Science.gov

Sample records for deep phase profile

  1. A fast parallel imaging rotary phased array head coil with improved sensitivity profile deep in the center of the brain.

    PubMed

    Weber, Ewald; Li, Bing Keong; Liu, Feng; Crozier, Stuart

    2007-01-01

    A new class of a receive-only 2T 4-element rotary phased array head coil has been proposed for MRI brain imaging applications. Coil elements of the rotary phased array head coil have "paddle-like" structures consisting of a pair of main conductors located on opposite sides, inserted equi-angularly around and over the head. Using such a unique design, the proposed rotary head coil can improve the sensitivity deep at the centre of the brain and produces highly homogeneous brain images. The rotary phased array head coil is numerically modeled using a hybrid MoM/FEM method and a prototype was constructed accordingly. In vivo MR brain imaging using the prototype rotary phased array head coil has been undertaken and the acquired brain images show high homogeneity as anticipated. In addition, parallel imaging, VD-GRAPPA, is used in conjunction with the rotary phased array head coil to enable rapid imaging.

  2. DeepPep: Deep proteome inference from peptide profiles

    PubMed Central

    2017-01-01

    Protein inference, the identification of the protein set that is the origin of a given peptide profile, is a fundamental challenge in proteomics. We present DeepPep, a deep-convolutional neural network framework that predicts the protein set from a proteomics mixture, given the sequence universe of possible proteins and a target peptide profile. In its core, DeepPep quantifies the change in probabilistic score of peptide-spectrum matches in the presence or absence of a specific protein, hence selecting as candidate proteins with the largest impact to the peptide profile. Application of the method across datasets argues for its competitive predictive ability (AUC of 0.80±0.18, AUPR of 0.84±0.28) in inferring proteins without need of peptide detectability on which the most competitive methods rely. We find that the convolutional neural network architecture outperforms the traditional artificial neural network architectures without convolution layers in protein inference. We expect that similar deep learning architectures that allow learning nonlinear patterns can be further extended to problems in metagenome profiling and cell type inference. The source code of DeepPep and the benchmark datasets used in this study are available at https://deeppep.github.io/DeepPep/. PMID:28873403

  3. Natural deep eutectic solvents: cytotoxic profile.

    PubMed

    Hayyan, Maan; Mbous, Yves Paul; Looi, Chung Yeng; Wong, Won Fen; Hayyan, Adeeb; Salleh, Zulhaziman; Mohd-Ali, Ozair

    2016-01-01

    The purpose of this study was to investigate the cytotoxic profiles of different ternary natural deep eutectic solvents (NADESs) containing water. For this purpose, five different NADESs were prepared using choline chloride as a salt, alongside five hydrogen bond donors (HBD) namely glucose, fructose, sucrose, glycerol, and malonic acid. Water was added as a tertiary component during the eutectics preparation, except for the malonic acid-based mixture. Coincidentally, the latter was found to be more toxic than any of the water-based NADESs. A trend was observed between the cellular requirements of cancer cells, the viscosity of the NADESs, and their cytotoxicity. This study also highlights the first time application of the conductor-like screening model for real solvent (COSMO-RS) software for the analysis of the cytotoxic mechanism of NADESs. COSMO-RS simulation of the interactions between NADESs and cellular membranes' phospholipids suggested that NADESs strongly interacted with cell surfaces and that their accumulation and aggregation possibly defined their cytotoxicity. This reinforced the idea that careful selection of NADESs components is necessary, as it becomes evident that organic acids as HBD highly contribute to the increasing toxicity of these neoteric mixtures. Nevertheless, NADESs in general seem to possess relatively less acute toxicity profiles than their DESs parents. This opens the door for future large scale utilization of these mixtures.

  4. Bibliometric profile of deep brain stimulation.

    PubMed

    Hu, Kejia; Moses, Ziev B; Xu, Wendong; Williams, Ziv

    2017-05-08

    We aimed to identify and analyze the characteristics of the 100 most highly-cited papers in the research field of deep brain stimulation (DBS). The Web of Science was searched for highly-cited papers related to DBS research. The number of citations, countries, institutions of origin, year of publication, and research area were noted and analyzed. The 100 most highly-cited articles had a mean of 304.15 citations. These accrued an average of 25.39 citations a year. The most represented target by far was the subthalamic nucleus (STN). These articles were published in 46 high-impact journals, with Brain (n = 10) topping the list. These articles came from 11 countries, with the USA contributing the most highly-cited articles (n = 29); however, it was the University of Toronto (n = 13) in Canada that was the institution with the most highly-cited studies. This study identified the 100 most highly-cited studies and highlighted a historical perspective on the progress in the field of DBS. These findings allow for the recognition of the most influential reports and provide useful information that can indicate areas requiring further investigation.

  5. Airline Passenger Profiling Based on Fuzzy Deep Machine Learning.

    PubMed

    Zheng, Yu-Jun; Sheng, Wei-Guo; Sun, Xing-Ming; Chen, Sheng-Yong

    2016-09-27

    Passenger profiling plays a vital part of commercial aviation security, but classical methods become very inefficient in handling the rapidly increasing amounts of electronic records. This paper proposes a deep learning approach to passenger profiling. The center of our approach is a Pythagorean fuzzy deep Boltzmann machine (PFDBM), whose parameters are expressed by Pythagorean fuzzy numbers such that each neuron can learn how a feature affects the production of the correct output from both the positive and negative sides. We propose a hybrid algorithm combining a gradient-based method and an evolutionary algorithm for training the PFDBM. Based on the novel learning model, we develop a deep neural network (DNN) for classifying normal passengers and potential attackers, and further develop an integrated DNN for identifying group attackers whose individual features are insufficient to reveal the abnormality. Experiments on data sets from Air China show that our approach provides much higher learning ability and classification accuracy than existing profilers. It is expected that the fuzzy deep learning approach can be adapted for a variety of complex pattern analysis tasks.

  6. Stochastic Phase Resetting: a Theory for Deep Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Tass, Peter A.

    2000-03-01

    A stochastic approach to phase resetting in clusters of interacting oscillators is presented. This theory explains how a stimulus, especially a single pulse, induces synchronization and desynchronization processes. The theory is used to design a new technique for deep brain stimulation in patients suffering from Parkinson's disease or essential tremor that do no longer respond to drug therapy. This stimulation mode is a feedback controlled single pulse stimulation. The feedback signal is registered with the deep brain electrode, and the desynchronizing pulses are administered via the same electrode. The stochastic phase resetting theory is used as a starting point of a model based design of intelligent and gentle deep brain stimulation techniques.

  7. Giddings Austin chalk enters deep lean-gas phase

    SciTech Connect

    Moritis, G.

    1995-12-25

    Deep lean gas is the latest phase in the growth of the Giddings field Austin chalk play. The first phase involved drilling vertical oil and gas wells. Next came the horizontal well boom in the shallower Austin chalk area, which is still continuing. And now this third phase places horizontal laterals in the Austen chalk at about 14,000--15,000 ft to produce lean gas. The article describes the producing wells and gas gathering.

  8. Stochastic Phase Resetting: A Theory for Deep Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Tass, P. A.

    The basic principles of a stochastic approach to phase resetting in populations of interacting phase oscillators are presented in this article. This theory explains how synchronization and desynchronization processes are caused by a pulsatile stimulus. It is a central goal of this approach to establish a theoretical basis for the design of efficient and intelligent new deep brain stimulation techniques. Accordingly, the theory is used to design a new deep brain stimulation technique with feedback control in patients suffering from Parkinson's disease or essential tremor.

  9. Crustal structure of China from deep seismic sounding profiles

    USGS Publications Warehouse

    Li, S.; Mooney, W.D.

    1998-01-01

    More than 36,000 km of Deep Seismic Sounding (DSS) profiles have been collected in China since 1958. However, the results of these profiles are not well known in the West due to the language barrier. In this paper, we summarize the crustal structure of China with a new contour map of crustal thickness, nine representative crustal columns, and maps showing profile locations, average crustal velocity, and Pn velocity. The most remarkable aspect of the crustal structure of China is the well known 70+ km thickness of the crust of the Tibetan Plateau. The thick (45-70 km) crust of western China is separated from the thinner (30-45 km) crust of eastern China by the north-south trending seismic belt (105??E). The average crustal velocity of China ranges from 6.15 to 6.45 km/s, indicating a felsic-to-intermediate bulk crustal composition. Upper mantle (Pn) velocities are 8.0 ?? 0.2 km/s, equal to the global continental average. We interpret these results in terms of the most recent thermo-tectonic events that have modified the crust. In much of eastern China, Cenoxoic crustal extension has produced a thin crust with a low average crustal velocity, similar to western Europe and the Basin and Range Province, western USA. In western China, Mesozoic and Cenoxoic arc-continent and continent-continent collisions have led to crustal growth and thickening. Inferences on the process of crustal thickening are provided by the deep crustal velocity structure as determined by DSS profiles and other seismological studies. A high velocity (7.0-7.4 km/s) lower-crustal layer has been reported in western China only beneath the southernmost Tibetan Plateau. We identity this high-velocity layer as the cold lower crust of the subducting Indian plate. As the Indian crust is injected northward into the Tibetan lower crust, it heats and assimilates by partial melting, a process that results in a reduction in the seismic velocity of the lower crust in the central and northern Tibetan Plateau

  10. Marine deep seismic reflection profiles off central California

    SciTech Connect

    Ewing, J. Houston Advanced Research Center, The Woodlands, TX ); Talwani, M. Houston Advanced Research Center, The Woodlands, TX )

    1991-04-10

    A strong reflection horizon at two-way travel time of approximately 6 s is observed in a deep seismic profile across the outer continental shelf of central California. It is interpreted as the seismic image of subducted oceanic crust emplaced prior to the change from principally convergent to principally transcurrent motion between the Pacific and North American plates during the late Paleogene. The reflector dips landward at a very shallow angle and is at a depth of 14-15 km under Santa Lucia Bank. The reflection is not observed, or at best is very discontinuous, under the inner shelf (Santa Maria Basin). This suggests that tectonic or other processes have produced significantly different structural styles or compositions on the two sides of the Santa Lucia Bank fault. Under the outer shelf a prominent, apparently deeper (later arrival time) horizon dips more steeply and diverges from the 6-s reflector. The deep horizon is at least partially composed of diffracted energy but is nearly linear after migration. Possible interpretations are that the horizon indicates crustal imbrication or out-of-plane diffractions. Alternatively, it is a relict feature imparted to the crust at the now inactive Pacific-Farallon spreading ridge. Reflective zones at intermediate depths are observed in apparently accreted sediments in parts of the Santa Lucia and Santa Maria basins. These features could represent tectonically induced fabrics within the accretionary complex, or they could be coherent depositional sequences.

  11. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... royalty relief for deep wells and phase 1 ultra-deep wells? 203.42 Section 203.42 Mineral Resources BUREAU... Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.42 What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells? The conditions...

  12. Depth Profiling Ambient Noise in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Barclay, David Readshaw

    Deep Sound is an un-tethered, free-falling acoustic platform designed to profile the ambient noise field in the ocean from the surface to a pre-programmed depth, at which point a ballast weight is dropped and the instrument returns to the surface under its own buoyancy. Three iterations of the instrument, Mk I, II and III, have been designed, built and tested, the first two rated to descend to 9 km and the third to a full ocean depth of 11 km. During a deployment of the instrument, vertically and horizontally spaced hydrophones continuously record the ambient noise pressure time series over a large bandwidth (5 Hz -- 40 kHz), returning the power spectral density, vertical and horizontal coherence as a function of depth. Deep Sound Mk I and Mk II have been deployed down to 9 km depth in the Mariana Trench and Mk I has descended three times to 5 km, 5.5 km and 6 km in the Philippine Sea. The data reported here examines the depth-dependence of the power spectrum, vertical coherence and directionality of rain and wind noise in the Philippine Sea. Acoustic estimates of rainfall rates and wind speeds are made from the surface to 5.5 km and 6 km respectively and compared to surface meteorological measurements. The depth-dependence of the accuracy of these estimates is relatively small and found to improve with depth. A coherence fitting procedure is employed to return ambient noise directionality and provide information on the spatial variability of an overhead rainstorm. With moderate 7-10 m/s winds, downward propagating noise from directly overhead dominates the noise field directionality from the surface to 6 km. Using the wind generated surface noise and the depth dependence of the spectral slope over the band 1 -- 10 kHz, the frequency dependence of the absorption due to sea water is estimated and used to infer a mean water column value of pH.

  13. Saudi Arabian seismic deep-refraction profiles; final project report

    USGS Publications Warehouse

    Healy, J.H.; Mooney, W.D.; Blank, H.R.; Gettings, M.E.; Kohler, W.M.; Lamson, R.J.; Leone, L.E.

    1983-01-01

    In February 1978 a seismic deep-refraction profile was recorded by the U.S. Geological Survey along a 1000-km line across the Arabian Shield in western Saudi Arabia. The line begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, leads southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan (Tihamat-Asir), and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, including 19 in the Farasan Islands. Six shot points were used: five on land, with most charges placed below the water table in drill holes, and one at sea, with charges placed on the sea floor and detonated from a ship. Slightly more than 61 metric tons of explosives were used in 19 discrete firings. Seismic energy was recorded by 100 newly-developed portable seismic stations deployed in approximately 200 km-long arrays for each firing. Each station consisted of a standard 2-Hz vertical component geophone coupled to a self-contained analog recording instrument equipped with a magnetic-tape cassette. In this final report, we fully document the field and data-processing procedures and present the final seismogram data set as both a digital magnetic tape and as record sections for each shot point. Record sections include a normalized set of seismograms, reduced at 6 km/s, and a true-amplitude set, reduced at 8 km/s, which have been adjusted for amplifier gain, individual shot size, and distance from the shot point. Appendices give recorder station and shot information, digital data set descriptions, computer program listings, arrival times used in the interpretation, and a bibliography of reports published as a result of this project. We used two-dimensional ray-tracing techniques in the data analysis, and our interpretation is based primarily on horizontally layered models. The Arabian Shield is composed, to first-order, of two layers, each about 20 km

  14. Effect of phase transformations on microstructures in deep mantle materials

    NASA Astrophysics Data System (ADS)

    Merkel, Sébastien; Langrand, Christopher; Rosa, Angelika; Hilairet, Nadège

    2017-04-01

    Phase transformations induce microstructural changes in deep Earth materials, including changes in grain size and orientation distribution. The effect of phase transformations on mineral microstructures is usually studied using electron microscopy on quench products from high P/T experiments. The method allows for a precise evaluation of the microscopic mechanisms involved. It is limited, however, to samples that can be quenched to ambient conditions and allows for investigations at a single P/T point for each experiment. In recent years, we extended the use of multigrain crystallography to samples inside diamond anvil cells under mantle P/T conditions. The method allows for monitoring the orientations of hundreds of grains and grain size variations during various physical processes, such as plastic deformation and successions of phase transformations (Rosa et al 2015, Langrand et al 2017). Here, we will show results concerning hydrous Mg2SiO4 during the series of α-β-γ phase transformations up to 40 GPa and 850 °C. Such results are important to understand the descending behaviour of subducted slabs, observations of seismic anisotropy, and polarity changes for seismic waves reflected of deep Earth interfaces. The data is used to asses the effect of the transformation on grain orientation and grain sizes. In particular, we do not observe orientation relationships between the parent α-phase and the daughter β-phase phase, suggesting an incoherent growth. We also observe significant grain size reductions and only little grain growth within the newly formed phases (Rosa et al 2016). These new results are important for understanding the mechanical behavior of subducting slabs, seismic anisotropy in the Earth's mantle, and phase transformation mechanisms in olivine. Now that it is validated, the method can also be applied to other phases that can not be studied using electron microscopy, such as perovskite and post-perovskite. Langrand, Hilairet, Nisr, Roskosz, Rib

  15. Deep Structure of the NE Tibetan Plateau: An Introduction to Project INDEPTH, Phase IV

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Brown, L.; Zhenhan, W.; Klemperer, S.; Shi, D.; Mechie, J.; Su, H.; Tilmann, F.; Guangqi, X.; Karplus, M.; Kind, R.; Makovsky, Y.; Meissner, R.

    2007-12-01

    Since 1992, INDEPTH has acquired active and passive seismic data in three major experiments from south of the High Himalaya to the Qiangtang terrane, north of the Banggong suture. Phase IV of Project INDEPTH is focussed on delineating deep crustal and mantle structure beneath the northeast margin of the Tibetan Plateau, thought by many to represent the focus of active growth of the plateau into the Asian continent. Primary scientific objectives include: i) elucidating the crustal geometry of the thrust/strike slip fault system of the Kunlun that marks the edge of the high plateau, ii) testing the controversial suggestion that the Asian continental lithosphere is underthrusting southwestward beneath the Tibetan Plateau beneath the Kunlun, iii) assessing the role of partial melting in the tectonics of NE Tibet, and contraints on postulated crustal flow. The major technical components of this year's work include: 1) Active seismic imaging with near-vertical and wide-angle techniques; 2) Passive seismic profiling using dense seismometer spacing (ca 5 km) designed to produce high resolution receiver-function images of lithospheric structure; and 3) Geological surface investigations. Additional components scheduled for next year include: 1) a high resolution gravity survey along the seismic profile, and 2) wideband MT and long-period MT ( LIMS ) measurements to investigate deep electrical conductivity along the seismic profiles. The INDEPTH IV controlled source profile extends from Qarhan Salt Lake in the center of the Qaidam basin, across the Kunlun mountains of northern Tibet to Quemalai near the Chumaer River. The INDEPTH IV passive- source profiles are collocated with the controlled source profile across the Kunlun, but includes a second high resolution profile across the Jinsha Suture on the Tibetan Plateau. The INDEPTH IV geological studies are focussed on the timing of crustal shortening and uplift of the Kunlun and adjacent Plateau. Preliminary results will be

  16. Effect of Deep Eutectic Solvent Nanostructure on Phospholipid Bilayer Phases.

    PubMed

    Bryant, Saffron J; Atkin, Rob; Warr, Gregory G

    2017-07-11

    Phospholipids are shown by solvent penetration experiments to form lamellar phases and spontaneously spawn vesicles in a wide range of deep eutectic solvents (DESs) composed of alkylammonium halide salts and glycerol or ethylene glycol, which are shown to be nanostructured by X-ray scattering. In contrast with molecular solvents, the chain melting temperature of each phospholipid, which determines the stability of the swellable bilayer phase, depends on the structure of the cation, anion, and molecular H-bond donor that constitute the DES. Chain melting is most sensitive to the length of the alkyl chain of the cation, which is partitioned between apolar domains in the bulk, nanostructured DES and those within the lipid bilayer. This is moderated by the structures of the anion and the molecular hydrogen bond donor, which determine the extent of polar/apolar segregation in the bulk liquid.

  17. Phased Retrofits in Existing Homes in Florida Phase I: Shallow and Deep Retrofits

    SciTech Connect

    D. Parker; Sutherland, K.; Chasar, D.; Montemurno, J.; Amos, B.; Kono, J.

    2016-02-01

    The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and single measures are summarized in this report.

  18. Deep Space Habitat Team: HEFT Phase 2 Effects

    NASA Technical Reports Server (NTRS)

    Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary

    2011-01-01

    HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.

  19. Phased Retrofits in Existing Homes In Florida Phase I: Shallow and Deep Retrofits

    SciTech Connect

    Parker, D.; Sutherland, K.; Chasar, D.; Montemurno, J.; Amos, B.; Kono, J.

    2016-02-04

    The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and single measures are summarized in this report. Project results will be of interest to utility program designers, weatherization evaluators, and the housing remodel industry. Shallow retrofits were conducted in all homes from March to June 2013. The measures for this phase were chosen based on ease of installation, targeting lighting (CFLs and LED lamps), domestic hot water (wraps and showerheads), refrigeration (cleaning of coils), pool pump (reduction of operating hours), and the home entertainment center (smart plugs). Deep retrofits were conducted on a subset of ten PDR homes from May 2013 through March 2014. Measures included new air source heat pumps, duct repair, ceiling insulation, heat pump water heaters, variable speed pool pumps and learning thermostats. Major appliances such as refrigerators and dishwashers were replaced where they were old and inefficient.

  20. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  1. Low-flow characteristics and profiles for the Deep River in the Cape Fear River basin, North Carolina

    USGS Publications Warehouse

    Weaver, J.C.

    1997-01-01

    Drainage area and low-flow discharge profiles are presented for the Deep River. The drainage-area profile shows downstream increases in basin size. At the mouth, the drainage area for the Deep River is 1,441 square miles. Low-flow discharge profiles for the Deep River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included.

  2. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phase 3 ultra-deep well, what royalty relief would that well earn for my lease? 203.31 Section 203.31... Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.31 If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

  3. Seeking the Profile of an Elementary Educator: Phase III.

    ERIC Educational Resources Information Center

    Arth, Alfred A.; And Others

    This paper presents the third phase of a student-faculty investigation seeking the profile of the elementary school teacher. Phase I discovered an indication of different personality traits in elementary and secondary teachers. Phase II redesigned the original questionnaire and supported the findings with additional research. This third phase…

  4. Deep Transcriptomic Profiling of M1 Macrophages Lacking Trpc3

    PubMed Central

    Kumarasamy, Sivarajan; Solanki, Sumeet; Atolagbe, Oluwatomisin T.; Joe, Bina; Birnbaumer, Lutz; Vazquez, Guillermo

    2017-01-01

    In previous studies using mice with macrophage-specific loss of TRPC3 we found a significant, selective effect of TRPC3 on the biology of M1, or inflammatory macrophages. Whereas activation of some components of the unfolded protein response and the pro-apoptotic mediators CamkII and Stat1 was impaired in Trpc3-deficient M1 cells, gathering insight about other molecular signatures within macrophages that might be affected by Trpc3 expression requires an alternative approach. In the present study we conducted RNA-seq analysis to interrogate the transcriptome of M1 macrophages derived from mice with macrophage-specific loss of TRPC3 and their littermate controls. We identified 160 significantly differentially expressed genes between the two groups, of which 62 were upregulated and 98 downregulated in control vs. Trpc3-deficient M1 macrophages. Gene ontology analysis revealed enrichment in processes associated to cellular movement and lipid signaling, whereas the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included networks for calcium signaling and cell adhesion molecules, among others. This is the first deep transcriptomic analysis of macrophages in the context of Trpc3 deficiency and the data presented constitutes a unique resource to further explore functions of TRPC3 in macrophage biology. PMID:28051144

  5. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  6. The deep lunar electrical conductivity profile - Structural and thermal inferences

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Herbert, F.; Sonett, C. P.

    1982-01-01

    Simultaneous lunar surface and orbital magnetometer records are reexamined, to ascertain intervals which may be suitable for measuring lunar inductive response in the solar wind and terrestrial magnetosheath. Power spectral estimates of the response tangent to the lunar surface, defined in terms of transfer and gain functions, are obtained for the 0.0001-0.01 Hz frequency range. The maximum consistency of estimates from different time intervals is found when the initial analysis is limited to the tangential direction of maximum incident power, or that direction in which the ratio of signal to background noise is greatest. Spherically symmetric plasma confinement theory is used in the interpretation of transfer function data, by way of forward model calculations, under the assumption of continuous electrical conductivity increase with depth. Results are presented for internal electrical conductivity profile, metallic core radius, and selenotherm limits.

  7. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  8. How do changes in warm-phase microphysics affect deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital

    2017-08-01

    Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger

  9. Afghanistan environmental profile. Phase 1. Final report

    SciTech Connect

    Not Available

    1992-06-01

    Afghanistan's environment, already scarred by 12 years of conflict, is likely to undergo severe stress as external and internal refugees are resettled, according to this preliminary environmental profile. Following an introduction, Chapter 2 discusses the state of Afghanistan's environment in 1978 prior to the Soviet invasion, while Chapter 3 documents the environmental impacts of events since that time, including population relocation, deforestation, and locust and sunn-pest infestations. Chapter 4 examines major environmental areas (vegetation, wildlife, soil erosion, pesticides, public health, environmental infrastructure, energy, and air quality) with respect to both existing conditions and what is likely to occur when resettlement begins in earnest. Chapter 5 presents potential mitigation measures, including a set of environmental guidelines for the Government of Afghanistan. Chapter 6 discusses the Geographic Information System being developed under USAID's Agricultural Services Support Program; it discusses the extent to which GIS data can contribute to environmental studies, and vice versa.

  10. Mantle phase changes and deep-earthquake faulting in subducting lithosphere.

    PubMed

    Kirby, S H; Durham, W B; Stern, L A

    1991-04-12

    Inclined zones of earthquakes are the primary expression of lithosphere subduction. A distinct deep population of subduction-zone earthquakes occurs at depths of 350 to 690 kilometers. At those depths ordinary brittle fracture and frictional sliding, the faulting processes of shallow earthquakes, are not expected. A fresh understanding of these deep earthquakes comes from developments in several areas of experimental and theoretical geophysics, including the discovery and characterization of transformational faulting, a shear instability connected with localized phase transformations under nonhydrostatic stress. These developments support the hypothesis that deep earthquakes represent transformational faulting in a wedge of olivine-rich peridotite that is likely to persist metastably in coldest plate interiors to depths as great as 690 km. Predictions based on this deep structure of mantle phase changes are consistent with the global depth distribution of deep earthquakes, the maximum depths of earthquakes in individual subductions zones, and key source characteristics of deep events.

  11. Mantle phase changes and deep-earthquake faulting in subducting lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Durham, W.B.; Stern, L.A.

    1991-01-01

    Inclined zones of earthquakes are the primary expression of lithosphere subduction. A distinct deep population of subduction-zone earthquakes occurs at depths of 350 to 690 kilometers. At those depths ordinary brittle fracture and frictional sliding, the faulting processes of shallow earthquakes, are not expected. A fresh understanding of these deep earthquakes comes from developments in several areas of experimental and theoretical geophysics, including the discovery and characterization of transformational faulting, a shear instability connected with localized phase transformations under nonhydrostatic stress. These developments support the hypothesis that deep earthquakes represent transformational faulting in a wedge of olivine-rich peridotite that is likely to persist metastably in coldest plate interiors to depths as great as 690 km. Predictions based on this deep structure of mantle phase changes are consistent with the global depth distribution of deep earthquakes, the maximum depths of earthquakes in individual subductions zones, and key source characteristics of deep events.

  12. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... by qualified phase 2 and phase 3 ultra-deep wells on my lease or in my unit? 203.33 Section 203.33... Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.33 To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells on...

  13. Temporal profile of improvement of tardive dystonia after globus pallidus deep brain stimulation

    PubMed Central

    Shaikh, Aasef G.; Mewes, Klaus; DeLong, Mahlon R.; Gross, Robert E.; Triche, Shirley D.; Jinnah, H.A.; Boulis, Nicholas; Willie, Jon T.; Freeman, Alan; Alexander, Garrett E.; Aia, Pratibha; Butefisch, Cathrine M.; Esper, Christine D.; Factor, Stewart A.

    2016-01-01

    Background Several case reports and small series have indicated that tardive dystonia is responsive to globus pallidus deep brain stimulation. Whether different subtypes or distributions of tardive dystonia are associated with different outcomes remains unknown. Methods We assessed the outcomes and temporal profile of improvement of eight tardive dystonia patients who underwent globus pallidus deep brain stimulation over the past six years through record review. Due to the retrospective nature of this study, it was not blinded or placebo controlled. Results: Consistent with previous studies, deep brain stimulation improved the overall the Burkee–Fahn–Marsden motor scores by 85.1 ± 13.5%. The distributions with best responses in descending order were upper face, lower face, larynx/pharynx, limbs, trunk, and neck. Patients with prominent cervical dystonia demonstrated improvement in the Toronto Western Spasmodic Torticollis Rating Scale but improvements took several months. In four patients the effects of deep brain stimulation on improvement in Burke Fahn Marsden score was rapid, while in four cases there was partial rapid response of neck and trunk dystonia followed by was gradual resolution of residual symptoms over 48 months. Conclusion Our retrospective analysis shows excellent resolution of tardive dystonia after globus pallidus deep brain stimulation. We found instantaneous response, except with neck and trunk dystonia where partial recovery was followed by further resolution at slower rate. Such outcome is encouraging for using deep brain stimulation in treatment of tardive dystonia. PMID:25465373

  14. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not... RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b... well on your lease (whether an original well or a sidetrack) because you drilled and produced it within...

  15. Structure of Precambrian crust in the U. S. from COCORP deep seismic profiling

    SciTech Connect

    Brown, L.D. )

    1992-01-01

    COCORP and industry seismic reflection profiles probing beneath the thin veneer of Paleozoic sedimentary rocks of the US mid-continent are mapping a complex, largely unknown three dimensional mosaic of major fault zones and sutures, a highly variable Moho, and extensive sequences of unexplored volcanic and/or sedimentary strata. Key features of the Precambrian suggested by COCORP and other deep profiling include: Pervasive, distributed reflectivity, often diffractive, dominating the middle and lower crust. Moho that is rarely reflective, usually evident as a downward transition of distributed crustal reflectivity into mantle transparency. Volcano-clastic filled graben of the late Proterozoic Keweenawan rift buried beneath Paleozoic strata in Kansas and Michigan. Extensive, subhorizontal Precambrian stratification in the upper crust beneath the east- central US and the Texas-Oklahoma border region, argued to be either an extensive volcano-clastic basin, a voluminous felsic volcanic outpouring or a major intrusive sill complex. Crustal penetrating, dipping reflection zones that mark known (Grenville front) or inferred (Cashocton zone, Trans-Hudson orogen) shear zones. Non-reflective ( ) basement beneath the Appalachian foreland suggesting transparent massifs'' that serve as collisional buttresses during terrane accretion. Deep structure is sometimes at odds with simple extrapolations of surface geology. Clearly deep seismic profiling has only begun to reveal the buried craton in the US. It is time for an integrated program for the systematic exploration of this special scientific frontier.

  16. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models.

    PubMed

    Yousefi, Safoora; Amrollahi, Fatemeh; Amgad, Mohamed; Dong, Chengliang; Lewis, Joshua E; Song, Congzheng; Gutman, David A; Halani, Sameer H; Vega, Jose Enrique Velazquez; Brat, Daniel J; Cooper, Lee A D

    2017-09-15

    Translating the vast data generated by genomic platforms into accurate predictions of clinical outcomes is a fundamental challenge in genomic medicine. Many prediction methods face limitations in learning from the high-dimensional profiles generated by these platforms, and rely on experts to hand-select a small number of features for training prediction models. In this paper, we demonstrate how deep learning and Bayesian optimization methods that have been remarkably successful in general high-dimensional prediction tasks can be adapted to the problem of predicting cancer outcomes. We perform an extensive comparison of Bayesian optimized deep survival models and other state of the art machine learning methods for survival analysis, and describe a framework for interpreting deep survival models using a risk backpropagation technique. Finally, we illustrate that deep survival models can successfully transfer information across diseases to improve prognostic accuracy. We provide an open-source software implementation of this framework called SurvivalNet that enables automatic training, evaluation and interpretation of deep survival models.

  17. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would my lease earn? 203.41 Section 203.41 Mineral... Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.41 If I...

  18. Deep Space Habitat Concept of Operations for Transit Mission Phases

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.

  19. Deep-Ocean Seismometer Implantation System. Phase 1

    DTIC Science & Technology

    1989-07-01

    BACKGROUND 2 Geotechnical Properties of Seafloor Sediments 2 Alternative Seafloor Penetrators 5 DEEP OCEAN SEISMOMETER IMPLANTATION SYSTEM ( DOSIS ) 8 Prototype...implantation system ( DOSIS ). 8 Figure 8. Deployment sequence for seafloor penetrator. 9 Figure 9. DOSIS prototype drill assembly. 13 Figure 10. DOSIS ...15 Figure 13. Test setup for DOSIS showing lowering frame, casing, and spoils tank. 16 Figure 14. Rate-of-penetration results for five drilling

  20. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  1. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-deep well (production begins before the expiration date for the pre-existing relief in its water depth...-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.31 If I have a qualified phase 2 or.... (2) A sidetrack with a sidetrack measured depth of at least 20,000 feet, 35 BCF. (3) An ultra-deep...

  2. The design and characterization of an ultrasound phased array suitable for deep tissue hyperthermia.

    PubMed

    Aitkenhead, Adam H; Mills, John A; Wilson, Adrian J

    2008-11-01

    In this paper we describe the design and evaluation of a planar phased-array ultrasound transducer suitable for producing localized hyperthermia in solid tumors deep within the body. Simulation using a customized version of Ultrasim has been used to determine the relationship between the size and position of the focus and parameters of the array. These parameters include the overall size of the array and the size, shape and distribution of the individual elements. A 15-element prototype array has been constructed using the results of the simulation. Beam profile measurements on this transducer made in an acoustic tank were compared with the beam profile predicted by simulation. The results showed good agreement in the shape of the focal region, but with the focus closer to the surface of the physical transducer when compared with the simulation and with small high-intensity areas between the surface of the transducer and the focus in the measured profile. A sensitivity analysis using a simulated factorial experiment indicated that the presence of a secondary vibrational mode within the elements of the array was the principal cause for both the shift in the position of the focus and for the unwanted maxima close to the surface of the array. The results also showed that the array was tolerant of a large variation in output intensity of the individual elements in the array in producing a focal region. Extrapolation of the results obtained in this study indicate that an array of 60 elements, based on the design described, driven by 550 V peak-to-peak pulses would be capable of producing a peak focal intensity of 50 Wcm(-2) at a depth of 60 mm in tissue, which would be appropriate for hyperthermia used as an adjunct to radiotherapy or chemotherapy.

  3. 30 CFR 203.40 - Which leases are eligible for royalty relief as a result of drilling a deep well or a phase 1...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a result of drilling a deep well or a phase 1 ultra-deep well? 203.40 Section 203.40 Mineral... Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.40 Which leases are eligible for royalty relief as a result of drilling a deep well or a phase 1 ultra-deep...

  4. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... qualified phase 2 and phase 3 ultra-deep wells on my lease not be applied? 203.34 Section 203.34 Mineral... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on... qualified phase 2 and phase 3 ultra-deep wells on my lease not be applied? You may not apply an RSV earned...

  5. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  6. The ESCIN-3-1 deep seismic profile in the northwestern Galicia margin revisited

    NASA Astrophysics Data System (ADS)

    Carbonell, R.; Alvarez-Marron, J.; Ayarza, P.; Torne, M.

    2015-12-01

    The ESCIN-3.1 profile was acquired in 1993 offshore northwest Galicia (Spain), and recorded 20 s of near vertical reflection seismic data. This 140 km long profile was intended to provide an image of the crustal structure of this sector of the continental margin from near the coastline to the deep-sea area. The tectonic evolution of the northwest Galicia margin initiated by rifting during Late Jurassic-Early Cretaceous times and progressed to sea floor spreading during Albian- Late Cretaceous times when the Bay of Biscay opened. Subsequently, the margin was active during the convergence of Eurasia and Iberia in the Late Oligocene to Early Miocene. Here we present a new interpretation of the mentioned profile based on a newly reprocessed depth migrated image and corresponding gravity model. In the deep-sea areas, a free-air gravity low reach up to - 120 mGal and the sea bottom is at more than 5000 m deep. The 7 km thick flat lying undisturbed sedimentary cover appears above a 10 km thick, ~120 Ma old oceanic basement. This flat sediments onlap toward the ocean-continent transition on a folded and disturbed 20 km long wedge shaped sedimentary body. A major landward dipping structure reaches from the foot of the slope to beneath the sub horizontal Moho of the continental slope. The slope has a gentle dip of about 2° in this section, and include large mass flow deposits. Fault bound sediments are imaged in the upper continental margin that could correspond to preserved syn-rift Mesozoic structures. The structure of what correspond to the continental basement in the thicker part of the margin is not well resolved. Only in the landward side of the profile a layered lower crust is seen where the Moho reaches depths of 29 km. The ocean-continent transition in this profile may be interpreted as that of an active compressional boundary with some accretion of deep-sea sediments that are underthrust by a thinned continental margin with large submarine landslides and mass flow

  7. The effect of aerosol-derived changes in the warm phase on the properties of deep convective clouds

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven; Dagan, Guy

    2017-04-01

    The aerosol impact on deep convective clouds starts in an increased number of cloud droplets in higher aerosol loading environment. This change drives many others, like enhanced condensational growth, delay in collision-coalescence and others. Since the warm processes serve as the initial and boundary conditions for the mixed and cold-phase processes in deep clouds, it is highly important to understand the aerosol effect on them. The weather research and forecasting model (WRF) with spectral bin microphysics was used to study a deep convective system over the Marshall Islands, during the Kwajalein Experiment (KWAJEX). Three simulations were conducted with aerosol concentrations of 100, 500 and 2000 cm-3, to reflect clean, semipolluted, and polluted conditions. The results of the clean run agreed well with the radar profiles and rain rate observations. The more polluted simulations resulted in larger total cloud mass, larger upper level cloud fraction and rain rates. There was an increased mass both below and above the zero temperature level. It indicates of more efficient growth processes both below and above the zero level. In addition the polluted runs showed an increased upward transport (across the zero level) of liquid water due to both stronger updrafts and larger droplet mobility. In this work we discuss the transport of cloud mass crossing the zero temperature level (in both directions) in order to gain a process level understanding of how aerosol effects on the warm processes affect the macro- and micro-properties of deep convective clouds.

  8. Semiconductor steady state defect effective Fermi level and deep level transient spectroscopy depth profiling

    NASA Astrophysics Data System (ADS)

    Chin, Ken K.; Cheng, Zimeng

    2016-09-01

    The widely used deep level transient spectroscopy (DLTS) theory and data analysis usually assume that the defect level distribution is uniform through the depth of the depletion region of the n—p junction. In this work we introduce the concept of effective Fermi level of the steady state of semiconductor, by using which deep level transient spectroscopy depth profiling (DLTSDP) is proposed. Based on the relationship of its transition free energy level (TFEL) and the effective Fermi level, the rules of detectivity of the defect levels are listed. Computer simulation of DLTSDP is presented and compared with experimental data. The experimental DLTS data are compared with what the DLTSDP selection rules predicted. The agreement is satisfactory.

  9. Deep seismic soundings on the 1-AP profile in the Barents Sea: Methods and results

    NASA Astrophysics Data System (ADS)

    Sakoulina, T. S.; Kashubin, S. N.; Pavlenkova, G. A.

    2016-07-01

    Profile 1-AP with a length of 1300 km intersects the Barents Sea from The Kola Peninsula to Franz Josef Land. The combined Common Depth Point (CDP) and Deep Seismic Sounding (DSS) seismic studies were carried out on this profile. The DSS measurements were conducted with the standalone bottom seismic stations with an interval of 5-20 km between them. The stations recorded the signals generated by the large air guns with a step of 250 m. Based on these data, the detailed P-velocity section of the Earth's crust and uppermost mantle have been constructed for the entire profile and the S-velocity section for its southern part. The use of a variety of methods for constructing the velocity sections enabled us to assess the capabilities of each method from the standpoint of the highest reliability and informativity of the models. The ray tracing method yielded the best results. The 1-PR profile crosses two large basins—the South Barents and North Barents ones, with the thickness of the sediments increasing from 8 to 10 km in the south to 12-15 km in the north. The Earth's crust pertains to the continental type along the entire profile. Its thickness averages 32 to 36 km and only increases to 43 km at the boundary between the two basins. The distinct change in the wave field at this boundary suggests the presence of a large deep fault in this zone. The high-velocity blocks are revealed in the crust of the South Barents basin, whereas the North Barents crust is characterized by relatively low velocities.

  10. Deep Seismic Reflection Profiles Reveal The Crust Structures Beneath Xing'an-Mongolian Orogenic Belt and Its Neighboring Area

    NASA Astrophysics Data System (ADS)

    Hou, H.; Gao, R.; Keller, R. G.; Li, Q.; Li, W.; Li, H.; Xiong, X.; Guo, L.

    2012-12-01

    high-order NMO, detailed velocity analysis and maximum energy residual static correction, prestack time migration methods, etc. The migrated stack profiles reveal the deep structural and tectonic relationship between the northern margin of the North China craton and the Xing'an-Mongolia orogenic belt. Many curved reflection phases with strong amplitudes beneath the igneous province suggest magma activity obversed. It is notable that a strong Moho reflection appears to be spatially associated with ancient collision or subduction zones exhibits complicated characters. This scenario may suggest multiple tectonic events that are spatially correlated from topgraphy to deep structure. We think the east-dipping reflections beneath the eastside of Great Xing'An Mountain Range within upper crust related with the Mesozoic detachment event in North China. All the profiles provides a rare opportunity to study signatures of ancient orogenic processes in the context of a continental interior. This research is supported by SinoProbe-02, China NSF (No.40830316, No.41104060), China Geological Survey (No.1212011120975), US NSF PIRE grant (0730154).

  11. Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-12-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed.

  12. Laser nitriding of iron: Nitrogen profiles and phases

    NASA Astrophysics Data System (ADS)

    Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.

    1995-07-01

    Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.

  13. Venus - On the phase variation of CO2 line profiles

    NASA Technical Reports Server (NTRS)

    Macy, W., Jr.; Trafton, L.; Barker, E.

    1977-01-01

    The shapes of Venus' CO2 profiles are found to vary with solar phase angle. High-resolution spectra of the P16 and P14 lines in the 8689- and 7820-A bands, respectively, are presented for phase angles ranging from 6 to 158 deg. The scattering mean free path at 80 mbar, approximately the effective pressure, is 1.7 km. Use of the van de Hulst (1974) similarity relations with simple parametric scattering models is inadequate to separate effects due to the scattering phase function from those due to inhomogeneities in depth when one attempts to determine the atmospheric structure by fitting a family of such models over a wide range of phase angles.

  14. High energy ion implantation for profiled tub formation and impurity gettering in deep submicron CMOS technology

    NASA Astrophysics Data System (ADS)

    Jacobson, D. C.; Kamgar, A.; Eaglesham, D. J.; Lloyd, E. J.; Hillenius, S. J.; Poate, J. M.

    1995-03-01

    High energy ion implantation has been utilized to fabricate profiled tubs and to create gettering sites in deep submicron CMOS devices in bulk and epitaxial Si. The isolation and latch-up characteristics have been measured and found to be superior to those of devices in tubs fabricated by the conventional thermal drive-in method. High energy implants into bulk Si produce inferior gettering as deduced from diode leakage measurements. Iron gettering to the MeV boron implanted region has been investigated.

  15. Deep seismic structure of the Earth's crust along the Baltic Sea profile

    NASA Astrophysics Data System (ADS)

    Ostrovsky, A. A.; Flueh, E. R.; Luosto, U.

    1994-05-01

    In summer of 1989 the Institute of Oceanology of the Russian Academy of Sciences (Moscow) for the first time used a new large volume airgun for deep seismic sounding (DSS) in the Baltic Sea. The experiment was carried out during the 23-rd cruise of R/V Professor Shtockman. The wave-field analysis showed clear P and S wave arrivals, including Moho reflections. The Moho reflections were distinctly observed at distances exceeding 100 km. The P waves can be followed to a maximum distance of 368 km. Two-dimensional raytracing modelling of the data revealed a pronounced topography of the Moho along the BALTIC SEA profile: a depression in the middle of the profile at a depth of 45 km is bounded by 2-3 km steps and uplifts on both sides. Reflections off a sub-Moho boundary at a depth of 60 km have also been recorded. The upper mantle velocities vary between 7.8 km/s under the depression to 8.1 km/s to the side of it. The crustal P waves velocities define three layers: 5.8-6.3, 6.3-6.7 and 6.9-7.1 km/s. All crustal velocity boundaries bend over the Moho depression and reach their deepest points in the central part of the profile. The velocities in the crust also change laterally, reaching their minimum within the central depression. The crustal thickness along the profile varies notably between 38 and 45 km. A comparison with the FENNOLORA and the BABEL B profiles indicates that the Moho depression found along the BALTIC SEA profile correlates with similar depressions on the other profiles.

  16. Deep mantle structure and the postperovskite phase transition

    PubMed Central

    Helmberger, D.; Lay, T.; Ni, S.; Gurnis, M.

    2005-01-01

    Seismologists have known for many years that the lowermost mantle of the Earth is complex. Models based on observed seismic phases sampling this region include relatively sharp horizontal discontinuities with strong zones of anisotropy, nearly vertical contrasts in structure, and small pockets of ultralow velocity zones (ULVZs). This diversity of structures is beginning to be understood in terms of geodynamics and mineral physics, with dense partial melts causing the ULVZs and a postperovskite solid–solid phase transition producing regional layering, with the possibility of large-scale variations in chemistry. This strong heterogeneity has significant implications on heat transport out of core, the evolution of the magnetic field, and magnetic field polarity reversals. PMID:16217029

  17. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  18. Characterization of water extractable organic matter in a deep soil profile.

    PubMed

    Corvasce, Maddalena; Zsolnay, Adam; D'Orazio, Valeria; Lopez, Raffaele; Miano, Teodoro M

    2006-03-01

    The aim of this study was to identify qualitative and quantitative differences of water extractable organic matter (WEOM) isolated from each horizon along a deep soil profile and to evaluate any relationship between the WEOC and the total organic carbon (TOC) content. The soil profile "Monte Pietroso" is located in the Murge area, Apulia region in Southern Italy. Samples from the eight horizons (Ap1, Ap2, Ab1, Ab2, Bt1, 2B, 2Bt2, and 2B/C) were collected in October 2002. The WEOM characterization was carried out by means of UV absorbance, fluorescence spectroscopy in the emission and excitation/emission matrix (EEM) modes, and additional spectroscopic derived indexes. Soil organic carbon was shown to accumulate in the top horizons (Ap) and, in general, to decrease with depth, whereas, the WEOM/TOC ratio increases with increasing depth. The aromaticity and the humification index of the WEOM decrease dramatically downward the soil profile, whereas the fluorescence efficiency index tends to increase markedly. The WEOM fractions feature three main fluorophores with different wavelength and relative intensity. In general WEOM transport phenomena are suggested to occur downward the soil profile, depending on the nature of the organic material and on the chemical and mineral characteristics of the various horizons.

  19. Deep water current profile measurements for operational support and design statistics

    SciTech Connect

    Moore, A.N.; Stephens, R.V.

    1995-09-01

    This paper describes the use of Acoustic Doppler Current Profilers (ADCP) to provide real-time current profile information for drilling vessels operating in deep water and also discusses the quality control and post-processing of associated recorded data to provide design current statistics. Experience gained from many such deployments over the last seven years is drawn upon to make specific recommendations for instrument system configuration and data management procedures. Practicalities and limitations of the use of ADCPs from drilling vessels are also discussed. Consideration is given to mooring design details specific to this type of deployment. Practical measurement difficulties are examined such as data contamination due to direct acoustic signal reflection from sub-sea drilling components and also the case of operating in an environment of high background acoustic noise associated with vessel dynamic positioning. Quality control procedures are discussed, both for the current profile data displayed in real-time for operational support and for subsequent post-analysis of recorded data. The paper is concluded with examples of specific details of current profile structure which have been identified using rigmounted ADCPs but would not have been possible to observe using any other measurement technology.

  20. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would my lease earn? 203.41 Section 203.41 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT RELIEF...

  1. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? 203.43 Section 203.43... Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.43 To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

  2. Differential phase reflectometry for edge profile measurements on TFTR

    SciTech Connect

    Hanson, G.R.; Wilgen, J.B.; Bigelow, T.S.; England, A.C.; Murakami, M.; Rasmussen, D.A.; Collazo, I.; Wilson, J.R.

    1994-06-01

    Edge electron density profile measurements, including the scrape-off layer, have been made during ICRF heating with the two-frequency differential phase reflectometer installed in an ICRF antenna on TFTR. This system probes the plasma using the extraordinary mode with two signals swept from 90 to 118 GHz while maintaining a fixed difference frequency of 125 MHz. The extraordinary mode is used to obtain density profiles in the range of 1 {times} 10{sup 11} to 3 {times} 10{sup 13} cm{sup {minus}3} in high-field (4.5- to 4.9-T) full size (R{sub 0} = 2.62 m, a = .96 m) TFTR plasmas. The reflectometer launcher is located in an ICRF antenna and views the plasma through a small penetration in the center of the Faraday shield. A 26 m long overmoded waveguide run connects the launcher to the reflectometer microwave electronics. Profile measurements made with this reflectometer system will be presented along with a discussion of the characteristics of this differential phase reflectometer and data analysis.

  3. Distance and velocity detection based on a deep sinusoidal phase-modulated interferometer.

    PubMed

    Chien, P Y; Chang, Y S; Chang, M W

    1995-10-01

    A deep phase-modulation signal with a sinusoidal waveform is employed on a Michelson interferometer for detecting distance and velocity signals simultaneously. This approach is simple to implement and has a wide-dynamic-range capability with a linear scale factor.

  4. Geometric-Phase Polarization Fan-out Grating Fabricated with Deep-UV Interference Lithography

    NASA Astrophysics Data System (ADS)

    Wan, Chenhao; Lombardo, David; Sarangan, Andrew; Zhan, Qiwen

    2017-06-01

    We report the design, fabrication and testing of a highly efficient polarization fan-out grating for coherent beam combining working at 1550 nm. The grating design exploits the geometric-phase effect. Deep-UV interference lithography is used to fabricate the designed grating. Such a polarization fan-out grating demonstrates several advantages that are ideal for laser beam combining.

  5. Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Parcerisa, D.; Ricordel-Prognon, C.; Schmitt, J.-M.

    2009-04-01

    A major sodium accumulation has been recognized for long and by numerous authors in the Permo-Triassic salt deposits (Hay et al., 2006). Beside these basinal deposits, important masses of sodium were stored on the continents within deep palaeoweathering profiles in form of albite. Indeed, wide surfaces and huge volumes of granito-gneissic basements of the Hercynian massifs are albitized from North-Africa up to Scandinavia. These albitized rocks have usually been considered as related to tardi-magmatic metasomatic processes (Cathelineau 1986; Petersson and Eliasson 1997). Geometrical arrangement and dating of these alterations point out that these albitizations, or at least a part of them, developed under low temperature subsurface conditions in relation with the Triassic palaeosurface (Ricordel et al., 2007; Parcerisa et al., 2009). Petrology The albitized igneous rocks show a strong alteration with pseudomorphic replacement of the primary plagioclases into albite, replacement of primary biotite by chlorite and minor precipitation of neogenic minerals like albite, chlorite, apatite, haematite, calcite and titanite. Albitized rocks are characterized by their pink coloration due to the presence of minute haematite inclusions in the albite. The development and distribution of the albitization and related alterations above the unaltered basement occurs in three steps that define a vertical profile, up to 100-150 m depth. 1) In the lower part of the profile, albitization occurs within pink-colored patches in the unaltered rock, giving a pink-spotted aspect to the rock. 2) In the middle part of the profile, rocks have an overall pink coloration due to the albitization of the primary Ca-bearing igneous plagioclases. Usually, this facies develops in a pervasive manner, affecting the whole rock, but it may also be restricted to joints, giving a sharp-pink coloration to the fracture wall. 3) Finally, the top of the profile is defined by the same mineral paragenesis as in the

  6. Velocity profiles and interface instability in a two-phase fluid: investigations using ultrasonic velocity profiler

    NASA Astrophysics Data System (ADS)

    Amini, A.; de Cesare, G.; Schleiss, A. J.

    2009-04-01

    In the present study the velocity profiles and the instability at the interface of a two phase water-oil fluid were investigated. The main aim of the research project was to investigate the instability mechanisms that can cause the failure of an oil spill barrier. Such mechanisms have been studied before for a vast variety of conditions (Wicks in Fluid dynamics of floating oil containment by mechanical barriers in the presence of water currents. In: Conference on prevention and control of oil spills, pp 55-106, 1969; Fannelop in Appl Ocean Res 5(2):80-92, 1983; Lee and Kang in Spill Sci Technol Bull 4(4):257-266, 1997; Fang and Johnston in J Waterway Port Coast Ocean Eng ASCE 127(4):234-239, 2001; among others). Although the velocity field in the region behind the barrier can influence the failure significantly, it had not been measured and analyzed precisely. In the present study the velocity profiles in the vicinity of different barriers were studied. To undertake the experiments, an oil layer was contained over the surface of flowing water by means of a barrier in a laboratory flume. The ultrasonic velocity profiler method was used to measure velocity profiles in each phase and to detect the oil-water interface. The effect of the barrier geometry on velocity profiles was studied. It was determined that the contained oil slick, although similar to a gravity current, can not be considered as a gravity current. The oil-water interface, derived from ultrasonic echo, was used to find the velocity profile in each fluid. Finally it was shown that the fluctuations at the rearward side of the oil slick head are due to Kelvin-Helmholtz instabilities.

  7. Chloride as a signature indicator of soil textural and hydrologic stratigraphies in variable charge deep profiles

    NASA Astrophysics Data System (ADS)

    Rasiah, V.; Armour, J. D.; Menzies, N. W.

    2005-06-01

    Soil properties that influence water movement through profiles are important for determining flow paths, reactions between soil and solute, and the ultimate destination of solutes. This is particularly important in high rainfall environments. For highly weathered deep profiles, we hypothesize that abrupt changes in the distribution of the quotient [QT = (silt + sand)/clay] reflect the boundaries between textural units or textural (TS) and hydrologic (HS) stratigraphies. As a result, QT can be used as a parameter to characterize TS and as a surrogate for HS. Secondly, we propose that if chloride distributions were correlated with QT, under non-limiting anion exchange, then chloride distributions can be used as a signature indicator of TS and HS. Soil cores to a depth of 12.5 m were taken from 16 locations in the wet tropical Johnstone River catchment of northeast Queensland, Australia. The cores belong to nine variable charge soil types and were under sugarcane (Saccharum officinarum-S) production, which included the use of potassium chloride, for several decades. The cores were segmented at 1 m depth increments and subsamples were analysed for chloride, pH, soil water content (), clay, silt and sand contents. Selected bores were capped to serve as piezometers to monitor groundwater dynamics. Depth incremented QT, and chloride correlated, each individually, significantly with the corresponding profile depth increments, indicating the presence of textural, hydrologic and chloride gradients in profiles. However, rapid increases in QT down the profile indicated abrupt changes in TS, suggesting that QT can be used as a parameter to characterize TS and as a surrogate for HS. Abrupt changes in chloride distributions were similar to QT, suggesting that chloride distributions can be used as a signature indicator of QT (TS) and HS. Groundwater data indicated that chloride distributions depended, at least partially, on groundwater dynamics, providing further support to our

  8. Generation of Data-Rate Profiles of Ka-Band Deep-Space Links

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin

    2006-01-01

    A short report discusses a methodology for designing Ka-band Deep-Space-to- Earth radio-communication links. This methodology is oriented toward minimizing the effects of weather on the Ka-band telecommunication link by maximizing the expected data return subject to minimum link availability and a limited number of data rates. This methodology differs from the current standard practices in which a link is designed according to a margin policy for a given link availability at 10 elevation. In this methodology, one chooses a data-rate profile that will maximize the average data return over a pass while satisfying a minimum-availability requirement for the pass, subject to mission operational limitations expressed in terms of the number of data rates used during the pass. The methodology is implemented in an intelligent search algorithm that first finds the allowable data-rate profiles from the mission constraints, spacecraft-to-Earth distance, spacecraft EIRP (effective isotropic radiated power), and the applicable zenith atmospheric noise temperature distribution, and then selects the best data rate in terms of maximum average data return from the set of allowable data-rate profiles.

  9. Deep seismic reflection profiling of sedimentary basins offshore Brazil: Geological objectives and preliminary results in the Sergipe Basin

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster Ueipass; Lira Rabelo, JoséHenrique; De Matos, Renato Darros; De Barros, Mozart C.

    1995-12-01

    The first deep seismic reflection profiles offshore Brazil were acquired in Campos Basin and processed to 10 s TWT in 1984. Starting in 1989, Petrobrás acquired an extensive data set of deep seismic profiles using special acquisition equipment capable of effectively penetrating through the sedimentary layers and imaging the whole crustal architecture. These deep (18 s TWT) seismic reflection profiles extend across the Atlantic-type marginal basins, from the platform to the deepwater province, presently considered frontier regions for petroleum exploration. This work addresses the geological objectives of a deep seismic profile in the Sergipe Basin and discusses the results obtained by integrating regional seismic, gravity and magnetic data. When combined, these data provide evidence that deep seismic reflectors observed in the Sergipe Basin are related to intracrustal-upper mantle structures rather than sedimentary features. The deep seismic reflection profile in the Sergipe Basin also suggests that, rather than a non-volcanic passive margin, the deepwater extension of this basin is marked by several magmatic structures, including thick wedges of seaward-dipping reflectors and volcanic plugs. These magmatic features are associated with basinforming processes resulting from lithospheric extension during the breakup of Gondwana in the Early Cretaceous and subsequent emplacement of oceanic crust. These results are compared to the crustal scale structures observed in the Campos Basin, in the southeastern margin of Brazil. The interpretation of the deep structure of these basins indicates that final separation between the South American and African plates formed passive margins characterized by different patterns of crustal attenuation underlying the rift blocks.

  10. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    . This resulted in a reduction of N density at depth, which was not mirrored in C densities, indicating that fava beans decouple C and N cycles in the deep soil profile. We then tested whether these effects are a result of plant (i.e. enhanced rooting depth associated with lowered subsoil bulk density) or microbial (i.e. N-cycling and denitrification processes) activities, by investigating the isotopic signatures of C and N down the profile. Our results indicate that the selection of crop rotation influences soil C and N cycling and depth distribution. Although mineral N fertilizer has significant benefits for yield, the choice of crop rotation has a greater influence on soil C and N cycling and specifically the addition of leguminous plants into rotation can provide additional yield benefits and stability. Incorporating legumes into crop rotations affects soil physical and chemical properties and decouples C and N cycles in the deep soil profile, indicating different nutrient and water cycling processes in the deep soil profile.

  11. A simple deep-towed vertical array for high-resolution reflection seismic profiling

    NASA Astrophysics Data System (ADS)

    Herber, R.; Nuppenau, V.; Weigel, W.; Wong, H. K.

    1986-06-01

    A simple, low cost, deep-towed system for high-resolution reflection seismic profiling is described. It consists of a vertical array with two hydrophones having a separation of 2.2 m and rigidly mounted onto streamlined tow bodies. Improvement of the signal-to-noise ratio is attained by simple stacking of the hydrophone outputs after signal conditioning and travel time corrections. The suppression of side echoes and surface reflections is achieved by an analog procedure which in effect improves the directional characteristics of the array. A circuit for automatic gain control is included to enhance weak signals as well as to suppress ringing. Results in Kiel Bay and over the crest of the Jan Mayen Ridge (northern Atlantic) suggest that this simple vertical array may supplement air gun systems better than conventional, surface pinger-type equipment.

  12. Anatomy of the southern Cordilleran hingeline, Utah and Nevada, from deep electrical resistivity profiling

    SciTech Connect

    Wannamaker, P.E.; Stodt, J.A.; Johnston, J.M.; Booker, J.R.

    1997-07-01

    To address outstanding questions in Mesozoic-Cenozoic structure and present-day deep physicochemical state in the region of the southern Cordilleran hingeline, a detailed, east-west profile of magnetotelluric (MT) soundings 155 km in length was acquired. From these soundings, a resistivity interpretation was produced using an inversion algorithm based on a structural parameterization. In the upper ten kilometers of the transect, the interpretation shows two segments of low resistivity lying beneath allochthonous rocks of the Late Mesozoic, Sevier thrust sheet. Subsequent industry drilling motivated in part by this surveying confirms the existence and position of the eastern subthrust conductor and, more spectacularly, identifies the presence of yet deeper, autochthonous Mesozoic rocks. A simple structural interpretation is offered where one underthrust segment of low-resistivity sediments was created originally, but this segment was broken later into two major ones during higher-angle Tertiary extension. For the middle and lower crust, the MT data imply a nearly 1-D resistivity structure of remarkable uniformity across the entire transect. Pre-existing structural fabrics have had no measurable influence on localizing regions of high temperature fluids and melting in the lower crust, at least averaged over the scale of tens of kilometers. Given its uniformity over a distance of 155 km or more, the depth to the regional deep conductor does not appear related to the distribution of high-temperature geothermal resources.

  13. Crustal thinning and nature of extension in the northern North Sea from deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Klemperer, Simon L.

    1988-08-01

    A regional network of deep seismic reflection profiles recorded in the northern North Sea has been used to map Mesozoic and Cenozoic basin thickness and crustal thickness in the Viking Graben and adjacent platform areas. Depth to the reflection Moho varies from about 20 km in parts of the Viking Graben to about 32 km beneath the Shetlands and the Norwegian margin. The shallowing of the reflection Moho beneath the Viking Graben implies crustal stretching factors for Mesozoic extension greater than 2 in the center of the North Sea basin. The axis of crustal thinning is located directly beneath the Viking Graben, the axis of the sedimentary basin. Steeply dipping basin-bounding faults are imaged in the upper crust and several dipping reflectors are observed in the upper mantle, but no continuous reflective feature extending from the sedimentary basin to beneath the Moho is observed on any of the deep profiles. Thus these data do not support the existence of lithosphere-penetrating low-angle detachments (zones of simple shear) as the cause of extension in the northern North Sea. Some of the mantle reflectors dip to the west and some to the east, suggesting that simple shear, if it occurs in the upper mantle, is not of uniform sense. Rather, these data suggest a complex, depth-dependent pattern of brittle extensional deformation in the upper crust; pervasive, ductile extension (bulk pure shear) in the lower crust (which is decoupled from deformation in the mantle); and extension accommodated by discrete, dipping shear zones in the lithospheric mantle.

  14. SWI phase asymmetries in deep gray matter of healthy adults: is there an association with handedness?

    PubMed

    Liu, Yubo; Wang, Guangbin; Zhao, Lianxin; Geng, Mingbin; Wang, Lijuan; Bai, Xue; Hu, Jianbin; Man, Xiaoni

    2013-06-01

    To explore the handedness effects on phase asymmetries in deep gray matter of healthy adults by using magnetic susceptibility-weighted imaging (SWI) phase. Thirty left-handed (16 men, 14 women; age range, 20 to 57 years) and 30 age- and sex-matched right-handed (16 men, 14 women; age range, 20 to 58 years) healthy adults were examined at 3.0 T MRI. For each subject, phase values were detected in bilateral frontal white matters (FWM), caudate nucleus (CA), putamen (PU), globus pallidus (GP), thalamus (TH), red nucleus (RN) and substantia nigra (SN) on phase images. Statistical analysis was performed with paired-samples t-test and independent-samples t-test. In both handedness groups, the corrected phase values in the left hemisphere were significantly lower than those in the right one in FWM, CA, PU, GP (P < 0.05) and there was no significant hemispheric asymmetry in TH, RN and SN (P > 0.05). Differences in corrected phase values in corresponding brain regions of the same hemisphere between left-handed and right-handed groups were not statistically significant (P > 0.05). Hemispheric asymmetry of SWI phase in deep gray matter may not associate with handedness in adult brain.

  15. Direct phase-shift measurement with transmitted deep-UV illumination

    NASA Astrophysics Data System (ADS)

    Kusunose, Haruhiko; Awamura, Naoki; Takizawa, Hideo; Miyazaki, Kouji; Ode, Takahiro; Awamura, Daikichi

    1996-07-01

    This paper describes a direct phase-shift measurement system with transmitted deep-UV illumination for phase shifting mask (PSM) using a lateral shearing interferometer system. This interferometer has new structure developed for this purpose. The mirror mount of the interferometer is made of SiC ceramics that promote stability against vibration and ambient temperature drift. The illumination employs a xenon mercury arc lamp that has a spectrum close to the wavelength of KrF excimer laser. The repeatability of measurements is 0.5 degree in 3 sigma. The system can measure a small pattern down to 1 μm with an alternating type PSM with the objective of N.A.=0.4. Influence of incident angle of illumination on phase-shift measurement is investigated by experiment. The results show similar effects with simulation for circular illumination. The phase-shift measurement results on quartz step meet well with a calculation from step height and known refractive index including the effect of incident angle of illumination. The deep-UV measurement results also have good correlation with calculations from the results with another direct phase-shift measurement system that wavelength is 365nm. The simulation for focus latitude of alternating type PSMs agree with the experimental results of wafer exposure and the phase measurement. The accuracy of this system is sufficient for application to development of phase shift mask process.

  16. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    PubMed

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  17. Deep seismic reflection profiling of the subduction megathrust across the Sagimi trough and Tokyo bay, Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Iwasaki, Takaya; Abe, Susumu; Saito, Hideo; Kawanaka, Taku; Hirata, Naoshi

    2010-05-01

    Beneath the metropolitan Tokyo, the Philippine Sea plate, in particular the fore arc portion of the Izu-Bonin island arc, has been subducted. Subduction megathrust beneath Tokyo generated M-8 class earthquakes, such as the 1923 Kanto (M7.9) and 1703 Genroku (M8.0) earthquakes. Due to the buyant subduction of the Izu-Bonin arc, the megathrust lies very shallow part of the crust. The Kozu-Matsuda fault, probable spray fault from the megathrust, emerged at the surface. In 2009, we acquired the deep seismic reflection data across the toe of the thrust system to reveal the connectivity of the probable spray fault to the megathrust. Together with the deep seismic section acquired in 2003, we show a 120-km-long deep seismic reflection profile from the front to 30 km in depth and discuss the geometry and characteristics of the thrust system. We performed deep seismic profiling across the Sagami trough for a 70-km-long seismic line in September 2009, using two ships for offshore seismic data acquisition: a gun-ship with a 3020 cu. inch air-gun and a cable-ship with a 2-km-long, streamer cable and a 480 cu. inch air-gun. The seismic signals were recorded at Miura and Izu peninsulas located both ends of the seismic line. At both sides of the onshore line, off-line recorders were deployed along total 20-km-long seismic lines at a 50m interval. Seismic reflection data were acquired by different offset of ships making large-offset gathers. The northeast end of the seismic line connected with the 2003 Tokyo bay seismic line (Sato et al., 2005: Science). The obtained seismic sections portray the detailed geometry of the spray faults, suggesting an emergent thrust with 4 km thick landward dipping strata. It merges to the megathrust at 6-7 sec (TWT). Judging from the geometry of fault-related fold in the trough fill sediments, the tip of the megathrust is located at 3 sec (TWT) beneath the trough axis. According to the co-seismic crustal deformation, the slip of the 1923 Kanto

  18. Gouy phase shift for annular beam profiles in attosecond experiments.

    PubMed

    Schlaepfer, F; Ludwig, A; Lucchini, M; Kasmi, L; Volkov, M; Gallmann, L; Keller, U

    2017-02-20

    Attosecond pump-probe measurements are typically performed by combining attosecond pulses with more intense femtosecond, phase-locked infrared (IR) pulses because of the low average photon flux of attosecond light sources based on high-harmonic generation (HHG). Furthermore, the strong absorption of materials at the extreme ultraviolet (XUV) wavelengths of the attosecond pulses typically prevents the use of transmissive optics. As a result, pump and probe beams are typically recombined geometrically with a center-hole mirror that reflects the larger IR beam and transmits the smaller XUV, which leads to an annular beam profile of the IR. This modification of the IR beam can affect the pump-probe measurements because the propagation that follows the reflection on the center-hole mirror can strongly deviate from that of an ideal Gaussian beam. Here we present a detailed experimental study of the Gouy phase of an annular IR beam across the focus using a two-foci attosecond beamline and the RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) technique. Our measurements show a Gouy phase shift of the truncated beam as large as 2π and a corresponding rate of 50 as/mm time delay change across the focus in a RABBITT measurement. These results are essential for attosecond pump-probe experiments that compare measurements of spatially separated targets.

  19. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  20. The Mechanics of Deep Earthquakes: An Experimental Investigation of Slab Phase Changes

    NASA Astrophysics Data System (ADS)

    Santangeli, J. R.; Dobson, D. P.; Hunt, S. A.; Meredith, P. G.

    2014-12-01

    The mechanics of deep earthquakes have remained a puzzle for researchers since 1928 when they were first accurately identified by Kiyoo Wadati1 in Japan. Deep earthquakes show a split distribution, with peaks centered around ~370-420km and ~520-550km. As these events are limited to subducting slabs, it is accepted that they may be due to phase changes in metastable slab material. Indeed, conditions at ~350km depth are nominally appropriate for the olivine - wadsleyite transition, consistent with the anticrack mechanism previously observed in (Mg,Fe)2SiO42. The additional peak around 520km suggests that there is another siesmogenic phase change; candidates include Ca-garnet -> Ca-perovskite, wadsleyite -> ringwoodite and enstatite -> majorite or ilmenite. Importantly, for large scale seismogenesis to occur candidate phase changes must be susceptible to a runaway mechanism. Typically this involves the release of heat during exothermic reactions, which acts to increase reaction and nucleation rates. It is worth noting that the post-spinel reaction (sp -> pv + fp) marks the cessation of deep earthquakes; possibly as a result of being endothermic. This research aims to identify which of these candidates could be responsible for seismogenesis. We use high-pressure split cylinder multi-anvil experiments with acoustic emission detection. Low-pressure analogue materials have been used to allow greater cell sizes and thus sample volumes to enable accurate location of AE to within the sample. The candidate phase is annealed below its phase boundary, and then taken through the boundary by further compression. Acoustic emissions, if generated, are observed in real time and later processed to ensure they emanate from within the sample volume. Initial results indicate that the pryroxene -> ilmenite transition in MgGeO3 is seismogenic, with several orders of magnitude increase in the energy of AE concurrent with the phase boundary. References:1) Wadati, K. (1928) Shallow and deep

  1. Resolving the phasing and forcing dynamics between North Atlantic climate and deep ocean circulation changes

    NASA Astrophysics Data System (ADS)

    Irvali, Nil; Ninnemann, Ulysses S.; Kleiven, Helga (Kikki) F.; Haflidason, Haflidi; Mjell, Tor L.

    2017-04-01

    Multidecadal changes in North Atlantic climate (e.g., AMO/AMV) have been attributed to changes in the Atlantic Meridional Overturning Circulation (AMOC) and suggested as a driver of overturning changes. While simulations find an in-phase relationship when AMOC modulates basin-wide climate, AMOC lags when basin scale climate is forced externally (e.g., volcanoes and solar). Unfortunately the observational records are too short to assess these multi-decadal scale dynamics. The surface climate reconstructions, based on annually resolved archives, have excellent time control raising the possibility for precise determination of phasing with other well dated records. Yet, all currently available reconstructions of deep ocean circulation have radiometric based age models; with inherent errors (±30-50 years minimum) preventing the determination of the absolute phasing between deep ocean circulation changes and AMO/AMV. In order to reduce these uncertainties we use stratigraphical appearance, abundance and geochemical composition of tephra grains from a high sedimentation rate site off the Gardar Drift, south of Iceland (GS06-144-09MC-D; 60˚ 19'N, 23˚ 58'W, 2081 m water depth). Identifying tephra layers (and their association) in the core and fingerprinting with known volcanic eruptions on Iceland provides absolute age markers. Combining these age markers with 210Pb and 14C AMS dates within the same core, we have built a new chronology for the core GS06-144-09MC-D. Changes in surface ocean hydrography and climate are further portrayed using planktonic foraminiferal δ18O, assemblage counts, modern analog technique derived sea surface temperatures and Mg/Ca paleothermometry. Records of Iceland Scotland Overflow Water (ISOW) vigor (Sortable Silt mean grain size; Mjell et al., 2016) and benthic carbon isotopes from the same core allow us to determine the absolute phasing between changes in basin-wide climate, deep ocean circulation, and deep water carbon chemistry spanning

  2. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    SciTech Connect

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao; Smith, Richard D.

    2016-02-12

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  3. Review of recent results from continental deep seismic profiling in Australia

    NASA Astrophysics Data System (ADS)

    Goleby, Bruce R.; Drummond, Barry J.; Korsch, Russell J.; Willcox, J. Barry; O'Brien, Geoffrey W.; Wake-Dyster, Kevin D.

    1994-04-01

    The Australian Geological Survey Organisation regularly collects 450-500 km of onshore deep seismic reflection data and up to 4500 km offshore each year in Australia. These recordings are made in a wide range of tectonic provinces, including, in the last few years, late Palaeozoic-Mesozoic intracontinental and Palaeozoic-Mesozoic-Cenozoic continental margin extensional basins, moderately deformed Palaeozoic transtensional basins and compressional fold belts, and Archaean greenstone terranes. Several of these provinces are major petroleum exploration provinces, whereas others contain significant mineral deposits. The primary purpose of the deep seismic profiling program is to resolve the tectonic history of the Australian continent, and thereby to encourage exploration for hydrocarbons and mineral resources in Australia. On the northwest Australian continental margin, major basin systems including the Bonaparte Basin, formed as a result of complex interactions since the Carboniferous, involving episodes of extension followed by strike-slip movements and inversion, which reactivated both the primary extensional and ancient basement structures. Off southeastern Australia, basins such as the Gippsland Basin formed as part of a linked transtensional system related to movement on a common mid-crustal detachment complex. On continental Australia, the Bowen Basin, in the northeast, was deformed by thrust faults that root in a major E-dipping detachment that flattens in the middle crust. The Cobar Basin, in the southeast, is a case where the seismic data support a detachment model in which the upper plate displacement vector can be calculated by plate reconstructions linking the geometry of the detachment surface with that of the basin. The greenstone terranes within the Eastern Goldfields region of Western Australia show crustal-scale fault systems that are planar and steep dipping, more in keeping with those interpreted in data from other Precambrian provinces rather than

  4. Microbiological Profiles of Deep Terrestrial Sedimentary Rocks Revealed by an Aseptic Drilling Procedure

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Suko, T.; Fukuda, A.; Kouduka, M.; Nanba, K.; Sakata, S.; Ito, K.

    2009-12-01

    Unlike the near-surface environments, it is difficult to determine the community structure and biogeochemical functions of microorganisms in the deep subsurface mainly due to accessibility without contamination and disturbance. In an inland fore-arc basin in central Japan, we applied a new drilling procedure using deoxygenated and/or filter-sterilized drilling fluid(s). Although DNA-stained and cultivable cell numbers and the contents of phospholipid fatty acids (PLFA) all indicated the presence of metabolically active microbial populations in sedimentary rocks at a depth range from 200 to 350 m, it was not successful to extract DNA from the drilled core samples. During drilling, drilling fluid used for drilling and coring in the borehole was collected from the borehole bottom and subjected to DNA extraction. Quantitative fluorogenic PCR revealed that bacterial DNA were detected in drilling fluid samples when drilling was performed for siltstone and silty sandstone layers with the limited flow of drilling fluid. Bacterial 16S rRNA gene sequences retrieved from the drilling fluid samples below a depth of 324 m were mostly related to Pseudomonas putida or Flavobacterium succinicans, while those related to other Pseudomonas spp. were predominant at depths of 298 and 299m. PLFA profiles of core samples from a depth range between 250 and 351 m showed the abundance of 16:0, 16:1ω7 and 18:1ω9 fatty acids, which are known as major cellular lipid components of Pseudomonas and Flavobacterium spp. From these results, it was suggested that the members of the genera Pseudomonas and F. succinicans might represent dominant microbial populations that inhabit the deep terrestrial sedimentary rocks in Central Japan. This study was supported by grants from the Nuclear and Industrial Safety Agency (NISA) and Japan Nuclear Energy Safety Organization (JNES).

  5. Diffraction of a one-dimensional phase grating in the deep Fresnel field.

    PubMed

    Teng, Shuyun; Zhang, Ningyu; Dong, Qingrui; Cheng, Chuanfu

    2007-11-01

    We analyze theoretically the diffraction of phase gratings in the deep Fresnel field on the basis of the theory of scalar diffraction and Green's theorem and present the general formula for the diffraction intensity of a one-dimensional sinusoidal phase grating. The numerical calculations show that in the deep Fresnel region the diffraction distribution can be described by designating three characteristic regions that are influenced by the parameters of the grating. The microlensing effect of the interface of the phase grating provides the corresponding explanation. Moreover, according to the viewpoint that the diffraction intensity distribution is the result of the interference of the diffraction orders of the grating, we find that the diffraction patterns, depending on the carved depth of the phase grating, are determined by the contributing diffraction orders, their relative power, and the quasi-Talbot effect of the phase grating, which results from the second meeting of the diffraction orders carrying most of the power of the total field, as in the case of the amplitude grating.

  6. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease

    PubMed Central

    de Hemptinne, Coralie; Swann, Nicole; Ostrem, Jill L.; Ryapolova-Webb, Elena S.; Luciano, Marta San; Galifianakis, Nicholas; Starr, Philip A.

    2015-01-01

    Deep brain stimulation (DBS) is increasingly applied to the treatment of brain disorders, but its mechanism of action remains unknown. Here, we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the β rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive β phase locking of motor cortex neurons. PMID:25867121

  7. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease.

    PubMed

    de Hemptinne, Coralie; Swann, Nicole C; Ostrem, Jill L; Ryapolova-Webb, Elena S; San Luciano, Marta; Galifianakis, Nicholas B; Starr, Philip A

    2015-05-01

    Deep brain stimulation (DBS) is increasingly applied for the treatment of brain disorders, but its mechanism of action remains unknown. Here we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients, neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the beta rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as that of the reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive beta phase locking of motor cortex neurons.

  8. Orogenic structure of the Eastern Alps, Europe, from TRANSALP deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Lüschen, Ewald; Lammerer, Bernd; Gebrande, Helmut; Millahn, Karl; Nicolich, Rinaldo; Transalp Working Group

    2004-09-01

    The TRANSALP Group, comprising of partner institutions from Italy, Austria and Germany, acquired data on a 340 km long deep seismic reflection line crossing the Eastern Alps between Munich and Venice. Although the field work was split into four campaigns, between fall 1998 and summer 2001, the project gathered for the first time a continuous profile across the Alps using consistent field acquisition and data processing parameters. These sections span the orogen itself, at its broadest width, as well as the editor Fred Davey and the two adjacent basins. Vibroseis and explosion data, complementary in their depth penetration and resolution characteristics, were obtained along with wide-angle and teleseismic data. The profile shows a bi-vergent asymmetric structure of the crust beneath the Alpine axis which reaches a maximum thickness of 55 km, and 80-100 km long transcrustal ramps, the southward dipping 'Sub-Tauern-Ramp' and the northward-dipping 'Sub-Dolomites-Ramp'. Strongly reflective patterns of these ramps can be traced towards the north to the Inn Valley and towards the south to the Valsugana thrust belt, both of which show enhanced seismicity in the brittle upper crust. The seismic sections do not reveal any direct evidence for the presence of the Periadriatic Fault system, the presumed equivalent to the Insubric Line in the Western Alps. According to our new evolutionary model, the Sub-Tauern-Ramp is linked at depth with remnants of the subducted Penninic Ocean. The 'crocodile'-type model describes an upper/lower crustal decoupling and wedging of both the European and the Adriatic-African continents.

  9. Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme

    NASA Astrophysics Data System (ADS)

    Tjahjanto, D. D.; Eisenlohr, P.; Roters, F.

    2015-06-01

    Multiscale modelling and simulation play an important role in sheet metal forming analysis, since the overall material responses at macroscopic engineering scales, e.g. formability and anisotropy, are strongly influenced by microstructural properties, such as grain size and crystal orientations (texture). In the present report, multiscale analysis on deep drawing of dual-phase steels is performed using an efficient grain cluster-based homogenization scheme. The homogenization scheme, called relaxed grain cluster (RGC), is based on a generalization of the grain cluster concept, where a (representative) volume element consists of p  ×  q  ×  r (hexahedral) grains. In this scheme, variation of the strain or deformation of individual grains is taken into account through the, so-called, interface relaxation, which is formulated within an energy minimization framework. An interfacial penalty term is introduced into the energy minimization framework in order to account for the effects of grain boundaries. The grain cluster-based homogenization scheme has been implemented and incorporated into the advanced material simulation platform DAMASK, which purposes to bridge the macroscale boundary value problems associated with deep drawing analysis to the micromechanical constitutive law, e.g. crystal plasticity model. Standard Lankford anisotropy tests are performed to validate the model parameters prior to the deep drawing analysis. Model predictions for the deep drawing simulations are analyzed and compared to the corresponding experimental data. The result shows that the predictions of the model are in a very good agreement with the experimental measurement.

  10. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versus 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.

  11. Theoretical Prediction of Melting Relations in the Deep Mantle: the Phase Diagram Approach

    NASA Astrophysics Data System (ADS)

    Belmonte, D.; Ottonello, G. A.; Vetuschi Zuccolini, M.; Attene, M.

    2016-12-01

    Despite the outstanding progress in computer technology and experimental facilities, understanding melting phase relations in the deep mantle is still an open challenge. In this work a novel computational scheme to predict melting relations at HP-HT by a combination of first principles DFT calculations, polymer chemistry and equilibrium thermodynamics is presented and discussed. The adopted theoretical framework is physically-consistent and allows to compute multi-component phase diagrams relevant to Earth's deep interior in a broad range of P-T conditions by a convex-hull algorithm for Gibbs free energy minimisation purposely developed for high-rank simplexes. The calculated phase diagrams are in turn used as a source of information to gain new insights on the P-T-X evolution of magmas in the deep mantle, providing some thermodynamic constraints to both present-day and early Earth melting processes. High-pressure melting curves of mantle silicates are also obtained as by-product of phase diagram calculation. Application of the above method to the MgO-Al2O3-SiO2 (MAS) ternary system highlights as pressure effects are not only able to change the nature of melting of some minerals (like olivine and pyroxene) from eutectic to peritectic (and vice versa), but also simplify melting relations by drastically reducing the number of phases with a primary phase field at HP-HT conditions. It turns out that mineral phases like Majorite-Pyrope garnet and Anhydrous Phase B (Mg14Si5O24), which are often disregarded in modelling melting processes of mantle assemblages, are stable phases at solidus or liquidus conditions in a P-T range compatible with the mantle transition zone (i.e. P = 16 - 23 GPa and T = 2200 - 2700 °C) when their thermodynamic and thermophysical properties are properly assessed. Financial support to the Senior Author (D.B.) during his stay as Invited Scientist at the Institut de Physique du Globe de Paris (IPGP, Paris) is warmly acknowledged.

  12. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.31 If I... produced gas or oil from a deep well with a perforated interval the top of which is less than 18,000 feet... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of...

  13. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.31 If I... produced gas or oil from a deep well with a perforated interval the top of which is less than 18,000 feet... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of...

  14. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.31 If I... produced gas or oil from a deep well with a perforated interval the top of which is less than 18,000 feet... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of...

  15. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags

    NASA Astrophysics Data System (ADS)

    Hussmann, Hauke; Shoji, Daigo; Steinbrügge, Gregor; Stark, Alexander; Sohl, Frank

    2016-11-01

    Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers k_2 and h_2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags φ _{k_2} and φ _{h_2} of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference Δ φ = φ _{k_2}- φ _{h_2} can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities {<}10^{14} Pa s and would indicate a highly dissipative state of the deep interior. In this case Δ φ is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite. For Europa Δ φ could reach values exceeding 20° and phase-lag measurements could help distinguish between (1) a hot dissipative silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA's Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system.

  16. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.

    PubMed

    Juneidi, Ibrahim; Hayyan, Maan; Mohd Ali, Ozair

    2016-04-01

    An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.

  17. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy.

    PubMed

    Desgagné-Penix, Isabel; Farrow, Scott C; Cram, Dustin; Nowak, Jacek; Facchini, Peter J

    2012-06-01

    Recent advances in DNA sequencing technology and analytical mass spectrometry are providing unprecedented opportunities to develop the functional genomics resources required to investigate complex biological processes in non-model plants. Opium poppy produces a wide variety of benzylisoquinoline alkaloids (BIAs), including the pharmaceutical compounds codeine, morphine, noscapine and papaverine. A functional genomics platform to identify novel BIA biosynthetic and regulatory genes in opium poppy has been established based on the differential metabolite profile of eight selected cultivars. Stem cDNA libraries from each of the eight opium poppy cultivars were subjected to 454 pyrosequencing and searchable expressed sequence tag databases were created from the assembled reads. These deep and integrated metabolite and transcript databases provide a nearly complete representation of the genetic and metabolic variances responsible for the differential occurrence of specific BIAs in each cultivar as demonstrated using the biochemically well characterized pathway from tyrosine to morphine. Similar correlations between the occurrence of specific transcripts and alkaloids effectively reveals candidate genes encoding uncharacterized biosynthetic enzymes as shown using cytochromes P450 potentially involved in the formation of papaverine and noscapine.

  18. Transcriptional profiling of CRP-regulated genes in deep-sea bacterium Shewanella piezotolerans WP3.

    PubMed

    Jian, Huahua; Hu, Jing; Xiao, Xiang

    2015-09-01

    The cAMP receptor protein (CRP) is a conserved regulator in bacteria and involved in regulation of energy metabolism, such as glucose, galactose, and citrate (Green et al., 2014 [1]). As an important catabolite activator protein, it has been well characterized in model microorganism such as Escherichia coli. However, our understanding of the roles of CRP in deep-sea bacteria is rather limited. To indentify the function of CRP, we performed whole genome transcriptional profiling using a custom designed microarray which contains 95% open reading frames of Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1914 m (Xiao et al., 2007 [2]; Wang et al., 2008 [3]). Here we describe the experimental procedures and methods in detail to reproduce the results (available at Gene Expression Omnibus database under GSE67731 and GSE67732) and provide resource to be employed for comparative analyses of CRP regulon and the regulatory network of anaerobic respiration in microorganisms which inhabited in different environments, and thus broaden our understanding of mechanism of bacteria against various environment stresses.

  19. Transcriptional profiling of CRP-regulated genes in deep-sea bacterium Shewanella piezotolerans WP3

    PubMed Central

    Jian, Huahua; Hu, Jing; Xiao, Xiang

    2015-01-01

    The cAMP receptor protein (CRP) is a conserved regulator in bacteria and involved in regulation of energy metabolism, such as glucose, galactose, and citrate (Green et al., 2014 [1]). As an important catabolite activator protein, it has been well characterized in model microorganism such as Escherichia coli. However, our understanding of the roles of CRP in deep-sea bacteria is rather limited. To indentify the function of CRP, we performed whole genome transcriptional profiling using a custom designed microarray which contains 95% open reading frames of Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1914 m (Xiao et al., 2007 [2]; Wang et al., 2008 [3]). Here we describe the experimental procedures and methods in detail to reproduce the results (available at Gene Expression Omnibus database under GSE67731 and GSE67732) and provide resource to be employed for comparative analyses of CRP regulon and the regulatory network of anaerobic respiration in microorganisms which inhabited in different environments, and thus broaden our understanding of mechanism of bacteria against various environment stresses. PMID:26484223

  20. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling.

    PubMed

    Britanova, Olga V; Putintseva, Ekaterina V; Shugay, Mikhail; Merzlyak, Ekaterina M; Turchaninova, Maria A; Staroverov, Dmitriy B; Bolotin, Dmitriy A; Lukyanov, Sergey; Bogdanova, Ekaterina A; Mamedov, Ilgar Z; Lebedev, Yuriy B; Chudakov, Dmitriy M

    2014-03-15

    The decrease of TCR diversity with aging has never been studied by direct methods. In this study, we combined high-throughput Illumina sequencing with unique cDNA molecular identifier technology to achieve deep and precisely normalized profiling of TCR β repertoires in 39 healthy donors aged 6-90 y. We demonstrate that TCR β diversity per 10(6) T cells decreases roughly linearly with age, with significant reduction already apparent by age 40. The percentage of naive T cells showed a strong correlation with measured TCR diversity and decreased linearly up to age 70. Remarkably, the oldest group (average age 82 y) was characterized by a higher percentage of naive CD4(+) T cells, lower abundance of expanded clones, and increased TCR diversity compared with the previous age group (average age 62 y), suggesting the influence of age selection and association of these three related parameters with longevity. Interestingly, cross-analysis of individual TCR β repertoires revealed a set >10,000 of the most representative public TCR β clonotypes, whose abundance among the top 100,000 clones correlated with TCR diversity and decreased with aging.

  1. Development of Demand-Controlled Deep Brain Stimulation Techniques Based on Stochastic Phase Resetting

    NASA Astrophysics Data System (ADS)

    Tass, Peter A.

    2003-05-01

    Stimulation techniques are discussed here which make it possible to effectively desynchronize a synchronized cluster of globally coupled phase oscillators in the presence of noise. To this end composite stimuli are used which consist of a first, stronger stimulus followed by a second, weaker stimulus after a constant time delay. The first stimulus controls the dynamics of the cluster by resetting it, whereas the second stimulus desynchronizes the cluster by hitting it in a vulnerable state. The first, resetting stimulus can be a strong single pulse, a high-frequency pulse train or a low-frequency pulse train. The cluster's resynchronization can effectively be blocked by repeated administration of a composite stimulus. Demand controlled deep brain stimulation with these desynchronizing stimulation techniques is suggested for the therapy of patients suffering from tremor-dominant Parkinson's disease or essential tremor as a milder and more efficient therapy compared to the standard permanent high-frequency deep brain stimulation.

  2. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth

    PubMed Central

    Horita, Juske; Polyakov, Veniamin B.

    2015-01-01

    The carbon budget and dynamics of the Earth’s interior, including the core, are currently very poorly understood. Diamond-bearing, mantle-derived rocks show a very well defined peak at δ13C ≈ −5 ± 3‰ with a very broad distribution to lower values (∼−40‰). The processes that have produced the wide δ13C distributions to the observed low δ13C values in the deep Earth have been extensively debated, but few viable models have been proposed. Here, we present a model for understanding carbon isotope distributions within the deep Earth, involving Fe−C phases (Fe carbides and C dissolved in Fe−Ni metal). Our theoretical calculations show that Fe and Si carbides can be significantly depleted in 13C relative to other C-bearing materials even at mantle temperatures. Thus, the redox freezing and melting cycles of lithosphere via subduction upwelling in the deep Earth that involve the Fe−C phases can readily produce diamond with the observed low δ13C values. The sharp contrast in the δ13C distributions of peridotitic and eclogitic diamonds may reflect differences in their carbon cycles, controlled by the evolution of geodynamical processes around 2.5–3 Ga. Our model also predicts that the core contains C with low δ13C values and that an average δ13C value of the bulk Earth could be much lower than ∼−5‰, consistent with those of chondrites and other planetary body. The heterogeneous and depleted δ13C values of the deep Earth have implications, not only for its accretion−differentiation history but also for carbon isotope biosignatures for early life on the Earth. PMID:25512520

  3. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth.

    PubMed

    Horita, Juske; Polyakov, Veniamin B

    2015-01-06

    The carbon budget and dynamics of the Earth's interior, including the core, are currently very poorly understood. Diamond-bearing, mantle-derived rocks show a very well defined peak at δ(13)C ≈ -5 ± 3‰ with a very broad distribution to lower values (∼-40‰). The processes that have produced the wide δ(13)C distributions to the observed low δ(13)C values in the deep Earth have been extensively debated, but few viable models have been proposed. Here, we present a model for understanding carbon isotope distributions within the deep Earth, involving Fe-C phases (Fe carbides and C dissolved in Fe-Ni metal). Our theoretical calculations show that Fe and Si carbides can be significantly depleted in (13)C relative to other C-bearing materials even at mantle temperatures. Thus, the redox freezing and melting cycles of lithosphere via subduction upwelling in the deep Earth that involve the Fe-C phases can readily produce diamond with the observed low δ(13)C values. The sharp contrast in the δ(13)C distributions of peridotitic and eclogitic diamonds may reflect differences in their carbon cycles, controlled by the evolution of geodynamical processes around 2.5-3 Ga. Our model also predicts that the core contains C with low δ(13)C values and that an average δ(13)C value of the bulk Earth could be much lower than ∼-5‰, consistent with those of chondrites and other planetary body. The heterogeneous and depleted δ(13)C values of the deep Earth have implications, not only for its accretion-differentiation history but also for carbon isotope biosignatures for early life on the Earth.

  4. Using ammonium pore water profiles to assess stoichiometry of deep remineralization processes in methanogenic continental margin sediments

    NASA Astrophysics Data System (ADS)

    Burdige, David J.; Komada, Tomoko

    2013-05-01

    many continental margin sediments, a deep reaction zone exists which is separated from remineralization processes near the sediment surface. Here, methane diffuses upward to a depth where it is oxidized by downwardly diffusing sulfate. However, the methane sources that drive this anaerobic oxidation of methane (AOM) in the sulfate-methane transition zone (SMT) may vary among sites. In particular, these sources can be thought of as either (i) "internal" sources from in situ methanogenesis (regardless of where it occurs in the sediment column) that are ultimately coupled to organic matter deposition and burial, or (ii) "external" sources such as hydrocarbon reservoirs derived from ancient source rocks, or deeply buried gas hydrates, both of which are decoupled from contemporaneous organic carbon deposition at the sediment surface. Using a modeling approach, we examine the relationship between different methane sources and pore water sulfate, methane, dissolved inorganic carbon (DIC), and ammonium profiles. We show that pore water ammonium profiles through the SMT represent an independent "tracer" of remineralization processes occurring in deep sediments that complement information obtained from profiles of solutes directly associated with AOM and carbonate precipitation, i.e., DIC, methane, and sulfate. Pore water DIC profiles also show an inflection point in the SMT based on the type of deep methane source and the presence/absence of accompanying upward DIC fluxes. With these results, we present a conceptual framework which illustrates how shallow pore water profiles from continental margin settings can be used to obtain important information about remineralization processes and methane sources in deep sediments.

  5. The mechanics of Deep Earthquakes: An experimental investigation of slab phase changes

    NASA Astrophysics Data System (ADS)

    Santangeli, J. R.; Dobson, D. P.; Hunt, S. A.; Meredith, P. G.

    2012-12-01

    James Santangeli David P. Dobson Simon A. Hunt Philip G. Meredith The mechanics of deep earthquakes have remained a puzzle for researchers since 1928 when they were first accurately identified by Kiyoo Wadati1 in Japan. Deep earthquakes show a bimodal distribution, with peaks centred around ~370-420km and ~520-550km. As these events are limited to subducting slabs, it is accepted that they may be due to phase changes in metastable slab material. Indeed, conditions at ~350km depth are nominally appropriate for the olivine - wadsleyite transition, consistent with the anticrack mechanism previously observed in (Mg,Fe)2SiO42. The additional peak around 520km suggests that there is another siesmogenic phase change; candidates include Ca-garnet → Ca-perovskite, wadsleyite → ringwoodite and enstatite → majorite / ilmenite. Importantly, for large scale seismogenesis to occur candidate phase changes must be susceptible to a runaway mechanism. Typically this involves the release of heat during exothermic reactions, which acts to increase reaction and nucleation rates. It is worth noting that the post-spinel reaction marks the cessation of deep earthquakes; possibly due to its negative Clapeyron slope. This research aims to identify which of these candidates could be responsible using high-pressure split cylinder multi-anvil experiments with acoustic emission detection. Further planned experiments include use of a DT-Cup press3, a multi-anvil set up designed to allow samples to be deformed under controlled conditions of stress/strain rate in order to test the effects of deviatoric stresses on seismogenesis. Results on low-P analogue materials MgGeO3 (pyroxene - ilmenite), CaGeO3 (pyroxene -garnet - perovskite) and MgCaGeO4 (spinel - perovskite + oxide) will be presented. References. 1) Wadati, K. (1928) Shallow and deep earthquakes. Geophysical Magazine. 1, 162-202 2) Green, H., W., & Burnley, P., C. (1989) A new self-organizing mechanism for deep-focus earthquakes

  6. Optimized Structures for Low-Profile Phase Change Thermal Spreaders

    NASA Astrophysics Data System (ADS)

    Sharratt, Stephen Andrew

    Thin, low-profile phase change thermal spreaders can provide cooling solutions for some of today's most pressing heat flux dissipation issues. These thermal issues are only expected to increase as future electronic circuitry requirements lead to denser and potentially 3D chip packaging. Phase change based heat spreaders, such as heat pipes or vapor chambers, can provide a practical solution for effectively dissipating large heat fluxes. This thesis reports a comprehensive study of state-of-the-art capillary pumped wick structures using computational modeling, micro wick fabrication, and experimental analysis. Modeling efforts focus on predicting the shape of the liquid meniscus inside a complicated 3D wick structure. It is shown that this liquid shape can drastically affect the wick's thermal resistance. In addition, knowledge of the liquid meniscus shape allows for the computation of key parameters such as permeability and capillary pressure which are necessary for predicting the maximum heat flux. After the model is validated by comparison to experimental results, the wick structure is optimized so as to decrease overall wick thermal resistance and increase the maximum capillary limited heat flux before dryout. The optimized structures are then fabricated out of both silicon and copper using both traditional and novel micro-fabrication techniques. The wicks are made super-hydrophilic using chemical and thermal oxidation schemes. A sintered monolayer of Cu particles is fabricated and analyzed as well. The fabricated wick structures are experimentally tested for their heat transfer performance inside a well controlled copper vacuum chamber. Heat fluxes as high as 170 W/cm2 are realized for Cu wicks with structure heights of 100 μm. The structures optimized for both minimized thermal resistance and high liquid supply ability perform much better than their non-optimized counterparts. The super-hydrophilic oxidation scheme is found to drastically increase the maximum

  7. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  8. Is collisional breakup an important process within mixed-phase deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Seifert, A.; Khain, A.; Mayer, F.

    2003-04-01

    The microphysics of deep convective clouds determines their precipitation efficiency as well as the dynamical evolution of cloud systems and is therefore of great importance for numerical weather prediction, flood forecasting and regional climate modeling. Of all cloud systems mixed-phase deep convection is maybe the most complex and least understood. One reason is that the numerous microphysical processes taking place are highly nonlinear and strongly coupled with each other as well as with the hydrodynamics of the cloud. Collisional breakup of raindrops is one of these cloud microphysical processes, but is often neglected or not well represented in state-of-the-art cloud resolving models. The importance of collisional breakup is well known for tropical cloud systems, which are dominated by warm phase processes. In addition various studies using so-called rainshaft models showed that collisional breakup can alter the raindrop size distribution below cloud base. But what happens within the clouds and especially within strong convective updrafts? Can collisional breakup lead to a different cloud evolution by changing the drop size distribution? Using the Hebrew University Cloud Model (HUCM), which includes the most detailed spectral microphysics model available today, we performed a sensitivity study to answer these questions. Collisional breakup was therefore recently included in HUCM using Bleck's numerical method, which is standard for simulation of the breakup process. Our breakup scheme itself is mainly based on the parameterization of Low and List (1982, JAS), but includes also additional data for small raindrops by Beard and Ochs (1995, JAS). As a test case a deep convective mixed-phase cloud is simulated with initial conditions based on a sounding from 13 August 1999, Midland/Texas. We present a detailed analysis of the simulated cloud evolution with and without collisional breakup taken into account. The conclusion from our sensitivity study is that

  9. In Vitro and In Vivo toxicity profiling of ammonium-based deep eutectic solvents.

    PubMed

    Hayyan, Maan; Looi, Chung Yeng; Hayyan, Adeeb; Wong, Won Fen; Hashim, Mohd Ali

    2015-01-01

    The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes.

  10. In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents

    PubMed Central

    Hayyan, Maan; Looi, Chung Yeng; Hayyan, Adeeb; Wong, Won Fen; Hashim, Mohd Ali

    2015-01-01

    The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes. PMID:25679975

  11. High-resolution crustal structure of the Yinchuan basin revealed by deep seismic reflection profiling: implications for deep processes of basin

    NASA Astrophysics Data System (ADS)

    Huang, Xingfu; Feng, Shaoying; Gao, Rui; Li, Wenhui

    2016-04-01

    The Yinchuan basin, located on the western margin of the Ordos block, has the characteristics of an active continental rift. A NW-striking deep seismic reflection profile across the center of Yinchuan basin precisely revealed the fine structure of the crust. The images showed that the crust in the Yinchuan basin was characterized by vertical stratifications along a detachment located at a two-way travel time (TWT) of 8.0 s. The most outstanding feature of this seismic profile was the almost flat Mohorovičić discontinuity (Moho) and a high-reflection zone in the lower crust. This sub-horizontal Moho conflicts with the general assumption of an uplifted Moho under sedimentary basins and continental rifts, and may indicate the action of different processes at depth during the evolution of sedimentary basins or rifts. We present a possible interpretation of these deep processes and the sub-horizontal Moho. The high-reflection zone, which consists of sheets of high-density, mantle-derived materials, may have compensated for crustal thinning in the Yinchuan basin, leading to the formation of a sub-horizontal Moho. These high-density materials may have been emplaced by underplating with mantle-sourced magma.

  12. Deep levels in Sb-doped ZnSe fabricated by metalorganic vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kawahara, Toshio; Ohbuchi, Yasuhiro; Tabuchi, Norikazu; Morimoto, Jun; Goto, Hideo; Ido, Toshiyuki

    2000-12-01

    Sb-doped ZnSe samples were deposited on the (001)GaAs substrate by metalorganic vapor-phase epitaxy (MOVPE). Isothermal capacitance transient spectroscopy (ICTS) and spectral analysis of deep-level transient spectroscopy (SADLTS) were used to characterize deep levels of Sb-doped ZnSe. The p-type sample grown by MOVPE at 490°C in the darkness shows three ICTS peaks. Three deep levels were observed in the N-doped ZnSe deposited by MOVPE. Using the SADLTS, we can estimate the activation energy and the capture-cross section distributions of that hole traps. We also examined samples that were photoassist-deposited at lower temperature. The non-doped ZnSe thin films were also measured to check the effects of light irradiation during the deposition. We could get only n-type samples and the light irradiation generates the new level of the electron traps. Sb doping generates other new levels. The levels that correspond to trap E1 in the light-irradiated Sb-doped samples are constructed from two adjacent levels in SADLTS, and one new level near trap E1 can be observed in SADLTS.

  13. Seven hundred years of peat formation recorded throughout a deep floating mire profile from Central Italy

    NASA Astrophysics Data System (ADS)

    Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro; Zaccone, Claudio

    2016-04-01

    ), an ash content ranging from 0.8 and 7.4%, an average gravimetric water content of 26.6±7.7 gwater gdrypeat-1, and a pH generally increasing with depth (from 4.1 to 7.2). The C content along the profile ranged between 35 and 47% (avg., 41±4%), whereas the N between 0.3 and 1.1% (avg., 0.5±0.1%). Main atomic ratios (C/N, H/C and O/C) and FT-IR spectra seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as "peat". In fact, the 14C age dating suggests that the first 110 cm of Sphagnum material accumulated in ca. 55 yrs, thus resulting in an average growing rate of 2 cm yr-1. The remaining 300 cm (from 100 to 400 cm of depth), i.e., the submerged part of the island, consist of peat showing completely different botanical composition (reed-fen peat and silty peat rich in reeds) and physical and chemical properties. In particular, both bulk density (avg., 0.09±0.05 g cm-3) and ash content increase, reaching their maximum at 300-325 cm of depth (0.27 g cm-3 and 17%, respectively), whereas the average gravimetric water content significantly decreases (17.4±9.0 gwater gdrypeat-1). The pH ranges from 6.6 and 7.4. Both C and N along this section of the profile show higher average contents (44±3 and 1.3±0.6%, respectively) compared to those recorded in the upper 100 cm layer; furthermore, the decrease with depth of C/N, H/C and O/C atomic ratios, as well as main absorption bands of FT-IR spectra, clearly indicate the occurrence of an organic matter highly humified. The estimated accumulation rate for the bottom 300 cm of the island is 0.5 cm yr-1. At the best of our knowledge, this work represents the first characterization of a (4 m) deep floating mire profile. At Posta Fibreno, the deep water layer below the base of the island (7 m) and the movement on the water surface probably avoided the transition from floating island to firm land, thus allowing this island to float during the

  14. First autonomous bio-optical profiling float in the Gulf of Mexico reveals dynamic biogeochemistry in deep waters.

    PubMed

    Green, Rebecca E; Bower, Amy S; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local "hot spots", including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for

  15. Trace elements profiles, notably Hg, from a preliminary study of the Apollo 15 deep-drill core.

    NASA Technical Reports Server (NTRS)

    Jovanovic, S.; Reed, G. W., Jr.

    1972-01-01

    The possible thermal gradient near the surface during a lunation is considered together with the heat flow from the interior, the physical process of Hg migration, the results from core and trench samples from previous missions, and other temperature sensitive phenomena that may help understand the processes. U, Os, and Ru concentrations in the deep drill core samples are of potential interest and are summarized in a table. The Os tends to parallel the Hg profile with depth.

  16. First Autonomous Bio-Optical Profiling Float in the Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters

    PubMed Central

    Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network

  17. Local coexistence of VO2 phases revealed by deep data analysis

    DOE PAGES

    Strelcov, Evgheni; Ievlev, Anton; Tselev, Alexander; ...

    2016-07-07

    We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffer frommore » information misinterpretation due to low resolving power.« less

  18. Local coexistence of VO2 phases revealed by deep data analysis

    SciTech Connect

    Strelcov, Evgheni; Ievlev, Anton; Tselev, Alexander; Kolmakov, Andrei; Kalinin, Sergei V.

    2016-07-07

    We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffer from information misinterpretation due to low resolving power.

  19. Local coexistence of VO2 phases revealed by deep data analysis

    PubMed Central

    Strelcov, Evgheni; Ievlev, Anton; Belianinov, Alex; Tselev, Alexander; Kolmakov, Andrei; Kalinin, Sergei V.

    2016-01-01

    We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffer from information misinterpretation due to low resolving power. PMID:27384473

  20. Spectral phase transfer from near IR to deep UV by broadband phase-matched four-wave mixing in an argon-filled hollow core waveguide

    NASA Astrophysics Data System (ADS)

    Siqueira, J. P.; Mendonça, C. R.; Zilio, S. C.; Misoguti, L.

    2016-10-01

    We report on the implementation of a spectral phase transfer scheme from near IR to deep UV, in which the frequency conversion step is based on the broadband phase-matched four-wave mixing in a gas-filled hollow core waveguide. Micro joule level femtosecond pulses at 260 nm were generated by nonlinear mixing of a Ti:sapphire laser and its second-harmonic. The transfer of a π-step phase in a controllable manner was proposed and confirmed by a modulation observed in the generated deep UV femtosecond pulse spectrum due to an interference process. Numerical simulations confirmed our results.

  1. Stimulating at the right time: phase-specific deep brain stimulation

    PubMed Central

    Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J.; Denison, Timothy; Brown, Peter

    2017-01-01

    Abstract See Moll and Engel (doi:10.1093/aww308) for a scientific commentary on this article. Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson’s disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient’s tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. PMID:28007997

  2. Stimulating at the right time: phase-specific deep brain stimulation.

    PubMed

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects.

  3. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    SciTech Connect

    Neeraj Gupta; Bruce Sass; Jennifer Ickes

    2000-11-28

    In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as

  4. Lithosphere structure of the west Qinling orogenic belt revealed by deep seismic reflection profile

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2009-12-01

    The west Qinling orogen located in the northeastern margin of the Qinghai-Tibet plateau, is transformation zone between the N-S-trending and E-W-trending tectonics in the Chinese continent. Further study of the fine crust structure of the west Qinling orogen and its relationships with surrounding basins have very important significance for understanding tectonic response of the northeastern margin of the plateau about collision convergence of the Indian block and Asian block and learning formation and evolution of the plateau. In 2009, we reprocessed the data of the Tangke-Hezuo deep seismic reflection profiles collected in 2004 across the west Qinling orogen and the northern Songpan block. The new results show the lithosphere fine structure of the west Qinling orogen. Reflection features indicate that an interface at 6.0-7.0s (TWT) divided the crust into the upper and lower crust, whose structural style and deformation are totally different. Integrating geological data, we deduce that the interface at 6.0-7.0s (depth with 18-21 km) was the basement detachment, which made deformation decoupled of the upper and lower crust. The multi-layered reflections in the upper crust reveal the sedimentary covers of the west Qinling orogen, disclose the thickness of the various structure layer and deformation degree, and provide a basis for the prospective evaluation of a multi-metallic mineral and energy exploration. The north dipping strong reflection characteristics of the lower crust in the west Qinling orogen constituted imbricate structure, such imbricate structural features provide seismology evidence for researching the west Qinling thrusting toward the northern Songpan block, and have great significance for studying formation and evolution of the Songpan-Garze structure. Moho reflections are observed around 17.0-17.2s, characterized by nearly horizontal reflections, which implies the west Qinling orogen underwent an intense extension post orogeny caused the lithosphere

  5. Vertical distribution of the particle phase in tropical deep convective clouds as derived from cloud-side reflected solar radiation measurements

    NASA Astrophysics Data System (ADS)

    Jäkel, Evelyn; Wendisch, Manfred; Krisna, Trismono C.; Ewald, Florian; Kölling, Tobias; Jurkat, Tina; Voigt, Christiane; Cecchini, Micael A.; Machado, Luiz A. T.; Afchine, Armin; Costa, Anja; Krämer, Martina; Andreae, Meinrat O.; Pöschl, Ulrich; Rosenfeld, Daniel; Yuan, Tianle

    2017-07-01

    Vertical profiles of cloud particle phase in tropical deep convective clouds (DCCs) were investigated using airborne solar spectral radiation data collected by the German High Altitude and Long Range Research Aircraft (HALO) during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval based on imaging spectroradiometer measurements of DCC side spectral reflectivity was applied to clouds formed in different aerosol conditions. From the retrieval results the height of the mixed-phase layer of the DCCs was determined. The retrieved profiles were compared with in situ measurements and satellite observations. It was found that the depth and vertical position of the mixed-phase layer can vary up to 900 m for one single cloud scene. This variability is attributed to the different stages of cloud development in a scene. Clouds of mature or decaying stage are affected by falling ice particles resulting in lower levels of fully glaciated cloud layers compared to growing clouds. Comparing polluted and moderate aerosol conditions revealed a shift of the lower boundary of the mixed-phase layer from 5.6 ± 0.2 km (269 K; moderate) to 6.2 ± 0.3 km (267 K; polluted), and of the upper boundary from 6.8 ± 0.2 km (263 K; moderate) to 7.4 ± 0.4 km (259 K; polluted), as would be expected from theory.

  6. ampliMethProfiler: a pipeline for the analysis of CpG methylation profiles of targeted deep bisulfite sequenced amplicons.

    PubMed

    Scala, Giovanni; Affinito, Ornella; Palumbo, Domenico; Florio, Ermanno; Monticelli, Antonella; Miele, Gennaro; Chiariotti, Lorenzo; Cocozza, Sergio

    2016-11-25

    CpG sites in an individual molecule may exist in a binary state (methylated or unmethylated) and each individual DNA molecule, containing a certain number of CpGs, is a combination of these states defining an epihaplotype. Classic quantification based approaches to study DNA methylation are intrinsically unable to fully represent the complexity of the underlying methylation substrate. Epihaplotype based approaches, on the other hand, allow methylation profiles of cell populations to be studied at the single molecule level. For such investigations, next-generation sequencing techniques can be used, both for quantitative and for epihaplotype analysis. Currently available tools for methylation analysis lack output formats that explicitly report CpG methylation profiles at the single molecule level and that have suited statistical tools for their interpretation. Here we present ampliMethProfiler, a python-based pipeline for the extraction and statistical epihaplotype analysis of amplicons from targeted deep bisulfite sequencing of multiple DNA regions. ampliMethProfiler tool provides an easy and user friendly way to extract and analyze the epihaplotype composition of reads from targeted bisulfite sequencing experiments. ampliMethProfiler is written in python language and requires a local installation of BLAST and (optionally) QIIME tools. It can be run on Linux and OS X platforms. The software is open source and freely available at http://amplimethprofiler.sourceforge.net .

  7. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments

    PubMed Central

    Ingolia, Nicholas T.; Brar, Gloria A.; Rouskin, Silvia; McGeachy, Anna M.; Weissman, Jonathan S.

    2012-01-01

    Recent studies highlight the importance of translational control in determining protein abundance, underscoring the value of measuring gene expression at the level of translation. We present a protocol for genome-wide, quantitative analysis of in vivo translation by deep sequencing. This ribosome profiling approach maps the exact positions of ribosomes on transcripts by nuclease footprinting. The nuclease-protected mRNA fragments are converted into a DNA library suitable for deep sequencing using a strategy that minimizes bias. The abundance of different footprint fragments in deep sequencing data reports on the amount of translation of a gene. Additionally, footprints reveal the exact regions of the transcriptome that are translated. To better define translated reading frames, we describe an adaptation that reveals the sites of translation initiation by pre-treating cells with harringtonine to immobilize initiating ribosomes. The protocol we describe requires 5–7 days to generate a completed ribosome profiling sequencing library. Sequencing and data analysis requires a further 4 – 5 days. PMID:22836135

  8. Deep arid system hydrodynamics 2. Application to paleohydrologic reconstruction using vadose zone profiles from the northern Mojave Desert

    USGS Publications Warehouse

    Walvoord, M.A.; Phillips, F.M.; Tyler, S.W.; Hartsough, P.C.

    2002-01-01

    Site-specific numerical modeling of four sites in two arid alluvial basins within the Nevada Test Site employs a conceptual model of deep arid system hydrodynamics that includes vapor transport, the role of xeric vegetation, and long-term surface boundary transients. Surface boundary sequences, spanning 110 kyr, that best reproduce measured chloride concentration and matric potential profiles from four deep (230-460 m) boreholes concur with independent paleohydrologic and paleoecological records from the region. Simulations constrain a pluvial period associated with infiltration of 2-5 mm yr-1 at 14-13 ka and denote a shift linked to the establishment of desert vegetation at 13-9.5 ka. Retrodicted moisture flux histories inferred from modeling results differ significantly from those determined using the conventional chloride mass balance approach that assumes only downward advection. The modeling approach developed here represents a significant advance in the use of deep vadose zone profile data from arid regions to recover detailed paleohydrologic and current hydrologic information.

  9. Preliminary results of fine crustal structure obtained from deep seismic reflection profiles across the Xing'anling-Mongolian orogenic belt

    NASA Astrophysics Data System (ADS)

    Hou, H.; Gao, R.; Li, Q.; Xiong, X.; Zhu, X.; Li, W.; Li, H.

    2011-12-01

    Xing'anling Mongolian Orogenic Belt (XMOB) is the eastern extension of the Central Asian Orogenic Belt (CAOB) in China. It is the general term of the Paleozoic orogenic belt include different period of the formation of Caledonian and Variscan orogenic belts in the middle-east inner Mongolian and west of Songliao basin. The XMOB at present is a known giant orogenic belt with the longest development history and the most complicated tectono-magmatic activities, marks the boundary between the Sino-Korean Craton and the Siberian block. It has long been controversial about the understanding of the evolution process and tectonic framework of this orogenic belt and its neighboring area. Current tectonic models are largely speculative and models range from a single, giant arc system to accretion of multiple arc/backarc systems. Is the process of disappear of paleo-Asian ocean a single way subduction or two way? How far and how depth of the subduction oceanic crust? Is there a main suture or multi-sequence merging during the closing of paleo ocean? The answers to these questions are very important to study the final closure of paleo-Asian ocean and the development of orogenic belt, and to know the accretion process of east Asia continental and the mineralization. Thus,the deep background and ore-forming mechanism of this orogenic and metallogenic belt needs further probe. Under the support of SinoProbe-02 and China geological sruvey we have finished a 630km deep seismic reflection profile across the margin of North China Craton to the north part of Sino-Mongolia border, and a parallel 80km dense survey line in metallogenic belt in northernmost China (Fig1a blue lines). To get more deep knowledge of this belt, we are undergoing a deep seismic reflection profile that firstly across the Daxinganling in north-east China to connect with previously oil-industry profiles (grey lines) stoped in both side of the mountain (red line). From preliminary stack in field we identify the

  10. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  11. Petrological and two-phase flow modelling of deep arc crust: insights on continental crust formation

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Bouilhol, Pierre; van Hunen, Jeroen; Cornet, Julien

    2017-04-01

    The genesis of felsic crust is generally attributed to two main processes: the differentiation of primary magmas by crystallization within the crust or uppermost mantle and the partial melting of older crustal rocks. The Mixing/Assimilation/Hybridization of these magmas in the deep crust (MASH zone) and their subsequent segregation constitutes the principal process by which continents have become differentiated into a more mafic, residual lower crust and a more felsic and hydrated upper crust. Although this model describes qualitatively how continental crust forms, little is known on the physical and chemical mechanisms occurring at the root of volcanic arcs. To assess the dynamics of partial melting, melt injection and hybridization in the deep crust, a new 2-D two-phase flow code using finite volume method has been developed. The formulation takes into account: (i) melt flow through porosity waves/channels, (ii) heat transfer, assuming local thermal equilibrium between solid and liquid, (iii) thermodynamic modelling of stable phases and (iv) injection of mantle-derived melt at the Moho. Our parametric study shows that pressure, heat influx and melt:rock ratio are the main parameters controlling the volume and composition of differentiated magma. Overall the composition of segregated products scatters in two groups: felsic (80-68% SiO2) and intermediate (60-52% SiO2), with an average andesitic composition. The bimodal distribution is controlled by amphibole which buffer the composition of segregated products to high SiO2-content when stable. As the amphibole-out melting reaction is crossed segregated products become intermediate. When compared to available geological evidence, the liquid line of descent of mantle-derived magma do not fit the Mg# versus silica trends of exposed volcanic arcs. Instead our modelling results show that reactive flow of those same magma through a mafic crust is able to reproduce such trends.

  12. The Pyrolytic Profile of Lyophilized and Deep-Frozen Compact Part of the Human Bone

    PubMed Central

    Lodowska, Jolanta; Wolny, Daniel; Kurkiewicz, Sławomir; Węglarz, Ludmiła

    2012-01-01

    Background. Bone grafts are used in the treatment of nonunion of fractures, bone tumors and in arthroplasty. Tissues preserved by lyophilization or deep freezing are used as implants nowadays. Lyophilized grafts are utilized in the therapy of birth defects and bone benign tumors, while deep-frozen ones are applied in orthopedics. The aim of the study was to compare the pyrolytic pattern, as an indirect means of the analysis of organic composition of deep-frozen and lyophilized compact part of the human bone. Methods. Samples of preserved bone tissue were subjected to thermolysis and tetrahydroammonium-hydroxide- (TMAH-) associated thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). Results. Derivatives of benzene, pyridine, pyrrole, phenol, sulfur compounds, nitriles, saturated and unsaturated aliphatic hydrocarbons, and fatty acids (C12–C20) were identified in the pyrolytic pattern. The pyrolyzates were the most abundant in derivatives of pyrrole and nitriles originated from proteins. The predominant product in pyrolytic pattern of the investigated bone was pyrrolo[1,2-α]piperazine-3,6-dione derived from collagen. The content of this compound significantly differentiated the lyophilized graft from the deep-frozen one. Oleic and palmitic acid were predominant among fatty acids of the investigated samples. The deep-frozen implants were characterized by higher percentage of long-chain fatty acids than lyophilized grafts. PMID:22619606

  13. Sinusoidal phase modulating interferometry system for 3D profile measurement

    NASA Astrophysics Data System (ADS)

    En, Bo; Fa-jie, Duan; Chang-rong, Lv; Fu-kai, Zhang; Fan, Feng

    2014-07-01

    We describe a fiber-optic sinusoidal phase modulating (SPM) interferometer for three-dimensional (3D) profilometry, which is insensitive to external disturbances such as mechanical vibration and temperature fluctuation. Sinusoidal phase modulation is created by modulating the drive voltage of the piezoelectric transducer (PZT) with a sinusoidal wave. The external disturbances that cause phase drift in the interference signal and decrease measuring accuracy are effectively eliminated by building a closed-loop feedback system. The phase stability can be measured with a precision of 2.75 mrad, and the external disturbances can be reduced to 53.43 mrad for the phase of fringe patterns. By measuring the dynamic deformation of the rubber membrane, the RMSE is about 0.018 mm, and a single measurement takes less than 250 ms. The feasibility for real-time application has been verified.

  14. The Deep Crust Magmatic Refinery, Part 1: A Coupled Thermodynamic and Two-phase Flow Model

    NASA Astrophysics Data System (ADS)

    Riel, N., Jr.; Bouilhol, P.; Van Hunen, J.; Velic, M.; Magni, V.

    2016-12-01

    Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To assess the dynamics of this deep magmatic system we developed a new 2-D two-phase flow code using finite volume method. Our formulation takes into account: (i) melt flow through a viscous porous matrix with temperature- and melt-content dependent host-rock viscosity, (ii) heat transfer, assuming local thermal equilibrium between solid and liquid, (iii) thermodynamic modelling of stable phases, (iv) injection of fractionated melt from crystallizing basalt at the Moho and (v) chemical advection of both the solid and liquid compositions. Here we present the core of our modelling approach, especially the petrological implementation. We show in details that our thermodynamic model can reproduce well both the sub- and supra solidus phase relationship and composition of the host-rock. We apply our method to an idealized amphibolite lower crust that is affected by a magmatic event represented by the intrusion of a wet mantle melt into the crust at Moho depth. The models [see Bouilhol et al

  15. Simultaneous gain and phase profile determination on an interferometric BOTDA

    NASA Astrophysics Data System (ADS)

    Angulo-Vinuesa, X.; Lopez-Gil, A.; Dominguez-López, A.; Cruz, J. L.; Andres, M. V.; Martin-Lopez, S.; Gonzalez-Herraez, M.

    2015-09-01

    Up to now, complex (phase and intensity) measurements in Brillouin Optical Time-Domain Analysis (BOTDA) systems required complex phase modulation methods and high-bandwidth (multi-GHz) detection. In this work, we propose a novel technique that is able to retrieve simultaneously both gain/loss and phase characteristics of the Brillouin interaction by just introducing a Sagnac Interferometer (SI) on a standard BOTDA sensing scheme. The technique is described analytically and demonstrated experimentally. With this technique, a reliability increase is produced since redundant measurements can be performed.

  16. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins. Part 1. Evaluation of Phase 2 CO2 Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2. Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids

    SciTech Connect

    Bowersox, Richard; Hickman, John; Leetaru, Hannes

    2012-12-20

    Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO2 in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO2 storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO2 were present in the deep subsurface. Injection testing with brine and CO2 was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole – including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite – at 1152–2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO2 was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter.

  17. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment.

    PubMed

    Ino, Kohei; Hernsdorf, Alex W; Konno, Uta; Kouduka, Mariko; Yanagawa, Katsunori; Kato, Shingo; Sunamura, Michinari; Hirota, Akinari; Togo, Yoko S; Ito, Kazumasa; Fukuda, Akari; Iwatsuki, Teruki; Mizuno, Takashi; Komatsu, Daisuke D; Tsunogai, Urumu; Ishimura, Toyoho; Amano, Yuki; Thomas, Brian C; Banfield, Jillian F; Suzuki, Yohey

    2017-09-08

    Recent single-gene-based surveys of deep continental aquifers demonstrated the widespread occurrence of archaea related to Candidatus Methanoperedens nitroreducens (ANME-2d) known to mediate anaerobic oxidation of methane (AOM). However, it is unclear whether ANME-2d mediates AOM in the deep continental biosphere. In this study, we found the dominance of ANME-2d in groundwater enriched in sulfate and methane from a 300-m deep underground borehole in granitic rock. A near-complete genome of one representative species of the ANME-2d obtained from the underground borehole has most of functional genes required for AOM and assimilatory sulfate reduction. The genome of the subsurface ANME-2d is different from those of other members of ANME-2d by lacking functional genes encoding nitrate and nitrite reductases and multiheme cytochromes. In addition, the subsurface ANME-2d genome contains a membrane-bound NiFe hydrogenase gene putatively involved in respiratory H2 oxidation, which is different from those of other methanotrophic archaea. Short-term incubation of microbial cells collected from the granitic groundwater with (13)C-labeled methane also demonstrates that AOM is linked to microbial sulfate reduction. Given the prominence of granitic continental crust and sulfate and methane in terrestrial subsurface fluids, we conclude that AOM may be widespread in the deep continental biosphere.The ISME Journal advance online publication, 8 September 2017; doi:10.1038/ismej.2017.140.

  18. Amplitude Analysis and Modeling of Regional Phases in PNE Profiles in Northern Eurasia and Seismic Regionalization

    DTIC Science & Technology

    2006-06-30

    structure on regional phase propagation. The seven PNE profiles of this study (QUARTZ, RUBY-I, RUBY-2, CRATON, KIMBERLITE , RIFT, and METEORITE) traverse...profile to date), Craton, and Kimberlite (Figure 1-1). The ultimate goal of DSS PNE research would thus be to eventually merge these two lines of...Siberian Craton (profile KIMBERLITE ), the coda shows a constant decay rate at all frequencies. We argue that this observation could be due to non

  19. Suitability of silica hydride stationary phase, aqueous normal phase chromatography for untargeted metabolomic profiling of Enterococcus faecium and Staphylococcus aureus.

    PubMed

    Weisenberg, Scott A; Butterfield, Tiffany R; Fischer, Steven M; Rhee, Kyu Y

    2009-07-01

    We report the robustness of silica hydride stationary phase, aqueous normal phase (ANP) chromatography to the chemical complexity of the intracellular metabolomes of Staphylococcus aureus and Enterococcus faecium. We specifically demonstrate that the chromatographic behavior of known metabolites is unaffected by the intracellular chemical matrix of these microbes and that this method enables untargeted profiling of their intracellular metabolites using accurate mass-retention time (AMRT) identifiers. We further demonstrate the ability of AMRT-based metabolite profiling to differentiate bacteria along genetic and phenotypic lines. Overall, these data commend the utility of ANP-based chromatography for untargeted metabolomics-based studies of microbial physiology and antibiotic resistance.

  20. Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elements

    NASA Astrophysics Data System (ADS)

    Jensen, Flemming; Shkondin, Evgeniy; Takayama, Osamu; Larsen, Pernille V.; Mar, Mikkel D.; Malureanu, Radu; Lavrinenko, Andrei V.

    2016-09-01

    In this work, we report on fabrication of deep-profile one- and two-dimensional lattices made from Al-doped ZnO (AZO). AZO is considered as an alternative plasmonic material having the real part of the permittivity negative in the near infrared range. The exact position of the plasma frequency of AZO is doping concentration dependent, allowing for tuning possibilities. In addition, the thickness of the AZO film also affects its material properties. Physical vapor deposition techniques typically applied for AZO coating do not enable deep profiling of a plasmonic structure. Using the atomic layer deposition technique, a highly conformal deposition method, allows us to fabricate high-aspect ratio structures such as one-dimensional lattices with a period of 400 nm and size of the lamina of 200 nm in width and 3 μm in depth. Thus, our structures have an aspect ratio of 1:15 and are homogeneous on areas of 2×2 cm2 and more. We also produce two-dimensional arrays of circular nanopillars with similar dimensions. Instead of nanopillars hollow tubes with a wall thickness on demand from 20 nm up to a complete fill can be fabricated.

  1. Electron bunch profile reconstruction based on phase-constrained iterative algorithm

    NASA Astrophysics Data System (ADS)

    Bakkali Taheri, F.; Konoplev, I. V.; Doucas, G.; Baddoo, P.; Bartolini, R.; Cowley, J.; Hooker, S. M.

    2016-03-01

    The phase retrieval problem occurs in a number of areas in physics and is the subject of continuing investigation. The one-dimensional case, e.g., the reconstruction of the temporal profile of a charged particle bunch, is particularly challenging and important for particle accelerators. Accurate knowledge of the longitudinal (time) profile of the bunch is important in the context of linear colliders, wakefield accelerators and for the next generation of light sources, including x-ray SASE FELs. Frequently applied methods, e.g., minimal phase retrieval or other iterative algorithms, are reliable if the Blaschke phase contribution is negligible. This, however, is neither known a priori nor can it be assumed to apply to an arbitrary bunch profile. We present a novel approach which gives reproducible, most-probable and stable reconstructions for bunch profiles (both artificial and experimental) that would otherwise remain unresolved by the existing techniques.

  2. Kinoform phase plates for focal plane irradiance profile control

    SciTech Connect

    Dixit, S.N.; Lawson, J.K.; Manes, K.R.; Powell, H.T. ); Nugent, K.A. )

    1994-03-15

    A versatile, rapidly convergent, iterative algorithm is presented for the construction of kinoform phase plates for tailoring the far-field intensity distribution of laser beams. The method consists of repeated Fourier transforming between the near-field and the far-field planes with constraints imposed in each plane. For application to inertial confinement fusion, the converged far-field pattern contains more than 95% of the incident energy inside a desired region and is relatively insensitive to beam aberrations.

  3. Effects of turbulence on mixed-phase deep convective clouds under different basic-state winds and aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2014-12-01

    The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.

  4. Deep exploration of the immune infiltrate and outcome prediction in testicular cancer by quantitative multiplexed immunohistochemistry and gene expression profiling.

    PubMed

    Siska, Peter J; Johnpulle, Romany A N; Zhou, Alice; Bordeaux, Jennifer; Kim, Ju Young; Dabbas, Bashar; Dakappagari, Naveen; Rathmell, Jeffrey C; Rathmell, W Kimryn; Morgans, Alicia K; Balko, Justin M; Johnson, Douglas B

    2017-01-01

    Platinum-based chemotherapy is usually curative for patients with testicular germ cell tumors (TGCT), but a subset of patients experience disease progression and poor clinical outcomes. Here, we tested whether immune profiling of TGCT could identify novel prognostic markers and therapeutic targets for this patient cohort. We obtained primary and metastatic TGCT samples from one center. We performed immune profiling using multiplexed fluorescence immunohistochemistry (FIHC) for T-cell subsets and immune checkpoints, and targeted gene expression profiling (Nanostring nCounter Immune panel). Publically available data sets were used to validate primary sample analyses. Nearly all samples had some degree of T-cell infiltration and immune checkpoint expression. Seminomas were associated with increased CD3(+) T-cell infiltration, decreased Regulatory T-cells, increased PD-L1, and increased PD-1/PD-L1 spatial interaction compared with non-seminomas using FIHC. Gene expression profiling confirmed these findings and also demonstrated increased expression of T-cell markers (e.g., IFNγ, and LAG3) and cancer/testis antigens (e.g., PRAME) in seminomas, whereas non-seminomas demonstrated high neutrophil and macrophage gene signatures. Irrespective of histology, advanced TGCT stage was associated with decreased T-cell and NK-cell signatures, while Treg, neutrophil, mast cell and macrophage signatures increased with advanced stage. Importantly, cancer/testis antigen, neutrophil, and CD8(+)/regulatory T-cell signatures correlated with recurrence free survival. Thus, deep immune characterization of TGCT using IHC and gene expression profiling identified activated T-cell infiltration which correlated with seminoma histology and good prognosis. These results may provide a rationale for testing of anti-PD-1/PD-L1 agents and suggest prognostic markers.

  5. Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis.

    PubMed

    Vasudevan, Rama K; Ziatdinov, Maxim; Jesse, Stephen; Kalinin, Sergei V

    2016-09-14

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ∼1-10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysis is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. This method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure-property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.

  6. Phases and interfaces from real space atomically resolved data: Physics-based deep data image analysis

    SciTech Connect

    Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; Kalinin, Sergei V.

    2016-08-12

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysis is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.

  7. Phases and interfaces from real space atomically resolved data: Physics-based deep data image analysis

    DOE PAGES

    Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; ...

    2016-08-12

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysismore » is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.« less

  8. Phases and interfaces from real space atomically resolved data: Physics-based deep data image analysis

    SciTech Connect

    Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; Kalinin, Sergei V.

    2016-08-12

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysis is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.

  9. Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases.

    PubMed

    Popovych, Oleksandr V; Lysyansky, Borys; Tass, Peter A

    2017-04-21

    Computationally it was shown that desynchronizing delayed feedback stimulation methods are effective closed-loop techniques for the control of synchronization in ensembles of interacting oscillators. We here computationally design stimulation signals for electrical stimulation of neuronal tissue that preserve the desynchronizing delayed feedback characteristics and comply with mandatory charge deposit-related safety requirements. For this, the amplitude of the high-frequency (HF) train of biphasic charge-balanced pulses used by the standard HF deep brain stimulation (DBS) is modulated by the smooth feedback signals. In this way we combine the desynchronizing delayed feedback approach with the HF DBS technique. We show that such a pulsatile delayed feedback stimulation can effectively and robustly desynchronize a network of model neurons comprising subthalamic nucleus and globus pallidus external and suggest this approach for desynchronizing closed-loop DBS. Intriguingly, an interphase gap introduced between the recharging phases of the charge-balanced biphasic pulses can significantly improve the stimulation-induced desynchronization and reduce the amount of the administered stimulation. In view of the recent experimental and clinical studies indicating a superiority of the closed-loop DBS to open-loop HF DBS, our results may contribute to a further development of effective stimulation methods for the treatment of neurological disorders characterized by abnormal neuronal synchronization.

  10. Torque-bias profile for improved tracking of the Deep Space Network antennas

    NASA Astrophysics Data System (ADS)

    Gawronski, W.; Beech-Brandt, J. J.; Ahlstrom, H. G.; Maneri, E.

    2000-12-01

    Measurements at the drives of the NASA Deep Space Network (DSN) antennas indicated that the small gap between gear teeth was causing backlash at the gearboxes and elevation bullgear. Left uncorrected, backlash will deteriorate the antenna's pointing precision. At DSN, the backlash was eliminated by implementing two identical drives that impose two nonidentical torques (a.k.a. torque bias, or counter-torque). The difference between these two torques depends on the antenna load, and is shaped by the drive's electronic circuits. The paper explains the shaping principles of the circuit, and shows how the circuits can be modified to improve the antenna dynamics under external disturbances.

  11. The VIMOS Ultra Deep Survey: 10 000 Galaxies to Study the Early Phases of Galaxy Assembly at 2 < z < 6+

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Amorin, R.; Bardelli, S.; Capak, P.; Cassara, L.; Cassata, P.; Castellano, M.; Charlot, S.; Cimatti, A.; Contini, T.; Cuby, J.; Cucciati, O.; Durkalec, A.; de la Torre, S.; Fontana, A.; Fotopoulou, S.; Garilli, B.; Giavalisco, M.; Grazian, A.; Hathi, N.; Ilbert, O.; Le Brun, V.; Lemaux, B.; Lopez-Sanjuan, C.; Maccagni, D.; Mellier, Y.; Moreau, C.; Paltani, S.; Pentericci, L.; Ribeiro, B.; Salvato, M.; Schaerer, D.; Scodeggio, M.; Scoville, N.; Sommariva, V.; Talia, M.; Taniguchi, Y.; Tasca, L.; Thomas, R.; Tresse, L.; Vanzella, E.; Vergani, D.; Wang, P.; Zamorani, G.; Zucca, E.

    2014-03-01

    The VIMOS Ultra Deep Survey (VUDS) aims to study the early phases of galaxy assembly from a large, well-defined sample of ~ 10 000 galaxies with spectra obtained from very deep VIMOS observations. This sample is by far the largest to date, with spectroscopic redshifts covering a redshift range 2

  12. TCAD calibration of USJ profiles for advanced deep sub-/μm CMOS processes

    NASA Astrophysics Data System (ADS)

    Zechner, C.; Matveev, D.; Erlebach, A.; Simeonov, S.; Menialenko, V.; Mickevicius, R.; Foad, M.; Al-Bayati, A.; Lebedev, A.; Posselt, M.

    2002-01-01

    For advanced technologies there is a lack of experimental data and calibrated physical models that enable accurate simulation of CMOS technologies down to channel lengths of 100 nm and below. This work aims to develop predictive modeling of ultra shallow junctions (USJ) profiles for state-of-the-art and next generation CMOS devices. Profiles were created by As (0.2-10 keV), B (0.2-10 keV) and BF 2 (1-25 keV) ion implantation and annealed at various times and temperatures including typical drain extension spike anneals. B and BF 2 profiles are investigated with and without pre-amorphization by implantation of Si or Ge. The calibration is based on SIMS and SRP profiles as well as XTEM pictures. The BC code Crystal-TRIM was calibrated for ultra low energy implantation. Annealing is simulated within the pair diffusion framework of the process simulator DIOS, including first order reaction equations for interstitial and dopant clustering and a new model for dose loss, where impurities are stored in a thin surface layer on top of the silicon.

  13. Iron line profiles and BH spin in deep Suzaku observations of Seyfert 1 AGN

    NASA Astrophysics Data System (ADS)

    Patrick, A. R.; Reeves, J. N.; Lobban, A. P.; Porquet, D.; Markowitz, A. G.

    2012-03-01

    We present a broad-band analysis of deep Suzaku observations of nearby Seyfert 1 AGN: Fairall 9, MCG-6-30-15, NGC 3516, NGC 3783 and NGC 4051. The use of deep observations (exposures > 200 ks) with high S/N allows the complex spectra of these objects to be examined in full, taking into account features such as the soft excess, reflection continuum and complex absorption components. After a self-consistent modelling of the broad-band data (0.6-100.0 keV, also making use of BAT data from Swift), the subtle curvature which may be introduced as a consequence of warm absorbers has a measured affect upon the spectrum at energies > 3 keV and the FeK region. Forming a model (including absorption) of these AGN allows the true extent to which broadened diskline emission is present to be examined and as a result the measurement of accretion disc and black hole parameters which are consistent over the full 0.6-100.0 keV energy range.

  14. TRANSALP—deep crustal Vibroseis and explosive seismic profiling in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Transalp Working Group; Lüschen, Ewald; Borrini, Daniela; Gebrande, Helmut; Lammerer, Bernd; Millahn, Karl; Neubauer, Franz; Nicolich, Rinaldo; TRANSALP Working Groupghijklmnop

    2006-02-01

    The TRANSALP consortium, comprising institutions from Italy, Austria and Germany, carried out deep seismic reflection measurements in the Eastern Alps between Munich and Venice in 1998, 1999 and 2001. In order to complement each other in resolution and depth range, the Vibroseis technique was combined with simultaneous explosive source measurements. Additionally, passive cross-line recording provided three-dimensional control and alternative north-south sections. Profits were obtained by the combination of the three methods in sectors or depths where one method alone was less successful. The TRANSALP sections clearly image a thin-skinned wedge of tectonic nappes at the northern Alpine front zone, unexpected graben or half-graben structures within the European basement, and, thick-skinned back-thrusting in the southern frontal zone beneath the Dolomite Mountains. A bi-vergent structure at crustal scale is directed from the Alpine axis to the external parts. The Tauern Window obviously forms the hanging wall ramp anticline above a southward dipping, deep reaching reflection pattern interpreted as a tectonic ramp along which the Penninic units of the Tauern Window have been up-thrusted. The upper crystalline crust appears generally transparent. The lower crust in the European domain is characterized by a 6-7 km thick laminated structure. On the Adriatic side the lower crust displays a much thicker or twofold reflective pattern. The crustal root at about 55 km depth is shifted around 50 km to the south with respect to the main Alpine crest.

  15. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  16. MiRNA Expression Profile for the Human Gastric Antrum Region Using Ultra-Deep Sequencing

    PubMed Central

    Hamoy, Igor G.; Darnet, Sylvain; Burbano, Rommel; Khayat, André; Gonçalves, André Nicolau; Alencar, Dayse O.; Cruz, Aline; Magalhães, Leandro; Araújo Jr., Wilson; Silva, Artur; Santos, Sidney; Demachki, Samia; Assumpção, Paulo; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    Background MicroRNAs are small non-coding nucleotide sequences that regulate gene expression. These structures are fundamental to several biological processes, including cell proliferation, development, differentiation and apoptosis. Identifying the expression profile of microRNAs in healthy human gastric antrum mucosa may help elucidate the miRNA regulatory mechanisms of the human stomach. Methodology/Principal Findings A small RNA library of stomach antrum tissue was sequenced using high-throughput SOLiD sequencing technology. The total read count for the gastric mucosa antrum region was greater than 618,000. After filtering and aligning using with MirBase, 148 mature miRNAs were identified in the gastric antrum tissue, totaling 3,181 quality reads; 63.5% (2,021) of the reads were concentrated in the eight most highly expressed miRNAs (hsa-mir-145, hsa-mir-29a, hsa-mir-29c, hsa-mir-21, hsa-mir-451a, hsa-mir-192, hsa-mir-191 and hsa-mir-148a). RT-PCR validated the expression profiles of seven of these highly expressed miRNAs and confirmed the sequencing results obtained using the SOLiD platform. Conclusions/Significance In comparison with other tissues, the antrum’s expression profile was unique with respect to the most highly expressed miRNAs, suggesting that this expression profile is specific to stomach antrum tissue. The current study provides a starting point for a more comprehensive understanding of the role of miRNAs in the regulation of the molecular processes of the human stomach. PMID:24647245

  17. Power of deep sequencing and agilent microarray for gene expression profiling study.

    PubMed

    Feng, Lin; Liu, Hang; Liu, Yu; Lu, Zhike; Guo, Guangwu; Guo, Suping; Zheng, Hongwei; Gao, Yanning; Cheng, Shujun; Wang, Jian; Zhang, Kaitai; Zhang, Yong

    2010-06-01

    Next-generation sequencing-based Digital Gene Expression tag profiling (DGE) has been used to study the changes in gene expression profiling. To compare the quality of the data generated by microarray and DGE, we examined the gene expression profiles of an in vitro cell model with these platforms. In this study, 17,362 and 15,938 genes were detected by microarray and DGE, respectively, with 13,221 overlapping genes. The correlation coefficients between the technical replicates were >0.99 and the detection variance was <9% for both platforms. The dynamic range of microarray was fixed with four orders of magnitude, whereas that of DGE was extendable. The consistency of the two platforms was high, especially for those abundant genes. It was more difficult for the microarray to distinguish the expression variation of less abundant genes. Although microarrays might be eventually replaced by DGE or transcriptome sequencing (RNA-seq) in the near future, microarrays are still stable, practical, and feasible, which may be useful for most biological researchers.

  18. Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials.

    PubMed

    Cho, Youngho; Song, Si Won; Sung, Jiha; Jeong, Young-Su; Park, Chan Ryang; Kim, Hyung Min

    2017-09-25

    Toxic chemicals inside building materials have long-term harmful effects on human bodies. To prevent secondary damage caused by the evaporation of latent chemicals, it is necessary to detect the chemicals inside building materials at an early stage. Deep Raman spectroscopy is a potential candidate for on-site detection because it can provide molecular information about subsurface components. However, it is very difficult to spectrally distinguish the Raman signal of the internal chemicals from the background signal of the surrounding materials and to acquire the geometric information of chemicals. In this study, we developed hyperspectral wide-depth spatially offset Raman spectroscopy coupled with a data processing algorithm to identify toxic chemicals, such as chemical warfare agent (CWA) simulants in building materials. Furthermore, the spatial distribution of the chemicals and the thickness of the building material were also measured from one-dimensional (1D) spectral variation.

  19. Deep structure and structural inversion along the central California continental margin from EDGE seismic profile RU-3

    SciTech Connect

    McIntosh, K.D.; Reed, D.L.; Silver, E.A. ); Meltzer, A.S. )

    1991-04-10

    Deep-penetration seismic reflection profile RU-3 reveals a subducted oceanic plate, a modified accretionary prism, and complex structures of the overlying sedimentary basins. This structural framework was established by subduction processes during Paleogene and earlier time and subsequently was modified by Neogene transform motion combined with apparent components of extension and compression. Subducted rocks are indicated by deep, gently dipping reflectors that extend beneath the continental margin for at least 38 km at a depth of about 15 km. The authors interpret the subducted crust as either a part of the Pacific plate or, more likely, a subducted fragment derived from the Farallon plate. A set of more steeply dipping, deep events may indicate faulting within the subducted plate or its boundary with a no-slab zone. The overlying, largely nonreflective layer of accreted material rapidly reaches 10 km in thickness landward of the paleotrench and increases to 15 km in thickness near the coast. The Santa Lucia Basin, landward of the steep continental slope, originated as a slope basin during Paleogene subduction. The lower strata of this basin were deposited onto and partially incorporated into the accretionary complex. The offshore Santa Maria Basin exhibits a variety of compressional structures that formed in the last 3.5 m.y. and whose locations correspond to an earlier framework of extensional faults. Structural inversion has occurred in Miocene depocenters adjacent to the Santa Lucia Bank fault and at the Queenie structure. Miocene and lower Pliocene strata also thicken toward the Hosgri fault zone where subsequent compression is characterized by low-angle thrusts and folding.

  20. Early origins of the Caribbean plate from deep seismic profiles across the Nicaraguan Rise

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, W. P.

    2012-12-01

    The offshore Nicaraguan Rise in the maritime zones of Honduras, Jamaica, Nicaragua and Colombia covers a combined area of 500,000 km2, and is one of the least known equatorial Cretaceous-Cenozoic carbonate regions remaining on Earth. The purpose of this study is to describe the Cretaceous to Recent tectonic and stratigraphic history of the deep water Nicaraguan Rise, and to better understand how various types of crustal blocks underlying the Eocene to Recent carbonate cover fused into a single, larger Caribbean plate known today from GPS studies. We interpreted 8700 km of modern, deep-penetration 2D seismic data kindly provided by the oil industry, tied to five wells that penetrated Cretaceous igneous basement. Based on these data, and integration with gravity, magnetic and existing crustal refraction data, we define four crustal provinces for the offshore Nicaraguan Rise: 1) Thicker (15-18 km) Late Cretaceous Caribbean ocean plateau (COP) with rough, top basement surface; 2) normal (6-8 km) Late Cretaceous COP with smooth top basement surface (B") and correlative outcrops in southern Haiti and Jamaica; 3) Precambrian-Paleozoic continental crust (20-22 km thick) with correlative outcrops in northern Central America; and 4) Cretaceous arc crust (>18 km thick) with correlative outcrops in Jamaica. These strongly contrasting basement belts strike northeastward to eastward, and were juxtaposed by latest Cretaceous-Paleogene northward and northwestward thrusting of Caribbean arc over continental crust in Central America, and the western Nicaraguan Rise (84 to 85 degrees west). A large Paleogene to recent, CCW rotation of the Caribbean plate along the Cayman trough faults and into its present day location explains why terranes in Central America and beneath the Nicaraguan Rise have their present, anomalous north-east strike. Continuing, present-day activity on some of these crustal block boundaries is a likely result of intraplate stresses imposed by the surrounding

  1. Clinico-Pathological Profile of Deep Neck Space Infection: A Prospective Study.

    PubMed

    Das, Rumpa; Nath, Gorakh; Mishra, Anupam

    2017-09-01

    Deep neck space infections (DNI) has been a common and serious disease, involving several spaces created by planes of greater and lesser resistance between the fascial layers of the neck. Infection of deep neck space has been dangerous due to its potential ease of spread from one space to other space, associated sepsis and upper airway obstruction. This prospective study was done in 45 patients of DNI over a period of 1 year. Patients with age of 1 month to 80 years of both the sexes were included. Patient's particular, clinical presentation and associated co-morbid conditions, physical examination, routine laboratory investigations and radiological investigations were analyzed. Patients were treated, response to the treatment was assessed and follow-up was done. In present study, DNI was more commonly seen in rural population (67%) with a male predominance (69%). Mean age of presentation was 34.4 years. Odontogenic infection (64.11%) was the commonest etiological factor and diabetes mellitus (26.66%) was the commonest co-morbid condition. Most common presenting symptom was neck pain and neck swelling (91.1%) and submandibular space (66.6%) was the most commonly involved space followed by sublingual space (44.6%). Both medical and surgical treatment was needed in most of the cases (77.77%). 77.7% cases showed complete regression, 15.5% showed partial regression and they lost to follow-up, 4.4% expired and 2.2% showed progressive deterioration. DNI is a common and life-threatening disease. Early diagnosis and management is necessary for complete cure and to prevent complications associated with DNIs.

  2. deepBlockAlign: a tool for aligning RNA-seq profiles of read block patterns

    PubMed Central

    Ekstrøm, Claus T.; Stadler, Peter F.; Hoffmann, Steve; Gorodkin, Jan

    2012-01-01

    Motivation: High-throughput sequencing methods allow whole transcriptomes to be sequenced fast and cost-effectively. Short RNA sequencing provides not only quantitative expression data but also an opportunity to identify novel coding and non-coding RNAs. Many long transcripts undergo post-transcriptional processing that generates short RNA sequence fragments. Mapped back to a reference genome, they form distinctive patterns that convey information on both the structure of the parent transcript and the modalities of its processing. The miR-miR* pattern from microRNA precursors is the best-known, but by no means singular, example. Results: deepBlockAlign introduces a two-step approach to align RNA-seq read patterns with the aim of quickly identifying RNAs that share similar processing footprints. Overlapping mapped reads are first merged to blocks and then closely spaced blocks are combined to block groups, each representing a locus of expression. In order to compare block groups, the constituent blocks are first compared using a modified sequence alignment algorithm to determine similarity scores for pairs of blocks. In the second stage, block patterns are compared by means of a modified Sankoff algorithm that takes both block similarities and similarities of pattern of distances within the block groups into account. Hierarchical clustering of block groups clearly separates most miRNA and tRNA, and also identifies about a dozen tRNAs clustering together with miRNA. Most of these putative Dicer-processed tRNAs, including eight cases reported to generate products with miRNA-like features in literature, exhibit read blocks distinguished by precise start position of reads. Availability: The program deepBlockAlign is available as source code from http://rth.dk/resources/dba/. Contact: gorodkin@rth.dk; studla@bioinf.uni-leipzig.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22053076

  3. Doppler Radar Profiler for Launch Winds at the Kennedy Space Center (Phase 1a)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) received a request from the, NASA Technical Fellow for Flight Mechanics at Langley Research Center (LaRC), to develop a database from multiple Doppler radar wind profiler (DRWP) sources and develop data processing algorithms to construct high temporal resolution DRWP wind profiles for day-of-launch (DOL) vehicle assessment. This document contains the outcome of Phase 1a of the assessment including Findings, Observations, NESC Recommendations, and Lessons Learned.

  4. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    SciTech Connect

    van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.

  5. Improved optical profiling using the spectral phase in spectrally resolved white-light interferometry

    SciTech Connect

    Debnath, Sanjit Kumar; Kothiyal, Mahendra Prasad

    2006-09-20

    In spectrally resolved white-light interferometry (SRWLI), the white-light interferogram is decomposed into its monochromatic constituent. The phase of the monochromatic constituents can be determined using a phase-shifting technique over a range of wavelengths. These phase value shave fringe order ambiguity. However, the variation of the phase with respect to the wavenumber is linear and its slope gives the absolute value of the optical-path difference. Since the path difference is related to the height of the test object at a point, a line profile can be determined without ambiguity. The slope value, though less precise helps us determine the fringe order. The fringe order combined with the monochromatic phase value gives the absolute profile, which has the precision of phase-shifting interferometry. The presence of noise in the phase may lead to the misidentification of fringe order, which in turn gives unnecessary jumps in the precise profile. The experimental details of measurement on standard samples with SRWLI are discussed in this paper.

  6. Development of surface profile measurement method for ellipsoidal x-ray mirrors using phase retrieval

    NASA Astrophysics Data System (ADS)

    Saitou, Takahiro; Takei, Yoshinori; Mimura, Hidekazu

    2012-09-01

    An ellipsoidal mirror is a promising type of X-ray mirror, because it can focus X-rays to nanometer size with a very large aperture and no chromatic aberration. However, ideal ellipsoidal mirrors have not yet been realized by any manufacturing method. This is partly because there is no evaluation method for its surface figure profile. In this paper, we propose and develop a method for measuring surface figure profile of ellipsoidal mirrors using phase retrieval. An optical design for soft X-ray focusing, the employed phase retrieval method and an experimental optical system specialized for wavefront measurement using a He-Ne laser are reported.

  7. Speedup properties of phases in the execution profile of distributed parallel programs

    SciTech Connect

    Carlson, B.M. . Computer Systems Research Institute); Wagner, T.D.; Dowdy, L.W. . Dept. of Computer Science); Worley, P.H. )

    1992-08-01

    The execution profile of a distributed-memory parallel program specifies the number of busy processors as a function of time. Periods of homogeneous processor utilization are manifested in many execution profiles. These periods can usually be correlated with the algorithms implemented in the underlying parallel code. Three families of methods for smoothing execution profile data are presented. These approaches simplify the problem of detecting end points of periods of homogeneous utilization. These periods, called phases, are then examined in isolation, and their speedup characteristics are explored. A specific workload executed on an Intel iPSC/860 is used for validation of the techniques described.

  8. Reconstructing conjugate margins of the Canada-Amerasian basin: New tectonic constraints from deep seismic data and gravity profiles

    NASA Astrophysics Data System (ADS)

    Helwig, J.; Ady, B.; Kumar, N.; Granath, J. W.; Dinkelman, M. G.; Bird, D. E.; Emmet, P. A.

    2010-12-01

    Over the past 5 years, decreasing sea ice and increasing scientific and economic interest in the Arctic have prompted new geological and geophysical studies that advance knowledge of the northern continental margins of North America. We report here on ArcticSPAN™ 40-km deep, PSDM (Pre-Stack Depth Migrated) marine seismic reflection profiles and gravity data from the Beaufort Sea of Canada and the US Chukchi Sea that constrain the position of the continent-ocean boundary and the relict spreading center of the Canada Basin, displaying significant variations in the orientation, geometry and deep crustal structure of the passive margin facing the Arctic Ocean. In the Canadian Beaufort Sea three distinct segments of the margin correspond to contrasts of pre-rift foundations: 1. the rifted, rotated Arctic Alaska Terrane west of the Mackenzie Delta (Beaufort segment); 2. the transform-faulted Laurentian crust of the Tuktoyaktuk margin (Tuk segment); and, 3. the rifted Laurentian crust of the Banks Island segment. The thick late Mesozoic-Cenozoic clastic prism of the continental margin was centered in the Mackenzie delta area by Mesozoic rifting of the Canada Basin. The northerly Paleocene-Miocene sweep of Cordilleran deformation modified the passive margin, overprinting the offshore Mackenzie Delta. The interpreted tectonic architecture of the three segments of the Beaufort passive margin demonstrates their distinct roles in opening of the Canada Basin. Two conjugate rifted margin segments (Beaufort and Banks Island) and a linking transform fault margin (Tuk) formed during the separation of the Arctic Alaska Terrane from northwestern Laurentia, in accord with a Jurassic-Aptian rotational model of Canada Basin opening. But the orientation of the Tuk transform segment indicates that a single pole of rotation cannot describe the opening of the basin. Additional seismic profiles from investigations of the Chukchi Sea margin display passive margin structures and rift to pre

  9. Cocorp Deep Seismic Reflection Profiling in the Northern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Nelson, K. D.; Zhu, T. F.; Gibbs, A.; Harris, R.; Oliver, J. E.; Kaufman, S.; Brown, L.; Schweickert, R. A.

    1986-04-01

    A COCORP seismic reflection profile across the northern Sierra Nevada in California shows several east-dipping zones of discontinuous reflections. Correlation with surface geology suggests that these zones probably originate from faults of the Foothills fault system. In particular, the Melones fault, which coincides with the "Mother Lode" of the central and southern Sierra foothills, appears to be marked by prominent reflections in the midcrust. Migration of the COCORP data suggests that these faults are approximately planar, have moderately steep east dips (35°-47°), and penetrate at least to midcrustal depths (>20 km). At present it is unclear whether these faults are primary Nevadan thrusts, "late" Nevadan backthrusts (retrocharriage), or younger Cretaceous or Cenozoic faults, also known to occur in the region. Other more problematic features imaged on the profile include a prominent west-dipping zone of reflections in the midcrust beneath the Eastern belt, and subhorizontal reflections at 22- to 26-km depth beneath the Tahoe graben. The former might represent a west-dipping thrust analogous to the Taylorsville thrust cropping out to the north of the survey route. The latter might represent the base of the Sierra Nevada batholith, the westward extension of any one of several thrust systems cropping out in Nevada, a low-angle extensional detachment, or Moho.

  10. Metabolomic profiling reveals deep chemical divergence between two morphotypes of the zoanthid Parazoanthus axinellae

    NASA Astrophysics Data System (ADS)

    Cachet, Nadja; Genta-Jouve, Grégory; Ivanisevic, Julijana; Chevaldonné, Pierre; Sinniger, Frédéric; Culioli, Gérald; Pérez, Thierry; Thomas, Olivier P.

    2015-02-01

    Metabolomics has recently proven its usefulness as complementary tool to traditional morphological and genetic analyses for the classification of marine invertebrates. Among the metabolite-rich cnidarian order Zoantharia, Parazoanthus is a polyphyletic genus whose systematics and phylogeny remain controversial. Within this genus, one of the most studied species, Parazoanthus axinellae is prominent in rocky shallow waters of the Mediterranean Sea and the NE Atlantic Ocean. Although different morphotypes can easily be distinguished, only one species is recognized to date. Here, a metabolomic profiling approach has been used to assess the chemical diversity of two main Mediterranean morphotypes, the ``slender'' and ``stocky'' forms of P. axinellae. Targeted profiling of their major secondary metabolites revealed a significant chemical divergence between the morphotypes. While zoanthoxanthin alkaloids and ecdysteroids are abundant in both morphs, the ``slender'' morphotype is characterized by the presence of additional and bioactive 3,5-disubstituted hydantoin derivatives named parazoanthines. The absence of these specific compounds in the ``stocky'' morphotype was confirmed by spatial and temporal monitoring over an annual cycle. Moreover, specimens of the ``slender'' morphotype are also the only ones found as epibionts of several sponge species, particularly Cymbaxinella damicornis thus suggesting a putative ecological link.

  11. Deep structures imaging of the INOUZZAL Archean terrane (HOGGAR, ALGERIA) from the Inversion of Aeromagnetic Profiles

    NASA Astrophysics Data System (ADS)

    Hamoudi, M.; Bournas, N.; Galdeano, A.

    2003-04-01

    Delineating hidden contacts of deeply located geological structures and determination of their spatial configuration has always been an important task during the analysis and the inversion of potential field data. In this work, we will present the results obtained with the inversion of aeromagnetic profiles above the Inouzzal Archean Terrane (IAT), situated in the Western part of the Hoggar shield (Algeria) using the multiple-source Werner deconvolution and the wavelet transform techniques. Based on a synthetic models study, both mentioned techniques have shown a high performance and a great stability, yielding correct source boundaries location and very good estimation of dip angles. The interpretation performed on aeromagnetic profiles correlates well with the known geological structures of the studied area. However, the western boundary of the hidden part of the IAT, has been clearly identified and located. The dip angles of both the eastern and the western boundaries of this structure have been estimated, as well. The results inferred from the inversion of the aeromagnetic data are very useful to replace the IAT in the global structural context of the Hoggar shield.

  12. Metasurfaces-based holography and beam shaping: engineering the phase profile of light

    NASA Astrophysics Data System (ADS)

    Scheuer, Jacob

    2016-08-01

    The ability to engineer and shape the phase profile of optical beams is in the heart of any optical element. Be it a simple lens or a sophisticated holographic element, the functionality of such components is dictated by their spatial phase response. In contrast to conventional optical components which rely on thickness variation to induce a phase profile, metasurfaces facilitate the realization of arbitrary phase distributions using large arrays with sub-wavelength and ultrathin (tens of nanometers) features. Such components can be easily realized using a single lithographic step and is highly suited for patterning a variety of substrates, including nonplanar and soft surfaces. In this article, we review the recent developments, potential, and opportunities of metasurfaces applications. We focus primarily on flat optical devices, holography, and beam-shaping applications as these are the key ingredients needed for the development of a new generation of optical devices which could find widespread applications in photonics.

  13. Metasurfaces-based holography and beam shaping: engineering the phase profile of light

    NASA Astrophysics Data System (ADS)

    Scheuer, Jacob

    2017-01-01

    The ability to engineer and shape the phase profile of optical beams is in the heart of any optical element. Be it a simple lens or a sophisticated holographic element, the functionality of such components is dictated by their spatial phase response. In contrast to conventional optical components which rely on thickness variation to induce a phase profile, metasurfaces facilitate the realization of arbitrary phase distributions using large arrays with sub-wavelength and ultrathin (tens of nanometers) features. Such components can be easily realized using a single lithographic step and is highly suited for patterning a variety of substrates, including nonplanar and soft surfaces. In this article, we review the recent developments, potential, and opportunities of metasurfaces applications. We focus primarily on flat optical devices, holography, and beam-shaping applications as these are the key ingredients needed for the development of a new generation of optical devices which could find widespread applications in photonics.

  14. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    NASA Astrophysics Data System (ADS)

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe

    2015-04-01

    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  15. Ultra-Deep Seismic Reflection Profiles of the Western U.S. from Autocorrelation of USArray Recordings

    NASA Astrophysics Data System (ADS)

    Cabolova, A.; Brown, L. D.

    2012-12-01

    A core tenet of the emerging field of seismic interferometry is that autocorrelation of the transmission response recorded at a given seismic station is equivalent to its reflection response. This relation holds true for both specific (earthquake) and distributed (ambient noise) sources. In principle therefore one should be able to reconstruct the equivalent of a zero-offset, surface source-receiver reflection profile from simply autocorrelating the recordings of "natural" sources along a line of seismograph stations. In practice summation of a number of sources from an adequate spatial distribution of quasi random sources is needed to suppress artifacts and enhance the desired reflection response. Recently Ruigrok and Wapennar (2012) reported a lithospheric P-wave reflectivity profile by applying this technique to PKP, PKiKP and PKIKP phases of arthquakes recorded on Hi-CLIMB receivers crossing the Himalaya and southern Tibetan Plateau. Here we show the results of applying similar autocorrelation techniques to both ambient noise and earthquake suites recorded by USArray stations in New Mexico and Arizona to produce P and S wave reflection profiles of lithospheric structure. Our results demonstrate that while this novel approach can provide new (albeit low resolution compared to controlled source surveys) , reflection profiles of lithospheric structure, care must be used to discriminate true reflectivity from artifacts generate by the limited distribution of source regions. However, since the quality of the image is related to stacking fold, results from permanent or long term stations can only improve in clarity and resolution with time.

  16. Uncovering a Salt Giant. Deep-Sea Record of Mediterranean Messinian Events (DREAM) multi-phase drilling project

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas

    2014-05-01

    In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions

  17. Deep seismic studies of conjugate profiles from the Nova Scotia - Moroccan and the Liguro-Provencal margin pairs

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Aslanian, D.; Philippe, S.; Schnabel, M.; Moulin, M.; Louden, K. E.; Funck, T.; Reichert, C. J.

    2014-12-01

    The structure of conjugate passive margins provides information about rifting styles, opening of an ocean and formation of it's associated sedimentary basins. In order to distinguish between tectonic inheritance and structures directly related to rifting of passive margins conjugate profiles have to be acquired on margins on diverse locations and different ages. In this study we use new and existing reflection and wide-angle seismic data from two margin pairs, the 200 Ma year old Nova-Scotia - Morocco margin pair and the only 20 Ma Gulf of Lions - Sardinia margin pair. On both margin pairs wide-angle seismic data combined with reflection seismic data were acquired on conjugate profiles on sea and extended on land. Forward modelling of the deep crustal structure along the four transects indicates that a high velocity zone (HVZ) (> 7.2 km/s) is present at the base of the lower crust on all four margins along the ocean-continental transition zone (OCT). This may represent either exhumed upper mantle material or injection of upper mantle material into proto-oceanic crust at the onset of sea-floor spreading. However the width of the HVZ might strongly differ between conjugates, which may be the result of tectonic inheritance, for example the presence of ancient subduction zones or orogens. Both margin pairs show a similar unthinned continental crustal thickness. Crustal thinning and upper-to-lower crustal thickness vary between margin pairs, but remain nearly symmetric on conjugate profiles and might therefore depend on the structure and mechanical properties of the original continental crust. For the Mediterranean margin pair, the oceanic crust is similar on both sides, with a thickness of only 4-5 km. For the Atlantic margin pair, oceanic crustal thickness is higher on the Moroccan Margin, a fact that can be explained by either asymmetric spreading or by the volcanic underplating, possibly originating from the Canary Hot Spot.

  18. Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral Keratoisis sp.

    NASA Astrophysics Data System (ADS)

    Sinclair, Daniel J.; Williams, B.; Allard, G.; Ghaleb, B.; Fallon, S.; Ross, S. W.; Risk, M.

    2011-09-01

    Bamboo corals (Order Gorgonacea, Family Isididae) are attractive prospects for deep-sea paleoceanographic reconstruction, capturing trace elements in their calcitic skeletons that may serve as environmental proxies with subdecadal resolution over multi-century timescales. We study the reproducibility and fidelity of trace-element profiles (Ba, Mg, Sr, Mn, U, Pb) in a 420-year-old specimen of the bamboo coral Keratoisis sp. from the SE USA. Using laser-ablation ICP-MS to obtain multiple replicate profiles, we use spectral techniques to distinguish noise and irreproducible variations from fully reproducible geochemical fluctuations that are candidates for environmental signals. By quantifying variability between profiles, we assess the fidelity with which the corals potentially record environmental information. Barium is the most reproducible element in the skeleton, with large fluctuations along different growth radii reproducing to within 4%. Both Mg and Sr have very uniform levels within the coral, but display low-amplitude irreproducible variations that might represent an internal biological process. In the case of Mg, which has been proposed as a paleotemperature proxy, this irreproducibility would represent an intrinsic uncertainty of ˜±0.1 to 0.4 °C. Both Mn and Pb contain some irreproducibility superimposed upon broad reproducible profiles that may be environmental signals. Some of the irreproducible Pb fluctuations correlate with cracks and dark bands in the sample suggesting detrital or surface contamination. Uranium displays large amplitude variations which are not reproducible along different radii. This suggests that uranium cannot be used for paleoenvironmental reconstruction, and may show signs of early diagenesis - a possibility that could complicate attempts to date young Keratoisis sp. samples by U-series geochemistry. The highly reproducible Ba signal allows precise alignment of profiles and thus we can show that growth rate along one radius can

  19. Hepatitis B virus depicts a high degree of conservation during the immune-tolerant phase in familiarly transmitted chronic hepatitis B infection: deep-sequencing and phylogenetic analysis.

    PubMed

    Sede, M; Lopez-Ledesma, M; Frider, B; Pozzati, M; Campos, R H; Flichman, D; Quarleri, J

    2014-01-01

    When intrafamilial transmission of hepatitis B virus (HBV) occurs, a virus with the same characteristics interacts with diverse hosts' immune systems and may thus result in different mutations to escape immune pressure. In this study, the HBV genomic characterization was assessed longitudinally after intrafamilial transmission using nucleotide sequence data of phylogenetic and mutational analyses, including those obtained by deep-sequencing for the first time. Furthermore, HBeAg-anti-HBe profile and variability of HBV core-derived epitopes were also evaluated. Strong evidence was obtained from intrafamilial transmission of HBV genotype D1 by phylogenetic inferences. HBV isolates exhibited high degree (~99%) of genomic conservation for almost 20 years, when patients were persistently HBeAg positive with normal amino transferase levels. This identity remained high among immune-tolerant siblings. In contrast, it diminished significantly (P = 0.02) when the mother cleared HBeAg (immune clearance phase). By deep-sequencing, the quantitative analysis of the dynamics of basal core promoter (BCP) (A1762T, G1764A; A1766C; T1773C; 8-bp deletion; and other) and precore (G1896A) variants among HBV isolates from family members exhibited differences during the follow-up. However, only those from the mother showed amino acid variations at core protein that would impair their MHC-II binding. Hence, when intrafamilial transmission occurs, HBV was highly conserved under the immune-tolerant phase, but it exhibited mutations more frequently during the immune clearance phase. The analysis of the HBV BCP and precore mutants after intrafamilial HBV transmission contributes to a better understanding of how they evolve over time. © 2013 John Wiley & Sons Ltd.

  20. National Environmental/Energy Workforce Assessment, Phase II, Post-Secondary Education Profile: Abstract.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    The material presented in this booklet represents a condensation of materials developed under the Post-Secondary Education Profile phase of the National Environmental/Energy Workforce Assessment. The final report of the study consisted of 16 volumes which are summarized. The following topics are covered: air, energy, noise, pesticides, potable…

  1. Surface energy from order parameter profile: At the QCD phase transition

    NASA Technical Reports Server (NTRS)

    Frei, Z.; Patkos, A.

    1989-01-01

    The order parameter profile between coexisting confined and plasma regions at the quantum chromodynamic (QCD) phase transition is constructed. The dimensionless combination of the surface energy (Sigma) and the correlation length (Zeta) is estimated to be Sigma Zeta 3 approximately equals 0.8.

  2. SPSP Phase III Recruiting, Selecting, and Developing Secure Power Systems Professionals. Job Profiles

    SciTech Connect

    O'Neil, Lori Ross; Conway, T. J.; Tobey, D. H.; Greitzer, Frank L.; Dalton, Angela C.; Pusey, Portia K.

    2015-03-01

    The Secure Power Systems Professional Phase III final report was released last year which an appendix of Job Profiles. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.

  3. National Environmental/Energy Workforce Assessment, Phase II, Post-Secondary Education Profile: Abstract.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    The material presented in this booklet represents a condensation of materials developed under the Post-Secondary Education Profile phase of the National Environmental/Energy Workforce Assessment. The final report of the study consisted of 16 volumes which are summarized. The following topics are covered: air, energy, noise, pesticides, potable…

  4. Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial.

    PubMed

    Lipsman, Nir; Woodside, D Blake; Giacobbe, Peter; Hamani, Clement; Carter, Jacqueline C; Norwood, Sarah Jane; Sutandar, Kalam; Staab, Randy; Elias, Gavin; Lyman, Christopher H; Smith, Gwenn S; Lozano, Andres M

    2013-04-20

    Anorexia nervosa is characterised by a chronic course that is refractory to treatment in many patients and has one of the highest mortality rates of any psychiatric disorder. Deep brain stimulation (DBS) has been applied to circuit-based neuropsychiatric diseases, such as Parkinson's disease and major depression, with promising results. We aimed to assess the safety of DBS to modulate the activity of limbic circuits and to examine how this might affect the clinical features of anorexia nervosa. We did a phase 1, prospective trial of subcallosal cingulate DBS in six patients with chronic, severe, and treatment-refractory anorexia nervosa. Eligible patients were aged 20-60 years, had been diagnosed with restricting or binge-purging anorexia nervosa, and showed evidence of chronicity or treatment resistance. Patients underwent medical optimisation preoperatively and had baseline body-mass index (BMI), psychometric, and neuroimaging investigations, followed by implantation of electrodes and pulse generators for continuous delivery of electrical stimulation. Patients were followed up for 9 months after DBS activation, and the primary outcome of adverse events associated with surgery or stimulation was monitored at every follow-up visit. Repeat psychometric assessments, BMI measurements, and neuroimaging investigations were also done at various intervals. This trial is registered with ClinicalTrials.gov, number NCT01476540. DBS was associated with several adverse events, only one of which (seizure during programming, roughly 2 weeks after surgery) was serious. Other related adverse events were panic attack during surgery, nausea, air embolus, and pain. After 9 months, three of the six patients had achieved and maintained a BMI greater than their historical baselines. DBS was associated with improvements in mood, anxiety, affective regulation, and anorexia nervosa-related obsessions and compulsions in four patients and with improvements in quality of life in three

  5. Extraction of seawater-derived neodymium from different phases of deep sea sediments by selective leaching

    NASA Astrophysics Data System (ADS)

    Blaser, P.; Lippold, J. A.; Frank, N.; Gutjahr, M.; Böhm, E.

    2014-12-01

    In order to deduce reliable information about the interaction of the oceans with the climate system as a whole in the past, the reconstruction of water mass circulation is crucial. The analysis of seawater-derived neodymium isotopes (143Nd/144Nd, expressed as ɛNd) in marine sediments provides a unique proxy for deep water provenance in particular in the Atlantic [1]. The ɛNd signature and thus the mixing proportion of the local bottom water masses is archived in authigenic phases in the sediment. Obtaining seawater ɛNd from authigenic accretions bound to foraminiferal tests has lately become the preferred since most reliable method [2]. Attempts have also been made to extract the Nd-rich authigenic metal fraction by leaching it off the bulk sediment and thereby use this proxy with less effort, in the highest possible resolution and in sediments where foraminifera are not sufficiently present. However, often other sedimentary components are also leached in the process and contaminate the extracted Nd [3,4]. In this project several core-top and older sediments across the Atlantic have been leached in ten consecutive steps with either dilute buffered acetic acid or an acid-reductive solution. The leachates were analysed on their elemental and Nd isotope compositions, as well as rare earth element (REE) distributions. By graduating the total leaching procedure into smaller stages the results display which processes take place in the course of sediment leaching in the laboratory and which components of the sediment are most reactive. Thus, they help to better evaluate the quality of sediment leaches for ɛNd analysis. Clearly, organic calcite acts as a fast reacting buffer and at the point where its amount is sufficiently reduced the leaching of other components commences and the Nd concentration peaks. Corruption of the extracted ɛNd signal by non-authigenic sources in many cases occured early in the leaching sequence, indicating that only very cautious leaching

  6. High-intensity focused ultrasound with large scale spherical phased array for the ablation of deep tumors.

    PubMed

    Ji, Xiang; Bai, Jing-feng; Shen, Guo-feng; Chen, Ya-zhu

    2009-09-01

    Under some circumstances surgical resection is feasible in a low percentage for the treatment of deep tumors. Nevertheless, high-intensity focused ultrasound (HIFU) is beginning to offer a potential noninvasive alternative to conventional therapies for the treatment of deep tumors. In our previous study, a large scale spherical HIFU-phased array was developed to ablate deep tumors. In the current study, taking into account the required focal depth and maximum acoustic power output, 90 identical circular PZT-8 elements (diameter =1.4 cm and frequency=1 MHz) were mounted on a spherical shell with a radius of curvature of 18 cm and a diameter of 21 cm. With the developed array, computer simulations and ex vivo experiments were carried out. The simulation results theoretically demonstrate the ability of the array to focus and steer in the specified volume (a 2 cmx2 cmx3 cm volume) at the focal depth of 15 to 18 cm. Ex vivo experiment results also verify the capability of the developed array to ablate deep target tissue by either moving single focal point or generating multiple foci simultaneously.

  7. Phase behavior of elastin-like synthetic recombinamers in deep eutectic solvents.

    PubMed

    Nardecchia, Stefania; Gutiérrez, María C; Ferrer, M Luisa; Alonso, Matilde; López, Isabel M; Rodríguez-Cabello, J Carlos; del Monte, Francisco

    2012-07-09

    Deep eutectic solvents promoted the stabilization of the collapsed state of elastin-like recombinamers - and the subsequent formation of aggregates - upon the loss of the structural water molecules involved in hydrophobic hydration. Cryo-etch scanning electron microscopy allowed the observation of these aggregates in neat deep eutectic solvents. The suppression of the lower critical solution temperature transition, observed by differential scanning calorimetry and dynamic light scattering, confirmed the presence of the elastin-like recombinamers in their collapsed state. Actually, the transition from the collapsed to the expanded state was suppressed even after moderate aqueous dilution - for water contents ranging from nil to ca. 45 wt % - and it was only recovered upon further addition of water - above 50 wt %. These features revealed the preferred stabilization of the collapsed state in not only neat deep eutectic solvents but also partially hydrated deep eutectic solvents. We consider that the capability to trigger the lower critical solution temperature transition by partial hydration of deep eutectic solvent may open interesting perspectives for nano(bio)technological applications of elastin-like recombinamers.

  8. Creating diversified response profiles from a single quenchometric sensor element by using phase-resolved luminescence.

    PubMed

    Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V

    2015-01-05

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).

  9. Modeling, error analysis, and compensation in phase-shifting surface profilers

    NASA Astrophysics Data System (ADS)

    Hu, Qingying Jim

    2011-08-01

    Optical metrology techniques have been widely used in geometric dimension and shape measurements due to many features such as non-contact measurement, fast measurement speed, digital data format for computerized analysis and visualization, superior resolution, and high accuracy, etc. Among these techniques, phase-shifting based surface profilers have drawn more and more attention due to its full-field measurement and maturing wrapping/unwrapping analysis characteristics. This paper analyzes the error sources in phase-shifting surface profilers, including phaseshifting generation, non-linearity compensation, phase-shifting algorithms, surface contour extraction, modeling, and calibration, etc. Some methods to improve the measurement accuracy through coordinate error compensation are also proposed including transfer functions and look-up table (LUT) methods.

  10. Creating Diversified Response Profiles from a Single Quenchometric Sensor Element by Using Phase-Resolved Luminescence

    PubMed Central

    Tehan, Elizabeth C.; Bukowski, Rachel M.; Chodavarapu, Vamsy P.; Titus, Albert H.; Cartwright, Alexander N.; Bright, Frank V.

    2015-01-01

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions). PMID:25569752

  11. High-accuracy surface profile measuring system using a BSO phase conjugating mirror.

    PubMed

    Ikeda, O; Suzuki, T; Sato, T

    1982-12-15

    A highly accurate real-time surface profile measuring system has been constructed by combining a Bi(12)SiO(20) (BSO) phase conjugating mirror (PCM) with a Twyman-Green interferometer. In this new interferometer the convex lens collects and focuses the scattering object waves in the BSO crystal, and the PCM reconstructs the object field through the same lens. The method of deriving surface profile is similar to conventional ones but differs in that it does not require exact phase modulation of the interferograms. This system features a quite high measurement accuracy free of aberrations of the lens and of hysteresis or aging of the piston actuator used to change the phase of the reference field. The principle and basic experimental results are presented.

  12. Characterization of the phase I and phase II metabolic profile of tolvaptan by in vitro studies and liquid chromatography-mass spectrometry profiling: Relevance to doping control analysis.

    PubMed

    Mazzarino, Monica; Buccilli, Valeria; de la Torre, Xavier; Fiacco, Ilaria; Palermo, Amelia; Ughi, Daniele; Botrè, Francesco

    2017-10-25

    Phase I and phase II biochemical reactions involved in the biotransformation pathways of tolvaptan were characterized by LC-MS-based techniques and in vitro models to identify the most appropriate marker(s) of intake. The effects of physiological and non-physiological factors on the metabolic profile of tolvaptan were also evaluated. In vitro approaches were based on the use of pooled human liver microsomes and recombinant isoforms of cytochrome P450 and uridine diphospho glucuronosyl-transferase. Sample preparation included liquid/liquid extraction at neutral pH with tert-butyl methyl-ether. In the case of the study of phase II metabolism an additional enzymatic hydrolysis step was performed. The chromatographic separation was carried out using reversed-phase chromatography, whereas detection was performed by either triple-quadrupole or time-of-flight analyzers in positive electrospray ionization and different acquisition modes. Our data show that tolvaptan is metabolized to at least 20 phase I metabolites, the biotransformation reactions being catalyzed mainly by CYP3A4 and CYP3A5 isoforms. The phase-I reactions include hydroxylation (in different positions), carboxylation, oxidation, hydrogenation, dealkylation, isomerization and a combination of the above. Most of the phase I metabolites undergo glucuronidation, carried out mostly by UGT2B7 and UGT2B17 isoforms. Dealkylated, mono-hydroxylated and carboxylated metabolites both in the free and in the glucuronidated form appear to be the most suitable urinary diagnostic markers for the detection of tolvaptan intake in doping control. Concerning the effects of physiological and non-physiological factors on the metabolic profile of tolvaptan, our results show that (i) no significant gender differences were detected; (ii) significant differences were registered in the presence of different CYP3A5 allelic variants, and finally (iii) a marked reduction of the detected metabolites was registered in the presence of

  13. Directivity of a Sparse Array in the Presence of Atmospheric-Induced Phase Fluctuations for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Acosta, Robert J.

    2010-01-01

    Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.

  14. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... expiration in May 2009 of the ability to qualify for royalty relief in this water depth, and could not share... Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.43 To which production do I apply... or qualified phase 1 ultra-deep well on a lease that is located entirely or partly in water less than...

  15. Deep sequencing of transcriptome profiling of GSTM2 knock-down in swine testis cells

    PubMed Central

    Lv, Yuqi; Jin, Yi; Zhou, Yongqiang; Jin, Jianjun; Ma, Zhenfa; Ren, Zhuqing

    2016-01-01

    Glutathione-S-transferases mu 2 (GSTM2), a kind of important Phase II antioxidant enzyme of eukaryotes, is degraded by nonsense mediated mRNA decay due to a C27T substitution in the fifth exon of pigs. As a reproductive performance-related gene, GSTM2 is involved in embryo implantation, whereas, functional deficiency of GSTM2 induces pre- or post-natal death in piglets potentially. To have some insight into the role of GSTM2 in embryo development, high throughput RNA sequencing is performed using the swine testis cells (ST) with the deletion of GSTM2. Some embryo development-related genes are observed from a total of 242 differentially expressed genes, including STAT1, SRC, IL-8, DUSP family, CCL family and integrin family. GSTM2 affects expression of SRC, OPN, and SLCs. GSTM2 suppresses phosphorylation of STAT1 by binding to STAT1. In addition, as an important transcription factor, STAT1 regulates expression of uterus receptive-related genes including CCLs, IRF9, IFITs, MXs, and OAS. The present study provides evidence to molecular mechanism of GSTM2 modulating embryo development. PMID:27905550

  16. Deep sequencing of transcriptome profiling of GSTM2 knock-down in swine testis cells.

    PubMed

    Lv, Yuqi; Jin, Yi; Zhou, Yongqiang; Jin, Jianjun; Ma, Zhenfa; Ren, Zhuqing

    2016-12-01

    Glutathione-S-transferases mu 2 (GSTM2), a kind of important Phase II antioxidant enzyme of eukaryotes, is degraded by nonsense mediated mRNA decay due to a C27T substitution in the fifth exon of pigs. As a reproductive performance-related gene, GSTM2 is involved in embryo implantation, whereas, functional deficiency of GSTM2 induces pre- or post-natal death in piglets potentially. To have some insight into the role of GSTM2 in embryo development, high throughput RNA sequencing is performed using the swine testis cells (ST) with the deletion of GSTM2. Some embryo development-related genes are observed from a total of 242 differentially expressed genes, including STAT1, SRC, IL-8, DUSP family, CCL family and integrin family. GSTM2 affects expression of SRC, OPN, and SLCs. GSTM2 suppresses phosphorylation of STAT1 by binding to STAT1. In addition, as an important transcription factor, STAT1 regulates expression of uterus receptive-related genes including CCLs, IRF9, IFITs, MXs, and OAS. The present study provides evidence to molecular mechanism of GSTM2 modulating embryo development.

  17. Seismic structure of the northern continental margin of Spain from ESCIN deep seismic profiles

    NASA Astrophysics Data System (ADS)

    Alvarez-Marrón, J.; Pérez-Estaún, A.; Danñobeitia, J. J.; Pulgar, J. A.; Martínez^Catalán, J. R.; Marcos, A.; Bastida, F.; Ayarza^Arribas, P.; Aller, J.; Gallart, A.; Gonzalez-Lodeiro, F.; Banda, E.; Comas, M. C.; Córdoba, D.

    1996-10-01

    By the end of the Carboniferous, the crust of the continental shelf in northwestern Spain was made up of deeply rooted structures related to the Variscan collision. From Permian to Triassic times the tectonic setting had changed to mainly extensional and the northern Iberian continental margin underwent rifting during Late Jurassic-Early Cretaceous times, along with sea-floor spreading and the opening of the Bay of Biscay until the Late Cretaceous. Subsequently, the northern Iberian margin was active during the north-south convergence of Eurasia and Iberia in the Tertiary. A multichannel seismic experiment, consisting of two profiles, one north-south (ESCIN-4) crossing the platform margin offshore Asturias, and another (ESCIN-3) crossing the platform margin to the northwest of Galicia, was designed to study the structure of the northern Iberian margin. The ESCIN-4 stacked section reveals inverted structures in the upper crust within the Le Danois Basin. North of the steep continental slope, ESCIN-4 shows a thick sedimentary package from 6 to 9.5 s, two-way travel time (TWT). Within this latter package, a 40-km-long, north-tapering wedge of inclined, mainly south-dipping reflections is thought to represent a buried, Alpine-age accretionary prism. In the north western part of the ESCIN-3 (ESCIN-3-1) stacked section, horizontal reflections from 6.5 to 8.5 s correspond to an undisturbed package of sediments lying above oceanic-type basement. In this part of the line, a few kilometres long, strong horizontal reflection at 11.2 s within the basement may represent an oceanic Moho reflection. Also, a band of reflections dips gently towards the southeast, from the base of the gently dipping continental slope. The part of ESCIN-3 line that runs parallel to the NW-Galicia coast (ESCIN-3-2), is characterized by bright, continuous lower crustal reflections from 8 to 10 s. Beneath the lower crustal reflectivity, a band of strong reflections dips gently toward the southwest from

  18. Evidence for Gently Sloping Plasma Density Profiles in the Deep Corona: Type III Observations

    NASA Astrophysics Data System (ADS)

    Lobzin, V. V.; Cairns, I. H.; Robinson, P. A.; Warmuth, A.; Mann, G.; Gorgutsa, R. V.; Fomichev, V. V.

    2010-12-01

    Type III radio bursts are produced near the local electron plasma frequency fp and near its harmonic 2fp by fast electrons ejected from the solar active regions and moving through the corona and solar wind. The coronal bursts have dynamic spectra with frequency rapidly falling with time, the typical duration being about 1-3 s. In the present paper, 37 well-defined coronal type III radio bursts (25-450 MHz) are analyzed. The results obtained substantiate an earlier statement that the dependence of the central frequency of the emission on time can be fitted to a power-law model, f(t) vprop (t - t 0)-α, where α can be as low as 1. In the case of negligible plasma acceleration and conical flow, it means that the electron number density within about 1 solar radius above the photosphere will decrease as r -2, like in the solar wind. For the data set chosen, the index α varies in the range from 0.2 to 7 or bigger, with mean and median values of 1.2 and 0.5, respectively. A surprisingly large fraction of events, 84%, have α <= 1.2. These results provide strong evidence that in the type III source regions the electron number density scales as n(r) vprop (r - r 0)-β, with minimum, mean, and median β = 2α of 0.4, 2.4, and 1.0, respectively. Hence, the typical density profiles are more gently sloping than those given by existing empirical coronal models. Several events are found with a wind-like dependence of burst frequency on time. Smaller power-law indices could result from the effects of non-conical geometry of the plasma flow tubes, deceleration of coronal plasma, and/or the curvature of the magnetic field lines. The last effect is shown to be too weak to explain such low power-law indices. A strong tendency is found for bursts from the same group to have similar power-law indices, thereby favoring the hypothesis that they are usually produced by the same source region.

  19. Evidence for Gently Sloping Plasma Density Profiles in the Deep Corona: Type III Observations

    NASA Astrophysics Data System (ADS)

    Cairns, I. H.; Lobzin, V.; Robinson, P. A.; Warmuth, A.; Mann, G. J.; Gorgutsa, R.; Fomichev, V.

    2010-12-01

    Type III radio bursts are produced near the local electron plasma frequency fp and near its harmonic 2fp by fast electrons ejected from the solar active regions and moving through the corona and solar wind. These bursts have dynamic spectra with frequency rapidly falling with time, the typical duration of the coronal burst being about 1--3 seconds. In the present paper, 37 well-defined coronal type III radio bursts (25--450 MHz) are analyzed. It is found that the dependence of the central frequency of the emission on time can be fitted to a power-law model, f(t) ∝ (t-t0)-α . The index α varies in the range 0.2 to ∞ , with mean and median values of 1.2 and 0.5, respectively. A surprisingly large fraction of events, 84%, has α ≤1.2. Assuming a constant speed of the electron beam, these results provide strong evidence that in the type III source regions within about 1 solar radius above the photosphere the electron number density scales as n(r) ∝ (r-r0)-β , with minimum, mean, and median β =2α of 0.4, 2.4, and 1.0, respectively. Hence, the typical density profiles are more gently sloping than could be expected from the existing empirical coronal models. In the case of negligible plasma acceleration and conical flow, from conservation of the number of electrons it follows that the electron number density will decrease as r-2 with α =1, like in the solar wind. Several events are found with such a wind-like dependence of burst frequency on time. Smaller power-law indices could result from the effects of non-conical geometry of the plasma flow tubes, deceleration of coronal plasma, and/or the curvature of the magnetic field lines. The effects of curvature of the magnetic field lines are shown to be too weak to explain such low power-law indices. A strong tendency is found for bursts from the same group to have similar power-law indices, thereby favoring the hypothesis that they are usually produced by the same source region.

  20. MicroRNA Profiling of Epstein-Barr Virus-Associated NK/T-Cell Lymphomas by Deep Sequencing

    PubMed Central

    Motsch, Natalie; Alles, Julia; Imig, Jochen; Zhu, Jiayun; Barth, Stephanie; Reineke, Tanja; Tinguely, Marianne; Cogliatti, Sergio; Dueck, Anne; Meister, Gunter

    2012-01-01

    The Epstein-Barr virus (EBV) is an oncogenic human Herpes virus involved in the pathogenesis of nasal NK/T-cell lymphoma. EBV encodes microRNAs (miRNAs) and induces changes in the host cellular miRNA profile. MiRNAs are short non-coding RNAs of about 19–25 nt length that regulate gene expression by post-transcriptional mechanisms and are frequently deregulated in human malignancies including cancer. The microRNA profiles of EBV-positive NK/T-cell lymphoma, non-infected T-cell lymphoma and normal thymus were established by deep sequencing of small RNA libraries. The comparison of the EBV-positive NK/T-cell vs. EBV-negative T-cell lymphoma revealed 15 up- und 16 down-regulated miRNAs. In contrast, the majority of miRNAs was repressed in the lymphomas compared to normal tissue. We also identified 10 novel miRNAs from known precursors and two so far unknown miRNAs. The sequencing results were confirmed for selected miRNAs by quantitative Real-Time PCR (qRT-PCR). We show that the proinflammatory cytokine interleukin 1 alpha (IL1A) is a target for miR-142-3p and the oncogenic BCL6 for miR-205. MiR-142-3p is down-regulated in the EBV-positive vs. EBV-negative lymphomas. MiR-205 was undetectable in EBV-negative lymphoma and strongly down-regulated in EBV-positive NK/T-cell lymphoma as compared to thymus. The targets were confirmed by reporter assays and by down-regulation of the proteins by ectopic expression of the cognate miRNAs. Taken together, our findings demonstrate the relevance of deregulated miRNAs for the post-transcriptional gene regulation in nasal NK/T-cell lymphomas. PMID:22870299

  1. Integrating microRNA and messenger RNA expression profiles in a rat model of deep vein thrombosis.

    PubMed

    Jin, Qian-Qian; Sun, Jun-Hong; Du, Qiu-Xiang; Lu, Xiao-Jun; Zhu, Xi-Yan; Fan, Hao-Liang; Hölscher, Christian; Wang, Ying-Yuan

    2017-10-01

    Deep vein thrombosis (DVT) is a disease involving multiple genes and systems. MicroRNAs (miRNAs) represent a class of non-coding small RNAs that post-transcriptionally suppress their target genes. The expression patterns of miRNA and messenger RNA (mRNA) in DVT remain poorly characterized. The aim of the present study was to evaluate miRNA and mRNA expression profiles in a stasis-induced DVT rat model. Male SD rats were randomly divided into three groups as follows: DVT, sham and control. The inferior vena cava (IVC) of rats was ligated to construct stasis-induced DVT models. Rats were sacrificed three days after ligation, and morphological changes in the vein tissues were observed by hematoxylin and eosin and Masson staining. The miRNA and mRNA expression profiles were evaluated by microarrays, followed by bioinformatics analysis. The microarray analysis identified 22 miRNAs and 487 mRNAs that were significantly differentially expressed between the experimental and control groups, and between the experimental and sham groups, but not between the control and sham groups (P≤0.05; ≥2.0‑fold change). By subsequent bioinformatics analysis, a 19 miRNA-98 mRNAs network was constructed in the stasis-induced DVT rat model. Notably, the majority of these miRNAs and mRNAs are reported to be expressed by endothelial cells (ECs) and are associated with the function of ECs. The results provide evidence indicating that the regulatory association of miRNA and mRNA points to key roles played by ECs in thrombosis. These findings advance our understanding of the molecular regulatory mechanisms underlying the pathophysiology of DVT.

  2. Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs

    NASA Technical Reports Server (NTRS)

    Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.

    1979-01-01

    The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.

  3. A composite quality-guided phase unwrapping algorithm for fast 3D profile measurement

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Xi, Jiangtao; Yu, Yanguang; Song, Limei

    2012-11-01

    Fringe pattern profilometry (FPP) is one of the most promising 3D profile measurement techniques, which has been widely applied in many areas. A challenge problem associated with FPP is the unwrapping of wrapped phase maps resulted from complex object surface shapes. Although existing quality-guided phase unwrapping algorithms are able to solve such a problem, they are usually extensively computational expensive and not able to be applied to fast 3D measurement scenarios. This paper proposes a new quality-guided phase unwrapping algorithm with higher computational efficiency than the conventional ones. In the proposed method, a threshold of quality value is used to classify pixels on the phase maps into two types: high quality (HQ) pixels corresponding to smooth phase changes and low quality (LQ) ones to rough phase variance. In order to improve the computational efficiency, the HQ pixels are unwrapped by a computationally efficient fast phase unwrapping algorithm, and the LQ pixels are unwrapped by computational expensive flood-fill algorithm. Experiments show that the proposed approach is able to recover complex phase maps with the similar accuracy performance as the conventional quality-guided phase unwrapping algorithm but is much faster than the later.

  4. Profile analysis of ventricle specimen based on a new phase measuring method

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Su, Xianyu; Chen, Wenjing; Xiang, Liqun; Zhang, Qichan; Liu, Yuankun

    2009-08-01

    The size and shape of ventricle are very important to analyze and diagnose pathology of human heart. So it is very necessary to measure the profile of ventricle. It is very difficult to measure the ventricle by vivisectional method for its unique function of heart, so the ventricle specimen is adopted to be measured. Three-dimensional (3D) automatic measurement methods are widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new method to measure the 3D surface of ventricle specimen is proposed. Although the traditional 3D measuing method with equal or stated phase-shifting step length possess excellent accuracy, they are much dependent on the consistency of these phase-shifting step lengths. In fact, this condition is very difficult to guarantee. which may lead to the incorrect wrapped phase and incorrect phase unwrapping in some regions, even the reconstructed object may be misshapen or anamorphic. In the proposed method, a novel improved three undecided step lengths phase-shifting algorithm with three unequal phase-shifting steps has been presented detailed and is applied to measure the profile of ventricle sucssesfully. Experiments show that the improved algorithm can not only effectively improve the measuring accuracy, but also branch out its application.

  5. Mass, velocity anisotropy, and pseudo phase-space density profiles of Abell 2142

    NASA Astrophysics Data System (ADS)

    Munari, E.; Biviano, A.; Mamon, G. A.

    2014-06-01

    Aims: We aim to compute the mass and velocity anisotropy profiles of Abell 2142 and, from there, the pseudo phase-space density profile Q(r) and the density slope - velocity anisotropy β - γ relation, and then to compare them with theoretical expectations. Methods: The mass profiles were obtained by using three techniques based on member galaxy kinematics, namely the caustic method, the method of dispersion-kurtosis, and MAMPOSSt. Through the inversion of the Jeans equation, it was possible to compute the velocity anisotropy profiles. Results: The mass profiles, as well as the virial values of mass and radius, computed with the different techniques agree with one another and with the estimates coming from X-ray and weak lensing studies. A combined mass profile is obtained by averaging the lensing, X-ray, and kinematics determinations. The cluster mass profile is well fitted by an NFW profile with c = 4.0 ± 0.5. The population of red and blue galaxies appear to have a different velocity anisotropy configuration, since red galaxies are almost isotropic, while blue galaxies are radially anisotropic, with a weak dependence on radius. The Q(r) profile for the red galaxy population agrees with the theoretical results found in cosmological simulations, suggesting that any bias, relative to the dark matter particles, in velocity dispersion of the red component is independent of radius. The β - γ relation for red galaxies matches the theoretical relation only in the inner region. The deviations might be due to the use of galaxies as tracers of the gravitational potential, unlike the non-collisional tracer used in the theoretical relation.

  6. Effects of frying oils' fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process.

    PubMed

    Li, Xiaodan; Li, Jinwei; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-12-15

    The effects of frying oils' fatty acids profile on the formation of polar components and their retention in French fries and corresponding deep-fried oils were investigated in the present study, using oils with different fatty acids composition. Our analysis showed that the total polar compounds (TPCs) content in French fries was only slightly lower than that in deep-fried oils, indicating that there was no significant difference considering the amounts of TPCs in French fries and deep-fried oils. Our further analysis showed that different polar components in TPCs distributed differently in deep-fried oils and oils extracted from French fries. Specifically, the level of oligomeric and dimeric triacylglycerols was higher in French fries while oxidized triacylglycerols and diacylglycerols content was higher in deep-fried oils. The different retention of TPCs components in French fries may be explained by their interactions with carbohydrates, which are shown to enhance with the increase of hydrophobic property. Chemometric analysis showed that no correlation between the polar compounds level and saturated fatty acids profile was observed. Meanwhile, the polar compounds content was highly correlated with the formation of trans-C18:1, and a highly positive association between polar compounds and C18:2 content was also observed in palm oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pressure Profiles in Two-Phase Geothermal Wells: Comparison of Field Data and Model Calculations

    SciTech Connect

    Ambastha, A.K.; Gudmundsson, J.S.

    1986-01-21

    Increased confidence in the predictive power of two-phase correlations is a vital part of wellbore deliverability and deposition studies for geothermal wells. Previously, the Orkiszewski (1967) set of correlations has been recommended by many investigators to analyze geothermal wellbore performance. In this study, we use measured flowing pressure profile data from ten geothermal wells around the world, covering a wide range of flowrate, fluid enthalpy, wellhead pressure and well depth. We compare measured and calculated pressure profiles using the Orkiszewski (1967) correlations.

  8. Identification of new markers of recurrence in patients with unprovoked deep vein thrombosis by gene expression profiling: the retro study.

    PubMed

    Montes, Ramón; Guruceaga, Elisabet; González-Porras, José R; Reverter, Joan C; Marco, Pascual; Pina, Elena; Páramo, José A; Hermida, José; Lecumberri, Ramón

    2016-08-01

    The aim of this study was to assess differences in the gene expression profile of peripheral blood cells between patients with early recurrent thrombosis vs. patients without recurrent events after withdrawal of anticoagulant therapy for a first episode of unprovoked deep vein thrombosis (uDVT), to identify novel predictors of recurrence. In the discovery population (N = 32), a microarray RNA assay followed by RT-PCR confirmation were performed. In the validation population (N = 44) a multiple RT-PCR-based strategy was applied to assess genes differentially expressed in the discovery population. The sex-adjusted Linear Model for Microarray Data analysis showed 102 genes differentially expressed (P < 0.01) in the discovery population. Nineteen of them underwent further confirmation in the validation population. The gene encoding for Acyl-CoA Synthetase Family Member 2 (ACSF2) was underexpressed in recurrent DVT patients in both, the discovery (P = 0.007) and validation populations (P = 0.004). In the receiver operator characteristic (ROC) analysis, the areas under the curve of ACSF2 expression were 0.77 and 0.80, respectively. For the first time an association between ACSF2 expression and the risk of recurrent DVT is suggested. Should this association be confirmed in larger prospective studies, ACSF2 could become useful for the selection of patients requiring extended anticoagulant therapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Coherent reference generator phase stability. [Deep Space Network's frequency and timing subsystem

    NASA Technical Reports Server (NTRS)

    Korwar, V. N.

    1981-01-01

    Approximate phase stability estimates for the coherent reference generator (CRG) unit in the DSN's Frequency and Timing Subsystem (FTS) are calculated. The method used involves estimating the phase noise introduced by CRG components based upon measurements made in the past on similar components in other parts of the FTS and obtaining the CRG phase noise from the component phase noises. Three estimates of phase stability are calculated: the fractional frequency change for a 5 C step in temperature, the phase noise spectral density, and the Allan standard deviation. It is found from these estimates that the CRG phase stability is better than that of the H-maser physics unit + receiver. Thus, the first step in improving FTS phase stability would be to make improvements in the H-maser physics unit + receiver. These results are corroborated by indirect clock stability estimates calculated from Doppler data.

  10. Identification of Phase Relationships and Incorporation Mechanisms of Barium in Calcite Internodes of Deep-Sea Bamboo Corals

    NASA Astrophysics Data System (ADS)

    Ptacek, J. L.; Geyman, B.; Horner, T. J.; Auro, M. E. E.; Hill, T. M.; LaVigne, M.

    2016-12-01

    Insufficient instrumental and geochemical records have led to a gap in knowledge of how intermediate/deep water masses respond to decadal shifts in surface atmospheric-ocean climate that drive changes in ocean ventilation, nutrient cycling, and export productivity. Due to their longevity, depth range (500-2000m), and radial growth bands, bamboo corals have been proposed as high-resolution intermediate/deep ocean archives of elements with nutrient-like distributions, such as barium. Previous work showed bamboo corals incorporate barium into their calcitic internodes with a near-constant proportionality to dissolved (Ba)sw, indicating that (Ba/Ca)coral may be a useful tracer of refractory nutrient distributions in the past. However, some intermediate- and deep-sea bamboo corals exhibit highly variable Ba/Ca, which may result from incorporation of extraneous Ba-bearing phases into coral skeletons (e.g. barite, organic matter, lithogenic particles) rather than true changes in ambient (Ba)SW. To this end, we developed and applied a sequential cleaning experiment to identify the host phases of Ba in coral samples recovered from the North Pacific California Margin oxygen minimum zone (800-2000m). Milled coral samples were homogenized and subjected to multiple cleaning protocols to isolate and remove detrital/fine grain particles (with H2O and HNO3), organic matter (with H2O2), and barite (with an alkaline DTPA solution), before Ba/Ca analysis via ICP-MS. We found that the cleaning process did not systematically alter the Ba/Ca of the samples, and analysis of powders via SEM BSE-EDS revealed no identifiable barite. Our preliminary results indicate that there is minimal incorporation of non-lattice bound barium phases by these corals, and further verifies the suggestion that the main driver of (Ba/Ca)coral is the incorporation of Ba2+ in proportion to (Ba)sw. The results of our study help to evaluate how the Ba/Ca proxy in deep-sea bamboo corals should be interpreted in

  11. Deep Seismic Reflection Profiles across the Karakoram Fault Limit the Role of Crustal Flow in the Western Himalaya

    NASA Astrophysics Data System (ADS)

    Klemperer, S. L.; Lu, Z.; Gao, R.; Wang, H.; Li, W.; Li, H.; Dong, S.

    2016-12-01

    The 1000-km-long strike-slip Karakoram Fault (KF) in western Tibet has been interpreted as a small-offset upper-crustal fault beneath which channel flow returns underthrust material southwards, or as a large-offset fault penetrating the entire lithosphere and forming a barrier to channel flow. Sinoprobe acquired two deep reflection profiles across the KF: HKT-A from the Zada Basin across the Ayi Shan and the KF to the Gangdese Shan; and HKT-B, 170 km to the SE near Mt. Kailas, past Gurla Mandhata, across the Yarlung Zangbo Suture (YZS) and into the Gangdese Shan. The KF is a well-defined lineament where crossed by HKT-A, but splits into multiple traces spanning at least 15 km at the surface where crossed by HKT-B at its eastern extremity. Each 100-km, 72-fold profile was recorded to 30 s TWT ( 100 km depth) using explosive sources of 50-1000 kg. Processing culminated in Kirchhoff pre-stack time migration. HKT-B shows the KF limited to the upper 20-km of the crust, soling into the South Tibet Detachment (Gao et al., Nature Geo., 2016). South-verging, north-dipping reflections likely representing thrust duplexes within the Greater Himalayan Crystallines are separated by the Main Himalayan Thrust (MHT) from a transparent underthrust Indian basement above a reflective Moho. The sharp MHT reflection seems inconsistent with crustal flow of Indian basement upwards across the MHT into the upper plate south of the YZS. Channel flow, if occurring at this longitude, must be north of the YZS. HKT-A shows mid-crustal north-dipping reflections (similar to those imaged on HKT-B above the MHT) beneath reflections with apparent dip 18°S (all south of the KF) and mid-crustal south-dipping reflectors beneath reflections dipping 12°N (all north of the KF). The distinctive mid-crustal reflections persist to at least 20 s TWT suggesting a minimum depth of penetration of the KF to c. 65km with a width of <25km at that depth. The Moho is bowed down along the entire profile, deepening by

  12. A parametric study of ultrasonic beam profiles for a linear phased array transducer.

    PubMed

    Lee, J H; Choi, S W

    2000-01-01

    A numerical simulation model is presented to investigate the influences of design parameters of linear phased array transducers on beam focusing and steering performance. The characteristic of ultrasonic beam profiles has been simulated on the basis of the Huygen's superposition principle. For the simulation, a linear phased array is considered as the composition of finite number of elements separated by equidistance. Individual elements are considered as two-dimensional point sources. The waves generated from piezoelectric elements are considered as simplified transient ultrasonic waves that are constructed with the cosine function enveloped with a Hanning window. The characteristic of ultrasonic wave propagation into a medium from the phased array transducer is described. The effects of the number, the interelement spacing, steering angle, the focal length, and frequency bandwidth of the piezoelectric elements on beam directivity and ultrasonic pressure field in a linear phased array transducer are systematically discussed.

  13. Cytokine Expression Profile of Dengue Patients at Different Phases of Illness

    PubMed Central

    Rathakrishnan, Anusyah; Wang, Seok Mui; Hu, Yongli; Khan, Asif M.; Ponnampalavanar, Sasheela; Lum, Lucy Chai See; Manikam, Rishya; Sekaran, Shamala Devi

    2012-01-01

    Background Dengue is an important medical problem, with symptoms ranging from mild dengue fever to severe forms of the disease, where vascular leakage leads to hypovolemic shock. Cytokines have been implicated to play a role in the progression of severe dengue disease; however, their profile in dengue patients and the synergy that leads to continued plasma leakage is not clearly understood. Herein, we investigated the cytokine kinetics and profiles of dengue patients at different phases of illness to further understand the role of cytokines in dengue disease. Methods and Findings Circulating levels of 29 different types of cytokines were assessed by bead-based ELISA method in dengue patients at the 3 different phases of illness. The association between significant changes in the levels of cytokines and clinical parameters were analyzed. At the febrile phase, IP-10 was significant in dengue patients with and without warning signs. However, MIP-1β was found to be significant in only patients with warning signs at this phase. IP-10 was also significant in both with and without warning signs patients during defervescence. At this phase, MIP-1β and G-CSF were significant in patients without warning signs, whereas MCP-1 was noted to be elevated significantly in patients with warning signs. Significant correlations between the levels of VEGF, RANTES, IL-7, IL-12, PDGF and IL-5 with platelets; VEGF with lymphocytes and neutrophils; G-CSF and IP-10 with atypical lymphocytes and various other cytokines with the liver enzymes were observed in this study. Conclusions The cytokine profile patterns discovered between the different phases of illness indicate an essential role in dengue pathogenesis and with further studies may serve as predictive markers for progression to dengue with warning signs. PMID:23284941

  14. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-01-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Phase II monitoring of auto-correlated linear profiles using linear mixed model

    NASA Astrophysics Data System (ADS)

    Narvand, A.; Soleimani, P.; Raissi, Sadigh

    2013-05-01

    In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocorrelation within observations which is gathered on phase II of the monitoring process. We undertake that the structure of correlated linear profiles simultaneously has both random and fixed effects. The work enhanced a Hotelling's T 2 statistic, a multivariate exponential weighted moving average (MEWMA), and a multivariate cumulative sum (MCUSUM) control charts to monitor process. We also compared their performances, in terms of average run length criterion, and designated that the proposed control charts schemes could effectively act in detecting shifts in process parameters. Finally, the results are applied on a real case study in an agricultural field.

  16. Characterization of hormonal profiles during the luteal phase in regularly menstruating women.

    PubMed

    Ecochard, Rene; Bouchard, Thomas; Leiva, Rene; Abdulla, Saman; Dupuis, Olivier; Duterque, Olivia; Garmier Billard, Marie; Boehringer, Hans; Genolini, Christophe

    2017-07-01

    To characterize the variability of hormonal profiles during the luteal phase in normal cycles. Observational study. Not applicable. Ninety-nine women contributing 266 menstrual cycles. The women collected first morning urine samples that were analyzed for estrone-3-glucuronide, pregnanediol-3-alpha-glucuronide (PDG), FSH, and LH. The women had serum P tests (twice per cycle) and underwent ultrasonography to identify the day of ovulation. The luteal phase was divided into three parts: the early luteal phase with increasing PDG (luteinization), the midluteal phase with PDG ≥10 μg/mg Cr (progestation), and the late luteal phase (luteolysis) when PDG fell below 10 μg/mg Cr. Long luteal phases begin with long luteinization processes. The early luteal phase is marked by low PDG and high LH levels. Long luteinization phases were correlated with low E1G and low PDG levels at day 3. The length of the early luteal phase is highly variable between cycles of the same woman. The duration and hormonal levels during the rest of the luteal phase were less correlated with other characteristics of the cycle. The study showed the presence of a prolonged pituitary activity during the luteinization process, which seems to be modulated by an interaction between P and LH. This supports a luteal phase model with three distinct processes: the first is a modulated luteinization process, whereas the second and the third are relatively less modulated processes of progestation and luteolysis. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are one of the functional non-coding small RNAs involved in the epigenetic control of the plant genome. Although plants contain both evolutionary conserved miRNAs and species-specific miRNAs within their genomes, computational methods often only identify evolutionary conserved miRNAs. The recent sequencing of the Brassica rapa genome enables us to identify miRNAs and their putative target genes. In this study, we sought to provide a more comprehensive prediction of B. rapa miRNAs based on high throughput small RNA deep sequencing. Results We sequenced small RNAs from five types of tissue: seedlings, roots, petioles, leaves, and flowers. By analyzing 2.75 million unique reads that mapped to the B. rapa genome, we identified 216 novel and 196 conserved miRNAs that were predicted to target approximately 20% of the genome’s protein coding genes. Quantitative analysis of miRNAs from the five types of tissue revealed that novel miRNAs were expressed in diverse tissues but their expression levels were lower than those of the conserved miRNAs. Comparative analysis of the miRNAs between the B. rapa and Arabidopsis thaliana genomes demonstrated that redundant copies of conserved miRNAs in the B. rapa genome may have been deleted after whole genome triplication. Novel miRNA members seemed to have spontaneously arisen from the B. rapa and A. thaliana genomes, suggesting the species-specific expansion of miRNAs. We have made this data publicly available in a miRNA database of B. rapa called BraMRs. The database allows the user to retrieve miRNA sequences, their expression profiles, and a description of their target genes from the five tissue types investigated here. Conclusions This is the first report to identify novel miRNAs from Brassica crops using genome-wide high throughput techniques. The combination of computational methods and small RNA deep sequencing provides robust predictions of miRNAs in the genome. The finding of numerous novel mi

  18. Seismic Reflection Image of Lithospheric Structure Beneath Shidara, Using Explosive Sources from the 2001 Deep Seismic Profiling in Central Japan

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ito, T.; Miller, K.; Iwasaki, T.; Hirata, N.; Ohishi, M.; Kaip, G.; Kato, N.; Kikuchi, S.; Kwiatkowski, A.; Kurashimo, E.; Kawamura, T.

    2001-12-01

    Central Honshu lies above an active subduction zone where the Philippine Sea plate is being subducted beneath the Eurasian plate. A better understanding of the lithospheric structure of this region is important for assessing the risk of large mega-thrust earthquakes and also for understanding processes of continental growth. In order to define the deep geometry of major structures within the crust as well as the down-going slab, a deep seismic reflection profile was collected in the central part of Honshu, Japan. This experiment was performed as a piggy-back on a larger scale seismic experiment conducted by the Japan Marine Science and Technology Center and Joint Japanese University teams in late August, 2001. In the Shidara area, a 27-km seismic line was deployed perpendicular to the trench axis and major geologic boundaries. In the central part of the seismic line, 10-Hz vertical geophones, connected by a digital telemetry cables, were deployed over 15 km at a 50 m spacing. In addition, 100 TEXAN (Reftek 125) recorders with 4.5 Hz geophones were deployed at ca. 120 m-intervals for 12 km. A total of six shots with a maximum offset of 210 km, were clearly recorded by this dense receiver array. Near-vertical incidence data were obtained with recordings of a 500 kg shot at the northern end of this receiver array and a 100 kg shot at the southern end. The shots were recorded for 60 to 64 s at a 4 ms sampling rate. Records from these shots exhibit strong, layered reflections from 6 to 9.5 s, which we interpret as being derived from the lower crust. North-dipping reflections at 10.5 to 11.5 s can be interpreted as reflections from the down-going slab. Some north-dipping events from the middle and upper crust probably correspond to the deeper extension of the Median Tectonic Line and Butsuzo Tectonic Line, both of which extend for more than 1000 km along western Honshu and Kyushu Islands.

  19. Typical teleoperator time delay profiles, phase 2. [remotely controlled manipulator arms

    NASA Technical Reports Server (NTRS)

    Wetherington, R. D.; Walsh, J. R.

    1974-01-01

    The results of the second phase of a study on time delays in communications systems applicable to the teleoperator program are presented. Estimates of the maximum time delays that will be encountered and presents time delay profiles are given for (1) ground control to teleoperator in low earth orbit, (2) ground control to teleoperator in geosynchronous orbit, and (3) low earth orbit control to teleoperator in low earth orbit.

  20. Origin and annealing of deep-level defects in GaNAs grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Gelczuk, Ł. E-mail: robert.kudrawiec@pwr.edu.pl; Dąbrowska-Szata, M.

    2016-05-14

    Deep-level defects were investigated by deep level transient spectroscopy on the as-grown and annealed GaNAs layers of various nitrogen (N) contents. The unintentionally doped (uid) GaNAs layers were grown by metalorganic vapor phase epitaxy with N = 1.4%, 2.0%, 2.2%, and 2.4% on GaAs substrate. The possible origin and evolution of the deep-level defects upon annealing were analyzed with the use of the GaNAs band gap diagram concept [Kudrawiec et al., Appl. Phys. Lett. 101, 082109 (2012)], which assumes that the activation energy of donor traps decreases with N-related downward shift of the conduction band. On the basis of this diagram and in comparison with previous results, the N-related traps were associated with (N−As){sub As} or (N−N){sub As} split interstitials. It was also proposed that one of the electron traps and the hole trap, lying at the same level position in the bandgap of the annealed uid-GaNAs layers, can both act as one generation-recombination center partially responsible for poor optical properties of this alloy.

  1. Phase-I monitoring of standard deviations in multistage linear profiles

    NASA Astrophysics Data System (ADS)

    Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim

    2017-06-01

    In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.

  2. Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography.

    PubMed

    Callahan, Damien L; De Souza, David; Bacic, Antony; Roessner, Ute

    2009-07-01

    Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis.

  3. Advances in Scanning Reflectarray Antennas Based on Ferroelectric Thin Film Phase Shifters for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    Though there are a few examples of scanning phased array antennas that have flown successfully in space, the quest for low-cost, high-efficiency, large aperture microwave phased arrays continues. Fixed and mobile applications that may be part of a heterogeneous exploration communication architecture will benefit from the agile (rapid) beam steering and graceful degradation afforded by phased array antennas. The reflectarray promises greater efficiency and economy compared to directly-radiating varieties. Implementing a practical scanning version has proven elusive. The ferroelectric reflectarray, under development and described herein, involves phase shifters based on coupled microstrip patterned on Ba(x)Sr(1-x)TiO3 films, that were laser ablated onto LaAlO3 substrates. These devices outperform their semiconductor counterparts from X- through and K-band frequencies. There are special issues associated with the implementation of a scanning reflectarray antenna, especially one realized with thin film ferroelectric phase shifters. This paper will discuss these issues which include: relevance of phase shifter loss; modulo 2(pi) effects and phase shifter transient effects on bit error rate; scattering from the ground plane; presentation of a novel hybrid ferroelectric-semiconductor phase shifter; and the effect of mild radiation exposure on phase shifter performance.

  4. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    NASA Astrophysics Data System (ADS)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  5. Method development for impurity profiling in SFC: The selection of a dissimilar set of stationary phases.

    PubMed

    Galea, Charlene; Mangelings, Debby; Heyden, Yvan Vander

    2015-01-01

    Supercritical fluid chromatography (SFC) is drawing considerable interest as separation technique in the pharmaceutical industry. The technique is already well established in chiral separations both analytically and on a preparative scale. The use of SFC as a technique for drug impurity profiling is examined here. To define starting conditions in method development for drug impurity profiling, a set of dissimilar stationary phases is screened in parallel. The possibility to select a set of dissimilar columns using the retention factors (k-values) for a set of 64 drugs measured on 27 columns in SFC was examined. Experiments were carried out at a back-pressure of 150 bar and 25 °C with a mobile phase consisting of CO2 and methanol with 0.1% isopropylamine (5-40% over 10 min) at a flow rate of 3 mL/min. These k-values were then used to calculate correlation coefficients on the one hand and to perform a principal component analysis on the other. The Kennard and Stone algorithm, besides dendrograms and correlation-coefficient colour maps were used to select a set of 6 dissimilar stationary phases. The stationary phase characterization results from this study were compared to those from previous studies found in the literature. Retention mechanisms for compounds possessing different properties were also evaluated. The dissimilarity of the selected subset of 6 stationary phases was validated using mixtures of compounds with similar properties and structures, as one can expect in a drug impurity profile. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Phase Synchronization of Hemodynamic Variables at Rest and after Deep Breathing Measured during the Course of Pregnancy

    PubMed Central

    Papousek, Ilona; Roessler, Andreas; Hinghofer-Szalkay, Helmut; Lang, Uwe; Kolovetsiou-Kreiner, Vassiliki

    2013-01-01

    Background The autonomic nervous system plays a central role in the functioning of systems critical for the homeostasis maintenance. However, its role in the cardiovascular adaptation to pregnancy-related demands is poorly understood. We explored the maternal cardiovascular systems throughout pregnancy to quantify pregnancy-related autonomic nervous system adaptations. Methodology Continuous monitoring of heart rate (R-R interval; derived from the 3-lead electrocardiography), blood pressure, and thoracic impedance was carried out in thirty-six women at six time-points throughout pregnancy. In order to quantify in addition to the longitudinal effects on baseline levels throughout gestation the immediate adaptive heart rate and blood pressure changes at each time point, a simple reflex test, deep breathing, was applied. Consequently, heart rate variability and blood pressure variability in the low (LF) and high (HF) frequency range, respiration and baroreceptor sensitivity were analyzed in resting conditions and after deep breathing. The adjustment of the rhythms of the R-R interval, blood pressure and respiration partitioned for the sympathetic and the parasympathetic branch of the autonomic nervous system were quantified by the phase synchronization index γ, which has been adopted from the analysis of weakly coupled chaotic oscillators. Results Heart rate and LF/HF ratio increased throughout pregnancy and these effects were accompanied by a continuous loss of baroreceptor sensitivity. The increases in heart rate and LF/HF ratio levels were associated with an increasing decline in the ability to flexibly respond to additional demands (i.e., diminished adaptive responses to deep breathing). The phase synchronization index γ showed that the observed effects could be explained by a decreased coupling of respiration and the cardiovascular system (HF components of heart rate and blood pressure). Conclusions/Significance The findings suggest that during the course of

  7. Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Tomi; Ohtsuki, Tomoki

    2017-04-01

    Three-dimensional random electron systems undergo quantum phase transitions and show rich phase diagrams. Examples of the phases are the band gap insulator, Anderson insulator, strong and weak topological insulators, Weyl semimetal, and diffusive metal. As in the previous paper on two-dimensional quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016)], we use an image recognition algorithm based on a multilayered convolutional neural network to identify which phase the eigenfunction belongs to. The Anderson model for localization-delocalization transition, the Wilson-Dirac model for topological insulators, and the layered Chern insulator model for Weyl semimetal are studied. The situation where the standard transfer matrix approach is not applicable is also treated by this method.

  8. Development of a High Performance, Low Profile Translation Table with Wire Feedthrough for a Deep Space CubeSat

    NASA Technical Reports Server (NTRS)

    Few, Alex

    2016-01-01

    NEAScout, a 6U cubesat and secondary payload on NASA's EM-1, will use an 85 sq m solar sail to travel to a near-earth asteroid at about 1 Astronomical Unit (about 1.5 x 10(exp 8) km) for observation and reconnaissance1. A combination of reaction wheels, reaction control system, and a slow rotisserie roll about the solar sail's normal axis were expected to handle attitude control and adjust for imperfections in the deployed sail during the 2.5-year mission. As the design for NEAScout matured, one of the critical design parameters, the offset in the center of mass and center of pressure (CP/CM offset), proved to be sub-optimal. After significant mission and control analysis, the CP/CM offset was accommodated by the addition of a new subsystem to NEAScout. This system, called the Active Mass Translator (AMT), would reside near the geometric center of NEAScout and adjust the CM by moving one portion of the flight system relative to the other. The AMT was given limited design space - 17 mm of the vehicle's assembly height-and was required to generate +/-8 cm by +/-2 cm translation to sub-millimeter accuracy. Furthermore, the design must accommodate a large wire bundle of small gage, single strand wire and coax cables fed through the center of the mechanism. The bend radius, bend resistance, and the exposure to deep space environment complicates the AMT design and operation and necessitated a unique design to mitigate risks of wire bundle damage, binding, and cold-welding during operation. This paper will outline the design constraints for the AMT, discuss the methods and reasoning for design, and identify the lessons learned through the designing, breadboarding and testing for the low-profile translation stages with wire feedthrough capability.

  9. Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions.

    PubMed

    Yang, Chin-Rang; Tongyoo, Pumipat; Emamian, Milad; Sandoval, Pablo C; Raghuram, Viswanathan; Knepper, Mark A

    2015-12-15

    The mouse mpkCCD cell line is a continuous cultured epithelial cell line with characteristics of renal collecting duct principal cells. This line is widely used to study epithelial transport and its regulation. To provide a data resource useful for experimental design and interpretation in studies using mpkCCD cells, we have carried out "deep" proteomic profiling of these cells using three levels of fractionation (differential centrifugation, SDS-PAGE, and HPLC) followed by tandem mass spectrometry to identify and quantify proteins. The analysis of all resulting samples generated 34.6 gigabytes of spectral data. As a result, we identified 6,766 proteins in mpkCCD cells at a high level of stringency. These proteins are expressed over eight orders of magnitude of protein abundance. The data are provided to users as a public data base (https://helixweb.nih.gov/ESBL/Database/mpkFractions/). The mass spectrometry data were mapped back to their gel slices to generate "virtual Western blots" for each protein. For most of the 6,766 proteins, the apparent molecular weight from SDS-PAGE agreed closely with the calculated molecular weight. However, a substantial fraction (>15%) of proteins was found to run aberrantly, with much higher or much lower mobilities than predicted. These proteins were analyzed to identify mechanisms responsible for altered mobility on SDS-PAGE, including high or low isoelectric point, high or low hydrophobicity, physiological cleavage, residence in the lysosome, posttranslational modifications, and expression of alternative isoforms due to alternative exon usage. Additionally, this analysis identified a previously unrecognized isoform of aquaporin-2 with apparent molecular mass <20 kDa.

  10. Sensory, psychological, and metabolic dysfunction in HIV-associated peripheral neuropathy: A cross-sectional deep profiling study.

    PubMed

    Phillips, Tudor J C; Brown, Matthew; Ramirez, Juan D; Perkins, James; Woldeamanuel, Yohannes W; Williams, Amanda C de C; Orengo, Christine; Bennett, David L H; Bodi, Istvan; Cox, Sarah; Maier, Christoph; Krumova, Elena K; Rice, Andrew S C

    2014-09-01

    HIV-associated sensory neuropathy (HIV-SN) is a frequent complication of HIV infection and a major source of morbidity. A cross-sectional deep profiling study examining HIV-SN was conducted in people living with HIV in a high resource setting using a battery of measures which included the following: parameters of pain and sensory symptoms (7day pain diary, Neuropathic Pain Symptom Inventory [NPSI] and Brief Pain Inventory [BPI]), sensory innervation (structured neurological examination, quantitative sensory testing [QST] and intraepidermal nerve fibre density [IENFD]), psychological state (Pain Anxiety Symptoms Scale-20 [PASS-20], Depression Anxiety and Positive Outlook Scale [DAPOS], and Pain Catastrophizing Scale [PCS], insomnia (Insomnia Severity Index [ISI]), and quality of life (Short Form (36) Health Survey [SF-36]). The diagnostic utility of the Brief Peripheral Neuropathy Screen (BPNS), Utah Early Neuropathy Scale (UENS), and Toronto Clinical Scoring System (TCSS) were evaluated. Thirty-six healthy volunteers and 66 HIV infected participants were recruited. A novel triumvirate case definition for HIV-SN was used that required 2 out of 3 of the following: 2 or more abnormal QST findings, reduced IENFD, and signs of a peripheral neuropathy on a structured neurological examination. Of those with HIV, 42% fulfilled the case definition for HIV-SN (n=28), of whom 75% (n=21) reported pain. The most frequent QST abnormalities in HIV-SN were loss of function in mechanical and vibration detection. Structured clinical examination was superior to QST or IENFD in HIV-SN diagnosis. HIV-SN participants had higher plasma triglyceride, concentrations depression, anxiety and catastrophizing scores, and prevalence of insomnia than HIV participants without HIV-SN.

  11. Sensory, psychological, and metabolic dysfunction in HIV-associated peripheral neuropathy: A cross-sectional deep profiling study

    PubMed Central

    Phillips, Tudor J.C.; Brown, Matthew; Ramirez, Juan D.; Perkins, James; Woldeamanuel, Yohannes W.; Williams, Amanda C. de C.; Orengo, Christine; Bennett, David L.H.; Bodi, Istvan; Cox, Sarah; Maier, Christoph; Krumova, Elena K.; Rice, Andrew S.C.

    2014-01-01

    HIV-associated sensory neuropathy (HIV-SN) is a frequent complication of HIV infection and a major source of morbidity. A cross-sectional deep profiling study examining HIV-SN was conducted in people living with HIV in a high resource setting using a battery of measures which included the following: parameters of pain and sensory symptoms (7 day pain diary, Neuropathic Pain Symptom Inventory [NPSI] and Brief Pain Inventory [BPI]), sensory innervation (structured neurological examination, quantitative sensory testing [QST] and intraepidermal nerve fibre density [IENFD]), psychological state (Pain Anxiety Symptoms Scale-20 [PASS-20], Depression Anxiety and Positive Outlook Scale [DAPOS], and Pain Catastrophizing Scale [PCS], insomnia (Insomnia Severity Index [ISI]), and quality of life (Short Form (36) Health Survey [SF-36]). The diagnostic utility of the Brief Peripheral Neuropathy Screen (BPNS), Utah Early Neuropathy Scale (UENS), and Toronto Clinical Scoring System (TCSS) were evaluated. Thirty-six healthy volunteers and 66 HIV infected participants were recruited. A novel triumvirate case definition for HIV-SN was used that required 2 out of 3 of the following: 2 or more abnormal QST findings, reduced IENFD, and signs of a peripheral neuropathy on a structured neurological examination. Of those with HIV, 42% fulfilled the case definition for HIV-SN (n = 28), of whom 75% (n = 21) reported pain. The most frequent QST abnormalities in HIV-SN were loss of function in mechanical and vibration detection. Structured clinical examination was superior to QST or IENFD in HIV-SN diagnosis. HIV-SN participants had higher plasma triglyceride, concentrations depression, anxiety and catastrophizing scores, and prevalence of insomnia than HIV participants without HIV-SN. PMID:24973717

  12. Altered Circadian Rhythm and Metabolic Gene Profile in Rats Subjected to Advanced Light Phase Shifts

    PubMed Central

    Herrero, Laura; Valcarcel, Lorea; da Silva, Crhistiane Andressa; Albert, Nerea; Diez-Noguera, Antoni; Cambras, Trinitat; Serra, Dolors

    2015-01-01

    The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT), brown adipose tissue (BAT) and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level. PMID:25837425

  13. A surface profile reconstruction system using sinusoidal phase-modulating interferometry and fiber-optic fringe projection

    NASA Astrophysics Data System (ADS)

    En, Bo; Fa-jie, Duan; Chang-rong, Lv; Fan, Feng; Xiao, Fu

    2014-06-01

    A fiber-optic sinusoidal phase modulating (SPM) interferometer for surface profile reconstruction is presented. Sinusoidal phase modulation is created by modulating the drive voltage of the piezoelectric transducer. The surface profile is constructed basing on fringe projection. Fringe patterns are vulnerable to external disturbances such as temperature fluctuation and mechanical vibration, which cause phase drift and decrease measuring accuracy. We build a closed-loop feedback phase compensation system, the bias value of external disturbances superimposed on fringe patterns can be reduced to about 50 mrad, and the phase stability for interference fringes is less than 5.76 mrad. By measuring the surface profile of a paper plate for two times, the repeatability is estimated to be about 11 nm, and is equivalent to be about λ/69. For a plane with 100 × 100 points, a single measurement takes less than 140 ms, and the feasibility for real-time profile measurement with high accuracy has been verified.

  14. Online, efficient and precision laser profiling of bronze-bonded diamond grinding wheels based on a single-layer deep-cutting intermittent feeding method

    NASA Astrophysics Data System (ADS)

    Deng, Hui; Chen, Genyu; He, Jie; Zhou, Cong; Du, Han; Wang, Yanyi

    2016-06-01

    In this study, an online, efficient and precision laser profiling approach that is based on a single-layer deep-cutting intermittent feeding method is described. The effects of the laser cutting depth and the track-overlap ratio of the laser cutting on the efficiency, precision and quality of laser profiling were investigated. Experiments on the online profiling of bronze-bonded diamond grinding wheels were performed using a pulsed fiber laser. The results demonstrate that an increase in the laser cutting depth caused an increase in the material removal efficiency during the laser profiling process. However, the maximum laser profiling efficiency was only achieved when the laser cutting depth was equivalent to the initial surface contour error of the grinding wheel. In addition, the selection of relatively high track-overlap ratios of laser cutting for the profiling of grinding wheels was beneficial with respect to the increase in the precision of laser profiling, whereas the efficiency and quality of the laser profiling were not affected by the change in the track-overlap ratio. After optimized process parameters were employed for online laser profiling, the circular run-out error and the parallelism error of the grinding wheel surface decreased from 83.1 μm and 324.6 μm to 11.3 μm and 3.5 μm, respectively. The surface contour precision of the grinding wheel significantly improved. The highest surface contour precision for grinding wheels of the same type that can be theoretically achieved after laser profiling is completely dependent on the peak power density of the laser. The higher the laser peak power density is, the higher the surface contour precision of the grinding wheel after profiling.

  15. Profiling of Burkholderia cepacia Secretome at Mid-Logarithmic and Early-Stationary Phases of Growth

    PubMed Central

    Mariappan, Vanitha; Vellasamy, Kumutha Malar; Hashim, Onn Haji; Vadivelu, Jamuna

    2011-01-01

    Background Burkholderia cepacia is a Gram-negative pathogen that causes serious respiratory infections in immunocompromised patients and individuals with cystic fibrosis. This bacterium is known to release extracellular proteins that may be involved in virulence. Methodology/Principal Findings In the present study, B. cepacia grown to mid-logarithmic and early-stationary phases were investigated on their ability to invade and survive intracellularly in A549 lung epithelial cells in order to discern the fate of these bacteria in the pathogenesis of B. cepacia lung infections in in vitro condition. The early-stationary phase B. cepacia was demonstrated to be more invasive than mid-logarithmic phase. In addition, culture supernatants of B. cepacia obtained from these phases of growth were also demonstrated to cause different cytotoxic potency on the A549 human lung epithelial cells. Profiling of the supernatants using the gel-based proteomics approach identified 43 proteins that were commonly released in both the growth phases and 40 proteins newly-released at the early-stationary phase. The latter proteins may account for the higher cytotoxic activity of the early-stationary culture supernatant compared to that obtained at the mid-logarithmic phase. Among the newly-released proteins in the early-stationary phase supernatant were flagellar hook-associated domain protein (FliD), flagellar hook-associated protein (FlgK), TonB-dependent siderophore (Fiu), Elongation factor G (FusA), phosphoglycerate kinase (Pgk) and sulfatase (AslA) which are known for their virulence. Conclusion/Significance Differences in the ability of B. cepacia to invade and survive intracellularly inside the epithelial cells at different phases of growth may improve our understanding of the varied disease progressions associated with B. cepacia infections. In addition, the identified culture supernatant proteins may be used as targets for the development of new strategies to control B. cepacia

  16. Thermodynamic phase profiles of optically thin midlatitude cloud and their relation to temperature

    SciTech Connect

    Naud, C. M.; Del Genio, Anthony D.; Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, Jean-Charles; Turner, David D.; Lo, Chaomei; Comstock, Jennifer M.

    2010-06-03

    Winter cloud phase and temperature profiles derived from ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the United States Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site and the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) in France. Because lidars are attenuated in optically thick clouds, the dataset only includes optically thin clouds (optical thickness < 3). At SGP, 57% of the clouds observed with the lidar in the temperature range 233-273 K are either completely liquid or completely glaciated, while at SIRTA only 42% of the observed clouds are single phase, based on a depolarization ratio threshold of 11% for differentiating liquid from ice. Most optically thin mixed phase clouds show an ice layer at cloud top, and clouds with liquid at cloud top are less frequent. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites liquid is more prevalent at colder temperatures than has been found previously in aircraft flights through frontal clouds of greater optical thicknesses. Liquid in clouds persists to colder temperatures at SGP than SIRTA. This information on the average temperatures of mixed phase clouds at both locations complements earlier passive satellite remote sensing measurements that sample cloud phase near cloud top and for a wider range of cloud optical thicknesses.

  17. [Global expression profiling of Saccharomyces cerevisiae: metabolic remodeling in post-log phase].

    PubMed

    Ye, Yanrui; Tang, Yuqian; Chen, Hongyun; Zheng, Suiping; Pan, Li; Lin, Ying

    2008-06-01

    For the purpose of revealing the mechanism of the reduction of yeasts ethanol production rate after entrance of post-log phase, we used microarray to study expression profiles of the yeast Saccharomyces cerevisiae during the transition from mid-log growth phase to post-log growth. The results demonstrate that the global pattern of gene expression is very stable during the mid-log phase. However, a dramatic metabolic remodeling was found when the yeast entries post-log phase, during which many of amino acid synthesis and metabolism related genes are up-regulated, moreover, ion transport, energy generation and storage related genes are also up regulated during this phase, while a large number of genes involved in transposition and DNA recombination are repressed. Central metabolic pathways also engage in metabolic remodeling, within which the genes involved in succinate and a-ketoglutarate synthesis pathways are up regulated, accordance with those of amino acid synthesis and metabolism. These results demonstrate that the increasing demand for amino acids in post-log phase lead to a metabolic transition into TCA cycle and glyoxylate cycle, which subsequently reduce the ethanol production rate. This suggests a global insight into the process of yeast ethanol fermentation.

  18. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.41 If I have a... later . . . Then your lease . . . (1) produced gas or oil from any deep well or ultra-deep well, Has a... section. (2) produced gas or oil from a well with a perforated interval whose top is 18,000 feet TVD SS...

  19. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.41 If I have a... later . . . Then your lease . . . (1) produced gas or oil from any deep well or ultra-deep well, Has a... section. (2) produced gas or oil from a well with a perforated interval whose top is 18,000 feet TVD SS...

  20. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.41 If I have a... later . . . Then your lease . . . (1) produced gas or oil from any deep well or ultra-deep well, Has a... section. (2) produced gas or oil from a well with a perforated interval whose top is 18,000 feet TVD SS...

  1. Profiles.

    ERIC Educational Resources Information Center

    Macintosh, Henry G.

    An introduction to profiles is presented with examples provided to permit an overall appraisal of the potential of profiles, of the principles upon which they might be based, and of the problems that will have to be overcome if their potential is to be realized in practice. The larger scale examples of profiles discussed are the Scottish Pupil…

  2. Differential-phase reflectometry for edge profile measurements on Tokamak fusion test reactor

    SciTech Connect

    Hanson, G.R.; Wilgen, J.B.; Bigelow, T.S.; Collazo, I.; England, A.C.; Murakami, M.; Rasmussen, D.A.; Wilson, J.R. )

    1995-01-01

    Edge electron density profile measurements, including the scrape-off layer, have been made during ion cyclotron range of frequency (ICRF) heating with the two-frequency differential-phase reflectometer installed on an ICRF antenna on the Tokamak fusion test reactor (TFTR). This system probes the plasma using the extraordinary mode with two signals swept from 90 to 118 GHz, while maintaining a fixed-difference frequency of 125 MHz. The extraordinary mode is used to obtain density profiles in the range of 1[times]10[sup 11]--3[times]10[sup 13] cm[sup [minus]3] in high-field (4.5--4.9 T) full-size ([ital R][sub 0]=2.62 m, [ital a]=0.96 m) TFTR plasmas. The reflectometer launcher is located in an ICRF antenna and views the plasma through a small penetration in the center of the Faraday shield. A 26-m-long overmoded waveguide run connects the launcher to the reflectometer microwave electronics. Profile measurements made with this reflectometer system will be presented along with a discussion of the characteristics of this differential phase reflectometer and data analysis.

  3. Estimating Tropical Aboveground Biomass from Fourier Transforms of Vegetation Profiles from TanDEM-X Phase Heights

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Goncalves, F. G.; Lei, Y.; Santos, J. R.; Keller, M. M.

    2016-12-01

    This paper explores the information content of few-look phases from TanDEM-X (X-band) for the vegetation profile and aboveground biomass (AGB) over 50 x 50 m stands in tropical moist forests in Brazil. The formalism for modeling the interferometric phase of interferometric SAR (InSAR) is examined before taking the look, or ensemble average. It is suggested that it is the look averaging that confines the Fourier profile information to one Fourier frequency per baseline. Before the look averaging, a histogram of InSAR phases seems related to the radar power profile, which, in turn, is related to the vegetation density profile. This is only true, however, if the the number of participating scatterers is very small. After a simulation of small-scatterer-number profiles from few-look phases, 2-look phase histograms are shown along with lidar waveform profiles and modeled field profiles. A regression of field biomass versus Fourier transforms of the look-height distribution shows about 15% improvement over using traditional single-baseline coherence and phase.

  4. Effects of menstrual cycle phase on metabolomic profiles in premenopausal women.

    PubMed

    Wallace, M; Hashim, Y Z H-Y; Wingfield, M; Culliton, M; McAuliffe, F; Gibney, M J; Brennan, L

    2010-04-01

    Characterization of the normal degree of physiological variation in the metabolomic profiles of healthy humans is a necessary step in the development of metabolomics as both a clinical research and diagnostic tool. This study investigated the effects of the menstrual cycle on (1)H nuclear magnetic resonance (NMR) derived metabolomic profiles of urine and plasma from healthy women. In this study, 34 healthy women were recruited and a first void urine and fasting blood sample were collected from each woman at four different time points during one menstrual cycle. Serum hormone levels were used in combination with the menstrual calendar to classify the urine and plasma samples into five different phases i.e. menstrual, follicular, periovulatory, luteal and premenstrual. The urine and plasma samples were analysed using (1)H NMR spectroscopy and subsequent data were analysed using principal component analysis (PCA) and partial least squares discriminant analysis. PCA of the urine spectra showed no separation of samples based on the phases of the menstrual cycle. Multivariate analysis of the plasma spectra showed a separation of the menstrual phase and the luteal phase samples (R(2) = 0.61, Q(2) = 0.41). Subsequent analysis revealed a significant decrease in levels of glutamine, glycine, alanine, lysine, serine and creatinine and a significant increase in levels of acetoacetate and very low density lipoprotein (VLDL CH(2)) during the luteal phase. These results establish a need to control for metabolic changes that occur in plasma due to the menstrual cycle in the design of future metabolomic studies involving premenopausal women.

  5. Thermally induced phase changes, lateral heterogeneity of the mantle, continental roots, and deep slab anomalies

    NASA Technical Reports Server (NTRS)

    Anderson, Don L.

    1987-01-01

    Factors which influence the lateral heterogeneity in density and seismic velocity with depth in the upper earth mantle are discussed. It is emphasized that most of the increases in density and seismic velocity with depth are caused by pressure-induced solid-solid phase changes in the high-density high-velocity phases of mineral assemblage, due to variations in temperature. In particular, the ilmenite form of MgSiO3 and the gamma-spinel form of Mg2SiO4 have broad stability fields in cold mantle and are not stable in hotter mantle. It is emphasized that the density and velocity anomalies associated with temperature-induced phase changes in mineral assemblage must be taken into account in the thermal models of the slabs; when these effects are accounted for, the geoid and seismic anomalies associated with subducted slabs are consistent with slab confinement to the upper mantle and with layered models of mantle convection.

  6. Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill.

    PubMed

    Kimes, Nikole E; Callaghan, Amy V; Aktas, Deniz F; Smith, Whitney L; Sunner, Jan; Golding, Bernardt; Drozdowska, Marta; Hazen, Terry C; Suflita, Joseph M; Morris, Pamela J

    2013-01-01

    Marine subsurface environments such as deep-sea sediments, house abundant and diverse microbial communities that are believed to influence large-scale geochemical processes. These processes include the biotransformation and mineralization of numerous petroleum constituents. Thus, microbial communities in the Gulf of Mexico are thought to be responsible for the intrinsic bioremediation of crude oil released by the Deepwater Horizon (DWH) oil spill. While hydrocarbon contamination is known to enrich for aerobic, oil-degrading bacteria in deep-seawater habitats, relatively little is known about the response of communities in deep-sea sediments, where low oxygen levels may hinder such a response. Here, we examined the hypothesis that increased hydrocarbon exposure results in an altered sediment microbial community structure that reflects the prospects for oil biodegradation under the prevailing conditions. We explore this hypothesis using metagenomic analysis and metabolite profiling of deep-sea sediment samples following the DWH oil spill. The presence of aerobic microbial communities and associated functional genes was consistent among all samples, whereas, a greater number of Deltaproteobacteria and anaerobic functional genes were found in sediments closest to the DWH blowout site. Metabolite profiling also revealed a greater number of putative metabolites in sediments surrounding the blowout zone relative to a background site located 127 km away. The mass spectral analysis of the putative metabolites revealed that alkylsuccinates remained below detection levels, but a homologous series of benzylsuccinates (with carbon chain lengths from 5 to 10) could be detected. Our findings suggest that increased exposure to hydrocarbons enriches for Deltaproteobacteria, which are known to be capable of anaerobic hydrocarbon metabolism. We also provide evidence for an active microbial community metabolizing aromatic hydrocarbons in deep-sea sediments of the Gulf of Mexico.

  7. Experimental confirmation of calculated phases and electron density profile for wet native collagen.

    PubMed Central

    Stinson, R H; Bartlett, M W; Kurg, T; Sweeny, P R; Hendricks, R W

    1979-01-01

    An experimental procedure is developed to phase the reflections obtained in x-ray diffraction investigations of collagen in native wet tendons. Phosphotungstic acid was used for isomorphous addition in phase determination and was located by electron microscopy. Structure factors (with phases) were obtained from the electron microscopy data for the heavy metal. Structure-factor magnitudes for collagen with and without the heavy metal were obtained from the x-ray diffraction data. The first 10 orders were investigated. Standard Argand diagrams provided two solutions for each of these, except the weak sixth order. In each case, one of the two possible solutions agrees well with the phases proposed on theoretical grounds by Hulmes et al. The present results suggest that their other proposed phases are probably correct. An electron density profile along the unit cell of the fibril is presented that shows a distinct step, as expected on the basis of the hole-overlap model. The overlap region is 48% of the length of the unit cell. Images FIGURE 2 PMID:262416

  8. Chiral invariant phase space event generator. Deep inelastic lepto-nucleon reactions

    NASA Astrophysics Data System (ADS)

    Kossov, M. V.

    2007-12-01

    The Geant4 quark level CHIPS (CHiral Invariant Phase Space) model simulates nuclear reactions assuming asymptotic freedom of massless quarks uniformly distributed over invariant phase space. Electro-nuclear reactions are simulated generating low-Q2 equivalent photons. In this paper generalisation of the model for high Q2 is made to describe neutrino-nuclear reactions, where the low-Q2 contribution is suppressed by the W -boson mass. The proposed non-perturbative approximation of structure functions fits high-energy lepto-nucleon reactions with high-Q2 and neutrino-nucleon reactions starting from the threshold.

  9. Shear wave anisotropy in textured phase D and constraints on deep water recycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Rosa, Angelika D.; Sanchez-Valle, Carmen; Nisr, Carole; Evans, Shaun R.; Debord, Regis; Merkel, Sébastien

    2013-09-01

    Regions of low seismic velocity and high shear anisotropies in cold subducted slabs have often been related to anisotropic fabrics in hydrous phases mainly induced by slab deformation. The interpretation of these seismic anomalies in terms of hydration thus relies on a better knowledge of the elasticity and plastic deformation mechanisms of candidate hydrous phases. Here we investigate the development of lattice preferred orientations (LPO) in phase D [MgSi2H2O6, 10-18 wt% H2O], the ultimate water carrier in hydrous subducted peridotite. The samples were deformed non-hydrostatically up to 48 GPa in a diamond anvil cell and the texture and strength were obtained from analysis of the X-ray diffraction patterns collected in radial diffraction geometry. We find that at low strains the layered structure of phase D displays strong 0001 texture, where the stacking fault axis (c-axis) preferentially align parallel to the compression axis. A subsidiary 101¯0 texture develops at higher strains. Plasticity simulations in polycrystalline aggregates using a viscoplastic self-consistent model suggest that these LPO patterns are consistent with shape preferred orientation mechanism during the first compaction steps and, with dominant easy glide on basal planes and harder first order pyramidal slip, respectively, upon further compression. We find that phase D displays the lowest strength and the highest anisotropy among phases in hydrous peridotite in the uppermost lower mantle and might thus control the shear wave anisotropy generated in subducted slabs below the transition zone. We further evaluate the effect of textured phase D on the seismic velocity structure and shear wave anisotropy of deformed hydrous peridotite and compare the results to seismic observations in Tonga subduction. We show that 16 vol% of phase D in hydrous subducted peridotite is required to explain the negative velocity anomalies of 3%, the extent of shear wave splitting (0.9±0.3%) and the shear wave ray

  10. Non-Invasive NIR Sensor for Quantification of Deep Tissue Oxygenation. Phase 1.

    DTIC Science & Technology

    1995-10-01

    be determined by differential absorption spectroscopy using two wavelengths, 0/oSat- ga(, l)/p[a(X2)I [ Hielscher , et al., 1993; Haida and Chance...Biol 345:829-35, 1994. Hielscher AH, Tittel FK, and Jacques SL: Non-invasive monitoring of blood oxygenation by phase resolved transmission spectroscopy

  11. Deep proteome profiling of circulating granulocytes reveals bactericidal/permeability-increasing protein as a biomarker for severe atherosclerotic coronary stenosis.

    PubMed

    Bleijerveld, Onno B; Wijten, Patrick; Cappadona, Salvatore; McClellan, Elizabeth A; Polat, Ayse N; Raijmakers, Reinout; Sels, Jan-Willem; Colle, Loes; Grasso, Simona; van den Toorn, Henk W; van Breukelen, Bas; Stubbs, Andrew; Pasterkamp, Gerard; Heck, Albert J R; Hoefer, Imo E; Scholten, Arjen

    2012-11-02

    Coronary atherosclerosis represents the major cause of death in Western societies. As atherosclerosis typically progresses over years without giving rise to clinical symptoms, biomarkers are urgently needed to identify patients at risk. Over the past decade, evidence has accumulated suggesting cross-talk between the diseased vasculature and cells of the innate immune system. We therefore employed proteomics to search for biomarkers associated with severe atherosclerotic coronary lumen stenosis in circulating leukocytes. In a two-phase approach, we first performed in-depth quantitative profiling of the granulocyte proteome on a small pooled cohort of patients suffering from chronic (sub)total coronary occlusion and matched control patients using stable isotope peptide labeling, two-dimensional LC-MS/MS and data-dependent decision tree fragmentation. Over 3000 proteins were quantified, among which 57 candidate biomarker proteins remained after stringent filtering. The most promising biomarker candidates were subsequently verified in the individual samples of the discovery cohort using label-free, single-run LC-MS/MS analysis, as well as in an independent verification cohort of 25 patients with total coronary occlusion (CTO) and 19 matched controls. Our data reveal bactericidal/permeability-increasing protein (BPI) as a promising biomarker for severe atherosclerotic coronary stenosis, being down-regulated in circulating granulocytes of CTO patients.

  12. Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography.

    PubMed

    Zhang, Haijuan; Qiao, Xin; Cai, Tianpei; Chen, Jia; Li, Zhan; Qiu, Hongdeng

    2017-03-01

    In this paper, N-doped carbon dots (NCDs) were successfully decorated on the spherical porous silica surface in deep eutectic solvents (DESs) as a novel class of green solvents. The appropriate density and hydrophility of DESs guaranteed the fine dispersibility of silica particles and NCDs, resulting in a homogeneous and thin layer of NCDs immobilization. As compared with traditional organic solvents (DMF and THF), higher surface coverage was obtained in the medium of DES, proving its feasibility as a new kind of alternative solvent for hydrophilic nanomaterial-based surface modification of silica spheres. The resulting NCDs-decorated silica particles (Sil-NCDs) were characterized in detail and packed into chromatographic columns to study their initial feasibility as adsorbent material for liquid chromatography. The resultant packing materials demonstrate a selective behavior for polar compounds in hydrophilic interaction liquid chromatography (HILIC) mode. This work gives a typical example of using carbon dots as stationary phase component, and such material is hopeful to be used in other research fields such as solid absorbents, recycling catalysts, and solid-state electrochemistry etc. Graphical Abstract N-doped carbon dots (NCDs) were successfully coupled on the surface of porous silica spheres in a green strategy using deep eutectic solvents (DES) as media for HILIC.

  13. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    PubMed

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins.

  14. GANSEKI: JAMSTEC Deep Seafloor Rock Sample Database Emerging to the New Phase

    NASA Astrophysics Data System (ADS)

    Tomiyama, T.; Ichiyama, Y.; Horikawa, H.; Sato, Y.; Soma, S.; Hanafusa, Y.

    2013-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) collects a lot of substantial samples as well as various geophysical data using its research vessels and submersibles. These samples and data, which are obtained by spending large amounts of human and physical resources, are precious wealth of the world scientific community. For the better use of these samples and data, it is important that they are utilized not only for initial purpose of each cruse but also for other general scientific and educational purposes of second-hand users. Based on the JAMSTEC data and sample handling policies [1], JAMSTEC has systematically stored samples and data obtained during research cruises, and provided them to domestic/foreign activities on research, education, and public relation. Being highly valued for second-hand usability, deep seafloor rock samples are one of the most important types of samples obtained by JAMSTEC, as oceanic biological samples and sediment core samples are. Rock samples can be utilized for natural history sciences and other various purposes; some of these purposes are connected to socially important issues such as earthquake mechanisms and mineral resource developments. Researchers and educators can access to JAMSTEC rock samples and associated data through 'GANSEKI [2]', the JAMSTEC Deep Seafloor Rock Sample Database. GANSEKI was established on the Internet in 2006 and its contents and functions have been continuously enriched and upgraded since then. GANSEKI currently provides 19 thousands of sample metadata, 9 thousands of collection inventory data and 18 thousands of geochemical data. Most of these samples are recovered from the North-western Pacific Ocean, although samples from other area are also included. The major update of GANSEKI held in May 2013 involved a replacement of database core system and a redesign of user interface. In the new GANSEKI, users can select samples easily and precisely using multi-index search, numerical

  15. [Combined cataract-glaucoma surgery with deep sclerectomy. An alternative to gonio-trephination in the intra- and early postoperative phases].

    PubMed

    Mohr, A; Rais, M; Eckardt, C

    2001-03-01

    We examined the value of deep sclerectomy combined with phacoemulsification as a surgical technique in the peri- and postoperative phases. Deep sclerectomy with phacoemulsification was carried out in 18 patients. Mean postoperative follow-up was 7.5 weeks. Deep sclerectomy was more difficult to perform than goniotrephination. We observed neither fibrin reaction nor hypotonic dysregulation (intraocular pressure, IOP, < 8 mmHg). Five patients required additional pressure-lowering drugs during postoperative IOP regulation. We consider the low inflammatory response in the early postoperative phase to outweigh the greater surgical difficulty and prolonged surgery time. Further studies must verify whether higher IOP during the early postoperative phase is sufficient for good long-term IOP regulation.

  16. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial.

    PubMed

    Zhu, R; Liu, X N; Hu, G K; Sun, C T; Huang, G L

    2014-11-24

    Negative refraction of elastic waves has been studied and experimentally demonstrated in three- and two-dimensional phononic crystals, but Bragg scattering is impractical for low-frequency wave control because of the need to scale the structures to manageable sizes. Here we present an elastic metamaterial with chiral microstructure made of a single-phase solid material that aims to achieve subwavelength negative refraction of elastic waves. Both negative effective mass density and modulus are observed owing to simultaneous translational and rotational resonances. We experimentally demonstrate negative refraction of the longitudinal elastic wave at the deep-subwavelength scale in the metamaterial fabricated in a stainless steel plate. The experimental measurements are in good agreement with numerical simulations. Moreover, wave mode conversion related with negative refraction is revealed and discussed. The proposed elastic metamaterial may thus be used as a flat lens for elastic wave focusing.

  17. Possible Effects of Collisional Breakup on Mixed-Phase Deep Convection Simulated by a Spectral (Bin) Cloud Model.

    NASA Astrophysics Data System (ADS)

    Seifert, Axel; Khain, Alexander; Blahak, Ulrich; Beheng, Klaus D.

    2005-06-01

    The effects of the collisional breakup of raindrops are investigated using the Hebrew University Cloud Model (HUCM). The parameterizations, which are combined in the new breakup scheme, are those of Low and List, Beard and Ochs, as well as Brown. A sensitivity study reveals strong effects of collisional breakup on the precipitation formation in mixed-phase deep convective clouds for strong as well as for weak precipitation events. Collisional breakup reduces the number of large raindrops, increases the number of small raindrops, and, as a consequence, decreases surface rain rates and considerably reduces the speed of rain formation. In addition, it was found that including breakup can lead to a more intense triggering of secondary convective cells. But a statistical comparison with observed raindrop size distributions shows that the parameterizations might systematically overestimate collisional breakup.

  18. Two-phase orthodontic treatment in a patient with turner syndrome: an unusual case of deep bite.

    PubMed

    Aristizábal, Juan Fernando; Smit, Rosana Martínez

    2015-05-01

    Turner syndrome is caused by complete or partial absence of one X chromosome. These patients usually have a delay in growth and altered body proportions, causing sexual infantilism, short stature, delayed bone maturation, and variations in craniofacial morphology, among other systemic complications. The skeletal features associated with this syndrome include maxillary growth reduction with midface hypoplasia; mandibular micrognathia; high, narrow palate; V-shaped maxillary arch; and open bite. This case report shows a two-phase orthodontic treatment in a patient with Turner syndrome with a Class II malocclusion and severe deep bite, which is an unusual feature in patients with this disease. A conventional orthodontic treatment was performed, and after 20 months in retention the patient remains stable.

  19. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    PubMed

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  20. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  1. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    PubMed Central

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  2. Flat-top temporal and spatial profiles femtosecond pulse beam generated by phase only modulating

    NASA Astrophysics Data System (ADS)

    Nie, Yong-ming; Liu, Jun-hui; Huang, Pu-hua; Tang, Ji-zhen; Yang, Xuehua; Ma, Hao-tong; Li, Xiu-jian

    2013-09-01

    The method for generating temporal flat-top waveform and spatial flat-top profile femtosecond pulse beam by phase and polarization controlling is proposed and demonstrated. Based on direct wave front phase modulating, flat-top spatial intensity distribution can be obtained. Combining a folded 4f zero-dispersion system with a polarization controlling setup, the temporal flat-top waveform is generated. Experimental results indicate that for the input both temporal and spatial Gaussian pulse beam with 363 fs temporal width and 1.5 mm beam waist, the temporal width of the output shaped pulse beam is 1.2 ps and 1.9mm beam waist, and the rms variation is about 9.2%, which prove that the temporal flat-top and spatial flat-top femtosecond pulse beam can be generated effectively.

  3. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    PubMed

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy.

  4. Persistent Paramagnons Deep in the Metallic Phase of Sr2 -xLaxIrO4

    NASA Astrophysics Data System (ADS)

    Gretarsson, H.; Sung, N. H.; Porras, J.; Bertinshaw, J.; Dietl, C.; Bruin, Jan A. N.; Bangura, A. F.; Kim, Y. K.; Dinnebier, R.; Kim, Jungho; Al-Zein, A.; Moretti Sala, M.; Krisch, M.; Le Tacon, M.; Keimer, B.; Kim, B. J.

    2016-09-01

    We have studied the magnetic excitations of electron-doped Sr2 -xLax IrO4 (0 ≤x ≤0.10 ) using resonant inelastic x-ray scattering at the Ir L3 edge. The long-range magnetic order is rapidly lost with increasing x , but two-dimensional short-range order (SRO) and dispersive magnon excitations with nearly undiminished spectral weight persist well into the metallic part of the phase diagram. The magnons in the SRO phase are heavily damped and exhibit anisotropic softening. Their dispersions are well described by a pseudospin-1 /2 Heisenberg model with exchange interactions whose spatial range increases with doping. We also find a doping-independent high-energy magnetic continuum, which is not described by this model. The spin-orbit excitons arising from the pseudospin-3 /2 manifold of the Ir ions broaden substantially in the SRO phase, but remain largely separated from the low-energy magnons. Pseudospin-1 /2 models are therefore a good starting point for the theoretical description of the low-energy magnetic dynamics of doped iridates.

  5. Altered protein profile in chronic myeloid leukemia chronic phase identified by a comparative proteomic study.

    PubMed

    Pizzatti, Luciana; Sá, Lílian Ayres; de Souza, Jamison Menezes; Bisch, Paulo Mascarello; Abdelhay, Eliana

    2006-05-01

    Chronic myeloid leukemia is a hematological disorder in which the Ph chromosome is a marker of the disease, detected virtually in all cases. The chimeric transcripts encode a 210-kDa chimeric protein with altered tyrosine kinase activity, responsible for the disease phenotype. In this work, we tried to identify which are the molecular changes common to chronic phase patients, those that represent the chronic phase molecular phenotype. To address this problem we analyzed through a comparative proteomic approach, several CML bone marrow cells protein profile from patients in chronic phase and healthy bone marrow donors. From these results, we identified 31 differentially expressed proteins. Among these proteins, we pointed out c-Myc binding protein 1, 53BP1, Mdm4, OSBP-related protein 3 and Mortalin as putative candidates to BCR-ABL targets in chronic phase. Moreover, we describe for the first time the cytoplasmic protein map from bone marrow cells that helped in the elucidation of the changes we were looking for.

  6. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust

    PubMed Central

    Wei, Yuanyuan; Chen, Shuang; Yang, Pengcheng; Ma, Zongyuan; Kang, Le

    2009-01-01

    Background All the reports on insect small RNAs come from holometabolous insects whose genome sequence data are available. Therefore, study of hemimetabolous insect small RNAs could provide more insights into evolution and function of small RNAs in insects. The locust is an important, economically harmful hemimetabolous insect. Its phase changes, as a phenotypic plasticity, result from differential gene expression potentially regulated at both the post-transcriptional level, mediated by small RNAs, and the transcriptional level. Results Here, using high-throughput sequencing, we characterize the small RNA transcriptome in the locust. We identified 50 conserved microRNA families by similarity searching against miRBase, and a maximum of 185 potential locust-specific microRNA family candidates were identified using our newly developed method independent of locust genome sequence. We also demonstrate conservation of microRNA*, and evolutionary analysis of locust microRNAs indicates that the generation of miRNAs in locusts is concentrated along three phylogenetic tree branches: bilaterians, coelomates, and insects. Our study identified thousands of endogenous small interfering RNAs, some of which were of transposon origin, and also detected many Piwi-interacting RNA-like small RNAs. Comparison of small RNA expression patterns of the two phases showed that longer small RNAs were expressed more abundantly in the solitary phase and that each category of small RNAs exhibited different expression profiles between the two phases. Conclusions The abundance of small RNAs in the locust might indicate a long evolutionary history of post-transcriptional gene expression regulation, and differential expression of small RNAs between the two phases might further disclose the molecular mechanism of phase changes. PMID:19146710

  7. A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease

    PubMed Central

    Lozano, Andres M.; Fosdick, Lisa; Chakravarty, M. Mallar; Leoutsakos, Jeannie-Marie; Munro, Cynthia; Oh, Esther; Drake, Kristen E.; Lyman, Christopher H.; Rosenberg, Paul B.; Anderson, William S.; Tang-Wai, David F.; Pendergrass, Jo Cara; Salloway, Stephen; Asaad, Wael F.; Ponce, Francisco A.; Burke, Anna; Sabbagh, Marwan; Wolk, David A.; Baltuch, Gordon; Okun, Michael S.; Foote, Kelly D.; McAndrews, Mary Pat; Giacobbe, Peter; Targum, Steven D.; Lyketsos, Constantine G.; Smith, Gwenn S.

    2016-01-01

    Background: Deep brain stimulation (DBS) is used to modulate the activity of dysfunctional brain circuits. The safety and efficacy of DBS in dementia is unknown. Objective: To assess DBS of memory circuits as a treatment for patients with mild Alzheimer’s disease (AD). Methods: We evaluated active “on” versus sham “off” bilateral DBS directed at the fornix-a major fiber bundle in the brain’s memory circuit-in a randomized, double-blind trial (ClinicalTrials.gov NCT01608061) in 42 patients with mild AD. We measured cognitive function and cerebral glucose metabolism up to 12 months post-implantation. Results: Surgery and electrical stimulation were safe and well tolerated. There were no significant differences in the primary cognitive outcomes (ADAS-Cog 13, CDR-SB) in the “on” versus “off” stimulation group at 12 months for the whole cohort. Patients receiving stimulation showed increased metabolism at 6 months but this was not significant at 12 months. On post-hoc analysis, there was a significant interaction between age and treatment outcome: in contrast to patients <65 years old (n = 12) whose results trended toward being worse with DBS ON versus OFF, in patients≥65 (n = 30) DBS-f ON treatment was associated with a trend toward both benefit on clinical outcomes and a greater increase in cerebral glucose metabolism. Conclusion: DBS for AD was safe and associated with increased cerebral glucose metabolism. There were no differences in cognitive outcomes for participants as a whole, but participants aged≥65 years may have derived benefit while there was possible worsening in patients below age 65 years with stimulation. PMID:27567810

  8. A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer's Disease.

    PubMed

    Lozano, Andres M; Fosdick, Lisa; Chakravarty, M Mallar; Leoutsakos, Jeannie-Marie; Munro, Cynthia; Oh, Esther; Drake, Kristen E; Lyman, Christopher H; Rosenberg, Paul B; Anderson, William S; Tang-Wai, David F; Pendergrass, Jo Cara; Salloway, Stephen; Asaad, Wael F; Ponce, Francisco A; Burke, Anna; Sabbagh, Marwan; Wolk, David A; Baltuch, Gordon; Okun, Michael S; Foote, Kelly D; McAndrews, Mary Pat; Giacobbe, Peter; Targum, Steven D; Lyketsos, Constantine G; Smith, Gwenn S

    2016-09-06

    Deep brain stimulation (DBS) is used to modulate the activity of dysfunctional brain circuits. The safety and efficacy of DBS in dementia is unknown. To assess DBS of memory circuits as a treatment for patients with mild Alzheimer's disease (AD). We evaluated active "on" versus sham "off" bilateral DBS directed at the fornix-a major fiber bundle in the brain's memory circuit-in a randomized, double-blind trial (ClinicalTrials.gov NCT01608061) in 42 patients with mild AD. We measured cognitive function and cerebral glucose metabolism up to 12 months post-implantation. Surgery and electrical stimulation were safe and well tolerated. There were no significant differences in the primary cognitive outcomes (ADAS-Cog 13, CDR-SB) in the "on" versus "off" stimulation group at 12 months for the whole cohort. Patients receiving stimulation showed increased metabolism at 6 months but this was not significant at 12 months. On post-hoc analysis, there was a significant interaction between age and treatment outcome: in contrast to patients <65 years old (n = 12) whose results trended toward being worse with DBS ON versus OFF, in patients≥65 (n = 30) DBS-f ON treatment was associated with a trend toward both benefit on clinical outcomes and a greater increase in cerebral glucose metabolism. DBS for AD was safe and associated with increased cerebral glucose metabolism. There were no differences in cognitive outcomes for participants as a whole, but participants aged≥65 years may have derived benefit while there was possible worsening in patients below age 65 years with stimulation.

  9. Accurate Ultrasonic Measurement of Surface Profile Using Phase Shift of Echo and Inverse Filtering

    NASA Astrophysics Data System (ADS)

    Arihara, Chihiro; Hasegawa, Hideyuki; Kanai, Hiroshi

    2006-05-01

    Atherosclerosis is the main cause of circulatory diseases such as myocardial infarction and cerebral infarction, and it is very important to diagnose atherosclerosis in its early stage. In the early stage of atherosclerosis, the luminal surface of an arterial wall becomes rough because of the injury of the endothelium [R. Ross: New Engl. J. Med. 340 (2004) 115]. Conventional ultrasonic diagnostic equipments cannot detect such roughness on the order of micrometer because of their low resolution of approximately 0.1 mm. In this study, for the accurate detection of surface roughness, an ultrasonic beam was scanned in the direction that is parallel to the surface of an object. When there is a gap on the surface, the phase of the echo from the surface changes because the distance between the probe and the surface changes during the scanning. Therefore, surface roughness can be assessed by estimating the phase shift of echoes obtained during the beam scanning. Furthermore, lateral resolution, which is deteriorated by a finite diameter of the ultrasound beam, was improved by an inverse filter. By using the proposed method, the surface profile of a phantom, which had surface roughness on the micrometer order, was detected, and the estimated surface profiles became more precise by applying the inverse filter.

  10. Berry phases and profiles of line wings and rainbow satellites induced by optical collisions

    NASA Astrophysics Data System (ADS)

    Ciuryło, R.; Szudy, J.; Baylis, W. E.

    2015-09-01

    The concept of Berry phase is included in an analysis of the intensity distribution in far wings of pressure-broadened spectral lines emitted or absorbed by atoms placed in an external cone-rotating electric field. Particular attention is focused on frequency regions where rainbow satellite bands appear. A classical-path treatment that employs the time-dependent Schrödinger equation is used to derive an expression for the line shape, and it uses a dipole transition moment calculated with quasimolecular wave functions given by the Berry version of the adiabatic approximation. It is found that in the presence of an external rotating electric field, the intensity distribution in far wings can be expressed in terms of the universal line shape function of the unified Franck-Condon theory once energy shifts due to Stark and Berry effects are taken into account. We show that the influence of Berry phase in the profiles of the far wings can be manifested either in the form of deviations of observed profiles from the quasistatic distribution or the appearance of additional features in the vicinity of the maximum of the rainbow satellite band. As an example, the modification of the rainbow satellite at 162.3 nm in the red wing of the self-broadened Lyman-α line of hydrogen, caused by an external rotating electric field, is considered.

  11. An acoustic system for providing the two-phase liquid profile in oil field storage tanks.

    PubMed

    Meribout, Mahmoud; Al Naamany, Ahmed; Al Busaidi, Khamis

    2009-10-01

    The continuing need for in situ measurements of the emulsion layer between crude oil and water within oil field tanks has initiated experimental and theoretical investigations of candidate measurement methods. This paper describes a new low-cost and nonradioactive industrial field prototype device that provides, continuously and in real time, the vertical profile of the 2-phase liquid within oil field tank separators (i.e., percentage of water in oil at different heights of the tank, as well as the emulsion layer interfaces) using ultrasonic waves. The device, which has been installed in a vessel through an 8-in. flange, consists of a 1-D array of tens of ultrasonic transducers (28 transducers in this paper) that are activated in a time-multiplexed manner by an embedded transmitter fixed on the top of the tank. This latest version implements a feedforward neural network with back-propagation learning to determine the vertical water-cut distribution along the vessel. It also implements an expert-system-based algorithm to determine the lower and higher positions of the emulsion layer. The results obtained from the extensive experiments, which have been conducted under various conditions of temperature, indicate that the device can determine the profile of the 2-phase liquid within a relative error of +/- 3%.

  12. [Glycosylation profile of selected acute phase proteins in children with chronic tonsillitis and allergic symptoms].

    PubMed

    Sobieska, Magdalena; Steiner, Iwona; Pucher, Beata; Grzegorowski, Michał; Samborski, Włodzimierz

    2006-01-01

    Acute phase proteins may be regarded as laboratory markers of inflammatory processes of various origin, but they also play several important biological roles. As majority of them are glycoproteins alterations in glycosylations profiles form additional sign of disturbances in the cytokines network during inflammation and allow to distinguish between acute and chronic inflammatory conditions. A group of 25 children, aged from 6 to 13 years, admitted due to tonsillectomy was examined using skin tests towards specific allergens. Fifteen children out of the whole group showed reaction to pollens, whereas in ten children no allergen was detected despite clear allergic symptoms. In sera samples from every child concentrations of C-reactive protein, alpha1-acid glycoprotein (AGP) and alpha1-antichymotrypsin (ACT) were measured using rocket immunoelectrophoresis acc. to Laurell, and glycosylations profiles of AGP and ACT were determined, using crossed affino-immunoelectrophoresis acc. to Bøg-Hansen. Lower concentration of AGP and higher of ACT was shown for children allergic to pollens. Glycosylation profile of both proteins was altered towards higher reactivity with ConA for children allergic to pollens, whereas rather chronic image was observed in children allergic to unknown allergen. The latter image was similar to previously described in children with food allergies. The presence of allergic reaction may alter the cytokine network activity in children, thus affecting also the immune status, independently from chronic inflammatory process in tonsillitis.

  13. Standardized sample preparation phases for a quantitative measurement of plasma peptidome profiling by MALDI-TOF.

    PubMed

    D'Imperio, Marco; Della Corte, Anna; Facchiano, Angelo; Di Michele, Michela; Ferrandina, Gabriella; Donati, Maria B; Rotilio, Domenico

    2010-05-07

    A growing body of literature defines MALDI-TOF MS as a technique for studying plasma and serum, thus enabling the detection of proteins, and the generation of reproducible protein profile mass spectra, potentially able to discriminate correctly different biological systems. In this work, the different steps of the pre-analytical phase that may affect the reproducibility of plasma proteome analysis have been carefully considered. The results showed that the method is highly accurate (9.1%) and precise (8.9%) and the calibration curve for the ACTH (18-39), in human plasma, gave a good correlation coefficient (r>0.99 and r(2)>0.98). The limit of detection (LOD) and the limit of quantification (LOQ), relative intensity, were of 0.5 x 10(-)(9)M and 1.0 x 10(-)(9)M respectively. Thus, an assay has been developed for the detection of low-abundant and low molecular weight proteins, from human plasma, aiming at the identification of new potential biomarkers. The method was tested on plasma from patients with a first diagnosis of pelvic mass. Statistical analysis of plasma profile generated a sub-profile of 17 peptides with their relative abundance able to discriminate patients bearing malignant or benign tumors. The sensitivity and specificity were 85.7% and 80.0% respectively.

  14. Clinical research on new drugs (Phase I). Profile of scientific publications: data from the pre-clinical phase and bioethical aspects.

    PubMed

    Brick, Vanessa de Souza; Hossne, William Saad; Saad Hossne, Rogério

    2008-01-01

    To trace a profile of scientific publications, phase I, in order to know whether or not they show pre-clinical phase data, emphasizing bioethical aspects. Sixty-one scientific articles, published in 2007, involving research in human beings using new drugs, medicines and vaccines during phase I were analysed. A schedule for data collection was elaborated in which it would be possible to analyse and evaluate those articles. The schedule included items related to the pre-clinical phase associated to the clinical phase, and items related to the sample characteristics. Most of research works were carried out in USA. Taking into consideration that a large number of works have been dedicated to oncologic affections, most of them were carried out in voluntary ill individuals. Information on the pre-clinical phase, phase I, was very poor or absent. Even though some authors consider the phase I research as a promising one and also suggest some future studies on phase II, the reader is not able to consider the same way, as long as there is a shortage of information on the pre-clinical phase. The profile of scientific publications showed that data deserve some reflections and analysis to better evaluate the publications on phase I.

  15. Deformation and texture development in deep Earth mineral phases: Implications for seismic anisotropy and dynamics

    NASA Astrophysics Data System (ADS)

    Miyagi, Lowell Masataka

    The contribution of this thesis is to expand the current knowledge of deformation mechanisms in mineral phases of the lower mantle, the D" region, and the inner core. Quantitative information about texture and stress is obtained using in-situ radial synchrotron x-ray diffraction and the Rietveld method to deconvolute diffraction images. Transformation textures are interpreted in terms of structural relationships between the starting material and product phases or in terms of minimization of strain energy. Polycrystal plasticity modeling is used to interpret deformation textures in terms of activity of slip systems and mechanical twinning. In Chapter 2 texture development resulting from phase transformations and deformation is explored in (Mg,Fe)SiO3 perovskite and (Mg,Fe)SiO 3 perovskite + (Mg,Fe)O magnesiowiistite aggregates in the diamond anvil cell (DAC). For (Mg,Fe)SiO3 perovskite synthesized from enstatite a strong 001 texture develops that is related to a structural relationship between the enstatite and perovskite phases. For (Mg,Fe)SiO3 perovskite + (Mg,Fe)O magnesiowiistite aggregates synthesized from (Mg,Fe)2SiO 4 olivine and ringwoodite, transformation textures are controlled by minimization of strain energy during the phase transformation via mechanical twinning and/or nucleation of grains in low strain energy configurations. Polycrystal plasticity modeling of deformation textures indicates that slip on (001) planes dominates in (Mg,Fe)SiO3 perovskite at high pressure and room temperature and this does not appear to change with laser heating. Interestingly when two phase aggregates of (Mg,Fe)SiO3 perovskite + (Mg,Fe)O magnesiowtistite are deformed, magnesiowustite does not develop significant texturing, which may indicate that it would not be a source of anisotropy in the lower mantle. Deformation of CaIrO3 post-perovskite (an analog for (Mg,Fe)SiO 3 postperovskite) in the deformation-DIA large volume press is explored in chapter 3. A sintered

  16. Odor Profile of Different Varieties of Extra-Virgin Olive Oil During Deep Frying Using an Electronic Nose and SPME-GC-FID

    NASA Astrophysics Data System (ADS)

    Messina, Valeria; Biolatto, Andrea; Sancho, Ana; Descalzo, Adriana; Grigioni, Gabriela; de Reca, Noemí Walsöe

    2011-09-01

    The aim of the performed work was to evaluate with an electronic nose changes in odor profile of Arauco and Arbequina varieties of extra-virgin olive oil during deep-frying. Changes in odor were analyzed using an electronic nose composed of 16 sensors. Volatile compounds were analyzed by SPME-GC-FID. Principal Component Analysis was applied for electronic results. Arauco variety showed the highest response for sensors. Statistical analysis for volatile compounds indicated a significant (P<0.001) interaction between variety and time of frying processes. Arauco variety showed the highest production of volatile compounds at 60 min of deep frying. The two varieties presented distinct patterns of volatile products, being clearly identified with the electronic nose.

  17. Spatiotemporal expression profiling of proteins in rat sciatic nerve regeneration using reverse phase protein arrays

    PubMed Central

    2012-01-01

    Background Protein expression profiles throughout 28 days of peripheral nerve regeneration were characterized using an established rat sciatic nerve transection injury model. Reverse phase protein microarrays were used to identify the spatial and temporal expression profile of multiple proteins implicated in peripheral nerve regeneration including growth factors, extracellular matrix proteins, and proteins involved in adhesion and migration. This high-throughput approach enabled the simultaneous analysis of 3,360 samples on a nitrocellulose-coated slide. Results The extracellular matrix proteins collagen I and III, laminin gamma-1, fibronectin, nidogen and versican displayed an early increase in protein levels in the guide and proximal sections of the regenerating nerve with levels at or above the baseline expression of intact nerve by the end of the 28 day experimental course. The 28 day protein levels were also at or above baseline in the distal segment however an early increase was only noted for laminin, nidogen, and fibronectin. While the level of epidermal growth factor, ciliary neurotrophic factor and fibroblast growth factor-1 and -2 increased throughout the experimental course in the proximal and distal segments, nerve growth factor only increased in the distal segment and fibroblast growth factor-1 and -2 and nerve growth factor were the only proteins in that group to show an early increase in the guide contents. As expected, several proteins involved in cell adhesion and motility; namely focal adhesion kinase, N-cadherin and β-catenin increased earlier in the proximal and distal segments than in the guide contents reflecting the relatively acellular matrix of the early regenerate. Conclusions In this study we identified changes in expression of multiple proteins over time linked to regeneration of the rat sciatic nerve both demonstrating the utility of reverse phase protein arrays in nerve regeneration research and revealing a detailed, composite

  18. Effects of fortified lysine on the amino acid profile and sensory qualities of deep-fried and dried noodles.

    PubMed

    Polpuech, C; Chavasit, V; Srichakwal, P; Paniangvait, P

    2011-08-01

    Lysine fortification of wheat flour has been used toward reducing protein energy malnutrition in developing countries. The feasibility of fortifying instant noodles with lysine was evaluated based on sensory qualities and the residual lysine content. Fifty grams of deep-fried and dried instant noodles were fortified with 0.23 and 0.21 g lysine, respectively. The production temperatures used for deep-frying were 165-175 degrees C and for drying, 80-105 degrees C; these are the temperatures used in the industrial production of both kinds of noodles. Lysine fortification was then performed at the local factories using the commercial production lines and packaging for both types of instant noodles. Both fortified and unfortified deep-fried and dried instant noodles were stored at 50 degrees C under fluorescent light for 2 and 4 months, respectively. The fortified products were tested for residual lysine content and sensory qualities as compared with unfortified noodles. The results show fortified products from the tested processing temperatures were all accepted. After storage, significant losses of lysine were not found in both types of noodles analysed. The lysine-fortified noodles had amino acid scores of 102% and 122%, respectively. After 2 months, the sensory quality of fortified deep-fried noodles was still acceptable; however, the dried noodles turned to an unacceptable dark colour. This study shows that it is feasible to fortify deep-fried instant noodles with lysine, though lysine fortification exhibited an undesirable colour in the dried instant noodles after storage.

  19. Crustal structure and geodynamic of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: insights from deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Shi, D.; Liu, Z.; Zhang, Y.; Zhao, J.

    2014-12-01

    A 300 km deep seismic reflection profile across the middle and lower Yangtze River metallogenic belt (YRMB) and its adjacent areas established the architecture and geodynamic framework of the region. Results based on the interpretation of the deep seismic data include the deep complicated geometry of the Tan-Lu fault and Zhangbaling uplift, appears as a subvertical thrust fault with its deep portion dip toward the southeast, and along which the Zhangbaling uplift is squeezed out; complex upper crust deformation structure beneath Chuquan depression, within which there are both kink bands, thrusts, imbrication and fold structures reflecting contraction deformation, and detachment fault and normal-fault structures reflecting extensional deformation; the "crocodile" reflection structure emerging beneath the Tan-Lu fault and Ningwu-Lishui volcanic basin, i.e., the upper crust reflection thrust upward, and the lower crust reflection thrust downward and offsetting the Moho discontinuity, which reflects the decoupled deformation process of the upper and lower crust, and is interpreted as an intracontinental subduction. Further to the southeast, the upper crust deformation shows a large-scale "wave-form" pattern, making crustal scale syncline and anticline. The entire section of the reflection Moho is clearly discernible at depth of 30.0-34.5 km, and the Moho beneath the YRMB is shallowest, while the Moho beneath the North China block is deeper than that beneath the Yangtze block. Moho offsets could be seen beneath the Ningwu volcanic basin. Overall, the seismic data show evidence for an intracontinental orogeny and imposes constraints on the deep geodynamic model applied to study region. Our interpretation of seismic profile supports the view that the Yanshanian orogeny, due to the northwest subduction of the paleo-Pacific plate during the Middle-Late Jurassic, is the major event that shaped the tectonic framework of the region. A geodynamic model is proposed for the

  20. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models.

    PubMed

    Bakker, J F; Paulides, M M; Obdeijn, I M; van Rhoon, G C; van Dongen, K W A

    2009-05-21

    The objective of this theoretical study is to design an ultrasound (US) cylindrical phased array that can be used for hyperthermia (40-44 degrees C) treatment of tumours in the intact breast. Simultaneously, we characterize the influence of acoustic and thermal heterogeneities on the specific absorption rate (SAR) and temperature patterns to determine the necessity of using heterogeneous models for a US applicator design and treatment planning. Cylindrical configurations of monopole transducers are studied on their ability to generate interference patterns that can be steered electronically to the location of the target region. Hereto, design parameters such as frequency, number of transducers per ring, ring distance and number of rings are optimized to obtain a small primary focus, while suppressing secondary foci. The models account for local heterogeneities in both acoustic (wave velocity and absorption) and thermal (blood perfusion rate, heat capacity and conductivity) tissue properties. We used breast models with a central tumour (30x20x38 mm3) and an artificial thorax tumour (sphere with a radius of 25 mm) to test the design. Simulations predict that a US cylindrical phased array, consisting of six rings with 32 transducers per ring, a radius of 75 mm and 66 mm distance between the first and sixth transducer ring, operating at a frequency of 100 kHz, can be used to obtain 44 degrees C in the centre of tumours located anywhere in the intact breast. The dimensions of the volumes enclosed by the 41 degrees C iso-temperature are 19x19x21 mm3 and 21x21x32 mm3 for the central and the thorax tumours, respectively. It is demonstrated that acoustic and thermal heterogeneities do not disturb the SAR and temperature patterns.

  1. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  2. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  3. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.34 To which...: (1) March 26, 2003, on a lease that is located entirely or partly in water less than 200 meters deep...

  4. Changes of gene expression profiles across different phases of vascular calcification in rats.

    PubMed

    Jiang, Z M; Wu, X J; Liu, Y; Du, X H; Shen, S J; Xu, L Y; Sun, W X

    2013-11-26

    This study investigated the alteration of gene expression profiles in order to gain a deeper understanding into the molecular mechanism involved in different processes of vascular calcification (VC). Sprague Dawley (SD) rats were injected with 300,000 µg/kg vitamin D3 and gavaged with 25 mg/kg nicotine for 8 or 16 weeks to create 8- and 16-week VC calcification groups. Histological analysis and quantification of aortic calcium content were used to determine the severity of vascular calcification. The suppression subtractive hybridization (SSH) method was employed to screen for up and downregulated genes in early and later phases of vascular calcification. Changes in calcium and phosphorus levels in tissue were used as markers of vascular calcification. Quantification of aortic calcium content revealed that vascular calcification might regress over time. In the early phase of vascular calcification, many calcification-promoting genes were upregulated, including ossification, oxidation, and inflammatory genes. In contrast, in later phase of vascular calcification, various calcification-inhibitor genes were highly expressed, including pyrophosphoric acid synthesis genes, glutamate signal peptide-related, reduction activity, and apoptosis regulation genes. The relatively higher expression of calcification-inhibitor genes compared to that of calcification-promoting genes might explain the genetic mechanism leading to the regression of vascular calcification. Therefore, this study provides a genomic basis to facilitate understanding of the molecular mechanism underlying vascular calcification regression.

  5. Isotopic systematics of the early Mauna Kea shield phase and insight into the deep mantle beneath the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nobre Silva, Inês G.; Weis, Dominique; Scoates, James S.

    2013-03-01

    The 3500 m deep Hawai'i Scientific Drilling Project core provides a ~680 kyr record of the magmatic history and source components of Mauna Kea volcano. We report high-precision Pb-Sr-Nd isotopic compositions of 40 basalts from the last 408 m of the final drilling phase (HSDP2-B and HSDP2-C) and show that these lowermost basalts represent the early shield stage of Mauna Kea's growth history. Two sample groups are distinguished based on their isotopic variability compared to the rest of the core. Over a depth interval of 210 m (3098.2-3308.2 mbsl), the basalts show very restricted isotopic variation and represent sampling of a relatively homogeneous source. Samples from the bottom 192 m record the largest range of 206Pb/204Pb and 208Pb/204Pb in the core, reflecting the greater isotopic variability of the earlier stages of volcanism compared to subsequent stages. The heterogeneity of Mauna Kea lavas is explained by mixing variable proportions of four distinct components intrinsic to the Hawaiian mantle plume. One of these components, Kea, is a prevalent and long-lived composition within the Hawaiian plume, whereas the other three components are involved at different stages of the volcano's history and contribute to the short-term isotopic variability of Mauna Kea. The compositional similarity of the Kea component to "C" and to the super-chondritic bulk-silicate Earth suggests that Kea may be part of the primitive mantle of a non-chondritic Earth. Other Pacific oceanic island basalts share Kea-like compositions, indicating that the Kea component is a common, widespread composition within the Pacific deep mantle.

  6. Observation of a first-order phase transition deep within the vortex-solid region of YBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Reibelt, M.; Weyeneth, S.; Erb, A.; Schilling, A.

    2011-10-01

    We have investigated the magnetic phase diagram of a fully oxygenated detwinned YBa2Cu3O7 single crystal by means of magneto-caloric and magnetization measurements, and found thermodynamic evidence for a temperature dependent first-order phase-transition line deep within the vortex-solid region. The associated discontinuities in the entropy are apparently proportional to the magnetic flux density, which may hint at a structural transition of the vortex lattice.

  7. Defect inspection and printability of deep-UV halftone phase-shifting mask

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungjoon; Hong, Jin; Kye, Jongwook; Cha, DongHo; Kang, Hoyoung; Moon, Joo-Tae

    1997-02-01

    As feature size goes down to a quarter micron, halftone phase- shifting mask (HT PSM) has been studied to extend photo lithography capabilities especially in contact hole patterns. However, defect problem of HT PSM is more serous than that of conventional chrome mask because of added reticle fabrication process steps in which unexpected defects can be generated. In this paper, test HT PSMs which have different transmittance at 488 nm and same background contact patterns with programmed defects having various types are investigated for 250 nm contact hole patterns. The programmed defect are used for the sensitivity evaluation of reticle inspection systems, i.e. detectability and exposed by 4X reduction DUV exposure tool to determine printability and water defect detectability. Direct reticle inspection results show that the detectability depends on transmittance at the inspection wavelength 488 nm. The printability from the wafer exposure results is proportional to defect area strongly. Indirect reticle inspection results using an imaged wafer and wafer inspection tool of SEMSpec show that direct reticle inspection is better than indirect inspection.

  8. Growth factor and protease expression during different phases of healing after rabbit deep flexor tendon repair.

    PubMed

    Berglund, M E; Hart, D A; Reno, C; Wiig, M

    2011-06-01

    The purpose of the study was to contribute to the mapping of molecular events during flexor tendon healing, in particular the growth factors insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF) and nerve growth factor (NGF), matrix metalloproteinases (MMP-3 and MMP-13) and their inhibitors (tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-3, and the protease cathepsin K. In a rabbit model of flexor tendon injury, the mRNA expression for the growth factors, MMPs and TIMPs were measured in tendon and tendon sheath tissue at several time points (3, 6, 21, and 42 days) representing different phases of the healing process. We found that MMP-13 remained increased during the study period, whereas MMP-3 returned to normal levels within the first week after injury. TIMP-3 was down-regulated in the tendon sheaths. Cathepsin K was up-regulated in tendons and sheaths after injury. NGF was present in both tendons and sheaths, but unaltered. IGF-1 exhibited a late increase in the tendons, while VEGF was down-regulated at the later time points. In conclusion, we have demonstrated the presence of NGF in flexor tendons. MMP-13 expression appears to play a more protracted role in flexor tendon healing than MMP-3. The relatively low levels of endogenous IGF-1 and VEGF mRNA following injury support their potential beneficial role as exogenous modulators to optimize tendon healing and strength without increasing adhesion formation.

  9. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues.

    PubMed

    Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M

    2016-03-01

    Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.

  10. Improvements in the vapor-time profile analysis of explosive odorants using solid-phase microextraction.

    PubMed

    Young, Mimy; Schantz, Michele; MacCrehan, William

    2016-07-15

    A modified approach for characterization of the vapor-time profile of the headspace odors of explosives was developed using solid-phase microextraction (SPME) incorporating introduction of an externally-sampled internal standard (ESIS) followed by gas chromatography/mass spectrometry (GC/MS) analysis. With this new method, reproducibility of the measurements of 2-ethyl-1-hexanol and cyclohexanone were improved compared to previous work (Hoffman et al., 2009; Arthur and Pawliszyn, 1990) through the use of stable-isotope-labeled internal standards. Exposing the SPME fiber to the ESIS after sampling the target analyte proved to be advantageous, while still correcting for fiber variability and detector drift. For the analysis of high volatility compounds, incorporation of the ESIS using the SPME fiber in the retracted position minimized the subsequent competitive loss of the target analyte, allowing for much longer sampling times.

  11. Reversed-phase liquid chromatographic separation and simultaneous profiling of steroidal glycoalkaloids and their aglycones.

    PubMed

    Kuronen, P; Väänänen, T; Pehu, E

    1999-11-19

    Improved and simplified reversed-phase liquid chromatographic conditions for the separation and simultaneous profiling of both steroidal glycoalkaloids and their aglycones, having solanidane- or spirosolane-type structures, are described. The most reproducible retention behavior for these ionizable compounds on C18 columns was achieved under isocratic and gradient elution conditions using acetonitrile in combination with triethylammonium phosphate buffer at pH 3.0, when basic functional groups of solutes and silanol groups on the silica are fully protonated minimizing ionic interactions. Gradient elution was the only feasible approach for the simultaneous separation of steroidal glycoalkaloids and their aglycones. A Zorbax SB C18 column, specially designed for low-pH separations, showed good performance in critical separations. The impurities of the commercial tomatine and tomatidine standards were studied and confirmed using mass spectrometric, liquid chromatographic and thin-layer chromatographic methods.

  12. Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles

    NASA Astrophysics Data System (ADS)

    Salmon, Jean-Baptiste; Manneville, Sébastien; Colin, Annie

    2003-11-01

    Using velocity profile measurements based on dynamic light scattering and coupled to structural and rheological measurements in a Couette cell, we present evidences for a shear banding scenario in the shear flow of the onion texture of a lyotropic lamellar phase. Time-averaged measurements clearly show the presence of structural shear banding in the vicinity of a shear-induced transition, associated with the nucleation and growth of a highly sheared band in the flow. Our experiments also reveal the presence of slip at the walls of the Couette cell. Using a simple mechanical approach, we demonstrate that our data confirm the classical assumption of the shear banding picture, in which the interface between bands lies at a given stress σ*. We also outline the presence of large temporal fluctuations of the flow field, which are the subject of the second part of this paper [Salmon et al., Phys. Rev. E 68, 051504 (2003)].

  13. Order-parameter profiles across domain walls arising in ferroelastic phase transitions

    NASA Astrophysics Data System (ADS)

    Hatt, Richard A.

    1998-12-01

    A method for deriving a mathematical description of order-parameter profiles is given. Significant use of group theoretical methods and the Landau model of phase transitions is made. The method concentrates on the inclusion of strain as an order parameter, and demonstrates how it is incorporated and calculated. Symmetry is used to reduce the number of independent parameters. Differential equations are derived from a Landau free energy using the Euler Lagrange equations, and solutions of these equations are presented and discussed. The solutions for both antiphase twins and orientation twins are presented. It is shown that order-parameter components whose values are zero far from the wall in both directions are identically zero. The ferroelastic transition in lead orthovanadate, Pb3(VO4)2, is used as the prototype for the development. The method can easily be generalized to a large number of similar systems, giving the results broad applicability.

  14. Evaluation of mobile phase gradient supercritical fluid chromatography for impurity profiling of pharmaceutical compounds.

    PubMed

    Alexander, A J; Hooker, T F; Tomasella, F P

    2012-11-01

    The use of gradient supercritical fluid chromatography (SFC) for the impurity profiling of pharmaceutical products is not widely practiced. Historically, the limited advancement in SFC instrumentation and the lag in column development have resulted in marginal sensitivity, selectivity and reproducibility when compared with high performance liquid chromatography (HPLC). Using a recently developed commercial module, which allows an ordinary HPLC to be converted to a SFC system, a significant improvement in sensitivity (up to ~12-fold) has been obtained over previous studies. This has allowed for the first time a "real-world" head-to-head comparison of SFC to HPLC for impurity profiling of pharmaceutical products in a regulated environment. Retention time reproducibility and low level impurity detection were found to be comparable to reversed phase liquid chromatography (RPLC), that is, single digit %relative standard deviations (RSDs) were obtained for impurities present at less than 0.1 area%. Furthermore, these results were obtained with drug loading levels (≤2 mg/mL) that are not only comparable to those employed with HPLC, but are dictated by the limited solubility of many drug candidates. The elution of impurities was generally found to be orthogonal to that obtained with RPLC, but it was still challenging to find SFC conditions that would separate all of the components in the mixtures studied. In terms of enhancing selectivity, small amounts of mobile phase additives (0.1-1%) and temperature optimization were found to have a greater impact in SFC method development versus RPLC. However, unlike gradient RPLC, the relative changes in baseline noise and slope were found to be a complex function of the experimental conditions, with the largest differences in noise levels being generally observed for the widest and steepest gradients. It is likely that this gradient related noise is more apparent now because other sources of noise in SFC have been reduced

  15. Metabolite profiling of Calvin cycle intermediates by HPLC-MS using mixed-mode stationary phases.

    PubMed

    Cruz, Jeffrey A; Emery, Caroline; Wüst, Matthias; Kramer, David M; Lange, B Markus

    2008-09-01

    A sensitive and robust mixed-mode high performance liquid chromatography-tandem mass spectrometry method was developed for the qualitative and quantitative determination of sugar phosphates, which are notoriously difficult to separate using reversed-phase materials. Sugar phosphates were separated on a Primesep SB column by gradient elution using aqueous ammonium formate and acetonitrile as mobile phases. Target analytes were identified by their precursor/product ions and retention times. Quantitative analysis was performed in negative ionization/multiple reaction monitoring mode with five different time segments. The method was validated by spiking authentic sugar phosphate standards into complex plant tissue extracts. Standard curves of neat authentic standards and spiked extracts were generated for concentrations in the low picomole to nanomole range, with correlation coefficients of R(2) > 0.991, and the degree of ion suppression in the presence of a plant matrix was calculated for each analyte. Analyte recoveries, which were determined by including known quantities of authentic standards in the sugar phosphate extraction protocol, ranged from 40.0% to 57.4%. The analytical reproducibility was assessed by determining the coefficient of variance based on repeated extractions/measurements (<20%). The utility of our method is demonstrated with two types of applications: profiling of Calvin cycle intermediates in (i) dark-adapted and light-treated tobacco leaves, and in (ii) antisense plants expressing reduced levels of the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase or ribulose-1,5-bisphosphate carboxylase/oxygenase (comparison with wild-type controls). The broader applicability of our method is illustrated by profiling sugar phosphates extracted from the leaves of five taxonomically diverse plants.

  16. Nocturnal Melatonin Profiles in Patients with Delayed Sleep-Wake Phase Disorder and Control Sleepers.

    PubMed

    Micic, Gorica; Lovato, Nicole; Gradisar, Michael; Burgess, Helen J; Ferguson, Sally A; Kennaway, David J; Lack, Leon

    2015-10-01

    A significant delay in the timing of endogenous circadian rhythms has been associated with delayed sleep phase disorder (DSPD). More recently, other mechanisms have also been proposed to account for this disorder. To further explore the etiology of DSPD, the present study compared nocturnal melatonin profiles of 26 DSPD patients (18 males, 8 females; age, 21.73 ± 4.98 years) and 17 normally timed good sleepers (10 males, 7 females; age, 23.82 ± 5.23 years) in a time-free, dim-light (<10 lux) laboratory environment. A 30-h modified constant routine with alternating 20-min sleep opportunities and 40 min of enforced wakefulness was used to measure the endogenous melatonin circadian rhythm. Salivary melatonin was sampled half-hourly from 1820 h to 0020 h and then hourly from 0120 h to 1620 h. DSPD patients had significantly later timed melatonin profiles that were delayed by approximately 3 h compared to normal sleepers, and there were no notable differences in the relative duration of secretion between groups. However, melatonin secretion between dim-light melatonin onset (DLMO) and acrophase was less prominent in DSPD patients compared to good sleepers, who showed a more acute initial surge of melatonin following the DLMO. Although the regulatory role of melatonin is unknown, abnormal melatonin profiles have been linked to psychiatric and neurological disorders (e.g., major depression, obsessive compulsive disorder, Parkinson disease). These results therefore suggest that in addition to a delayed endogenous circadian rhythm, a diminished initial surge of melatonin secretion following DLMO may contribute to the etiology of DSPD.

  17. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography.

    PubMed

    Baeza-Baeza, J J; Ortiz-Bolsico, C; Torres-Lapasió, J R; García-Álvarez-Coque, M C

    2013-04-05

    The optimisation of the experimental conditions in gradient reversed-phase liquid chromatography requires reliable algorithms for the description of the retention and peak profile. As in isocratic elution, the linear relationship between the logarithm of the retention factor and the solvent contents is only acceptable in relatively small concentration ranges of modifier. However, more complex models may not allow an analytical integration of the general equation for gradient elution. Alternative approaches for modelling the retention in linear gradient elution are here proposed. Those based on the quadratic logarithmic model and a model proposed for normal liquid chromatography yielded accurate predictions of the retention time for a wide range of initial concentrations of organic modifier and gradient slopes, with errors usually below 1-2%. Based on the half-width changes of chromatographic peaks along one or more gradients, an approach is also reported to predict the peak profile with low errors (usually below 2-3%). The proposed approaches were applied to two sets of probe compounds (diuretics and flavonoids), eluted with acetonitrile-water gradients. The changes in retention and peak shape in isocratic and gradient elution are illustrated through diagrams that define triangular regions including all possible values of retention factors or peak half-widths (or widths) inside the selected working ranges.

  18. Pipette-tip solid-phase extraction based on deep eutectic solvent modified graphene for the determination of sulfamerazine in river water.

    PubMed

    Liu, Lingling; Tang, Weiyang; Tang, Baokun; Han, Dandan; Row, Kyung Ho; Zhu, Tao

    2017-05-01

    A green and novel deep eutectic solvent modified graphene was prepared and used as a neutral adsorbent for the rapid determination of sulfamerazine in a river water sample by pipette-tip solid-phase extraction. Compared with conventional graphene, deep eutectic solvent modified graphene can change the surface of graphene with wrinkled structure and higher selective extraction ability. The properties of deep eutectic solvent modified graphene and graphene were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Static adsorption showed deep eutectic solvent modified graphene had a higher adsorption ability (18.62 mg/g) than graphene. Under the optimum conditions, factors such as kinds of washing solvents and elution solvents and volume of elution solvent were evaluated. The limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of sulfamerazine were in the range of 91.01-96.82% with associated intraday relative standard deviations ranging from 1.63 to 3.46% and interday relative standard deviations ranging from 0.68 to 3.84%. Deep eutectic solvent modified graphene showed satisfactory results (recovery was 95.38%) and potential for rapid purification of sulfamerazine in river water sample in combination with the pipette-tip solid-phase extraction method. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrodril system field test program. Phase II: Task C-1-deep drilling system demonstration. Final report for Phase II: Task C-1

    SciTech Connect

    Taylor, P D

    1981-04-01

    The Electrodril Deep Drilling System field test demonstrations were aborted in July 1979, due to connector problems. Subsequent post test analyses concluded that the field replacable connectors were the probable cause of the problems encountered. The designs for both the male and female connectors, together with their manufacturing processes, were subsequently modified, as was the acceptance test procedures. A total of nine male and nine female connectors were manufactured and delivered during the 2nd Quarter 1980. Exhaustive testing was then conducted on each connector as a precursor to formal qualification testing conducted during the month of October 1980, at the Brown Oil Tool test facility located in Houston, Texas. With this report, requirements under Phase II, Task C-1 are satisfied. The report documents the results of the connector qualification test program which was successfully completed October 28, 1980. In general, it was concluded that connector qualification had been achieved and plans are now in progress to resume the field test demonstration program so that Electrodril System performance predictions and economic viability can be evaluated.

  20. Predictive model for toluene degradation and microbial phenotypic profiles in flat plate vapor phase bioreactor

    SciTech Connect

    Mirpuri, R.; Sharp, W.; Villaverde, S.; Jones, W.; Lewandowski, Z.; Cunningham, A.

    1997-06-01

    A predictive model has been developed to describe degradation of toluene in a flat-plate vapor phase bioreactor (VPBR). The VPBR model incorporates kinetic, stoichiometric, injury, and irreversible loss coefficients from suspended culture studies for toluene degradation by P. putida 54G and measured values of Henry`s law constant and boundary layer thickness at the gas-liquid and liquid-biofilm interface. The model is used to estimate the performance of the reactor with respect to toluene degradation and to predict profiles of toluene concentration and bacterial physiological state within the biofilm. These results have been compared with experimentally determined values from a flat plate VPBR under electron acceptor and electron donor limiting conditions. The model accurately predicts toluene concentrations in the vapor phase and toluene degradation rate by adjusting only three parameters: biomass density and rates of death and endogenous decay. Qualitatively, the model also predicts gradients in the physiological state cells in the biofilm. This model provides a rational design for predicting an upper limit of toluene degradation capability in a VPBR and is currently being tested to assess applications for predicting performance of bench and pilot-scale column reactors.

  1. Solid phase extraction and metabolic profiling of exudates from living copepods.

    PubMed

    Selander, Erik; Heuschele, Jan; Nylund, Göran M; Pohnert, Georg; Pavia, Henrik; Bjærke, Oda; Pender-Healy, Larisa A; Tiselius, Peter; Kiørboe, Thomas

    2016-01-01

    Copepods are ubiquitous in aquatic habitats. They exude bioactive compounds that mediate mate finding or induce defensive traits in prey organisms. However, little is known about the chemical nature of the copepod exometabolome that contributes to the chemical landscape in pelagic habitats. Here we describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds that constitute a specific chemical pattern either qualitatively or quantitatively indicating copepod presence. The majority of the compounds were present in both female and male exudates, but nine compounds were mainly or exclusively present in female exudates and hence potential pheromone candidates. Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms.

  2. Solid phase extraction and metabolic profiling of exudates from living copepods

    PubMed Central

    Heuschele, Jan; Nylund, Göran M.; Pohnert, Georg; Pavia, Henrik; Bjærke, Oda; Pender-Healy, Larisa A.; Tiselius, Peter; Kiørboe, Thomas

    2016-01-01

    Copepods are ubiquitous in aquatic habitats. They exude bioactive compounds that mediate mate finding or induce defensive traits in prey organisms. However, little is known about the chemical nature of the copepod exometabolome that contributes to the chemical landscape in pelagic habitats. Here we describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds that constitute a specific chemical pattern either qualitatively or quantitatively indicating copepod presence. The majority of the compounds were present in both female and male exudates, but nine compounds were mainly or exclusively present in female exudates and hence potential pheromone candidates. Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms. PMID:26788422

  3. Deep Part Load Flow Analysis in a Francis Model turbine by means of two-phase unsteady flow simulations

    NASA Astrophysics Data System (ADS)

    Conrad, Philipp; Weber, Wilhelm; Jung, Alexander

    2017-04-01

    Hydropower plants are indispensable to stabilize the grid by reacting quickly to changes of the energy demand. However, an extension of the operating range towards high and deep part load conditions without fatigue of the hydraulic components is desirable to increase their flexibility. In this paper a model sized Francis turbine at low discharge operating conditions (Q/QBEP = 0.27) is analyzed by means of computational fluid dynamics (CFD). Unsteady two-phase simulations for two Thoma-number conditions are conducted. Stochastic pressure oscillations, observed on the test rig at low discharge, require sophisticated numerical models together with small time steps, large grid sizes and long simulation times to cope with these fluctuations. In this paper the BSL-EARSM model (Explicit Algebraic Reynolds Stress) was applied as a compromise between scale resolving and two-equation turbulence models with respect to computational effort and accuracy. Simulation results are compared to pressure measurements showing reasonable agreement in resolving the frequency spectra and amplitude. Inner blade vortices were predicted successfully in shape and size. Surface streamlines in blade-to-blade view are presented, giving insights to the formation of the inner blade vortices. The acquired time dependent pressure fields can be used for quasi-static structural analysis (FEA) for fatigue calculations in the future.

  4. Molecularly imprinted polymers combination with deep eutectic solvents for solid-phase extraction of caffeic acid from hawthorn.

    PubMed

    Li, Guizhen; Tang, Weiyang; Cao, Weimin; Wang, Qian; Zhu, Tao

    2015-08-01

    Molecularly imprinted polymers (MIPs) with caffeic acid as template and non-imprinted polymers (NIPs) materials were prepared in the same procedure. Field emission scanning electron microscopy (FE-SEM) and adsorption capacity test were used to evaluate characteristic of the new materials. MIPs, NIPs and C18 were used for rapid purification of caffeic acid from hawthorn with solid-phase extraction ( SPE) , and extract yields of caffeic acid with the proposed materials were 3.46 µg/g, 1.01 µg/g and 1.17 µg/g, respectively. To optimize the MIPs-SPE procedures, different kinds of elution solutions were studied. Deep eutectic solvents (DESs) were prepared by choline chloride (ChCl)-glycerol (1/2, n/n) and choline chloride-urea (1/ 2, n/n). Methanol was mixed with the two kinds of DESs (glycerol-based DESs, urea-based DESs) in different ratios (0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1, v/v), and they were used to investigated as elution solutions in the above MIPs-SPE procedures. The results showed that MIPs were potential SPE materials, and methanol/ glycerol-based DESs (3 :1, v/v) had the best elution capability with the recovery of 82.32%.

  5. Study of cosmic-ray modulation during the recent deep solar minimum, mini maximum and intervening ascending phase of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Badruddin, B.; Aslam, O. P. M.

    After a prolonged and deep solar minimum at the end of cycle 23, current solar cycle 24 is one of the very low active cycles, weakest cycle in more than 50 years. These two periods of deep minima and mini maxima are separated by a period of increasing solar activity as measured by sunspot numbers. We study the cosmic ray relationship with the solar activity, heliospheric plasma and field parameters including the heliospheric current sheet (HCS), during these three periods (phases) of different level and nature of solar activity; (a) a deep minimum, (b) an increasing period and (c) a ‘mini’ maximum. We utilize the neutron monitor data from stations located around the globe to study the rigidity dependence of modulation during the two extremes, i.e., minima and maxima. We also study the time lag between the GCR intensity and various solar/interplanetary parameters separately during the three activity phases. Using the cosmic ray data of neutron monitors with different cutoff rigidities, we study the rigidity dependence of time lag during individual phases. The role/effectiveness of various parameters, including the HCS tilt, in modulating the GCR intensity during the three different phases has also been studied by correlation analysis. The relative importance of various physical processes during different phases and the implication of these results for modulation models are also discussed.

  6. Design and analysis of low-loss linear analog phase modulator for deep space spacecraft X-band transponder (DST) application

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Mueller, Robert O.

    1991-01-01

    This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.

  7. Design and analysis of low-loss linear analog phase modulator for deep space spacecraft X-band transponder (DST) application

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Mueller, Robert O.

    1991-01-01

    This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.

  8. Evaluation of an Extended Autocorrelation Phase Estimator for Ultrasonic Velocity Profiles Using Nondestructive Testing Systems.

    PubMed

    Ofuchi, César Yutaka; Coutinho, Fabio Rizental; Neves, Flávio; de Arruda, Lucia Valéria Ramos; Morales, Rigoberto Eleazar Melgarejo

    2016-08-09

    In this paper the extended autocorrelation velocity estimator is evaluated and compared using a nondestructive ultrasonic device. For this purpose, three velocity estimators are evaluated and compared. The autocorrelation method (ACM) is the most used and well established in current ultrasonic velocity profiler technology, however, the technique suffers with phase aliasing (also known as the Nyquist limit) at higher velocities. The cross-correlation method (CCM) is also well known and does not suffer with phase aliasing as it relies on time shift measurements between emissions. The problem of this method is the large computational burden due to several required mathematical operations. Recently, an extended autocorrelation method (EAM) which combines both ACM and CCM was developed. The technique is not well known within the fluid engineering community, but it can measure velocities beyond the Nyquist limit without the ACM phase aliasing issues and with a lower computational cost than CCM. In this work, all three velocity estimation methods are used to measure a uniform flow of the liquid inside a controlled rotating cylinder. The root-mean-square deviation variation coefficient (CVRMSD) of the velocity estimate and the reference cylinder velocity was used to evaluate the three different methods. Results show that EAM correctly measures velocities below the Nyquist limit with less than 2% CVRMSD. Velocities beyond the Nyquist limit are only measured well by EAM and CCM, with the advantage of the former of being computationally 15 times faster. Furthermore, the maximum value of measurable velocity is also investigated considering the number of times the velocity surpasses the Nyquist limit. The combination of number of pulses and number of samples, which highly affects the results, are also studied in this work. Velocities up to six times the Nyquist limit could be measurable with CCM and EAM using a set of parameters as suggested in this work. The results validate

  9. Evaluation of an Extended Autocorrelation Phase Estimator for Ultrasonic Velocity Profiles Using Nondestructive Testing Systems

    PubMed Central

    Ofuchi, César Yutaka; Coutinho, Fabio Rizental; Neves, Flávio; de Arruda, Lucia Valéria Ramos; Morales, Rigoberto Eleazar Melgarejo

    2016-01-01

    In this paper the extended autocorrelation velocity estimator is evaluated and compared using a nondestructive ultrasonic device. For this purpose, three velocity estimators are evaluated and compared. The autocorrelation method (ACM) is the most used and well established in current ultrasonic velocity profiler technology, however, the technique suffers with phase aliasing (also known as the Nyquist limit) at higher velocities. The cross-correlation method (CCM) is also well known and does not suffer with phase aliasing as it relies on time shift measurements between emissions. The problem of this method is the large computational burden due to several required mathematical operations. Recently, an extended autocorrelation method (EAM) which combines both ACM and CCM was developed. The technique is not well known within the fluid engineering community, but it can measure velocities beyond the Nyquist limit without the ACM phase aliasing issues and with a lower computational cost than CCM. In this work, all three velocity estimation methods are used to measure a uniform flow of the liquid inside a controlled rotating cylinder. The root-mean-square deviation variation coefficient (CVRMSD) of the velocity estimate and the reference cylinder velocity was used to evaluate the three different methods. Results show that EAM correctly measures velocities below the Nyquist limit with less than 2% CVRMSD. Velocities beyond the Nyquist limit are only measured well by EAM and CCM, with the advantage of the former of being computationally 15 times faster. Furthermore, the maximum value of measurable velocity is also investigated considering the number of times the velocity surpasses the Nyquist limit. The combination of number of pulses and number of samples, which highly affects the results, are also studied in this work. Velocities up to six times the Nyquist limit could be measurable with CCM and EAM using a set of parameters as suggested in this work. The results validate

  10. Thromboelastographic profile for a dog with hypocoagulable and hyperfibrinolytic phase of disseminated intravascular coagulopathy.

    PubMed

    Vilar-Saavedra, P; Hosoya, K

    2011-12-01

    The objective of this study is to report the use of thromboelastography as a diagnostic tool for the hyperfibrinolytic phase of disseminated intravascular coagulopathy in a dog with metastatic haemangiosarcoma. We established a cytological (i.e. fine needle aspirate) and histopathological (i.e. excisional surgical biopsy) diagnosis of haemangiosarcoma in a 10-year-old male castrated Bichon Frise with multiple dark purple dermoepidermal nodules on the ventral abdomen and medial stifle areas, multiple small pulmonary nodules and a solitary liver mass. The dog was treated with chemotherapy (AC protocol). Forty-nine days after completion of four treatment cycles, the dog was presented for recheck. Complete blood count revealed anaemia and mild thrombocytopenia. Chemistry profile showed no significant abnormalities. Analysis of haemostasis consisted of prolonged clotting times (prothrombin time, activated partial thromboplastin time), mild hypofibrinogenaemia and increased D-dimers. A presumptive diagnosis of disseminated intravascular coagulopathy was made. A re-calcified thromboelastography was simultaneously done to confirm the coagulopathy. Thromboelastographic tracings correlated with the plasma-based test results showing hypocoagulability (prolonged clotting times and prolonged thromboelastography clot kinetics; weaker clot with decreased fibrinogen levels, platelet count and lower thromboelastography tracing amplitude) and hyperfibrinolysis (increased D-dimers and increased D-dimers and increased thromboelastography lysis parameters). Based on these results, the dog was considered to be in the hyperfibrinolytic phase of disseminated intravascular coagulopathy. Results of the conventional haemostasis tests supported those obtained on thromboelastography. Humane euthanasia was performed because of poor prognosis and progressive disease, making further follow-up unavailable. As demonstrated in this case report, thromboelastography was found to be a helpful

  11. Direct measurement of the refractive index profile of phase gratings, recorded in silver halide holographic materials by phase-contrast microscopy

    NASA Astrophysics Data System (ADS)

    Bányász, I.

    2003-11-01

    Plane-wave phase holograms recorded in Agfa-Gevaert 8E75HD emulsions and processed by the combination of AAC developer and the R-9 bleaching agent were studied by phase-contrast microscopy, using high-power immersion (100×) objective. Thus the modulation of the refractive index as a function of the bias exposure and the visibility of the recording interference pattern can also be determined. Measured diffraction efficiencies were compared to those predicted by coupled wave theory, using the measured refractive index modulations. Direct measurement of the phase profile of the gratings can be used for optimizing processing.

  12. Design and analysis of a low-loss linear analog phase modulator for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Mueller, R. O.

    1991-01-01

    This article summarizes the design concepts, analyses, and development of an X-band (8145 MHz) transponder low-loss linear phase modulator for deep space spacecraft applications. A single-section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. A linear phase deviation of 92 deg with a linearity tolerance of +/- 8 percent was measured for this modulator from 8257 MHz to 8634 MHz over the temperature range -20 to 75 C. The measured insertion loss and the static delay variation with temperature were 2 +/- 0.3 dB and 0.16 psec/ C, respectively. Based on this design, cascaded sections have been modeled, and simulations were performed to provide an X-band deep space transponder (DST) phase modulator with +/- 2.5 radians (+/- 143 deg) of peak phase deviation to accommodate downlink signal modulation with composite telemetry data and ranging, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase-modulator requirements and show excellent agreement with the predicted results.

  13. An Examination of the Relationship Between Electroglottographic Contact Quotient, Electroglottographic Decontacting Phase Profile, and Acoustical Spectral Moments.

    PubMed

    Awan, Shaheen N; Krauss, Andrew R; Herbst, Christian T

    2015-09-01

    To date, only a few studies have examined the possible relationship between electroglottographic (EGG) data and spectral characteristics of the voice. This study examined the possible association between EGG signal data (contact quotient [CQ] and decontacting phase profile) and spectral moments of the acoustic signal (spectral mean, spectral standard deviation (SD), spectral skewness, and spectral kurtosis). Furthermore, the possible effects of gender on these measurements were analyzed. Sustained vowel /ɑ/ productions were obtained from 48 normophonic individuals (24 adult males and 24 adult females). The central 1-second portions of the acoustic vowel samples were analyzed for spectral moments, and the EGG signal was analyzed for CQ (CQEGG), fundamental frequency (F0), and decontacting phase profile. Across all subjects, the spectral characteristics of the voice (in particular, spectral SD, skewness, and kurtosis) are significantly related to changes in the relative duration of vocal fold contact (as measured via CQEGG). In addition, significant effects of the profile of the EGG decontacting phase (ie, concave down/"knee" vs concave up/"no knee") on spectral SD were also observed, as well as a strong trend for decontacting phase profile to influence the spectral mean. Although the degree of vocal fold contact and differences in decontacting phase profile may have an influence on the spectral characteristics of the acoustic voice signal, the strength of correlations between CQEGG values and measures of spectral moments only accounted for approximately 13-16% of the variation in spectral distribution characteristics. These results stress the importance of the transformative role of the supraglottal vocal tract in producing an acoustic output that maintains some of the characteristics of the glottal source, but which modifies the source characteristics in ways not completely accounted for by single parameters such as CQEGG or EGG profile. Copyright © 2015 The

  14. The Central Pamir domes as tracer of gravitational disequilibrium and deformation phases forced by deep-seated lithospheric processes

    NASA Astrophysics Data System (ADS)

    Rutte, Daniel; Fox, Matthew; Ratschbacher, Lothar

    2017-04-01

    Miocene gneiss domes in the Pamir allow unique insight into crustal-scale processes forming the Asian crust of the Pamir-Tibet Plateau. They were exhumed along normal-sense shear zones in an intermittent phase of N-S extension while earlier and later structures document N-S shortening. Recently, Schmidt et al. (2011), Stearns et al., (2013; 2015), Rutte et al. (a & b, accepted), and Hacker et al. (submitted) established a vast structural, petrologic, and geochronologic dataset for the Central Pamir domes. These studies interpreted the domes as a product of gravitational collapse. The dataset includes (micro)structural observations constraining the mechanism of exhumation, thermobarometry of the metamorphic rocks, petrochronologic data constraining timing of pro- and retrogression, a vast multi-method thermochronometric dataset including age-elevation and age-distance data, dates for normal-sense shear zones and barometric data on intrusive rocks. These data constrain the time-temperature, pressure-temperature, and time-pressure history of the dome rocks. We explore the dataset using one-dimensional thermal models. Our code solves the heat transfer equation and gives a transient solution allowing for variation of the geothermal gradient and thermal diffusivity. At this stage, our models suggest that exponential decay of an initially high exhumation rate of 6 km/Myr at 22 Ma to 0.5km/Myr at 13 Ma best explains the dataset. This suggests a one-time input of gravitational potential energy (GPE) that is successively decaying through crustal extension. Both, Asian crustal foundering or Indian slab breakoff may concur with this result. While the Central Pamir domes extend >400 km along strike of the orogen, little variation in timing of most of exhumation during N-S extension is observed. This suggests that the underlying mechanism - be it crustal foundering or slab breakoff - varied little along strike as well. References Hacker, B.R., Ratschbacher, L., Rutte, D

  15. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false To which production do I apply the RSV earned... Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT...-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.33 To which production do I...

  16. Transcriptional profiling of Actinobacillus pleuropneumoniae during the acute phase of a natural infection in pigs

    PubMed Central

    2010-01-01

    Background Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease which causes great economic losses worldwide. Many virulence factors are involved in the pathogenesis, namely capsular polysaccharides, RTX toxins, LPS and many iron acquisition systems. In order to identify genes that are expressed in vivo during a natural infection, we undertook transcript profiling experiments with an A. pleuropneumoniae DNA microarray, after recovery of bacterial mRNAs from serotype 5b-infected porcine lungs. AppChip2 contains 2033 PCR amplicons based on the genomic sequence of App serotype 5b strain L20, representing more than 95% of ORFs greater than 160 bp in length. Results Transcriptional profiling of A. pleuropneumoniae recovered from the lung of a pig suffering from a natural infection or following growth of the bacterial isolate in BHI medium was performed. An RNA extraction protocol combining beadbeating and hot-acid-phenol was developed in order to maximize bacterial mRNA yields and quality following total RNA extraction from lung lesions. Nearly all A. pleuropneumoniae transcripts could be detected on our microarrays, and 150 genes were deemed differentially expressed in vivo during the acute phase of the infection. Our results indicate that, for example, gene apxIVA from an operon coding for RTX toxin ApxIV is highly up-regulated in vivo, and that two genes from the operon coding for type IV fimbriae (APL_0878 and APL_0879) were also up-regulated. These transcriptional profiling data, combined with previous comparative genomic hybridizations performed by our group, revealed that 66 out of the 72 up-regulated genes are conserved amongst all serotypes and that 3 of them code for products that are predicted outer membrane proteins (genes irp and APL_0959, predicted to code for a TonB-dependent receptor and a filamentous hemagglutinin/adhesin respectively) or lipoproteins (gene APL_0920). Only 4 of 72 up-regulated genes

  17. HPV Population Profiling in Healthy Men by Next-Generation Deep Sequencing Coupled with HPV-QUEST

    PubMed Central

    Yin, Li; Yao, Jin; Chang, Kaifen; Gardner, Brent P.; Yu, Fahong; Giuliano, Anna R.; Goodenow, Maureen M.

    2016-01-01

    Multiple-type human papillomaviruses (HPV) infection presents a greater risk for persistence in asymptomatic individuals and may accelerate cancer development. To extend the scope of HPV types defined by probe-based assays, multiplexing deep sequencing of HPV L1, coupled with an HPV-QUEST genotyping server and a bioinformatic pipeline, was established and applied to survey the diversity of HPV genotypes among a subset of healthy men from the HPV in Men (HIM) Multinational Study. Twenty-one HPV genotypes (12 high-risk and 9 low-risk) were detected in the genital area from 18 asymptomatic individuals. A single HPV type, either HPV16, HPV6b or HPV83, was detected in 7 individuals, while coinfection by 2 to 5 high-risk and/or low-risk genotypes was identified in the other 11 participants. In two individuals studied for over one year, HPV16 persisted, while fluctuations of coinfecting genotypes occurred. HPV L1 regions were generally identical between query and reference sequences, although nonsynonymous and synonymous nucleotide polymorphisms of HPV16, 18, 31, 35h, 59, 70, 73, cand85, 6b, 62, 81, 83, cand89 or JEB2 L1 genotypes, mostly unidentified by linear array, were evident. Deep sequencing coupled with HPV-QUEST provides efficient and unambiguous classification of HPV genotypes in multiple-type HPV infection in host ecosystems. PMID:26821041

  18. Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins.

    PubMed

    Edgcomb, Virginia P; Pachiadaki, Maria G; Mara, Paraskevi; Kormas, Konstantinos A; Leadbetter, Edward R; Bernhard, Joan M

    2016-11-01

    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most polyextreme habitats on Earth. In comparison to microbial activities occurring within the haloclines and brines of these unusual water column habitats near the Mediterranean seafloor, relatively little is known about microbial metabolic activities in the underlying sediments. In addition, it is not known whether activities are shaped by the unique chemistries of the different DHAB brines and whether evidence exists for active microbial eukaryotes in those sediments. Metatranscriptome analysis was applied to sediment samples collected using ROV Jason from underneath the haloclines of Urania, Discovery and L'Atalante DHABs and a control site. We report on expression of genes associated with sulfur and nitrogen cycling, putative osmolyte biosynthetic pathways and ion transporters, trace metal detoxification, selected eukaryotic activities (particularly of fungi), microbe-microbe interactions, and motility in sediments underlying the haloclines of three DHABs. Relative to our control sediment sample collected outside of Urania Basin, microbial communities (including eukaryotes) in the Urania and Discovery DHAB sediments showed upregulation of expressed genes associated with nitrogen transformations, osmolyte biosynthesis, heavy metals resistance and metabolism, eukaryotic organelle functions, and cell-cell interactions. Sediments underlying DHAB haloclines that have cumulative physico-chemical stressors within the limits of tolerance for microoorganisms can therefore be hotspots of activity in the deep Mediterranean Sea.

  19. HPV Population Profiling in Healthy Men by Next-Generation Deep Sequencing Coupled with HPV-QUEST.

    PubMed

    Yin, Li; Yao, Jin; Chang, Kaifen; Gardner, Brent P; Yu, Fahong; Giuliano, Anna R; Goodenow, Maureen M

    2016-01-25

    Multiple-type human papillomaviruses (HPV) infection presents a greater risk for persistence in asymptomatic individuals and may accelerate cancer development. To extend the scope of HPV types defined by probe-based assays, multiplexing deep sequencing of HPV L1, coupled with an HPV-QUEST genotyping server and a bioinformatic pipeline, was established and applied to survey the diversity of HPV genotypes among a subset of healthy men from the HPV in Men (HIM) Multinational Study. Twenty-one HPV genotypes (12 high-risk and 9 low-risk) were detected in the genital area from 18 asymptomatic individuals. A single HPV type, either HPV16, HPV6b or HPV83, was detected in 7 individuals, while coinfection by 2 to 5 high-risk and/or low-risk genotypes was identified in the other 11 participants. In two individuals studied for over one year, HPV16 persisted, while fluctuations of coinfecting genotypes occurred. HPV L1 regions were generally identical between query and reference sequences, although nonsynonymous and synonymous nucleotide polymorphisms of HPV16, 18, 31, 35h, 59, 70, 73, cand85, 6b, 62, 81, 83, cand89 or JEB2 L1 genotypes, mostly unidentified by linear array, were evident. Deep sequencing coupled with HPV-QUEST provides efficient and unambiguous classification of HPV genotypes in multiple-type HPV infection in host ecosystems.

  20. Cytokine Profile of Children Hospitalized with Virologically-Confirmed Dengue during Two Phase III Vaccine Efficacy Trials.

    PubMed

    Harenberg, Anke; de Montfort, Aymeric; Jantet-Blaudez, Frédérique; Bonaparte, Matthew; Boudet, Florence; Saville, Melanie; Jackson, Nicholas; Guy, Bruno

    2016-07-01

    Two large-scale efficacy studies with the recombinant yellow fever-17D-dengue virus, live-attenuated, tetravalent dengue vaccine (CYD-TDV) candidate undertaken in Asia (NCT01373281) and Latin America (NCT01374516) demonstrated significant protection against dengue disease during two years' active surveillance (active phase). Long-term follow up of participants for breakthrough disease leading to hospitalization is currently ongoing (hospital phase). We assessed the cytokine profile in acute sera from selected participants hospitalized (including during the active phase) up to the beginning of the second year of long-term follow up for both studies. The serum concentrations of 38 cytokines were measured in duplicate using the Milliplex Human Cytokine MAGNETIC BEAD Premixed 38 Plex commercial kit (Millipore, Billerica, MA, USA). Partial least squares discriminant analyses did not reveal any difference in the overall cytokine profile of CYD-TDV and placebo recipients hospitalized for breakthrough dengue regardless of stratification used. In addition, there was no difference in the cytokine profile for breakthrough dengue among those aged <9 years versus those aged ≥ 9 years. These exploratory findings show that CYD-TDV does not induce a particular immune profile versus placebo, corroborating the clinical profile observed.

  1. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  2. Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein.

    PubMed

    Huang, Yanhua; Wang, Yuzhi; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian

    2015-06-02

    Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe3O4@GO) to form Fe3O4@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe3O4@GO-DES, and the results indicated the successful preparation of Fe3O4@GO-DES. The UV-vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe3O4@GO-DES. Comparison of Fe3O4@GO and Fe3O4@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe3O4@GO-DES performs better than Fe3O4@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L(-1) Na2HPO4 contained 1 mol L(-1) NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled.

  3. Research of errors and fabrication method for cylindrical hologram phase grating as standard in interferometric stylus profiler

    NASA Astrophysics Data System (ADS)

    Zha, Hang; Chen, Xinrong; Li, Chaoming; Li, Xiaoyang; Yu, Jian

    2016-09-01

    The stylus profiler is a conventional instrument in surface topography measurement. The interferometric stylus profiler which uses cylindrical phase grating as standard obtains the surface topography information via measuring the changes of phase. In this way, it is apt to realize wider range, higher accuracy and higher resolution simultaneously in topography measurement. Currently, cylindrical phase grating is ordinarily fabricated by means of holographic record. Subject to the present method and technics, the microstructure parameters of the grating, such as spatial frequency, groove depth and duty cycle can hardly been uniform in every area of grating. Concerning the working principle of interferometric stylus profiler with cylindrical phase grating as sensor, the quality of cylindrical hologram phase grating (80mm in radius of curvature, 1200lp/mm in center spatial frequency) is analyzed comprehensively in this paper. Effects of the inconsistency distribution of microstructure parameter of grating over cylinder surface on the phase difference between +/-1st order diffraction wave-fronts in different incidence angle are discussed in detail. The theoretical analysis and numerical calculation results show that: the holographic recording parameters determine the distribution of spatial frequency of cylindrical hologram phase grating; the inconsistency of spatial frequency on the cylinder surface is the primary cause affecting measurement accuracy; the inconsistency of duty cycle of grating will have influence on measurement accuracy when the incidence angle is not equal to zero (i.e.in a small incidence angle). Therefore, the process tolerances of cylindrical phase grating are presented and a new fabrication method of high precision cylindrical phase grating is proposed.

  4. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    PubMed

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  5. Into the Deep: Variability in Soil Microbial Communities and Carbon Turnover Along a Tropical Forest Soil Depth Profile

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Wood, T. E.

    2015-12-01

    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored within deeper soil layers, but we know exceedingly little about the fate of this C or the microbial communities that drive deep soil biogeochemistry. From the data that do exist, most organic matter (OM) in tropical soils appears associated with mineral particles, suggesting deep soils may provide greater C stabilization due to organo-metal co-precipitation and mineral-surface interactions. However, few studies have evaluated sub-surface soils in tropical ecosystems, the turnover times of deep soil C, and sensitivity of this C to global environmental change. To address this critical research need, we quantified C pools, microbial communities and soil radiocarbon turnover times in bulk soils and soil fractions [free light (unprotected), dense (mineral-associated)] from 0-140 cm in replicate soil pits in the Luquillo Experimental Forest, Puerto Rico. Unsurprisingly, we found soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C stocks dropped from 5.5 % at the surface to <0.5% at 140cm depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface (0-20 cm), to 5000-40,000 years at 140 cm depth. Soil C in the mineral associated fraction was much older than the free light fraction C, which reflected modern 14C at all depths. In comparison to temperate deciduous forests, these 14C values reflect far older soil C, and OM decomposition that highly favors free light C pools, even at depth. While previous work suggests these low C tropical subsoils contain small but metabolically active microbial communities at depths of ~100cm, these organisms appear highly OM limited, and preferentially degrade recent inputs. In the coming half century, tropical forests are predicted to see a 2 - 5

  6. Analysis and Optimization of the Performance of a Convolutionally Encoded Deep-Space Link in the Presence of Spacecraft Oscillator Phase Noise

    NASA Astrophysics Data System (ADS)

    Shambayati, S.

    1999-10-01

    In order to reduce the cost of deep-space missions, NASA is exploring the possibility of using new, cheaper technologies. Among these is the possibility of replacing ultra-stable oscillators (USOs) onboard the spacecraft with oscillators with measurable phase noise. In addition, it is proposed that these spacecraft use higher 32-GHz (Ka-band) radio frequencies in order to save mass. In this article, the performance of a convolutionally encoded deep-space link using non-USO-type oscillators onboard the spacecraft at Ka-band is analyzed. It is shown that the ground-receiver tracking-loop bandwidth settings need to be optimized and that, by selecting an oscillator with good phase-noise characteristics, the minimum required power onboard the spacecraft could be reduced by as much as 10 dB.

  7. Quantitative density profiling with pure phase encoding and a dedicated 1D gradient

    NASA Astrophysics Data System (ADS)

    Deka, K.; MacMillan, M. B.; Ouriadov, A. V.; Mastikhin, I. V.; Young, J. J.; Glover, P. M.; Ziegler, G. R.; Balcom, B. J.

    2006-01-01

    A new centric scan imaging methodology for density profiling of materials with short transverse relaxation times is presented. This method is shown to be more robust than our previously reported centric scan pure phase encode methodologies. The method is particularly well suited to density imaging of low gyro-magnetic ratio non-proton nuclei through the use of a novel dedicated one-dimensional magnetic field gradient coil. The design and construction of this multi-layer, water cooled, gradient coil is presented. Although of large diameter (7.62 cm) to maximize sample cross section, the gradient coil has an efficiency of several times that offered by conventional designs (6 mT/m/A). The application of these ideas is illustrated with high resolution density-weighted proton ( 1H) images of hazelnut oil penetration into chocolate, and lithium ion ( 7Li) penetration into cement paste. The methods described in this paper provide a straightforward and reliable means for imaging a class of samples that, until now, have been very difficult to image.

  8. Effects of RF pulse profile and intra-voxel phase dispersion on MR fingerprinting with balanced SSFP readout.

    PubMed

    Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael

    2017-09-01

    To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118

    NASA Astrophysics Data System (ADS)

    Shang, Zhuo; Li, Xiaoming; Meng, Li; Li, Chunshun; Gao, Shushan; Huang, Caiguo; Wang, Bingui

    2012-03-01

    Bioassay-guided fractionation of the crude extract from Penicillium commune SD-118, a fungus obtained from a deep-sea sediment sample, resulted in the isolation of a known antibacterial compound, xanthocillin X ( 1), and 14 other known compounds comprising three steroids ( 2-4), two ceramides ( 5 and 6), six aromatic compounds ( 7-12), and three alkaloids ( 13-15). Xanthocillin X ( 1) was isolated for the first time from a marine fungus. In the bioassay, xanthocillin X ( 1) displayed remarkable antimicrobial activity against Staphylococcus aureus and Escherichia coli, and significant cytotoxicity against MCF-7, HepG2, H460, Hela, Du145, and MDA-MB-231 cell lines. Meleagrin ( 15) exhibited cytotoxicity against HepG2, Hela, Du145, and MDA-MB-231 cell lines. This is the first report of the cytotoxicity of xanthocillin X ( 1).

  10. Crustal structure and geodynamics of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: Insights from deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Lü, Qingtian; Shi, Danian; Liu, Zhendong; Zhang, Yongqian; Dong, Shuwen; Zhao, Jinhua

    2015-12-01

    A 300 km long seismic reflection profile was acquired across the Middle and Lower Reaches of the Yangtze River (MLY) metallogenic belt and its adjacent areas. The objective of the survey was to establish the deep architecture and geodynamic framework of the region. Results based on the interpretation of the deep seismic data include (1) Tan-Lu fault appears as a subvertical thrust fault or transpression fault with its deep portion dipping toward the southeast; (2) the Zhangbaling uplift is squeezed out along this fault; (3) complex upper crustal deformation structures beneath the Chuquan depression include both kink bands, thrusts, imbrication and fold structures reflecting contraction deformation, and detachment fault and normal-fault structures reflecting extensional deformation; (4) the "crocodile" reflection structure emerging beneath the Tan-Lu fault and Ningwu-Lishui volcanic basin, which represents the decoupled deformation process of the upper and lower crust associated with intra-continental subduction; (5) further to the southeast, the upper crust deformation shows a large-scale "wave-form" pattern, making crustal scale syncline and anticline; (6) the entire section of the reflection Moho is clearly discernible at depth of 30.0-34.5 km, and the Moho beneath the Middle and Lower Reaches of Yangtze River metallogenic belt is shallowest, while the Moho beneath the North China block is deeper than that beneath the Yangtze block. The Moho offsets could be seen beneath the Ningwu volcanic basin. The seismic reflection data suggest that lithosphere delamination and asthenosphere upwelling that may result from the Mesozoic intra-continental orogenesis is responsible for the formation of large scale magmatism and mineralization in the MLY metallogenic belt.

  11. Changes in Carbon Chemistry and Stability Along Deep Tropical Soil Profiles at the Luquillo Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Stone, M.; Hockaday, W. C.; Plante, A. F.

    2014-12-01

    Tropical forests are the largest terrestrial carbon (C) sink, and tropical forest soils contribute disproportionately to the poorly-characterized deep soil C pool. The goal of this study was to evaluate how carbon chemistry and stability change with depth in tropical forest soils formed on two contrasting parent materials. We used soils from pits excavated to 140 cm depth that were stratified across two soil types (Oxisols and Inceptisols) at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We used 13C nuclear magnetic resonance (NMR) spectroscopy to characterize soil C chemistry and differential scanning calorimetry (DSC) coupled with evolved gas analysis (CO2-EGA) to evaluate the thermal stability of soil C during ramped combustion. Thirty-four samples with an initial C concentration ≥1% were chosen from discrete depth intervals (0, 30, 60, 90 & 140 cm) for 13C NMR analysis, while DSC was performed on 122 samples that included the NMR sample set and additional samples at 20, 50, 80 and 110 cm depth. Preliminary 13C NMR results indicate higher alkyl : O-alkyl ratios and an enrichment of aliphatic and proteinaceous C with depth, compared with greater aromatic and carbohydrate signals in surface soils. The energy density of soil C (J mg-1 C) also declined significantly with depth. In Oxisols, most CO2 evolution from combustion occurred around 300ºC, while most CO2 evolution occurred at higher temperatures (400-500ºC) in Inceptisols. Our findings suggest soil C is derived primarily of plant biomolecules in surface soils and becomes increasingly microbial with depth. Soil matrix-mediated differences in C transport and preservation may result in differences in C chemistry between the two soil types and a more thermally labile C pool in the Oxisols. We suggest that energy-poor substrates, combined with potentially stronger organo-mineral interactions in subsoils, may explain the long-term stability of deep C in highly weathered tropical soils.

  12. Methodology for phase selection of a weak basic drug candidate, utilizing kinetic solubility profiles in bio-relevant media.

    PubMed

    Furukawa, Shuntaro; Zhao, Chenhua; Ohki, Yasuhiro

    2010-02-01

    We aimed to develop a phase selection methodology for a weak basic active pharmaceutical ingredient (API) that would require less than 10mg of the API and monitor the real-time kinetic solubility of the API in two bio-relevant media. Three sets of kinetic solubility measurements were conducted for free form I and the disulfate salt of an API (compound A) in order to determine the better API phase for further development of the compound. Tests consisted of solid API dissolution in both simulated gastric fluid (SGF) and fasted-state intestinal fluid (FaSSIF), and precipitation kinetics by injection of liquid state API into FaSSIF. All dissolution tests were conducted above the saturated concentrations in order to determine the compounds' thermodynamic and kinetic solubility to trace the API's phase transitions during dissolution. The pharmacokinetic profiles of compound A following oral administration of two API phases were evaluated in dogs. Results of the three sets of kinetic solubility measurements showed different kinetic solubility profiles for the two API phases under gastrointestinal conditions, indicating that the disulfate salt is preferred over free form I due to its superior kinetic solubility profile. This conclusion is consistent with the bioavailability results obtained in dogs. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Communication: spin-boson model with diagonal and off-diagonal coupling to two independent baths: ground-state phase transition in the deep sub-Ohmic regime.

    PubMed

    Zhao, Yang; Yao, Yao; Chernyak, Vladimir; Zhao, Yang

    2014-04-28

    We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling.

  14. Structure of northeastern New Mexico from deep seismic reflection profiles: Implications for the Proterozoic tectonic evolution of southwestern North America

    NASA Astrophysics Data System (ADS)

    Eshete, Tefera Gashu

    2001-09-01

    Previous geologic, geochronologic, structural, isotope, and xenolith studies have shown that the Precambrian rocks of northern New Mexico belong to the Yavapai and Mazatzal provinces. The boundary between the provinces is a wide zone defined on its northern edge by the northern extent of 1.65 Ga deformation and southern edge by the southern most extent of Yavapai crust (pre-1.7 Ga). However, the nature of the Precambrian province boundary at depth, its evolution through time, and the tectonic processes that affected the interior of these provinces, are not well understood. In order to obtain new information concerning these problems, processing and interpretation of reflection seismic data was conducted on data collected during the 1999 Continental Dynamics-Rocky Mountain (CD-ROM) project and data obtained from industry. In this study I present new information on the crustal structure of northern New Mexico provided by processing and interpretation of three seismic reflection profiles (NM-1, TB-1 and TB-2).The seismic data present evidence for Precambrian crustal growth and amalgamation, followed by subsequent reactivation of Precambrian structures. A seismic profile and gravity modeling across the NM-1 show a strongly reflective high-density (2850 kg-m-3) dome-shaped body in the middle to lower crust. On the basis of the absence of a hanging-wall antiform, the occurrence of normal sense of deflection of reflectors in the footwall, possibly Moho pullup, and geological information such as an exposed Proterozoic extensional shear zone in the Sandia Mountains, this feature is interpreted to represent a 1.4 Ga? extensional shear zone which resulted in rotation of ˜1.65 Ga imbricate thrust zones. Layered reflectivity directly below the top of Precambrian basement on profiles TB-1 and the eastern part of TB-2, based on geophysical and geological information from nearby areas is interpreted as a sequence of ˜1.4 Ga volcanic and sedimentary rocks within the Proterozoic

  15. Superdeep vertical seismic profiling at the KTB deep drill hole (Germany): Seismic close-up view of a major thrust zone down to 8.5 km depth

    NASA Astrophysics Data System (ADS)

    Rabbel, W.; Beilecke, T.; Bohlen, T.; Fischer, D.; Frank, A.; Hasenclever, J.; Borm, G.; Kück, J.; Bram, K.; Druivenga, G.; Lüschen, E.; Gebrande, H.; Pujol, J.; Smithson, S.

    2004-09-01

    The lowermost section of the continental superdeep drill hole German Continental Deep Drilling Program (KTB) (south Germany) has been investigated for the first time by vertical seismic profiling (VSP). The new VSP samples the still accessible range of 6-8.5 km depth. Between 7 and 8.5 km depth, the drill hole intersects a major cataclastic fault zone which can be traced back to the Earth's surface where it forms a lineament of regional importance, the Franconian line. To determine the seismic properties of the crust in situ, in particular within and around this deep fault zone, was one of the major goals of the VSP. For the measurements a newly developed high-pressure/high-temperature borehole geophone was used that was capable of withstanding temperatures and pressures up to 260°C and 140 MPa, respectively. The velocity-depth profiles and reflection images resulting from the VSP are of high spatial resolution due to a small geophone spacing of 12.5 m and a broad seismic signal spectrum. Compared to the upper part of the borehole, we found more than 10% decrease of the P wave velocity in the deep, fractured metamorphic rock formations. P wave velocity is ˜5.5 km/s at 8.5 km depth compared to 6.0-6.5 km/s at more shallow levels above 7 km. In addition, seismic anisotropy was observed to increase significantly within the deep fracture zone showing more than 10% shear wave splitting and azimuthal variation of S wave polarization. In order to quantify the effect of fractures on the seismic velocity in situ we compared lithologically identical rock units at shallow and large depths: Combining seismic velocity and structural logs, we could determine the elastic tensors for three gneiss sections. The analysis of these tensors showed that we need fracture porosity in the percent range in order to explain seismic velocity and anisotropy observed within the fault zone. The opening of significant pore space around 8 km depth can only be maintained by differential tectonic

  16. Chronic toxicological effects of β-diketone antibiotics on Zebrafish (Danio rerio) using transcriptome profiling of deep sequencing.

    PubMed

    Wang, Huili; Yin, Xiaohan; Li, Fanghui; Dahlgren, Randy A; Zhang, Yuna; Zhang, Hongqin; Wang, Xuedong

    2016-11-01

    Transcriptome analysis is important for interpreting the functional elements of the genome and revealing the molecular constituents of cells and tissues. Herein, differentially transcribed genes were identified by deep sequencing after zebrafish (Danio rerio) were exposed to β-diketone antibiotics (DKAs); 23,129 and 23,550 mapped genes were detected in control and treatment groups, a total of 3238 genes were differentially expressed between control and treatment groups. Of these genes, 328 genes (213 up- and 115 down-regulation) had significant differential expression (p < 0.05) and an expression ratio (control/treatment) of >2 or <0.5. Additionally, we performed Gene Ontology (GO) category and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and found 266 genes in the treatment group with annotation terms linked to the GO category. A total of 77 differentially expressed transcriptional genes were associated with 132 predicted KEGG metabolic pathways. Serious liver tissue damage was reflected and consistent with the differences in genetic classification and function from the transcriptome analysis. These results enhance our understanding of zebrafish developmental processes under exposure to DKA stress. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1357-1371, 2016.

  17. Steps length error detector algorithm in phase-shifting interferometry using Radon transform as a profile measurement.

    PubMed

    Ramirez-Delreal, Tania A; Mora-Gonzalez, Miguel; Casillas-Rodriguez, Francisco J; Muñoz-Maciel, Jesus; Paz, Marco A

    2017-03-20

    Phase-shifting is one of the most useful methods of phase recovery in digital interferometry in the estimation of small displacements, but miscalibration errors of the phase shifters are very common. In practice, the main problem associated with such errors is related to the response of the phase shifter devices, since they are dependent on mechanical and/or electrical parts. In this work, a novel technique to detect and measure calibration errors in phase-shifting interferometry, when an unexpected phase shift arises, is proposed. The described method uses the Radon transform, first as an automatic-calibrating technique, and then as a profile measuring procedure when analyzing a specific zone of an interferogram. After, once maximum and minimum value parameters have been registered, these can be used to measure calibration errors. Synthetic and real interferograms are included in the testing, which has thrown good approximations for both cases, notwithstanding the interferogram fringe distribution or its phase-shifting steps. Tests have shown that this algorithm is able to measure the deviations of the steps in phase-shifting interferometry. The developed algorithm can also be used as an alternative in the calibration of phase shifter devices.

  18. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression

    PubMed Central

    2012-01-01

    Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase

  19. Crystal chemistry of hydrous phases in the Al2O3-Fe2O3-H2O system: implications for water cycle in the deep lower mantle

    NASA Astrophysics Data System (ADS)

    Zhang, L.

    2016-12-01

    Hydrous minerals play an important role in the transportation and storage of water in the Earth's interior. Recently a pyrite-structured iron oxide (FeO2) (P-phase) was found stable at 76 GPa and 1800 K [1] and this discovery has brought new insights into the H2-O2 cycles in the deep mantle. In this study, we perform in situ synchrotron X-ray experiments in the Al2O3-Fe2O3-H2O system in a laser-heated diamond anvil cell (DAC) at P-T conditions in the deep lower mantle. The new results added more complexity to the H2-O2/H2O cycles in the deep lower mantle. The symmetry and unit-cell parameters of each phase in the run products were determined using the multigrain approach [2]. On the other hand, the d-H solid solution AlOOH-MgSiO2(OH)2 is the stable hydrous phase coexisting with bridgmanite or post-perovskite under equilibrium P-T conditions to the deepest lower mantle [3]. The detailed crystal chemistry of the newly found hydrous phases and its relations to the d-H phase have been investigated using both first-principles calculations and experiments, providing new understanding to the hydration mechanism and water storage in the deep mantle. It is worth mentioning that recent development in high pressure multigrain method has realized separation of each individual phase in a multiphase assemblage and even allowed in situ crystal structure determination of a minor phase in the assemblage contained in a DAC [4]. [1] Q. Hu, D. Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, and H. K. Mao, Nature 534, 241 (2016). [2] H. O. Sørensen et al., Zeitschrift für Kristallographie 227, 63 (2012). [3] I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, and M. Nishijima, Earth and Planetary Science Letters 401, 12 (2014). [4] L. Zhang, D. Popov, Y. Meng, J. Wang, C. Ji, B. Li, and H.-k. Mao, American Mineralogist 101, 231 (2016).

  20. DNA methylation profiling in different phases of temporomandibular joint osteoarthritis in rats.

    PubMed

    Xiao, Jia-Ling; Meng, Juan-Hong; Gan, Ye-Hua; Li, Ya-Li; Zhou, Chun-Yan; Ma, Xu-Chen

    2016-08-01

    Temporomandibular joint osteoarthritis (TMJOA) is a complex disease with strong genetic and epigenetic components in its pathogenesis. The aim of this study was to evaluate DNA methylation in mandibular head cartilage in different phases of experimentally-induced TMJOA in rats. DNA methylation was evaluated using microarrays in the mandibular head cartilage of early, intermediate and late stage experimentally-induced TMJOA, and of the normal age-matched control groups. Genes with differentially methylated CpG sites were analyzed to reveal the over-represented gene ontologies and pathways at different stages, and were compared with published expression profiles to assess their overlappings. The DNA methylation patterns of the target genes were validated by methylated DNA immunoprecipitation qPCR in additional independent cartilage samples and mRNA levels were analyzed by real-time PCR. We observed 9489 differentially methylated regions between the TMJOA and controls. A total of 440 consistently altered genes were revealed in all three stages; most (80%) were hypomethylated and many were associated with cell cycle regulation. We also detected different DNA methylation changes in early and late stage TMJOA (Rearly=0.68, Rlate=0.47), while the differences between age-matched healthy cartilage were subtle. Strong inverse changes between methylation status and mRNA levels were confirmed in Adamts5, Chad, Cldn11 and Tnf. Our data reveals dynamic DNA methylation patterns during the progression of TMJOA, with a different host of genes and pathways. The changes of cartilage DNA methylation patterns might contribute to understand the etiologic mechanisms of TMJOA epigenetically. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. On the apparent power law in CDM halo pseudo-phase space density profiles

    NASA Astrophysics Data System (ADS)

    Nadler, Ethan O.; Oh, S. Peng; Ji, Suoqing

    2017-09-01

    We investigate the apparent power-law scaling of the pseudo-phase space density (PPSD) in cold dark matter (CDM) haloes. We study fluid collapse, using the close analogy between the gas entropy and the PPSD in the fluid approximation. Our hydrodynamic calculations allow for a precise evaluation of logarithmic derivatives. For scale-free initial conditions, entropy is a power law in Lagrangian (mass) coordinates, but not in Eulerian (radial) coordinates. The deviation from a radial power law arises from incomplete hydrostatic equilibrium (HSE), linked to bulk inflow and mass accretion, and the convergence to the asymptotic central power-law slope is very slow. For more realistic collapse, entropy is not a power law with either radius or mass due to deviations from HSE and scale-dependent initial conditions. Instead, it is a slowly rolling power law that appears approximately linear on a log-log plot. Our fluid calculations recover PPSD power-law slopes and residual amplitudes similar to N-body simulations, indicating that deviations from a power law are not numerical artefacts. In addition, we find that realistic collapse is not self-similar; scalelengths such as the shock radius and the turnaround radius are not power-law functions of time. We therefore argue that the apparent power-law PPSD cannot be used to make detailed dynamical inferences or extrapolate halo profiles inwards, and that it does not indicate any hidden integrals of motion. We also suggest that the apparent agreement between the PPSD and the asymptotic Bertschinger slope is purely coincidental.

  2. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling

    USGS Publications Warehouse

    Wang, Chun-Yong; Zeng, Rong-Sheng; Mooney, W.D.; Hacker, B.R.

    2000-01-01

    We present a new crustal cross section through the east-west trending ultrahigh-pressure (UHP) Dabie Shan orogenic belt, east central China, based on a 400-km-long seismic refraction profile. Data from our profile reveal that the cratonal blocks north and south of the orogen are composed of 35-km-thick crust consisting of three layers (upper, middle, and lower crust) with average seismic velocities of 6.0±0.2 km/s, 6.5±0.1 km/s, and 6.8±0.1 km/s. The crust reaches a maximum thickness of 41.5 km beneath the northern margin of the orogen, and thus the present-day root beneath the orogen is only 6.5 km thick. The upper mantle velocity is 8.0±0.1 km/s. Modeling of shear wave data indicate that Poisson's ratio increases from 0.24±0.02 in the upper crust to 0.27±0.03 in the lower crust. This result is consistent with a dominantly felsic upper crustal composition and a mafic lower crustal composition within the amphibolite or granulite metamorphic facies. Our seismic model indicates that eclogite, which is abundant in surface exposures within the orogen, is not a volumetrically significant component in the middle or lower crust. Much of the Triassic structure associated with the formation of the UHP rocks of the Dabie Shan has been obscured by post-Triassic igneous activity, extension and large-offset strike-slip faulting. Nevertheless, we can identify a high-velocity (6.3 km/s) zone in the upper (<5 km depth) crustal core of the orogen which we interpret as a zone of ultrahigh-pressure rocks, a north dipping suture, and an apparent Moho offset that marks a likely active strike-slip fault.

  3. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles

    USGS Publications Warehouse

    Liu, Hsi-Ping; Boore, David M.; Joyner, William B.; Oppenheimer, David H.; Warrick, Richard E.; Zhang, Wenbo; Hamilton, John C.; Brown, Leo T.

    2000-01-01

    Shear-wave velocities (VS) are widely used for earthquake ground-motion site characterization. VS data are now largely obtained using borehole methods. Drilling holes, however, is expensive. Nonintrusive surface methods are inexpensive for obtaining VS information, but not many comparisons with direct borehole measurements have been published. Because different assumptions are used in data interpretation of each surface method and public safety is involved in site characterization for engineering structures, it is important to validate the surface methods by additional comparisons with borehole measurements. We compare results obtained from a particular surface method (array measurement of surface waves associated with microtremor) with results obtained from borehole methods. Using a 10-element nested-triangular array of 100-m aperture, we measured surface-wave phase velocities at two California sites, Garner Valley near Hemet and Hollister Municipal Airport. The Garner Valley site is located at an ancient lake bed where water-saturated sediment overlies decomposed granite on top of granite bedrock. Our array was deployed at a location where seismic velocities had been determined to a depth of 500 m by borehole methods. At Hollister, where the near-surface sediment consists of clay, sand, and gravel, we determined phase velocities using an array located close to a 60-m deep borehole where downhole velocity logs already exist. Because we want to assess the measurements uncomplicated by uncertainties introduced by the inversion process, we compare our phase-velocity results with the borehole VS depth profile by calculating fundamental-mode Rayleigh-wave phase velocities from an earth model constructed from the borehole data. For wavelengths less than ~2 times of the array aperture at Garner Valley, phase-velocity results from array measurements agree with the calculated Rayleigh-wave velocities to better than 11%. Measurement errors become larger for wavelengths 2

  4. Insertional Mutagenesis and Deep Profiling Reveals Gene Hierarchies and a Myc/p53-Dependent Bottleneck in Lymphomagenesis

    PubMed Central

    Huser, Camille A.; Gilroy, Kathryn L.; de Ridder, Jeroen; Kilbey, Anna; Borland, Gillian; Mackay, Nancy; Jenkins, Alma; Bell, Margaret; Herzyk, Pawel; van der Weyden, Louise; Adams, David J.; Rust, Alistair G.; Cameron, Ewan; Neil, James C.

    2014-01-01

    Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a ‘progression network’ that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer

  5. Vortex-free phase profiles for uniform patterning with computer-generated holography.

    PubMed

    Guillon, Marc; Forget, Benoît C; Foust, Amanda J; De Sars, Vincent; Ritsch-Marte, Monika; Emiliani, Valentina

    2017-05-29

    Computer-generated holography enables efficient light pattern generation through phase-only wavefront modulation. While perfect patterning usually requires control over both phase and amplitude, iterative Fourier transform algorithms (IFTA) can achieve phase-only approximations which maximize light efficiency at the cost of uniformity. The phase being unconstrained in the output plane, it can vary abruptly in some regions leading to destructive interferences. Among such structures phase vortices are the most common. Here we demonstrate theoretically, numerically and experimentally, a novel approach for eliminating phase vortices by spatially filtering the phase input to the IFTA, combining it with phase-based complex amplitude control at the spatial light modulator (SLM) plane to generate smooth shapes. The experimental implementation is achieved performing complex amplitude modulation with a phase-only SLM. This proposed experimental scheme offers a continuous and centered field of excitation. Lastly, we characterize achievable trade-offs between pattern uniformity, diffraction efficiency, and axial confinement.

  6. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies.

    PubMed

    Adedoyin, A; Bernardo, J F; Swenson, C E; Bolsack, L E; Horwith, G; DeWit, S; Kelly, E; Klasterksy, J; Sculier, J P; DeValeriola, D; Anaissie, E; Lopez-Berestein, G; Llanos-Cuentas, A; Boyle, A; Branch, R A

    1997-10-01

    Amphotericin B (AmB) has been the most effective systemic antifungal agent, but its use is limited by the dose-limiting toxicity of the conventional micellar dispersion formulation (Fungizone). New formulations with better and improved safety profiles are being developed and include ABELCET (formerly ABLC), but their dispositions have not been well characterized; hence, the reason for their improved profiles remains unclear. This report details the pharmacokinetics of ABELCET examined in various pharmacokinetic and efficacy studies by using whole-blood measurements of AmB concentration performed by high-pressure liquid chromatography. The data indicated that the disposition of AmB after administration of ABELCET is different from that after administration of Fungizone, with a faster clearance and a larger volume of distribution. It exhibits complex and nonlinear pharmacokinetics with wide interindividual variability, extensive distribution, and low clearance. The pharmacokinetics were unusual. Clearance and volume of distribution were increased with dose, peak and trough concentrations after multiple dosings increased less than proportionately with dose, steady state appeared to have been attained in 2 to 3 days, despite an estimated half-life of up to 5 days, and there was no evidence of significant accumulation in the blood. The data are internally consistent, even though they were gathered under different conditions and circumstances. The pharmacokinetics of ABELCET suggest that lower concentrations in blood due to higher clearance and greater distribution may be responsible for its improved toxicity profile compared to those of conventional formulations.

  7. Prototype results of a phase-shifting interferometer capable of measuring the complex index and profile of a test surface

    NASA Astrophysics Data System (ADS)

    Rogala, Eric W.; Barrett, Harrison H.

    2002-09-01

    Results are presented from a prototype phase-shifting interferometer capable of measuring both the real and the imaginary part of the complex index of refraction and the surface profile of a test surface. The three parameters of interest are extracted from the measured data by maximum-likelihood estimation theory. The performance of the system is quantitatively assessed with Cramer-Rao lower bounds. The results are shown to be strongly dependent on the quantization of the interferograms from the 8-bit CCD camera, the incident electric field amplitude, and the relative amplitude and phase difference of each polarized component through each arm of the interferometer.

  8. Effects of self-heating and phase change on the thermal profile of hydrogen isotopes in confined geometries

    SciTech Connect

    Baxamusa, S. Field, J.; Dylla-Spears, R.; Kozioziemski, B.; Suratwala, T.; Sater, J.

    2014-03-28

    Growth of high-quality single-crystal hydrogen in confined geometries relies on the in situ formation of seed crystals. Generation of deuterium-tritium seed crystals in a confined geometry is governed by three effects: self-heating due to tritium decay, external thermal environment, and latent heat of phase change at the boundary between hydrogen liquid and vapor. A detailed computation of the temperature profile for liquid hydrogen inside a hollow shell, as is found in inertial confinement fusion research, shows that seeds are likely to form at the equatorial plane of the shell. Radioactive decay of tritium to helium slowly alters the composition of the hydrogen vapor, resulting in a modified temperature profile that encourages seed formation at the top of the shell. We show that the computed temperature profile is consistent with a variety of experimental observations.

  9. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim.

    PubMed

    Tao, Lei; Zhao, Yue; Wu, Ying; Wang, Qiuyu; Yuan, Hongmei; Zhao, Lijuan; Guo, Wendong; You, Xiangling

    2016-03-01

    Somatic embryogenesis (SE) has been studied as a model system to understand molecular events in physiology, biochemistry, and cytology during plant embryo development. In particular, it is exceedingly difficult to access the morphological and early regulatory events in zygotic embryos. To understand the molecular mechanisms regulating early SE in Eleutherococcus senticosus Maxim., we used high-throughput RNA-Seq technology to investigate its transcriptome. We obtained 58,327,688 reads, which were assembled into 75,803 unique unigenes. To better understand their functions, the unigenes were annotated using the Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases. Digital gene expression libraries revealed differences in gene expression profiles at different developmental stages (embryogenic callus, yellow embryogenic callus, global embryo). We obtained a sequencing depth of >5.6 million tags per sample and identified many differentially expressed genes at various stages of SE. The initiation of SE affected gene expression in many KEGG pathways, but predominantly that in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. This information on the changes in the multiple pathways related to SE induction in E. senticosus Maxim. embryogenic tissue will contribute to a more comprehensive understanding of the mechanisms involved in early SE. Additionally, the differentially expressed genes may act as molecular markers and could play very important roles in the early stage of SE. The results are a comprehensive molecular biology resource for investigating SE of E. senticosus Maxim.

  10. Crustal structure and Moho geometry of the northeastern Tibetan plateau as revealed by SinoProbe-02 deep seismic-reflection profiling

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Gao, Rui; Zeng, Lingsen; Kuang, Zhaoyang; Xue, Aimin; Li, Wenhui; Xiong, Xiaosong; Huang, Weiyi

    2014-12-01

    Underthrusting of India below Eurasia has resulted in the formation of the Himalayan and the Qinghai-Tibet Plateau. Distributed deformation coupled with block translation and rotation has generated the Qilian Shan thrust belt and a series of east- and northwest-striking strike-slip faults across northeastern Tibet. Because these structures lie in a transition zone between the high plateau region to the south and the lowlands of the North China craton in the north, determining their deep-crustal and upper-mantle structures has important implications for unraveling the mechanism of Tibetan plateau formation. In this paper, we present new results from the SinoProbe-02 deep seismic reflection project across the eastern part of the Qilian Shan and the southern margin of the Alxa block. Interpretation of the reflection profile obtained from this study is based on constraints from surface geology and detailed geometric analysis of structural relationships among key reflectors in the crust and the upper mantle. Our results indicate that the upper crust of the eastern Qilian Shan is characterized by fault-bend folds and duplex systems involving Phanerozoic strata that may have resulted from early Paleozoic collisional tectonics and Cenozoic intra-continental deformation. Locally, half-graben structures hosting Cretaceous strata are also present. The active structures in the region are dominated by left-slip Haiyuan and Tianjian fault systems marking the northern margin of the Tibetan plateau. The strike-slip structures have variable dips and dip directions and sole into a common décollement with a depth of 40-45 km. Because the two faults do not cut and offset the Moho below, the active crustal and mantle deformation in the northeastern Tibet must be decoupled.

  11. Deep immune profiling by mass cytometry links human T and NK cell differentiation and cytotoxic molecule expression patterns.

    PubMed

    Bengsch, Bertram; Ohtani, Takuya; Herati, Ramin Sedaghat; Bovenschen, Niels; Chang, Kyong-Mi; Wherry, E John

    2017-03-19

    stages. Such comprehensive cytotoxic profiling may identify distinct patterns of cytotoxic potential relevant for specific infections, autoimmunity or tumor settings.

  12. Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions

    PubMed Central

    Yang, Chin-Rang; Tongyoo, Pumipat; Emamian, Milad; Sandoval, Pablo C.; Raghuram, Viswanathan

    2015-01-01

    The mouse mpkCCD cell line is a continuous cultured epithelial cell line with characteristics of renal collecting duct principal cells. This line is widely used to study epithelial transport and its regulation. To provide a data resource useful for experimental design and interpretation in studies using mpkCCD cells, we have carried out “deep” proteomic profiling of these cells using three levels of fractionation (differential centrifugation, SDS-PAGE, and HPLC) followed by tandem mass spectrometry to identify and quantify proteins. The analysis of all resulting samples generated 34.6 gigabytes of spectral data. As a result, we identified 6,766 proteins in mpkCCD cells at a high level of stringency. These proteins are expressed over eight orders of magnitude of protein abundance. The data are provided to users as a public data base (https://helixweb.nih.gov/ESBL/Database/mpkFractions/). The mass spectrometry data were mapped back to their gel slices to generate “virtual Western blots” for each protein. For most of the 6,766 proteins, the apparent molecular weight from SDS-PAGE agreed closely with the calculated molecular weight. However, a substantial fraction (>15%) of proteins was found to run aberrantly, with much higher or much lower mobilities than predicted. These proteins were analyzed to identify mechanisms responsible for altered mobility on SDS-PAGE, including high or low isoelectric point, high or low hydrophobicity, physiological cleavage, residence in the lysosome, posttranslational modifications, and expression of alternative isoforms due to alternative exon usage. Additionally, this analysis identified a previously unrecognized isoform of aquaporin-2 with apparent molecular mass <20 kDa. PMID:26310816

  13. On the radial profile of gas-phase Fe/α ratio around distant galaxies

    NASA Astrophysics Data System (ADS)

    Zahedy, Fakhri S.; Chen, Hsiao-Wen; Gauthier, Jean-René; Rauch, Michael

    2017-04-01

    This paper presents a study of the chemical compositions in cool gas around a sample of 27 intermediate-redshift galaxies. The sample comprises 13 massive quiescent galaxies at z = 0.40-0.73 probed by QSO sightlines at projected distances d = 3-400 kpc, and 14 star-forming galaxies at z = 0.10-1.24 probed by QSO sightlines at d = 8-163 kpc. The main goal of this study is to examine the radial profiles of the gas-phase Fe/α ratio in galaxy haloes based on the observed Fe II to Mg II column density ratios. Because Mg+ and Fe+ share similar ionization potentials, the relative ionization correction is small in moderately ionized gas and the observed ionic abundance ratio N(Fe II)/N(Mg II) places a lower limit to the underlying (Fe/Mg) elemental abundance ratio. For quiescent galaxies, a median and dispersion of log < N(Fe II)/N(Mg II)> _med= -0.06± 0.15 is found at d ≲ 60 kpc, which declines to log < N(Fe II)/N(Mg II)> _med<-0.3 at d ≳ 100 kpc. On the other hand, star-forming galaxies exhibit log < N(Fe II)/N(Mg II)> = -0.25± 0.21 at d ≲ 60 kpc and log < N(Fe II)/N(Mg II)> = -0.9± 0.4 at larger distances. Including possible differential dust depletion or ionization correction would only increase the inferred (Fe/Mg) ratio. The observed N(Fe II)/N(Mg II) implies supersolar Fe/α ratios in the inner halo of quiescent galaxies. An enhanced Fe abundance indicates a substantial contribution by Type Ia supernovae in the chemical enrichment, which is at least comparable to what is observed in the solar neighbourhood or in intracluster media but differs from young star-forming regions. In the outer haloes of quiescent galaxies and in haloes around star-forming galaxy, however, the observed N(Fe II)/N(Mg II) is consistent with an α-element enhanced enrichment pattern, suggesting a core-collapse supernovae dominated enrichment history.

  14. Joint pre-stack depth migration and travel-time tomography applied to a deep seismic profile across the northern Barents Sea igneous province

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Faleide, Jan Inge; Sakulina, Tamara; Krupnova, Natalia; Dergunov, Nikolai

    2015-04-01

    The mainly Permo-Triassic North Barents Sea Basin is considered as a superdeep intracratonic basin containing over 20 km of sedimentary material. This basin was strongly affected by magmatism attributed to the formation of the Early Cretaceous High Arctic Large Igneous Province. Dolerite dikes, sills, and lava flows are observed in the northern Barents Sea and on the islands of Svalbard and Franz Josef Land. Some dike swarms can be traced over hundreds of kilometers using high-resolution airborne magnetic data. In the North Barents Sea Basin, the dikes fed giant sill complex emplaced into organic-rich Triassic siliciclastic rocks. The sill complex creates a major challenge for seismic imaging masking the underlying strata. In this contribution, we first perform refraction and reflection travel-time tomography using wide-angle ocean-bottom seismometer data (with receivers deployed every 10 km) along the 4-AR profile (Sakulina et al. 2007, Ivanova et al. 2011). The resulting tomographic model is then used to construct a background velocity model for the pre-stack depth migration. We show that the use of a combined velocity model for the time and depth imaging based on travel-time tomography and RMS velocities constitutes a substantial improvement with respect to a standard processing workflow providing a more coherent seismic structure of this volcanic province. The interpretation of multichannel seismic and high-resolution magnetic data together with P-wave velocity and density anomalies allow to create a model for the system of magmatic feeders in the crystalline basement of the northern Barents Sea region. Sakulina, T.S., Verba, M.L., Ivanova, N.M., Krupnova, N.A., Belyaev I.V., 2007. Deep structure of the north Barents-Kara Region along 4AR transect (Taimyr Peninsula - Franz Joseph Land). In: Models of the Earth's crust and upper mantle after deep seismic profiling. Proceedings of the international scientific-practical seminar. Rosnedra, VSEGEI. St

  15. Soil Organic Matter Characterization by 13C-NMR and Thermal Analysis in Deep Tropical Soil Profiles from the Luquillo Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Plante, A. F.; Hockaday, W. C.

    2015-12-01

    Tropical forest soils store large quantities of carbon (C) as soil organic matter (SOM), a substantial proportion of which is stored deep (> 30 cm) in the soil profile. Characterization of tropical SOM remains difficult, in part due to the analytical challenges associated high iron and low C concentrations. In this study, we combined solid-state 13C nuclear magnetic resonance (NMR) spectroscopy with analytical thermal analysis (differential scanning calorimetry, DSC; evolved CO2 gas analysis, CO2-EGA) to explore patterns in SOM composition in deep soil profiles from two contrasting soil types at the Luquillo Critical Zone Observatory (LCZO) in northeast Puerto Rico. Prior to 13C NMR, soils were repeatedly demineralized with hydrofluoric acid (HF) to remove paramagnetic compounds and concentrate organic matter. Given the scant information on tropical subsoil OM, we also sought to evaluate the effect of HF acid treatments on tropical subsoil SOM. HF treatments effectively enriched sample C and removed paramagnetic compounds, allowing us to obtain high-quality NMR spectra for low-C subsoils. C:N ratios before and after HF treatment were nearly identical (mean = 16.6 ± 0.8), suggesting that the SOM pool was not substantially fractionated, though C recoveries were low and variable. Thermal analyses confirmed the loss of a substantial fraction of the soil mineral matrix, however, retention of several endothermic regions in post-HF Inceptisol soils indicated that not all minerals were completely solubilized. In addition, important differences in the DSC and CO2-EGA thermograms were observed in comparing samples before versus after HF treatments. These results suggest that the organo-mineral associations were substantially altered, though it is not immediately clear the degree to which alterations in chemical composition versus binding association have changed. In addition to these qualitative changes, quantitative interpretations of 13C-NMR results from low-C and high

  16. Modeling and Observations of Phase-Mask Trapezoidal Profiles with Grating-Fiber Image Reproduction

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Lindesay, James V.; Lee, Hyung R.; Ndlela, Zolili U.; Thompso, Erica J.

    2000-01-01

    We report on an investigation of the trapezoidal design and fabrication defects in phase masks used to produce Bragg reflection gratings in optical fibers. We used a direct visualization technique to examine the nonuniformity of the interference patterns generated by several phase masks. Fringe patterns from the phase masks are compared with the analogous patterns resulting from two-beam interference. Atomic force microscope imaging of the actual phase gratings that give rise to anomalous fringe patterns is used to determine input parameters for a general theoretical model. Phase masks with pitches of 0.566 and 1.059 microns are modeled and investigated.

  17. Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing.

    PubMed

    Wang, Zheng Jia; Huang, Jian Qin; Huang, You Jun; Li, Zheng; Zheng, Bing Song

    2012-08-01

    Hickory (Carya cathayensis Sarg.) is an economically important woody plant in China, but its long juvenile phase delays yield. MicroRNAs (miRNAs) are critical regulators of genes and important for normal plant development and physiology, including flower development. We used Solexa technology to sequence two small RNA libraries from two floral differentiation stages in hickory to identify miRNAs related to flower development. We identified 39 conserved miRNA sequences from 114 loci belonging to 23 families as well as two novel and ten potential novel miRNAs belonging to nine families. Moreover, 35 conserved miRNA*s and two novel miRNA*s were detected. Twenty miRNA sequences from 49 loci belonging to 11 families were differentially expressed; all were up-regulated at the later stage of flower development in hickory. Quantitative real-time PCR of 12 conserved miRNA sequences, five novel miRNA families, and two novel miRNA*s validated that all were expressed during hickory flower development, and the expression patterns were similar to those detected with Solexa sequencing. Finally, a total of 146 targets of the novel and conserved miRNAs were predicted. This study identified a diverse set of miRNAs that were closely related to hickory flower development and that could help in plant floral induction.

  18. High Pressure and high temperature phase transition in FeTiO3: implications for the deep interior of giant planet

    NASA Astrophysics Data System (ADS)

    Hamane, D.; Zhang, M.; Yagi, T.; Yanming, M.

    2011-12-01

    The discovery of the structural phase transition of perovskite into a CaIrO3-type phase at high pressures invites the investigation of further phase transitions in order to understand the deep interior of giant planet. Recent experimental studies for FeTiO3 have detected a new dissociation to a dense compound assemblage rather than the CaIrO3-type phase at high pressures. Since the phase relation of FeTiO3 is expected to be significant for estimating the ultrahigh-pressure behavior of ABX3 compounds such as MgSiO3, we investigated the phase transition in FeTiO3 up to 80 GPa and 2600K by synchrotron X-ray diffraction using a laser-heated diamond anvil cell and analytical transmission electron microscopy observations. We conclude that FeTiO3 ilmenite transforms into the following phase(s) with increasing pressure: FeTiO3 (perovskite) at 18-30 GPa, 1/2 Fe2TiO4 (Ca2TiO4-type) + TiO2 (OI-type) at 30-45 GPa and high temperature, FeO (wüstite) + TiO2 (OI) at 30-45 GPa and low temperature, and 2/3 FeO (wüstite) + 1/3 FeTi3O7 (orthorhombic phase) above 45 GPa. We also estimates the structural model of FeTi3O7 phase by using the particle swarm optimization simulation, and Rietveld refinement based on this model structure gave an excellent fit with the experimentally obtained X-ray diffraction pattern. This new high-density FeTi3O7 structure consists of the polyhedra for monocapped prisms FeO7, bicapped prisms TiO8, and tricapped prisms TiO9 with Imm2 symmetry. The dense compound assemblage found in FeTiO3 is promising for investigating the behavior of ABX3 compounds under ultrahigh pressures, and our experimental results suggest that the AB3X7 type oxide instead of cotunnite SiO2 may produce the denser assemblage even in the silicate system at ultra high pressure. This new model has not yet been proposed as a candidate, but our suggestion will be important for predicting the mineral assemblage in the deep interiors of giant planets.

  19. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium.

    PubMed

    Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.

  20. The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate Toxoplasma gondii among the cyst-forming coccidia.

    PubMed

    Cooper, Madalyn K; Phalen, David N; Donahoe, Shannon L; Rose, Karrie; Šlapeta, Jan

    2016-01-30

    Next-generation sequencing (NGS) has the capacity to screen a single DNA sample and detect pathogen DNA from thousands of host DNA sequence reads, making it a versatile and informative tool for investigation of pathogens in diseased animals. The technique is effective and labor saving in the initial identification of pathogens, and will complement conventional diagnostic tests to associate the candidate pathogen with a disease process. In this report, we investigated the utility of the diversity profiling NGS approach using Illumina small subunit ribosomal RNA (18S rRNA) gene amplicon deep sequencing to detect Toxoplasma gondii in previously confirmed cases of toxoplasmosis. We then tested the diagnostic approach with species-specific PCR genotyping, histopathology and immunohistochemistry of toxoplasmosis in a Risso's dolphin (Grampus griseus) to systematically characterise the disease and associate causality. We show that the Euk7A/Euk570R primer set targeting the V1-V3 hypervariable region of the 18S rRNA gene can be used as a species-specific assay for cyst-forming coccidia and discriminate T. gondii. Overall, the approach is cost-effective and improves diagnostic decision support by narrowing the differential diagnosis list with more certainty than was previously possible. Furthermore, it supplements the limitations of cryptic protozoan morphology and surpasses the need for species-specific PCR primer combinations. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    PubMed Central

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  2. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains

    PubMed Central

    Van der Aa, Niels; Cheng, Jiqiu; Mateiu, Ligia; Esteki, Masoud Zamani; Kumar, Parveen; Dimitriadou, Eftychia; Vanneste, Evelyne; Moreau, Yves; Vermeesch, Joris Robert; Voet, Thierry

    2013-01-01

    Single-cell genomics is revolutionizing basic genome research and clinical genetic diagnosis. However, none of the current research or clinical methods for single-cell analysis distinguishes between the analysis of a cell in G1-, S- or G2/M-phase of the cell cycle. Here, we demonstrate by means of array comparative genomic hybridization that charting the DNA copy number landscape of a cell in S-phase requires conceptually different approaches to that of a cell in G1- or G2/M-phase. Remarkably, despite single-cell whole-genome amplification artifacts, the log2 intensity ratios of single S-phase cells oscillate according to early and late replication domains, which in turn leads to the detection of significantly more DNA imbalances when compared with a cell in G1- or G2/M-phase. Although these DNA imbalances may, on the one hand, be falsely interpreted as genuine structural aberrations in the S-phase cell’s copy number profile and hence lead to misdiagnosis, on the other hand, the ability to detect replication domains genome wide in one cell has important applications in DNA-replication research. Genome-wide cell-type-specific early and late replicating domains have been identified by analyses of DNA from populations of cells, but cell-to-cell differences in DNA replication may be important in genome stability, disease aetiology and various other cellular processes. PMID:23295674

  3. 3D profile reconstruction of biological sample by in-line image-plane phase-shifting digital microscopic holography

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoxu; Chen, Jianpei; Liu, Shengde; Ma, Zhijian; Zhang, Zhun; Zhong, Liyun

    2012-10-01

    To improve the measuring accuracy is an important research content for digital microscopic holography (DMH) development and application. In this study, we have upgraded application of DMH through the in-line image-plane phase-shifting technique and the image correlation algorithm to reconstruct the 3D profile of a biological sample. Importantly, since this novel DMH system can obtain the phase-shifting hologram with a high ratio of signal to noise conveniently, the reconstructed algorithm of DMH and the compensation operation of the phase aberration are simplified significantly. Moreover, by using the image correlation algorithm, the digital phase mask with high precision also can be obtained easily; thus both the measuring accuracy of DMH and the quality of the reconstructed image are improved significantly. More importantly, this kind of in-line image-plane phase-shifting digital microscopic holography provides a powerful imaging tool to simultaneously reconstruct the amplitude and the phase of the measured object with submicron scale resolution.

  4. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains.

    PubMed

    Van der Aa, Niels; Cheng, Jiqiu; Mateiu, Ligia; Zamani Esteki, Masoud; Kumar, Parveen; Dimitriadou, Eftychia; Vanneste, Evelyne; Moreau, Yves; Vermeesch, Joris Robert; Voet, Thierry

    2013-04-01

    Single-cell genomics is revolutionizing basic genome research and clinical genetic diagnosis. However, none of the current research or clinical methods for single-cell analysis distinguishes between the analysis of a cell in G1-, S- or G2/M-phase of the cell cycle. Here, we demonstrate by means of array comparative genomic hybridization that charting the DNA copy number landscape of a cell in S-phase requires conceptually different approaches to that of a cell in G1- or G2/M-phase. Remarkably, despite single-cell whole-genome amplification artifacts, the log2 intensity ratios of single S-phase cells oscillate according to early and late replication domains, which in turn leads to the detection of significantly more DNA imbalances when compared with a cell in G1- or G2/M-phase. Although these DNA imbalances may, on the one hand, be falsely interpreted as genuine structural aberrations in the S-phase cell's copy number profile and hence lead to misdiagnosis, on the other hand, the ability to detect replication domains genome wide in one cell has important applications in DNA-replication research. Genome-wide cell-type-specific early and late replicating domains have been identified by analyses of DNA from populations of cells, but cell-to-cell differences in DNA replication may be important in genome stability, disease aetiology and various other cellular processes.

  5. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  6. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  7. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  8. Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Rossi, Serena; Sileoni, Valeria; Perretti, Giuseppe; Marconi, Ombretta

    2014-03-30

    The objective of this study was a multivariate characterization of the volatile profile of beers. Such a characterization is timely considering the increasing worldwide consumption of beer, the continuous growth of microbreweries and the importance of volatile compounds to beer flavour. A method employing solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) was optimized and then applied to a sample set of 36 industrial and craft beers of various styles and fermentation types. The volatile profiles of different beer styles is described, with particular attention paid to the volatile compounds characteristic of a spontaneously fermented lambic raspberry framboise beer. Furthermore, it was also possible to identify which specific volatile compounds are principally responsible for the differences in the volatile profiles of top- and bottom-fermented beers. Moreover, a volatile fingerprint of the craft top-fermented Italian beers was defined, as they show a very similar volatile profile. Finally, the volatile compounds that are characteristic of the bock-style beers are described. The SPME-GC-MS analytical method optimized in this study is suitable for characterizing the volatile fingerprint of different beers, especially on the basis of the kind of fermentation (top, bottom or spontaneous), the method of production and the style of the beer. © 2013 Society of Chemical Industry.

  9. Preparation of a nitro-substituted tris(indolyl)methane modified silica in deep eutectic solvents for solid-phase extraction of organic acids.

    PubMed

    Wang, Na; Wang, Jiamin; Liao, Yuan; Shao, Shijun

    2016-05-01

    A new sorbent for solid-phase extraction was synthesized by chemical immobilization of nitro-substituted tris(indolyl)methane on silica in new and green deep eutectic solvents. Elemental analysis results indicated that deep eutectic solvents could be an alternative to the traditional solvents in preparing nitro-substituted tris(indolyl)methane modified silica. Coupled with high performance liquid chromatography, the extraction performance of the sorbent was evaluated by using four organic acids as model analytes. The rebinding experiments results showed that the nitro-substituted tris(indolyl)methane modified silica sorbent had a good adsorption capacity towards the selected organic acids. Under the appropriate experimental conditions, good precision and wide linear ranges with coefficient of determination (R(2)) of higher than 0.9957 were obtained, and the limits of detection were in the range of 0.50-2.0μgL(-1) for the organic acids tested. The developed solid-phase extraction-high performance liquid chromatography-diode array detection (SPE-HPLC-DAD) method was successfully applied for the determination of organic acids in two drinking samples with recoveries ranging from 76.7% to 110.0% and 67.7% to 104.0% for all the selected organic acids, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Geophysical constraints on the crustal structure of the East European Platform margin and its foreland based on the POLCRUST-01 deep reflection seismic profile

    NASA Astrophysics Data System (ADS)

    Malinowski, M.; Guterch, A.; Narkiewicz, M.; Petecki, Z.; Janik, T.; Środa, P.; Maksym, A.; Probulski, J.; Grad, M.; Czuba, W.; Gaczyński, E.; Majdański, M.; Jankowski, L.

    2015-06-01

    A new 240-km long, deep seismic reflection profile (POLCRUST-01) was recently acquired in SE Poland crossing the East European Platform (EEP) margin south-east of the North-German-Polish Caledonides (NGPC). Here we document geophysical field work and subsequent data processing and modeling. Results obtained from reflection seismic data are augmented by results of the first-arrival tomography applied to co-located extended-offset refraction data, as well as potential field modeling and comparison with the available wide-angle reflection/refraction data. Our preferred model of the crustal structure, derived by integrating seismic, potential field and geological data, is composed of crustal blocks (terranes) separated by nearly-vertical faults. These are: (I) intact part of the EEP; (II) Łysogóry Terrane; (III) Małopolska Terrane; and (IV) Carpathian Mts. with their basement. Reflective lower crust of the EEP can be an inherited feature of crustal extension (rifting) or compressional tectonics acting at the cratonic margin. The Teisseyre-Tornquist Zone (TTZ) is depicted as a Caledonian transcurrent accretion zone corresponding with the near-vertical Tomaszów Fault, bounding the Łysogóry Terrane to the east. The crust of the Łysogóry Terrane suggests EEP affinity, although its middle/lower crust thickness is highly reduced. The Małopolska Terrane seems to be internally subdivided into blocks of different magnetic properties of the lower crust. The Carpathian frontal thrust is associated with a change in the rock properties in the deep basement (an unknown crustal block?) which is not visible in seismic data alone. The interpreted structure of the Caledonian terranes and their tectonic boundaries favors a transcurrent style of a crustal accretion along the central and SE Polish segments of the TTZ, implying a very complex nature of the Caledonian accretionary belt of Central Europe: from an array of terranes displaced along the TTZ to an accretionary wedge of

  11. National Environmental/Energy Workforce Assessment, Phase II, Post-Secondary Education Profile: Noise.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    Noise-related training programs were reviewed in nine degree-granting institutions in seven states. These programs represent a sample, only, of the various programs available nationwide. The enrollment profile and average number of graduates by degree level for the past three years are given, as well as the apparent enrollment trends by degree…

  12. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals.

    PubMed

    Yum, Lauren K; Baumgarten, Sebastian; Röthig, Till; Roder, Cornelia; Roik, Anna; Michell, Craig; Voolstra, Christian R

    2017-07-25

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  13. Comparison of chromatographic band profiles obtained under microwave irradiated and non-irradiated reversed-phase liquid chromatography column

    SciTech Connect

    Galinada, Wilmer; Guiochon, Georges A

    2005-08-01

    The possible influence of the application of microwave energy to a reversed-phase liquid chromatography column on the mass transfer kinetics and the thermodynamics of equilibrium between mobile and stationary phases was examined. Chromatograms of propylbenzene and phenol were recorded under the same experimental conditions, on the same column, successively irradiated and not. The effect of microwave irradiation on the mass transfer kinetics was determined by measuring the second moment of small pulses of propylbenzene in a 70:30 (v/v) solution of methanol in water and microwave outputs of 15 and 30 W. The effect of microwave irradiation on the equilibrium thermodynamics was determined by measuring the elution time of breakthrough curves of phenol at high concentrations in a 20:80 (v/v) solution of methanol and water and microwave outputs of 15, 50, and 150 W. A qualitative comparison of the profiles of the propylbenzene peaks obtained with and without irradiation suggests that this irradiation affects significantly the peak shapes. However, a qualitative comparison of the profiles of the breakthrough curves of phenol obtained with and without irradiation suggests that this irradiation has no significant effect on their shapes. The peak sharpening observed may be due to an increase in the diffusivity, resulting from the dielectric polarization under microwave irradiation. This effect is directly related to an increase of the rate of mass transfers in the column. In contrast, the similarity of the overloaded band profiles at high concentrations suggests that the equilibrium thermodynamics is unaffected by microwave irradiation. This may be explained by the transparence of the stationary phase to microwaves at 2.45 GHz. The column temperature was measured at the column outlet under irradiation powers of 15, 30, 50, and 150 W. It increases with increasing power, the corresponding effluent temperatures being 25 {+-} 1, 30 {+-} 1, 35 {+-} 1, and 45 {+-} 1 C, respectively.

  14. Tradeoffs in Chemical and Thermal Variations in the Post-perovskite Phase Transition: Mixed phase regions in the Deep Lower Mantle?

    SciTech Connect

    Frank J Spera; David A. Yuen; Grace Giles

    2007-04-01

    The discovery of a phase-transition in Mg-rich perovskite (Pv) to a post-perovskite (pPv) phase at lower mantle depths and its relationship to D", lower mantle heterogeneity and iron content prompted an investigation of the relative importance of lower mantle compositional and temperature fluctuations in creating topographic undulations on mixed phase regions. Above the transition, Mg-rich Pv makes up ~ 70 per cent by mass of the lower mantle. Using results from experimental phase equilibria, first-principles computations and empirical scaling relations for Fe2+-Mg mixing in silicates, a preliminary thermodynamic model for the Pv to pPv phase transition in the divariant system MgSiO3-FeSiO3 is developed. Complexities associated with components Fe2O3 and Al2O3 and other phases (Ca-Pv, magnesiowustite) are neglected. The model predicts phase transition pressures are sensitive to the FeSiO3 content of perovskite (~ -1.5 GPa per one mole percent FeSiO3). This leads to considerable topography along the top boundary of the mixed phase region. The Clapeyron slope for the Pv→pPv transition at XFeSiO3= 0.1 is +11 MPa/K about 20% higher than for pure Mg-Pv. Increasing bulk concentration of iron elevates the mixed (two-phase) layer above the core–mantle boundary (CMB); increasing temperature acts to push the mixed layer deeper in the lower mantle perhaps into the D” thermal-compositional boundary layer resting upon the CMB. For various lower mantle geotherms and CMB temperatures, a single mixed layer of thickness ~300 km lies within the bottom 40% of the lower mantle. For low iron contents (XFeSiO3 ~ 5 mole percent or less), two (perched) mixed phase layers are found. This is the divariant analog to the univariant double-crosser of Hernlund, et al., 2005. The hotter the mantle, the deeper the mixed phase layer; the more iron-rich the lower mantle, the shallower the mixed phase layer. In a younger and hotter Hadean Earth with interior temperatures everywhere 200-500 K

  15. The Middle AsiaN Active Source (MANAS) Profile: Preliminary Results From A Deep Seismic Transect in the Tien Shan of Kyrgyzstan and China

    NASA Astrophysics Data System (ADS)

    Knapp, J. H.; Roecker, S. W.; Park, S. K.; Schelochkov, G.; He, R.

    2007-12-01

    New near-vertical deep seismic reflection data, acquired during the summer of 2007, constitute an ~350 km lithospheric transect from the northwestern Tarim Basin in China to the central Tien Shan of Kyrgyzstan. Recognized as one of the highest, youngest, and most active orogenic systems on Earth, the Tien Shan are situated internal to the Eurasian continent, removed up to 3000 km from the former plate boundary with the Indian subcontinent. Existing geologic constraints imply that up to 200 km of shortening may have occurred in Late Tertiary to Recent time. Additionally, geologic, topographic, and gravimetric data suggest that continental lithosphere of the Tarim basin may presently be subducting beneath the southern margin of the Tien Shan, in the absence of an oceanic slab. While geodetic measurements document that the Tien Shan currently record about half of the shortening between India and Eurasia, geologic data dictate that active faults are restricted to only several of the individual ranges that make up the mountain belt. Passive-source seismological studies have shown the surprising result that the orogenic crust is thickest (65-70 km) at both the southern and northern margins of the Tien Shan, and thins dramatically to ~35 km within the internal part of the orogen. Key targets of the MANAS (Middle AsiaN Active Source) Profile include (1) the top of the Tarim crust as it descends beneath the southern Tien Shan, (2) an inferred crustal-scale frontal ramp, representing where the continental plate may have broken and is now descending into the upper mantle, (3) the geometry of demonstrably active faults below the shallow depths to which they can be inferred from surface geologic constraints, (4) the topography and seismic reflection signature of the Moho, especially given the unexpected variations in crustal thickness across the orogen, and (5) the significance of both crustal and upper mantle conductivity anomalies previously identified through magnetotelluric

  16. Production of mineral surface area within deep weathering profiles at eroding vs. depositional hillslope locations: Christina River Basin Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Fisher, B.; Yoo, K.; Aufdenkampe, A. K.; Nater, E.

    2014-12-01

    Geomorphic and biogeochemical processes and hillslope morphology are partly controlled by the extent and degree of chemical weathering between soil and bedrock. The production of mineral specific surface area (SSA) via chemical weathering is a critical variable for mechanistic understanding of weathering and provides an interface between minerals and the soil carbon cycle. We examined two 21-meter deep drill cores in the Laurels Schist at 141 MASL (summit) and 130 MASL (interfluve) in a 900 ha first order watershed in the Laurels Preserve, a forested land use end member in the Christina River Basin CZO. In addition to mineral SSA, we report elemental and mineralogical changes through both weathering profiles. Despite highly variable bedrock composition, mobile elements (Ca & Na) are depleted within 3-5 m below the ground surface, which is consistent with the removal of Ca-Na-plagioclase ((Na,Ca)Al(Si,Al)3O8) at this interval; we consider this depth as a weathering front. The water table in both boreholes was ~123 MASL (5/2014), which is well below the weathering front, suggesting that weathering processes are not coupled with groundwater interactions in this system. Clay XRD reveals the presence of secondary phyllosilicates including vermiculite, illite, and kaolinite in the upper 3 m of the summit weathering profile, which are weathering products of primary plagioclase, muscovite, and chlorite. The currently available clay mineralogy results are consistent with the decrease in total SSA from up to 20 m2g-1 at the surface to <5 m2g-1 below 3 m depth. Within the first 3 m from the surface, citrate-dithionate extractable iron contributed 30-60% of the total surface area. Therefore transformation of primary minerals to secondary phyllosilicate minerals, involving leaching loss of cations, was partly responsible for SSA production, but iron oxides play a significant role in production of SSA above the weathering front. This observation did not differ between

  17. The influences of ambiguity phase aberration profiles on focusing quality in the very near field--part I: single range focusing on transmission.

    PubMed

    Li, Yue

    2002-01-01

    Most phase aberration measurement algorithms have an ambiguity for constant and tilted phase aberration profiles. Based on the Fresnel (near field) approximation with single range focusing and the Fraunhofer (far field) approximation, constant and tilted phase aberration profiles change the position of the focal point only and do not influence the image focusing quality. Therefore, ambiguity phase aberration profiles are generally considered to be harmless and ignored in those algorithms and related theoretical analyses. However, Fresnel and Fraunhofer approximations may become invalid under many medical ultrasound imaging situations, e.g., when the imaging field is in the very near field (f-number approximately 1). In the very near field, although it is known that constant and tilted phase aberration profiles may degrade the focusing quality, it seems that there is a lack of quantitative analysis results in the literature about their influences, and this is the purpose of the current paper. In this paper, a quantitative analysis with a very near field approximation is performed for single range focusing on transmission, which is a commonly used transmission focusing method in medical ultrasound imaging. The tolerable levels of constant and tilted phase aberration profiles are derived as a function of the imaging system's f-number and wavelength. Because some phase aberration measurement algorithms may also have an ambiguity for quadratic phase aberration profiles, they are also included in the analysis. The theoretical results are compared with numerical and simulation results. These results have shown that the influences of tilted and quadratic phase-aberration profiles can be ignored only under certain conditions in the very near field.

  18. Development of a High-Performance, Low-Profile Translation Table with Wire Feedthrough for a Deep Space CubeSat

    NASA Technical Reports Server (NTRS)

    Few, Alex

    2016-01-01

    NEAScout, a 6U cubesat and secondary payload on NASA's EM-1, will use an 85 sq m solar sail to travel to a near-earth asteroid at about 1 Astronomical Unit (about 1.5 x 10(exp 8) km) for observation and reconnaissance1. A combination of reaction wheels, reaction control system, and a slow rotisserie roll about the solar sail's normal axis were expected to handle attitude control and adjust for imperfections in the deployed sail during the 2.5-year mission. As the design for NEAScout matured, one of the critical design parameters, the offset in the center of mass and center of pressure (CP/CM offset), proved to be sub-optimal. After significant mission and control analysis, the CP/CM offset was accommodated by the addition of a new subsystem to NEAScout. This system, called the Active Mass Translator (AMT), would reside near the geometric center of NEAScout and adjust the CM by moving one portion of the flight system relative to the other. The AMT was given limited design space - 17 mm of the vehicle's assembly height-and was required to generate +/-8 cm by +/-2 cm translation to sub-millimeter accuracy. Furthermore, the design must accommodate a large wire bundle of small gage, single strand wire and coax cables fed through the center of the mechanism. The bend radius, bend resistance, and the exposure to deep space environment complicates the AMT design and operation and necessitated a unique design to mitigate risks of wire bundle damage, binding, and cold-welding during operation. This paper will outline the design constraints for the AMT, discuss the methods and reasoning for design, and identify the lessons learned through the designing, breadboarding and testing for the low-profile translation stages with wire feedthrough capability.

  19. Fast processing of quantitative phase profiles from off-axis interferograms for real-time applications

    NASA Astrophysics Data System (ADS)

    Girshovitz, Pinhas; Shaked, Natan T.

    2015-03-01

    We review new and efficient algorithms, lately presented by us, for rapid reconstruction of quantitative phase maps from off-axis digital interferograms. These algorithms improve the conventional Fourier-based algorithm by using the Fourier transforms and the phase unwrapping process more efficiently, and thus decrease the calculation complexity required for extracting the sample phase map from the recorded interferograms. Using the new algorithms, on a standard personal computer without using the graphic processing-unit programming or parallel computing, we were able to speed up the processing and reach frame rates of up to 45 frames per second for one megapixel off-axis interferograms. These capabilities allow real-time visualization, calculation and data extraction for dynamic samples and processes, inspected by off-axis digital holography. Specific applications include biological cell imaging without labeling and real-time nondestructive testing.

  20. Phase-correlated P Cygni profile variations of the C III multiplet in UW Canis Majoris

    NASA Technical Reports Server (NTRS)

    Drechsel, H.; Kondo, Y.; Mccluskey, G. E., Jr.; Rahe, J.

    1981-01-01

    The interacting close binary system UW CMa has been observed, in the wavelength range from 1161 to 1188 A, continuously during a complete orbital cycle in 1979 with the Copernicus (OAO-3) U2 spectrometer. The C III multiplet at 1175 A, observed as a P Cygni feature, exhbits a clear dependence on the orbital phase of the binary; the radial velocity variation of this feature lags behind that of the O7 primary component by 0.1 orbital phase, which agrees with the anticipations in an earlier study by the same authors. The radiation-driven matter, flowing out of the binary, originates in the primary component.

  1. Phase-correlated P Cygni profile variations of the C III multiplet in UW Canis Majoris

    NASA Technical Reports Server (NTRS)

    Drechsel, H.; Kondo, Y.; Mccluskey, G. E., Jr.; Rahe, J.

    1981-01-01

    The interacting close binary system UW CMa has been observed, in the wavelength range from 1161 to 1188 A, continuously during a complete orbital cycle in 1979 with the Copernicus (OAO-3) U2 spectrometer. The C III multiplet at 1175 A, observed as a P Cygni feature, exhbits a clear dependence on the orbital phase of the binary; the radial velocity variation of this feature lags behind that of the O7 primary component by 0.1 orbital phase, which agrees with the anticipations in an earlier study by the same authors. The radiation-driven matter, flowing out of the binary, originates in the primary component.

  2. [Clinical profile in subjects with acquired brain injury in chronic phase in a social and health care center].

    PubMed

    Rubial-Álvarez, Sandra; Veiga-Suárez, María

    2012-10-01

    There are few resources for acquired brain injury (ABI) in post-hospitalary phase in our country. At this level of carefulness, Personal Autonomy Promotion Center in Bergondo contemplates like a social and health care resource in order to facilitate community integration in subjects with ABI. AIMS. To describe clinical profile in the subjects admitted in our unit, and to assess intervention possibilities with clinico-functional recovery goals in the chronic phases in ABI. . Sample of 105 subjects admitted in our center until December 2010. 86 men and 19 women, with a mean age of 32.16 years old and a most frequent evolution time of less than 5 years (64.76%). Variables collected were: sex, age, etiology, evolution time, personality changes diagnosis, admission FIM, previous participation in rehabilitation programmes and have recovery goals. The main etiology was traumatic brain injury (62.5%). The 54.28% of the subjects was taking physical rehabilitation at the moment of admission, while the 49.52% had participated in neuropsychological interventions. Physical recovery goals were identified in the 42.85% of the subjects and the 78.09% had goals in neuropsychology field. The clinical profile observed was young man with sequelae caused by a traumatic brain injury suffered in last five years, who has received poor neuropsychological care and that still takes physiotherapy treatment.

  3. Investigation of Aging Effects from High Voltage Profiles in Ceramic Phase Shifter Materials

    DTIC Science & Technology

    1994-12-01

    for the BSTO-Alumina composites. REFERENCES [1] R.W. Babbitt, T. E. Koscica, and W.E. Drach , "Planar Microwave Electro-optic Phase Shifters...Sources Director»,., For, Monroes, 1 ATTN: AMSRL-EP-M, W. C. Drach 1 AMSRL-EP-M, T. E. Koscica 1 AMSRL-EP-M, R. W. Babbit 25 Authors 11

  4. Developmental profile of select immune cells in mice infected with Trichinella spiralis during the intestinal phase

    USDA-ARS?s Scientific Manuscript database

    Trichinella spiralis can cause immunosuppression during the intestinal phase of early infection. However, changes in the peripheral blood during T. spiralis early infection remain unclear. Here, select immune cells in mice infected with 500 muscle larvae (ML) of T. spiralis during the intestinal pha...

  5. Transcriptome profiling analysis reveals metabolic changes across various growth phases in Bacillus pumilus BA06.

    PubMed

    Han, Lin-Li; Shao, Huan-Huan; Liu, Yong-Cheng; Liu, Gang; Xie, Chao-Ying; Cheng, Xiao-Jie; Wang, Hai-Yan; Tan, Xue-Mei; Feng, Hong

    2017-07-11

    Bacillus pumilus can secret abundant extracellular enzymes, and may be used as a potential host for the industrial production of enzymes. It is necessary to understand the metabolic processes during cellular growth. Here, an RNA-seq based transcriptome analysis was applied to examine B. pumilus BA06 across various growth stages to reveal metabolic changes under two conditions. Based on the gene expression levels, changes to metabolism pathways that were specific to various growth phases were enriched by KEGG analysis. Upon entry into the transition from the exponential growth phase, striking changes were revealed that included down-regulation of the tricarboxylic acid cycle, oxidative phosphorylation, flagellar assembly, and chemotaxis signaling. In contrast, the expression of stress-responding genes was induced when entering the transition phase, suggesting that the cell may suffer from stress during this growth stage. As expected, up-regulation of sporulation-related genes was continuous during the stationary growth phase, which was consistent with the observed sporulation. However, the expression pattern of the various extracellular proteases was different, suggesting that the regulatory mechanism may be distinct for various proteases. In addition, two protein secretion pathways were enriched with genes responsive to the observed protein secretion in B. pumilus. However, the expression of some genes that encode sporulation-related proteins and extracellular proteases was delayed by the addition of gelatin to the minimal medium. The transcriptome data depict global alterations in the genome-wide transcriptome across the various growth phases, which will enable an understanding of the physiology and phenotype of B. pumilus through gene expression.

  6. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Ullah, Fareed

    2017-04-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins and two chlorophylls. Lutein (806.0 µg/g), chlorophyll b' (410.0 µg/g), chlorophyll a (162.4 µg/g), 9'-Z-neoxanthin (142.8 µg/g) and all-E-violaxanthin (82.2 µg/g)) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of thirteen compounds, namely p-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g) and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for possible medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a potential source of nutraceuticals or as a functional food ingredient.

  7. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b′ (410.0 μg/g), chlorophyll a (162.4 μg/g), 9′-Z-neoxanthin (142.8 μg/g) and all-E-violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient. PMID:28497036

  8. Comparison of fibrin sealant and staples for attaching split-thickness autologous sheet grafts in patients with deep partial- or full-thickness burn wounds: a phase 1/2 clinical study.

    PubMed

    Gibran, Nicole; Luterman, Arnold; Herndon, David; Lozano, Daniel; Greenhalgh, David G; Grubbs, Lisa; Schofield, Neil; Hantak, Edith; Callahan, Janice D; Schiestl, Nina; Riina, Louis H

    2007-01-01

    We undertook a multicenter, randomized, controlled, phase 1/2 clinical study to investigate the safety and efficacy of a fibrin sealant containing 4 IU/ml thrombin (FS 4IU) for the attachment of autologous sheet grafts in patients with deep partial-thickness or full-thickness burn wounds. Fibrin sealant (FS 4IU) was compared with staples for adherence of sheet grafts in 40 patients. Patients had to have burn wounds measuring 40% TBSA or less with two comparable test sites measuring between 1% and 4% TBSA each. Wound beds were prepared before treatment assignment, which was randomized. Percent area of hematoma/seroma at Day 1 (P = .0138) and questionable viability at Day 5 (P = .0182) were significantly less for FS 4IU-treated sites. Median percent area of graft survival on Day 14 was 100% for both treatments (P = .3525). The percentage of completely closed sites generally was greater for FS 4IU-sites on Days 5 to 91; the maximum difference occurred at Day 28 (79.5% vs 59%; P = .0215). The safety profile of FS 4IU was excellent as indicated by the lack of any related serious adverse experiences. These findings indicate that FS 4IU is safe and effective for fixation of skin grafts, with outcomes similar to or better than staple fixation. The data suggest that FS 4IU is a promising candidate for further clinical studies focusing on skin graft adhesion and burn wound healing.

  9. Détermination du profil de modulation des réseaux holographiques de phase

    NASA Astrophysics Data System (ADS)

    Mechahougui, S.; Harthong, J.; Medjahed, A.

    1993-12-01

    The complete knowledge of the geometrical and physic-chemical parameters of a periodically modulated volume material, permits the determination of the diffraction picture. Such a purely mathematical and numerical determination is of great scientific and technological interest. The modulation profile (given by its Fourier coefficients) is one of these parameters. It can be determinated a posteriori only by the measurement of the different diffracted intensities at different orders. Starting from this idea, we can achieve a new method (theoritically exact) which permits the study of the diffraction of an electromagnetic plane wave by a dielectric grating. This method leads to the numerical treatment of ordinary differential equation with variable by periodic coefficients. The method is presented here for the classical case of a wave with electric polarization parallel to the grating. For the analysis of the modulation profile, we have considered realistic models of profiles, contrary to the current models, which have only a numerical existence. In order to achieve our experimental work, we have developed two experimental set-up: the first for the recording and the second for the analysis of diffractive elements. The whole set-up can be directed with the aid of a software from a personal computer. The validity of results are discussed. La connaissance parfaite des paramètres géométriques et physico-chimiques d'un matériau de volume modulé périodiquement, donne une bonne connaissance de la figure de diffraction. Celle-ci a une grande importance scientifique et technologique. Le profil de modulation (donné par ses coefficients de Fourier) est l'un de ces paramètres qui ne peut être déterminé a posteriori qu'à partir de la répartition d'intensité entre les différents ordres. A partir de cette idée, nous avons établi une méthode exacte permettant l'étude de la diffraction d'une onde plane électromagnétique par un réseau diélectrique, qui conduit au

  10. Estimating Accurate Relative Spacecraft Angular Position from Deep Space Network Very Long Baseline Interferometry Phases Using X-Band Telemetry or Differential One-Way Ranging Tones

    NASA Astrophysics Data System (ADS)

    Bagri, D. S.; Majid, W. A.

    2008-02-01

    At present spacecraft angular position with the Deep Space Network (DSN) is determined using group delay estimates from very long baseline interferometry (VLBI) phase measurements employing differential one-way ranging (DOR) tones. Group delay measurements require high signal-to-noise ratio (SNR) to provide modest angular position accuracy. On the other hand, VLBI phases with modest SNR can be used to determine the position of a spacecraft with high accuracy, except for the interferometer interference fringe cycle ambiguity, which can be resolved using multiple baselines, requiring several antenna stations as is done, for example, using the Very Long Baseline Array (VLBA) (e.g, the VLBA has 10 antenna stations). As an alternative to this approach, here we propose estimating the position of a spacecraft to half-a-fringe-cycle accuracy using time variations between measured and calculated phases, using DSN VLBI baseline(s), as the Earth rotates (i.e., estimate position offset from the difference between observed and calculated phases for different spatial frequency (U,V) values). Combining the fringe location of the target with the phase information allows for estimate of spacecraft angular position to a high accuracy. One of the advantages of this scheme, in addition to the possibility of achieving a fraction of a nanoradian measurement accuracy using DSN antennas for VLBI, is that it is possible to use telemetry signals with at least a 4 to 8 Msamples/s data rate (bandwidth greater than about 8 to 16 MHz) to measure spacecraft angular position instead of using DOR tones, as is currently done. Using telemetry instead of DOR tones will eliminate the need for spacecraft coordination for angular position measurements and will minimize calibration errors due to instrumental dispersion effects.

  11. A specific profile of luteal phase progesterone is associated with the development of premenstrual symptoms.

    PubMed

    Lovick, Thelma A; Guapo, Vinicius G; Anselmo-Franci, Janete A; Loureiro, Camila M; Faleiros, Maria Clara M; Del Ben, Cristina M; Brandão, Marcus L

    2017-01-01

    There is a consensus that the development of premenstrual dysphoric states is related to cyclical change in gonadal hormone secretion during the menstrual cycle. However, results from studies seeking to link symptom severity to luteal phase progesterone concentration have been equivocal. In the present study we evaluated not only the absolute concentrations of progesterone but also the kinetics of the change in progesterone concentration in relation to development of premenstrual symptoms during the last 10days of the luteal phase in a population of 46 healthy young adult Brazilian women aged 18-39 years, mean 26.5±6.7years. In participants who developed symptoms of premenstrual distress, daily saliva progesterone concentration remained stable during most of the mid-late luteal phase, before declining sharply during the last 3days prior to onset of menstruation. In contrast, progesterone concentration in asymptomatic women underwent a gradual decline over the last 8days prior to menstruation. Neither maximum nor minimum concentrations of progesterone in the two groups were related to the appearance or severity of premenstrual symptoms. We propose that individual differences in the kinetics of progesterone secretion and/or metabolism may confer differential susceptibility to the development of premenstrual syndrome.

  12. B1 mapping with a pure phase encode approach: Quantitative density profiling

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Newling, B.; MacMillan, B.; Balcom, B. J.

    2013-07-01

    In MRI, it is frequently observed that naturally uniform samples do not have uniform image intensities. In many cases this non-uniform image intensity is due to an inhomogeneous B1 field. The ‘principle of reciprocity' states that the received signal is proportional to the local magnitude of the applied B1 field per unit current. Inhomogeneity in the B1 field results in signal intensity variations that limit the ability of MRI to yield quantitative information. In this paper a novel method is described for mapping B1 inhomogeneities based on measurement of the B1 field employing centric-scan pure phase encode MRI measurements. The resultant B1 map may be employed to correct related non-uniformities in MR images. The new method is based on acquiring successive images with systematically incremented low flip angle excitation pulses. The local image intensity variation is proportional to B12, which ensures high sensitivity to B1 field variations. Pure phase encoding ensures the resultant B1 field maps are free from distortions caused by susceptibility variation, chemical shift and paramagnetic impurities. Hence, the method works well in regions of space that are not accessible to other methods such as in the vicinity of conductive metallic structures, such as the RF probe itself. Quantitative density images result when the centric scan pure phase encode measurement is corrected with a relative or absolute B1 field map. The new technique is simple, reliable and robust.

  13. Serial profile of vitamins and trace elements during the acute phase of allogeneic stem cell transplantation.

    PubMed

    Nannya, Yasuhito; Shinohara, Akihito; Ichikawa, Motoshi; Kurokawa, Mineo

    2014-03-01

    Currently, we utilize vitamins and trace elements formulations that are not prepared specifically for patients receiving hematopoietic stem cell transplantation (HSCT), and adequacy of this strategy has not been evaluated. We prospectively measured blood level of vitamins and trace elements in 15 patients once per week at 6 time points around the acute phase of allogeneic HSCT. We provided standard nutrition support, including administration of parenteral nutrition with vitamin and trace elements formulation in case of impairment of oral intake. Most patients had vitamin B1 deficiency from the start of preparative regimens. Vitamin C deficiency was prominent throughout the acute phase of HSCT and this was significantly associated with high inflammatory markers, C-reactive protein and ferritin. Remarkable vitamin K overload associated with administration of parenteral supplementation and ferritin overload caused by repeated transfusions was observed. Moderate deficiency of zinc was at least partially linked to gastrointestinal loss by diarrhea. We revealed several features of vitamin and trace element status in the acute phase of HSCT and provided a basis for attempts to improve the nutritional condition in HSCT recipients.

  14. Application of Deep Eutectic Solvents in Hybrid Molecularly Imprinted Polymers and Mesoporous Siliceous Material for Solid-Phase Extraction of Levofloxacin from Green Bean Extract.

    PubMed

    Li, Xiaoxia; Row, Kyung Ho

    2017-01-01

    Deep eutectic solvents (DES) are potential ecofriendly surfactants for the preparation of materials. In this study, both molecularly imprinted polymers (MIPs) and mesoporous siliceous materials (MSMs) were modified by betaine-based DES. Six materials were employed as solid phase extraction (SPE) adsorbents for the rapid purification of levofloxacin. The DES-based materials showed better selective adsorption than the conventional materials. The adsorption curves of DES-MIP showed superior molecular recognition ability and binding capability for levofloxacin compared to the other materials. The limit of detection and limit of quantitation of the method were 0.01 and 0.03 μg/mL for levofloxacin, respectively. The method recoveries at three spiked levels were 97.2 - 100.2% for DES-MIP, with an RSD <1.8%. DES-MIP showed the highest selective recovery (95.2%) for levofloxacin from the green bean extract, and could remove the interferent effectively.

  15. Changes in the chemical profile of cephalic salivary glands of Scaptotrigona postica (Hymenoptera, Meliponini) workers are phase related.

    PubMed

    Poiani, Silvana B; Morgan, E David; Drijfhout, Falko P; da Cruz-Landim, Carminda

    2015-09-01

    Most advanced eusocial bees recruit their nest mates to food resources. Recent studies in Meliponini species have revealed that the cephalic salivary (labial) glands (CSGs) are responsible for the production of scent trail pheromones. Studies on CSGs have shown that changes occur in worker glandular cell morphology from emergence from brood combs until forager phase, which may be correlated to changes in the composition of the CSG secretion. However, the composition of the CSG secretion and the chemical changes that occur in it according to the worker's life phase or tasks performed are unknown for many species, including Scaptotrigona postica. In this study, the chemical profile of CSG secretion in S. postica workers was studied. Glands were taken from specimens that were newly emerged (NE), working in the brood comb area (CA) and foraging (FO), and were analyzed by gas chromatography-mass spectrometry. The results showed that the glandular secretion consists of oxygenated compounds of middle volatility (acids, alcohols, aldehydes, ketones, esters and ether), and their quantity varies among the different life phases, increasing as the individual moves from intra- to extra-colonial activities. The NE phase contained the smallest variety and quantity of compounds. Because of the variability of compounds, the CA workers were separated into three subgroups according to the chemical constitution of their secretion. Forager workers showed the largest quantity and variety of chemical compounds. The major compounds in forager gland secretion were 7-hexadecen-1-yl acetate and 5-tetradecen-1-yl acetate. Statistical analysis indicates that the chemical composition of glandular secretion is phase related.

  16. Aroma Profile of Rubus ulmifolius Flowers and Fruits During Different Ontogenetic Phases.

    PubMed

    Bandeira Reidel, Rose Vanessa; Melai, Bernardo; Cioni, Pierluigi; Flamini, Guido; Pistelli, Luisa

    2016-12-01

    The chemical composition of spontaneous volatile emission from Rubus ulmifolius flowers and fruits during different stages of development was evaluated by HS-SPME-GC/MS. In total, 155 chemical compounds were identified accounting 84.6 - 99.4% of whole aroma profile of flowers samples and 92.4 - 96.6% for fruit samples. The main constituents were α-copaene, β-caryophyllene, germacrene D, (E,E)-α-farnesene, 1,7-octadien-3-one,2-methyl-6-methylene, tridecane, (E)-2-hexenol acetate, (E)-3-hexenol acetate and cyperene. The results give a chemotaxonomic contribution to the characterization of the VOCs emitted from flowers and fruits during their ontogenic development. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  17. Correlation of change in R2* and phase with putative iron content in deep gray matter of healthy adults

    PubMed Central

    Haacke, E. Mark; Miao, Yanwei; Liu, Manju; Habib, Charbel A.; Katkuri, Yashwanth; Liu, Ting; Yang, Zhihong; Lang, Zhijin; Hu, Jiani; Wu, Jianlin

    2010-01-01

    Purpose To establish a correlation between putative iron content using susceptibility weighted imaging (SWI) phase and T2* weighted magnitude values in the basal ganglia as a function of age in healthy human brains. Materials and methods 100 healthy adults (20-69 yr.; mean = 43 yr) were evaluated for this study using a gradient echo sequence. The original magnitude and high pass filtered phase data were analyzed as proxy variables for iron content in the substantia nigra, red nucleus, globus pallidus, putamen, caudate nucleus, thalamus and pulvinar thalamus. Each structure was broken into two parts, a high iron content region and a low iron content region. Results Both magnitude and phase data showed an increase in putative iron content with age. However, the high iron content region revealed two new pieces of information: both the average iron content per pixel and the area of high iron increased with age. Further, significant increase in iron uptake as a function of age was found past the age of 40. Conclusion A two region of interest analysis of iron is a much more sensitive means to evaluate iron content change over time. Contrary to the current belief that iron content increases level off with age, the putative iron deposition in region two is seen to increase with age. PMID:20815053

  18. The High-Pressure Monoclinic Lawsonite Phase: The Primary Carrier of Water from Subducted Crust to the Deep Mantle

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Williams, Q.; Beavers, C.

    2016-12-01

    Lawsonite (CaAl2Si2O7(OH)2.H2O) is the primary subduction zone mineral that carries water within subducted oceanic crust to depths of greater than 80 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions using spectroscopic and X-ray diffraction techniques, as well as under room pressure and varying temperature conditions. Simultaneous high-pressure and temperature measurements on lawsonite to pressures and temperatures approaching its maximum stability are limited to a few multianvil synchrotron based powder diffraction studies. The initially orthorhombic lawsonite has been observed to undergo a phase transition near 9 GPa; however, the high-pressure monoclinic structure of lawsonite has only been reported from non-hydrostatic powder diffraction experiments. We conducted simultaneous high pressure and temperature single-crystal synchrotron based x-ray diffraction experiments on natural lawsonite under hydrostatic conditions. At room pressure and temperature, lawsonite crystallizes with Cmcm symmetry. We solved the structure of the high-pressure phase of lawsonite at 9.7 GPa as monoclinic with P21/m symmetry. The volume change from the low-pressure phase is negligible. Our simultaneous high-pressure and temperature measurements indicate that the orthorhombic to monoclinic transition occurs at nearly 1 GPa lower pressure when heated to temperatures of only 120 0C. There is no evidence of dehydration under these conditions, and the H2O molecule does not change its orientation across this transition. From our single-crystal data, the OH groups in lawsonite may become disordered across this high-pressure transition. The Si and Al sites do not become more distorted under compression or through the phase transition, but the Ca site shows a dramatic increase in its distortion across the high-pressure transition. Our results suggest that the bound water molecule in the high-pressure form of lawsonite is largely

  19. Nine-year change in statistical design, profile, and success rates of Phase II oncology trials.

    PubMed

    Ivanova, Anastasia; Paul, Barry; Marchenko, Olga; Song, Guochen; Patel, Neerali; Moschos, Stergios J

    2016-01-01

    We investigated nine-year trends in statistical design and other features of Phase II oncology clinical trials published in 2005, 2010, and 2014 in five leading oncology journals: Cancer, Clinical Cancer Research, Journal of Clinical Oncology, Annals of Oncology, and Lancet Oncology. The features analyzed included cancer type, multicenter vs. single-institution, statistical design, primary endpoint, number of treatment arms, number of patients per treatment arm, whether or not statistical methods were well described, whether the drug was found effective based on rigorous statistical testing of the null hypothesis, and whether the drug was recommended for future studies.

  20. Profiling the circulating miRNAs in mice exposed to gram-positive and gram-negative bacteria by Illumina small RNA deep sequencing.

    PubMed

    Rau, Cheng-Shyuan; Wu, Shao-Chun; Yang, Johnson Chia-Shen; Lu, Tsu-Hsiang; Wu, Yi-Chan; Chen, Yi-Chun; Tzeng, Siou-Ling; Wu, Chia-Jung; Hsieh, Ching-Hua

    2015-01-07

    We profiled the expression of circulating microRNAs (miRNAs) in mice using Illumina small RNA deep sequencing in order to identify the miRNAs that may potentially be used as biomarkers to distinguish between gram-negative and gram-positive bacterial infections. Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 10(8) bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14 + Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection. This study identified mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p as potential circulating miRNAs for gram-positive bacterial infections.

  1. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    SciTech Connect

    Kawakami, S.; Ohno, N.; Shibata, Y.; Isayama, A.; Kawano, Y.; Watanabe, K. Y.; Takizuka, T.; Okamoto, M.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, we find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.

  2. Detailed Crustal Geometry of the Continental Collision between India and Eurasia: Constraints from Deep Seismic Reflection Profiles across the Yarlung-Zangbo Suture, Tibet, at 88°E

    NASA Astrophysics Data System (ADS)

    Gao, R.; Li, W.; Guo, X.; Li, H.; Lu, Z.; He, R.; Zeng, L.; Klemperer, S. L.; Huang, X.

    2016-12-01

    The Tibetan plateau was created by continental collision between India and Eurasia and their ongoing convergence. The extent of subduction of Indian crust is central to our understanding the geodynamics of continental collision. However, owing to the lack of high-resolution data on the crustal-scale geometry of the Himalayan collision zone, the thickness of Indian crust subducting beneath the Yarlung-Zangbo Suture has been poorly known. Here we present two new deep seismic reflection profiles, respectively 100-km and 60-km long, across the central part of the Yarlung-Zangbo suture at c. 88°E (Figure 1). Seismic data processing used the CGG, ProMAX, and GeoEast systems. Processing included tomographic static correction, true-amplitude recovery, frequency analysis, filter-parameter tests, surface-consistent-amplitude corrections, surface-consistent deconvolution, coherent noise suppression, random noise attenuation, human-computer interactive velocity analysis, residual statics correction, Kirchhoff pre-stack time migration incorporating the rugged topography, and post-stack polynomial fitting to remove noise. Our two profiles both trace the Main Himalayan Thrust continuously from the mid-crust to deep beneath southern Tibet. Together with prominent Moho reflections at the base of the double-normal-thickness crust, the geometry of the subducting Indian crust is well defined. Both profiles image a limited extent of the Indian crust beneath southern Tibet and indicate that north-dipping Indian crust and south-dipping Lhasa crust converge beneath the Xietongmen region, above the remnant mantle suture. Figure 1. Geological map of the Xietongmen Region, south Tibet. The deep seismic reflection profile is shown as a solid red line, the location of big shots are shown as black stars.

  3. Self-Reported Wellness Profiles of Professional Australian Football Players During the Competition Phase of the Season.

    PubMed

    Gallo, Tania F; Cormack, Stuart J; Gabbett, Tim J; Lorenzen, Christian H

    2017-02-01

    Gallo, TF, Cormack, SJ, Gabbett, TJ, and Lorenzen, CH. Self-reported wellness profiles of professional Australian football players during the competition phase of the season. J Strength Cond Res 31(2): 495-502, 2017-With the prevalence of customized self-report measures in high-performance sport, and the incomplete understanding of athletes' perceived wellness in response to matches and training load, the objective of this study was to explore weekly wellness profiles within the context of the competitive season of professional Australian football. Internal match load, measured through the session-rating of perceived exertion method, match-to-match microcycle, stage of the season, and training load were included in multivariate linear models to determine their effect on weekly wellness profile (n = 1,835). There was a lower weekly training load on a 6-day microcycle compared with a 7-day and 8-day microcycle. Match load had no significant impact on weekly wellness profile, while there was an interaction between microcycle and days postmatch. There was a likely moderately lower wellness Z-score 1 day postmatch for an 8-day microcycle (mean; 95% confidence interval: -1.79; -2.02 to -1.56) compared with a 6-day (-1.19; -1.30 to -1.08) and 7-day (-1.22; -1.34 to -1.09) cycle (d; 95% confidence interval: -0.82; -1.3 to -0.36, -0.78; -1.3 to -0.28, respectively). The second half of the season saw a possibly small reduction in overall wellness Z-score than the first half of the season (0.22; 0.12-0.32). Finally, training load had no effect on wellness Z-score when controlled for days postmatch, microcycle, and stage of the season. These results provide information on the status of players in response to matches and fixed conditions. Knowing when wellness Z-score returns to baseline relative to the length of the microcycle may lead practitioners to prescribe the heaviest load of the week accordingly. Furthermore, wellness "red flags" should be made relative to the

  4. Study on seafood volatile profile characteristics during storage and its potential use for freshness evaluation by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Zhang, Zhuomin; Li, Gongke; Luo, Lin; Chen, Guonan

    2010-02-05

    Seafood volatile profile characteristics at different storage phases are various and can be used for freshness evaluation during storage. It is imperative to obtain the full volatile information prior to the further study of seafood volatile profile characteristics during storage. Also, the efficient data-processing method is another important factor for the interpretation of seafood volatile profile characteristics during storage and related potential volatile markers. In this work, a new analytical strategy, including the efficient sampling technique, sensitive detection and suitable data-processing method, for seafood freshness evaluation was developed based on the volatile profile characteristics during storage. First, the study of volatiles of seafood samples including razor clam, redspot swimming crab and prawn at different storage phases were conducted by headspace solid phase microextraction (HSSPME) followed by gas chromatography-mass spectrometry (GC-MS) detection. Then, seafood volatile profile characteristics at different storage phases were statistically interpreted by a combination data-processing method including normalization, principle component analysis (PCA) and common model strategy. The different seafood volatile profile characteristics and potential volatile markers were attempted to be distilled. The results tentatively suggested that the different seafood volatile profile characteristics during storage could reflect the transitional changing seafood freshness and provide more precise warning information for seafood spoilage during storage than any single chemical markers. This work developed an analytical method for study of seafood volatile profile characteristics and tentatively proposed a new idea of using seafood volatile profile characteristics during storage for the freshness evaluation from the point of view of analytical chemistry.

  5. Remedy performance monitoring at contaminated sediment sites using profiling solid phase microextraction (SPME) polydimethylsiloxane (PDMS) fibers.

    PubMed

    Thomas, Courtney; Lampert, David; Reible, Danny

    2014-03-01

    Passive sampling using polydimethylsiloxane (PDMS) profilers was evaluated as a tool to assess the performance of in situ sediment remedies at three locations, Chattanooga Creek (Chattanooga, TN), Eagle Harbor (Bainbridge Island, WA) and Hunter's Point (San Francisco, CA). The remedy at the first two locations was capping over PAH contaminated sediments while at Hunter's Point, the assessment was part of an in situ treatment demonstration led by R. G. Luthy (Stanford University) using activated carbon mixed into PCB contaminated sediments. The implementation and results at these contaminated sediment sites were used to illustrate the utility and usefulness of the passive sampling approach. Two different approaches were employed to evaluate kinetics of uptake onto the sorbent fibers. At the capping sites, the passive sampling approach was employed to measure intermixing during cap placement, contamination migration into the cap post-placement and recontamination over time. At the in situ treatment demonstration site, reductions in porewater concentrations in treated versus untreated sediments were compared to measurements of bioaccumulation of PCBs in Neanthes arenaceodentata.

  6. Changes in chemical profile of cephalic salivary glands of Scaptotrigona postica (Hymenoptera, Meliponini) workers are phase-related.

    PubMed

    Poiani, Silvana B; Morgan, E David; Drijfhout, Falko P; da Cruz-Landim, Carminda

    2015-07-10

    Most advanced eusocial bees recruit their nestmates to food resources. Recently, studies in Meliponini species showed that the cephalic salivary (labial) glands (CSGs) are responsible for the production of scent-trail pheromones. Studies on CSGs have shown changes in glandular cell morphology since the worker emerges from brood combs (newly emerged) till forager phase, which may be correlated to changes in the composition of secretion produced. However, no study has been made till now regarding to the composition of CSGs secretion of Scaptotrigona postica and the chemical changes that occur in this secretion according to the worker's life phase or tasks performed. In this study, the chemical profile of CSG secretion in S. postica workers was studied. Glands were taken from specimens newly emerged (NE), working in the brood combs area (CA) and forager (FO) and were analyzed by gas chromatography-mass spectrometry. The results showed that glandular secretion consists of oxygenated compounds of middle volatility (acids, alcohols, aldehydes, ketones, esters and ether), and their quantity varies among the different phases of life, increasing as the individual undergoes from intra- to extra-colonial activities. The NE phase contained the smallest variety and quantity of compounds. Due to the variability of compounds, the CA workers were separated into 3 groups according to the chemical constitution of their secretion. Forager workers showed the largest quantity and variety of chemical compounds. The major compounds in forager gland secretion are 7-hexadecen-1-yl acetate and 5-tetradecen-1-yl acetate. Statistical analysis indicates that the chemical composition of glandular secretion is task-related.

  7. Simultaneous control on the intensity and phase profile of laser beam with Monge-Ampère equation method

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqin; Wu, Rengmao; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2014-12-01

    Laser beam shaping requires controlling the intensity and phase profile of the input laser beam simultaneously. In this paper, a method for designing double freeform surfaces is presented to solve the laser beam shaping problem. Based on Snell's law and conservation law of energy, a mathematical model is established to convert the double surfaces design problem into an elliptic Monge-Ampère equation with a nonlinear boundary problem by imposing a constraint on the optical path length between the input and output wavefronts. Two different configurations of the beam shaping system are discussed and the good results show clearly the Monge-Ampère equation method provides an effective tool in solving the challenging problem of laser beam shaping.

  8. High latitude proton precipitation and light-ion density profiles during the magnetic storm initial phase

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1973-01-01

    Measurements of precipitating protons and light ion densities by experiments on OGO-4 indicate that widespread proton precipitation occurs in predawn hours during the magnetic storm initial phase from the latitude of the high-latitude ion trough, or plasmapause , up to Lambda 75 deg. A softening of the proton spectrum is apparent as the plasmapause is approached. The separation of the low-latitude precipitation boundaries for 7.3 kev and 23.8 kev protons is approximately 1 deg, compared with a 3.6 deg separation which has been computed using the formulas of Gendrin and Eather and Carovillano. Consideration of probable proton drift morphology leads to the conclusion that protons ase injected in predawn hours, with widespread precipitation occurring in the region outside the plasmapause. Protons less energetic than approximately 7 kev drift eastward, while the more energetic protons drift westward, producing the observed dawn-dusk asymmetry for the lower-energy protons.

  9. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    SciTech Connect

    Busigin, A.

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  10. Profiling flavor compounds of potato crisps during storage using solid-phase microextraction.

    PubMed

    Sanches-Silva, A; Lopez-Hernández, J; Paseiro-Losada, P

    2005-02-04

    Headspace solid-phase microextraction (HS-SPME) was studied as a solvent free alternative method for the extraction and characterisation of volatile compounds in stored potato crisps by capillary gas chromatography coupled with mass detection. Better results were obtained when extraction was carried out at 70 degrees C using a divinylbenzene (DVB)-carboxen (CAR)-polydimethylsiloxane fiber. The fiber was exposed for 20 min (extraction time) to the sample headspace, immediately after an equilibrium time of 5 min (time needed to reach the equilibrium between sample and above headspace). A total of 31 compounds were identified in oxidised potato crisps and resulted mainly from the degradation/rearrangement of lipids and carbohydrates.

  11. Safety Profile of the 9-Valent HPV Vaccine: A Combined Analysis of 7 Phase III Clinical Trials.

    PubMed

    Moreira, Edson D; Block, Stan L; Ferris, Daron; Giuliano, Anna R; Iversen, Ole-Erik; Joura, Elmar A; Kosalaraksa, Pope; Schilling, Andrea; Van Damme, Pierre; Bornstein, Jacob; Bosch, F Xavier; Pils, Sophie; Cuzick, Jack; Garland, Suzanne M; Huh, Warner; Kjaer, Susanne K; Qi, Hong; Hyatt, Donna; Martin, Jason; Moeller, Erin; Ritter, Michael; Baudin, Martine; Luxembourg, Alain

    2016-08-01

    The overall safety profile of the 9-valent human papillomavirus (9vHPV) vaccine was evaluated across 7 Phase III studies, conducted in males and females (nonpregnant at entry), 9 to 26 years of age. Vaccination was administered as a 3-dose regimen at day 1, and months 2 and 6. More than 15 000 subjects received ≥1 dose of 9vHPV vaccine. In 2 of the studies, >7000 control subjects received ≥1 dose of quadrivalent HPV (qHPV) vaccine. Serious and nonserious adverse events (AEs) and new medical conditions were recorded throughout the study. Subjects testing positive for pregnancy at day 1 were not vaccinated; those who became pregnant after day 1 were discontinued from further vaccination until resolution of the pregnancy. Pregnancies detected after study start (n = 2950) were followed to outcome. The most common AEs (≥5%) experienced by 9vHPV vaccine recipients were injection-site AEs (pain, swelling, erythema) and vaccine-related systemic AEs (headache, pyrexia). Injection-site AEs were more common in 9vHPV vaccine than qHPV vaccine recipients; most were mild-to-moderate in intensity. Discontinuations and vaccine-related serious AEs were rare (0.1% and <0.1%, respectively). Seven deaths were reported; none were considered vaccine related. The proportions of pregnancies with adverse outcome were within ranges reported in the general population. The 9vHPV vaccine was generally well tolerated in subjects aged 9 to 26 years with an AE profile similar to that of the qHPV vaccine; injection-site AEs were more common with 9vHPV vaccine. Its additional coverage and safety profile support widespread 9vHPV vaccination. Copyright © 2016 by the American Academy of Pediatrics.

  12. Method to predict the bandwidth of elution profile under the linear gradient elution in reversed-phase HPLC.

    PubMed

    Lee, Ju Weon; Row, Kyung Ho

    2009-01-01

    Solute migration in a chromatographic column is an important consideration when designing batch or continuous chromatographic separation processes. Most design methods for the chromatographic processes are based on the equilibrium theory which concerns only the migration velocity of the solute. However, in real cases, it is important to predict the zone spreading which occurs by axial dispersion and mass transfer resistance. To predict the actual solute profiles in the column or effluent stream, numerical methods to solve nonlinear partial differential equations have been used. However, these methods involve much time and expense. In this work, two different rate factors are considered to predict the characteristics of the solute profiles. The first is solute migration velocity and the second is the zone spreading rate. The zone spreading rate can be estimated by the apparent axial dispersion coefficient which is obtained from the height of the equivalent theoretical plate in particular. Four benzene derivatives (benzene, toluene, p-xylene, and acetophenone) were used as model solutes, and two mobile phase systems, water/methanol and water/ACN, were used in RP-HPLC. The bandwidths and retention times of the solutes were predicted under several linear gradient conditions. The predicted and experimental bandwidths and retention times showed good agreement.

  13. Experimental multi-phase CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.J.; Koksalan, T.

    2004-01-01

    Long-term CO2 saturated brine-rock experiments were conducted to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration mineral phases within deep-saline aquifers. Experimental results were consistent with theoretical thermodynamic calculations when CO2-saturated brines were reacted with limestone rocks. The CO2-saturated brine-limestone reactions were characterized by compositional and mineralogical-changes in the aquifer fluid and formation rocks that were dependent on initial brine composition as were the changes in formation porosity, especially dissolved sulfate. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone rocks relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions occured on a measurable but kinetically slow time scale at 120??C.

  14. Experimental multi-phase H2O-CO2 brine interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.; Koksalan, T.

    2004-01-01

    The burning of fossil fuel and other anthropogenic activities have caused a continuous and dramatic 30% increase of atmospheric CO2 over the past 150 yr. CO2 sequestration is increasingly being viewed as a tool for managing these anthropogenic CO2 emissions to the atmosphere. CO2-saturated brine-rock experiments were carried out to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration in mineral phases within deep-saline aquifers. Experimental results were generally consistent with theoretical thermodynamic calculations. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions were occurring on a measurable but kinetically slow time scale at 120??C.

  15. Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton

    NASA Astrophysics Data System (ADS)

    He, Xiao-Fang; Santosh, M.; Bockmann, Kiara; Kelsey, David E.; Hand, Martin; Hu, Jianmin; Wan, Yusheng

    2016-10-01

    Among the various Precambrian crustal blocks in the North China Craton (NCC), the geology and evolution of the Ordos Block remain largely enigmatic due to paucity of outcrop. Here we investigate granulite-facies metapelites obtained from deep-penetrating drill holes in the Ordos Block and report petrology, calculated phase equilibria and in-situ monazite LA-ICP-MS geochronology. The rocks we studied are two samples of cordierite-bearing garnet-sillimanite-biotite metapelitic gneisses and one graphite-bearing, two-mica granitic gneiss. The peak metamorphic age from LA-ICP-MS dating of monazite in all three samples is in the range of 1930-1940 Ma. The (U + Pb)-Th chemical ages through EPMA dating reveals that monazite occurring as inclusions in garnet are older than those in the matrix. Calculated metamorphic phase diagrams for the cordierite-bearing metapelite suggest peak P-T conditions ca. 7-9 kbar and 775-825 °C, followed by decompression and evolution along a clockwise P-T path. Our petrologic and age data are consistent with those reported from the Khondalite Belt in the Inner Mongolia Suture Zone in the northern part of the Ordos Block, suggesting that these granulite-facies metasediments represent the largest Paleoproterozoic accretionary belt in the NCC.

  16. Phase-Amplitude Coupling Is Elevated in Deep Sleep and in the Onset Zone of Focal Epileptic Seizures

    PubMed Central

    Amiri, Mina; Frauscher, Birgit; Gotman, Jean

    2016-01-01

    The interactions between different EEG frequency bands have been widely investigated in normal and pathologic brain activity. Phase-amplitude coupling (PAC) is one of the important forms of this interaction where the amplitude of higher frequency oscillations is modulated by the phase of lower frequency activity. Here, we studied the dynamic variations of PAC of high (gamma and ripple) and low (delta, theta, alpha, and beta) frequency bands in patients with focal epilepsy in different sleep stages during the interictal period, in an attempt to see if coupling is different in more or less epileptogenic regions. Sharp activities were excluded to avoid their effect on the PAC. The results revealed that the coupling intensity was generally the highest in stage N3 of sleep and the lowest in rapid eye movement sleep. We also compared the coupling strength in different regions [seizure onset zone (SOZ), exclusively irritative zone, and normal zone]. PAC between high and low frequency rhythms was found to be significantly stronger in the SOZ compared to normal regions. Also, the coupling was generally more elevated in spiking channels outside the SOZ than in normal regions. We also examined how the power in the delta band correlates to the PAC, and found a mild but statistically significant correlation between slower background activity in epileptic channels and the elevated coupling in these channels. The results suggest that an elevated PAC may reflect some fundamental abnormality, even after exclusion of sharp activities and even in the interictal period. PAC may therefore contribute to understanding the underlying dynamics of epileptogenic brain regions. PMID:27536227

  17. Classifying Ten Types of Major Cancers Based on Reverse Phase Protein Array Profiles

    PubMed Central

    Zhang, Pei-Wei; Chen, Lei; Huang, Tao; Zhang, Ning; Kong, Xiang-Yin; Cai, Yu-Dong

    2015-01-01

    Gathering vast data sets of cancer genomes requires more efficient and autonomous procedures to classify cancer types and to discover a few essential genes to distinguish different cancers. Because protein expression is more stable than gene expression, we chose reverse phase protein array (RPPA) data, a powerful and robust antibody-based high-throughput approach for targeted proteomics, to perform our research. In this study, we proposed a computational framework to classify the patient samples into ten major cancer types based on the RPPA data using the SMO (Sequential minimal optimization) method. A careful feature selection procedure was employed to select 23 important proteins from the total of 187 proteins by mRMR (minimum Redundancy Maximum Relevance Feature Selection) and IFS (Incremental Feature Selection) on the training set. By using the 23 proteins, we successfully classified the ten cancer types with an MCC (Matthews Correlation Coefficient) of 0.904 on the training set, evaluated by 10-fold cross-validation, and an MCC of 0.936 on an independent test set. Further analysis of these 23 proteins was performed. Most of these proteins can present the hallmarks of cancer; Chk2, for example, plays an important role in the proliferation of cancer cells. Our analysis of these 23 proteins lends credence to the importance of these genes as indicators of cancer classification. We also believe our methods and findings may shed light on the discoveries of specific biomarkers of different types of cancers. PMID:25822500

  18. Multidimensional profiling of plasma lipoproteins by size exclusion chromatography followed by reverse-phase protein arrays

    PubMed Central

    Dernick, Gregor; Obermüller, Stefan; Mangold, Cyrill; Magg, Christine; Matile, Hugues; Gutmann, Oliver; von der Mark, Elisabeth; Handschin, Corinne; Maugeais, Cyrille; Niesor, Eric J.

    2011-01-01

    The composition of lipoproteins and the association of proteins with various particles are of much interest in the context of cardiovascular disease. Here, we describe a technique for the multidimensional analysis of lipoproteins and their associated apolipoproteins. Plasma is separated by size exclusion chromatography (SEC), and fractions are analyzed by reverse-phase arrays. SEC fractions are spotted on nitrocellulose slides and incubated with different antibodies against individual apolipoproteins or antibodies against various apolipoproteins. In this way, tens of analytes can be measured simultaneously in 100 μl of plasma from a single SEC separation. This methodology is particularly suited to simultaneous analysis of multiple proteins that may change their distribution to lipoproteins or alter their conformation, depending on factors that influence circulating lipoprotein size or composition. We observed changes in the distribution of exchangeable apolipoproteins following addition of recombinant apolipoproteins or interaction with exogenous compounds. While the cholesteryl ester transfer protein (CETP)-dependent formation of pre-β-HDL was inhibited by the CETP inhibitors torcetrapib and anacetrapib, it was not reduced by the CETP modulator dalcetrapib. This finding was elucidated using this technique. PMID:21971713

  19. Upgraded two-dimensional phase contrast imaging system for fluctuation profile measurement on LHD

    SciTech Connect

    Michael, C. A.; Tanaka, K.; Vyacheslavov, L.; Sanin, A.; Kawahata, K.; Okajima, S.

    2006-10-15

    The two-dimensional (2D) phase contrast imaging system on LHD can measure the k spectrum of line-integrated density fluctuations (k{approx}0.2-3 mm{sup -1} and k{sub perpendicular}{rho}{sub i}{approx}0.1-1.5) with modest spatial resolution ({delta}{rho}{approx}0.1) along a line of sight passing close to the magnetic axis, sensitive to radial fluctuations in the core and poloidal fluctuations in the edge. The spatial resolution is attained using a 6x8 2D detector array taking advantage of the strong magnetic shear in LHD. The system can be configured with different magnification factors to investigate different ranges of k (in 'overview' mode from 0.2 to 0.6 mm{sup -1}, characteristic of ITG/TEM scale turbulence; and 'zoom' mode from 1 to 3 mm{sup -1}, which may access to the lower limit of the ETG range). Zoom mode additionally employs cylindrical optics to stretch the image by a factor of 4 in order to provide better spatial resolution for high k fluctuations within a narrow spatial region. The highest detected value of k in zoom mode, for which the signal-to-noise ratio is better than 1, is 2.5 mm{sup -1} (at around 1.5 MHz)

  20. Genome-Wide Transcription Profiling of the Early Phase of Biofilm Formation by Candida albicans†

    PubMed Central

    Murillo, Luis A.; Newport, George; Lan, Chung-Yu; Habelitz, Stefan; Dungan, Jan; Agabian, Nina M.

    2005-01-01

    The ability to adhere to surfaces and develop as a multicellular community is an adaptation used by most microorganisms to survive in changing environments. Biofilm formation proceeds through distinct developmental phases and impacts not only medicine but also industry and evolution. In organisms such as the opportunistic pathogen Candida albicans, the ability to grow as biofilms is also an important mechanism for persistence, facilitating its growth on different tissues and a broad range of abiotic surfaces used in medical devices. The early stage of C. albicans biofilm is characterized by the adhesion of single cells to the substratum, followed by the formation of an intricate network of hyphae and the beginning of a dense structure. Changes in the transcriptome begin within 30 min of contact with the substrate and include expression of genes related to sulfur metabolism, in particular MET3, and the equivalent gene homologues of the Ribi regulon in Saccharomyces cerevisiae. Some of these changes are initiated early and maintained throughout the process; others are restricted to the earliest stages of biofilm formation. We identify here a potential alternative pathway for cysteine metabolism and the biofilm-associated expression of genes involved in glutathione production in C. albicans. PMID:16151249

  1. Marine Seismic System(MSS) Deployment. Phase IV. Investigation of Techniques and Deployment Scenarios for Installation of Tri-Axial Seismometer in a Borehole in the Deep Ocean

    DTIC Science & Technology

    1983-05-31

    Demonstrate the baseline BIP drill string deployment techniques in deep water o Measure seismic signal and noise within a deep sea borehole o Record 5 days... deep ocean. UNCLASSIFIED/UNLIMITED DISTRIBUTION PREPARED BY: ROBERT L. WALLERSTEDT PROJECT ENGINEER GLOBAL MARINE DEVELOPMENT INC 2302 MARTIN...borehole in the deep ocean. UNCLASSIFIED/UNLIMITED DISTRIBUTION PREPARED BY: ROBERT L. WALLERSTEDT PROJECT ENGINEER GLOBAL MARINE DEVELOPMENT INC

  2. Leukocyte profile, gene expression, acute phase response, and metabolite status of cows with sole hemorrhages.

    PubMed

    O'Driscoll, Keelin; McCabe, Matthew; Earley, Bernadette

    2017-08-23

    Sole hemorrhages result from disruption to normal claw horn formation and are caused by a variety of internal and external factors. Evidence suggests that they are painful, although they do not usually cause clinical lameness and are difficult to detect by observing cow gait. Little is known about how or whether sole hemorrhages affect the cow systemically. This study compared hematology profile, leukocyte gene expression, and physiological responses of cows with no/mild hemorrhages (category 1; n = 17), moderate hemorrhages (category 2; n = 18), and severe hemorrhages (category 3; n = 12). At approximately 100 d in milk, all cows in the study herd (n = 374) were locomotion scored before hoof examination. The cows included in the study were not clinically lame and had no other hoof disorder. Blood samples were taken from all cows within 24 h of selection. Leukocyte counts were obtained using an automated cell counter, cortisol and dehydroepiandrosterone (DHEA) concentration by ELISA, and plasma haptoglobin, urea, total protein, creatine kinase and glucose were analyzed on a clinical chemistry analyzer. Expression of 16 genes associated with lameness or stress were estimated using real-time quantitative PCR. Data from cows within each category were compared using the Mixed procedure in SAS (version 9.3; SAS Institute Inc., Cary, NC). Fixed effects included hemorrhage severity category and lactation number, with days in milk and body condition score included as covariates. Locomotion score worsened as sole hemorrhage category worsened. Locomotion score of category 1 cows tended to be lower than that of category 2 cows and was lower than that of category 3 cows. The locomotion score of category 3 cows was also greater than that of categories 1 and 2 combined. Category had no effect on leukocyte number, on any of the individual leukocyte cell numbers or percentages, cortisol or DHEA concentration, cortisol:DHEA ratio, or relative expression of any of the genes

  3. Spectrally resolved phase-shifting interference microscopy: technique based on optical coherence tomography for profiling a transparent film on a patterned substrate.

    PubMed

    Debnath, Sanjit K; Kim, Seung-Woo; Kothiyal, Mahendra P; Hariharan, Parameswaran

    2010-12-01

    Spectrally resolved white-light phase-shifting interference microscopy has been used for measurements of the thickness profile of a transparent thin-film layer deposited upon a patterned structure exhibiting steps and discontinuities. We describe a simple technique, using an approach based on spectrally resolved optical coherence tomography, that makes it possible to obtain directly a thickness profile along a line by inverse Fourier transformation of the complex spectral interference function.

  4. Spectrally resolved phase-shifting interference microscopy: technique based on optical coherence tomography for profiling a transparent film on a patterned substrate

    SciTech Connect

    Debnath, Sanjit K.; Kim, Seung-Woo; Kothiyal, Mahendra P.; Hariharan, Parameswaran

    2010-12-01

    Spectrally resolved white-light phase-shifting interference microscopy has been used for measurements of the thickness profile of a transparent thin-film layer deposited upon a patterned structure exhibiting steps and discontinuities. We describe a simple technique, using an approach based on spectrally resolved optical coherence tomography, that makes it possible to obtain directly a thickness profile along a line by inverse Fourier transformation of the complex spectral interference function.

  5. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets.

    PubMed

    Qiu, Shi; Li, Mingzhong

    2015-02-01

    The aim of this study was to investigate the effects of coformers on phase transformation and release profiles of carbamazepine (CBZ) cocrystals in hydroxypropyl methylcellulose (HPMC) based matrix tablets. It has been found that selection of different coformers of saccharin (SAC) and cinnamic acid (CIN) can affect the stability of CBZ cocrystals in solution, resulting in significant differences in the apparent solubility of CBZ. The dissolution advantage of CBZ-SAC cocrystals can only be shown for a short period during dissolution because of the fast conversion to its dihydrate form (DH). HPMC can partially inhibit the crystallisation of CBZ DH during dissolution of CBZ-SAC cocrystal. However, the increased viscosity of HPMC dissolution medium reduced the dissolution rate of CBZ-SAC cocrystals. Therefore the CBZ-SAC cocrystal formulation did not show any significant advantage in CBZ release rate. In contrast the improved CBZ dissolution rate of CBZ-CIN cocrystal can be realised in both solution and formulation due to its high stability. In conclusion, exploring and understanding the mechanisms of the phase transformation of pharmaceutical cocrystals in aqueous medium for selection of lead cocrystals is the key for success of product development.

  6. Measurement of the surface profile of an axicon lens with a polarization phase-shifting shearing interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan

    2011-11-10

    We present a Twyman-Green interferometer (TGI)-based polarization phase-shifting shearing interferometric technique for testing the conical surface of an axicon (AX) lens. In this technique, the annular beam generated due to the passing of an expanded collimated laser beam traveling along the axis of revolution of the transparent glass AX element is split up into its reflected and transmitted components, having the plane of polarization in the orthogonal planes, by the polarization beam splitter (PBS) cube of the TGI-based optical setup. The split-up components are made to travel unequal paths along the two arms of the TGI and are recombined by the PBS. Because of the difference in path lengths traveled by the annular conical beams, a linear shear is introduced along the radial direction between the interfering components. Thus, the resulting interference pattern gives a map of the optical path difference (OPD) between two successive close points along a radial direction on the conical surface of the AX lens. The OPD map along radial directions, and hence the slopes/profiles of the conical surface, are obtained by applying polarization phase-shifting interferometry. Results obtained for an AX lens are presented.

  7. Surficial phase-identification and structural profiles from weathered natural pyrites: A grazing-incidence X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Cai, Yuanfeng; Pan, Yuguan; Xue, Jiyue; Su, Guizhen

    2009-01-01

    Five pyrites with original crystal face (1 0 0) with different tarnish colours were selected from one pyrite-bearing ore sample from Tongling multi-metal deposit, Anhui, China. They are henna mottled with dark violet, yellow mottled with red, yellow, blue mottled with violet and reddish brown in surface colour. Grazing-incidence X-ray diffractometry (GIXRD) was used to study the phases formed or precipitated on the surface of pyrite (1 0 0) face during chemical weathering. By changing the incident angle, GIXRD can provide information on the changes in the mineral phases from the surface as a function of depth. Products formed or precipitated on the surface of pyrite (1 0 0) face are one or several sulfur or iron-bearing hydrated oxides and include gypsum, jalpaite, goethite, goldichite. The sulfur-bearing minerals present on the surface imply the oxidation of sulfur to sulfate, or the reduction of sulfur to sulfide. By analyzing a series of GIXRD patterns obtained at different angles of incidence for a single pyrite, the mineral assemblage differs from the surface into the body of the crystal. Taking the reddish brown sample as an example, four diffraction profiles at 2.575, 2.2105, 1.9118 and 1.613 Å are present in the pattern of a 2° incident angle experiment whereas they cannot be found at a GIXRD angle smaller than 0.6°.

  8. Measurement of the surface profile of an axicon lens with a polarization phase-shifting shearing interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2011-11-10

    We present a Twyman-Green interferometer (TGI)-based polarization phase-shifting shearing interferometric technique for testing the conical surface of an axicon (AX) lens. In this technique, the annular beam generated due to the passing of an expanded collimated laser beam traveling along the axis of revolution of the transparent glass AX element is split up into its reflected and transmitted components, having the plane of polarization in the orthogonal planes, by the polarization beam splitter (PBS) cube of the TGI-based optical setup. The split-up components are made to travel unequal paths along the two arms of the TGI and are recombined by the PBS. Because of the difference in path lengths traveled by the annular conical beams, a linear shear is introduced along the radial direction between the interfering components. Thus, the resulting interference pattern gives a map of the optical path difference (OPD) between two successive close points along a radial direction on the conical surface of the AX lens. The OPD map along radial directions, and hence the slopes/profiles of the conical surface, are obtained by applying polarization phase-shifting interferometry. Results obtained for an AX lens are presented.

  9. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics.

    PubMed

    Yu, Miao; Yang, Chao; Li, Xiao-Ming; Lei, Tian-Yu; Sun, Hao-Xuan; Dai, Li-Ping; Gu, Yu; Ning, Xue; Zhou, Ting; Wang, Chao; Zeng, Hai-Bo; Xiong, Jie

    2017-06-29

    The exploration of localized surface plasmon resonance (LSPR) beyond the usual visible waveband, for example within the ultraviolet (UV) or deep-ultraviolet (D-UV) regions, is of great significance due to its unique applications in secret communications and optics. However, it is still challenging to universally synthesize the corresponding metal nanostructures due to their high activity. Herein, we report a universal, eco-friendly, facile and rapid synthesis of various nano-metals encapsulated by ultrathin carbon shells, significantly with a remarkable deep-UV LSPR characteristic, via a liquid-phase laser fabrication method. Firstly, a new generation of the laser ablation in liquid (LAL) method has been developed with an emphasis on the elaborate selection of solvents to generate ultrathin carbon shells, and hence to stabilize the formed metal nanocrystals. As a result, a series of metal@carbon nanoparticles (NPs), including Cr@C, Ti@C, Fe@C, V@C, Al@C, Sn@C, Mn@C and Pd@C, can be fabricated by this modified LAL method. Interestingly, these NPs exhibit LSPR peaks in the range of 200-330 nm, which are very rare for localized surface plasmon resonance. Consequently, the UV plasmonic effects of these metal@carbon NPs were demonstrated both by the observed enhancement in UV photoluminescence (PL) from the carbon nanoshells and by the improvement of the photo-responsivity of UV GaN photodetectors. This work could provide a universal method for carbon shelled metal NPs and expand plasmonics into the D-UV waveband.

  10. A UNIVERSAL POWER-LAW PROFILE OF PSEUDO-PHASE-SPACE DENSITY-LIKE QUANTITIES IN ELLIPTICAL GALAXIES

    SciTech Connect

    Chae, Kyu-Hyun

    2014-06-10

    We study profiles of mass density, velocity dispersion (VD), and a combination of both using ∼2000 nearly spherical and rotation-free Sloan Digital Sky Survey galaxies. For observational stellar mass density ρ{sub *}(r), we consider a range of dark matter (DM) distribution ρ{sub DM}(r) and VD anisotropy β(r) to investigate radial stellar VD σ{sub *r}(r) using the spherical Jeans equation. While mass and VD profiles vary appreciably depending on DM distribution and anisotropy, the pseudo-phase-space density-like combination ρ(r)/σ{sub ⋆r}{sup 3}(r) with total density ρ(r) = ρ{sub *}(r) + ρ{sub DM}(r) is nearly universal. In the optical region, the negative logarithmic slope has a mean value of (χ) ≈ 1.86-1.90 with a galaxy-to-galaxy rms scatter of ≈0.04-0.06, which is a few times smaller than that of ρ(r) profiles. The scatter of χ can be increased by invoking wildly varying anisotropies that are, however, less likely because they would produce too large a scatter of line of sight VD profiles. As an independent check of this universality, we analyze stellar orbit-based dynamical models of 15 early-type galaxies (ETGs) of the Coma cluster provided by J. Thomas. Coma ETGs, with σ{sub *r}(r) replaced by the rms velocity of stars v {sub *rms}(r) including net rotation, exhibit a similar universality with a slope of χ = 1.93 ± 0.06. Remarkably, the inferred values of χ for ETGs match well the slope ≈1.9 predicted by N-body simulations of DM halos. We argue that the inferred universal nature of ρ(r)/σ{sub ⋆r}{sup 3}(r) cannot be fully explained by equilibrium alone, implying that some astrophysical factors conspire and/or it reflects a fundamental principle in collisionless formation processes.

  11. Clinical Profile of Statin Intolerance in the Phase 3 GAUSS-2 Study.

    PubMed

    Cho, Leslie; Rocco, Michael; Colquhoun, David; Sullivan, David; Rosenson, Robert S; Dent, Ricardo; Xue, Allen; Scott, Rob; Wasserman, Scott M; Stroes, Erik

    2016-06-01

    Recent evidence suggests that statin intolerance may be more common than reported in randomized trials. However, the statin-intolerant population is not well characterized. The goal of this report is to characterize the population enrolled in the phase 3 Goal Achievement after Utilizing an anti-PCSK9 antibody in Statin Intolerant Subjects Study (GAUSS-2; NCT 01763905). GAUSS-2 compared evolocumab, a fully human monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9) to ezetimibe in hypercholesterolemic patients who discontinued statin therapy due to statin-associated muscle symptoms (SAMS). GAUSS-2 was a 12-week, double-blind, placebo-controlled, randomized study that enrolled patients with elevated LDL-C who were either not on a statin or able to tolerate only a low-dose due to SAMS. Patients had received ≥2 statins and were unable to tolerate any statin dose or increase in dose above a specified weekly dose due to SAMS. Three hundred seven patients (mean [SD] age, 62 [10] years; 54 % males) were randomized 2:1 (evolocumab:ezetimibe). Mean (SD) LDL-C was 4.99 (1.51) mmol/L. Patients had used ≥2 (100 %), ≥3 (55 %), or ≥4 (21 %) statins. Coronary artery disease was present in 29 % of patients. Statin-intolerant symptoms were myalgia in 80 % of patients, weakness in 39 %, and more serious complications in 20 %. In 98 % of patients, SAMS interfered with normal daily activity; in 52 %, symptoms precluded moderate exertion. Evaluation of the GAUSS-2 trial population of statin-intolerant patients demonstrates that most patients were high risk with severely elevated LDL-C and many had statin-associated muscle symptoms that interfered with their quality of life.

  12. Design, methods and demographics from phase I of Alberta's Tomorrow Project cohort: a prospective cohort profile

    PubMed Central

    Robson, Paula J.; Solbak, Nathan M.; Haig, Tiffany R.; Whelan, Heather K.; Vena, Jennifer E.; Akawung, Alianu K.; Rosner, William K.; Brenner, Darren R.; Cook, Linda S.; Csizmadi, Ilona; Kopciuk, Karen A.; McGregor, S. Elizabeth; Friedenreich, Christine M.

    2016-01-01

    Background: Prospective cohorts have the potential to support multifactorial, health-related research, particularly if they are drawn from the general population, incorporate active and passive follow-up and permission is obtained to allow access by researchers to data repositories. This paper describes Phase I of the Alberta's Tomorrow Project cohort, a broad-based research platform designed to support investigations into factors that influence cancer and chronic disease risk. Methods: Adults aged 35-69 years living in Alberta, Canada, with no previous cancer diagnosis other than nonmelanoma skin cancer were recruited to the project by telephone-based random digit dialling. Participants were enrolled if they returned a Health and Lifestyle Questionnaire. Past year diet and physical activity questionnaires were mailed 3 months after enrolment. Consent was sought for active follow-up and linkage with administrative databases. Depending on enrolment date, participants were invited to complete up to 2 follow-up questionnaires (2004 and 2008). Results: Between 2001 and 2009, 31 072 (39% men) participants (mean age 50.2 [± 9.2] yr) were enrolled and 99% consented to linkage with administrative databases. Participants reported a wide range of educational attainment and household income. Compared with provincial surveillance data from the Canadian Community Health Survey, Alberta's Tomorrow Project participants had higher body mass index, lower prevalence of smoking and similar distribution of chronic health conditions. Follow-up questionnaires were completed by 83% and 72% of participants in 2004 and 2008, respectively. Robust quality control measures resulted in low frequencies of missing data. Interpretation: Alberta's Tomorrow Project provides a robust platform, based on a prospective cohort design, to support research into risk factors for cancer and chronic disease. PMID:27730115

  13. Characterizing cartilage microarchitecture on phase-contrast x-ray computed tomography using deep learning with convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Deng, Botao; Abidin, Anas Z.; D'Souza, Adora M.; Nagarajan, Mahesh B.; Coan, Paola; Wismüller, Axel

    2017-03-01

    The effectiveness of phase contrast X-ray computed tomography (PCI-CT) in visualizing human patellar cartilage matrix has been demonstrated due to its ability to capture soft tissue contrast on a micrometer resolution scale. Recent studies have shown that off-the-shelf Convolutional Neural Network (CNN) features learned from a nonmedical data set can be used for medical image classification. In this paper, we investigate the ability of features extracted from two different CNNs for characterizing chondrocyte patterns in the cartilage matrix. We obtained features from 842 regions of interest annotated on PCI-CT images of human patellar cartilage using CaffeNet and Inception-v3 Network, which were then used in a machine learning task involving support vector machines with radial basis function kernel to classify the ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area (AUC) under the Receiver Operating Characteristic (ROC) curve. The best classification performance was observed with features from Inception-v3 network (AUC = 0.95), which outperforms features extracted from CaffeNet (AUC = 0.91). These results suggest that such characterization of chondrocyte patterns using features from internal layers of CNNs can be used to distinguish between healthy and osteoarthritic tissue with high accuracy.

  14. Phase relations and melting of carbonated peridotite between 10 and 20 GPa: a proxy for alkali- and CO2-rich silicate melts in the deep mantle

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujoy; Litasov, Konstantin; Ohtani, Eiji

    2014-02-01

    We determined the melting phase relations, melt compositions, and melting reactions of carbonated peridotite on two carbonate-bearing peridotite compositions (ACP: alkali-rich peridotite + 5.0 wt % CO2 and PERC: fertile peridotite + 2.5 wt % CO2) at 10-20 GPa and 1,500-2,100 °C and constrain isopleths of the CO2 contents in the silicate melts in the deep mantle. At 10-20 GPa, near-solidus (ACP: 1,400-1,630 °C) carbonatitic melts with < 10 wt % SiO2 and > 40 wt % CO2 gradually change to carbonated silicate melts with > 25 wt % SiO2 and < 25 wt % CO2 between 1,480 and 1,670 °C in the presence of residual majorite garnet, olivine/wadsleyite, and clinoenstatite/clinopyroxene. With increasing degrees of melting, the melt composition changes to an alkali- and CO2-rich silicate melt (Mg# = 83.7-91.6; ~ 26-36 wt % MgO; ~ 24-43 wt % SiO2; ~ 4-13 wt % CaO; ~ 0.6-3.1 wt % Na2O; and ~ 0.5-3.2 wt % K2O; ~ 6.4-38.4 wt % CO2). The temperature of the first appearance of CO2-rich silicate melt at 10-20 GPa is ~ 440-470 °C lower than the solidus of volatile-free peridotite. Garnet + wadsleyite + clinoenstatite + carbonatitic melt controls initial carbonated silicate melting at a pressure < 15 GPa, whereas garnet + wadsleyite/ringwoodite + carbonatitic melt dominates at pressure > 15 GPa. Similar to hydrous peridotite, majorite garnet is a liquidus phase in carbonated peridotites (ACP and PERC) at 10-20 GPa. The liquidus is likely to be at ~ 2,050 °C or higher at pressures of the present study, which gives a melting interval of more than 670 °C in carbonated peridotite systems. Alkali-rich carbonated silicate melts may thus be produced through partial melting of carbonated peridotite to 20 GPa at near mantle adiabat or even at plume temperature. These alkali- and CO2-rich silicate melts can percolate upward and may react with volatile-rich materials accumulate at the top of transition zone near 410-km depth. If these refertilized domains migrate upward and convect out of the

  15. Transverse-to-longitudinal phase space exchange: a versatile tool for shaping the current and energy profiles of relativistic electron bunches

    SciTech Connect

    Piot, P.; Sun, Y.-E.; Johnson, A.S.; Lumpkin, A.H.; Maxwell, T.; Ruan, J.; Thurman-Keup, R.; /Fermilab

    2010-08-01

    Over the recent years, the emergence of accelerator beamlines capable of exchanging the phase space coordinates between two degrees of freedom have opened the path toward the precise control of phase space distribution and in particular to the production of relativistic electron beams with shaped current profiles. After briefly reviewing the technique, we present its application to produce a train of sub-picosecond microbunches and report on its experimental implementation at the Fermilab's A0 photoinjector facility.

  16. X-ray scattering study of pike olfactory nerve: intensity of the axonal membrane, solution of the phase problem and electron density profile.

    PubMed

    Luzzati, Vittorio; Vachette, Patrice; Benoit, Evelyne; Charpentier, Gilles

    2004-10-08

    Synchrotron radiation X-ray scattering experiments were performed on unmyelinated pike olfactory nerves. The difference between the meridional and the equatorial traces of the 2-D spectra yielded the 1-D equatorial intensity of the macromolecular components oriented with respect to the nerve: axonal membranes, microtubules and other cytoskeletal filaments. These 1-D spectra display a diffuse band typical of bilayer membranes and, at small s, a few sharper bands reminiscent of microtubules. All the spectra merge at large s. The intensity of the axonal membrane was determined via a noise analysis of the nerve-dependent spectra, involving also the notion that the thickness of the membrane is finite. The shape of the intensity function indicated that the electron density profile is not centrosymmetric. The knowledge of intensity and thickness paved the way to the electron density profile via an ab initio solution of the phase problem. An iterative procedure was adopted: (i) choose the lattice D of a 1-D pseudo crystal, interpolate the intensity at the points sh = h/D, adopt an arbitrary set of initial phases and compute the profile; (ii) determine the phases corresponding to this profile truncated by the thickness D/2; (iii) repeat the operation with the updated phases until a stable result is obtained. This iterative procedure was carried out for different D-values, starting in each case from randomly generated phases: stable results were obtained in less than 10,000 iterations. Most importantly, for D in the vicinity of 200 A, the overwhelming majority of the profiles were congruent with each other. These profiles were strongly asymmetric and otherwise typical of biological membranes.

  17. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies.

    PubMed

    Siegel, David; Martin, Thomas; Nooka, Ajay; Harvey, R Donald; Vij, Ravi; Niesvizky, Ruben; Badros, Ashraf Z; Jagannath, Sundar; McCulloch, Leanne; Rajangam, Kanya; Lonial, Sagar

    2013-11-01

    Carfilzomib, a selective proteasome inhibitor, was approved in 2012 for the treatment of relapsed and refractory multiple myeloma. Safety data for single-agent carfilzomib have been analyzed for 526 patients with advanced multiple myeloma who took part in one of 4 phase II studies (PX-171-003-A0, PX-171-003-A1, PX-171-004, and PX-171-005). Overall analyses of adverse events and treatment modifications are presented, as well as specific analyses of adverse events by organ system. Overall, the most common adverse events of any grade included fatigue (55.5%), anemia (46.8%), and nausea (44.9%). In the grouped analyses, any grade adverse events were reported in 22.1% for any cardiac (7.2% cardiac failure), 69.0% for any respiratory (42.2% dyspnea), and 33.1% for any grouped renal impairment adverse event (24.1% increased serum creatinine). The most common non-hematologic adverse events were generally Grade 1 or 2 in severity, while Grade 3/4 adverse events were primarily hematologic and mostly reversible. There was no evidence of cumulative bone marrow suppression, either neutropenia or thrombocytopenia, and febrile neutropenia occurred infrequently (1.1%). Notably, the incidence of peripheral neuropathy was low overall (13.9%), including patients with baseline peripheral neuropathy (12.7%). Additionally, the incidence of discontinuations or dose reductions attributable to adverse events was low. These data demonstrate that single-agent carfilzomib has an acceptable safety profile in heavily pre-treated patients with relapsed/refractory multiple myeloma. The tolerable safety profile allows for administration of full-dose carfilzomib, both for extended periods and in a wide spectrum of patients with advanced multiple myeloma, including those with pre-existing comorbidities.

  18. Fragment profiling of low molecular weight heparins using reversed phase ion pair liquid chromatography-electrospray mass spectrometry.

    PubMed

    Xu, Xiaohui; Li, Daoyuan; Chi, Lequan; Du, Xuzhao; Bai, Xue; Chi, Lianli

    2015-04-30

    Low molecular weight heparins (LMWHs) are linear and highly charged carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. Compared to unfractionated heparin (UFH), LMWHs are prevalently used as clinical anticoagulant drugs due to their lower side effects and better bioavailability. The work presented herein provides a rapid and powerful fragment mapping method for structural characterization of LMWHs. The chain fragments of two types of LMWHs, enoxaparin and nadroparin, were generated by controlled enzymatic digestion with each of heparinase I (Hep I, Enzyme Commission (EC) # 4.2.2.7), heparinase II (Hep II, no EC # assigned) and heparinase III (Hep III, EC # 4.2.2.8). Reversed phase ion pair high performance liquid chromatography (RPIP-HPLC) coupled with electrospray ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) was used to profile the oligosaccharide chains ranging from disaccharides to decasaccharides. A database containing all theoretical structural compositions was established to assist the mass spectra interpretation. The six digests derived by three enzymes from two types of LMWHs exhibited distinguishable fingerprinting patterns. And a total of 94 enoxaparin fragments and 109 nadroparin fragments were detected and identified. Besides the common LMWH oligosaccharides, many components containing characteristic LMWH structures such as saturated L-idopyranosuronic acid, 2,5-anhydro-D-mannitol, 1,6-anhydro-D-aminopyranose, as well as odd number oligosaccharides were also revealed. Quantitative comparison of major components derived from innovator and generic nadroparin products was presented. This approach to profile LMWHs' fragments offers a highly reproducible, high resolution and information-rich tool for evaluating the quality of this category of anticoagulant drugs or comparing structural similarities among samples from various sources.

  19. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    t'Kindt, Ruben; Jorge, Lucie; Dumont, Emmie; Couturon, Pauline; David, Frank; Sandra, Pat; Sandra, Koen

    2012-01-03

    An LC-MS based method for the profiling and characterization of ceramide species in the upper layer of human skin is described. Ceramide samples, collected by tape stripping of human skin, were analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry operated in both positive and negative electrospray ionization mode. All known classes of ceramides could be measured in a repeatable manner. Furthermore, the data set showed several undiscovered ceramides, including a class with four hydroxyl functionalities in its sphingoid base. High-resolution MS/MS fragmentation spectra revealed that each identified ceramide species is composed of several skeletal isomers due to variation in carbon length of the respective sphingoid bases and fatty acyl building blocks. The resulting variety in skeletal isomers has not been previously demonstrated. It is estimated that over 1000 unique ceramide structures could be elucidated in human stratum corneum. Ceramide species with an even and odd number of carbon atoms in both chains were detected in all ceramide classes. Acid hydrolysis of the ceramides, followed by LC-MS analysis of the end-products, confirmed the observed distribution of both sphingoid bases and fatty acyl groups in skin ceramides. The study resulted in an accurate mass retention time library for targeted profiling of skin ceramides. It is furthermore demonstrated that targeted data processing results in an improved repeatability versus untargeted data processing (72.92% versus 62.12% of species display an RSD < 15%). © 2011 American Chemical Society

  20. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics

    PubMed Central

    Tigchelaar, Ettje F; Zhernakova, Alexandra; Dekens, Jackie A M; Hermes, Gerben; Baranska, Agnieszka; Mujagic, Zlatan; Swertz, Morris A; Muñoz, Angélica M; Deelen, Patrick; Cénit, Maria C; Franke, Lude; Scholtens, Salome; Stolk, Ronald P; Wijmenga, Cisca; Feskens, Edith J M

    2015-01-01

    Purpose There is a critical need for population-based prospective cohort studies because they follow individuals before the onset of disease, allowing for studies that can identify biomarkers and disease-modifying effects, and thereby contributing to systems epidemiology. Participants This paper describes the design and baseline characteristics of an intensively examined subpopulation of the LifeLines cohort in the Netherlands. In this unique subcohort, LifeLines DEEP, we included 1539 participants aged 18 years and older. Findings to date We collected additional blood (n=1387), exhaled air (n=1425) and faecal samples (n=1248), and elicited responses to gastrointestinal health questionnaires (n=1176) for analysis of the genome, epigenome, transcriptome, microbiome, metabolome and other biological levels. Here, we provide an overview of the different data layers in LifeLines DEEP and present baseline characteristics of the study population including food intake and quality of life. We also describe how the LifeLines DEEP cohort allows for the detailed investigation of genetic, genomic and metabolic variation for a wide range of phenotypic outcomes. Finally, we examine the determinants of gastrointestinal health, an area of particular interest to us that can be addressed by LifeLines DEEP. Future plans We have established a cohort of which multiple data levels allow for the integrative analysis of populations for translation of this information into biomarkers for disease, and which will offer new insights into disease mechanisms and prevention. PMID:26319774

  1. Organohalogen compounds in deep-sea fishes from the western North Pacific, off-Tohoku, Japan: Contamination status and bioaccumulation profiles.

    PubMed

    Takahashi, Shin; Oshihoi, Tomoko; Ramu, Karri; Isobe, Tomohiko; Ohmori, Koji; Kubodera, Tsunemi; Tanabe, Shinsuke

    2010-02-01

    Twelve species of deep-sea fishes collected in 2005 from the western North Pacific, off-Tohoku, Japan were analyzed for organohalogen compounds. Among the compounds analyzed, concentrations of DDTs and PCBs (up to 23,000 and 12,400 ng/g lipid wt, respectively) were the highest. The present study is the foremost to report the occurrence of brominated flame retardants such as PBDEs and HBCDs in deep-sea organisms from the North Pacific region. Significant positive correlations found between delta(15)N ( per thousand) and PCBs, DDTs and PBDEs suggest the high biomagnification potential of these contaminants in food web. The large variation in delta(13)C (per thousand) values observed between the species indicate multiple sources of carbon in the food web and specific accumulation of hydrophobic organohalogen compounds in benthic dwelling carnivore species like snubnosed eel. The results obtained in this study highlight the usefulness of deep-sea fishes as sentinel species to monitor the deep-sea environment.

  2. Morphology and Tectonic Evolution of Endeavor Deep

    NASA Astrophysics Data System (ADS)

    Pockalny, R. A.; Larson, R. L.; Popham, C. T.; Natland, J. H.; Abrams, L. J.; Sonder, L. J.

    2004-12-01

    Endeavor Deep is located on the Nazca/Juan Fernandez plate boundary near the triple junction of the Pacific, Nazca and Antarctic plates. The deep is the tip of the northward propagating East Ridge, which defines the eastern side of the microplate and is presently exposing ~3 Myr old oceanic crust created at the ultra-fast spreading (~150 km/myr) East Pacific Rise. Recently collected high-resolution EM300 bathymetry, deep-tow DSL120 sidescan, surface-towed magnetics, and near-bottom JASON II observations provide important details about the tectonic character and origin of Endeavor Deep. These data define a 70 km-long, 40 km-wide, and 3 km-deep rift which shoals and narrows toward the rift tip to the NW and is deeper and wider away from the rift tip toward the SE. The southern wall of the rift is uplifted and has a characteristic flexural profile. The northern wall is also uplifted, however, the classic flexural profile is complicated by the presence of a large EW-trending massif, which appears to be a rift-truncated compressional ridge emplaced during a phase of NS-oriented compression. Along both rift walls, a series of terraces suggest a series of down-dropped blocks associated with ongoing extension. Along the rift floor, a relatively flat, featureless bottom in the NW evolves into hummocky terrane in the central part of the basin that is characterized by volcanic features reminiscent of 1-2 km diameter pancakes in plan-view. Farther to the SE, tectonic lineations and pillow ridges oriented parallel to the trend of the rift valley dominate the basin floor. Magnetic profiles across this portion of the survey area indicate a well-formed central magnetic anomaly with a width equivalent to a spreading rate of 20 km/Myr, which is predicted by tectonic reconstructions of the plate boundary. Overall, these observations define a four-phase evolution of Endeavor Deep: 1) initial crustal formation at the ultra-fast spreading East Pacific Rise ~3 Ma, 2) regional compression

  3. Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system.

    PubMed

    Wei, Ping; Liang, Jing; Cheng, Jing; Zong, Min-Hua; Lou, Wen-Yong

    2016-01-13

    Enantiopure (S)-1-(4-methoxyphenyl) ethanol {(S)-MOPE} can be employed as an important synthon for the synthesis of cycloalkyl [b] indoles with the treatment function for general allergic response. To date, the biocatalytic resolution of racemic MOPE through asymmetric oxidation in the biphasic system has remained largely unexplored. Additionally, deep eutectic solvents (DESs), as a new class of promising green solvents, have recently gained increasing attention in biocatalysis for their excellent properties and many successful examples in biocatalytic processes. In this study, the biocatalytic asymmetric oxidation of MOPE to get (S)-MOPE using Acetobacter sp. CCTCC M209061 cells was investigated in different two-phase systems, and adding DES in a biphasic system was also explored to further improve the reaction efficiency of the biocatalytic oxidation. Of all the examined water-immiscible organic solvents and ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophoshpate ([C4MIM][PF6]) afforded the best results, and consequently was selected as the second phase of a two-phase system for the asymmetric oxidation of MOPE with immobilized Acetobacter sp. CCTCC M209061 cells. For the reaction performed in the [C4MIM][PF6]/buffer biphasic system, under the optimized conditions, the initial reaction rate, the maximum conversion and the residual substrate e.e. recorded 97.8 μmol/min, 50.5 and >99.9 % after 10 h reaction. Furthermore, adding the DES [ChCl][Gly] (10 %, v/v) to the aqueous phase, the efficiency of the biocatalytic oxidation was rose markedly. The optimal substrate concentration and the initial reaction rate were significantly increased to 80 mmol/L and 124.0 μmol/min, respectively, and the reaction time was shortened to 7 h with 51.3 % conversion. The immobilized cell still retained over 72 % of its initial activity after 9 batches of successive reuse in the [C4MIM][PF6]/[ChCl][Gly]-containing buffer system. Additionally, the efficient biocatalytic

  4. Suppression subtractive hybridization profiles of radial growth phase and metastatic melanoma cell lines reveal novel potential targets

    PubMed Central

    Sousa, Josane F; Espreafico, Enilza M

    2008-01-01

    Background Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of αvβ3-integrin and low levels of RHOC. Methods Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. Results We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. Conclusion This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study

  5. Rapid reduction of BCR-ABL1 transcript predicts deep molecular response in dasatinib-treated chronic-phase chronic myeloid leukaemia patients.

    PubMed

    Murai, Kazunori; Yamaguchi, Kohei; Ito, Shigeki; Miyagishima, Takuto; Shindo, Motohiro; Wakasa, Kentaro; Inomata, Mitsue; Nagashima, Takahiro; Kondo, Takeshi; Fujimoto, Nozomu; Yamamoto, Satoshi; Yonezumi, Masakatsu; Oyake, Tatsuo; Shugo, Kowata; Tsukushi, Yasuhiko; Mine, Takahiro; Meguro, Kuniaki; Ikeda, Kazuhiko; Watanabe, Reiko; Saito, Souichi; Sato, Shinji; Tajima, Katsushi; Chou, Takaaki; Kubo, Kohmei; Oba, Koji; Sakamoto, Junichi; Ishida, Yoji

    2017-09-12

    We conducted a phase-II study to evaluate the efficacy and safety of dasatinib in patients newly diagnosed with chronic-phase chronic myeloid leukaemia (CML-CP) in Japan (IMIDAS PART 2 study). Seventy-nine patients were administered 100 mg dasatinib once daily. We examined pre-treatment and post-treatment influences of various factors. The BCR-ABL1 international scale (IS), halving time (HT), and reduction rate of BCR-ABL1 transcript within the initial 1 or 3 months of therapy (RR-BCR-ABL11m,3m ) were the post-treatment factors investigated to predict the molecular response. The estimated major molecular response (MMR), molecular response 4.0 (MR4.0), and molecular response 4.5 (MR4.5) rates were 77.2%, 49.4%, and 35.4%, respectively, at 12 months. Grade 3/4 non-haematologic adverse events were infrequent. Multivariate analysis showed that age >65 years was significantly correlated with MR4.0 and MR4.5 (deep molecular response: DMR) at 12 months. All post-treatment factors at 3 months predicted DMR by univariate analysis. However, RR-BCR-ABL13m was the only significant landmark for predicting DMR by multivariate analysis. Primary treatment of CML-CP with dasatinib enabled early achievement of MMR and DMR, particularly in elderly patients, with high safety. Furthermore, RR-BCR-ABL13m was found to be a more useful predictor of DMR than HT-BCR-ABL1 and BCR-ABL1 IS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007-2013 Period

    NASA Astrophysics Data System (ADS)

    Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; D'Ortenzio, F.; Bouin, M. N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; Coppola, L.; Mortier, L.; Raimbault, P.

    2016-11-01

    We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier "vintage" of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10-3/yr) and potential temperature (3.2 ± 0.5 × 10-3 C/yr) observed from 2009 to 2013 for the 600-2300 m layer. For the first time, the overlapping of the three "phases" of deep convection can be observed, with secondary vertical mixing events (2-4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event.

  7. Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples.

    PubMed

    Yilmaz, Erkan; Soylak, Mustafa

    2016-11-01

    A new type of deep eutectic solvents (DESs) have been prepared and used as extraction solvents for ultrasound assisted-deep eutectic solvent based emulsification liquid phase microextraction method (UA-DES-ELPME) for the determination and speciation of total chromium, chromium(III) and chromium(VI). The chromium concentration in DES rich phase (extraction phase) was determined by using microsample injection flame atomic absorption spectrometer (FAAS). The detection limit (LOD), the quantification limit (LOQ), preconcentration factor and relative standard deviation were found as 5.5µgL(-1), 18.2µgL(-1), 20 and 6%, respectively. The accuracy of the developed method was evaluated by the analysis of water the certified reference materials (TMDA-53.3 Fortified environmental water and TMDA-54.4 Fortified Lake Water) and addition-recovery tests for water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Alteration of immunologic responses on peripheral blood in the acute phase of ischemic stroke: blood genomic profiling study.

    PubMed

    Oh, Seung-Hun; Kim, Ok-Joon; Shin, Dong-Ah; Song, Jihwan; Yoo, Hanna; Kim, Yu-Kyung; Kim, Jin-Kyeoung

    2012-08-15

    Peripheral blood cells and inflammatory mediators have a detrimental effect on brain during cerebral ischemia. We investigated the immunologic changes on peripheral blood in the acute phase of ischemic stroke using RNA microarray. mRNA microarray and real time-polymerase chain reaction (RT-PCR) for genes of interest in microarray data were analyzed in 12 stroke patients and 12 controls. Plasma matrix metalloproteinase-9 (MMP-9) concentrations were measured in 120 stroke patients and 82 controls. In microarray analysis, a total of 11 genes of interest showed different expression in patients with ischemic stroke. The three most highly expressed genes were C19orf59 (chromosome 19 open reading frame 59), MMP9 and IL18RAP (interleukin-18 receptor accessory protein), whereas gene with the lowest expression was GNLY (granulysin). The expression patterns of three selected genes (MMP9, IL18RAP and GNLY) were validated by RT-PCR. The plasma concentration of MMP-9 was significantly elevated in the stroke patients, and showed a weakly positive correlation with infarct volume. Gene set enrichment analysis (GSEA) showed that gene sets related to immunity and defense, signal transduction, transport and cell adhesion were significant in acute ischemic stroke. In the peripheral blood, numerous genes of inflammatory mediators, including MMP9, IL18RAP and GNLY, are altered in the acute phase of ischemic stroke. This stroke-specific gene expression profiling provides valuable information about the role of peripheral inflammation to the pathophysiological mechanism of ischemic stroke. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Evidence of an imbricate crustal thrust belt in the southern British Variscides: Contributions of southwestern approaches traverse (SWAT) deep seismic reflection profiling recorded through the English Channel and the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Le Gall, Bernard

    1990-04-01

    The Southwestern Approaches Traverse (SWAT) seismic reflection profiles recorded through the Celtic Sea and the English Channel provide unexpected data concerning, notably, the deep structure of the Irish and south British Variscan crust. One of the most significant results is the recognition of prominent deep southerly dipping reflectors, regarded as large-scale foreland directed Variscan thrusts which constitute, in the southern innermost zones, a crustal stacking wedge. The resulting overthickened crust may have induced the petrogenesis of the Cornubian granitic batholith by an anatectic melting process. The roots of this crustal duplex are not imaged on the SWAT lines because of their subsequent assimilation by the more recent layering of the present-day lower crust. Upward, the deep crustal ramps are assumed to flatten out and to join a roof thrust which acts as a major midcrustal decoupling zone, not revealed by the SWAT profiles, and which underlies the thick Devonian allochthonous high-strained units of Cornwall. Northward, this shallow northerly verging shear zone is overstepped by the Tintagel antithetic back thrusts which are closely related to deeper northward dipping basement faults considered as Caledonian features. Southward, the imbricate crustal thrust unit is overridden by the Lizard ophiolitic suture, which appears as a 8-km-thick gently southerly dipping sheared zone, crosscuttting the entire crust and rooting deep beneath the present-day Moho. Its hanging wall is constituted by the Channel Cadomian block, characterized by an almost seismically featureless upper crust which is not involved in the main Variscan thrust stacking. Northward, the imbricate thrust unit is delineated by a moderately southerly dipping ramp which penetrates straight down into the upper crust without any evidence of an intervening flat-lying decollement level. This frontal ramp emerges along a broadly 110°N trending discontinuous thrust front, located above the northern

  10. Single cell immune profiling by mass cytometry of newly diagnosed chronic phase chronic myeloid leukemia treated with nilotinib.

    PubMed

    Gullaksen, Stein-Erik; Skavland, Jørn; Gavasso, Sonia; Tosevski, Vinko; Warzocha, Krzysztof; Dumrese, Claudia; Ferrant, Augustin; Gedde-Dahl, Tobias; Hellmann, Andrzej; Janssen, Jeroen; Labar, Boris; Lang, Alois; Majeed, Waleed; Mihaylov, Georgi; Stentoft, Jesper; Stenke, Leif; Thaler, Josef; Thielen, Noortje; Verhoef, Gregor; Voglova, Jaroslava; Ossenkoppele, Gert; Hochhaus, Andreas; Hjorth-Hansen, Henrik; Mustjoki, Satu; Sopper, Sieghart; Giles, Francis; Porkka, Kimmo; Wolf, Dominik; Gjertsen, Bjørn Tore

    2017-08-01

    Monitoring of single cell signal transduction in leukemic cellular subsets has been proposed to provide deeper understanding of disease biology and prognosis, but has so far not been tested in a clinical trial of targeted therapy. We developed a complete mass cytometry analysis pipeline for characterization of intracellular signal transduction patterns in the major leukocyte subsets of chronic phase chronic myeloid leukemia. Changes in phosphorylated Bcr-Abl1 and the signaling pathways involved were readily identifiable in peripheral blood single cells already within three hours of the patient receiving oral nilotinib. The signal transduction profiles of healthy donors were clearly distinct from those of the patients at diagnosis. Furthermore, using principal component analysis, we could show that phosphorylated transcription factors STAT3 (Y705) and CREB (S133) within seven days reflected BCR-ABL1(IS) at three and six months. Analyses of peripheral blood cells longitudinally collected from patients in the ENEST1st clinical trial showed that single cell mass cytometry appears to be highly suitable for future investigations addressing tyrosine kinase inhibitor dosing and effect. (clinicaltrials.gov identifier: 01061177). Copyright© 2017 Ferrata Storti Foundation.

  11. The spatial extent of the Deep Western Boundary Current into the Bounty Trough: new evidence from parasound sub-bottom profiling

    NASA Astrophysics Data System (ADS)

    Horn, Michael; Uenzelmann-Neben, Gabriele

    2016-06-01

    Deep currents such as the Pacific Deep Western Boundary Current (DWBC) are strengthened periodically in Milankovitch cycles. We studied periodic fluctuations in seismic reflection pattern and reflection amplitude in order to detect cycles in the sedimentary layers of Bounty Trough and bounty fan, east of New Zealand. There, the occurrence of the obliquity frequency is caused only by the DWBC. Therefore, it provides direct evidence for the spatial extent of the DWBC. We can confirm the extent of the DWBC west of the outer sill, previously only inferred via erosional features at the outer sill. Further, our data allow an estimation of the extent of the DWBC into the Bounty Trough, limiting the DWBC presence to east of 178.15°E. Using the presented method a larger dataset will allow a chronological and areal mapping of sedimentation processes and hence provide information on glacial/interglacial cycles.

  12. Predicting the release profile of small molecules from within the ordered nanostructured lipidic bicontinuous cubic phase using translational diffusion coefficients determined by PFG-NMR.

    PubMed

    Meikle, Thomas G; Yao, Shenggen; Zabara, Alexandru; Conn, Charlotte E; Drummond, Calum J; Separovic, Frances

    2017-02-16

    The ordered nanostructured lipidic bicontinuous cubic phase has demonstrated potential as a drug release material, due to its ability to encapsulate a wide variety of compounds, which may undergo sustained, diffusion controlled release over time. Control of drug release has been shown to depend on the nanostructural parameters of the lipid mesophase. Herein, the diffusion and release of two amino acids, encapsulated within a range of different lipidic cubic mesophases are investigated. Pulsed-field gradient NMR was used to determine the diffusion coefficient of the encapsulated amino acid, which was found to be correlated with the nanoscale diameter of the water channels within the cubic mesophase. This information was used to predict the release profiles of encapsulated compounds from within the cubic mesophase, which was verified by directly measuring the release of each amino acid in vitro. Predicted release profiles tracked reasonably close to the measured release profiles, indicating that NMR determined diffusion measurements can be used to predict release profiles.

  13. Bacterial processes in the intermediate and deep layers of the Ionian Sea in winter 1999: Vertical profiles and their relationship to the different water masses

    NASA Astrophysics Data System (ADS)

    Zaccone, R.; Monticelli, L. S.; Seritti, A.; Santinelli, C.; Azzaro, M.; Boldrin, A.; La Ferla, R.; Ribera D'Alcalã, M.

    2003-09-01

    Dissolved and particulate organic carbon, bacterial biomass, microbial enzymatic activities (EEA: leucine aminopeptidase, β-glucosidase, and alkaline phosphatase), bacterial production, respiration rates, and bacterial growth efficiency were determined in 10 stations of the Ionian Sea (winter 1998-1999) with the aim of characterizing the recycling of biogenic carbon and phosphorus in the different water masses, previously identified on the basis of their hydrographical properties. All microbial activities decreased markedly with depth, with a sharp increase in the benthic boundary layer, where potential remineralization rates of phosphorus up to 1.03 μg P·dm-3d-1 and bacterial carbon production of 0.078 μg C·dm-3 d-1 were recorded. Those rates were close to the surface ones; the bacterial growth efficiency was also around 20%, similar to the surface value, sustaining the microbial food chain at the bottom. The daily hydrolysis of the organic carbon pool estimated by EEA varied from 0.67% (Ionian Surface Water) to 0.02% (Deep Water). Alkaline phosphatase activity was generally low in the intermediate and deep layers, in relation to the higher inorganic P content. The last facts support the hypothesis that deep waters of Ionian Sea, and in general of the entire Mediterranean basin, because of their young age, carry a larger amount of labile dissolved organic carbon, which reduces the need for a high recycling activity by bacterial community. As a matter of fact, a relatively higher activity per cell in carbon production rates was found in the deep layer where a large volume of the very recently formed Cretan Sea Outflow Water was present.

  14. 30 CFR 203.40 - Which leases are eligible for royalty relief as a result of drilling a deep well or a phase 1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from... Leases Not Subject to Deep Water Royalty Relief § 203.40 Which leases are eligible for royalty relief as... drilling either: (1) Before March 26, 2003, on a lease that is located partly or entirely in water less...

  15. Underthrusting of Tarim beneath the Tien Shan and deep structure of their junction zone: Main results of seismic experiment along MANAS Profile Kashgar-Song-Köl

    NASA Astrophysics Data System (ADS)

    Makarov, V. I.; Alekseev, D. V.; Batalev, V. Yu.; Bataleva, E. A.; Belyaev, I. V.; Bragin, V. D.; Dergunov, N. T.; Efimova, N. N.; Leonov, M. G.; Munirova, L. M.; Pavlenkin, A. D.; Roecker, S.; Roslov, Yu. V.; Rybin, A. K.; Shchelochkov, G. G.

    2010-03-01

    The results of reflection CMP seismic profiling of the Central Tien Shan in the meridional tract 75-76° E from Lake Song-Köl in Kyrgyzstan to the town of Kashgar in China are considered. The seismic section demonstrating complex heterogeneous structure of the Earth’s crust and reflecting its near-horizontal delamination with vertical and inclined zones of compositional and structural differentiation was constructed from processing of initial data of reflection CMP seismic profiling, earthquake converted-wave method (ECWM), and seismic tomography. The most important is the large zone of underthrusting of the Tarim Massif beneath the Tien Shan.

  16. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson's disease

    PubMed Central

    Swann, Nicole; Poizner, Howard; Houser, Melissa; Gould, Sherrie; Greenhouse, Ian; Cai, Weidong; Strunk, Jon; George, Jobi; Aron, Adam R

    2011-01-01

    Stopping an initiated response could be implemented by a fronto-basal-ganglia circuit, including the right inferior frontal cortex (rIFC) and the subthalamic nucleus (STN). Intracranial recording studies in humans reveal an increase in beta-band power (~16-20 Hz) within the rIFC and STN when a response is stopped. This suggests that the beta-band could be important for communication in this network. If this is the case, then altering one region should affect the electrophysiological response at the other. We addressed this hypothesis by recording scalp EEG during a stop task while modulating STN activity with deep brain stimulation. We studied 15 human patients with Parkinson's Disease and 15 matched healthy control subjects. Behaviorally, patients OFF stimulation were slower than controls to stop their response. Moreover, stopping speed was improved for ON compared to OFF stimulation. For scalp EEG, there was greater beta power, around the time of stopping, for patients ON compared to OFF stimulation. This effect was stronger over the right compared to left frontal cortex, consistent with the putative right-lateralization of the stopping network. Thus, deep brain stimulation of the STN improved behavioral stopping performance and increased the beta-band response over the right frontal cortex. These results complement other evidence for a structurally-connected, functional, circuit between right frontal cortex and the basal ganglia. The results also suggest that deep brain stimulation of the STN may improve task performance by increasing the fidelity of information transfer within a fronto-basal ganglia circuit. PMID:21490213

  17. Seismic Wide-Angle Reflection / Refraction Profiling from the DESIRE Project Reveals the Deep Structure Across the Southern Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Weber, M.; Mechie, J.; Ab-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; DESIRE Group

    2007-12-01

    As part of the DESIRE project a 240 km long seismic wide-angle reflection / refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin. The DST with a total of about 105 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern Dead Sea basin is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one- component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern Dead Sea basin is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern Dead Sea basin is about 11 km below sea level beneath the profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, show less than 3 km variation in depth beneath the profile as it crosses the southern Dead Sea basin. Thus the Dead Sea pull-apart basin is essentially an upper crustal feature with N-S upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth must act as a decoupling zone. Thermo-mechanical modelling of the Dead Sea basin supports such a scenario.

  18. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and preconcentraion of lead and cadmium in edible oils.

    PubMed

    Karimi, Mehdi; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Tamaddon, Fatemeh; Azadi, Davood

    2015-11-01

    Deep eutectic liquid organic salt was used as the solvent and a liquid phase microextraction (DES-LPME) combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for separation, preconcentration and determination of lead and cadmium in edible oils. A 4:1 mixture of deep eutectic solvent and 2% nitric acid (200 µL) was added to an oil sample. The mixture was vortexed and transferred into a water bath at 50 °C and stirred for 5 minutes. After the extraction was completed, the phases were separated by centrifugation, and the enriched analytes in the deep eutectic solvent phase were determined by ETAAS. Under optimized extraction conditions and for an oil sample of 28 g, enhancement factors of 198 and 195 and limits of detection (defined as 3 Sb/m) of 8 and 0. 2 ng kg(-1) were achieved for lead and cadmium respectively. The method was successfully applied to the determination of lead and cadmium in various edible oils. Copyright © 2015. Published by Elsevier B.V.

  19. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    PubMed

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  20. Spectrally resolved white-light phase-shifting interference microscopy for thickness-profile measurements of transparent thin film layers on patterned substrates.

    PubMed

    Debnath, Sanjit K; Kothiyal, Mahendra P; Schmit, Joanna; Hariharan, Parameswaran

    2006-05-29

    We describe how spectrally-resolved white-light phase-shifting interference microscopy with a windowed 8-step algorithm can be used for rapid and accurate measurements of the thickness profile of transparent thin film layers with a wide range of thicknesses deposited upon patterned structures exhibiting steps and discontinuities. An advantage of this technique is that it can be implemented with readily available hardware.

  1. Deep Earthquakes.

    ERIC Educational Resources Information Center

    Frohlich, Cliff

    1989-01-01

    Summarizes research to find the nature of deep earthquakes occurring hundreds of kilometers down in the earth's mantle. Describes further research problems in this area. Presents several illustrations and four references. (YP)

  2. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents.

    PubMed

    Jeong, Lena N; Sajulga, Ray; Forte, Steven G; Stoll, Dwight R; Rutan, Sarah C

    2016-07-29

    High-performance liquid chromatography (HPLC) simulators are effective method development tools. The goal of the present work was to design and implement a simple algorithm for simulation of liquid chromatographic separations that allows for characterization of the effect of injection solvent mismatch and injection solvent volume overload. The simulations yield full analyte profiles during solute migration and at elution, which enable a thorough physical understanding of the effects of method variables on chromatographic performance. The Craig counter-current distribution model (the plate model) is used as the basis for simulation, where a local retention factor is assigned for each spatial and temporal element within the simulation. The algorithm, which is an adaptation of an approach originally described by Czok and Guiochon (Ref. [10]), is sufficiently flexible to allow the use of either linear (e.g., Linear Solvent Strength Theory) or non-linear models of solute retention (e.g., Neue-Kuss (Ref. [36])). In this study, both types of models were used, one for simulating separations of a homologous series of alkylbenzenes, and the other for separations of selected amphetamines. The simulation program was validated first by comparison of simulated retention times and peak widths for five amphetami