatic event. ?? 1990 Springer-Verlag.
Future Plans for NASA's Deep Space Network
NASA Technical Reports Server (NTRS)
Deutsch, Leslie J.; Preston, Robert A.; Geldzahler, Barry J.
2008-01-01
This slide presentation reviews the importance of NASA's Deep Space Network (DSN) to space exploration, and future planned improvements to the communication capabilities that the network allows, in terms of precision, and communication power.
Strategic Technologies for Deep Space Transport
NASA Technical Reports Server (NTRS)
Litchford, Ronald J.
2016-01-01
Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.
Transdermal delivery of biomacromolecules using lipid-like nanoparticles
NASA Astrophysics Data System (ADS)
Bello, Evelyn A.
The transdermal delivery of biomacromolecules, including proteins and nucleic acids, is challenging, owing to their large size and the penetration-resistant nature of the stratum corneum. Thus, an urgent need exists for the development of transdermal delivery methodologies. This research focuses on the use of cationic lipid-like nanoparticles (lipidoids) for the transdermal delivery of proteins, and establishes an in vitro model for the study. The lipidoids used were first combinatorially designed and synthesized; afterwards, they were employed for protein encapsulation in a vesicular system. A skin penetration study demonstrated that lipidoids enhance penetration depth in a pig skin model, overcoming the barrier that the stratum corneum presents. This research has successfully identified active lipidoids capable of efficiently penetrating the skin; therefore, loading proteins into lipidoid nanoparticles will facilitate the transdermal delivery of proteins. Membrane diffusion experiments were used to confirm the results. This research has confirmed that lipidoids are a suitable material for transdermal protein delivery enhancement.
Analytical Solution for Flow to a Partially Penetrating Well with Storage in a Confined Aquifer
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.; Mishra, P. K.; Neuman, S. P.
2009-12-01
Analytical solutions for radial flow toward a pumping well are commonly applied to analyze pumping tests conducted in confined aquifers. However, the existing analytical solutions are not capable to simultaneously take into account aquifer anisotropy, partial penetration, and wellbore storage capacity of pumping well. Ignoring these effects may have important impact on the estimated aquifer properties. We present a new analytical solution for three-dimensional, axially symmetric flow to a pumping well in confined aquifer that accouts for aquifer anisotropy, partial penetration and wellbore storage capacity of pumping well. Our analytical reduces to that of Papadopulos et.al. [1967] when the pumping well is fully penetrating, Hantush [1964] when the pumping well has no wellbore storage, and Theis [1935] when both conditions are fulfilled. The solution is evaluated through numerical inversion of its Laplace transform. We use our new solution to analyze data from synthetic and real pumping tests.
Prediction of soil frost penetration depth in northwest of Iran using air freezing indices
NASA Astrophysics Data System (ADS)
Mohammadi, H.; Moghbel, M.; Ranjbar, F.
2016-11-01
Information about soil frost penetration depth can be effective in finding appropriate solutions to reduce the agricultural crop damage, transportations, and building facilities. Amongst proper methods to achieve this information are the statistical and empirical models capable of estimating soil frost penetration depth. Therefore, the main objective of this research is to calculate soil frost penetration depth in northwest of Iran during the year 2007-2008 to validate two different models accuracy. To do so, the relationship between air and soil temperature in different depths (5-10-20-30-50-100 cm) at three times of the day (3, 9, and 15 GMT) for 14 weather stations over 7 provinces was analyzed using linear regression. Then, two different air freezing indices (AFIs) including Norwegian and Finn AFI was implemented. Finally, the frost penetration depth was calculated by McKeown method and the accuracy of models determined by actual soil frost penetration depth. The results demonstrated that there is a significant correlation between air and soil depth temperature in all studied stations up to the 30 cm under the surface. Also, according to the results, Norwegian index can be effectively used for determination of soil frost depth penetration and the correlation coefficient between actual and estimated soil frost penetration depth is r = 0.92 while the Finn index overestimates the frost depth in all stations with correlation coefficient r = 0.70.
Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer.
Ghang, Yoo-Jin; Perez, Lizeth; Morgan, Melissa A; Si, Fang; Hamdy, Omar M; Beecher, Consuelo N; Larive, Cynthia K; Julian, Ryan R; Zhong, Wenwan; Cheng, Quan; Hooley, Richard J
2014-12-28
An anionic self-folding deep cavitand is capable of immobilizing unmodified proteins and enzymes at a supported lipid bilayer interface, providing a simple, soft bioreactive surface that allows enzymatic function under mild conditions. The adhesion is based on complementary charge interactions, and the hosts are capable of binding enzymes such as trypsin at the bilayer interface: the catalytic activity is retained upon adhesion, allowing selective reactions to be performed at the membrane surface.
Imaging the delivery of brain-penetrating PLGA nanoparticles in the brain using magnetic resonance.
Strohbehn, Garth; Coman, Daniel; Han, Liang; Ragheb, Ragy R T; Fahmy, Tarek M; Huttner, Anita J; Hyder, Fahmeed; Piepmeier, Joseph M; Saltzman, W Mark; Zhou, Jiangbing
2015-02-01
Current therapy for glioblastoma multiforme (GBM) is largely ineffective, with nearly universal tumor recurrence. The failure of current therapy is primarily due to the lack of approaches for the efficient delivery of therapeutics to diffuse tumors in the brain. In our prior study, we developed brain-penetrating nanoparticles that are capable of penetrating brain tissue and distribute over clinically relevant volumes when administered via convection-enhanced delivery (CED). We demonstrated that these particles are capable of efficient delivery of chemotherapeutics to diffuse tumors in the brain, indicating that they may serve as a groundbreaking approach for the treatment of GBM. In the original study, nanoparticles in the brain were imaged using positron emission tomography (PET). However, clinical translation of this delivery platform can be enabled by engineering a non-invasive detection modality using magnetic resonance imaging (MRI). For this purpose, we developed chemistry to incorporate superparamagnetic iron oxide (SPIO) into the brain-penetrating nanoparticles. We demonstrated that SPIO-loaded nanoparticles, which retain the same morphology as nanoparticles without SPIO, have an excellent transverse (T(2)) relaxivity. After CED, the distribution of nanoparticles in the brain (i.e., in the vicinity of injection site) can be detected using MRI and the long-lasting signal attenuation of SPIO-loaded brain-penetrating nanoparticles lasted over a one-month timecourse. Development of these nanoparticles is significant as, in future clinical applications, co-administration of SPIO-loaded nanoparticles will allow for intraoperative monitoring of particle distribution in the brain to ensure drug-loaded nanoparticles reach tumors as well as for monitoring the therapeutic benefit with time and to evaluate tumor relapse patterns.
Ballistic Puncture Self-Healing Polymeric Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L.; Siochi, Emilie J.; Yost, William T.; Bogert, Phil B.; Howell, Patricia A.; Cramer, K. Elliott; Burke, Eric R.
2017-01-01
Space exploration launch costs on the order of $10,000 per pound provide an incentive to seek ways to reduce structural mass while maintaining structural function to assure safety and reliability. Damage-tolerant structural systems provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to quickly heal following projectile penetration while retaining some structural function during the healing processes. Although there are materials known to possess this capability, they are typically not considered for structural applications. Current efforts use inexpensive experimental methods to inflict damage, after which analytical procedures are identified to verify that function is restored. Two candidate self-healing polymer materials for structural engineering systems are used to test these experimental methods.
A Deep Space Orbit Determination Software: Overview and Event Prediction Capability
NASA Astrophysics Data System (ADS)
Kim, Youngkwang; Park, Sang-Young; Lee, Eunji; Kim, Minsik
2017-06-01
This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for highfidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.
Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.
Totani, Nagao; Inoue, Ryota; Yawata, Miho
2016-06-01
The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.
Deep oceans may acidify faster than anticipated due to global warming
NASA Astrophysics Data System (ADS)
Chen, Chen-Tung Arthur; Lui, Hon-Kit; Hsieh, Chia-Han; Yanagi, Tetsuo; Kosugi, Naohiro; Ishii, Masao; Gong, Gwo-Ching
2017-12-01
Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1-4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air-sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.
NEXT GENERATION AERIAL REFUELING: CRITICAL CAPABILITY FOR PENETRATING CHINESE DENIED ENVIRONMENTS
2015-10-26
defensive systems capability reduces aircraft damage, saves aircrew lives and keeps the tanker engaged in supplying a critical resource to the...legacy KC- 135. Additionally, there are requirement for a defensive system , which enhances the pilots situational awareness. The defensive system ...1 The ALR-69(V) is the world’s first all-digital radar warning receiver (RWR). The RWR system detects, identifies
Development of Compact, Modular Lunar Heat Flow Probes
NASA Technical Reports Server (NTRS)
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2014-01-01
Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey and previously the International Lunar Network. Because the lander for such a mission will be relatively small, the heat flow instrumentation must be a low-mass and low-power system. The instrument needs to measure both thermal gradient and thermal conductivity of the regolith penetrated. It also needs to be capable of excavating a deep enough hole (approx. 3 m) to avoid the effect of potential long-term changes of the surface thermal environment. The recently developed pneumatic excavation system can largely meet the low-power, low-mass, and the depth requirements. The system utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. The thermal sensors consist of resistance temperature detectors (RTDs) embedded on the stem and an insitu thermal conductivity probe attached to the cone tip. The thermal conductivity probe consists of a short 'needle' (2.4-mm diam. and 15- to 20-mm length) that contains a platinum RTD wrapped in a coil of heater wire. During a deployment, when the penetrating cone reaches a desired depth, it stops blowing gas, and the stem pushes the needle into the yet-to-be excavated, undisturbed bottom soil. Then, it begins heating and monitors the temperature. Thermal conductivity of the soil can determined from the rate of temperature increase with time. When the measurement is complete, the system resumes excavation until it reaches the next targeted depth.
NASA Astrophysics Data System (ADS)
Kiflu, H.; Kruse, S.; Loke, M. H.; Wilkinson, P. B.; Harro, D.
2016-12-01
Electrical resistivity tomography (ERT) surveys are widely used in geological, environmental and engineering studies. However, the effectiveness of surface ERT surveys is limited by decreasing resolution with depth and near the ends of the survey line. Increasing the array length will increase depth of investigation, but may not be possible at urban sites where access is limited. One novel method of addressing these limitations while maintaining lateral coverage is to install an array of deep electrodes. Referred to here as the Multi-Electrode Resistivity Implant Technique (MERIT), self-driving pointed electrodes are implanted at depth below each surface electrode in an array, using direct-push technology. Optimal sequences of readings have been identified with the "Compare R" method of Wilkinson. Numerical, laboratory, and field case studies are applied to examine the effectiveness of the MERIT method, particularly for use in covered karst terrain. In the field case studies, resistivity images are compared against subsurface structure defined from borings, GPR surveys, and knowledge of prior land use. In karst terrain where limestone has a clay overburden, traditional surface resistivity methods suffer from lack of current penetration through the shallow clay layer. In these settings, the MERIT method is found to improve resolution of features between the surface and buried array, as well as increasing depth of penetration and enhancing imaging capabilities at the array ends. The method functions similar to a cross-borehole array between horizontal boreholes, and suffers from limitations common to borehole arrays. Inversion artifacts are common at depths close to the buried array, and because some readings involve high geometric factors, inversions are more susceptible to noise than traditional surface arrays. Results are improved by using errors from reciprocal measurements to weight the data during the inversion.
A Study of Crystalline Mechanism of Penetration Sealer Materials.
Teng, Li-Wei; Huang, Ran; Chen, Jie; Cheng, An; Hsu, Hui-Mi
2014-01-14
It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM) onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO₃. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0-10 mm of sealer layer beneath the concrete surface.
Transdermal Protein Delivery Using Choline and Geranate (CAGE) Deep Eutectic Solvent.
Banerjee, Amrita; Ibsen, Kelly; Iwao, Yasunori; Zakrewsky, Michael; Mitragotri, Samir
2017-08-01
Transdermal delivery of peptides and other biological macromolecules is limited due to skin's inherent low permeability. Here, the authors report the use of a deep eutectic solvent, choline and geranate (CAGE), to enhance topical delivery of proteins such as bovine serum albumin (BSA, molecular weight: ≈66 kDa), ovalbumin (OVA, molecular weight: ≈45 kDa) and insulin (INS, molecular weight: 5.8 kDa). CAGE enhances permeation of BSA, OVA, and insulin into porcine skin ex vivo, penetrating deep into the epidermis and dermis. Studies using tritium-labeled BSA and fluorescein isothiocyanate labeled insulin show significantly enhanced delivery of proteins into and across porcine skin, penetrating the skin in a time-dependent manner. Fourier transform IR spectra of porcine stratum corneum (SC) samples before and after incubation in CAGE show a reduction in peak area attributed to SC lipid content, suggesting lipid extraction from the SC. Circular dichroism confirms that CAGE does not affect insulin's secondary conformation. In vivo studies in rats show that topical application of 10 U insulin dispersed in CAGE (25 U kg -1 insulin dose) leads to a highly significant 40% drop in blood glucose levels in 4 h that is relatively sustained for 12 h. Taken together, these studies demonstrate that CAGE is a promising vehicle for transdermal delivery of therapeutic proteins; specifically, as a noninvasive delivery alternative to injectable insulin for the treatment of diabetes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MacPhee, Nichole; Savage, Anne; Noton, Nikolas; Beattie, Eilidh; Milne, Louise; Fraser, Joanna
2018-03-01
Bows and arrows are used more for recreation, sport and hunting in the Western world and tend not to be as popular a weapon as firearms or knives. Yet there are still injuries and fatalities caused by these low-velocity weapons due to their availability to the public and that a licence is not required to own them. This study aimed to highlight the penetration capabilities of aluminium arrows into soft tissue and bones in the presence of clothing. Further from that, how the type and fit of clothing as well as arrowhead type contribute to penetration capacity. In this study ballistic gelatine blocks (non-clothed and loose fit or tight fit clothed) were shot using a 24lb weight draw recurve bow and aluminium arrows accompanied by four different arrowheads (bullet, judo, blunt and broadhead). The penetration capability of aluminium arrows was examined, and the depth of penetration was found to be dependent on the type of arrowhead used as well as by the type and fit or lack thereof of the clothing covering the block. Loose fit clothing reduced penetration with half of the samples, reducing penetration capacity by percentages between 0% and 98.33%, at a range of 10m. While the remaining half of the samples covered with tight clothing led to reductions in penetration of between 14.06% and 94.12%. The damage to the clothing and the gelatine (puncturing, cutting and tearing) was affected by the shape of the arrowhead, with the least damaged caused by the blunt arrowheads and the most by the broadhead arrows. Clothing fibres were also at times found within the projectile tract within the gelatine showing potential for subsequent infection of an individual with an arrow wound. Ribs, femur bones and spinal columns encased in some of the gelatine blocks all showed varying levels of damage, with the most and obvious damage being exhibited by the ribs and spinal column. The information gleaned from the damage to clothing, gelatine blocks and bones could potentially be useful for forensic investigators, for example, when a body has been discovered with no weapons or gunshot residue present. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
Kuwabara, Chikako; Kasuga, Jun; Wang, Donghui; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo
2011-12-01
Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-D-glucopyranoside (K3Glc), kaempferol 7-O-β-D-glucopyranoside (K7Glc) and quercetin 3-O-β-D-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Taneja, Jayant Kumar
Electricity is an indispensable commodity to modern society, yet it is delivered via a grid architecture that remains largely unchanged over the past century. A host of factors are conspiring to topple this dated yet venerated design: developments in renewable electricity generation technology, policies to reduce greenhouse gas emissions, and advances in information technology for managing energy systems. Modern electric grids are emerging as complex distributed systems in which a portfolio of power generation resources, often incorporating fluctuating renewable resources such as wind and solar, must be managed dynamically to meet uncontrolled, time-varying demand. Uncertainty in both supply and demand makes control of modern electric grids fundamentally more challenging, and growing portfolios of renewables exacerbate the challenge. We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads -- including refrigerators, heating and cooling systems, and laptop computers -- by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load for supply-following and study the behaviors of populations of these loads, assessing their potential at various levels of deployment throughout the California electricity grid. Using combinations of supply-following strategies, we can reduce peak natural gas generation by 19% on a model of the California grid with 60% renewables. We then assess remaining variability on this deeply renewable grid incorporating supply-following loads, characterizing additional capabilities needed to ensure supply-demand matching in future sustainable electricity grids.
Decade-long deep-ocean warming detected in the subtropical South Pacific
Volkov, Denis L.; Lee, Sang-Ki; Landerer, Felix W.; Lumpkin, Rick
2017-01-01
The persistent energy imbalance at the top of the atmosphere, inferred from satellite measurements, indicates that the Earth’s climate system continues to accumulate excess heat. As only sparse and irregular measurements of ocean heat below 2000 m depth exist, one of the most challenging questions in global climate change studies is whether the excess heat has already penetrated into the deep ocean. Here we perform a comprehensive analysis of satellite and in situ measurements to report that a significant deep-ocean warming occurred in the subtropical South Pacific Ocean over the past decade (2005–2014). The local accumulation of heat accounted for up to a quarter of the global ocean heat increase, with directly and indirectly inferred deep ocean (below 2000 m) contribution of 2.4 ± 1.4 and 6.1–10.1 ± 4.4%, respectively. We further demonstrate that this heat accumulation is consistent with a decade-long intensification of the subtropical convergence, possibly linked to the persistent La Niña-like state. PMID:29200536
Decade-long deep-ocean warming detected in the subtropical South Pacific.
Volkov, Denis L; Lee, Sang-Ki; Landerer, Felix W; Lumpkin, Rick
2017-01-28
The persistent energy imbalance at the top of the atmosphere, inferred from satellite measurements, indicates that the Earth's climate system continues to accumulate excess heat. As only sparse and irregular measurements of ocean heat below 2000 m depth exist, one of the most challenging questions in global climate change studies is whether the excess heat has already penetrated into the deep ocean. Here we perform a comprehensive analysis of satellite and in situ measurements to report that a significant deep-ocean warming occurred in the subtropical South Pacific Ocean over the past decade (2005-2014). The local accumulation of heat accounted for up to a quarter of the global ocean heat increase, with directly and indirectly inferred deep ocean (below 2000 m) contribution of 2.4 ± 1.4 and 6.1-10.1 ± 4.4%, respectively. We further demonstrate that this heat accumulation is consistent with a decade-long intensification of the subtropical convergence, possibly linked to the persistent La Niña-like state.
NASA Astrophysics Data System (ADS)
Zhidkin, A. P.; Gennadiev, A. N.
2016-07-01
Approaches to the quantification of the vertical translocation rate of soil solid-phase material by the magnetic tracer method have been developed; the tracer penetration depth and rate have been determined, as well as the radial distribution of the tracer in chernozems (Chernozems) and dark gray forest soils (Luvisols) of Belgorod oblast under natural steppe and forest vegetation and in arable lands under agricultural use of different durations. It has been found that the penetration depth of spherical magnetic particles (SMPs) during their 150-year-occurrence in soils of a forest plot is 68 cm under forest, 58 cm on a 100-year old plowland, and only 49 cm on a 150-year-old plowland. In the chernozems of the steppe plot, the penetration depth of SMPs exceeds the studied depth of 70 cm both under natural vegetation and on the plowlands. The penetration rates of SMPs deep into the soil vary significantly among the key plots: 0.92-1.32 mm/year on the forest plot and 1.47-1.63 mm/year on the steppe plot, probably because of the more active recent turbation activity of soil animals.
Optical coherence tomography using images of hair structure and dyes penetrating into the hair.
Tsugita, Tetsuya; Iwai, Toshiaki
2014-11-01
Hair dyes are commonly evaluated by the appearance of the hair after dyeing. However, this approach cannot simultaneously assess how deep the dye has penetrated into hair. For simultaneous assessment of the appearance and the interior of hair, we developed a visible-range red, green, and blue (RGB) (three primary colors)-optical coherence tomography (OCT) using an RGB LED light source. We then evaluated a phantom model based on the assumption that the sample's absorbability in the vertical direction affects the tomographic imaging. Consistent with theory, our device showed higher resolution than conventional OCT with far-red light. In the experiment on the phantom model, we confirmed that the tomographic imaging is affected by absorbability unique to the sample. Furthermore, we verified that permeability can be estimated from this tomographic image. We also identified for the first time the relationship between penetration of the dye into hair and characteristics of wavelength by tomographic imaging of dyed hair. We successfully simultaneously assessed the appearance of dyed hair and inward penetration of the dye without preparing hair sections. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Investigations of needle-free jet injections.
Schramm-Baxter, J R; Mitragotri, S
2004-01-01
Jet injection is a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers drugs. Although a number of jet injectors are commercially available, especially for insulin delivery, they have a low market share compared to needles possibly due to occasional pain associated with jet injection. Jets employed by the traditional jet injectors penetrate deep into the dermal and sub-dermal regions where the nerve endings are abundantly located. To eliminate the pain associated with jet injections, we propose to utilize microjets that penetrate only into the superficial region of the skin. However, the choice of appropriate jet parameters for this purpose is challenging owing to the multiplicity of factors that determine the penetration depth. Here, we describe the dependence of jet injections into human skin on the power of the jet. Dermal delivery of liquid jets was quantified using two measurements, penetration of a radiolabeled solute, mannitol, into skin and the shape of jet dispersion in the skin which was visualized using sulforhodamine B. The dependence of the amount of liquid delivered in the skin and the geometric measurements of jet dispersion on nozzle diameter and jet velocity was captured by a single parameter, jet power.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2016-01-01
Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. The evolved configurations of SLS, including both the 105 t Block 1B and the 130 t Block 2, offer opportunities for launching co-manifested payloads and a new class of secondary payloads with the Orion crew vehicle, and also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle, delivering unmatched mass-lift capability, payload volume, and C3.
Space Radar Image of Randonia Rain Cell
1999-04-15
This multi-frequency space radar image of a tropical rainforest in western Brazil shows rapidly changing land use patterns and it also demonstrates the capability of the different radar frequencies to detect and penetrate heavy rainstorms.
Space Radar Image of Maui, Hawaii
1999-04-15
This spaceborne radar image shows the Valley Island of Maui, Hawaii. The cloud-penetrating capabilities of radar provide a rare view of many parts of the island, since the higher elevations are frequently shrouded in clouds.
2017-10-31
Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration beyond Earth’s orbit. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. Traveling to deep space requires a large vehicle that can carry huge payloads, and future evolutions of SLS with the exploration upper stage and advanced boosters will increase the rocket’s lift capability and flexibility for multiple types of mission needs.
Deep Space Gateway Science Opportunities
NASA Astrophysics Data System (ADS)
Quincy, C. D.; Charles, J. B.; Hamill, D. L.; Sun, S. C.
2018-02-01
Life sciences see the Deep Space Gateway as an opportunity to investigate biological organisms in a unique environment that cannot be replicated in Earth-based labs or on LEO platforms. The needed capabilities must be built into the Gateway facility.
Instruments for Deep Space Weather Prediction and Science
NASA Astrophysics Data System (ADS)
DeForest, C. E.; Laurent, G.
2018-02-01
We discuss remote space weather monitoring system concepts that could mount on the Deep Space Gateway and provide predictive capability for space weather events including SEP events and CME crossings, and advance heliophysics of the solar wind.
Packaging data products using data grid middleware for Deep Space Mission Systems
NASA Technical Reports Server (NTRS)
Mattmann, Chris A.; Ramirez, Paul M.; Chrichton, Daniel J.; Hughes, J. Steven
2004-01-01
Deep Space Mission Systems lack the capability to provide end to end tracing of mission data products. These data products are simple products such as telemetry data, processing history, and uplink data.
ERIC Educational Resources Information Center
Ybarra, Gary A.; Collins, Leslie M.; Huettel, Lisa G.; Brown, April S.; Coonley, Kip D.; Massoud, Hisham Z.; Board, John A.; Cummer, Steven A.; Choudhury, Romit Roy; Gustafson, Michael R.; Jokerst, Nan M.; Brooke, Martin A.; Willett, Rebecca M.; Kim, Jungsang; Absher, Martha S.
2011-01-01
The field of electrical and computer engineering has evolved significantly in the past two decades. This evolution has broadened the field of ECE, and subfields have seen deep penetration into very specialized areas. Remarkable devices and systems arising from innovative processes, exotic materials, high speed computer simulations, and complex…
The use of conduction model in laser weld profile computation
NASA Astrophysics Data System (ADS)
Grabas, Bogusław
2007-02-01
Profiles of joints resulting from deep penetration laser beam welding of a flat workpiece of carbon steel were computed. A semi-analytical conduction model solved with Green's function method was used in computations. In the model, the moving heat source was attenuated exponentially in accordance with Beer-Lambert law. Computational results were compared with those in the experiment.
DA 5505: a novel topical formulation of terbinafine that enhances skin penetration and retention.
Thapa, Raj Kumar; Han, Sang-Duk; Park, Hyoung Geun; Son, Miwon; Jun, Joon Ho; Kim, Jong Oh
2015-01-01
Topical fungal infections can become severe if left untreated. Efficient treatment modalities for topical fungal infections aid the penetration of antifungal agents deep into viable skin layers. Terbinafine is a fungicidal agent that inhibits ergosterol, an essential fungal component. The main objective of this study was to evaluate skin permeation and retention of a terbinafine-loaded solution containing chitosan as a film former. Comparative assessment of skin permeation and retention was performed using a prepared formulation (DA 5505) and marketed formulations of terbinafine in murine and porcine skin. To mimic fungal infection of skin, keratinized skin was induced in NC/Nga mice. In comparison with the marketed formulations, DA 5505 exhibited significantly better skin permeation. The flux, permeation coefficient, and enhancement ratio of terbinafine were remarkably increased by DA 5505 in comparison with the marketed formulations, and lag time was dramatically reduced. DA 5505 significantly increased cumulative terbinafine retention in viable skin layers in comparison with the marketed solution, suggesting enhanced efficacy. Furthermore, DA 5505 exhibited superior skin permeation in normal skin and keratinized skin. Thus, the DA 5505 formulation has the potential to effectively deliver terbinafine to superficial and deep cutaneous fungal infections.
Nasouri, Babak; Murphy, Thomas E; Berberoglu, Halil
2014-01-01
For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.
NASA Astrophysics Data System (ADS)
Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil
2014-07-01
For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.
NASA Astrophysics Data System (ADS)
Lynne, Bridget Y.; Heasler, Henry; Jaworowski, Cheryl; Smith, Gary J.; Smith, Isaac J.; Foley, Duncan
2018-04-01
In April 2015, Ground Penetrating Radar (GPR) was used to characterize the shallow subsurface (< 5 m depth) of the western sinter slope immediately adjacent to Old Faithful Geyser and near the north side of an inferred geyser cavity. A series of time-sequence images were collected between two eruptions of Old Faithful Geyser. Each set of time-sequence GPR recordings consisted of four transects aligned to provide coverage near the potential location of the inferred 15 m deep geyser chamber. However, the deepest penetration we could achieve with a 200 MHz GPR antennae was 5 m. Seven time-sequence events were collected over a 48-minute interval to image changes in the near-surface, during pre- and post-eruptive cycles. Time-sequence GPR images revealed a series of possible micro-fractures in a highly porous siliceous sinter in the near-surface that fill and drain repetitively, immediately after an eruption and during the recharge period prior to the next main eruptive event.
NASA Astrophysics Data System (ADS)
Zhao, ZhongQuan; Fairchild, Paul W.
1998-05-01
For many skin treatments with light, it is important to have deep photon penetration into the skin. Because of absorption and scattering of photons by skin tissue, both the color and the diameter of the incident beam affect the penetration depth of photons. In this study, the dependence of light transmission through human skin tissues (ear lobs and between the fingers) has been measured in-vivo at six wavelengths (532 nm, 632 nm, 675 nm, 810 nm, 911 nm, and 1064 nm). The same measurement was also made on pig skin in-vitro for comparison. It was observed that (1) the photons at 1064 nm penetrate deeper than the other colors studied for a given incident beam diameter; and (2) the transmittance at a particular wavelength increases asymptotically with incident beam diameter. For some skin tissues, the transmittance flattens at about 8 mm for 532 nm photons and approaches saturation at about 12 mm for all other colors. The results on pig skin is similar.
Moghadam, Shima Jowhari; Navarro, Laurent; Leclerc, Lara; Hodin, Sophie; Pourchez, Jérémie
2018-07-30
Treating chronic rhinosinusitis (CRS) by nebulization requires an airflow capable to deliver medication to deep target sites beyond the nasal valve. Fixed frequency acoustic airflow technology is currently available, mainly as post-surgical therapy, but still have not been able to realize the full potential of direct nose to paranasal sinuses delivery. Reported herein are the application of frequency sweep acoustic airflow and the optimization of its frequency range, sweep cycle duration and intensity. The resonant frequencies of the model's maxillary sinuses can be estimated using the Helmholtz resonator theory. Results indicated a resonant frequency of 479 Hz for the right maxillary sinus and one of 849 Hz for the left maxillary sinus. The highest intrasinus deposition within the experiments are from sweep cycle duration of 1 s, intensity of 80 dB, and frequency range of 100-850 Hz. The optimal range of frequency determined from experiments is in good agreement with the corresponding frequency range obtained from the Helmholtz resonator theory. Results reveal a significantly enhanced maxillary sinus drug deposition. This technique affords the potential of treating CRS. Copyright © 2018 Elsevier B.V. All rights reserved.
Dungan, C F; Elston, R A; Schiewe, M H
1989-01-01
Several strains of cytophaga-like gliding bacteria (CLB) were isolated as numerically dominant or codominant components of bacterial populations associated with proteinaceous hinge ligaments of cultured juvenile Pacific oysters, Crassostrea gigas. These bacteria were morphologically similar to long, flexible bacilli occurring within degenerative lesions in oyster hinge ligaments. Among bacteria isolated from hinge ligaments, only CLB strains were capable of sustained growth with hinge ligament matrix as the sole source of organic carbon and nitrogen. In vitro incubation of cuboidal portions of ligament resilium with ligament CLB resulted in bacterial proliferation on the surfaces and penetration deep into ligament matrices. Bacterial proliferation was accompanied by loss of resilium structural and mechanical integrity, including complete liquefaction, at incubation temperatures between 10 and 20 degrees C. The morphological, distributional, and degradative characteristics of CLB isolated from oyster hinge ligaments provide compelling, albeit indirect, evidence that CLB are the agents of a degenerative disease affecting juvenile cultured oysters. The motility, metabolic, and hydrolytic characteristics of hinge ligament CLB and the low moles percent G + C values (32.4 to 32.9) determined for three representative strains indicate that they are marine Cytophaga spp. Images PMID:2757377
Dungan, C F; Elston, R A; Schiewe, M H
1989-05-01
Several strains of cytophaga-like gliding bacteria (CLB) were isolated as numerically dominant or codominant components of bacterial populations associated with proteinaceous hinge ligaments of cultured juvenile Pacific oysters, Crassostrea gigas. These bacteria were morphologically similar to long, flexible bacilli occurring within degenerative lesions in oyster hinge ligaments. Among bacteria isolated from hinge ligaments, only CLB strains were capable of sustained growth with hinge ligament matrix as the sole source of organic carbon and nitrogen. In vitro incubation of cuboidal portions of ligament resilium with ligament CLB resulted in bacterial proliferation on the surfaces and penetration deep into ligament matrices. Bacterial proliferation was accompanied by loss of resilium structural and mechanical integrity, including complete liquefaction, at incubation temperatures between 10 and 20 degrees C. The morphological, distributional, and degradative characteristics of CLB isolated from oyster hinge ligaments provide compelling, albeit indirect, evidence that CLB are the agents of a degenerative disease affecting juvenile cultured oysters. The motility, metabolic, and hydrolytic characteristics of hinge ligament CLB and the low moles percent G + C values (32.4 to 32.9) determined for three representative strains indicate that they are marine Cytophaga spp.
Fungal degradation of fiber-reinforced composite materials
NASA Technical Reports Server (NTRS)
Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.
1997-01-01
As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.
NASA Astrophysics Data System (ADS)
Pramanik, Avijit; Fan, Zhen; Chavva, Suhash Reddy; Sinha, Sudarson Sekhar; Ray, Paresh Chandra
2014-08-01
Multiple drug-resistance bacteria (MDRB) infection is one of the top three threats to human health according to the World Health Organization (WHO). Due to the large penetration depth and reduced photodamage, two-photon imaging is an highly promising technique for clinical MDRB diagnostics. Since most commercially available water-soluble organic dyes have low two-photon absorption cross-section and rapid photobleaching tendency, their applications in two-photon imaging is highly limited. Driven by the need, in this article we report extremely high two-photon absorption from aptamer conjugated graphene oxide (σ2PA = 50800 GM) which can be used for highly efficient two-photon fluorescent probe for MDRB imaging. Reported experimental data show that two-photon photoluminescence imaging color, as well as luminescence peak position can be tuned from deep blue to red, just by varying the excitation wavelength without changing its chemical composition and size. We have demonstrated that graphene oxide (GO) based two-photon fluorescence probe is capable of imaging of multiple antibiotics resistance MRSA in the first and second biological transparency windows using 760-1120 nm wavelength range.
Listening to membrane potential: photoacoustic voltage-sensitive dye recording.
Zhang, Haichong K; Yan, Ping; Kang, Jeeun; Abou, Diane S; Le, Hanh N D; Jha, Abhinav K; Thorek, Daniel L J; Kang, Jin U; Rahmim, Arman; Wong, Dean F; Boctor, Emad M; Loew, Leslie M
2017-04-01
Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe
2007-09-15
A nonequilibrium Ar/O{sub 2} plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56 MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as freemore » from toxic biological warfare agents. The decimal reduction time (D values) of the Ar/O{sub 2} plasma jet at an exposure distance of 0.5-1.5 cm ranges from 5 to 57 s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.« less
Listening to membrane potential: photoacoustic voltage-sensitive dye recording
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.
2017-04-01
Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.
Benchmarked analyses of gamma skyshine using MORSE-CGA-PC and the DABL69 cross-section set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichert, P.T.; Golshani, M.
1991-01-01
Design for gamma-ray skyshine is a common consideration for a variety of nuclear and accelerator facilities. Many of these designs can benefit from a more accurate and complete treatment than can be provided by simple skyshine analysis tools. Those methods typically require a number of conservative, simplifying assumptions in modeling the radiation source and shielding geometry. This paper considers the benchmarking of one analytical option. The MORSE-CGA Monte Carlo radiation transport code system provides the capability for detailed treatment of virtually any source and shielding geometry. Unfortunately, the mainframe computer costs of MORSE-CGA analyses can prevent cost-effective application to smallmore » projects. For this reason, the MORSE-CGA system was converted to run on IBM personal computer (PC)-compatible computers using the Intel 80386 or 80486 microprocessors. The DLC-130/DABL69 cross-section set (46n,23g) was chosen as the most suitable, readily available, broad-group library. The most important reason is the relatively high (P{sub 5}) Legendre order of expansion for angular distribution. This is likely to be beneficial in the deep-penetration conditions modeled in some skyshine problems.« less
Evaluation of landslide hazards with ground-penetrating radar, Lake Michigan coast
Barnhardt, Walter A.; Jaffe, Bruce E.; Kayen, Robert
1999-01-01
Ground-penetrating radar (GPR) and boreholes were used to investigate a landslide-prone bluff at Sleeping Bear Dunes National Lakeshore on the northeastern coast of Lake Michigan. Based on borehole observations, sediment underlying the area is homogeneous, consisting of well-sorted, medium to coarse sand. GPR penetrated up to 20 m deep in these sediments, revealing the late Quaternary stratigraphy in great detail. We define four units, or radar facies, based on criteria similar to those used in seismic stratigraphy. Directly beneath a landslide at Sleeping Bear Point (and nowhere else in this survey) is a deeply incised, channel-fill deposit that intersects the shoreline at a high angle. The buried channel is at least 10 m deep and 400 m wide, and it might be a subglacially carved feature of Pleistocene age. A prominent, planar unconformity marks the upper surface of the channel deposit, which is overlain by stratified beach and dune material. Several crosshole GPR surveys were performed in the vicinity of the landslide: 1) a constant offset profile (COP), 2) a multiple offset gather (MOG), and 3) a vertical radar profile (VRP). Tomographic analysis of these data determined the velocity structure of sandy sediment that underlie the failed bluff. Because GPR velocity is dependent on electrical properties, we use it as a proxy for geotechnical properties of the soils. Our working hypothesis is that the hidden channel may act as a conduit for pore water flow between upland regions and Lake Michigan, and thereby locally reduce soil strength and promote slope failure.
Assessing stapes piston position using computed tomography: a cadaveric study.
Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary
2009-02-01
Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.
NASA Astrophysics Data System (ADS)
Gase, A.; Brand, B. D.; Bradford, J.
2016-12-01
The causes and consequences of substrate erosion are among the least understood attributes of pyroclastic density current (PDC) dynamics. Field evidence of substrate erosion is often limited by the location and quality of exposed PDC deposits. Here we present evidence for one of the most spatially extensive cases of PDC erosion to date, found within the 18 May 1980 deposits of Mt. St. Helens, Washington (USA). An 8 m deep and 300 m wide PDC scour and fill feature, which extends into PDC deposits from earlier in the eruption, is exposed along a distal outcrop of the shallow-dipping (<15º) pumice plain. Near surface geophysical techniques allow us to investigate the nature, extent, and cause of this large scour. We used 50 MHz ground-penetrating radar to track the distal scour from outcrop toward its source. Beginning 700 m up-flow from the large scour and fill exposure, the feature progressively widens from 205 m to 280 m and deepens from 10 m to 13 m, suggesting the PDCs became more erosive along the length of the scour. We extended our transects across the pumice plain to locate additional scours and to establish the topography at the time of erosion. We found a second 420 m wide and 11 m deep scour that extends at least 500 m from its inception point. Apparent dips of the sides of both channels are asymmetrical, due to pronounced erosion on the up-slope side of the flow in cross-section. Our data show no evidence of subsurface topographic irregularities or high slope angles up-flow from either erosional feature. These features imply large PDCs from semi-sustained or fluctuating eruptions can self-channelize by erosional mechanisms. Our findings suggest that (1) concentrated PDCs are capable of producing large scours on shallow slopes with negligible surface roughness, analogous to the erosional channels of submarine turbidity currents, (2) substrate properties, including partial fluidization of fresh PDC deposits, may facilitate substrate erosion during semi-sustained eruptions, and (3) large PDCs can undergo self-channelization, whereby axial zones of high flow energy erode channels that confine subsequent flows. Erosion and self-channelization of this nature is not accounted for in models of concentrated PDCs, which may result in underestimates of run-out distance.
A numerically optimized active shield for improved transcranial magnetic stimulation targeting.
Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric
2010-10-01
Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region ("sharpness"), whereas, simultaneously increase the induced electric field deep in the target region relative to the surface ("penetration"). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1% and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9%). Copyright © 2010 Elsevier Inc. All rights reserved.
Ternullo, Selenia; de Weerd, Louis; Holsæter, Ann Mari; Flaten, Gøril Eide; Škalko-Basnet, Nataša
2017-12-01
Phospholipid-based nanocarriers are attractive drug carriers for improved local skin therapy. In the present study, the recently developed isolated perfused human skin flap (IPHSF) model was used to directly compare the skin penetration enhancing potential of the three commonly used nanocarriers, namely conventional liposomes (CLs), deformable liposomes (DLs) and solid lipid nanoparticles (SLNs). Two fluorescent markers, calcein (hydrophilic) or rhodamine (lipophilic), were incorporated individually in the three nanosystems. The nanocarrier size ranged between 200 and 300nm; the surface charge and entrapment efficiency for both markers were dependent on the lipid composition and the employed surfactant. Both carrier-associated markers could not penetrate the full thickness human skin, confirming their suitability for dermal drug delivery. CLs exhibited higher retention of both markers on the skin surface compared to DLs and SLNs, indicating a depo formation. DLs and SLNs enabled the deeper penetration of the two markers into the skin layers. In vitro and ex vivo skin penetration studies performed on the cellophane membrane and full thickness pig/human skin, respectively, confirmed the findings. In conclusion, efficient dermal drug delivery can be achieved by optimization of a lipid nanocarrier on the suitable skin-mimicking model to assure system's accumulation in the targeted skin layer. Copyright © 2017 Elsevier B.V. All rights reserved.
Cun, Xingli; Ruan, Shaobo; Chen, Jiantao; Zhang, Li; Li, Jianping; He, Qin; Gao, Huile
2016-02-01
Although development of nanomedicines has been a promising direction in tumor treatment, the therapeutic outcome of current nanomedicines is unsatisfying, partly because of the poor retention and penetration in tumors. Recently, a kind of tumor microenvironment sensitive size shrinkable nanoparticles (DOX-AuNPs-GNPs) has been developed by our lab, which could enhance the tumor penetration and retention depending on the size shrinking. However, the further enhancement is still restricted by dense collagen network in tumors. Thus in this study, we combined DOX-AuNPs-GNPs with losartan to deplete tumor collagen (constituted up to 90% of extracellular matrix) to further improve tumor penetration. In vitro, DOX-AuNPs-GNPs can shrink from over 117.8nm to less than 50.0nm and release DOX-AuNPs under the triggering of tumor overexpressed matrix metalloproteinases-2 (MMP-2). In vivo, pretreatment with losartan significantly decrease the collagen level and improve the tumor penetration. In combination, losartan combined with DOX-AuNPs-GNPs showed the best drug delivery efficiency, striking penetration efficiency and best 4T1 breast tumor inhibition effect. In conclusion, this study provided a promising synergetic strategy to improve the tumor treatment efficiency of nanomedicines. We have developed a dual strategy for deep tumor penetration through combining size shrinkable DOX-AuNPs-GNPs with depleting tumor collagen by losartan. Additionally, we demonstrate therapeutic efficacy in breast tumor bearing mouse model. DOX-AuNPs-GNPs co-administration with losartan is a novel and highly attractive strategy for anti-tumor drug delivery with the potential for broad applications in clinic. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Finger, R. W.
1976-01-01
This experimental program was undertaken to investigate the crack growth behavior of deep surface flaws in 2219 aluminum. The program included tests of uniaxially loaded surface flaw and center crack panels at temperatures ranging from 20K (-423 F) to ambient. The tests were conducted on both the base metal and as-welded weld metal material. The program was designed to provide data on the mechanisms of failure by ligament penetration, and the residual cyclic life, after proof-testing, of a vessel which has been subjected to incipient penetration by the proof test. The results were compared and analyzed with previously developed data to develop guidelines for the proof testing of thin walled 2219 pressure vessels.
High Power Laser Welding. [of stainless steel and titanium alloy structures
NASA Technical Reports Server (NTRS)
Banas, C. M.
1972-01-01
A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.
Lu, Shousi; Guo, Shanshan; Xu, Pingxiang; Li, Xiaorong; Zhao, Yuming; Gu, Wei; Xue, Ming
Nitrogen-doped carbon dots (N-CDs) were synthesized using a one-pot hydrothermal treatment with citric acid in the presence of polyethylenimine. Transmission electron microscopy analysis revealed that the N-CDs were monodispersed and quasi-spherical with an average size of ~2.6 nm. Under ultraviolet irradiation the N-CDs emitted a strong blue luminescence with a quantum yield as high as 51%. Moreover, the N-CDs exhibited a negligible cytotoxicity and could be applied as efficient nanoprobes for real-time imaging of live cells. In addition, the ability of the N-CDs to cross the blood-brain barrier (BBB) in a concentration-dependent manner was demonstrated using an in vitro BBB model. Therefore, these PEI-passivated N-CDs with real-time live-cell imaging and BBB-penetration capabilities hold promise for traceable drug delivery to the brain.
Lu, Shousi; Guo, Shanshan; Xu, Pingxiang; Li, Xiaorong; Zhao, Yuming; Gu, Wei; Xue, Ming
2016-01-01
Nitrogen-doped carbon dots (N-CDs) were synthesized using a one-pot hydrothermal treatment with citric acid in the presence of polyethylenimine. Transmission electron microscopy analysis revealed that the N-CDs were monodispersed and quasi-spherical with an average size of ~2.6 nm. Under ultraviolet irradiation the N-CDs emitted a strong blue luminescence with a quantum yield as high as 51%. Moreover, the N-CDs exhibited a negligible cytotoxicity and could be applied as efficient nanoprobes for real-time imaging of live cells. In addition, the ability of the N-CDs to cross the blood–brain barrier (BBB) in a concentration-dependent manner was demonstrated using an in vitro BBB model. Therefore, these PEI-passivated N-CDs with real-time live-cell imaging and BBB-penetration capabilities hold promise for traceable drug delivery to the brain. PMID:27932880
A comparison of lamellar and penetrating keratoplasty outcomes: a registry study.
Coster, Douglas J; Lowe, Marie T; Keane, Miriam C; Williams, Keryn A
2014-05-01
To investigate changing patterns of practice of keratoplasty in Australia, graft survival, visual outcomes, the influence of experience, and the surgeon learning curve for endothelial keratoplasty. Observational, prospective cohort study. From a long-standing national corneal transplantation register, 13 920 penetrating keratoplasties, 858 deep anterior lamellar keratoplasties (DALKs), and 2287 endokeratoplasties performed between January 1996 and February 2013 were identified. Kaplan-Meier functions were used to assess graft survival and surgeon experience, the Pearson chi-square test was used to compare visual acuities, and linear regression was used to examine learning curves. Graft survival. The total number of corneal grafts performed annually is increasing steadily. More DALKs but fewer penetrating grafts are being performed for keratoconus, and more endokeratoplasties but fewer penetrating grafts are being performed for Fuchs' dystrophy and pseudophakic bullous keratopathy. In 2012, 1482 grafts were performed, compared with 955 in 2002, translating to a requirement for 264 extra corneal donors across the country in 2012. Comparing penetrating grafts and DALKs performed for keratoconus over the same era, both graft survival (P <0.001) and visual outcomes (P <0.001) were significantly better for penetrating grafts. Survival of endokeratoplasties performed for Fuchs' dystrophy or pseudophakic bullous keratopathy was poorer than survival of penetrating grafts for the same indications over the same era (P <0.001). Visual outcomes were significantly better for penetrating grafts than for endokeratoplasties performed for Fuchs' dystrophy (P <0.001), but endokeratoplasties achieved better visual outcomes than penetrating grafts for pseudophakic bullous keratopathy (P <0.001). Experienced surgeons (>100 registered keratoplasties) achieved significantly better survival of endokeratoplasties (P <0.001) than surgeons who had performed fewer grafts (<100 registered keratoplasties). In the hands of experienced, high-volume surgeons, endokeratoplasty failures occurred even after 100 grafts had been performed. More corneal transplants, especially DALKs and endokeratoplasties, are being performed in Australia than ever before. Survival of DALKs and endokeratoplasties is worse than the survival of penetrating grafts performed for the same indications over the same timeframe. Many endokeratoplasties fail early, but the evidence for a surgeon learning curve is unconvincing. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Laser-Assisted Wire Additive Manufacturing System for the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Foster, B. D.; Matthews, B.
2018-02-01
Investigation on the Deep Space Gateway will involve experiments/operations inside pressurized modules. Support for those experiments may necessitate a means to fabricate and repair required articles. This capability can be provided through an additive manufacturing (AM) system.
Swot analysis of using aerostats for surveillance in counter terrorism
NASA Astrophysics Data System (ADS)
Çetin, Hüseyin
2013-06-01
In today's conjuncture, the terrorist activities are the most compelling issue for the defence forces in maintaining homeland security. Especially, the terrorist elements that penetrate the homeland may give harm. This harm can be minimized by preventing the terrorist penetrations from homeland borders. In counter terrorism, having Intelligence, Surveillance and Reconnaissance (ISR) capability and using this capability by twenty four hours is deterrence for the terrorist groups. Aerostats emerge as the ideal platform which can provide this capability. Aerostats are unmanned and aerodynamically shaped balloons that are stayed in the air, fixed to the ground by steel cable(s). The aerostat is made of a large fabric envelope that is filled with nonflammable helium gas, which provides the lifting force. The cables also serve to supply the electrical power to the aerostat systems, and for data relay between the aerostat and the ground station. Aerostats are different from the other manned and Unmanned Aerial Vehicles (UAVs) because of aerostats' capabilities such as cost effectiveness, long endurance and high resolution image transmission. Especially having uninterrupted image transmission and surveillance capabilities is important to be advantageous in counter terrorism. In this article, a short definition of terrorism has been given and then the importance of ensuring the homeland border security has been emphasized in counter terrorism. In addition, the questions of "what are the technical capabilities, the usage areas and the purposes of aerostats?" will be introduced as a result of literature review. Finally the strengths and weaknesses of aerostats, opportunities and threats for the near future will be introduced by using "SWOT" analysis method.
Unified Simulation and Analysis Framework for Deep Space Navigation Design
NASA Technical Reports Server (NTRS)
Anzalone, Evan; Chuang, Jason; Olsen, Carrie
2013-01-01
As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.
NASA Technical Reports Server (NTRS)
Timmerman, Paul J.; Surampudi, Subbarao
2000-01-01
A viewgraph presentation outlines the Jet Propulsion Laboratory (JPL) flight programs, including past, present and future missions targeting Solar System exploration. Details, including launch dates and batteries used, are given for Deep Space 1 (Asteroid Rendezvous), Deep Space 2 (Mars Penetrator), Mars Global Surveyor, Mars Surveyor '98, Stardust, Europa Orbiter, Mars Surveyor 2001, Mars 2003 Lander and Rover, and Genesis (Solar Dust Return). Earth science projects are also outlined: Active Cavity Radiometer Irradiance Monitor (ARIMSAT), Ocean Topography Experiment (TOPEX/Poseidon), Jason-1 (TOPEX follow-on), and QuikScat/Seawinds (Ocean Winds Tracking). The status, background, and plans are given for several batteries: (1) 2.5 inch common pressure vessel (CPV), (2) 3.5 inch CPV, (3) Ni-H2, and (4) Li-Ion.
Neutron capture therapy with deep tissue penetration using capillary neutron focusing
Peurrung, Anthony J.
1997-01-01
An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.
Announcment: Conference on Obscured AGN Across Cosmic Time
NASA Astrophysics Data System (ADS)
2006-12-01
Current deep surveys, notably in X-rays and the mid-IR, are making it possible to carry out a census of essentially all the luminous AGN in the Universe. By pene-trating the obscuration that, in Type 2 sources, hides the nuclear regions in the UV to the near-IR spectrum, these new surveys are finding the radio quiet coun-terparts of the powerful radio galaxies.
NASA Astrophysics Data System (ADS)
Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe
2016-10-01
With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the Czech Republic through project 15-14263Y.
Exploring Microbial Life in Oxic Sediments Underlying Oligotrophic Ocean Gyres
NASA Astrophysics Data System (ADS)
Ziebis, W.; Orcutt, B.; Wankel, S. D.; D'Hondt, S.; Szubin, R.; Kim, J. N.; Zengler, K.
2015-12-01
Oxygen, carbon and nutrient availability are defining parameters for microbial life. In contrast to organic-rich sediments of the continental margins, where high respiration rates lead to a depletion of O2 within a thin layer at the sediment surface, it was discovered that O2 penetrates several tens of meters into organic-poor sediments underlying oligotrophic ocean gyres. In addition, nitrate, another important oxidant, which usually disappears rapidly with depth in anoxic sediments, tends to accumulate above seawater concentrations in the oxic subsurface, reflecting the importance of nitrogen cycling processes, including both nitrification and denitrification. Two IODP drilling expeditions were vital for exploring the nature of the deep subsurface beneath oligotrophic ocean gyres, expedition 329 to the South Pacific Gyre (SPG) and expedition 336 to North Pond, located on the western flank of the Mid-Atlantic ridge beneath the North Atlantic Gyre. Within the ultra-oligotrophic SPG O2 penetrates the entire sediment column from the sediment-water interface to the underlying basement to depths of > 75 m. At North Pond, a topographic depression filled with sediment and surrounded by steep basaltic outcrops, O2 penetrates deeply into the sediment (~ 30 m) until it eventually becomes depleted. O2 also diffuses upward into the sediment from seawater circulating within the young crust underlying the sediment, resulting in a deep oxic layer several meters above the basalt. Despite low organic carbon contents microbial cells persist throughout the entire sediment column within the SPG (> 75 m) and at North Pond, albeit at low abundances. We explored the nature of the subsurface microbial communities by extracting intact cells from large volumes of sediment obtained from drill cores of the two expeditions. By using CARD-FiSH, amplicon (16s rRNA) and metagenome sequencing we shed light on the phylogenetic and functional diversity of the elusive communities residing in the deep oxic sediments of these two different areas. Given the global extent of this oxic subsurface studies of the diversity and metabolic potential of its biome, together with the analyses of porewater geochemical and isotopic composition, are beginning to reveal its role in global biogeochemical cycles.
Deep learning applications in ophthalmology.
Rahimy, Ehsan
2018-05-01
To describe the emerging applications of deep learning in ophthalmology. Recent studies have shown that various deep learning models are capable of detecting and diagnosing various diseases afflicting the posterior segment of the eye with high accuracy. Most of the initial studies have centered around detection of referable diabetic retinopathy, age-related macular degeneration, and glaucoma. Deep learning has shown promising results in automated image analysis of fundus photographs and optical coherence tomography images. Additional testing and research is required to clinically validate this technology.
The effect of mangiferin on skin: Penetration, permeation and inhibition of ECM enzymes.
Ochocka, Renata; Hering, Anna; Stefanowicz-Hajduk, Justyna; Cal, Krzysztof; Barańska, Helena
2017-01-01
Mangiferin (2-C-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone) is a polyphenol with strong antioxidant properties. Mangiferin is obtained from the mango tree (Mangifera indica L., Anacardiaceae). It has been proven that mangiferin exhibits many pharmacological activities. The aim of this study was to analyze the penetration of mangiferin into the human skin and through the skin. According to our knowledge, skin penetration and permeation studies of mangiferin have not been analyzed so far. Additionally, the influence of mangiferin on two Extracellular Matrix Enzymes (ECM): collagenase and elastase, was evaluated for the first time. It has been indicated that mangiferin is able to permeate the stratum corneum and penetrate into the epidermis and dermis in comparable amounts. For confirmation of the obtained results, fluorescence microscopy was successfully utilized. The analysis revealed the capability of mangiferin to reversibly inhibit elastase and collagenase activity. The mechanism of mangiferin interaction with both enzymes was estimated as a noncompetitive inhibition.
The effect of mangiferin on skin: Penetration, permeation and inhibition of ECM enzymes
Hering, Anna; Stefanowicz–Hajduk, Justyna; Cal, Krzysztof; Barańska, Helena
2017-01-01
Mangiferin (2-C-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone) is a polyphenol with strong antioxidant properties. Mangiferin is obtained from the mango tree (Mangifera indica L., Anacardiaceae). It has been proven that mangiferin exhibits many pharmacological activities. The aim of this study was to analyze the penetration of mangiferin into the human skin and through the skin. According to our knowledge, skin penetration and permeation studies of mangiferin have not been analyzed so far. Additionally, the influence of mangiferin on two Extracellular Matrix Enzymes (ECM): collagenase and elastase, was evaluated for the first time. It has been indicated that mangiferin is able to permeate the stratum corneum and penetrate into the epidermis and dermis in comparable amounts. For confirmation of the obtained results, fluorescence microscopy was successfully utilized. The analysis revealed the capability of mangiferin to reversibly inhibit elastase and collagenase activity. The mechanism of mangiferin interaction with both enzymes was estimated as a noncompetitive inhibition. PMID:28750062
Space Station-based deep-space optical communication experiments
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung; Schwartz, Jon A.
1988-01-01
A series of three experiments proposed for advanced optical deep-space communications is described. These proposed experiments would be carried out aboard the Space Station to test and evaluate the capability of optical instruments to conduct data communication and spacecraft navigation for deep-space missions. Techniques for effective data communication, precision spacecraft ranging, and accurate angular measurements will be developed and evaluated in a spaceborne environment.
DSN command system Mark III-78. [data processing
NASA Technical Reports Server (NTRS)
Stinnett, W. G.
1978-01-01
The Deep Space Network command Mark III-78 data processing system includes a capability for a store-and-forward handling method. The functions of (1) storing the command files at a Deep Space station; (2) attaching the files to a queue; and (3) radiating the commands to the spacecraft are straightforward. However, the total data processing capability is a result of assuming worst case, failure-recovery, or nonnominal operating conditions. Optional data processing functions include: file erase, clearing the queue, suspend radiation, command abort, resume command radiation, and close window time override.
Recording membrane potential changes through photoacoustic voltage sensitive dye
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Kang, Jeeun; Yan, Ping; Abou, Diane S.; Le, Hanh N. D.; Thorek, Daniel L. J.; Kang, Jin U.; Gjedde, Albert; Rahmim, Arman; Wong, Dean F.; Loew, Leslie M.; Boctor, Emad M.
2017-03-01
Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. Based on this concept, we synthesized a novel near infrared photoacoustic VSD (PA-VSD) whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. With a 3-9 μM VSD concentration, we measured a PA signal increase in the range of 5.3 % to 18.1 %, and observed a corresponding signal reduction in fluorescence emission of 30.0 % to 48.7 %. A theoretical model successfully accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize the characteristics of improved photoacoustic probes. Together, our results demonstrate photoacoustic sensing as a potential new modality for sub-second recording and external imaging of electrophysiological and neurochemical events in the brain.
Enhancing Return from Lunar Surface Missions via the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Chavers, D. G.; Whitley, R. J.; Percy, T. K.; Needham, D. H.; Polsgrove, T. T.
2018-02-01
The Deep Space Gateway (DSG) will facilitate access to and communication with lunar surface assets. With a science airlock, docking port, and refueling capability in an accessible orbit, the DSG will enable high priority science across the lunar surface.
Communications Relay and Human-Assisted Sample Return from the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Cichan, T.; Hopkins, J. B.; Bierhaus, B.; Murrow, D. W.
2018-02-01
The Deep Space Gateway can enable or enhance exploration of the lunar surface through two capabilities: 1. communications relay, opening up access to the lunar farside, and 2. sample return, enhancing the ability to return large sample masses.
Switchgrass cultivars alter microbial contribution to deep soil C
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum L.) is a perennial, cellulosic biofuel feedstock capable of growing under a wide variety of climatic conditions on land marginally suited to cultivated crops. Due to its perennial nature and deep rooting characteristics, switchgrass contributes to soil C sequestration ...
Deep Space Network Antenna Monitoring Using Adaptive Time Series Methods and Hidden Markov Models
NASA Technical Reports Server (NTRS)
Smyth, Padhraic; Mellstrom, Jeff
1993-01-01
The Deep Space Network (DSN)(designed and operated by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration (NASA) provides end-to-end telecommunication capabilities between earth and various interplanetary spacecraft throughout the solar system.
Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, Wuwei
2018-03-13
Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. Copyright © 2018 Elsevier Inc. All rights reserved.
Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.
Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln
2016-02-16
This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton).
The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2017-01-01
In 2011, NASA released a report assessing the market for commercial crew and cargo services to low Earth orbit (LEO). The report stated that NASA had spent a few hundred million dollars in the Commercial Orbital Transportation Services (COTS) program on the portion related to the development of the Falcon 9 launch vehicle. Yet a NASA cost model predicted the cost would have been significantly more with a non-commercial cost-plus contracting approach. By 2016 a NASA request for information stated it must "maximize the efficiency and sustainability of the Exploration Systems development programs", as "critical to free resources for reinvestment...such as other required deep space exploration capabilities." This work joins the previous two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for "...other required deep space exploration capabilities." These other capabilities include landers, stages and more. We mature the concept of "costed baseball cards", adding cost estimates to NASA's space systems "baseball cards." We show some potential costs, including analysis, the basis of estimates, data sources and caveats to address a critical question - based on initial assessment, are significant agency resources justified for more detailed analysis and due diligence to understand and invest in public private partnerships for human deep space exploration systems? The cost analysis spans commercial to cost-plus contracting approaches, for smaller elements vs. larger, with some variation for lunar or Mars. By extension, we delve briefly into the potentially much broader significance of the individual cost estimates if taken together as a NASA investment portfolio where public private partnership are stitched together for deep space exploration. How might multiple improvements in individual systems add up to NASA human deep space exploration achievements, realistically, affordably, sustainably, in a relevant timeframe?
High-Performance Modeling and Simulation of Anchoring in Granular Media for NEO Applications
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Jain, Abhinandan; Negrut, Dan; Mazhar, Hammad
2012-01-01
NASA is interested in designing a spacecraft capable of visiting a near-Earth object (NEO), performing experiments, and then returning safely. Certain periods of this mission would require the spacecraft to remain stationary relative to the NEO, in an environment characterized by very low gravity levels; such situations require an anchoring mechanism that is compact, easy to deploy, and upon mission completion, easy to remove. The design philosophy used in this task relies on the simulation capability of a high-performance multibody dynamics physics engine. On Earth, it is difficult to create low-gravity conditions, and testing in low-gravity environments, whether artificial or in space, can be costly and very difficult to achieve. Through simulation, the effect of gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine, a simulation pack age capable of utilizing massively parallel Graphic Processing Unit (GPU) hardware, several validation experiments were performed. Modeling of the regolith interaction has been carried out, after which the anchor penetration tests were performed and analyzed. The regolith was modeled by a granular medium composed of very large numbers of convex three-dimensional rigid bodies, subject to microgravity levels and interacting with each other with contact, friction, and cohesional forces. The multibody dynamics simulation approach used for simulating anchors penetrating a soil uses a differential variational inequality (DVI) methodology to solve the contact problem posed as a linear complementarity method (LCP). Implemented within a GPU processing environment, collision detection is greatly accelerated compared to traditional CPU (central processing unit)- based collision detection. Hence, systems of millions of particles interacting with complex dynamic systems can be efficiently analyzed, and design recommendations can be made in a much shorter time. The figure shows an example of this capability where the Brazil Nut problem is simulated: as the container full of granular material is vibrated, the large ball slowly moves upwards. This capability was expanded to account for anchors of different shapes and penetration velocities, interacting with granular soils.
Deep Space Network capabilities for receiving weak probe signals
NASA Technical Reports Server (NTRS)
Asmar, Sami; Johnston, Doug; Preston, Robert
2004-01-01
This paper will describe the capability and highlight the cases of the critical communications for the Mars rovers and Saturn Orbit Insertion and preparation radio tracking of the Huygens probe at (non-DSN) radio telescopes.
Potential Uses of Deep Space Cooling for Exploration Missions
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Sweterlitsch, Jeff; Swickrath, Micahel J.
2012-01-01
Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could counter temperature increases thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.
Potential Uses of Deep Space Cooling for Exploration Missions
NASA Technical Reports Server (NTRS)
Chambliss, Joseph; Sweterlitsch, Jeff; Swickrath, Michael
2011-01-01
Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could avoid temperature increase thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.
Deep Seismic Imaging of the Hellenic Subduction Zone with New MCS Data of the SISMED Project
NASA Astrophysics Data System (ADS)
Becel, A.; Mireille, L.; Hussni, S.; Dessa, J. X.; Schenini, L.; Sachpazi, M.; Vitard, C.
2016-12-01
The southwestern segment of the Hellenic subduction zone has generated a M>8 tsunamigenic earthquake in the past (365 AD), the largest event ever reported in Europe, but fundamental questions remain about the deep geometry and characteristics of the interplate fault and connected splay faults in the overriding plate that might be rooted in the megathrust. In the Fall 2012, the ULYSSE seismic program acquired deep penetration multichannel seismic (MCS) and OBS refraction profiles across a 300-km-wide section of the forearc domain. MCS data were acquired with a 4.5 km-long streamer on board the R/V Le Pourquoi Pas? from the French IFREMER facilities. The two 240 km-long seismic reflection dip profiles reveal a large and rough topography of the top of the forearc crust in both the outer and inner domains, including a several km thick forearc basin. Despite the thick Messinian evaporites at shallow depths, the 11000 cu.in airgun source reveal several discontinuous arcward-dipping reflections at 15 km depth beneath the outer forearc domain that could be related to the top of the subducting oceanic crust. Unfortunately, the 4.5 km-long streamer is too short for improving their lateral continuity and getting more detailed constraints on their geometry. In the Fall 2015, we chartered the R/V Marcus Langseth equipped with unmatched seismic facilities in the European academic fleet by means of a strong mobilization of the French and American involved laboratories (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Pau Univ.) and their research agencies (CNRS, NSF, OCA, and UCA). During the SISMED survey (Seismic Imaging inveStigation in MEDiterranean Sea for deep seismogenic faults), we collected with the R/V Marcus Langseth a 210 km-long profile coincident with the eastern ULYSSE transect with the 8 km-long streamer and a 6600 cu.in tuned airgun array shot every 50 meters. The source and the streamer were towed at a depth of 12 m to maximize low frequencies and deep imaging. Here, we will present the preliminary results of the newly acquired high-quality, high-resolution and deep-penetration data and we will provide a comparison of the two datasets collected with different acquisition parameters.
The Sulu Sea as Carbon Dioxide Sink
NASA Astrophysics Data System (ADS)
Ferrera, C. M.; Jacinto, G. S.; Chen, C. T. A.
2016-12-01
The Sulu Sea, one of the marginal seas in the West Pacific and the largest internal sea in the Philippines, is characterized by its unique deep water ventilation pattern and high sediment organic carbon and CaCO3 content. Studies on the dissolved CO2 system in the Sulu Sea have remarkably shown that anthropogenic CO2 has already penetrated to the bottom of this 5km-deep basin, albeit limited to a dataset from a single station in December 1996. To further understand the role of this tropical marginal sea as CO2 sink and to assess its behavior as a CO2 sink during the 11-year period, water samples for dissolved CO2 parameters from two deep stations of high productivity and low productivity were collected in December 2007/January 2008 and were compared with the 1996 data. Results suggest that the surface waters in the low productivity region might have been acidifying at a rate of -0.0012 pH unit yr-1. Atmospheric CO2 increased at +1.9 ppmv yr-1 and seawater fCO2 at +3.30 μatm yr-1. Through deep water ventilation, anthropogenic CO2 has penetrated the water column thereby making the deeper waters a sink of anthropogenic CO2. But then the presence and dissolution of CaCO3 deposits at the sea floor and along the Sulu Sea slopes as a result of the reaction with this anthropogenic CO2 probably neutralizes the acidification at depths as shown by the increase in total alkalinity (+0.57 μmol kg-1 yr-1), and facilitates further uptake of CO2 from the atmosphere. Therefore, productivity at Sulu Sea surface waters results to sequestration of CO2 from the atmosphere to the sediment sink through organic carbon and CaCO3 deposits. While high temperature and low productivity surface waters make the Sulu Sea a source of CO2 to the atmosphere, ventilation patterns make the deep waters of the Sulu Sea an efficient sink for anthropogenic CO2. Given the larger area occupied by the CO2 sink deep waters compared to the CO2 source surface waters including an upwelling area, the Sulu Sea could possibly be a "net" CO2 sink, an important contribution to the otherwise underestimated inventory of CO2 from marginal seas.
Gole, Vaibhav C; Roberts, Juliet R; Sexton, Margaret; May, Damian; Kiermeier, Andreas; Chousalkar, Kapil K
2014-07-16
In Australia, Europe and the United States, eggs and egg products are frequently associated with Salmonella food poisoning outbreaks. Many of the egg-associated Salmonella outbreaks have been due to the products such as mayonnaise, ice-cream and cold desserts which are eaten without cooking following the addition of raw egg. The ability of four Salmonella isolates (one each of S. Singapore, S. Adelaide, S. Worthington and S. Livingstone) to penetrate washed and unwashed eggs using whole egg and agar egg penetration methods was investigated in the current study. The results of the agar penetration experiment indicated that all the isolates used in the present study have the capacity to penetrate the eggshell. Eggshell penetration by the S. Worthington isolate was higher but not significant (p=0.06) in washed eggs compared to unwashed eggs. However, for all other isolates (S. Singapore, S. Adelaide and S. Livingstone), there was no significant difference in penetration of washed and unwashed eggs. Statistical analysis indicated that cuticle score was a significant linear predictor of Salmonella eggshell penetration. Whole egg penetration results showed that all of the Salmonella isolates used in the present study were capable of surviving on the eggshell surface after 21days of incubation (at 20°C) following a high dose of inoculation (10(5)CFU/mL). The combined data of all isolates demonstrated that, the survival rate of Salmonella on eggshells (inoculated with 10(5)CFU/mL) was significantly higher (p=0.002) at 20°C as compared to 37°C. S. Singapore, S. Worthington, and S. Livingstone were not detected in egg internal contents whereas S. Adelaide was detected in one egg's internal contents. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy.
Chen, Dan; Li, Bowen; Cai, Songhua; Wang, Peng; Peng, Shuwen; Sheng, Yuanzhi; He, Yuanyuan; Gu, Yueqing; Chen, Haiyan
2016-09-01
Dual targeting towards both extracellular and intracellular receptors specific to tumor is a significant approach for cancer diagnosis and therapy. In the present study, a novel nano-platform (AuNC-cRGD-Apt) with dual targeting function was initially established by conjugating gold nanocluster (AuNC) with cyclic RGD (cRGD) that is specific to αvβ3integrins over-expressed on the surface of tumor tissues and aptamer AS1411 (Apt) that is of high affinity to nucleolin over-expressed in the cytoplasm and nucleus of tumor cells. Then, AuNC-cRGD-Apt was further functionalized with near infrared (NIR) fluorescence dye (MPA), giving a NIR fluorescent dual-targeting probe AuNC-MPA-cRGD-Apt. AuNC-MPA-cRGD-Apt displays low cytotoxicity and favorable tumor-targeting capability at both in vitro and in vivo level, suggesting its clinical potential for tumor imaging. Additionally, Doxorubicin (DOX), a widely used clinical chemotherapeutic drug that kill cancer cells by intercalating DNA in cellular nucleus, was immobilized onto AuNC-cRGD-Apt forming a pro-drug, AuNC-DOX-cRGD-Apt. The enhanced tumor affinity, deep tumor penetration and improved anti-tumor activity of this pro-drug were demonstrated in different tumor cell lines, tumor spheroid and tumor-bearing mouse models. Results in this study suggest not only the prospect of non-toxic AuNC modified with two targeting ligands for tumor targeted imaging, but also confirm the promising future of dual targeting AuNC as a core for the design of prodrug in the field of cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
A prototype method for diagnosing high ice water content probability using satellite imager data
NASA Astrophysics Data System (ADS)
Yost, Christopher R.; Bedka, Kristopher M.; Minnis, Patrick; Nguyen, Louis; Strapp, J. Walter; Palikonda, Rabindra; Khlopenkov, Konstantin; Spangenberg, Douglas; Smith, William L., Jr.; Protat, Alain; Delanoe, Julien
2018-03-01
Recent studies have found that ingestion of high mass concentrations of ice particles in regions of deep convective storms, with radar reflectivity considered safe for aircraft penetration, can adversely impact aircraft engine performance. Previous aviation industry studies have used the term high ice water content (HIWC) to define such conditions. Three airborne field campaigns were conducted in 2014 and 2015 to better understand how HIWC is distributed in deep convection, both as a function of altitude and proximity to convective updraft regions, and to facilitate development of new methods for detecting HIWC conditions, in addition to many other research and regulatory goals. This paper describes a prototype method for detecting HIWC conditions using geostationary (GEO) satellite imager data coupled with in situ total water content (TWC) observations collected during the flight campaigns. Three satellite-derived parameters were determined to be most useful for determining HIWC probability: (1) the horizontal proximity of the aircraft to the nearest overshooting convective updraft or textured anvil cloud, (2) tropopause-relative infrared brightness temperature, and (3) daytime-only cloud optical depth. Statistical fits between collocated TWC and GEO satellite parameters were used to determine the membership functions for the fuzzy logic derivation of HIWC probability. The products were demonstrated using data from several campaign flights and validated using a subset of the satellite-aircraft collocation database. The daytime HIWC probability was found to agree quite well with TWC time trends and identified extreme TWC events with high probability. Discrimination of HIWC was more challenging at night with IR-only information. The products show the greatest capability for discriminating TWC ≥ 0.5 g m-3. Product validation remains challenging due to vertical TWC uncertainties and the typically coarse spatio-temporal resolution of the GEO data.
NASA Astrophysics Data System (ADS)
Cicchetti, A.; Nenna, C.; Plaut, J. J.; Plettemeier, D.; Noschese, R.; Cartacci, M.; Orosei, R.
2017-11-01
The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005) is a synthetic aperture low frequency radar altimeter, onboard the ESA Mars Express orbiter, launched in June 2003. It is the first and so far the only spaceborne radar that has observed the Martian moon Phobos. Radar echoes were collected on different flyby trajectories. The primary aim of sounding Phobos is to prove the feasibility of deep sounding, into its subsurface. MARSIS is optimized for deep penetration investigations and is capable of transmitting at four different bands between 1.3 MHz and 5.5 MHz with a 1 MHz bandwidth. Unfortunately the instrument was originally designed to operate exclusively on Mars, assuming that Phobos would not be observed. Following this assumption, a protection mechanism was implemented in the hardware (HW) to maintain a minimum time separation between transmission and reception phases of the radar. This limitation does not have any impact on Mars observation but it prevented the observation of Phobos. In order to successfully operate the instrument at Phobos, a particular configuration of the MARSIS onboard software (SW) parameters, called ;Range Ambiguity,; was implemented to override the HW protection zone, ensuring at the same time a high level of safety of the instrument. This paper describes the principles of MARSIS onboard processing, and the procedure through which the parameters of the processing software were tuned to observe targets below the minimum distance allowed by hardware. Some preliminary results of data analysis will be shown, with the support of radar echo simulations. A qualitative comparison between the simulated results and the actual data, does not support the detection of subsurface reflectors.
Deep Charging Evaluation of Satellite Power and Communication System Components
NASA Technical Reports Server (NTRS)
Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.
2016-01-01
Deep charging, in contrast to surface charging, focuses on electron penetration deep into insulating materials applied over conductors. A classic example of this scenario is an insulated wire. Deep charging can pose a threat to material integrity, and to sensitive electronics, when it gives rise to an electrostatic discharge or arc. With the advent of Electric Orbit Raising, which requires spiraling through Earth's radiation belts, satellites are subjected to high energy electron environments which they normally would not encounter. Beyond Earth orbit, missions to Jupiter and Saturn face deep charging concerns due to the high energy radiation environments. While predictions can be made about charging in insulating materials, it is difficult to extend those predictions to complicated geometries, such as the case of an insulating coating around a small wire, or a non-uniform silicone grouting on a bus bar. Therefore, to conclusively determine the susceptibility of a system to arcs from deep charging, experimental investigations must be carried out. This paper will describe the evaluation carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. Specifically, deep charging evaluations of solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, will be discussed. The results of each evaluation will be benchmarked against control sample tests, as well as typical power system levels, to show no significant deep charging threat existed for this set of samples under the conditions tested.
A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray.
Pan, Chien-Lin; Chen, Ming-Hong; Tung, Fu-I; Liu, Tse-Ying
2017-01-01
Many non-antibiotic strategies, such as photocatalysis and photodynamic therapy, have been proposed to inhibit and/or kill bacteria. However, these approaches still have drawbacks such as insufficient bacterial specificity and the limited penetration depth of ultraviolet and near-infrared light. To overcome these limitations, we developed a bacteria-specific anti-bacterial technique via using low-dose X-ray. Graphene oxide quantum dots (GQDs, a multifunctional vehicle) conjugated with vancomycin (Van, a bacteria-targeting ligand) were assembled with Protoporphyrin IX (PpIX, a photo/radiation sensitizer) to yield a novel Van-GQDs/PpIX complex that specifically attached to Escherichia coli and efficiently generated intracellular reactive oxygen species following X-ray activation. Delivery using GQDs increased the PpIX/Van ratio in the target bacterial cell, damaged bacterial cell wall, and enhanced X-ray-induced PpIX activation. Hence, this approach allowed for the use of a low-dose X-ray to efficiently activate the Van-GQDs/PpIX complex to exert its bactericidal effects on Escherichia coli without damaging normal cells. Furthermore, the E. coli did not develop resistance to the proposed approach for at least 7 rounds of repeated administration during one week. Thus, this proposed vehicle exhibiting bacteria-specific X-ray-triggered toxicity is a promising alternative to antibiotics for treating serious bacterial infections occurring in deep-seated tissues/organs (e.g., osteomyelitis and peritonitis). Administration of antibiotics is the most common treatment modality for bacterial infections. However, in some cases, patient attributes such as age, health, tolerance to antibiotics do not allow for the use of high-dose antibiotics. In addition, some bacteria develop resistance to antibiotics because of improper and long-term use of these agents. Therefore, non-antibiotic strategies to treat deeply situated bacterial infections, such as osteomyelitis, are urgently needed for avoiding amputation. To date, several non-antibiotic approaches, such as Ag nanoparticles, graphene-based materials, photocatalysis, and photodynamic therapy have been proposed to inhibit and/or kill bacteria. However, the major challenges of photochemical strategies, specificity and limited penetration depth of light source, still remain for treating the deep-seated bacteria. To overcome these problems, we developed a novel nanovehicle that exerted toxic effects specifically on bacteria following activation by a deeply penetrative low-dose X-ray, without damaging normal cells. As such, it realizes a deeply photochemical route for treating the deep-seated bacteria. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Calienni, Maria Natalia; Temprana, Carlos Facundo; Prieto, Maria Jimena; Paolino, Donatella; Fresta, Massimo; Tekinay, Ayse Begum; Alonso, Silvia Del Valle; Montanari, Jorge
2018-06-01
With the aim of improving the topical delivery of the antineoplastic drug 5-fluorouracil (5FU), it was loaded into ultradeformable liposomes composed of soy phosphatidylcholine and sodium cholate (UDL-5FU). The liposome populations had a mean size of 70 nm without significant changes in 56 days, and the ultradeformable formulations were up to 324-fold more elastic than conventional liposomes. The interaction between 5FU and the liposomal membrane was studied by three methods, and also release profile was obtained. UDL-5FU did penetrate the stratum corneum of human skin. At in vitro experiments, the formulation was more toxic on a human melanoma-derived than on a human keratinocyte-derived cell line. Cells captured liposomes by metabolically active processes. In vivo toxicity experiments were carried out in zebrafish (Danio rerio) larvae by studying the swimming activity, morphological changes, and alterations in the heart rate after incubation. UDL-5FU was more toxic than free 5FU. Therefore, this nano-formulation could be useful for topical application in deep skin precancerous lesions with advantages over current treatments. This is the first work that assessed the induction of apoptosis, skin penetration in a Saarbrücken penetration model, and the toxicological effects in vivo of an ultradeformable 5FU-loaded formulation.
Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass.
Jarvis, Maria; Arnold, Michael; Ott, Jenna; Pant, Kapil; Prabhakarpandian, Balabhaskar; Mitragotri, Samir
2017-09-01
In vitro and in vivo assessment of safety and efficacy are the essential first steps in developing nanoparticle-based therapeutic systems. However, it is often challenging to use the knowledge gained from in vitro studies to predict the outcome of in vivo studies since the complexity of the in vivo environment, including the existence of flow and a multicellular environment, is often lacking in traditional in vitro models. Here, we describe a microfluidic co-culture model comprising 4T1 breast cancer cells and EA.hy926 endothelial cells under physiological flow conditions and its utilization to assess the penetration of therapeutic nanoparticles from the vascular compartment into a cancerous cell mass. Camptothecin nanocrystals (∼310 nm in length), surface-functionalized with PEG or folic acid, were used as a test nanocarrier. Camptothecin nanocrystals exhibited only superficial penetration into the cancerous cell mass under fluidic conditions, but exhibited cytotoxicity throughout the cancerous cell mass. This likely suggests that superficially penetrated nanocrystals dissolve at the periphery and lead to diffusion of molecular camptothecin deep into the cancerous cell mass. The results indicate the potential of microfluidic co-culture devices to assess nanoparticle-cancerous cell interactions, which are otherwise difficult to study using standard in vitro cultures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, P.E.; Smartt, H.B.; Johnson, J.A.
1997-12-31
We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated bymore » a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.« less
NASA's Space Launch System: Enabling Exploration and Discovery
NASA Technical Reports Server (NTRS)
Schorr, Andrew; Robinson, Kimberly F.; Hitt, David
2017-01-01
As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 t to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 t to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.
NASA's Space Launch System: Enabling Exploration and Discovery
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Schorr, Andrew
2017-01-01
As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 metric tons to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 metric tons to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.
NASA's Space Launch System: A Transformative Capability for Deep Space Missions
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2017-01-01
Already making substantial progress toward its first launches, NASA’s Space Launch System (SLS) exploration-class launch vehicle presents game-changing new opportunities in spaceflight, enabling human exploration of deep space, as well as a variety of missions and mission profiles that are currently impossible. Today, the initial configuration of SLS, able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), is well into final production and testing ahead of its planned first flight, which will send NASA’s new Orion crew vehicle around the moon and will deploy 13 CubeSats, representing multiple disciplines, into deep space. At the same time, production work is already underway toward the more-capable Block 1B configuration, planned to debut on the second flight of SLS, and capable of lofting 105 tons to LEO or of co-manifesting large exploration systems with Orion on launches to the lunar vicinity. Progress being made on the vehicle for that second flight includes initial welding of its core stage and testing of one of its engines, as well as development of new elements such as the powerful Exploration Upper Stage and the Universal Stage Adapter “payload bay.” Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO to support humans missions to Mars. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles or substantially increased spacecraft mass. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe. This presentation will give an overview of SLS’ capabilities and its current status, and discuss the vehicle’s potential for human exploration of deep space and other game-changing utilization opportunities.
The Deep Space Network, volume 39
NASA Technical Reports Server (NTRS)
1977-01-01
The functions, facilities, and capabilities of the Deep Space Network and its support of the Pioneer, Helios, and Viking missions are described. Progress in tracking and data acquisition research and technology, network engineering and modifications, as well as hardware and software implementation and operations are reported.
Lunar Ice Cube: Development of a Deep Space Cubesat Mission
NASA Astrophysics Data System (ADS)
Clark, P. E.; Malphrus, B.; McElroy, D.; Schabert, J.; Wilczewski, S.; Farrell, W.; Brambora, C.; Macdowall, R.; Folta, D.; Hurford, T.; Patel, D.; Banks, S.; Reuter, D.; Brown, K.; Angkasa, K.; Tsay, M.
2017-10-01
Lunar Ice Cube, a 6U deep space cubesat mission, will be deployed by EM1. It will demonstrate cubesat propulsion, the Busek BIT 3 RF Ion engine, and a compact instrument capable of addressing HEOMD Strategic Knowledge Gaps related to lunar volatiles.
Deep Convective Cloud Top Heights and Their Thermodynamic Control During CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
Sherwood, Steven C.; Minnis, Patrick; McGill, Matthew
2004-01-01
Infrared (11 micron) radiances from GOES-8 and local radiosonde profiles, collected during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002, are used to assess the vertical distribution of Florida-area deep convective cloud top height and test predictions as to its variation based on parcel theory. The highest infrared tops (Z(sub 11)) reached approximately to the cold point, though there is at least a 1-km uncertainty due to unknown cloud-environment temperature differences. Since lidar shows that visible 'tops' are 1 km or more above Z(sub 11), visible cloud tops frequently penetrated the lapse-rate tropopause (approx. 15 km). Further, since lofted ice content may be present up to approx. 1 km above the visible tops, lofting of moisture through the mean cold point (15.4 km) was probably common. Morning clouds, and those near Key West, rarely penetrated the tropopause. Non-entraining parcel theory (i.e., CAPE) does not successfully explain either of these results, but can explain some of the day-to-day variations in cloud top height over the peninsula. Further, moisture variations above the boundary layer account for most of the day-today variability not explained by CAPE, especially over the oceans. In all locations, a 20% increase in mean mixing ratio between 750 and 500 hPa was associated with about 1 km deeper maximum cloud penetration relative to the neutral level. These results suggest that parcel theory may be useful for predicting changes in cumulus cloud height over time, but that parcel entrainment must be taken into account even for the tallest clouds. Accordingly, relative humidity above the boundary layer may exert some control on the height of the tropical troposphere.
Sengar, Prakhar; Juárez, Patricia; Verdugo-Meza, Andrea; Arellano, Danna L; Jain, Akhil; Chauhan, Kanchan; Hirata, Gustavo A; Fournier, Pierrick G J
2018-02-27
Photodynamic therapy is a promising cancer therapy modality but its application for deep-seated tumor is mainly hindered by the shallow penetration of visible light. X-ray-mediated photodynamic therapy (PDT) has gained a major attention owing to the limitless penetration of X-rays. However, substantial outcomes have still not been achieved due to the low luminescence efficiency of scintillating nanoparticles and weak energy transfer to the photosensitizer. The present work describes the development of Y 2.99 Pr 0.01 Al 5 O 12 -based (YP) mesoporous silica coated nanoparticles, multifunctionalized with protoporphyrin IX (PpIX) and folic acid (YPMS@PpIX@FA) for potential application in targeted deep PDT. A YP nanophosphor core was synthesized using the sol-gel method to be used as X-ray energy transducer and was then covered with a mesoporous silica layer. The luminescence analysis indicated a good spectral overlap between the PpIX and nanoscintillator at the Soret as well as Q-band region. The comparison of the emission spectra with or without PpIX showed signs of energy transfer, a prerequisite for deep PDT. In vitro studies showed the preferential uptake of the nanocomposite in cancer cells expressing the folate receptorFolr1, validating the targeting efficiency. Direct activation of conjugated PpIX with UVA in vitro induced ROS production causing breast and prostate cancer cell death indicating that the PpIX retained its activity after conjugation to the nanocomposite. The in vivo toxicity analysis showed the good biocompatibility and non-immunogenic response of YPMS@PpIX@FA. Our results indicate that YPMS@PpIX@FA nanocomposites are promising candidates for X-ray-mediated PDT of deep-seated tumors. The design of these nanoparticles allows the functionalization with exchangeable targeting ligands thus offering versatility, in order to target various cancer cells, expressing different molecular targets on their surface.
NASA Technical Reports Server (NTRS)
1975-01-01
The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
NASA Technical Reports Server (NTRS)
1974-01-01
The objectives, functions, and organization, of the Deep Space Network are summarized. Deep Space stations, ground communications, and network operations control capabilities are described. The network is designed for two-way communications with unmanned spacecraft traveling approximately 1600 km from earth to the farthest planets in the solar system. It has provided tracking and data acquisition support for the following projects: Ranger, Surveyor, Mariner, Pioneer, Apollo, Helios, Viking, and the Lunar Orbiter.
Oudeyer, Pierre-Yves
2017-01-01
Autonomous lifelong development and learning are fundamental capabilities of humans, differentiating them from current deep learning systems. However, other branches of artificial intelligence have designed crucial ingredients towards autonomous learning: curiosity and intrinsic motivation, social learning and natural interaction with peers, and embodiment. These mechanisms guide exploration and autonomous choice of goals, and integrating them with deep learning opens stimulating perspectives.
Advances in deep-UV processing using cluster tools
NASA Astrophysics Data System (ADS)
Escher, Gary C.; Tepolt, Gary; Mohondro, Robert D.
1993-09-01
Deep-UV laser lithography has shown the capability of supporting the manufacture of multiple generations of integrated circuits (ICs) due to its wide process latitude and depth of focus (DOF) for 0.2 micrometers to 0.5 micrometers feature sizes. This capability has been attained through improvements in deep-UV wide field lens technology, excimer lasers, steppers and chemically amplified, positive deep-UV resists. Chemically amplified deep-UV resists are required for 248 nm lithography due to the poor absorption and sensitivity of conventional novolac resists. The acid catalyzation processes of the new resists requires control of the thermal history and environmental conditions of the lithographic process. Work is currently underway at several resist vendors to reduce the need for these controls, but practical manufacturing solutions exist today. One of these solutions is the integration of steppers and resist tracks into a `cluster tool' or `Lithocell' to insure a consistent thermal profile for the resist process and reduce the time the resist is exposed to atmospheric contamination. The work here reports processing and system integration results with a Machine Technology, Inc (MTI) post-exposure bake (PEB) track interfaced with an advanced GCA XLS 7800 deep-UV stepper [31 mm diameter, variable NA (0.35 - 0.53) and variable sigma (0.3 - 0.74)].
Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K; Cai, Chang; Nagarajan, Srikantan S
2018-06-01
Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.
NASA Astrophysics Data System (ADS)
Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K.; Cai, Chang; Nagarajan, Srikantan S.
2018-06-01
Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. Approach. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Main results. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.
Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star
NASA Astrophysics Data System (ADS)
Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.
2017-08-01
Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we propose a new form for the diffusion coefficient that may be used for one-dimensional stellar evolution calculations in the large Péclet number regime. These results should contribute to the 321D link.
Ghosh, Debadyuti; Bagley, Alexander F.; Na, Young Jeong; Birrer, Michael J.; Bhatia, Sangeeta N.; Belcher, Angela M.
2014-01-01
Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950–1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery. PMID:25214538
Ghosh, Debadyuti; Bagley, Alexander F; Na, Young Jeong; Birrer, Michael J; Bhatia, Sangeeta N; Belcher, Angela M
2014-09-23
Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950-1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery.
Ground penetrating radar imaging of cap rock, caliche and carbonate strata
Kruse, S.E.; Schneider, J.C.; Campagna, D.J.; Inman, J.A.; Hickey, T.D.
2000-01-01
Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to ~3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to ~2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (~5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida. (C) 2000 Elsevier Science B.V. All rights reserved.Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to approx. 3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to approx. 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (approx. 5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.
Estimating Consequences of MMOD Penetrations on ISS
NASA Technical Reports Server (NTRS)
Evans, H.; Hyde, James; Christiansen, E.; Lear, D.
2017-01-01
The threat from micrometeoroid and orbital debris (MMOD) impacts on space vehicles is often quantified in terms of the probability of no penetration (PNP). However, for large spacecraft, especially those with multiple compartments, a penetration may have a number of possible outcomes. The extent of the damage (diameter of hole, crack length or penetration depth), the location of the damage relative to critical equipment or crew, crew response, and even the time of day of the penetration are among the many factors that can affect the outcome. For the International Space Station (ISS), a Monte-Carlo style software code called Manned Spacecraft Crew Survivability (MSCSurv) is used to predict the probability of several outcomes of an MMOD penetration-broadly classified as loss of crew (LOC), crew evacuation (Evac), loss of escape vehicle (LEV), and nominal end of mission (NEOM). By generating large numbers of MMOD impacts (typically in the billions) and tracking the consequences, MSCSurv allows for the inclusion of a large number of parameters and models as well as enabling the consideration of uncertainties in the models and parameters. MSCSurv builds upon the results from NASA's Bumper software (which provides the probability of penetration and critical input data to MSCSurv) to allow analysts to estimate the probability of LOC, Evac, LEV, and NEOM. This paper briefly describes the overall methodology used by NASA to quantify LOC, Evac, LEV, and NEOM with particular emphasis on describing in broad terms how MSCSurv works and its capabilities and most significant models.
Predicting the Consequences of MMOD Penetrations on the International Space Station
NASA Technical Reports Server (NTRS)
Hyde, James; Christiansen, E.; Lear, D.; Evans
2018-01-01
The threat from micrometeoroid and orbital debris (MMOD) impacts on space vehicles is often quantified in terms of the probability of no penetration (PNP). However, for large spacecraft, especially those with multiple compartments, a penetration may have a number of possible outcomes. The extent of the damage (diameter of hole, crack length or penetration depth), the location of the damage relative to critical equipment or crew, crew response, and even the time of day of the penetration are among the many factors that can affect the outcome. For the International Space Station (ISS), a Monte-Carlo style software code called Manned Spacecraft Crew Survivability (MSCSurv) is used to predict the probability of several outcomes of an MMOD penetration-broadly classified as loss of crew (LOC), crew evacuation (Evac), loss of escape vehicle (LEV), and nominal end of mission (NEOM). By generating large numbers of MMOD impacts (typically in the billions) and tracking the consequences, MSCSurv allows for the inclusion of a large number of parameters and models as well as enabling the consideration of uncertainties in the models and parameters. MSCSurv builds upon the results from NASA's Bumper software (which provides the probability of penetration and critical input data to MSCSurv) to allow analysts to estimate the probability of LOC, Evac, LEV, and NEOM. This paper briefly describes the overall methodology used by NASA to quantify LOC, Evac, LEV, and NEOM with particular emphasis on describing in broad terms how MSCSurv works and its capabilities and most significant models.
Blast and Penetration Resistant Tactical Shelters
1979-07-01
2. Hardened Wall Material Properties 32 3. S-280 Shelter Panal Properties 33 4. Results Zor Dynamic Response of Complete S-280 Shelters 32 £-". In...insulation from a -6501 low to a 120 0F high plus a solar heating load 7. Corrosion resistance including salt fog 8. Blackout capability 9. Fungus...65 0 F), high temperature (120 0 F) plus a solar heating (BTU) load. g. Corrosion resistance (salt fog). 19 h. Blackout capability. i. Fungus
2005-12-31
MANPADS missile is modeled using LSDYNA . It has 187600 nodes, 52802 shell elements with 13 shell materials, 112200 solid elements with 1804 solid...model capability that includes impact, detonation, penetration, and wing flutter response. This work extends an existing body on body missile model...the missile as well as the expansion of the surrounding fluids was modeled in the Eulerian domain. The Jones-Wilkins-Lee (JWL) equation of state was
Sunlight assisted direct amide formation via a charge-transfer complex.
Cohen, Irit; Mishra, Abhaya K; Parvari, Galit; Edrei, Rachel; Dantus, Mauricio; Eichen, Yoav; Szpilman, Alex M
2017-09-12
We report on the use of charge-transfer complexes between amines and carbon tetrachloride, as a novel way to activate the amine for photochemical reactions. This principle is demonstrated in a mild, transition metal free, visible light assisted, dealkylative amide formation from feedstock carboxylic acids and amines. The low absorption coefficient of the complex allows deep light penetration and thus scale up to a gram scale.
Neutron capture therapy with deep tissue penetration using capillary neutron focusing
Peurrung, A.J.
1997-08-19
An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Lin, Qida; Yin, Xuni; Li, Simeng; Deng, Jiquan
2018-04-01
Both the morphology and temperature are two important characteristics of the keyhole and the molten pool in laser deep-penetration welding. The modified ‘sandwich’ method was adopted to overcome the difficulty in obtaining inner information about the keyhole and the molten pool. Based on this method, experimental platforms were built for observing the variations in the surface morphology, the longitudinal keyhole profile and the internal temperature. The experimental results of three dynamic behaviors exbibit as follows. The key factor, which makes the pool width go into a quasi-steady state, lies in the balance between the vortex and the sideways flows around the keyhole. Experimental observation shows that the keyhole goes through three stages in laser welding: the rapid drilling stage, the slow drilling stage and the quasi-steady state. The time for achieving a relative fixed keyhole depth is close to the formation time of the maximum pool width. The internal temperatures inside the keyhole and the molten pool first experience a rapid increase, then a decrease and finally go into a quasi-steady state. Compared to that in the unstable stage, the liquid–metal uphill formed in the stable stage of laser welding has less influence on the internal temperature.
Khaliq, Nisar Ul; Park, Dal Yong; Lee, Jae Young; Joo, Yeonhee; Oh, Keun Sang; Kim, Jung Seok; Kim, Jin-Seok; Kim, In-San; Kwon, Ick Chan; Yuk, Soon Hong
2016-10-01
Deep penetration of the anticancer drug, docetaxel (DTX), into tumor parenchyma was demonstrated to achieve improved chemotherapy. For this purpose, a multistage nanostructure was designed and characterized using the multilayer nanoparticles (NPs). The multilayer NPs had a core/shell structure. The core was composed of the DTX-loaded Pluronic NPs (diameter: 12nm) that were transferred into the inner side of vesicles to form the vesicle NPs. Förster resonance energy transfer (FRET) in the NPs was observed to verify the incorporation of the DTX-loaded Pluronic NPs into the inner side of the vesicles during the formation of the vesicle NPs. Subsequently, the vesicle NPs were stabilized through Pluronic-lipid bilayer interaction to form the multilayer NPs. To examine the morphology and size distribution of the multilayer NPs, transmittance electron microscopy and dynamic light scattering were used. In vitro release behavior and toxicity were observed to verify the functionality of the multilayer NPs as nanocarriers for cancer therapy. Multistage functionality was evaluated by cellular uptake and tissue distribution behaviors of the multilayer NPs. The biodistribution of the multilayer NPs and their antitumor efficacy were also observed to understand the role of multistage functionality for improved chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Postoperative Swallowing Assessment After Lung Transplantation.
Baumann, Brooke; Byers, Sara; Wasserman-Wincko, Tamara; Smith, Libby; Hathaway, Bridget; Bhama, Jay; Shigemura, Norihisa; Hayanga, J W Awori; D'Cunha, Jonathan; Johnson, Jonas T
2017-07-01
Dysphagia, aspiration, and potential pneumonia represent a major source of morbidity in patients undergoing lung transplantation. Conditions that potentiate dysphagia and aspiration include frailty and prolonged intubation. Our group of speech-language pathologists has been actively involved in performance of a bedside evaluation of swallowing, and instrumental evaluation of swallowing with modified barium swallow, and postoperative management in patients undergoing lung transplantation. All lung transplant patients from April 2009 to September 2012 were evaluated retrospectively. A clinical bedside examination was performed by the speech-language pathology team, followed by a modified barium swallow or fiberoptic endoscopic evaluation of swallowing. A total of 321 patients were referred for evaluation. Twenty-four patients were unable to complete the evaluation. Clinical signs of aspiration were apparent in 160 patients (54%). Deep laryngeal penetration or aspiration were identified in 198 (67%) patients during instrumental testing. A group of 81 patients (27%) had an entirely normal clinical examination, but were found to have either deep penetration or aspiration. The majority of patients aspirate after lung transplantation. Clinical bedside examination is not sensitive enough and will fail to identify patients with silent aspiration. A standard of practice following lung transplantation has been established that helps avoid postoperative aspiration associated with complications. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Gylling, Björn; Selroos, Jan-Olof; Molinero, Jorge; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido
2017-12-01
Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.
Using DSG to Build the Capability of Space Weather Forecasting in Deep Space
NASA Astrophysics Data System (ADS)
DeLuca, E. E.; Golub, L.; Korreck, K.; Savage, S.; McKenzie, D. D.; Rachmeler, L.; Winebarger, A.; Martens, P.
2018-02-01
The prospect of astronaut missions to deep space and off the Sun-Earth line raises new challenges for space weather awareness and forecasting. We need to identify the requirements and pathways that will allow us to protect human life and equipment.
Evaluation of bearing capacity of piles from cone penetration test data.
DOT National Transportation Integrated Search
2007-12-01
A statistical analysis and ranking criteria were used to compare the CPT methods and the conventional alpha design method. Based on the results, the de Ruiter/Beringen and LCPC methods showed the best capability in predicting the measured load carryi...
DOT National Transportation Integrated Search
2004-07-01
The main objective of this study was to evaluate the current interpretation methods for their capability to reasonably predict the consolidation parameters needed to estimate the magnitude and time rate of consolidation settlement in fine-grained soi...
Tidal disruption of inclined or eccentric binaries by massive black holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-07-01
Binary stars that are on close orbits around massive black holes (MBHs) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such an MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented towards the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20 per cent when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation, and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by an MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-04-01
Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
NASA Technical Reports Server (NTRS)
Grimm, R. E.
2003-01-01
Two orbital, ground-penetrating radars, MARSIS and SHARAD, are scheduled for Mars flight, with detection of groundwater a high priority. While these radars will doubtlessly provide significant new information on the subsurface of Mars, thin films of adsorbed water in the cryosphere will strongly attenuate radar signals and prevent characterization of any true aquifers, if present. Scattering from 10-m scale layering or wavelength-size regolith heterogeneities will also degrade radar performance. Dielectric contrasts are sufficiently small for low-porosity, deep aquifers that groundwater cannot be reliably identified. In contrast, low-frequency (mHz-kHz) soundings are ideally suited to groundwater detection due to their great depths of penetration and the high electrical conductivity (compared to cold, dry rock) of groundwater. A variety of low-frequency methods span likely ranges of mass, volume, and power resources, but all require acquisition at or near the planetary surface. Therefore the current generation of orbital radars will provide useful global reconnaissance for subsequent targeted exploration at low frequency. Introduction: Electromagnetic (EM) methods
Smrkovski, O A; Koo, Y; Kazemi, R; Lembcke, L M; Fathy, A; Liu, Q; Phillips, J C
2013-03-01
Performance and clinical characteristics of a novel hyperthermia antenna operating at 434 MHz were evaluated for the adjuvant treatment of locally advanced superficial tumours in cats, dogs and horses. Electromagnetic simulations were performed to determine electric field characteristics and compared to simulations for a flat microwave antenna with similar dimensions. Simulation results show a reduced skin surface and backfield irradiation and improved directional irradiation (at broadside) compared to a flat antenna. Radiated power and penetration is notably increased with a penetration depth of 4.59 cm compared to 2.74 cm for the flat antenna. Clinical use of the antenna was then evaluated in six animals with locoregionally advanced solid tumours receiving adjuvant chemotherapy. During clinical applications, therapeutic temperatures were achieved at depths ≥4 cm. Objective responses were seen in all patients; tissue toxicity in one case limited further therapy. This antenna provides compact, efficient, focused and deep-penetrating clinical hyperthermia for the treatment of solid tumours in veterinary patients. © 2011 Blackwell Publishing Ltd.
Hui, Xiaoying; Lindahl, Åke; Lamel, Sonia; Maibach, Howard I
2013-09-01
This study determined the onychopharmacokinetics, nail absorption, distribution, and penetration of [¹⁴C]-terbinafine HCl in a new topical formulation into/through the human finger nail using the in vitro finite dose model. This study determined the penetration rate of terbinafine HCl from multiple doses of topical formulation applied daily for 14 days. Results showed that the total dose recovery (mass balance) was almost 100%. The concentration of terbinafine HCl in the deeper nail plate (ventral/intermediate layers) and the cotton-pad nail bed samples after the 14-day treatment were 613 ± 145 and (±S.D.) and 27 ± 1.2 µg/cm³ (or 1.9 ± 0.6 µg/cm³ daily) on average, respectively. In comparison with nail concentration data from the literature for other topical terbinatine formulations, our results show that higher amounts of terbinafine HCl reached the deep nail plate and/or the nail bed after a 14-day topical treatment with this topical formulation in vitro.
Factors affecting weld root morphology in laser keyhole welding
NASA Astrophysics Data System (ADS)
Frostevarg, Jan
2018-02-01
Welding production efficiency is usually optimised if full penetration can be achieved in a single pass. Techniques such as electron and laser beam welding offer deep high speed keyhole welding, especially since multi-kilowatt lasers became available. However, there are limitations for these techniques when considering weld imperfections such as weld cap undercuts, interior porosity or humps at the root. The thickness of sheets during full penetration welding is practically limited by these root humps. The mechanisms behind root morphology formation are not yet satisfactory understood. In this paper root humping is studied by reviewing previous studies and findings and also by sample examination and process observation by high speed imaging. Different process regimes governing root quality are presented, categorized and explained. Even though this study mainly covers laser beam and laser arc hybrid welding, the presented findings can generally be applied full penetration welding in medium to thick sheets, especially the discussion of surface tension effects. As a final result of this analysis, a map of methods to optimise weld root topology is presented.
Evaluation of Critical Care Monitor Technology During the US Navy Strong Angel Exercise
NASA Technical Reports Server (NTRS)
Johannesen, John; Rasbury, Jack
2003-01-01
The NASA critical path road map identifies "trauma and acute medical problems" as a clinical capability risk category (http://criticalDath.isc.nasa.gov). Specific risks include major trauma, organ laceration or contusion, hemoperitoneum, pulmonary failure, pneumo- and hemothorax, burn, open bone fracture, blunt head trauma, and penetrating injury. Mitigation of these risks includes the capability for critical care monitoring. Currently, the International Space Station (ISS) Crew Health Care System (CHeCS) does not provide such a capability. The Clinical Space Medicine Strategic Planning Forum (4/8/97), sponsored by NASA Medical Operations, identified the development of trauma care capabilities as one of the top priorities for space medicine. The Clinical Care Capability Development Project (CCCDP) subsequently undertook the task to address this need.
Deep Space Network Capabilities for Receiving Weak Probe Signals
NASA Technical Reports Server (NTRS)
Asmar, Sami; Johnston, Doug; Preston, Robert
2005-01-01
Planetary probes can encounter mission scenarios where communication is not favorable during critical maneuvers or emergencies. Launch, initial acquisition, landing, trajectory corrections, safing. Communication challenges due to sub-optimum antenna pointing or transmitted power, amplitude/frequency dynamics, etc. Prevent lock-up on signal and extraction of telemetry. Examples: loss of Mars Observer, nutation of Ulysses, Galileo antenna, Mars Pathfinder and Mars Exploration Rovers Entry, Descent, and Landing, and the Cassini Saturn Orbit Insertion. A Deep Space Network capability to handle such cases has been used successfully to receive signals to characterize the scenario. This paper will describe the capability and highlight the cases of the critical communications for the Mars rovers and Saturn Orbit Insertion and preparation radio tracking of the Huygens probe at (non-DSN) radio telescopes.
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.
2016-04-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken including rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective Crew Transportation/Provide ability to transport at least four crew to cislunar space Heavy Launch Capability/Provide beyond LEO launch capabilities to include crew, co-manisfested payloads, and large cargo In-Space Propulsion/Provide in-sapce propulsion capabilities to send crew and cargo on Mars-class mission durations and distances Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication Science/Enable science community objectives Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture Deep Space Habitation/Provide beyond LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: .NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas
2016-07-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken in-cluding rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective • Crew Transportation/Provide ability to transport at least four crew to cislunar space • Heavy Launch Capability/Provide beyond-LEO launch capabilities to include crew, co-manisfested pay-loads, and large cargo • In-Space Propulsion/Provide in-space propulsion capabilities to send crew and cargo on Mars-class mission durations and distances • Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication • Science/Enable science community objectives • Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations • In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture • Deep Space Habitation/Provide beyond-LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy • Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
The Deep Space Network: An instrument for radio astronomy research
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.
1988-01-01
The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.
Penetrator role in Mars sample strategy
NASA Technical Reports Server (NTRS)
Boynton, William; Dwornik, Steve; Eckstrom, William; Roalstad, David A.
1988-01-01
The application of the penetrator to a Mars Return Sample Mission (MRSM) has direct advantages to meet science objectives and mission safety. Based on engineering data and work currently conducted at Ball Aerospace Systems Division, the concept of penetrators as scientific instruments is entirely practical. The primary utilization of a penetrator for MRSM would be to optimize the selection of the sample site location and to help in selection of the actual sample to be returned to Earth. It is recognized that the amount of sample to be returned is very limited, therefore the selection of the sample site is critical to the success of the mission. The following mission scenario is proposed. The site selection of a sample to be acquired will be performed by science working groups. A decision will be reached and a set of target priorities established based on data to give geochemical, geophysical and geological information. The first task of a penetrator will be to collect data at up to 4 to 6 possible landing sites. The penetrator can include geophysical, geochemical, geological and engineering instruments to confirm that scientific data requirements at that site will be met. This in situ near real-time data, collected prior to final targeting of the lander, will insure that the sample site is both scientifically valuable and also that it is reachable within limits of the capability of the lander.
NASA Astrophysics Data System (ADS)
Stockton, A. M.; Duca, Z. A.; Cato, M.; Cantrell, T.; Kim, J.; Putman, P.; Schmidt, B. E.
2016-12-01
Kinetic penetrators have the potential to enable low cost in situ measurements of the ice of worlds including Europa and Enceladus [1]. Their small size and mass, critical to limiting their kinetic energy, makes them ideal small landers riding on primarily orbiter missions, while enabling sampling at several m depth due to burial and excavation. In situ microfluidic-based organic analysis systems are a powerful, miniaturized approach for detecting markers of habitability and recent biological activity. Development of microfluidic technology, like that of the Mars Organic Analyzer (MOA) [2,3] and Enceladus Organic Analyzer (EOA), has led to an instrument capable of in situ organic chemical analysis compatible with a kinetic penetrator platform. This technology uses an integrated microfluidic processor to prepare samples for analysis via fluorescent derivatization prior to highly sensitive laser-induced fluorescence (LIF) detection. Selective derivatization in the presence of a chiral selector enables distinction between amino acid enantiomers. Finite element analysis of the core microfluidic processing and analytical device indicated that the device itself is more than capable of surviving the stresses associated with an impact acceleration of >50,000g. However, a number of developments were still required to enable a flight-ready system. Preliminary experiments indicated that moving from a pneumatically-actuated to a hydraulically-actuated microvalve system may provide better impact resistance. A hydraulically-actuated microvalve system was developed and tested. A modification of an established microfabricated LIF detection system would use indium bump bonding to permanently weld optical components using standard microfabrication techniques with perfect alignment. Recent work has also focused on developing and characterizing impact-resistant electronics. This work shows the low-TRL development of EOA's LIF and microfluidic subsystems for future planetary impact penetrator missions. With correct structural decisions and optimizations, EOA can survive a 50,000g impact, making it the only current optical instrument with this capability. References: [1] Gowen et al., Adv. Space Res., 2011, 725. [2] Skelley et al, PNAS USA, 2005, 102, 1041. [3] Kim J., et al, Anal. Chem., 2013, 85, 7682.
Reflection Fosters Deep Learning: The 'Reflection Page & Relevant to You' Intervention
ERIC Educational Resources Information Center
Young, Mark R.
2018-01-01
Cognitive science indicates that the millennial generation's behavior of instant messaging and multitasking may provide inadequate cognitive capabilities for thoughtful processing of experiences that lead to deep learning. This study describes a teaching innovation that explicitly stimulates reflection and critical self-assessment, along with…
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Noé, Frank
2018-06-01
Inspired by the success of deep learning techniques in the physical and chemical sciences, we apply a modification of an autoencoder type deep neural network to the task of dimension reduction of molecular dynamics data. We can show that our time-lagged autoencoder reliably finds low-dimensional embeddings for high-dimensional feature spaces which capture the slow dynamics of the underlying stochastic processes—beyond the capabilities of linear dimension reduction techniques.
Measurement of in-situ strength using projectile penetration: Tests of a new launching system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hearst, J.R.; Newmark, R.L.; Charest, J.A.
1987-10-01
The Lawrence Livermore National Laboratory has a continuing need to measure rock strength in situ, both for simple prediction of cavity size, and as input to computational models. In a previous report we compared two methods for measuring formation strength in situ: projectile penetration and a cone penetrometer. We determined that the projectile method was more promising for application to our large-diameter (2-4-m) hole environment. A major practical problem has been the development of a launcher and an apparatus for measuring depth of penetration that would be suitable for use in large-diameter holes. We are developing a gas-gun launcher systemmore » that will be capable of measuring both depth of penetration and deceleration of a reusable projectile. The current version of the launcher is trailer-mounted for testing at our Nevada Test Site (NTS) in tunnels and outcrops, but its design is such that it can be readily adapted for emplacement hole use. We test the current launcher on 60-cm cubes of gypsum cement, mixed to provie a range of densities (1.64 to 2.0 g/cc) and strengths (3 to 17 MPa). We compared depth of penetration of a 84-g projectile from a ''Betsy'' seismic gun - traveling on the order of 500 m/s - with the depth of penetration of a 13-kg projectile from the gas gun - traveling on the order of 30 m/s. For projectiles with the same nose size and shape, impacting targets of approximately constant strength, penetration depth was proportional to projectile kinetic energy. The ratio of kinetic energy to penetration depth was approximately proportional to target strength. Tests in tuffs with a wide range of strengths at NTS gave a similar linear relationship between the ratio of kinetic energy to penetration and target strength, and also a linear relationship between deceleration and strength. It appears that penetration can indeed be used as a semiquantitative measure of strength.« less
Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations
Khvostenko, D.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.
2015-01-01
Objectives Bioactive glass (BAG) is known to possess antimicrobial and remineralizing properties; however, the use of BAG as a filler for resin based composite restorations to slow recurrent caries has not been studied. Accordingly, the objective of this study was to investigate the effect of 15 wt% BAG additions to a resin composite on bacterial biofilms penetrating into marginal gaps of simulated tooth fillings in vitro during cyclic mechanical loading. Methods Human molars were machined into approximately 3 mm thick disks of dentin and 1.5–2 mm deep composite restorations were placed. A narrow 15–20 micrometer wide dentin-composite gap was allowed to form along half of the margin by not applying dental adhesive to that region. Two different 72 wt% filled composites were used, one with 15 wt% BAG filler (15BAG) and the balance silanated strontium glass and one filled with OX-50 and silanated strontium glass without BAG (0BAG – control). Samples of both groups had Streptococcus mutans biofilms grown on the surface and were tested inside a bioreactor for two weeks while subjected to periods of cyclic mechanical loading. After post-test biofilm viability was confirmed, each specimen was fixed in glutaraldehyde, gram positive stained, mounted in resin and cross-sectioned to reveal the gap profile. Depth of biofilm penetration for 0BAG and 15BAG was quantified as the fraction of gap depth. The data were compared using a Student’s t-test. Results The average depth of bacterial penetration into the marginal gap for the 15BAG samples was significantly smaller (~61%) in comparison to 0BAG, where 100% penetration was observed for all samples with the biofilm penetrating underneath of the restoration in some cases. Significance BAG containing resin dental composites reduce biofilm penetration into marginal gaps of simulated tooth restorations. This suggests BAG containing composites may have the potential to slow the development and propagation of secondary tooth decay at restoration margins. PMID:26621028
NASA Astrophysics Data System (ADS)
Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto
2016-04-01
In recent years, research attention has been devoted to the development of a new class of airborne radar systems using low frequency bands ranging from VHF/UHF to P and L ones. In this frame, the Italian Space Agency (ASI) has promoted the development of a new multi-mode and multi-band airborne radar system, which can be considered even a "proof-of-concept" for the next space-borne missions. In particular, in agreement with the ASI, the research consortium CO.RI.S.T.A. has in charge the design, development and flight validation of such a kind of system, which is the first airborne radar entirely built in Italy. The aim was to design and realize a radar system able to work in different modalities as: nadir-looking sounder at VHF band (163 MHz); side-looking imager (SAR) at P band with two channels at 450 MHz and 900 MHz. The P-band is a penetration radar. Exploiting penetration features of low frequency electromagnetic waves, dielectric discontinuities of observed scene due to inhomogeneous materials rise up and can be detected on the resulting image. Therefore buried objects or targets placed under vegetation may be detected. Penetration capabilities essentially depend on microwave frequency. Typically, penetration distance is inversely proportional to microwave frequency. The higher the frequency, the lower the penetration depth. Terrain characteristics affect penetration capabilities. Humidity acts as a shield to microwave penetration. Hence terrain with high water content are not good targets for P-band applicability. Science community, governments and space agencies have increased their interest about low frequency radar for their useful applicability in climatology, ecosystem monitoring, glaciology, archaeology. The combination of low frequency and high relative bandwidth of such a systems has a large applicability in both military and civilian applications, ranging from forestry applications, biomass measuring, archaeological and geological exploration, glaciers investigation, biomass monitoring, detection of buried targets. Its extension to non-civil application concerns sub-surface target detection and foliage penetration (FOPEN). In order to achieve the flexibility to face all the above mentioned fields of application, the CORISTA system has been designed as a multi-mode and multi-frequency radar. Multimode stands for the functionality of the system both as Sounder and Imager. In addition, P-band radar is a multi-frequency instrument, since it is designed to work in three different frequency bands, as mentioned above: lower frequency band is used in sounder operative mode, higher frequency in imager operative mode. In the Imager operative mode, low resolution and high resolution capabilities are implemented. The data collected by the radar system have been processed using a model-based microwave tomographic approach, recently developed by IREA-CNR, with the aim to enhance the interpretability of the raw-data radar images. Currently, the non-invasive SAR P band application is under evaluation for testing in the Northern Coast of Perù, in collaboration with the Museo Arqueológico Nacional Brüning. The project will aim to recognize the subsurface ancient Moche (100-700 d.C.) and Lambayeque (700-1375 d.C.) canal networks, whose water supply comes from the Canal Taymi, started to be dug by the Mochicas, still in use by local communities.
Random harmonic analysis program, L221 (TEV156). Volume 1: Engineering and usage
NASA Technical Reports Server (NTRS)
Miller, R. D.; Graham, M. L.
1979-01-01
A digital computer program capable of calculating steady state solutions for linear second order differential equations due to sinusoidal forcing functions is described. The field of application of the program, the analysis of airplane response and loads due to continuous random air turbulence, is discussed. Optional capabilities including frequency dependent input matrices, feedback damping, gradual gust penetration, multiple excitation forcing functions, and a static elastic solution are described. Program usage and a description of the analysis used are presented.
Miller, H. Craig; Zuhr, Herbert F.
1978-01-01
The disclosure relates to a method for diffusing a coating of manganese powder and titanium powder into a ceramic to improve its voltage hold off withstanding capability. The powder coated ceramic is fired for from about 30 to about 90 minutes within about one atmosphere of wet hydrogen at a temperature within the range of from about 1450.degree. to about 1520.degree. C to cause the mixture to penetrate into the ceramic to a depth on the order of a millimeter.
Fungal degradation of calcium-, lead- and silicon-bearing minerals.
Adeyemi, Ademola O; Gadd, Geoffrey M
2005-06-01
The aim of this study was to examine nutritional influence on the ability of selected filamentous fungi to mediate biogenic weathering of the minerals, apatite, galena and obsidian in order to provide further understanding of the roles of fungi as biogeochemical agents, particularly in relation to the cycling of metals and associated elements found in minerals. The impact of three organic acid producing fungi (Aspergillus niger, Serpula himantioides and Trametes versicolor) on apatite, galena and obsidian was examined in the absence and presence of a carbon and energy source (glucose). Manifestation of fungal weathering included corrosion of mineral surfaces, modification of the mineral substrate through transformation into secondary minerals (i.e. crystal formation) and hyphal penetration of the mineral substrate. Physicochemical interactions of fungal metabolites, e.g. H+ and organic acids, with the minerals are thought to be the primary driving forces responsible. All experimental fungi were capable of mineral surface colonization in the absence and presence of glucose but corrosion of the mineral surface and secondary mineral formation were affected by glucose availability. Only S. himantioides and T. versicolor were able to corrode apatite in the absence of glucose but none of the fungi were capable of doing so with the other minerals. In addition, crystal formation with galena was entirely dependent on the availability of glucose. Penetration of the mineral substrates by fungal hyphae occurred but this did not follow any particular pattern. Although the presence of glucose in the media appeared to influence positively the mineral penetrating abilities of the fungi, the results obtained also showed that some geochemical change(s) might occur under nutrient-limited conditions. It was, however, unclear whether the hyphae actively penetrated the minerals or were growing into pre-existing pores or cracks.
SWEAT: Snow Water Equivalent with AlTimetry
NASA Astrophysics Data System (ADS)
Agten, Dries; Benninga, Harm-Jan; Diaz Schümmer, Carlos; Donnerer, Julia; Fischer, Georg; Henriksen, Marie; Hippert Ferrer, Alexandre; Jamali, Maryam; Marinaci, Stefano; Mould, Toby JD; Phelan, Liam; Rosker, Stephanie; Schrenker, Caroline; Schulze, Kerstin; Emanuel Telo Bordalo Monteiro, Jorge
2017-04-01
To study how the water cycle changes over time, satellite and airborne remote sensing missions are typically employed. Over the last 40 years of satellite missions, the measurement of true water inventories stored in sea and land ice within the cryosphere have been significantly hindered by uncertainties introduced by snow cover. Being able to determine the thickness of this snow cover would act to reduce such error, improving current estimations of hydrological and climate models, Earth's energy balance (albedo) calculations and flood predictions. Therefore, the target of the SWEAT (Snow Water Equivalent with AlTimetry) mission is to directly measure the surface Snow Water Equivalent (SWE) on sea and land ice within the polar regions above 60°and below -60° latitude. There are no other satellite missions currently capable of directly measuring SWE. In order to achieve this, the proposed mission will implement a novel combination of Ka- and Ku-band radioaltimeters (active microwave sensors), capable of penetrating into the snow microstructure. The Ka-band altimeter (λ ≈ 0.8 cm) provides a low maximum snow pack penetration depth of up to 20 cm for dry snow at 37 GHz, since the volume scattering of snow dominates over the scattering caused by the underlying ice surface. In contrast, the Ku-band altimeter (λ ≈ 2 cm) provides a high maximum snowpack penetration depth of up to 15 m in high latitudes regions with dry snow, as volume scattering is decreased by a factor of 55. The combined difference in Ka- and Ku-band signal penetration results will provide more accurate and direct determination of SWE. Therefore, the SWEAT mission aims to improve estimations of global SWE interpreted from passive microwave products, and improve the reliability of numerical snow and climate models.
A distributed data base management capability for the deep space network
NASA Technical Reports Server (NTRS)
Bryan, A. I.
1976-01-01
The Configuration Control and Audit Assembly (CCA) is reported that has been designed to provide a distributed data base management capability for the DSN. The CCA utilizes capabilities provided by the DSN standard minicomputer and the DSN standard nonreal time high level management oriented programming language, MBASIC. The characteristics of the CCA for the first phase of implementation are described.
NASA Astrophysics Data System (ADS)
Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.
2017-12-01
This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Byoung Yoon; Leavy, Richard Brian; Niederhaus, John Henry J.
2013-03-01
The finite-element shock hydrodynamics code ALEGRA has recently been upgraded to include an X-FEM implementation in 2D for simulating impact, sliding, and release between materials in the Eulerian frame. For validation testing purposes, the problem of long-rod penetration in semi-infinite targets is considered in this report, at velocities of 500 to 3000 m/s. We describe testing simulations done using ALEGRA with and without the X-FEM capability, in order to verify its adequacy by showing X-FEM recovers the good results found with the standard ALEGRA formulation. The X-FEM results for depth of penetration differ from previously measured experimental data by lessmore » than 2%, and from the standard formulation results by less than 1%. They converge monotonically under mesh refinement at first order. Sensitivities to domain size and rear boundary condition are investigated and shown to be small. Aside from some simulation stability issues, X-FEM is found to produce good results for this classical impact and penetration problem.« less
Radiostratigraphy and age structure of the Greenland Ice Sheet
MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu
2015-01-01
Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Key Points Phase information predicts reflection slope and simplifies reflection tracing Reflections can be dated away from ice cores using a simple ice flow model Radiostratigraphy is often disrupted near the onset of fast ice flow PMID:26213664
NASA Astrophysics Data System (ADS)
Zhang, Jun; Dong, Chengcheng; Zhang, Hui; Li, Song; Song, Aiguo
2018-05-01
This paper presents a novel lander anchoring system based on sawing method for asteroid exploration. The system is composed of three robotic arms, three cutting discs, and a control system. The discs mounted at the end of the arms are able to penetrate into the rock surface of asteroids. After the discs cut into the rock surface, the self-locking function of the arms provides forces to fix the lander on the surface. Modeling, trajectory planning, simulations, mechanism design, and prototype fabrication of the anchoring system are discussed, respectively. The performances of the system are tested on different kinds of rocks, at different sawing angles, locations, and speeds. Results show that the system can cut 15 mm deep into granite rock in 180 s at sawing angle of 60°, with the average power of 58.41 W, and the "weight on bit" (WOB) of 8.637 N. The 7.8 kg anchoring system is capable of providing omni-directional anchoring forces, at least 225 N normal and 157 N tangent to the surface of the rock. The system has the advantages of low-weight, low energy consumption and balance forces, high anchoring efficiency and reliability, and could enable the lander to move and sample or assist astronauts and robots in walking and sampling on asteroids.
Exploration of Ultralight Nanofiber Aerogels as Particle Filters: Capacity and Efficiency.
Deuber, Fabian; Mousavi, Sara; Federer, Lukas; Hofer, Marco; Adlhart, Christian
2018-03-14
Ultralight nanofiber aerogels (NFAs) or nanofiber sponges are a truly three-dimensional derivative of the intrinsically flat electrospun nanofiber mats or membranes (NFMs). Here we investigated the potential of such materials for particle or aerosol filtration because particle filtration is a major application of NFMs. Ultralight NFAs were synthesized from electrospun nanofibers using a solid-templating technique. These materials had a tunable hierarchical cellular open-pore structure. We observed high filtration efficiencies of up to 99.999% at the most penetrating particle size. By tailoring the porosity of the NFAs through the processing parameters, we were able to adjust the number of permeated particles by a factor of 1000 and the pressure drop by a factor of 9. These NFAs acted as a deep-bed filter, and they were capable of handling high dust loadings without any indication of performance loss or an increase in the pressure drop. When the face velocity was increased from 0.75 to 6 cm s -1 , the filtration efficiency remained high within a factor of 1.1-10. Both characteristics were in contrast to the behavior of two commercial NFM particle filters, which showed significant increases in the pressure drop with the filtration time as well as a susceptibility against high face velocities by a factor of 105.
Julin, Jan; Murphy, Benjamin N; Patoulias, David; Fountoukis, Christos; Olenius, Tinja; Pandis, Spyros N; Riipinen, Ilona
2018-01-16
Although they are currently unregulated, atmospheric ultrafine particles (<100 nm) pose health risks because of, e.g., their capability to penetrate deep into the respiratory system. Ultrafine particles, often minor contributors to atmospheric particulate mass, typically dominate aerosol particle number concentrations. We simulated the response of particle number concentrations over Europe to recent estimates of future emission reductions of aerosol particles and their precursors. We used the chemical transport model PMCAMx-UF, with novel updates including state-of-the-art descriptions of ammonia and dimethylamine new particle formation (NPF) pathways and the condensation of organic compounds onto particles. These processes had notable impacts on atmospheric particle number concentrations. All three emission scenarios (current legislation, optimized emissions, and maximum technically feasible reductions) resulted in substantial (10-50%) decreases in median particle number concentrations over Europe. Consistent reductions were predicted in Central Europe, while Northern Europe exhibited smaller reductions or even increased concentrations. Motivated by the improved NPF descriptions for ammonia and methylamines, we placed special focus on the potential to improve air quality by reducing agricultural emissions, which are a major source of these species. Agricultural emission controls showed promise in reducing ultrafine particle number concentrations, although the change is nonlinear with particle size.
Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications
NASA Astrophysics Data System (ADS)
Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.
2009-03-01
X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.
Yu, Tao; Chan, Kannie W Y; Anonuevo, Abraham; Song, Xiaolei; Schuster, Benjamin S; Chattopadhyay, Sumon; Xu, Qingguo; Oskolkov, Nikita; Patel, Himatkumar; Ensign, Laura M; van Zjil, Peter C M; McMahon, Michael T; Hanes, Justin
2015-02-01
Mucus barriers lining mucosal epithelia reduce the effectiveness of nanocarrier-based mucosal drug delivery and imaging ("theranostics"). Here, we describe liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, e.g., the diaCEST MRI contrast agent barbituric acid (BA). We observed that polyethylene glycol (PEG)-coated liposomes containing ≥7 mol% PEG diffused only ~10-fold slower in human cervicovaginal mucus (CVM) compared to their theoretical speeds in water. 7 mol%-PEG liposomes contained sufficient BA loading for diaCEST contrast, and provided improved vaginal distribution compared to 0 and 3mol%-PEG liposomes. However, increasing PEG content to ~12 mol% compromised BA loading and vaginal distribution, suggesting that PEG content must be optimized to maintain drug loading and stability. Non-invasive diaCEST MRI illustrated uniform vaginal coverage and longer retention of BA-loaded 7 mol%-PEG liposomes compared to unencapsulated BA. Liposomal MPP with optimized PEG content hold promise for drug delivery and imaging at mucosal surfaces. This team of authors characterized liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, such as barbituric acid (a diaCEST MRI contrast agent) and concluded that liposomal MPP with optimized PEG coating enables drug delivery and imaging at mucosal surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.
Pan, Wei-Ren; Zeng, Fan-Qiang; Wang, De-Guang; Qiu, Zhi-Qiang
2017-05-01
To determine the relationship between the perforating and deep lymphatic vessels in the knee region for clinical implications. Four lower limbs from two unembalmed human cadavers were used. Under a surgical microscope, 6% hydrogen peroxide was employed to detect lymph vessels accompanying the small saphenous vein, anterior tibial, posterior tibial and fibular blood vessels all commencing from distal ends of specimens. Each lymphatic vessel was inserted by a 30-gauge needle and injected with a barium sulphate mixture. Each specimen was dissected, radiographed and photographed to determine the perforating and deep lymphatic vessels in the region. A perforating lymph vessel was observed in the popliteal fossa of each specimen. It arose from the superficial popliteal lymph node and terminated in the deep popliteal lymph node. The anterior tibial, posterior tibial and peroneal lymph vessels were discovered in the region travelling with the corresponding vascular bundles. After penetrating the vascular aperture of the interosseous membrane between the tibia and fibula, the anterior tibial lymph vessel entered directly into the deep popliteal lymph node or converged to either the posterior tibial or fibular lymph vessel, before entering the node. The posterior tibial and peroneal lymph vessels entered the deep popliteal lymph node. The efferent lymph vessel of the deep popliteal lymph node travelled with the femoral vascular bundle. The perforating and deep lymphatic vessels in the knee region has been presented and discussed. The information advances our anatomical knowledge and the results will benefit clinical management. © 2017 Royal Australasian College of Surgeons.
1995-01-01
rainfall runoff model, DR&& to Bear Branch watershed, Murfreesboro, Tennessee .......... 37 Seepage and spring inventory reconnaissance and base-flow... bearing rocks in the Valley and Ridge, Blue Ridge, and Piedmont physiographic provinces, and covers parts of eight states from New Jersey to Alabama...100 feet in diameter and about 250 feet deep. It penetrates three water- bearing units of carbonate origin (the shallow aquifer, the Manchester aquifer
Metropolitan Washington Area Water Supply Study. Appendix F. Structural Alternatives.
1983-09-01
Geology F-132 Description of Aquifers F-137 Patuxent Formation F-137 Patapsco Formation F-137 Magothy Formation F-138 Aquia Formation F-138 Aquifer...Distribution in the Patuxent Aquifer F-146 F-32 Transmissivity Distribution in the Patapsco Aquifer F-i46 F-33 Transmissivity Distribution in the Magothy ...wellfield scheme was planned to tap the region’s deep * - aquifers, particularly the Magothy and Patapsco formations. To fully penetrate these aquifers
1983-06-01
cl~. 0 I ~Ix *~ S I F (V () m C Y wI 0 C. -d concentrations of dissolved oxygen, heavy metals , petrolum hydrocarbons, pesticides, and turbidity...effects at the dredged and disposal sites under consideration. Water quality parameters of concern include: concentrations of dissolved oxygen, heavy ... metals , petroleum hydrocarbons and pesticides. Some groundwater has been pumped from wells penetrating the Meritt Sand. Brackish water of limited use
2015-12-10
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple...202) 767-2601 Inverse thermal analyses of structural steel deep-penetration welds are presented. These analyses employ a methodology that is in terms of
Robb, E J; Barron, G L
1982-12-17
The parasitic fungus Haptoglossa mirabilis infects its rotifer host by means of a gun-shaped attack cell. The anterior end of the cell is elongated to form a barrel; the wall at the mouth is invaginated deep into the cell to form a bore. A walled chamber at the base of the bore houses a complex, missile-like attack apparatus. The projectile is fired from the gun cell at high speed to accomplish initial penetration of the host.
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schultz, P. H.
1991-01-01
Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.
NASA Space Launch System: A Cornerstone Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2014-01-01
Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 14 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.
NASA's Space Launch System: A Cornerstone Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2014-01-01
Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 12 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.
Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus
Lai, Samuel K.; Suk, Jung Soo; Pace, Amanda; Wang, Ying-Ying; Yang, Ming; Mert, Olcay; Chen, Jeane; Kim, Jean; Hanes, Justin
2011-01-01
No effective therapies currently exist for chronic rhinosinusitis (CRS), a persistent inflammatory condition characterized by the accumulation of highly viscoelastic mucus (CRSM) in the sinuses. Nanoparticle therapeutics offer promise for localized therapies for CRS, but must penetrate CRSM in order to avoid washout during sinus cleansing and to reach underlying epithelial cells. Prior research has not established whether nanoparticles can penetrate the tenacious CRSM barrier, or instead become trapped. Here, we first measured the diffusion rates of polystyrene nanoparticles and the same nanoparticles modified with muco-inert polyethylene glycol (PEG) coatings in fresh, minimally perturbed CRSM collected during endoscopic sinus surgery from CRS patients with and without nasal polyp. We found that uncoated polystyrene particles, previously shown to be mucoadhesive, were immobilized in all CRSM samples tested. In contrast, densely PEGylated particles as large as 200 nm were able to readily penetrate all CRSM samples from patients with CRS alone, and nearly half of CRSM samples from patients with nasal polyp. Based on the mobility of different sized PEGylated particles, we estimate the average pore size of fresh CRSM to be at least 150 ± 50 nm. Guided by these studies, we formulated mucus-penetrating particles (MPP) composed of PLGA and Pluronics, two materials with a long history of safety and use in humans. We showed that biodegradable MPP are capable of rapidly penetrating CRSM at average speeds up to only 20-fold slower than their theoretical speeds in water. Our findings strongly support the development of mucus-penetrating nanomedicines for the treatment of CRS. PMID:21665271
Monolithic ballasted penetrator
Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.
2001-01-01
The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.
1976-08-01
stationed in Western Russia will be destroyed by daring operations led by deeply penetrating armoured spearheads. Russian forces still capable of giving...in Article X, each promised not to enter into any obligation with one or more other states which may be incompatible with the treaty. 2 8 Draped in
The Current Status of the Japanese Penetrator Mission: LUNAR-A
NASA Astrophysics Data System (ADS)
Tanaka, S.; Shiraishi, H.; Fujimura, A.; Hayakawa, H.
The scientific objective of the LUNAR-A, Japanese Penetrator Mission, is to explore the lunar interior by seismic and heat-flow experiments. Two penetrators containing two seismometers (horizontal and vertical components) and heat-flow probes will be deployed from a spacecraft onto the lunar surface, one on the nearside and the other on the farside of the moon. The final impact velocity of the penetrator will be about 300m/sec; it will encounter a shock of about 8000 G at impact on the lunar surface. According to numerous experimental impact tests using model penetrators and a lunar regolith analog target, each penetrator is predicted to penetrate to a depth of 1 to 3 m. The data obtained by the penetrators will be transmitted to the earth station via the LUNAR-A mother spacecraft orbiting at an altitude of about 200 km. The penetrator is a missile-shaped instrument carrier, which is about 14cm in diameter, 75cm in length, and about 14kg in weight without attitude control system. It contains a two-component seismometer and heat flow probes together with other supporting instruments such as a tilt meter and an accelerometer. The seismic observations are expected to provide key data on the size of the lunar core, as well as data on deep lunar mantle structure. The heat flow measurements at two penetrator deployment sites will also provide important data on the thermal structure and bulk concentrations of heat-generating elements in the Moon. These data will provide much stronger geophysical constraints on the origin and evolution of the Moon than has been obtained so far. The LUNAR-A spacecraft was supposed to be launched in the summer of 2004, but it was postponed due to the necessity of a replacement of the valves used in the RCS propulsion system of the spacecraft, following a recall issued by the manufacturer who found a malfunction of similar valves. Then, the technological review boards by ISAS and JAXA recommended that both the more robustness of the communication link, between the penetrator and the orbiting spacecraft, and the improvement of data processing unit onboard penetrator should be made. And also, in compliance with the recommendation by the external review board, we have made a decision to suspend a development of LUNAR-A spacecraft and to concentrate on the completion of the penetrator technology. To solve the above technological issues, it was estimated to take a couple of years. In this paper, we present the current status of development and some results of the impact tests for component level models and for the full-size integrated model, which both are modified and re-designed.
Scalable Method to Produce Biodegradable Nanoparticles that Rapidly Penetrate Human Mucus
Xu, Qingguo; Boylan, Nicholas J.; Cai, Shutian; Miao, Bolong; Patel, Himatkumar; Hanes, Justin
2013-01-01
Mucus typically traps and rapidly removes foreign particles from the airways, gastrointestinal tract, nasopharynx, female reproductive tract and the surface of the eye. Nanoparticles capable of rapid penetration through mucus can potentially avoid rapid clearance, and open significant opportunities for controlled drug delivery at mucosal surfaces. Here, we report an industrially scalable emulsification method to produce biodegradable mucus-penetrating particles (MPP). The emulsification of diblock copolymers of poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) using low molecular weight (MW) emulsifiers forms dense brush PEG coatings on nanoparticles that allow rapid nanoparticle penetration through fresh undiluted human mucus. In comparison, conventional high MW emulsifiers, such as polyvinyl alcohol (PVA), interrupts the PEG coating on nanoparticles, resulting in their immobilization in mucus owing to adhesive interactions with mucus mesh elements. PLGA-PEG nanoparticles with a wide range of PEG MW (1, 2, 5, and 10 kDa), prepared by the emulsification method using low MW emulsifiers, all rapidly penetrated mucus. A range of drugs, from hydrophobic small molecules to hydrohilic large biologics, can be efficiently loaded into biodegradable MPP using the method described. This readily scalable method should facilitate the production of MPP products for mucosal drug delivery, as well as potentially longer-circulating particles following intravenous administration. PMID:23751567
Cross, Sheree E; Anderson, Chris; Roberts, Michael S
1998-01-01
Aims The penetration of active ingredients from topically applied anti-inflammatory pharmaceutical products into tissues below the skin is the basis of their therapeutic efficacy. There is still controversy as to whether these agents are capable of direct penetration by diffusion through the tissues or whether redistribution in the systemic circulation is responsible for their tissue deposition below the application site. Methods The extent of direct penetration of salicylate from commercial ester and salt formulations into the dermal and subcutaneous tissue of human volunteers was determined using the technique of cutaneous microdialysis. We also examined differences in the extent of hydrolysis of the methylester of salicylate applied topically in human volunteers and in vitro skin diffusion cells using full-thickness skin and epidermal membranes. Results The present study showed that whilst significant levels of salicylate could be detected in the dermis and subcutaneous tissue of volunteers treated with the methylsalicylate formulation, negligible levels of salicylate were seen following application of the triethanolamine salicylate formulation. The tissue levels of salicylate from the methylsalicylate formulation were approx. 30-fold higher than the plasma concentrations. Conclusion The absorption and tissue concentration profiles for the commercial methylsalicylate formulation are indicative of direct tissue penetration and not solely redistribution by the systemic blood supply. PMID:9690946
NASA Astrophysics Data System (ADS)
Galluzzi, M. C.
2018-02-01
Three goals can be achieved by 2030: 1. NASA will have the capability for remote on-demand 3d printing of critical hardware using regolith material as feedstock, 2. Logistics footprint reduced by 35%, 3. Deep Space Gateway will become 75% self-sustaining.
NASA Technical Reports Server (NTRS)
1988-01-01
The Deep Space Network (DSN) is the largest and most sensitive scientific telecommunications and radio navigation network in the world. Its principal responsibilities are to support unmanned interplanetary spacecraft missions and to support radio and radar astronomy observations in the exploration of the solar system and the universe. The DSN facilities and capabilities as of January 1988 are described.
NASA Astrophysics Data System (ADS)
Sibille, L.; Mantovani, J. G.; Townsend, I. I.; Mueller, R. P.
2018-02-01
The concepts describe hardware and instrumentation for the study of planetary surface materials at the Deep Space Gateway as a progressive evolution of capabilities for eliminating the need for special handling and Planetary Protection (PP) protocols inside the habitats.
The Status of Ka-Band Communications for Future Deep Space Missions
NASA Technical Reports Server (NTRS)
Edwards, C.; Deutsch, L.; Gatti, M.; Layland, J.; Perret, J.; Stelzried, C.
1997-01-01
Over the past decade, the Jet Propulsion Laboratory's Telecommunications and Mission Operations Directorate has invested in a variety of technologies, targeted at both the flight and ground sides of the communications link, with the goal of developing a Ka-band (32 GHz) communications capability for future deep space missions.
Defining Army Capabilities to Meet Building Partnership Capacity Requirements
2012-05-17
111 Lolita C. Baldor, “U.S. officials plan deep changes in combat brigades,” Philly.com, entry posted January 26, 2012, http://articles.philly.com... Lolita C., “U.S. officials plan deep changes in combat brigades.” Philly.com, entry posted January 26, 2012, http://articles.philly.com/2012-01-26
A numerically optimized active shield for improved TMS targeting
Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric
2010-01-01
Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region (“sharpness”), while simultaneously increase the induced electric field deep in the target region relative to the surface (“penetration”). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1 % and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9 %) PMID:20965451
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.
Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases withmore » dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.« less
Contribution to Estimating Bearing Capacity of Pile in Clayey Soils
NASA Astrophysics Data System (ADS)
Drusa, Marián; Gago, Filip; Vlček, Jozef
2016-12-01
The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT), standard penetration (SPT) or dynamic penetration test (DP) are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.
Buszka, Paul M.; Lampe, David C.; Egler, Amanda L.
2010-01-01
During 2007-08, the U.S. Geological Survey, in cooperation with the U.S. Department of the Army, conducted a study to evaluate the relative age of groundwater in Pre-Wisconsinan till and underlying shallow and deep carbonate bedrock units in and near an area at Jefferson Proving Ground (JPG), southeastern Indiana, which was used during 1984-94 to test fire depleted uranium (DU) penetrators. The shallow carbonate unit includes about the upper 40 feet of bedrock below the bedrock-till surface; the deeper carbonate unit includes wells completed at greater depth. Samples collected during April 2008 from 15 wells were analyzed for field water-quality parameters, dissolved gases, tritium, and chlorofluorocarbon (CFC) compounds; samples from 14 additional wells were analyzed for tritium only. Water-level gradients in the Pre-Wisconsinan till and the shallow carbonate unit were from topographically higher areas toward Big Creek and Middle Fork Creek, and their tributaries. Vertical gradients were strongly downward from the shallow carbonate unit toward the deep carbonate unit at 3 of 4 paired wells where water levels recovered after development; indicating the general lack of flow between the two units. The lack of post development recovery of water levels at 4 other wells in the deep carbonate unit indicate that parts of that unit have no appreciable permeability. CFC and tritium-based age dates of Pre-Wisconsinan till groundwater are consistent with infiltration of younger (typically post-1960 age) recharge that 'mixes' with older recharge from less permeable or less interconnected strata. Part of the recharge to three till wells dated from the early to mid-1980s (JPG-DU-03O, JPG-DU-09O, and JPG-DU-10O). Age dates of young recharge in water from two till wells predated 1980 (JPG-DU-04O and JPG-DU-06O). Tritium-based age dates of water from seven other till wells indicated post-1972 age recharge. Most wells in the Pre-Wisconsinan till have the potential to produce groundwater that partially was recharged during or after DU penetrator testing; their water quality can indicate the presence of DU-related contaminants. The shallow carbonate unit near Big Creek is a karst flow system that may be recharged in part from areas with smaller thicknesses of overlying till or through more permeable parts of the till. This is indicated by CFC- and tritium-based piston-flow (non-mixing) model age dates of early-1980s for water from JPG-DU-02I, similar tritium-based ages of water produced from nearby wells MW-5 and MW-11, and cave development along the creek. The CFC and tritium-based age dates indicate that water samples from JPG-DU-01I and JPG-DU-03I were best described as mixtures of post-1984 modern recharge and submodern (1953 or older) recharge. These five wells produced groundwater that was recharged, at least partially, during or after DU-penetrator testing and are within or downgradient from the DU Impact Area with respect to groundwater flow directions inferred from water-level contours. Wells with groundwater age dates that are near to or after the onset (1984) of DU penetrator testing and that have a plausible connection to a contaminant source can be used to indicate the presence or absence of contaminants from DU penetrator or DU-related corrosion products in groundwater. Groundwater-age dates indicate that the ages of recharge sampled from shallow carbonate unit wells JPG-DU-04I, JPG-DU-05I, JPG-DU-06I, JPG-DU-09I, and JPG-DU-10D in easternmost (upgradient) and southernmost wells in the shallow carbonate unit are submodern (1953 or older) and predate the DU testing by at least 30 or more years. Water-quality data from these five wells are not likely to represent effects from DU-projectile testing or corrosion for years. Well JPG-DU-09D in the deep carbonate unit produced groundwater samples with a submodern (1953 or older) age date. The slow recovery of water levels in most wells in the deep carbonate unit is consis
NASA Astrophysics Data System (ADS)
Ishchenko, A. N.; Tabachenko, A. N.; Afanas'eva, S. A.; Belov, N. N.; Biryukov, Yu. A.; Burkin, V. V.; D'yachkovskii, A. S.; Rogaev, K. S.; Skosyrskii, A. B.; Yugov, N. T.
2018-02-01
The paper studies physical and mechanical properties of tungsten-nickel-iron-cobalt metal foam alloyed with titanium tungsten carbide. Test specimens are obtained by the liquid phase sintering of powder materials, including those containing tungsten nanopowders. High porosity metal foams are prepared through varying the porosity of powder specimens and the content of filling material. The penetration capability of cylinder projectiles made of new alloys is explored in this paper. It is shown that their penetration depth exceeds that of the prototype with relevant weight and size, made of tungsten-nickel-iron alloy, other factors being equal.
Kunert, J
1992-01-01
The decomposition of egg-shells of Ascaris lumbricoides L. was studied microscopically using topochemical methods in a set of 32 strains of soil ovicidal fungi. It was found that even fungi displaying minimal chitinolytic activity in tests on purified chitin in vitro are able to dissolve chitin of egg-shells during the attack on live eggs. Fungi without any chitinolytic activity penetrate probably only the mechanically damaged eggs. None of the studied fungi was capable of degrading enzymatically the glycolipid (ascaroside) layer of the egg-shell which remained intact after digestion of all other components of the egg.
Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabiti, C.; Epiney, A.; Talbot, P.
This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity costmore » and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.« less
NonDestructive Evaluation for Industrial & Development Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, James F.
2016-10-12
Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.
Search, Swim and See: Deleuze's Apprenticeship in Signs and Pedagogy of Images
ERIC Educational Resources Information Center
Bogue, Ronald
2004-01-01
Deleuze was a remarkable polymath, capable of bringing penetrating insights to a wide variety of disciplines. The number of topics addressed during his career was considerable, ranging from mathematics, biology, psychology, political science, and anthropology to logic, ethics, painting, literature, metallurgy, and the decorative arts. One might…
49 CFR 173.465 - Type A packaging tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., with contents, must be capable of withstanding the water spray, free drop, stacking and penetration... paragraph (b) of this section are met. (b) Water spray test. The water spray test must precede each test or test sequence prescribed in this section. The water spray test must simulate exposure to rainfall of...
Battlefield training in impaired visibility
NASA Astrophysics Data System (ADS)
Gammarino, Rudolph R.; Surhigh, James W.
1991-04-01
A laser training system entitled Shoot Through Obscuration MILES (STOM) is being developed to operate with Forward Looking InfraRed (FLIR) systems during battlefield exercises where visibility is impaired. The STOM system is capable of ranges in excess of 6 km and can penetrate battlefield obscurants such as fog-oil, smoke, dust, and rain.
NASA Astrophysics Data System (ADS)
Pradhan, O.; Gasiewski, A. J.; Stone, W.
2017-12-01
We present the design, analyses and field testing of a forward-looking endfire synthetic aperture radar (SAR) for the `Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. The project consists of (1) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form the radiating elements, (2) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (3) field testing of the SAR system. The antennas were designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar analog and digital system were also designed and integrated at CET utilizing rugged RF components and FPGA based digital waveform generation. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. In this presentation we will describe in detail the following aspects pertaining to the design, analysis and testing of the endfire SAR system; (1) Waveform generation capability of the radar as well as transmit and receive channel calibration (2) Theoretical analysis of the radial resolution improvement made possible by using the radar in an endfire SAR mode along with the free space radar tests performed to validate the proposed endfire SAR system (3) A method for azimuth ambiguity resolution by operating the endfire SAR in a bistatic mode (4) Modal analysis of the layered cylindrical LPFSA antenna structure and a forward model of the wave propagation path through planar layered ice medium and (5) Analysis and interpretation of the in-situ measurements of the antennas and endfire SAR operation on the Matanuska glacier.
Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun
2014-01-01
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.
Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun
2014-01-01
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099
NASA Technical Reports Server (NTRS)
Beardsley, E G
1928-01-01
This investigation was undertaken at the Langley Memorial Aeronautical Laboratory in connection with a general research on fuel-injection for aircraft. The purpose of the investigation was to determine the factors controlling the reproducibility of spray penetration and secondary discharges after cut-off. The development of single sprays from automatic injection valves was recorded by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. The effect of two types of injection valves, injection-valve tube length, initial pressure in the injection-valve tube, speed of the injection control mechanism, and time of spray cut-off, on the reproducibility of spray penetration, and on secondary discharges were investigated. It was found that neither type of injection valve materially affected spray reproducibility. The initial pressure in the injection-valve tube controlled the reproducibility of spray penetrations. An increase in the initial pressure or in the length of the injection-valve tube slightly increased the spray penetration within the limits of this investigation. The speed of the injection-control mechanism did not affect the penetration. Analysis of the results indicates that secondary discharges were caused in this apparatus by pressure waves initiated by the rapid opening of the cut-off valve. The secondary discharges were eliminated in this investigation by increasing the length of the injection-valve tube. (author)
NASA Astrophysics Data System (ADS)
Deka, Gitanjal; Nishida, Kentaro; Mochizuki, Kentaro; Ding, Hou-Xian; Fujita, Katsumasa; Chu, Shi-Wei
2018-03-01
Recently, many resolution enhancing techniques are demonstrated, but most of them are severely limited for deep tissue applications. For example, wide-field based localization techniques lack the ability of optical sectioning, and structured light based techniques are susceptible to beam distortion due to scattering/aberration. Saturated excitation (SAX) microscopy, which relies on temporal modulation that is less affected when penetrating into tissues, should be the best candidate for deep-tissue resolution enhancement. Nevertheless, although fluorescence saturation has been successfully adopted in SAX, it is limited by photobleaching, and its practical resolution enhancement is less than two-fold. Recently, we demonstrated plasmonic SAX which provides bleaching-free imaging with three-fold resolution enhancement. Here we show that the three-fold resolution enhancement is sustained throughout the whole working distance of an objective, i.e., 200 μm, which is the deepest super-resolution record to our knowledge, and is expected to extend into deeper tissues. In addition, SAX offers the advantage of background-free imaging by rejecting unwanted scattering background from biological tissues. This study provides an inspirational direction toward deep-tissue super-resolution imaging and has the potential in tumor monitoring and beyond.
Integrated geologic and geophysical studies of North American continental intraplate seismicity
Van Lanen, X.; Mooney, W.D.
2007-01-01
The origin of earthquakes within stable continental regions has been the subject of debate over the past thirty years. Here, we examine the correlation of North American stable continental region earthquakes using five geologic and geophysical data sets: (1) a newly compiled age-province map; (2) Bouguer gravity data; (3) aeromagnetic anomalies; (4) the tectonic stress field; and (5) crustal structure as revealed by deep seismic-reflection profiles. We find that: (1) Archean-age (3.8-2.5 Ga) North American crust is essentially aseismic, whereas post-Archean (less than 2.5 Ga) crust shows no clear correlation of crustal age and earthquake frequency or moment release; (2) seismicity is correlated with continental paleorifts; and (3) seismicity is correlated with the NE-SW structural grain of the crust of eastern North America, which in turn reflects the opening and closing of the proto- and modern Atlantic Ocean. This structural grain can be discerned as clear NE-SW lineaments in the Bouguer gravity and aeromagnetic anomaly maps. Stable continental region seismicity either: (1) follows the NE-SW lineaments; (2) is aligned at right angles to these lineaments; or (3) forms clusters at what have been termed stress concentrators (e.g., igneous intrusions and intersecting faults). Seismicity levels are very low to the west of the Grenville Front (i.e., in the Archean Superior craton). The correlation of seismicity with NE-SW-oriented lineaments implies that some stable continental region seismicity is related to the accretion and rifting processes that have formed the North American continental crust during the past 2 b.y. We further evaluate this hypothesis by correlating stable continental region seismicity with recently obtained deep seismic-reflection images of the Appalachian and Grenville crust of southern Canada. These images show numerous faults that penetrate deep (40 km) into the crust. An analysis of hypocentral depths for stable continental region earthquakes shows that the frequency and moment magnitude of events are nearly uniform for the entire 0-35 km depths over which crustal earthquakes extend. This is in contradiction with the hypothesis that larger events have deeper focal depths. We conclude that the deep structure of the crust, in particular the existence of deeply penetrating faults, is the controlling parameter, rather than lateral variations in temperature, rheology, or high pore pressure. The distribution of stable continental region earthquakes in eastern North America is consistent with the existence of deeply penetrating crustal faults that have been reactivated in the present stress field. We infer that future earthquakes may occur anywhere along the geophysical lineations that we have identified. This implies that seismic hazard is more widespread in central and eastern North America than indicated by the limited known historical distribution of seismicity. ?? 2007 The Geological Society of America.
Ubiquitous and continuous SAR imaging for natural hazards: present and future of remote sensing
NASA Astrophysics Data System (ADS)
Monti Guarnieri, Andrea; Rocca, Fabio
2017-04-01
Constellation of optical and SAR sensors have achieved unprecedented performances: dense constellation of cubesats - like the next constellation of 88 Dove satellites (Planet labs), launched simultaneously this February - reduce the revisit time to nearly daily. This brings great value to many domains, like the assessment of risk and damage in natural hazards, post-earthquake response, real time flood monitoring. The limits to optical imaging due to cloud coverage could then be removed with drones. Alternatively, decades of coherent exploitation of Synthetic Aperture Radars have demonstrated their unique capabilities in precise deformation monitoring, penetration in canopies and subsurfaces (glacier and deserts), 3D imaging of volumes, sensitivity to soil moisture and generation of water vapor maps. Thanks to these capabilities, for one, early warning was possible for a landslide at Bingham Canyon Mine (one of the largest in history), whereas monitoring of infrastructures, natural gas and carbon dioxide storage reservoirs, dams, mines is already an established business. Many of these applications are made possible by the Sentinel-1 SAR constellation, the first to provide systematic coherent acquisitions and free and open data. More than 50000 products are downloaded daily. Nonetheless, the present revisit times of this constellation (1-3 days), or the future 6 hours of Cosmo-SKYmed I and II constellations, will leave a gap that cannot be fruitfully exploited for early warning of landslides, real time mapping of flooding, hydrometeor forecasts, real-time regional alerts of collapse, continuous soil moisture mapping for precision farming. On the other side, the limited penetration capabilities of C-band (Sentinel-1) and X band (Cosmo, TerraSAR constellations) would not allow sufficient penetration to monitor volumes, like ice, sands and forests. In order to fill these gaps, two novel SAR systems are under study and will possibly appear in the next decades: geosynchronous systems and bistatic constellations. The geosynchronous SAR exploits the geostationary orbit to create a hundred kilometers wide real antenna, fixed in the sky, if relative to the ground. If one satellite is exploited, the full antenna would be spanned in twelve hours, and images of medium resolution (ten meter or so) could be got every one-two hours, and finally coarse resolution products, like water vapor or soil moisture maps for flash-flood now-casting, could be generated every fifteen minutes. However, thanks to the intrinsic possibility of phase coherence of the microwaves, a constellation of mini or microsatellites could be deployed to act as a single instrument. Power and resolution would improve with the number of satellites squared, and the revisit would be reduced to minutes. This would be a unique system to provide day-and-night, all-weather imaging capabilities with the additional coherent Radar capabilities to monitor deformations, water-vapor, volumes, soil moisture. The bistatic SAR companion is a passive satellite (or a constellation of) flying in close formation with an active one. Such a system would provide the same capabilities of present TanDEM-X constellation, but enhanced to 3D volume penetration if L band is used.
Aerosolization Characteristics of Hard Impact Testing of Depleted Uranium Penetrators
1982-10-01
meters (8 feet) deep half-cylinder, which is designed to prevent sabot parts from travelling laterally after impaction. The PFT is located about 15...specially designed , cut and perforated collection filter. Configuration I is used for staces one and three while Configuration II is used for stages two...official Department of the Army position, unless so designated by other authorized documents. d0#8 Wt oWnsti~tute indo?.dment of an ome, I producot
Secretary of the Navy, Processor of Oceanography
2009-07-20
earliest days of SOFAR transmissions. We proposed that scattering from internal waves could account for the penetration, and this has now been confirmed...related to change in obliquity (C2). D. Acoustic Noise generated by Ocean Waves . Farrell and I have found that the acoustic noise background in the...deep ocean down to 5 km is associated with short surface waves . There is some evidence for a noise minimum centered at 27 Hz (Dl, D2). This might be
United States crustal thickness
NASA Technical Reports Server (NTRS)
Allenby, R. J.; Schnetzler, C. C.
1983-01-01
The thickness of the crust, the thickness of the basal (intermediate or lower) crustal layer, and the average velocity at the top of the mantle have been mapped using all available deep-penetrating seismic-refraction profiles in the conterminous United States and surrounding border areas. These profiles are indexed to their literature data sources. The more significant long wavelength anomalies on the three maps are briefly discussed and analyzed. An attempt to use Bouguer gravity to validate mantle structure was inconclusive.
Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool
Heiple, C.R.; Burgardt, P.
1984-03-13
An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.
2015-11-01
Fig. 4 Collection pack with gelatin soap and synthetic gelatin ........................4 Fig. 5 Gelatin soap ...designed to hold 2 synthetic gelatin blocks or a combination of gelatin soap and synthetic gelatin for use as the collection medium (Fig. 4). Shelves...were constructed to support the synthetic gelatin and gelatin soap with dimensions of 25.4 cm wide × 25.4 cm deep. Each shelf was attached to the
Non-Invasive NIR Sensor for Quantification of Deep Tissue Oxygenation. Phase 1.
1995-10-01
setting when a suitable human monitor is developed. Several potential investigations are possible depending on final penetration depth and ability to...1995I TYPE OF REPORT: Final, Phase I PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 PR[OPRIETARlY MFO...National Research Council (NIH Publication No. 86-23, Revised 1985). For the protection of human subjects, the investigator(s)3 adhered to policies of
Vacher, C; Cyna-Gorse, F
2015-10-01
Motor innervation of the face depends on the facial nerve for the mobility of the face, on the mandibular nerve, third branch of the trigeminal nerve, which gives the motor innervation of the masticator muscles, and the hypoglossal nerve for the tongue. In case of facial paralysis, the most common palliative surgical techniques are the lengthening temporalis myoplasty (the temporal is innervated by the mandibular nerve) and the hypoglossal-facial anastomosis. The aim of this work is to describe the surgical anatomy of these three nerves and the radiologic anatomy of the facial nerve inside the temporal bone. Then the facial nerve penetrates inside the parotid gland giving a plexus. Four branches of the facial nerve leave the parotid gland: they are called temporal, zygomatic, buccal and marginal which give innervation to the cutaneous muscles of the face. Mandibular nerve gives three branches to the temporal muscles: the anterior, intermediate and posterior deep temporal nerves which penetrate inside the deep aspect of the temporal muscle in front of the infratemporal line. The hypoglossal nerve is only the motor nerve to the tongue. The ansa cervicalis, which is coming from the superficial cervical plexus and joins the hypoglossal nerve in the submandibular area is giving the motor innervation to subhyoid muscles and to the geniohyoid muscle. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Elkasrawy, Moataz; Immel, David; Wen, Xuejun; Liu, Xiaoyan; Liang, Li-Fang
2012-01-01
The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a “pool” of intense myostatin staining was observed among injured skeletal muscle fibers 12–24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury. PMID:22205678
Deep learning algorithms for detecting explosive hazards in ground penetrating radar data
NASA Astrophysics Data System (ADS)
Besaw, Lance E.; Stimac, Philip J.
2014-05-01
Buried explosive hazards (BEHs) have been, and continue to be, one of the most deadly threats in modern conflicts. Current handheld sensors rely on a highly trained operator for them to be effective in detecting BEHs. New algorithms are needed to reduce the burden on the operator and improve the performance of handheld BEH detectors. Traditional anomaly detection and discrimination algorithms use "hand-engineered" feature extraction techniques to characterize and classify threats. In this work we use a Deep Belief Network (DBN) to transcend the traditional approaches of BEH detection (e.g., principal component analysis and real-time novelty detection techniques). DBNs are pretrained using an unsupervised learning algorithm to generate compressed representations of unlabeled input data and form feature detectors. They are then fine-tuned using a supervised learning algorithm to form a predictive model. Using ground penetrating radar (GPR) data collected by a robotic cart swinging a handheld detector, our research demonstrates that relatively small DBNs can learn to model GPR background signals and detect BEHs with an acceptable false alarm rate (FAR). In this work, our DBNs achieved 91% probability of detection (Pd) with 1.4 false alarms per square meter when evaluated on anti-tank and anti-personnel targets at temperate and arid test sites. This research demonstrates that DBNs are a viable approach to detect and classify BEHs.
Deep belief networks for false alarm rejection in forward-looking ground-penetrating radar
NASA Astrophysics Data System (ADS)
Becker, John; Havens, Timothy C.; Pinar, Anthony; Schulz, Timothy J.
2015-05-01
Explosive hazards are one of the most deadly threats in modern conflicts. The U.S. Army is interested in a reliable way to detect these hazards at range. A promising way of accomplishing this task is using a forward-looking ground-penetrating radar (FLGPR) system. Recently, the Army has been testing a system that utilizes both L-band and X-band radar arrays on a vehicle mounted platform. Using data from this system, we sought to improve the performance of a constant false-alarm-rate (CFAR) prescreener through the use of a deep belief network (DBN). DBNs have also been shown to perform exceptionally well at generalized anomaly detection. They combine unsupervised pre-training with supervised fine-tuning to generate low-dimensional representations of high-dimensional input data. We seek to take advantage of these two properties by training a DBN on the features of the CFAR prescreener's false alarms (FAs) and then use that DBN to separate FAs from true positives. Our analysis shows that this method improves the detection statistics significantly. By training the DBN on a combination of image features, we were able to significantly increase the probability of detection while maintaining a nominal number of false alarms per square meter. Our research shows that DBNs are a good candidate for improving detection rates in FLGPR systems.
Suralta, Roel Rodriguez; Niones, Jonathan Manito; Kano-Nakata, Mana; Thi Tran, Thiem; Mitsuya, Shiro; Yamauchi, Akira
2018-03-12
Rainfed lowland (RFL) rice fields have hardpans and experience soil moisture fluctuations (SMF) stress, which influence root system development. Here, we clarify the expression and timing of the plasticity in nodal root elongation through the hardpan under SMF and its contribution to shoot growth using a shallow-rooting IR64 and its deep-rooting introgression line, YTH304. Under SMF, soil moisture content had negative relationship with soil penetration resistance, regardless of hardpan bulk densities. YTH304 had greater root system below the hardpan than IR64 in hardpan with 1.50 but not in 1.70 g cm -3 bulk density (BD). YTH304 had greater plasticity in nodal root elongation through the hardpan than IR64 under SMF, which was clearly expressed during rewatering. YTH304 also had greater soil water uptake below the hardpan during drought and greater shoot growth than IR64. The results imply that deep root system development during SMF was due to the plasticity in nodal root elongation through the hardpan expressed during rewatering rather than during drought periods. This is against the long standing belief that active root elongation through the hardpan happens during drought. This also implies a need to revisit current root screening methods to identify rice lines with good hardpan penetration ability.
NASA Astrophysics Data System (ADS)
Jang, Sun-Joo; Park, Taejin; Shin, Inho; Park, Hyun Sang; Shin, Paul; Oh, Wang-Yuhl
2016-02-01
Optical coherence tomography (OCT) is a useful imaging method for in vivo tissue imaging with deep penetration and high spatial resolution. However, imaging of the beating mouse heart is still challenging due to limited temporal resolution or penetration depth. Here, we demonstrate a multifunctional OCT system for a beating mouse heart, providing various types of visual information about heart pathophysiology with high spatiotemporal resolution and deep tissue imaging. Angiographic imaging and polarization-sensitive (PS) imaging were implemented with the electrocardiogram (ECG)-triggered beam scanning scheme on the high-speed OCT platform (A-line rate: 240 kHz). Depth-resolved local birefringence and the local orientation of the mouse myocardial fiber were visualized from the PS-OCT. ECG-triggered angiographic OCT (AOCT) with the custom-built motion stabilization imaging window provided myocardial vasculature of a beating mouse heart. Mice underwent coronary artery ligation to derive myocardial infarction (MI) and were imaged with the multifunctional OCT system at multiple time points. AOCT and PS-OCT visualize change of functionality of coronary vessels and myocardium respectively at different phases (acute and chronic) of MI in an ischemic mouse heart. Taken together, the integrated imaging of PS-OCT and AOCT would play an important role in study of MI providing multi-dimensional information of the ischemic mouse heart in vivo.
Elkasrawy, Moataz; Immel, David; Wen, Xuejun; Liu, Xiaoyan; Liang, Li-Fang; Hamrick, Mark W
2012-01-01
The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a "pool" of intense myostatin staining was observed among injured skeletal muscle fibers 12-24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury. © The Author(s) 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.
These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less
Dang, Jian You; Pei, Xue Xia; Zhang, Ding Yi; Wang, Jiao Ai; Zhang, Jing; Wu, Xue Ping
2016-09-01
Through a three-year field trail, effects of deep plowing time during the fallow period on water storage of 0-200 cm soil before sowing, water consumption of growth period, and growth and development of wheat were investigated. Results demonstrated that soil water storage (SWS) of the fallow period was influenced by deep plowing time, precipitation, and rainfall distribution. With postponing the time of deep plowing in the fallow period, SWS was increased firstly, and then decreased. SWS with deep plowing in early or middle of August was 23.9-45.8 mm more than that with deep plowing in mid-July. It would benefit SWS when more precipitation occurred in the fallow period or more rainfall was distributed in August and September. Deep plowing at a proper time could facilitate SWS, N and P absorption of wheat, and the number of stems before winter and the spike number. The yield of wheat with deep plowing in early or middle August was 3.67%-18.2% higher than that with deep plowing in mid-July, and it was positively correlated with water storage of 0-200 cm soil during the fallow period and SWS of each soil layer during the wheat growth period. However, this correlation coefficient would be weakened by adequate rainfall in spring, the critical growing period for wheat. The time of deep plowing mainly affected the water consumption at soil layer of 60-140 cm during wheat growth. Under current farming conditions of south Shanxi, the increased grain yield of wheat could be achieved by combining the measures of high wheat stubble and wheat straw covering for holding soil water and deep plowing between the Beginning of Autumn (August 6th) and the Limit of Heat (August 21st) for promoting soil water penetration characteristics to improve the number of stems before winter and spike.
Distributed Episodic Exploratory Planning (DEEP)
2008-12-01
API). For DEEP, Hibernate offered the following advantages: • Abstracts SQL by utilizing HQL so any database with a Java Database Connectivity... Hibernate SQL ICCRTS International Command and Control Research and Technology Symposium JDB Java Distributed Blackboard JDBC Java Database Connectivity...selected because of its opportunistic reasoning capabilities and implemented in Java for platform independence. Java was chosen for ease of
Capabilities of the Large-Scale Sediment Transport Facility
2016-04-01
experiments in wave /current environments. INTRODUCTION: The LSTF (Figure 1) is a large-scale laboratory facility capable of simulating conditions...comparable to low- wave energy coasts. The facility was constructed to address deficiencies in existing methods for calculating longshore sediment...transport. The LSTF consists of a 30 m wide, 50 m long, 1.4 m deep basin. Waves are generated by four digitally controlled wave makers capable of producing
Preliminary Study for Designing a Novel Vein-Visualizing Device
Kim, Donghoon; Kim, Yujin; Yoon, Siyeop; Lee, Deukhee
2017-01-01
Venipuncture is an important health diagnosis process. Although venipuncture is one of the most commonly performed procedures in medical environments, locating the veins of infants, obese, anemic, or colored patients is still an arduous task even for skilled practitioners. To solve this problem, several devices using infrared light have recently become commercially available. However, such devices for venipuncture share a common drawback, especially when visualizing deep veins or veins of a thick part of the body like the cubital fossa. This paper proposes a new vein-visualizing device applying a new penetration method using near-infrared (NIR) light. The light module is attached directly on to the declared area of the skin. Then, NIR beam is rayed from two sides of the light module to the vein with a specific angle. This gives a penetration effect. In addition, through an image processing procedure, the vein structure is enhanced to show it more accurately. Through a phantom study, the most effective penetration angle of the NIR module is decided. Additionally, the feasibility of the device is verified through experiments in vivo. The prototype allows us to visualize the vein patterns of thicker body parts, such as arms. PMID:28178227
Assessment of liquefaction potential during earthquakes by arias intensity
Kayen, R.E.; Mitchell, J.K.
1997-01-01
An Arias intensity approach to assess the liquefaction potential of soil deposits during earthquakes is proposed, using an energy-based measure of the severity of earthquake-shaking recorded on seismograms of the two horizontal components of ground motion. Values representing the severity of strong motion at depth in the soil column are associated with the liquefaction resistance of that layer, as measured by in situ penetration testing (SPT, CPT). This association results in a magnitude-independent boundary that envelopes initial liquefaction of soil in Arias intensity-normalized penetration resistance space. The Arias intensity approach is simple to apply and has proven to be highly reliable in assessing liquefaction potential. The advantages of using Arias intensity as a measure of earthquake-shaking severity in liquefaction assessment are: Arias intensity is derived from integration of the entire seismogram wave form, incorporating both the amplitude and duration elements of ground motion; all frequencies of recorded motion are considered; and Arias intensity is an appropriate measure to use when evaluating field penetration test methodologies that are inherently energy-based. Predictor equations describing the attenuation of Arias intensity as a function of earthquake magnitude and source distance are presented for rock, deep-stiff alluvium, and soft soil sites.
Shielding gas selection for increased weld penetration and productivity in GTA welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinonen, J.I.
1996-12-31
The effects of hydrogen and helium additions to the argon shielding gas on GTA weld pool profiles in the case of two austenitic stainless steel sheets 3 mm thick are investigated here in detail. One of the test steels shows good weldability, with a relatively deep, narrow weld pool profile, but the other is poorly weldable, with a shallow, wide weld pool when argon shielding gas is used. Bead-on-plate test welds were produced with arc shields of argon, argon with hydrogen additions of 2 to 18.2% and argon with helium additions of 20 to 80%. The hydrogen additions increases themore » depth of weld penetration in both test steels, but productivity with respect to maximum welding speed can be improved to an accepted level only with steel sheets of good weldability in terms of a relatively high depth/width (D/W) ratio. The depth of penetration in the test steel of good weldability increased somewhat with helium additions and the D/W ratio remained unchanged, while these parameters increased markedly in the poorly weldable steel when a He-20% Ar shielding gas was used and resembled those of the more weldable steel.« less
Modeling of submicrometer aerosol penetration through sintered granular membrane filters.
Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle
2004-06-01
We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).
A growth path for deep space communications
NASA Technical Reports Server (NTRS)
Layland, J. W.; Smith, J. G.
1987-01-01
Increased Deep Space Network (DPN) receiving capability far beyond that now available for Voyager is achievable through a mix of increased antenna aperture and increased frequency of operation. In this note a sequence of options are considered: adding midsized antennas for arraying with the existing network at X-band; converting to Ka-band and adding array elements; augmenting the DSN with an orbiting Ka-band station; and augmenting the DSN with an optical receiving capability, either on the ground or in space. Costs of these options are compared as means of achieving significantly increased receiving capability. The envelope of lowest costs projects a possible path for moving from X-band to Ka-band and thence to optical frequencies, and potentially for moving from ground-based to space-based apertures. The move to Ka-band is clearly of value now, with development of optical communications technology a good investment for the future.
Space Radar Image of Safsaf Oasis, Egypt
NASA Technical Reports Server (NTRS)
1994-01-01
This three-frequency space radar image of south-central Egypt demonstrates the unique capability of imaging radar to penetrate thin sand cover in arid regions to reveal hidden details below the surface. Nearly all of the structures seen in this image are invisible to the naked eye and to conventional optical satellite sensors. Features appear in various colors because the three separate radar wavelengths are able to penetrate the sand to different depths. Areas that appear red or orange are places that can be seen only by the longest wavelength, L-band, and they are the deepest of the buried structures. Field studies in this area indicate L-band can penetrate as much as 2 meters (6.5 feet) of very dry sand to image buried rock structures. Ancient drainage channels at the bottom of the image are filled with sand more than 2 meters (6.5 feet) thick and therefore appear dark because the radar waves cannot penetrate them. The fractured orange areas at the top of the image and the blue circular structures in the center of the image are granitic areas that may contain mineral ore deposits. Scientists are using the penetrating capabilities of radar imaging in desert areas in studies of structural geology, mineral exploration, ancient climates, water resources and archaeology. This image is 51.9 kilometers by 30.2 kilometers (32.2 miles by 18.7 miles) and is centered at 22.7 degrees north latitude, 29.3degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 16, 1994, on board the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.
Deep Space Gateway - Enabling Missions to Mars
NASA Technical Reports Server (NTRS)
Rucker, Michelle; Connolly, John
2017-01-01
There are many opportunities for commonality between Lunar vicinity and Mars mission hardware and operations. Best approach: Identify Mars mission risks that can be bought down with testing in the Lunar vicinity, then explore hardware and operational concepts that work for both missions with minimal compromise. Deep Space Transport will validate the systems and capabilities required to send humans to Mars orbit and return to Earth. Deep Space Gateway provides a convenient assembly, checkout, and refurbishment location to enable Mars missions Current deep space transport concept is to fly missions of increasing complexity: Shakedown cruise, Mars orbital mission, Mars surface mission; Mars surface mission would require additional elements.
[Рroblems of ensuring the safety of deep-fried fast food products].
Simakova, I V; Perkel, R L; Kutkina, M N; Volovey, A G
There are no doubts that fast-food restaurants, where deep-frying is actively used, are now very popular in Russia. This article focuses on the problems of deep-fried food safety. During deep-frying a considerable amount of fat penetrates the food. That is why the safety of deep-fried food depends on the fat safety and quality, on the level of fat absorption, and on the intensity of oxidative changes of fat during storage. This article contains the results of the research, which demonstrate that in order to insure the safety of fast-food products it is necessary to introduce into normative and technical documents the following standards: peroxide value, acid value, content of oxidation products insoluble in petroleum ether, and content of epoxides in fat phase and to food mass. According to the current norms on content of oxidation products in deep-frying fat and allowed level of fat absorption by a food product equal to 20%, the recommended level of oxidation products insoluble in petroleum ether for French fries is not higher than 0.2% to the food mass. As a temporary measure we can recommend the level of epoxides not higher than 5 mmol/kg to the food mass. It is important to control the content of trans-isomers in deepfrying fat, it must be not higher than 2% of fatty acid mass. In order to lower fat absorption during French fries production it is recommended to use halffinished products of high readiness, and to air fry.
A novel bioerodible deep scleral lamellar cyclosporine implant for uveitis.
Gilger, Brian C; Salmon, Jacklyn H; Wilkie, David A; Cruysberg, Lars P J; Kim, Jonghyeon; Hayat, Matt; Kim, Hyuncheol; Kim, Stephanie; Yuan, Peng; Lee, Susan S; Harrington, Susan M; Murray, Patrick R; Edelhauser, Henry F; Csaky, Karl G; Robinson, Michael R
2006-06-01
To determine the feasibility, safety, and effectiveness of an episcleral or deep scleral lamellar sustained release cyclosporine (CsA) device in a naturally occurring animal model of uveitis. A two-compartment perfusion chamber was used to assess in vitro human and equine scleral permeability of fluorescein, dexamethasone-fluorescein, or CsA. A biodegradable, matrix-reservoir CsA implant was designed, and release rates of CsA were determined in vitro. Tissue CsA levels were measured in eyes with the implant. Horses with equine recurrent uveitis (ERU) received episcleral or deep scleral lamellar CsA implants and were monitored for up to 3 years. Dexamethasone-fluorescein and CsA penetrated the in vitro equine sclera poorly; however, low but detectable levels of CsA were detected intraocularly in vivo. The implant placed episclerally failed to control inflammatory episodes in ERU. CsA implants placed in the deep sclera adjacent to the suprachoroidal space resulted in high levels of CsA in most ocular tissues. In clinical equine patients with ERU, frequency of uveitic flare-ups was significantly decreased after implantation of a deep scleral lamellar CsA implant. Diffusion of CsA across the sclera from the episcleral space was not a feasible method of drug delivery to the equine eye. However, placing a deep scleral lamellar CsA implant adjacent to the suprachoroidal space was effective in achieving therapeutic ocular drug concentrations and controlling uveitis in horses with ERU.
Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar
2017-09-01
Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Control of rabbit dura mater optical properties with osmotical liquids
NASA Astrophysics Data System (ADS)
Yao, Lei; Cheng, Haiying; Luo, Qingming; Zhang, Wei; Zeng, Shaoqun; Tuchin, Valery V.
2002-04-01
An experimental study of controlling the optical properties of in vitro and in vivo rabbit dura mater with administration of osmotical agents, 40% glucose solution and glycerol, using video camera and spectrometer was presented. The preliminary results of experimental study of influence of osmotical liquids (glucose solutions, glycerol) on transmittance (in vitro) and reflectance (in vivo) spectra of rabbit dura mater were reported. The significant decreasing of the reflectance and increasing of the transmittance of dura mater under action of osmotical solutions were demonstrated. Experiments showed that administration of osmolytes to dura mater allowed for effective and temporary control of its optical characteristics, which made dura mater more transparent, increased the ability of light penetrating the tissue, and consequently improved the optical imaging depth. It is a significant study, which can improve penetration of optical imaging of cerebral function and acquire more information of the deep brain tissue.
NASA Technical Reports Server (NTRS)
Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Lepping, R. P.; Sibeck, D. G.
1984-01-01
The relationships between the Solar Magnetospheric (SM) y-component of the interplanetary magnetic field (IMF) and the lobe and plasmasheet magnetic fields have been studied for the two ISEE-3 deep tail passes. It is found that for positive sector IMFs, 13 percent of the interplanetary magnetic field penetrates into the aberrated north-dawn and south-dusk lobe quadrants, and about the same amount in the north-dusk and south-dawn lobe quadrants for negative sector IMFs. For the above cases, field penetration is significantly less for opposite polarity IMFs. The former results are generally consistent with open magnetospheric models, but the latter (the lack of response in certain quadrants) are unexplained by theory at this time. If the magnitude of the plasmasheet B(y) fields are related to plasma pressure anisotropies, very small anisotropies of about 1.01 are expected.
Deep fiber networks: new ready-to-deploy architectures yield technical and economic benefits
NASA Astrophysics Data System (ADS)
Sipes, Donald L., Jr.; Loveless, Robert
2001-07-01
The advent of digital technology in HFC networks has opened up a myriad of opportunities for MSOs. The introduction of these advanced services comes at a cost: namely, the need for increased capacity; and especially increased reusable bandwidth. In HFC networks all services are ostensibly broadcast: the prime difference between services being the footprint over which these services are broadcast. Channel lineups for broadcast video services typically cover the largest are. Advertising zones are typically second, usually on the order of a typical 20K home hub. For initial penetrations for high speed data services such as cable modems, a typical hub site will be divided into several sectors using a single 6 MHz channel. Telephony services are broadcast over the smallest area, typically a 6 MHz channel for each node. Naturally as penetration of these services increase, the broadcast area for each will also decrease.
Ventilation of multi-entranced rodent burrows by boundary layer eddies.
Brickner-Braun, Inbal; Zucker-Milwerger, Daniel; Braun, Avi; Turner, J Scott; Pinshow, Berry; Berliner, Pedro
2014-12-01
Rodent burrows are often assumed to be environments wherein the air has a high concentration of CO₂. Although high burrow [CO₂] has been recorded, many studies report burrow [CO₂] that differs only slightly from atmospheric concentrations. Here, we advocate that one of the reasons for these differences is the penetration into burrows of air gusts (eddies), which originate in the turbulent boundary layer and prevent build-up of CO₂. We have characterized the means by which burrows of Sundevall's jird, which are representative of the burrows of many rodent species with more than one entrance, are ventilated. Our results demonstrate that, even at low wind speeds, the random penetration of eddies into a burrow through its openings is sufficient to keep the burrow [CO₂] low enough to be physiologically inconsequential, even in its deep and remote parts. © 2014. Published by The Company of Biologists Ltd.
Convective overshooting in the evolution of very massive stars
NASA Technical Reports Server (NTRS)
Stothers, R.; Chin, C.-W.
1981-01-01
Possible convective overshooting in stars of 30-120 solar masses are considered, including a merger between the convective core and the intermediate zone, and penetration by the outer convection zone into the hydrogen-shell region when the star is a supergiant. Convective mixing between the core and inner envelopes is found to lead to a brief renewal of hydrogen burning in the core, and a moderate widening of the main sequence bond in the H-R diagram. Deep penetration by the outer convection zone is found to force the star out of the red supergiant configuration and into a configuration near the main sequence. This would account for the apparent spread of the uppermost part of the main sequence and the concentration of luminous supergiants towards earlier spectral types. In addition, heavy mass loss need not be assumed to achieve the points of agreement, and are tentatively considered unimportant from an evolutionary point of view.
Pediatric air gun shot injury.
Khan, Ubaid U; Kamal, Naglaa M; Mirza, Shazia J; Sherief, Laila M
2014-12-01
Air guns (AGs) use air or another compressed gas to propel a projectile. Different injuries may occur in children due to their body structure, which is less-resistant with thin soft tissue coverage that can be easily penetrated by an AG shot. We present 3 cases of pediatric AG shot injury. The first-case had right lumber deep tissue penetration of AG pallet without internal damage, the second-case had a complex course of pellet into the perineum, and the third-case was shot in the left shoulder. All cases were accidentally shot. The shooters were all children, and relatives of the victims. All patients were generally stable on arrival. Two cases were operated, and one received conservative management. On follow up, no complications were noted. At first sight, AGs and air rifles may appear relatively harmless, but they are potentially lethal and children should not be allowed to play with them.
Seismic Imaging Reveals Deep-Penetrating Fault Planes in the Wharton Basin Oceanic Mantle
NASA Astrophysics Data System (ADS)
Carton, H. D.; Singh, S. C.; Dyment, J.; Hananto, N. D.; Chauhan, A.
2011-12-01
We present images from a deep multi-channel seismic reflection survey acquired in 2006 over the oceanic lithosphere of the Wharton Basin offshore northern Sumatra, NW of Simeulue island. The main ~230-km long seismic profile is roughly parallel to the trench at ~32-66 km distance from the subduction front and crosses (at oblique angles to both flow line and isochron directions) an entire segment of 55-57 my-old fast-spread crust formed at the extinct Wharton spreading center, as well as two bounding ~N5°E trending fracture zones near its extremities; complementary data is provided by the oceanic portions of two margin-crossing profiles on either side shot during the same survey. This high-quality, 12-km streamer dataset acquired for deep reflection imaging (10000 cu in tuned airgun array and 15-m source and streamer depths) reveals the presence of mostly SE-dipping (20 to 40 degrees dip) events cutting across and extending below the oceanic Moho, down to a maximum depth below seafloor of ~37 km, at ~5 km spacing along the trench-parallel profile. Similar dipping mantle events are imaged on the oceanic portion of another long-offset profile acquired in 2009 offshore central Sumatra south of Pagai island, which will also be presented. Such events are unlikely to be imaging artefacts of the 2D acquisition, such as out-of-plane energy originating from sharp, buried basement reliefs trending obliquely to the profile. Due to their geometry, they do not seem to be associated with plate bending at the trench outer-rise, which has a relatively modest expression at the seafloor and within the incoming sedimentary section north of the Simeulue elbow. We propose that these deep-penetrating dipping reflectors are fossil fault planes formed due to compressive stresses at the beginning of the continent-continent collision between India and Eurasia, the early stages of which were responsible for the cessation of seafloor spreading at the Wharton ridge at ca 40 Ma.
Qu, Wei-ping; Liu, Wen-qing; Liu, Jian-guo; Lu, Yi-huai; Zhu, Jun; Qin, Min; Liu, Cheng
2006-11-01
In satellite remote-sensing detection, cloud as an interference plays a negative role in data retrieval. How to discern the cloud fields with high fidelity thus comes as a need to the following research. A new method rooting in atmospheric radiation characteristics of cloud layer, in the present paper, presents a sort of solution where single-band brightness variance ratio is used to detect the relative intensity of cloud clutter so as to delineate cloud field rapidly and exactly, and the formulae of brightness variance ratio of satellite image, image reflectance variance ratio, and brightness temperature variance ratio of thermal infrared image are also given to enable cloud elimination to produce data free from cloud interference. According to the variance of the penetrating capability for different spectra bands, an objective evaluation is done on cloud penetration of them with the factors that influence penetration effect. Finally, a multi-band data fusion task is completed using the image data of infrared penetration from cirrus nothus. Image data reconstruction is of good quality and exactitude to show the real data of visible band covered by cloud fields. Statistics indicates the consistency of waveband relativity with image data after the data fusion.
NASA Astrophysics Data System (ADS)
Goncalves, S. B.; Peixoto, A. C.; Silva, A. F.; Correia, J. H.
2015-05-01
This paper presents a detailed description of the design, fabrication and mechanical characterization of 3D microelectrode arrays (MEA) that comprise high aspect-ratio shafts and different penetrating lengths of electrodes (from 3 mm to 4 mm). The array’s design relies only on a bulk silicon substrate dicing saw technology. The encapsulation process is accomplished by a medical epoxy resin and platinum is used as the transduction layer between the probe and neural tissue. The probe’s mechanical behaviour can significantly affect the neural tissue during implantation time. Thus, we measured the MEA maximum insertion force in an agar gel phantom and a porcine cadaver brain. Successful 3D MEA were produced with shafts of 3 mm, 3.5 mm and 4 mm in length. At a speed of 180 mm min-1, the MEA show maximum penetrating forces per electrode of 2.65 mN and 12.5 mN for agar and brain tissue, respectively. A simple and reproducible fabrication method was demonstrated, capable of producing longer penetrating shafts than previously reported arrays using the same fabrication technology. Furthermore, shafts with sharp tips were achieved in the fabrication process simply by using a V-shaped blade.
A Situation Awareness Assistant for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Boy, Guy A.; Platt, Donald
2013-01-01
This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.
Radio Science from an Optical Communications Signal
NASA Technical Reports Server (NTRS)
Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal
2013-01-01
NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.
Langford, Gabriel J; Janovy, John
2009-10-01
The present study used experimental infections to compare the life cycles and life histories of 6 Rhabdias spp. infecting snakes and anurans. Free-living development of anuran lungworms was primarily limited to heterogonic reproduction, and females utilized matricidal endotoky exclusively, whereas snake lungworms primarily reproduced homogonically and, when heterogonic reproduction occurred, females used a combination of releasing eggs and matricidal endotoky. Infective snake lungworms survived for longer periods in fresh water compared to anuran worms. Infective anuran lungworms penetrated into the skin of frogs and toads; few infections resulted from per os infections. In contrast, snake lungworms were unable to penetrate skin; instead, infective juveniles penetrated into snake esophageal tissue during per os infections. Despite separate points of entry, anuran and snake lungworms both migrated and developed in the fascia, eventually penetrating into the body cavity of the host. Worms molted to adulthood inside the body cavity and subsequently penetrated into the host's lungs, where they fed on blood while becoming gravid. Adult lungworm survival varied among lungworm species, but, in general, snake lungworms were longer lived than anuran worms. Anuran lungworms were poorly suited for transmission via transport hosts, whereas snake lungworms were consistently capable of establishing infections using transport hosts. Overall, these observations suggest that snake and anuran lungworms have discrepant life cycles and life history strategies.
USDA-ARS?s Scientific Manuscript database
For a chemical to have a biological impact on an organism, the molecules must be capable of being transported across the membranes of cells. Lipophilic insecticides that can pass through lipid bilayers and penetrate the insect cuticle can lead to rapid intoxication or mortality by acting on the nerv...
Innovative Clinical Assessment Technologies: Challenges and Opportunities in Neuroimaging
ERIC Educational Resources Information Center
Miller, Gregory A.; Elbert, Thomas; Sutton, Bradley P.; Heller, Wendy
2007-01-01
The authors review the reasons for the contrast between the remarkable advances that hemodynamic and electromagnetic imaging of the human brain appear capable of delivering in clinical practice in psychology and their very limited penetration into practice to date. Both the heritages of the relevant technologies and the historical orientation of…
The Influence of Snowmobile Trails on Coyote Movements during Winter in High-Elevation Landscapes
Gese, Eric M.; Dowd, Jennifer L. B.; Aubry, Lise M.
2013-01-01
Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis) remains controversial due to the concern of coyote (Canis latrans) use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep), radio-collared coyotes persisted at high elevations (>2,500 m) year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13%) for a mean distance of 149 m (random: 59 m). Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced coyote movements within an area containing lynx and designated lynx habitat. PMID:24367565
The influence of snowmobile trails on coyote movements during winter in high-elevation landscapes.
Gese, Eric M; Dowd, Jennifer L B; Aubry, Lise M
2013-01-01
Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis) remains controversial due to the concern of coyote (Canis latrans) use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep), radio-collared coyotes persisted at high elevations (>2,500 m) year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13%) for a mean distance of 149 m (random: 59 m). Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced coyote movements within an area containing lynx and designated lynx habitat.
Sahle, Fitsum F; Wohlrab, Johannes; Neubert, Reinhard H H
2014-02-01
Several skin diseases such as psoriasis and atopic dermatitis are associated with the depletion or disturbance of stratum corneum (SC) lipids such as ceramides (CERs), free fatty acids and cholesterol. Studies suggested that replenishment of these lipids might help to treat diseased, affected or aged skin. With this premises in mind, there are some formulations in the market that contain SC lipids and currently, to facilitate permeation of the lipids deep into the SC, various CERs, and other SC lipid microemulsions (MEs) were developed and characterised using lecithin or TEGO® CARE PL 4 (TCPL4) as base surfactants. However, to date, there are no reports that involve the permeability of SC lipids into and across the SC, and therefore, the penetration of CER [NP] as a model ceramide from various formulations was investigated ex vivo using Franz diffusion cell. Besides, the toxicity of the MEs was assessed using hen's egg test chorioallantoic membrane (HET-CAM). The results of the study showed that CER [NP] could not permeate into deeper layers of the SC from a conventional hydrophilic cream. Unlike the cream, CER [NP] permeated into the deeper layers of the SC from both type of MEs, where permeation of the CER was more and into deeper layers from droplet type and lecithin-based MEs than bicontinuous (BC) type and TCPL4 based MEs, respectively. The CER also permeated into deeper layers from ME gels which was, however, shallow and to a lesser extent when compared with the MEs. The results of HET-CAM showed that both MEs are safe to be used topically, with lecithin-based MEs exhibiting better safety profiles than TCPL4 based MEs. Concluding, the study showed that the MEs are safe to be used on the skin for the controlled penetration of CER [NP] deep into the SC. Copyright © 2013 Elsevier B.V. All rights reserved.
Compound mechanism of fatal neck injury: A case report of a tiger attack in a zoo.
Szleszkowski, Łukasz; Thannhäuser, Agata; Jurek, Tomasz
2017-08-01
Fatal injuries caused by attacks by large wild cats are extremely rare in forensic medical practice in Europe. There are very few cases described in the forensic medical literature concerning incidents in zoos similar to the tiger attack on a 58-year-old male zoo employee that we present here. While preparing a runway for tigers, the man was attacked by a male Sumatran tiger. Another zoo employee was an eyewitness to the accident; in his testimony he described the sequence of events in detail. The autopsy showed the injuries typical of a tiger attack: traces of claws and canine teeth indicating that the victim of the attack was knocked down from behind, along with deep and extensive fatal wounds to the neck. The injuries were inflicted by means of a compound mechanism: tissues were penetrated by the animal's canines, crushed with great force (transfixing injury), and violently distended. The skin revealed four characteristic deep wounds caused by canines as well as bite marks resulting from the action of six incisors. The neck area revealed extensive damage, including torn muscles, the esophagus and trachea, large blood vessels of the neck, and fractures of vertebrae C2 and C5 with internal channels resulting directly from penetration by the animal's canines. The mechanism of distension, as a result of the animal jerking its head after biting the victim in the neck, produced a complete tear of the spine and the vertebral arteries, as well as an intramural rupture of the carotid arteries which has never been described before. In the interests of a detailed assessment of bone damage, the cervical spine was macerated. The applied autopsy techniques and detailed analysis of injuries enabled us to demonstrate the compound mechanism that inflicted them, combining penetration of tissues by the canines, crushing, and distension. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gelmini, A.; Gottardi, G.; Moriyama, T.
2017-10-01
This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, T.; Kimura, K.
1959-12-01
Dust filters were examined using a radioactive solidaerosol, decay product daughters of Rn/sup 220/. An examination with a thermal precipitator revealed that the major part of particles in the radioactive aerosol were smaller than 0.5 mu in diameter. Twenty-one kinds of filters were tested. The filtering efficiency was highest in asbestos fiber filters. A radioautographic examination revealed that the radioactive substance penetrated as deep as 1.4 to 1.5 mm into the filter layer. (auth)
Paillet, Frederick L.; Kim, K.
1987-01-01
The character and distribution of borehole breakouts in deeply buried basalts at the Hanford Site in S central Washington State are examined in light of stress indicator data and hydraulic- fracturing stress data by means of acoustic televiewer and acoustic waveform logging systems. A series of boreholes penetrating the Grande Ronde Basalt of the Columbia River Basalt Group were logged to examine the extent of breakouts at depths near 1000 m. -from Authors
2013-12-18
from a combination of increased electricity demand, poor output from the large contingent of wind turbines in Texas (the most in the U.S.), and...2.8 GW of wind power farms in California are onshore, consist of low-altitude (m) wind turbines , and are located in 8 of California’s 58 counties...offshore wind turbines , and the improvement of turbine efficiency will enable massive potential wind resources. Looking more closely at the temporal
NASA Technical Reports Server (NTRS)
Loo, B. H.; Burns, D. H.; Lee, Y. G. L.; Emerson, M. T.
1991-01-01
Fourier transform infrared (FTIR) and Raman spectroscopic techniques were used to study the solution concentration gradient in succino nitrile-rich and water-rich homogeneous solutions. The spectroscopic data shows significant concentration dependency. Although FTIR-attenuated total reflectance could not yield surface spectra since the evanescent infrared wave penetrated deep into the bulk solution, it showed that water-rich clusters were decreased at higher temperatures. This result is consistent with the calorimetric results reported earlier.
Low Cost, Low Power, Passive Muon Telescope for Interrogating Martian Sub-Surface
NASA Technical Reports Server (NTRS)
Kedar, Sharon; Tanaka, Hirukui; Naudet, Charles; Plaut, Jeffrey J.; Jones, Cathleen E.; Webb, Frank H.
2012-01-01
It has been demonstrated on Earth that a low power, passive muon detector can penetrate deep into geological structures up to several kilometers in size providing high density images of their interiors. Muon tomography is an entirely new class of planetary instrumentation that is ideally suited to address key areas in Mars Science, such as: the search for life and habitable environments, the distribution and state of water and ice and the level of geologic activity on Mars today.
An adaptive deep learning approach for PPG-based identification.
Jindal, V; Birjandtalab, J; Pouyan, M Baran; Nourani, M
2016-08-01
Wearable biosensors have become increasingly popular in healthcare due to their capabilities for low cost and long term biosignal monitoring. This paper presents a novel two-stage technique to offer biometric identification using these biosensors through Deep Belief Networks and Restricted Boltzman Machines. Our identification approach improves robustness in current monitoring procedures within clinical, e-health and fitness environments using Photoplethysmography (PPG) signals through deep learning classification models. The approach is tested on TROIKA dataset using 10-fold cross validation and achieved an accuracy of 96.1%.
Dynamic Behavior of Sand: Annual Report FY 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoun, T; Herbold, E; Johnson, S
2012-03-15
Currently, design of earth-penetrating munitions relies heavily on empirical relationships to estimate behavior, making it difficult to design novel munitions or address novel target situations without expensive and time-consuming full-scale testing with relevant system and target characteristics. Enhancing design through numerical studies and modeling could help reduce the extent and duration of full-scale testing if the models have enough fidelity to capture all of the relevant parameters. This can be separated into three distinct problems: that of the penetrator structural and component response, that of the target response, and that of the coupling between the two. This project focuses onmore » enhancing understanding of the target response, specifically granular geomaterials, where the temporal and spatial multi-scale nature of the material controls its response. As part of the overarching goal of developing computational capabilities to predict the performance of conventional earth-penetrating weapons, this project focuses specifically on developing new models and numerical capabilities for modeling sand response in ALE3D. There is general recognition that granular materials behave in a manner that defies conventional continuum approaches which rely on response locality and which degrade in the presence of strong response nonlinearities, localization, and phase gradients. There are many numerical tools available to address parts of the problem. However, to enhance modeling capability, this project is pursuing a bottom-up approach of building constitutive models from higher fidelity, smaller spatial scale simulations (rather than from macro-scale observations of physical behavior as is traditionally employed) that are being augmented to address the unique challenges of mesoscale modeling of dynamically loaded granular materials. Through understanding response and sensitivity at the grain-scale, it is expected that better reduced order representations of response can be formulated at the continuum scale as illustrated in Figure 1 and Figure 2. The final result of this project is to implement such reduced order models in the ALE3D material library for general use.« less