Sample records for deep phase profile

  1. DNA Replication Profiling Using Deep Sequencing.

    PubMed

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  2. Quantitative phase microscopy using deep neural networks

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Sinha, Ayan; Lee, Justin; Barbastathis, George

    2018-02-01

    Deep learning has been proven to achieve ground-breaking accuracy in various tasks. In this paper, we implemented a deep neural network (DNN) to achieve phase retrieval in a wide-field microscope. Our DNN utilized the residual neural network (ResNet) architecture and was trained using the data generated by a phase SLM. The results showed that our DNN was able to reconstruct the profile of the phase target qualitatively. In the meantime, large error still existed, which indicated that our approach still need to be improved.

  3. Airline Passenger Profiling Based on Fuzzy Deep Machine Learning.

    PubMed

    Zheng, Yu-Jun; Sheng, Wei-Guo; Sun, Xing-Ming; Chen, Sheng-Yong

    2017-12-01

    Passenger profiling plays a vital part of commercial aviation security, but classical methods become very inefficient in handling the rapidly increasing amounts of electronic records. This paper proposes a deep learning approach to passenger profiling. The center of our approach is a Pythagorean fuzzy deep Boltzmann machine (PFDBM), whose parameters are expressed by Pythagorean fuzzy numbers such that each neuron can learn how a feature affects the production of the correct output from both the positive and negative sides. We propose a hybrid algorithm combining a gradient-based method and an evolutionary algorithm for training the PFDBM. Based on the novel learning model, we develop a deep neural network (DNN) for classifying normal passengers and potential attackers, and further develop an integrated DNN for identifying group attackers whose individual features are insufficient to reveal the abnormality. Experiments on data sets from Air China show that our approach provides much higher learning ability and classification accuracy than existing profilers. It is expected that the fuzzy deep learning approach can be adapted for a variety of complex pattern analysis tasks.

  4. Approximate Stokes Drift Profiles in Deep Water

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond

    2014-09-01

    A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

  5. Phased Retrofits in Existing Homes in Florida Phase I: Shallow and Deep Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Parker; Sutherland, K.; Chasar, D.

    2016-02-01

    The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report.« less

  6. Low-flow characteristics and profiles for the Deep River in the Cape Fear River basin, North Carolina

    USGS Publications Warehouse

    Weaver, J.C.

    1997-01-01

    Drainage area and low-flow discharge profiles are presented for the Deep River. The drainage-area profile shows downstream increases in basin size. At the mouth, the drainage area for the Deep River is 1,441 square miles. Low-flow discharge profiles for the Deep River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included.

  7. Deep learning for galaxy surface brightness profile fitting

    NASA Astrophysics Data System (ADS)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.; Domínguez Sánchez, H.; Dimauro, P.

    2018-03-01

    Numerous ongoing and future large area surveys (e.g. Dark Energy Survey, EUCLID, Large Synoptic Survey Telescope, Wide Field Infrared Survey Telescope) will increase by several orders of magnitude the volume of data that can be exploited for galaxy morphology studies. The full potential of these surveys can be unlocked only with the development of automated, fast, and reliable analysis methods. In this paper, we present DeepLeGATo, a new method for 2-D photometric galaxy profile modelling, based on convolutional neural networks. Our code is trained and validated on analytic profiles (HST/CANDELS F160W filter) and it is able to retrieve the full set of parameters of one-component Sérsic models: total magnitude, effective radius, Sérsic index, and axis ratio. We show detailed comparisons between our code and GALFIT. On simulated data, our method is more accurate than GALFIT and ˜3000 time faster on GPU (˜50 times when running on the same CPU). On real data, DeepLeGATo trained on simulations behaves similarly to GALFIT on isolated galaxies. With a fast domain adaptation step made with the 0.1-0.8 per cent the size of the training set, our code is easily capable to reproduce the results obtained with GALFIT even on crowded regions. DeepLeGATo does not require any human intervention beyond the training step, rendering it much automated than traditional profiling methods. The development of this method for more complex models (two-component galaxies, variable point spread function, dense sky regions) could constitute a fundamental tool in the era of big data in astronomy.

  8. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  9. How do changes in warm-phase microphysics affect deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital

    2017-08-01

    Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger

  10. Giddings Austin chalk enters deep lean-gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritis, G.

    1995-12-25

    Deep lean gas is the latest phase in the growth of the Giddings field Austin chalk play. The first phase involved drilling vertical oil and gas wells. Next came the horizontal well boom in the shallower Austin chalk area, which is still continuing. And now this third phase places horizontal laterals in the Austen chalk at about 14,000--15,000 ft to produce lean gas. The article describes the producing wells and gas gathering.

  11. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... qualified deep well or qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (b) of this... a qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (c) of this section. (b) If your lease meets the requirements in paragraph (a)(1) of this section, it earns the RSV prescribed in...

  12. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... qualified deep well or qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (b) of this... a qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (c) of this section. (b) If your lease meets the requirements in paragraph (a)(1) of this section, it earns the RSV prescribed in...

  13. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... qualified deep well or qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (b) of this... a qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (c) of this section. (b) If your lease meets the requirements in paragraph (a)(1) of this section, it earns the RSV prescribed in...

  14. The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Gao, R.; Li, Q.; Wang, H.

    2012-12-01

    The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.

  15. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  16. The Mechanics of Deep Earthquakes: An Experimental Investigation of Slab Phase Changes

    NASA Astrophysics Data System (ADS)

    Santangeli, J. R.; Dobson, D. P.; Hunt, S. A.; Meredith, P. G.

    2014-12-01

    The mechanics of deep earthquakes have remained a puzzle for researchers since 1928 when they were first accurately identified by Kiyoo Wadati1 in Japan. Deep earthquakes show a split distribution, with peaks centered around ~370-420km and ~520-550km. As these events are limited to subducting slabs, it is accepted that they may be due to phase changes in metastable slab material. Indeed, conditions at ~350km depth are nominally appropriate for the olivine - wadsleyite transition, consistent with the anticrack mechanism previously observed in (Mg,Fe)2SiO42. The additional peak around 520km suggests that there is another siesmogenic phase change; candidates include Ca-garnet -> Ca-perovskite, wadsleyite -> ringwoodite and enstatite -> majorite or ilmenite. Importantly, for large scale seismogenesis to occur candidate phase changes must be susceptible to a runaway mechanism. Typically this involves the release of heat during exothermic reactions, which acts to increase reaction and nucleation rates. It is worth noting that the post-spinel reaction (sp -> pv + fp) marks the cessation of deep earthquakes; possibly as a result of being endothermic. This research aims to identify which of these candidates could be responsible for seismogenesis. We use high-pressure split cylinder multi-anvil experiments with acoustic emission detection. Low-pressure analogue materials have been used to allow greater cell sizes and thus sample volumes to enable accurate location of AE to within the sample. The candidate phase is annealed below its phase boundary, and then taken through the boundary by further compression. Acoustic emissions, if generated, are observed in real time and later processed to ensure they emanate from within the sample volume. Initial results indicate that the pryroxene -> ilmenite transition in MgGeO3 is seismogenic, with several orders of magnitude increase in the energy of AE concurrent with the phase boundary. References:1) Wadati, K. (1928) Shallow and deep

  17. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...

  18. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...

  19. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...

  20. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not... royalty relief under § 203.41. If . . . Then . . . (a) Your lease has produced gas or oil from a well with... RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b...

  1. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  2. Exploration of S-wave velocity profiles at strong motion stations in Eskisehir, Turkey, using microtremor phase velocity and S-wave amplification

    NASA Astrophysics Data System (ADS)

    Yamanaka, Hiroaki; Özmen, Ögur Tuna; Chimoto, Kosuke; Alkan, Mehmet Akif; Tün, Muammer; Pekkan, Emrah; Özel, Oguz; Polat, Derya; Nurlu, Murat

    2018-05-01

    We have explored 1D S-wave velocity profiles of shallow and deep soil layers over a basement at strong motion stations in Eskisehir Province, Turkey. Microtremor array explorations were conducted at eight strong motion stations in the area to know shallow 1D S-wave velocity models. Rayleigh wave phase velocity at a frequency range from 3 to 30 Hz was estimated with the spatial autocorrelation analysis of array records of vertical microtremors at each station. Individual phase velocity was inverted to a shallow S-wave velocity profile. Low-velocity layers were identified at the stations in the basin. Site amplification factors from S-wave parts of earthquake records that had been estimated at the strong motion stations by Yamanaka et al. (2017) were inverted to the S-wave velocities and Q-values of the sedimentary layers. The depths to the basement with an S-wave velocity of 2.2 km/s are about 1 km in the central part of the basin, while the basement becomes shallow as 0.3 km in the marginal part of the basin. We finally discussed the effects of the shallow and deep sedimentary layers on the 1D S-wave amplification characteristics using the revealed profiles. It is found that the shallow soil layers have no significant effects in the amplification at a frequency range lower than 3 Hz in the area.

  3. Natural deep eutectic solvents: cytotoxic profile.

    PubMed

    Hayyan, Maan; Mbous, Yves Paul; Looi, Chung Yeng; Wong, Won Fen; Hayyan, Adeeb; Salleh, Zulhaziman; Mohd-Ali, Ozair

    2016-01-01

    The purpose of this study was to investigate the cytotoxic profiles of different ternary natural deep eutectic solvents (NADESs) containing water. For this purpose, five different NADESs were prepared using choline chloride as a salt, alongside five hydrogen bond donors (HBD) namely glucose, fructose, sucrose, glycerol, and malonic acid. Water was added as a tertiary component during the eutectics preparation, except for the malonic acid-based mixture. Coincidentally, the latter was found to be more toxic than any of the water-based NADESs. A trend was observed between the cellular requirements of cancer cells, the viscosity of the NADESs, and their cytotoxicity. This study also highlights the first time application of the conductor-like screening model for real solvent (COSMO-RS) software for the analysis of the cytotoxic mechanism of NADESs. COSMO-RS simulation of the interactions between NADESs and cellular membranes' phospholipids suggested that NADESs strongly interacted with cell surfaces and that their accumulation and aggregation possibly defined their cytotoxicity. This reinforced the idea that careful selection of NADESs components is necessary, as it becomes evident that organic acids as HBD highly contribute to the increasing toxicity of these neoteric mixtures. Nevertheless, NADESs in general seem to possess relatively less acute toxicity profiles than their DESs parents. This opens the door for future large scale utilization of these mixtures.

  4. Development and applications of an acoustic package for deep-sea sub-bottom profiling and detailed seafloor imaging

    NASA Astrophysics Data System (ADS)

    Nishimura, Kiyokazu; Kisimoto, Kiyoyuki; Joshima, Masato; Arai, Kohsaku

    In the deep-sea geological survey, good survey results are difficult to obtain by a conventional surface-towed acoustic survey system, because the horizontal resolution is limited due to the long distance between the sensor and the target (seafloor). In order to improve the horizontal resolution, a deep-tow system, which tows the sensor in the vicinity of seafloor, is most practical, and many such systems have been developed and used until today. It is not easy, however, to carry out a high-density survey in a small area by maneuvering the towing body altitude sufficiently close to the seafloor with rugged topography. A ROV (Remotely Operated Vehicle) can be used to solve this problem. The ROV makes a high-density 2D survey feasible because of its maneuverability, although a long-distance survey is difficult with it. Accordingly, we have developed an acoustic survey system installed on a ROV. The system named DAIPACK (Deep-sea Acoustic Imaging Package) consists of (1) a deep-sea sub-bottom profiler and (2) a deep-sea sidescan sonar. (1) Deep-sea sub-bottom profiler A light-weight and compact sub-bottom profiler for shallow water was chosen to improve and repackage for the deep sea usage. The system is composed of three units; a transducer, an electronic unit and a notebook computer for system control and data acquisition. The source frequency is 10kHz. To convert the system for the deep sea, the transducer was exchanged for the deep sea model, and the electronic unit was improved accordingly. The electronic unit and the notebook computer were installed in a spherical pressure vessel. (2) Deep-sea sidescan sonar We remodeled a compact shallow sea sidescan sonar(water depth limitation is 30m ) into a deep sea one. This sidescan sonar is composed of a sonar towfish (transducers and an electronic unit ), a cable and a notebook computer (data processor). To accommodate in the deep water, the transducers were remodeled into a high pressure resistance type, and the

  5. Crustal structure of China from deep seismic sounding profiles

    USGS Publications Warehouse

    Li, S.; Mooney, W.D.

    1998-01-01

    More than 36,000 km of Deep Seismic Sounding (DSS) profiles have been collected in China since 1958. However, the results of these profiles are not well known in the West due to the language barrier. In this paper, we summarize the crustal structure of China with a new contour map of crustal thickness, nine representative crustal columns, and maps showing profile locations, average crustal velocity, and Pn velocity. The most remarkable aspect of the crustal structure of China is the well known 70+ km thickness of the crust of the Tibetan Plateau. The thick (45-70 km) crust of western China is separated from the thinner (30-45 km) crust of eastern China by the north-south trending seismic belt (105??E). The average crustal velocity of China ranges from 6.15 to 6.45 km/s, indicating a felsic-to-intermediate bulk crustal composition. Upper mantle (Pn) velocities are 8.0 ?? 0.2 km/s, equal to the global continental average. We interpret these results in terms of the most recent thermo-tectonic events that have modified the crust. In much of eastern China, Cenoxoic crustal extension has produced a thin crust with a low average crustal velocity, similar to western Europe and the Basin and Range Province, western USA. In western China, Mesozoic and Cenoxoic arc-continent and continent-continent collisions have led to crustal growth and thickening. Inferences on the process of crustal thickening are provided by the deep crustal velocity structure as determined by DSS profiles and other seismological studies. A high velocity (7.0-7.4 km/s) lower-crustal layer has been reported in western China only beneath the southernmost Tibetan Plateau. We identity this high-velocity layer as the cold lower crust of the subducting Indian plate. As the Indian crust is injected northward into the Tibetan lower crust, it heats and assimilates by partial melting, a process that results in a reduction in the seismic velocity of the lower crust in the central and northern Tibetan Plateau

  6. Deformation of phase D and Earth's deep water cycle

    NASA Astrophysics Data System (ADS)

    Walker, A.; Skelton, R.; Nowacki, A.

    2016-12-01

    The stability of dense hydrous magnesium silicates such as phase D in subducting slabs provide a potential path for hydrogen transport from the Earth's surface environment into the lower mantle. Recent analysis of source-side shear wave splitting for rays from deep earthquakes around slabs detected a signal of anisotropy that could be attributed to the deformation of phase D [Nowacki et al. 2015; Geochem. Geophys. Geosyst., 16, 764-784]. If this is the case these observations could provide an estimate of the hydrogen flux into the lower mantle at depths beyond shallow recycling through the volcanic arc. However, the processes leading to the deformation of phase D and the generation of seismic anisotropy are not well known and this is a barrier to progress. Here we present initial results of simulations designed to reveal how easily different dislocations move in phase D during deformation and lead to the generation of seismic anisotropy measured by shear wave splitting. In particular, we use atomic scale simulations to calculate the energies of generalised stacking faults in phase D, which are used to parameterise Peierls-Nabarro models of dislocation structures and Peierls stresses at pressures up to 60 GPa. We then use results from these calculations as parameters for models of texture development in polycrystalline aggregates during deformation using the visco-plastic self-consistent approach. In combination with measurement of the distribution of seismic anisotropy around subducting slabs, and an analysis of the strain pattern expected as slabs pass through the transition zone, these results could constrain an important part of Earth's deep water cycle.

  7. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Kirby, Stephen H.; Stein, Seth; Okal, Emile A.; Rubie, David C.

    1996-05-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine → spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  8. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling.

    PubMed

    Xue, Lu; Lin, Lin; Zhou, Wenbin; Chen, Wendong; Tang, Jun; Sun, Xiujie; Huang, Peiwu; Tian, Ruijun

    2018-06-09

    Plasma proteome profiling by LC-MS based proteomics has drawn great attention recently for biomarker discovery from blood liquid biopsy. Due to standard multi-step sample preparation could potentially cause plasma protein degradation and analysis variation, integrated proteomics sample preparation technologies became promising solution towards this end. Here, we developed a fully integrated proteomics sample preparation technology for both fast and deep plasma proteome profiling under its native pH. All the sample preparation steps, including protein digestion and two-dimensional fractionation by both mixed-mode ion exchange and high-pH reversed phase mechanism were integrated into one spintip device for the first time. The mixed-mode ion exchange beads design achieved the sample loading at neutral pH and protein digestion within 30 min. Potential sample loss and protein degradation by pH changing could be voided. 1 μL of plasma sample with depletion of high abundant proteins was processed by the developed technology with 12 equally distributed fractions and analyzed with 12 h of LC-MS gradient time, resulting in the identification of 862 proteins. The combination of the Mixed-mode-SISPROT and data-independent MS method achieved fast plasma proteome profiling in 2 h with high identification overlap and quantification precision for a proof-of-concept study of plasma samples from 5 healthy donors. We expect that the Mixed-mode-SISPROT become a generally applicable sample preparation technology for clinical oriented plasma proteome profiling. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The effect of aerosol-derived changes in the warm phase on the properties of deep convective clouds

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven; Dagan, Guy

    2017-04-01

    The aerosol impact on deep convective clouds starts in an increased number of cloud droplets in higher aerosol loading environment. This change drives many others, like enhanced condensational growth, delay in collision-coalescence and others. Since the warm processes serve as the initial and boundary conditions for the mixed and cold-phase processes in deep clouds, it is highly important to understand the aerosol effect on them. The weather research and forecasting model (WRF) with spectral bin microphysics was used to study a deep convective system over the Marshall Islands, during the Kwajalein Experiment (KWAJEX). Three simulations were conducted with aerosol concentrations of 100, 500 and 2000 cm-3, to reflect clean, semipolluted, and polluted conditions. The results of the clean run agreed well with the radar profiles and rain rate observations. The more polluted simulations resulted in larger total cloud mass, larger upper level cloud fraction and rain rates. There was an increased mass both below and above the zero temperature level. It indicates of more efficient growth processes both below and above the zero level. In addition the polluted runs showed an increased upward transport (across the zero level) of liquid water due to both stronger updrafts and larger droplet mobility. In this work we discuss the transport of cloud mass crossing the zero temperature level (in both directions) in order to gain a process level understanding of how aerosol effects on the warm processes affect the macro- and micro-properties of deep convective clouds.

  10. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry

    NASA Astrophysics Data System (ADS)

    Thornton, Douglas E.; Spencer, Mark F.; Perram, Glen P.

    2017-09-01

    The effects of deep turbulence in long-range imaging applications presents unique challenges to properly measure and correct for aberrations incurred along the atmospheric path. In practice, digital holography can detect the path-integrated wavefront distortions caused by deep turbulence, and di erent recording geometries offer different benefits depending on the application of interest. Previous studies have evaluated the performance of the off-axis image and pupil plane recording geometries for deep-turbulence sensing. This study models digital holography in the on-axis phase shifting recording geometry using wave optics simulations. In particular, the analysis models spherical-wave propagation through varying deep-turbulence conditions to estimate the complex optical field, and performance is evaluated by calculating the field-estimated Strehl ratio and RMS wavefront error. Altogether, the results show that digital holography in the on-axis phase shifting recording geometry is an effective wavefront-sensing method in the presence of deep turbulence.

  11. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  12. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    PubMed

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  13. New High Pressure Phase of CaCO3: Implication for the Deep Diamond Formation

    NASA Astrophysics Data System (ADS)

    Mao, Z.; Li, X.; Zhang, Z.; Lin, J. F.; Ni, H.; Prakapenka, V.

    2017-12-01

    Surface carbon can be transported to the Earth's deep interior through sinking subduction slabs. Carbonates, including CaCO3, MgCO3 and MgCa(CO3)2, are important carbon carriers for the deep carbon cycle. Experimental studies on the phase stability of carbonates with coexisting mantle minerals at relevant pressure and temperature conditions are thus important for understanding the deep carbon cycle. In particular, recent petrological studies have revealed the evidence for the transportation of CaCO3 to the depth at least of the top lower mantle by analyzing the diamond inclusions. Yet the phase stability of CaCO3 at relevant pressure and temperature conditions of the top lower mantle is still unclear. Previous single-crystal study has shown that CaCO3 transforms from the CaCO3-III structure to CaCO3-VI at 15 GPa and 300 K. The CaCO3-VI is stable at least up to 40 GPa at 300 K. At high temperatures, CaCO3 in the aragonite structure will directly transform into the post-aragonite structure at 40 GPa. However, a recent theoretical study predicted a new phase of CaCO3 with a space group of P21/c between 32 and 48 GPa which is different from previous experimental results. In this study, we have investigated the phase stability of CaCO3 at high pressure-temperature conditions using synchrotron X-ray diffraction in laser-heated diamond anvil cells. We report the discovery of a new phase of CaCO3 at relevant pressure-temperature conditions of the top lower mantle which is consistent with previous theoretical predictions. This new phase is an important carrier for the transportation of carbon to the Earth's lower mantle and crucial for growing deep diamonds in the region.

  14. First Autonomous Bio-Optical Profiling Float in the Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters

    PubMed Central

    Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network

  15. Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Parcerisa, D.; Ricordel-Prognon, C.; Schmitt, J.-M.

    2009-04-01

    A major sodium accumulation has been recognized for long and by numerous authors in the Permo-Triassic salt deposits (Hay et al., 2006). Beside these basinal deposits, important masses of sodium were stored on the continents within deep palaeoweathering profiles in form of albite. Indeed, wide surfaces and huge volumes of granito-gneissic basements of the Hercynian massifs are albitized from North-Africa up to Scandinavia. These albitized rocks have usually been considered as related to tardi-magmatic metasomatic processes (Cathelineau 1986; Petersson and Eliasson 1997). Geometrical arrangement and dating of these alterations point out that these albitizations, or at least a part of them, developed under low temperature subsurface conditions in relation with the Triassic palaeosurface (Ricordel et al., 2007; Parcerisa et al., 2009). Petrology The albitized igneous rocks show a strong alteration with pseudomorphic replacement of the primary plagioclases into albite, replacement of primary biotite by chlorite and minor precipitation of neogenic minerals like albite, chlorite, apatite, haematite, calcite and titanite. Albitized rocks are characterized by their pink coloration due to the presence of minute haematite inclusions in the albite. The development and distribution of the albitization and related alterations above the unaltered basement occurs in three steps that define a vertical profile, up to 100-150 m depth. 1) In the lower part of the profile, albitization occurs within pink-colored patches in the unaltered rock, giving a pink-spotted aspect to the rock. 2) In the middle part of the profile, rocks have an overall pink coloration due to the albitization of the primary Ca-bearing igneous plagioclases. Usually, this facies develops in a pervasive manner, affecting the whole rock, but it may also be restricted to joints, giving a sharp-pink coloration to the fracture wall. 3) Finally, the top of the profile is defined by the same mineral paragenesis as in the

  16. Seeking the Profile of an Elementary Educator: Phase III.

    ERIC Educational Resources Information Center

    Arth, Alfred A.; And Others

    This paper presents the third phase of a student-faculty investigation seeking the profile of the elementary school teacher. Phase I discovered an indication of different personality traits in elementary and secondary teachers. Phase II redesigned the original questionnaire and supported the findings with additional research. This third phase…

  17. Theoretical Prediction of Melting Relations in the Deep Mantle: the Phase Diagram Approach

    NASA Astrophysics Data System (ADS)

    Belmonte, D.; Ottonello, G. A.; Vetuschi Zuccolini, M.; Attene, M.

    2016-12-01

    Despite the outstanding progress in computer technology and experimental facilities, understanding melting phase relations in the deep mantle is still an open challenge. In this work a novel computational scheme to predict melting relations at HP-HT by a combination of first principles DFT calculations, polymer chemistry and equilibrium thermodynamics is presented and discussed. The adopted theoretical framework is physically-consistent and allows to compute multi-component phase diagrams relevant to Earth's deep interior in a broad range of P-T conditions by a convex-hull algorithm for Gibbs free energy minimisation purposely developed for high-rank simplexes. The calculated phase diagrams are in turn used as a source of information to gain new insights on the P-T-X evolution of magmas in the deep mantle, providing some thermodynamic constraints to both present-day and early Earth melting processes. High-pressure melting curves of mantle silicates are also obtained as by-product of phase diagram calculation. Application of the above method to the MgO-Al2O3-SiO2 (MAS) ternary system highlights as pressure effects are not only able to change the nature of melting of some minerals (like olivine and pyroxene) from eutectic to peritectic (and vice versa), but also simplify melting relations by drastically reducing the number of phases with a primary phase field at HP-HT conditions. It turns out that mineral phases like Majorite-Pyrope garnet and Anhydrous Phase B (Mg14Si5O24), which are often disregarded in modelling melting processes of mantle assemblages, are stable phases at solidus or liquidus conditions in a P-T range compatible with the mantle transition zone (i.e. P = 16 - 23 GPa and T = 2200 - 2700 °C) when their thermodynamic and thermophysical properties are properly assessed. Financial support to the Senior Author (D.B.) during his stay as Invited Scientist at the Institut de Physique du Globe de Paris (IPGP, Paris) is warmly acknowledged.

  18. Phase compensation with fiber optic surface profile acquisition and reconstruction system

    NASA Astrophysics Data System (ADS)

    Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting

    2015-02-01

    A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.

  19. Deep Space Habitat Team: HEFT Phase 2 Effects

    NASA Technical Reports Server (NTRS)

    Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary

    2011-01-01

    HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.

  20. Effect of phase transformations on microstructures in deep mantle materials

    NASA Astrophysics Data System (ADS)

    Merkel, Sébastien; Langrand, Christopher; Rosa, Angelika; Hilairet, Nadège

    2017-04-01

    Phase transformations induce microstructural changes in deep Earth materials, including changes in grain size and orientation distribution. The effect of phase transformations on mineral microstructures is usually studied using electron microscopy on quench products from high P/T experiments. The method allows for a precise evaluation of the microscopic mechanisms involved. It is limited, however, to samples that can be quenched to ambient conditions and allows for investigations at a single P/T point for each experiment. In recent years, we extended the use of multigrain crystallography to samples inside diamond anvil cells under mantle P/T conditions. The method allows for monitoring the orientations of hundreds of grains and grain size variations during various physical processes, such as plastic deformation and successions of phase transformations (Rosa et al 2015, Langrand et al 2017). Here, we will show results concerning hydrous Mg2SiO4 during the series of α-β-γ phase transformations up to 40 GPa and 850 °C. Such results are important to understand the descending behaviour of subducted slabs, observations of seismic anisotropy, and polarity changes for seismic waves reflected of deep Earth interfaces. The data is used to asses the effect of the transformation on grain orientation and grain sizes. In particular, we do not observe orientation relationships between the parent α-phase and the daughter β-phase phase, suggesting an incoherent growth. We also observe significant grain size reductions and only little grain growth within the newly formed phases (Rosa et al 2016). These new results are important for understanding the mechanical behavior of subducting slabs, seismic anisotropy in the Earth's mantle, and phase transformation mechanisms in olivine. Now that it is validated, the method can also be applied to other phases that can not be studied using electron microscopy, such as perovskite and post-perovskite. Langrand, Hilairet, Nisr, Roskosz, Rib

  1. Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007-2013 Period

    NASA Astrophysics Data System (ADS)

    Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; D'Ortenzio, F.; Bouin, M. N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; Coppola, L.; Mortier, L.; Raimbault, P.

    2016-11-01

    We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier "vintage" of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10-3/yr) and potential temperature (3.2 ± 0.5 × 10-3 C/yr) observed from 2009 to 2013 for the 600-2300 m layer. For the first time, the overlapping of the three "phases" of deep convection can be observed, with secondary vertical mixing events (2-4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event.

  2. Enhanced backscattering through a deep random phase screen

    NASA Astrophysics Data System (ADS)

    Jakeman, E.

    1988-10-01

    The statistical properties of radiation scattered by a system consisting of a plane mirror placed in the Fresnel region behind a smoothly varying deep random-phase screen with off-axis beam illumination are studied. It is found that two mechanisms cause enhanced scattering around the backward direction, according to the mirror position with respect to the focusing plane of the screen. In all of the plane mirror geometries considered, the scattered field remains a complex Gaussian process with a spatial coherence function identical to that expected for a single screen, and a speckle size smaller than the width of backscatter enhancement.

  3. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less

  4. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  5. ampliMethProfiler: a pipeline for the analysis of CpG methylation profiles of targeted deep bisulfite sequenced amplicons.

    PubMed

    Scala, Giovanni; Affinito, Ornella; Palumbo, Domenico; Florio, Ermanno; Monticelli, Antonella; Miele, Gennaro; Chiariotti, Lorenzo; Cocozza, Sergio

    2016-11-25

    CpG sites in an individual molecule may exist in a binary state (methylated or unmethylated) and each individual DNA molecule, containing a certain number of CpGs, is a combination of these states defining an epihaplotype. Classic quantification based approaches to study DNA methylation are intrinsically unable to fully represent the complexity of the underlying methylation substrate. Epihaplotype based approaches, on the other hand, allow methylation profiles of cell populations to be studied at the single molecule level. For such investigations, next-generation sequencing techniques can be used, both for quantitative and for epihaplotype analysis. Currently available tools for methylation analysis lack output formats that explicitly report CpG methylation profiles at the single molecule level and that have suited statistical tools for their interpretation. Here we present ampliMethProfiler, a python-based pipeline for the extraction and statistical epihaplotype analysis of amplicons from targeted deep bisulfite sequencing of multiple DNA regions. ampliMethProfiler tool provides an easy and user friendly way to extract and analyze the epihaplotype composition of reads from targeted bisulfite sequencing experiments. ampliMethProfiler is written in python language and requires a local installation of BLAST and (optionally) QIIME tools. It can be run on Linux and OS X platforms. The software is open source and freely available at http://amplimethprofiler.sourceforge.net .

  6. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  7. CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.

    2005-01-01

    Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.

  8. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease

    PubMed Central

    de Hemptinne, Coralie; Swann, Nicole; Ostrem, Jill L.; Ryapolova-Webb, Elena S.; Luciano, Marta San; Galifianakis, Nicholas; Starr, Philip A.

    2015-01-01

    Deep brain stimulation (DBS) is increasingly applied to the treatment of brain disorders, but its mechanism of action remains unknown. Here, we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the β rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive β phase locking of motor cortex neurons. PMID:25867121

  9. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  10. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    . This resulted in a reduction of N density at depth, which was not mirrored in C densities, indicating that fava beans decouple C and N cycles in the deep soil profile. We then tested whether these effects are a result of plant (i.e. enhanced rooting depth associated with lowered subsoil bulk density) or microbial (i.e. N-cycling and denitrification processes) activities, by investigating the isotopic signatures of C and N down the profile. Our results indicate that the selection of crop rotation influences soil C and N cycling and depth distribution. Although mineral N fertilizer has significant benefits for yield, the choice of crop rotation has a greater influence on soil C and N cycling and specifically the addition of leguminous plants into rotation can provide additional yield benefits and stability. Incorporating legumes into crop rotations affects soil physical and chemical properties and decouples C and N cycles in the deep soil profile, indicating different nutrient and water cycling processes in the deep soil profile.

  11. Phase-I monitoring of standard deviations in multistage linear profiles

    NASA Astrophysics Data System (ADS)

    Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim

    2018-03-01

    In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.

  12. Local coexistence of VO 2 phases revealed by deep data analysis

    DOE PAGES

    Strelcov, Evgheni; Ievlev, Anton; Tselev, Alexander; ...

    2016-07-07

    We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO 2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffermore » from information misinterpretation due to low resolving power.« less

  13. Stimulating at the right time: phase-specific deep brain stimulation

    PubMed Central

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    Abstract See Moll and Engel (doi:10.1093/aww308) for a scientific commentary on this article. Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson’s disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient’s tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. PMID:28007997

  14. Uncovering a Salt Giant. Deep-Sea Record of Mediterranean Messinian Events (DREAM) multi-phase drilling project

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas

    2014-05-01

    In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions

  15. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false To which production may an RSV earned by... may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease not be applied? You may not apply an RSV earned under § 203.31: (a) To production from completions less than 15,000 feet...

  16. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false To which production may an RSV earned by... may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease not be applied? You may not apply an RSV earned under § 203.31: (a) To production from completions less than 15,000 feet...

  17. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false To which production may an RSV earned by... may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease not be applied? You may not apply an RSV earned under § 203.31: (a) To production from completions less than 15,000 feet...

  18. Stimulating at the right time: phase-specific deep brain stimulation.

    PubMed

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  19. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease or in my unit? (a) You must apply the RSV allowed in § 203.31(a) and (b) to gas volumes produced from qualified...

  20. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease or in my unit? (a) You must apply the RSV allowed in § 203.31(a) and (b) to gas volumes produced from qualified...

  1. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my lease or in my unit? (a) You must apply the RSV allowed in § 203.31(a) and (b) to gas volumes produced from qualified...

  2. Laser nitriding of iron: Nitrogen profiles and phases

    NASA Astrophysics Data System (ADS)

    Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.

    1995-07-01

    Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.

  3. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, A. Y., E-mail: aypolyakov@gmail.com; Smirnov, N. B.; Govorkov, A. V.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versusmore » 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.« less

  4. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.

    PubMed

    Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  5. Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves

    NASA Astrophysics Data System (ADS)

    Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.

    2018-06-01

    We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.

  6. Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils.

    PubMed

    Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook

    2007-03-01

    To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.

  7. 30 CFR 203.40 - Which leases are eligible for royalty relief as a result of drilling a deep well or a phase 1...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a result of drilling a deep well or a phase 1 ultra-deep well? 203.40 Section 203.40 Mineral... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.40 Which...

  8. Analysis of DGGE profiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin.

    PubMed

    Fry, John C; Webster, Gordon; Cragg, Barry A; Weightman, Andrew J; Parkes, R John

    2006-10-01

    The aim of this work was to relate depth profiles of prokaryotic community composition with geochemical processes in the deep subseafloor biosphere at two shallow-water sites on the Peru Margin in the Pacific Ocean (ODP Leg 201, sites 1228 and 1229). Principal component analysis of denaturing gradient gel electrophoresis banding patterns of deep-sediment Bacteria, Archaea, Euryarchaeota and the novel candidate division JS1, followed by multiple regression, showed strong relationships with prokaryotic activity and geochemistry (R(2)=55-100%). Further correlation analysis, at one site, between the principal components from the community composition profiles for Bacteria and 12 other variables quantitatively confirmed their relationship with activity and geochemistry, which had previously only been implied. Comparison with previously published cell counts enumerated by fluorescent in situ hybridization with rRNA-targeted probes confirmed that these denaturing gradient gel electrophoresis profiles described an active prokaryotic community.

  9. Design and analysis of a low-loss linear analog phase modulator for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Mueller, R. O.

    1991-01-01

    This article summarizes the design concepts, analyses, and development of an X-band (8145 MHz) transponder low-loss linear phase modulator for deep space spacecraft applications. A single-section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. A linear phase deviation of 92 deg with a linearity tolerance of +/- 8 percent was measured for this modulator from 8257 MHz to 8634 MHz over the temperature range -20 to 75 C. The measured insertion loss and the static delay variation with temperature were 2 +/- 0.3 dB and 0.16 psec/ C, respectively. Based on this design, cascaded sections have been modeled, and simulations were performed to provide an X-band deep space transponder (DST) phase modulator with +/- 2.5 radians (+/- 143 deg) of peak phase deviation to accommodate downlink signal modulation with composite telemetry data and ranging, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase-modulator requirements and show excellent agreement with the predicted results.

  10. Evaluation of the Effects of Honey on Acute-Phase Deep Burn Wounds

    PubMed Central

    Nakajima, Yukari; Mukai, Kanae; Nasruddin; Komatsu, Emi; Iuchi, Terumi; Kitayama, Yukie; Sugama, Junko; Nakatani, Toshio

    2013-01-01

    This study aimed to clarify the effects of honey on acute-phase deep burn wounds. Two deep burn wounds were created on mice which were divided into four groups: no treatment, silver sulfadiazine, manuka honey, and Japanese acacia honey. Wound sizes were calculated as expanded wound areas and sampled 30 minutes and 1–4 days after wounding for histological observation. The wound sections were subjected to hematoxylin and eosin and immunohistological staining to detect necrotic cells, apoptotic cells, neutrophils, and macrophages. The no treatment group formed a scar. The redness around the wound edges in the silver sulfadiazine group was the most intense. All groups exhibited increased wound areas after wounding. The proportions of necrotic cells and the numbers of neutrophils in the manuka and acacia honey groups were lower than those in the no treatment and silver sulfadiazine groups until day 3; however, there were no significant differences between all groups on day 4. These results show that honey treatment on deep burn wounds cannot prevent wound progression. Moreover, comparing our observations with those of Jackson, there are some differences between humans and animals in this regard, and the zone of hyperemia and its surrounding area fall into necrosis, which contributes to burn wound progression. PMID:24348720

  11. Evaluation of the effects of honey on acute-phase deep burn wounds.

    PubMed

    Nakajima, Yukari; Mukai, Kanae; Nasruddin; Komatsu, Emi; Iuchi, Terumi; Kitayama, Yukie; Sugama, Junko; Nakatani, Toshio

    2013-01-01

    This study aimed to clarify the effects of honey on acute-phase deep burn wounds. Two deep burn wounds were created on mice which were divided into four groups: no treatment, silver sulfadiazine, manuka honey, and Japanese acacia honey. Wound sizes were calculated as expanded wound areas and sampled 30 minutes and 1-4 days after wounding for histological observation. The wound sections were subjected to hematoxylin and eosin and immunohistological staining to detect necrotic cells, apoptotic cells, neutrophils, and macrophages. The no treatment group formed a scar. The redness around the wound edges in the silver sulfadiazine group was the most intense. All groups exhibited increased wound areas after wounding. The proportions of necrotic cells and the numbers of neutrophils in the manuka and acacia honey groups were lower than those in the no treatment and silver sulfadiazine groups until day 3; however, there were no significant differences between all groups on day 4. These results show that honey treatment on deep burn wounds cannot prevent wound progression. Moreover, comparing our observations with those of Jackson, there are some differences between humans and animals in this regard, and the zone of hyperemia and its surrounding area fall into necrosis, which contributes to burn wound progression.

  12. Effects of frying oils' fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process.

    PubMed

    Li, Xiaodan; Li, Jinwei; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-12-15

    The effects of frying oils' fatty acids profile on the formation of polar components and their retention in French fries and corresponding deep-fried oils were investigated in the present study, using oils with different fatty acids composition. Our analysis showed that the total polar compounds (TPCs) content in French fries was only slightly lower than that in deep-fried oils, indicating that there was no significant difference considering the amounts of TPCs in French fries and deep-fried oils. Our further analysis showed that different polar components in TPCs distributed differently in deep-fried oils and oils extracted from French fries. Specifically, the level of oligomeric and dimeric triacylglycerols was higher in French fries while oxidized triacylglycerols and diacylglycerols content was higher in deep-fried oils. The different retention of TPCs components in French fries may be explained by their interactions with carbohydrates, which are shown to enhance with the increase of hydrophobic property. Chemometric analysis showed that no correlation between the polar compounds level and saturated fatty acids profile was observed. Meanwhile, the polar compounds content was highly correlated with the formation of trans-C18:1, and a highly positive association between polar compounds and C18:2 content was also observed in palm oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  14. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 203.36, your qualified well earns your lease an RSV shown in the following table in billions of cubic... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of gas... the price conditions in § 203.36, your qualified well earns your lease an RSV shown in the following...

  15. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 203.36, your qualified well earns your lease an RSV shown in the following table in billions of cubic... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of gas... the price conditions in § 203.36, your qualified well earns your lease an RSV shown in the following...

  16. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 203.36, your qualified well earns your lease an RSV shown in the following table in billions of cubic... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of gas... the price conditions in § 203.36, your qualified well earns your lease an RSV shown in the following...

  17. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    PubMed

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  18. Identification of Phase Relationships and Incorporation Mechanisms of Barium in Calcite Internodes of Deep-Sea Bamboo Corals

    NASA Astrophysics Data System (ADS)

    Ptacek, J. L.; Geyman, B.; Horner, T. J.; Auro, M. E. E.; Hill, T. M.; LaVigne, M.

    2016-12-01

    Insufficient instrumental and geochemical records have led to a gap in knowledge of how intermediate/deep water masses respond to decadal shifts in surface atmospheric-ocean climate that drive changes in ocean ventilation, nutrient cycling, and export productivity. Due to their longevity, depth range (500-2000m), and radial growth bands, bamboo corals have been proposed as high-resolution intermediate/deep ocean archives of elements with nutrient-like distributions, such as barium. Previous work showed bamboo corals incorporate barium into their calcitic internodes with a near-constant proportionality to dissolved (Ba)sw, indicating that (Ba/Ca)coral may be a useful tracer of refractory nutrient distributions in the past. However, some intermediate- and deep-sea bamboo corals exhibit highly variable Ba/Ca, which may result from incorporation of extraneous Ba-bearing phases into coral skeletons (e.g. barite, organic matter, lithogenic particles) rather than true changes in ambient (Ba)SW. To this end, we developed and applied a sequential cleaning experiment to identify the host phases of Ba in coral samples recovered from the North Pacific California Margin oxygen minimum zone (800-2000m). Milled coral samples were homogenized and subjected to multiple cleaning protocols to isolate and remove detrital/fine grain particles (with H2O and HNO3), organic matter (with H2O2), and barite (with an alkaline DTPA solution), before Ba/Ca analysis via ICP-MS. We found that the cleaning process did not systematically alter the Ba/Ca of the samples, and analysis of powders via SEM BSE-EDS revealed no identifiable barite. Our preliminary results indicate that there is minimal incorporation of non-lattice bound barium phases by these corals, and further verifies the suggestion that the main driver of (Ba/Ca)coral is the incorporation of Ba2+ in proportion to (Ba)sw. The results of our study help to evaluate how the Ba/Ca proxy in deep-sea bamboo corals should be interpreted in

  19. Surface energy from order parameter profile: At the QCD phase transition

    NASA Technical Reports Server (NTRS)

    Frei, Z.; Patkos, A.

    1989-01-01

    The order parameter profile between coexisting confined and plasma regions at the quantum chromodynamic (QCD) phase transition is constructed. The dimensionless combination of the surface energy (Sigma) and the correlation length (Zeta) is estimated to be Sigma Zeta 3 approximately equals 0.8.

  20. Development of the EM tomography system by the vertical electromagnetic profiling (VEMP) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Y.; Osato, K.; Takasugi, S.

    1995-12-31

    As a part of the {open_quotes}Deep-Seated Geothermal Resources Survey{close_quotes} project being undertaken by the NEDO, the Vertical ElectroMagnetic Profiling (VEMP) method is being developed to accurately obtain deep resistivity structure. The VEMP method acquires multi-frequency three-component magnetic field data in an open hole well using controlled sources (loop sources or grounded-wire sources) emitted at the surface. Numerical simulation using EM3D demonstrated that phase data of the VEMP method is very sensitive to resistivity structure and the phase data will also indicate presence of deep anomalies. Forward modelling was also used to determine required transmitter moments for various grounded-wire and loopmore » sources for a field test using the WD-1 well in the Kakkonda geothermal area. Field logging of the well was carried out in May 1994 and the processed field data matches well the simulated data.« less

  1. Regional two-dimensional magnetotelluric profile in West Bohemia/Vogtland reveals deep conductive channel into the earthquake swarm region

    NASA Astrophysics Data System (ADS)

    Muñoz, Gerard; Weckmann, Ute; Pek, Josef; Kováčiková, Světlana; Klanica, Radek

    2018-03-01

    The West Bohemia/Vogtland region, characterized by the intersection of the Eger (Ohře) Rift and the Mariánské Lázně fault, is a geodynamically active area exhibiting repeated occurrence of earthquake swarms, massive CO2 emanations and mid Pleistocene volcanism. The Eger Rift is the only known intra-continental region in Europe where such deep seated, active lithospheric processes currently take place. We present an image of electrical resistivity obtained from two-dimensional inversion of magnetotelluric (MT) data acquired along a regional profile crossing the Eger Rift. At the near surface, the Cheb basin and the aquifer feeding the mofette fields of Bublák and Hartoušov have been imaged as part of a region of very low resistivity. The most striking resistivity feature, however, is a deep reaching conductive channel which extends from the surface into the lower crust spatially correlated with the hypocentres of the seismic events of the Nový Kostel Focal Zone. This channel has been interpreted as imaging a pathway from a possible mid-crustal fluid reservoir to the surface. The resistivity model reinforces the relation between the fluid circulation along deep-reaching faults and the generation of the earthquakes. Additionally, a further conductive channel has been revealed to the south of the profile. This other feature could be associated to fossil hydrothermal alteration related to Mýtina and/or Neualbenreuth Maar structures or alternatively could be the signature of a structure associated to the suture between the Saxo-Thuringian and Teplá-Barrandian zones, whose surface expression is located only a few kilometres away.

  2. Gene expression inference with deep learning

    PubMed Central

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-01-01

    Motivation: Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873929

  3. Gene expression inference with deep learning.

    PubMed

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    NASA Astrophysics Data System (ADS)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  5. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    PubMed

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. © 2015 John Wiley & Sons Ltd.

  6. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Deep Retrofits, Central and South Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Parker, K. Sutherland, D. Chasar, J. Montemurno, B. Amos, J. Kono

    2017-02-01

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions.

  7. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Deep Retrofits, Central and South Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-02-22

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions.

  8. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? (a) You must apply the RSV prescribed in § 203.41(b) and (c) to gas volumes produced from...

  9. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? (a) You must apply the RSV prescribed in § 203.41(b) and (c) to gas volumes produced from...

  10. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? (a) You must apply the RSV prescribed in § 203.41(b) and (c) to gas volumes produced from...

  11. Deep structure of the Algerian margin offshore Great Kabylie: Preliminary results of an offshore-onshore seismic profile (SPIRAL campaign)

    NASA Astrophysics Data System (ADS)

    Chafik, Aidi; Abd el Karim, Yelles; Marie-Odile, Beslier; Frauke, Klingelhoefer; Philippe, Schnurle; Rabah, Bracene; Hamou, Djellit; Audrey, Galve; Laure, Schenini; Françoise, Sage; Abdallah, Bounif Mohand ou; Philippe, Charvis

    2013-04-01

    In October-November 2009 the Algerian-French SPIRAL research program (Sismique Profonde et Investigation Régionale du Nord de l'ALgérie) was conducted onboard the R/V Atalante in order to understand the deep structure and tectonic history of the Algerian Margin using multichannel and wide-angle seismic data. An extensive dataset was acquired along five regional transects off Algeria, from Arzew Bay to the west, to Annaba to the east. The profiles range from 80 to 180 km long and around 40 ocean-bottom seismometers were deployed on each profile. All profiles were extended on land up to 125 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. We present the preliminary results from modeling of deep and superficial structures in the central Algerian margin, more precisely in the region of the Great Kabylie where a N-S transect of combined wide-angle data using a set of 40 OBS (ocean bottom seismometer) and 24 on-land seismological stations and reflection seismic data was acquired. The profile with a total length of about 260 km (140 km offshore and approximately 124 km onshore), crosses from the north to south the Algeria-Provence Basin, the central Algerian Margin and onshore the geological unit of the Great Kabylie that represents the Kabylides block and the transitional zone between the internal zone (Kabylides) and the external zone in the central Algeria. The network (OBS and seismological stations), recorded 1031 low frequency air gun shots in order to ensure good penetration in the crust. Travel time tomography of first arrivals time of OBS data has yielded a preliminary model of P wave velocities along the profile. In the oceanic domain, a relatively thin crust of about 5 km thickness was imaged overlying a mantle characterized by seismic velocities of about 8 km/s, and covered by a thin sedimentary layer of about 2 km thickness. For the study of the sedimentary cover near the margin

  12. Crustal structure revealed by a deep seismic sounding profile of Baijing-Gaoming-Jinwan in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona

    2018-02-01

    The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.

  13. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization

    NASA Astrophysics Data System (ADS)

    Swartz, Christopher H.; Blute, Nicole Keon; Badruzzman, Borhan; Ali, Ashraf; Brabander, Daniel; Jay, Jenny; Besancon, James; Islam, Shafiqul; Hemond, Harold F.; Harvey, Charles F.

    2004-11-01

    Aquifer geochemistry was characterized at a field site in the Munshiganj district of Bangladesh where the groundwater is severely contaminated by As. Vertical profiles of aqueous and solid phase parameters were measured in a sandy deep aquifer (depth >150 m) below a thick confining clay (119 to 150 m), a sandy upper aquifer (3.5 to 119 m) above this confining layer, and a surficial clay layer (<3.5 m). In the deep aquifer and near the top of the upper aquifer, aqueous As levels are low (<10 μg/L), but aqueous As approaches a maximum of 640 μg/L at a depth of 30 to 40 m and falls to 58 μg/L near the base (107 m) of the upper aquifer. In contrast, solid phase As concentrations are uniformly low, rarely exceeding 2 μg/g in the two sandy aquifers and never exceeding 10 μg/g in the clay layers. Solid phase As is also similarly distributed among a variety of reservoirs in the deep and upper aquifer, including adsorbed As, As coprecipitated in solids leachable by mild acids and reductants, and As incorporated in silicates and other more recalcitrant phases. One notable difference among depths is that sorbed As loads, considered with respect to solid phase Fe extractable with 1 N HCl, 0.2 M oxalic acid, and a 0.5 M Ti(III)-citrate-EDTA solution, appear to be at capacity at depths where aqueous As is highest; this suggests that sorption limitations may, in part, explain the aqueous As depth profile at this site. Competition for sorption sites by silicate, phosphate, and carbonate oxyanions appear to sustain elevated aqueous As levels in the upper aquifer. Furthermore, geochemical profiles are consistent with the hypothesis that past or ongoing reductive dissolution of Fe(III) oxyhydroxides acts synergistically with competitive sorption to maintain elevated dissolved As levels in the upper aquifer. Microprobe data indicate substantial spatial comapping between As and Fe in both the upper and deep aquifer sediments, and microscopic observations reveal ubiquitous Fe

  14. Acousto-thermometric recovery of the deep temperature profile using heat conduction equations

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Dvornikova, M. V.; Dvornikova, V. V.; Kazanskii, A. S.; Kuryatnikova, N. A.; Mansfel'd, A. D.

    2012-09-01

    In a model experiment using the acousto-thermographic method, deep temperature profiles varying in time are recovered. In the recovery algorithm, we used a priori information in the form of a requirement that the calculated temperature must satisfy the heat conduction equation. The problem is reduced to determining two parameters: the initial temperature and the temperature conductivity coefficient of the object under consideration (the plasticine band). During the experiment, there was independent inspection using electronic thermometers mounted inside the plasticine. The error in the temperature conductivity coefficient was about 17% and the error in initial temperature determination was less than one degree. Such recovery results allow application of this approach to solving a number of medical problems. It is experimentally proved that acoustic irregularities influence the acousto-thermometric results as well. It is shown that in the chosen scheme of experiment (which corresponds to measurements of human muscle tissue), this influence can be neglected.

  15. Improvements in deep-space tracking by use of third-order loops.

    NASA Technical Reports Server (NTRS)

    Tausworth, R. C.; Crow, R. B.

    1972-01-01

    Third-order phase-locked receivers have not yet found wide application in deep-space communications systems because the second-order systems now used have performed adequately on past spacecraft missions. However, a survey of the doppler profiles for future missions shows that an unaided second-order loop may be unable to perform within reasonable error bounds. This article discusses the characteristics of a simple third-order extension to present second-order systems that not only extends doppler-tracking capability, but widens the pull-in range and decreases pull-in time as well.

  16. Dining in the Deep: The Feeding Ecology of Deep-Sea Fishes

    NASA Astrophysics Data System (ADS)

    Drazen, Jeffrey C.; Sutton, Tracey T.

    2017-01-01

    Deep-sea fishes inhabit ˜75% of the biosphere and are a critical part of deep-sea food webs. Diet analysis and more recent trophic biomarker approaches, such as stable isotopes and fatty-acid profiles, have enabled the description of feeding guilds and an increased recognition of the vertical connectivity in food webs in a whole-water-column sense, including benthic-pelagic coupling. Ecosystem modeling requires data on feeding rates; the available estimates indicate that deep-sea fishes have lower per-individual feeding rates than coastal and epipelagic fishes, but the overall predation impact may be high. A limited number of studies have measured the vertical flux of carbon by mesopelagic fishes, which appears to be substantial. Anthropogenic activities are altering deep-sea ecosystems and their services, which are mediated by trophic interactions. We also summarize outstanding data gaps.

  17. Effects of RF pulse profile and intra-voxel phase dispersion on MR fingerprinting with balanced SSFP readout.

    PubMed

    Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael

    2017-09-01

    To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography.

    PubMed

    Callahan, Damien L; De Souza, David; Bacic, Antony; Roessner, Ute

    2009-07-01

    Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis.

  19. Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing.

    PubMed

    Li, Guo; Liu, Yong; Liu, Chao; Su, Zhongwu; Ren, Shuling; Wang, Yunyun; Deng, Tengbo; Huang, Donghai; Tian, Yongquan; Qiu, Yuanzheng

    2016-09-06

    Radioresistance is one of the major factors limiting the therapeutic efficacy and prognosis of patients with nasopharyngeal carcinoma (NPC). Accumulating evidence has suggested that aberrant expression of long noncoding RNAs (lncRNAs) contributes to cancer progression. Therefore, here we identified lncRNAs associated with radioresistance in NPC. The differential expression profiles of lncRNAs associated with NPC radioresistance were constructed by next-generation deep sequencing by comparing radioresistant NPC cells with their parental cells. LncRNA-related mRNAs were predicted and analyzed using bioinformatics algorithms compared with the mRNA profiles related to radioresistance obtained in our previous study. Several lncRNAs and associated mRNAs were validated in established NPC radioresistant cell models and NPC tissues. By comparison between radioresistant CNE-2-Rs and parental CNE-2 cells by next-generation deep sequencing, a total of 781 known lncRNAs and 2054 novel lncRNAs were annotated. The top five upregulated and downregulated known/novel lncRNAs were detected using quantitative real-time reverse transcription-polymerase chain reaction, and 7/10 known lncRNAs and 3/10 novel lncRNAs were demonstrated to have significant differential expression trends that were the same as those predicted by deep sequencing. From the prediction process, 13 pairs of lncRNAs and their associated genes were acquired, and the prediction trends of three pairs were validated in both radioresistant CNE-2-Rs and 6-10B-Rs cell lines, including lncRNA n373932 and SLITRK5, n409627 and PRSS12, and n386034 and RIMKLB. LncRNA n373932 and its related SLITRK5 showed dramatic expression changes in post-irradiation radioresistant cells and a negative expression correlation in NPC tissues (R = -0.595, p < 0.05). Our study provides an overview of the expression profiles of radioresistant lncRNAs and potentially related mRNAs, which will facilitate future investigations into the

  20. Odor Profile of Different Varieties of Extra-Virgin Olive Oil During Deep Frying Using an Electronic Nose and SPME-GC-FID

    NASA Astrophysics Data System (ADS)

    Messina, Valeria; Biolatto, Andrea; Sancho, Ana; Descalzo, Adriana; Grigioni, Gabriela; de Reca, Noemí Walsöe

    2011-09-01

    The aim of the performed work was to evaluate with an electronic nose changes in odor profile of Arauco and Arbequina varieties of extra-virgin olive oil during deep-frying. Changes in odor were analyzed using an electronic nose composed of 16 sensors. Volatile compounds were analyzed by SPME-GC-FID. Principal Component Analysis was applied for electronic results. Arauco variety showed the highest response for sensors. Statistical analysis for volatile compounds indicated a significant (P<0.001) interaction between variety and time of frying processes. Arauco variety showed the highest production of volatile compounds at 60 min of deep frying. The two varieties presented distinct patterns of volatile products, being clearly identified with the electronic nose.

  1. Saudi Arabian seismic deep-refraction profiles; final project report

    USGS Publications Warehouse

    Healy, J.H.; Mooney, W.D.; Blank, H.R.; Gettings, M.E.; Kohler, W.M.; Lamson, R.J.; Leone, L.E.

    1983-01-01

    In February 1978 a seismic deep-refraction profile was recorded by the U.S. Geological Survey along a 1000-km line across the Arabian Shield in western Saudi Arabia. The line begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, leads southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan (Tihamat-Asir), and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, including 19 in the Farasan Islands. Six shot points were used: five on land, with most charges placed below the water table in drill holes, and one at sea, with charges placed on the sea floor and detonated from a ship. Slightly more than 61 metric tons of explosives were used in 19 discrete firings. Seismic energy was recorded by 100 newly-developed portable seismic stations deployed in approximately 200 km-long arrays for each firing. Each station consisted of a standard 2-Hz vertical component geophone coupled to a self-contained analog recording instrument equipped with a magnetic-tape cassette. In this final report, we fully document the field and data-processing procedures and present the final seismogram data set as both a digital magnetic tape and as record sections for each shot point. Record sections include a normalized set of seismograms, reduced at 6 km/s, and a true-amplitude set, reduced at 8 km/s, which have been adjusted for amplifier gain, individual shot size, and distance from the shot point. Appendices give recorder station and shot information, digital data set descriptions, computer program listings, arrival times used in the interpretation, and a bibliography of reports published as a result of this project. We used two-dimensional ray-tracing techniques in the data analysis, and our interpretation is based primarily on horizontally layered models. The Arabian Shield is composed, to first-order, of two layers, each about 20 km

  2. The dynamics of genome replication using deep sequencing

    PubMed Central

    Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.

    2014-01-01

    Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142

  3. Creating diversified response profiles from a single quenchometric sensor element by using phase-resolved luminescence.

    PubMed

    Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V

    2015-01-05

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).

  4. Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology, STTR Fast Track Project, Phase I Final Report-Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert

    This report covers the technical work in Phase I of this DOE-Nuclear Program STTR Fast Track project. All key tasks were successfully performed, new tasks were added to utilize DOD-AFRL’s 95 GigaHertz (GHz) gyrotron in Phase II, while other lesser tasks were left for Phase II efforts or were requested to be made optional. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future testing in Phase II. This work built upon a prior DOE project DE-EE0005504 that developed the basic waveguide setup, process and instruments. Inmore » this project we were investigating the use of MMW to form rock melt and steel plugs in deep wells to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This technology also has potential for deep well drilling for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled. This allows for higher levels of safety and protection of the environment during deep drilling operations. The larger purpose of this project was to find answers to key questions in progressing MMW technology for these applications. Phase I of this project continued bench testing using the MIT 10 kilo-Watt (kW), 28 GHz frequency laboratory gyrotron, literature searches, planning and design of equipment for Phase II efforts. Furnace melting and rock testing (Tasks 4 and 5) were deferred to Phase II due to lack of concurrent availability of the furnace and personnel at MIT. That delay and lower temperature furnace (limited to 1650oC) caused rethinking of Task 4 to utilize coordinated rock selection with the DOD testing in Phase II. The high pressure and high power window design work (moved to Phase I Task 3 from Phase II Task 20) and Additive materials and methods (Tasks 7 & 8) performed in Phase I may become patentable

  5. Directivity of a Sparse Array in the Presence of Atmospheric-Induced Phase Fluctuations for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Acosta, Robert J.

    2010-01-01

    Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.

  6. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    PubMed

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    Highly soluble drugs tend to release from preparations at high speeds, which make them need to be taken at frequent intervals. Additionally, some drugs need to be controlled to release in vivo at certain periods, so as to achieve therapeutic effects. Thus, the objective of this study is to design injectable microparticulate systems with controllable in vivo release profile. Biodegradable PLGA was used as the matrix material to fabricate microspheres using the traditional double emulsification-solvent evaporation method as well as improved techniques, with gel (5% gelatine or 25% F127) or LP powders as the inner phases. Their physicochemical properties were systemically investigated. Microspheres prepared by modified methods had an increase in drug loading (15.50, 16.72, 15.66%, respectively) and encapsulation efficiencies (73.46, 79.42, 74.40%, respectively) when compared with traditional methods (12.01 and 57.06%). The morphology of the particles was characterized by optical microscope (OM) and scanning electron microscopy (SEM), and the amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. To evaluate their release behaviour, the in vitro degradation, in vitro release and in vivo pharmacodynamics were subsequently studied. Traditional microspheres prepared in this study with water as the inner phase had a relatively short release period within 16 d when compared with modified microspheres with 5% gelatine as the inner phase, which resulted in a smooth release profile and appropriate plasma LP concentrations over 21 d. Thus this type of modified microspheres can be better used in drugs requiring sustained release. The other two formulations containing 25% F127 and LP micropowders presented two-stage release profiles, resulting in fluctuant plasma LP concentrations which may be suitable for drugs requiring controlled release. All the results suggested that drug release rates from

  7. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-01-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.

    PubMed

    Yang, Jian-Hua; Qu, Liang-Hu

    2012-01-01

    Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.

  9. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI

  10. Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs

    NASA Technical Reports Server (NTRS)

    Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.

    1979-01-01

    The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.

  11. Design and analysis of low-loss linear analog phase modulator for deep space spacecraft X-band transponder (DST) application

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Mueller, Robert O.

    1991-01-01

    This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.

  12. Shaping the beam profile of a partially coherent beam by a phase aperture

    NASA Astrophysics Data System (ADS)

    Wu, Gaofeng; Cai, Yangjian; Chen, Jun

    2011-08-01

    By use of a tensor method, an analytical formula for a partially coherent Gaussian Schell-model (GSM) beam truncated by a circular phase aperture propagating through a paraxial ABCD optical system is derived. The propagation properties of a GSM beam truncated by a circular phase aperture in free space are studied numerically. It is found that the circular phase aperture can be used to shape the beam profile of a GSM beam and generate partially coherent dark hollow or flat-topped beam, which is useful in many applications, e.g., optical trapping, free-space optical communication, and material thermal processing. The propagation factor of a GSM beam truncated by a circular phase aperture is also analyzed.

  13. Gene expression profiles of Vibrio parahaemolyticus in the early stationary phase.

    PubMed

    Meng, L; Alter, T; Aho, T; Huehn, S

    2015-09-01

    Vibrio (V.) parahaemolyticus is an aquatic bacterium capable of causing foodborne gastroenteritis. In the environment or the food chain, V. parahaemolyticus cells are usually forced into the stationary phase, the common phase for bacterial survival in the environment. So far, little is known about whole genomic expression of V. parahaemolyticus in the early stationary phase compared with the exponential growth phase. We performed whole transcriptomic profiling of V. parahaemolyticus cells in both phases (exponential and early stationary phase). Our data showed in total that 172 genes were induced in early stationary phase, while 61 genes were repressed in early stationary phase compared with the exponential phase. Three functional categories showed stable gene expression in the early stationary phase. Eleven functional categories showed that up-regulation of genes was dominant over down-regulation in the early stationary phase. Although genes related to endogenous metabolism were repressed in the early stationary phase, massive regulation of gene expression occurred in the early stationary phase, indicating the expressed gene set of V. parahaemolyticus in the early stationary phase impacts environmental survival. Vibrio (V.) parahaemolyticus is one of the main bacterial causes of foodborne intestinal infections. This bacterium usually is forced into stationary phase in the environment, which includes, e.g. seafood. When bacteria are in stationary phase, physiological changes can lead to a resistance to many stresses, including physical and chemical challenges during food processing. To the best of our knowledge, highlighting the whole genome expression changes in the early stationary phase compared with exponential phase, as well as the investigation of physiological changes of V. parahaemolyticus such as the survival mechanism in the stationary phase has been the very first study in this field. © 2015 The Society for Applied Microbiology.

  14. Liquid-crystal panel with microdots on an electrode used to modulate optical phase profiles.

    PubMed

    Kishima, Koichiro; Yoshida, Naoko; Osato, Kiyoshi; Nakagawa, Nobuyoshi

    2006-05-20

    The optical characteristics of a liquid-crystal (LC) panel with microdots on an electrode are investigated. Although 3 mum is larger than 1 molecule of LC material, microdots with a 3 microm diameter are sufficiently small to produce a smooth index profile. We use an electrode patterned in a new way to modulate the index profile of the LC panel, which allows us to modulate the optical phase of the passing light.

  15. Enhancing optical communication with deep neural networks

    NASA Astrophysics Data System (ADS)

    Lohani, Sanjaya; Knutson, Erin; Tkach, Sam; Huver, Sean; Glasser, Ryan; Tulane University Collaboration; Deep Science AI Collaboration

    The spatial profile of optical modes may be altered such that they contain nonzero orbital angular momentum (OAM). Laguerre-Gauss (LG) states of light have a helical wavefront and well-defined OAM, and have recently been shown to allow for larger information transfer rates in optical communications as compared to using only Gaussian modes. A primary difficulty, however, is the accurate classification of different OAM optical states, which contain different values of OAM, in the detection stage. The difficulty in this differentiation increases as larger degrees of OAM are used. Here we show the performance of deep neural networks in the simultaneous classification of numerically generated, noisy, Laguerre-Gauss states with OAM value up to 100 can reach near 100% accuracy. This method relies only on the intensity profile of the detected OAM states, avoiding bulky and difficult-to-implement methods that are required to measure the phase profile of the modes in the receiver of the communication platform. This allows for a simplification in the network design and an increase in performance when using states with large degrees of OAM. We anticipate that this approach will allow for significant advances in the development of optical communication technologies. We acknowledge funding from the Louisiana State Board of Regents and Northrop Grumman - NG NEXT.

  16. Gene expression in the deep biosphere.

    PubMed

    Orsi, William D; Edgcomb, Virginia P; Christman, Glenn D; Biddle, Jennifer F

    2013-07-11

    Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.

  17. Electrophoretic serum protein fraction profile during the different physiological phases in Comisana ewes.

    PubMed

    Piccione, G; Alberghina, D; Marafioti, S; Giannetto, C; Casella, S; Assenza, A; Fazio, F

    2012-08-01

    The aim of this study was to evaluate the influence of different physiological phases on serum total proteins and their fractions of ten Comisana ewes housed in Mediterranean area. From each animal, blood samples were collected at different physiological phases: late pregnancy, post-partum, early, mid-, end lactation and dry period. On all samples serum total proteins were determined by the biuret method, and albumin, α-globulins, β(1) -globulins, β(2) -globulins and γ-globulins concentrations were assessed using an automated system. One-way repeated measures analysis of variance was applied to determine the significant effect of different physiological phases on the parameters studied. During the late pregnancy and post-partum, total proteins, β1- and β2-globulins and γ-globulins showed the highest values. Starting from post-partum, α-globulins increased to reach their peaks in mid-lactation. Early lactation was characterized by low γ-globulins values. The increase in serum albumin concentration and the drop in some globulin fractions determined the significant increase in albumin/globulin ratio. The obtained results contributed to improve the knowledge on electrophoretic profile during the different physiological phases in ewes, confirming that pregnancy and lactation periods affect the protein metabolism. Particularly, serum protein fractions pattern could give information about dehydration, plasma volume expansion and hepatic function, which occur during the different physiological phases. Dynamics of the protein profile - from pregnancy to dry period - which are provided by our results, could be considered as guidelines for the management strategies to guarantee the nutritional needs of these animals during the different physiological phases and to avoid a decline of productive performance and consequently an economic loss. © 2011 Blackwell Verlag GmbH.

  18. The Deep Crust Magmatic Refinery, Part 1: A Coupled Thermodynamic and Two-phase Flow Model

    NASA Astrophysics Data System (ADS)

    Riel, N., Jr.; Bouilhol, P.; Van Hunen, J.; Velic, M.; Magni, V.

    2016-12-01

    Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To assess the dynamics of this deep magmatic system we developed a new 2-D two-phase flow code using finite volume method. Our formulation takes into account: (i) melt flow through a viscous porous matrix with temperature- and melt-content dependent host-rock viscosity, (ii) heat transfer, assuming local thermal equilibrium between solid and liquid, (iii) thermodynamic modelling of stable phases, (iv) injection of fractionated melt from crystallizing basalt at the Moho and (v) chemical advection of both the solid and liquid compositions. Here we present the core of our modelling approach, especially the petrological implementation. We show in details that our thermodynamic model can reproduce well both the sub- and supra solidus phase relationship and composition of the host-rock. We apply our method to an idealized amphibolite lower crust that is affected by a magmatic event represented by the intrusion of a wet mantle melt into the crust at Moho depth. The models [see Bouilhol et al

  19. Detailed Crustal Geometry of the Continental Collision between India and Eurasia: Constraints from Deep Seismic Reflection Profiles across the Yarlung-Zangbo Suture, Tibet, at 88°E

    NASA Astrophysics Data System (ADS)

    Gao, R.; Li, W.; Guo, X.; Li, H.; Lu, Z.; He, R.; Zeng, L.; Klemperer, S. L.; Huang, X.

    2016-12-01

    The Tibetan plateau was created by continental collision between India and Eurasia and their ongoing convergence. The extent of subduction of Indian crust is central to our understanding the geodynamics of continental collision. However, owing to the lack of high-resolution data on the crustal-scale geometry of the Himalayan collision zone, the thickness of Indian crust subducting beneath the Yarlung-Zangbo Suture has been poorly known. Here we present two new deep seismic reflection profiles, respectively 100-km and 60-km long, across the central part of the Yarlung-Zangbo suture at c. 88°E (Figure 1). Seismic data processing used the CGG, ProMAX, and GeoEast systems. Processing included tomographic static correction, true-amplitude recovery, frequency analysis, filter-parameter tests, surface-consistent-amplitude corrections, surface-consistent deconvolution, coherent noise suppression, random noise attenuation, human-computer interactive velocity analysis, residual statics correction, Kirchhoff pre-stack time migration incorporating the rugged topography, and post-stack polynomial fitting to remove noise. Our two profiles both trace the Main Himalayan Thrust continuously from the mid-crust to deep beneath southern Tibet. Together with prominent Moho reflections at the base of the double-normal-thickness crust, the geometry of the subducting Indian crust is well defined. Both profiles image a limited extent of the Indian crust beneath southern Tibet and indicate that north-dipping Indian crust and south-dipping Lhasa crust converge beneath the Xietongmen region, above the remnant mantle suture. Figure 1. Geological map of the Xietongmen Region, south Tibet. The deep seismic reflection profile is shown as a solid red line, the location of big shots are shown as black stars.

  20. SPSP Phase III Recruiting, Selecting, and Developing Secure Power Systems Professionals. Job Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neil, Lori Ross; Conway, T. J.; Tobey, D. H.

    The Secure Power Systems Professional Phase III final report was released last year which an appendix of Job Profiles. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.

  1. Doppler Radar Profiler for Launch Winds at the Kennedy Space Center (Phase 1a)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) received a request from the, NASA Technical Fellow for Flight Mechanics at Langley Research Center (LaRC), to develop a database from multiple Doppler radar wind profiler (DRWP) sources and develop data processing algorithms to construct high temporal resolution DRWP wind profiles for day-of-launch (DOL) vehicle assessment. This document contains the outcome of Phase 1a of the assessment including Findings, Observations, NESC Recommendations, and Lessons Learned.

  2. Typical teleoperator time delay profiles, phase 2. [remotely controlled manipulator arms

    NASA Technical Reports Server (NTRS)

    Wetherington, R. D.; Walsh, J. R.

    1974-01-01

    The results of the second phase of a study on time delays in communications systems applicable to the teleoperator program are presented. Estimates of the maximum time delays that will be encountered and presents time delay profiles are given for (1) ground control to teleoperator in low earth orbit, (2) ground control to teleoperator in geosynchronous orbit, and (3) low earth orbit control to teleoperator in low earth orbit.

  3. Use of glancing angle X-ray powder diffractometry to depth-profile phase transformations during dissolution of indomethacin and theophylline tablets.

    PubMed

    Debnath, Smita; Predecki, Paul; Suryanarayanan, Raj

    2004-01-01

    The purpose of this study was (i) to develop glancing angle x-ray powder diffractometry (XRD) as a method for profiling phase transformations as a function of tablet depth; and (ii) to apply this technique to (a) study indomethacin crystallization during dissolution of partially amorphous indomethacin tablets and to (b) profile anhydrate --> hydrate transformations during dissolution of theophylline tablets. The intrinsic dissolution rates of indomethacin and theophylline were determined after different pharmaceutical processing steps. Phase transformations during dissolution were evaluated by various techniques. Transformation in the bulk and on the tablet surface was characterized by conventional XRD and scanning electron microscopy, respectively. Glancing angle XRD enabled us to profile these transformations as a function of depth from the tablet surface. Pharmaceutical processing resulted in a decrease in crystallinity of both indomethacin and theophylline. When placed in contact with the dissolution medium, while indomethacin recrystallized, theophylline anhydrate rapidly converted to theophylline monohydrate. Due to intimate contact with the dissolution medium, drug transformation occurred to a greater extent at or near the tablet surface. Glancing angle XRD enabled us to depth profile the extent of phase transformations as a function of the distance from the tablet surface. The processed sample (both indomethacin and theophylline) transformed more rapidly than did the corresponding unprocessed drug. Several challenges associated with the glancing angle technique, that is, the effects of sorbed water, phase transformations during the experimental timescale, and the influence of phase transformation on penetration depth, were addressed. Increased solubility, and consequently dissolution rate, is one of the potential advantages of metastable phases. This advantage is negated if, during dissolution, the metastable to stable transformation rate > dissolution rate

  4. Compact, low profile antennas for MSAT and mini-M and Std-M land mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Strickland, P. C.

    1995-01-01

    CAL Corporation has developed a new class of low profile radiating elements for use in planar phased array antennas. These new elements have been used in the design of a low cost, compact, low profile antenna unit for MSAT and INMARSAT Mini-M land mobile satellite communications. The antenna unit which measures roughly 32 cm in diameter by 5 cm deep incorporates a compact LNA and diplexer unit as well as a complete, low cost, beam steering system. CAL has also developed a low profile antenna unit for INMARSAT-M land mobile satellite communications. A number of these units, which utilize a microstrip patch array design, were put into service in 1994.

  5. Formability of dual-phase steels in deep drawing of rectangular parts: Influence of blank thickness and die radius

    NASA Astrophysics Data System (ADS)

    López, Ana María Camacho; Regueras, José María Gutiérrez

    2017-10-01

    The new goals of automotive industry related with environment concerns, the reduction of fuel emissions and the security requirements have driven up to new designs which main objective is reducing weight. It can be achieved through new materials such as nano-structured materials, fibre-reinforced composites or steels with higher strength, among others. Into the last group, the Advance High Strength Steels (AHSS) and particularly, dual-phase steels are in a predominant situation. However, despite of their special characteristics, they present issues related to their manufacturability such as springback, splits and cracks, among others. This work is focused on the deep drawing processof rectangular shapes, a very usual forming operation that allows manufacturing several automotive parts like oil pans, cases, etc. Two of the main parameters in this process which affect directly to the characteristics of final product are blank thickness (t) and die radius (Rd). Influence of t and Rd on the formability of dual-phase steels has been analysed considering values typically used in industrial manufacturing for a wide range of dual-phase steels using finite element modelling and simulation; concretely, the influence of these parameters in the percentage of thickness reduction pt(%), a quite important value for manufactured parts by deep drawing operations, which affects to its integrity and its service behaviour. Modified Morh Coulomb criteria (MMC) has been used in order to obtain Fracture Forming Limit Diagrams (FFLD) which take into account an important failure mode in dual-phase steels: shear fracture. Finally, a relation between thickness reduction percentage and studied parameters has been established fordual-phase steels, obtaining a collection of equations based on Design of Experiments (D.O.E) technique, which can be useful in order to predict approximate results.

  6. Vapour-Phase Processes Control Liquid-Phase Isotope Profiles in Unsaturated Sphagnum Moss

    NASA Astrophysics Data System (ADS)

    Edwards, T. W.; Yi, Y.; Price, J. S.; Whittington, P. N.

    2009-05-01

    Seminal work in the early 1980s clearly established the basis for predicting patterns of heavy-isotope enrichment of pore waters in soils undergoing evaporation. A key feature of the process under steady-state conditions is the development of stable, convex-upward profiles whose shape is controlled by the balance between downward-diffusing heavy isotopologues concentrated by evaporative enrichment at the surface and the upward capillary flow of bulk water that maintains the evaporative flux. We conducted an analogous experiment to probe evaporation processes within 20-cm columns of unsaturated, living and dead (but undecomposed) Sphagnum moss evaporating under controlled conditions, while maintaining a constant water table. The experiment provided striking evidence of the importance of vapour-liquid mass and isotope exchange in the air-filled pores of the Sphagnum columns, as evidenced by the rapid development of hydrologic and isotopic steady-state within hours, rather than days, i.e., an order of magnitude faster than possible by liquid-phase processes alone. This is consistent with the notion that vapour-phase processes effectively "short-circuit" mass and isotope fluxes within the Sphagnum columns, as proposed also in recent characterizations of water dynamics in transpiring leaves. Additionally, advection-diffusion modelling of our results supports independent estimates of the effective liquid-phase diffusivities of the respective heavy water isotopologues, 2.380 x 10-5 cm2 s-1 for 1H1H18O and 2.415 x 10-5 cm2 s-1 for 1H2H16O, which are in notably good agreement with the "default" values that are typically assumed in soil and plant water studies.

  7. Analysis of earing behaviour in deep drawing of ASS 304 at elevated temperature

    NASA Astrophysics Data System (ADS)

    Gupta, Amit Kumar; Deole, Aditya; Kotkunde, Nitin; Singh, Swadesh Kumar; jella, Gangadhar

    2016-08-01

    Earing tendency in a deep drawn cup of circular blanks is one the most prominent characteristics observed due to anisotropy in a metal sheet. Such formation of uneven rim is mainly due to dissimilarity in yield stress as well as Lankford parameter (r- value) in different orientations. In this paper, an analytical function coupled with different yield functions viz., Hill 1948, Barlat 1989 and Barlat Yld 2000-2d has been used to provide an approximation of earing profile. In order to validate the results, material parameters for yield functions and hardening rule have been calibrated for ASS 304 at 250°C and deep drawing experiment is conducted to measure the earing profile. The predicted earing profiles based on analytical results have been validated using experimental earing profile. Based on this analysis, Barlat Yld 2000-2d has been observed to be a well suited yield model for deep drawing of ASS 304, which also confirms the reliability of analytical function for earing profile estimation.

  8. Deep crustal electromagnetic structure of central India tectonic zone and its implications

    NASA Astrophysics Data System (ADS)

    Naganjaneyulu, K.; Naidu, G. Dhanunjaya; Rao, M. Someswara; Shankar, K. Ravi; Kishore, S. R. K.; Murthy, D. N.; Veeraswamy, K.; Harinarayana, T.

    2010-07-01

    Magnetotelluric data at 45 locations along the Mahan-Khajuria Kalan profile in the central India tectonic zone are analysed. This 290 km long profile yields data in the period range 0.001-1000 s across the tectonic elements of the study region bounded by Purna fault, Gavligarh fault, Tapti fault, Narmada South fault and Narmada North fault. Multi-site, multi-frequency analysis suggests N70°E as the geo-electric strike direction. Data rotated into the N70°E strike direction are modelled using a non-linear conjugate gradient scheme with error floors of 10% for both apparent resistivity and phase components. Two-dimensional magnetotelluric model yields conductors that correlate with known faults in the study region and regional seismicity. Presence of a -30 mgal gravity high together with the observed conductive bodies (less than 20 ohm m) in the deep crust beneath the Purna graben and Tapti valley is explained by the process of magmatic underplating. The conductive bodies beneath the Mahakoshal rift belt and Vindhyans accompanied by regional gravity lows of the order -70 mgal are attributed to the presence of deep crustal fluids. Following the re-activation model proposed for the entire region, the conductors (20 ohm m) at various depth levels correspond to mafic magmatic and/or fluid intrusions controlled by deep-seated faults that seem to tap reservoirs beyond the crust-mantle boundary. The shallow depth localized faults also seem to have facilitated further upward movement of these underplated material and fluids release during this process.

  9. Argo float observations of basin-scale deep convection in the Irminger Sea during winter 2011-2012

    NASA Astrophysics Data System (ADS)

    Thierry, V.; Piron, A.; Mercier, H.; Caniaux, G.

    2016-02-01

    An analysis of Argo data during the 2011-2012 winter revealed the presence of an exceptionally large number of profiles over the Irminger Basin with mixed layer depths (MLD) exceeding 700 m, which was deep enough to reach the pool of the intermediate Labrador Sea Water located in the Irminger Sea. Among them, 4 profiles exhibited an MLD of 1000 m, which was the maximum value observed this winter. Owing to the exceptional Argo sampling in the Irminger Sea during that winter the different phases of the mixed layer deepening down to 1000 m and their spatial extents were observed for the first time in the Irminger Sea. Two intense convective periods occurred in late January south of Cape Farewell and in late February-early March east of Greenland. A final deepening period was observed in mid-March during which the deepest mixed layers were observed. This long deepening period occurred in large regional areas and was followed by a rapid restratification phase. A mixed layer heat budget along the trajectories of the 4 floats that sampled the deepest mixed layers showed that heat loss at the air-sea interface was mainly responsible for heat content variations in the mixed layer. Greenland Tip Jets were of primary importance for the development of deep convection in the Irminger Sea in the 2011-2012 winter. They enhanced the winter heat loss and two long (more than 24 hours), intense and close in time late events boosted the mixed layer deepening down to 1000m. Net air-sea fluxes, the number of Greenland Tip Jets, the stratification of the water column, the NAO index and Ekman-induced heat flux are pertinent indicators to assess the favorable conditions for the development of deep convection in the Irminger Sea. When considering each of those indicators, we concluded that the 2011-2012 event was not significantly different compared to the three other documented occurrences of deep convection in the Irminger Sea.This work is a contribution to the NAOS project.

  10. Deep facial analysis: A new phase I epilepsy evaluation using computer vision.

    PubMed

    Ahmedt-Aristizabal, David; Fookes, Clinton; Nguyen, Kien; Denman, Simon; Sridharan, Sridha; Dionisio, Sasha

    2018-05-01

    Semiology observation and characterization play a major role in the presurgical evaluation of epilepsy. However, the interpretation of patient movements has subjective and intrinsic challenges. In this paper, we develop approaches to attempt to automatically extract and classify semiological patterns from facial expressions. We address limitations of existing computer-based analytical approaches of epilepsy monitoring, where facial movements have largely been ignored. This is an area that has seen limited advances in the literature. Inspired by recent advances in deep learning, we propose two deep learning models, landmark-based and region-based, to quantitatively identify changes in facial semiology in patients with mesial temporal lobe epilepsy (MTLE) from spontaneous expressions during phase I monitoring. A dataset has been collected from the Mater Advanced Epilepsy Unit (Brisbane, Australia) and is used to evaluate our proposed approach. Our experiments show that a landmark-based approach achieves promising results in analyzing facial semiology, where movements can be effectively marked and tracked when there is a frontal face on visualization. However, the region-based counterpart with spatiotemporal features achieves more accurate results when confronted with extreme head positions. A multifold cross-validation of the region-based approach exhibited an average test accuracy of 95.19% and an average AUC of 0.98 of the ROC curve. Conversely, a leave-one-subject-out cross-validation scheme for the same approach reveals a reduction in accuracy for the model as it is affected by data limitations and achieves an average test accuracy of 50.85%. Overall, the proposed deep learning models have shown promise in quantifying ictal facial movements in patients with MTLE. In turn, this may serve to enhance the automated presurgical epilepsy evaluation by allowing for standardization, mitigating bias, and assessing key features. The computer-aided diagnosis may help to

  11. Characterization of hormonal profiles during the luteal phase in regularly menstruating women.

    PubMed

    Ecochard, Rene; Bouchard, Thomas; Leiva, Rene; Abdulla, Saman; Dupuis, Olivier; Duterque, Olivia; Garmier Billard, Marie; Boehringer, Hans; Genolini, Christophe

    2017-07-01

    To characterize the variability of hormonal profiles during the luteal phase in normal cycles. Observational study. Not applicable. Ninety-nine women contributing 266 menstrual cycles. The women collected first morning urine samples that were analyzed for estrone-3-glucuronide, pregnanediol-3-alpha-glucuronide (PDG), FSH, and LH. The women had serum P tests (twice per cycle) and underwent ultrasonography to identify the day of ovulation. The luteal phase was divided into three parts: the early luteal phase with increasing PDG (luteinization), the midluteal phase with PDG ≥10 μg/mg Cr (progestation), and the late luteal phase (luteolysis) when PDG fell below 10 μg/mg Cr. Long luteal phases begin with long luteinization processes. The early luteal phase is marked by low PDG and high LH levels. Long luteinization phases were correlated with low E1G and low PDG levels at day 3. The length of the early luteal phase is highly variable between cycles of the same woman. The duration and hormonal levels during the rest of the luteal phase were less correlated with other characteristics of the cycle. The study showed the presence of a prolonged pituitary activity during the luteinization process, which seems to be modulated by an interaction between P and LH. This supports a luteal phase model with three distinct processes: the first is a modulated luteinization process, whereas the second and the third are relatively less modulated processes of progestation and luteolysis. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Online, efficient and precision laser profiling of bronze-bonded diamond grinding wheels based on a single-layer deep-cutting intermittent feeding method

    NASA Astrophysics Data System (ADS)

    Deng, Hui; Chen, Genyu; He, Jie; Zhou, Cong; Du, Han; Wang, Yanyi

    2016-06-01

    In this study, an online, efficient and precision laser profiling approach that is based on a single-layer deep-cutting intermittent feeding method is described. The effects of the laser cutting depth and the track-overlap ratio of the laser cutting on the efficiency, precision and quality of laser profiling were investigated. Experiments on the online profiling of bronze-bonded diamond grinding wheels were performed using a pulsed fiber laser. The results demonstrate that an increase in the laser cutting depth caused an increase in the material removal efficiency during the laser profiling process. However, the maximum laser profiling efficiency was only achieved when the laser cutting depth was equivalent to the initial surface contour error of the grinding wheel. In addition, the selection of relatively high track-overlap ratios of laser cutting for the profiling of grinding wheels was beneficial with respect to the increase in the precision of laser profiling, whereas the efficiency and quality of the laser profiling were not affected by the change in the track-overlap ratio. After optimized process parameters were employed for online laser profiling, the circular run-out error and the parallelism error of the grinding wheel surface decreased from 83.1 μm and 324.6 μm to 11.3 μm and 3.5 μm, respectively. The surface contour precision of the grinding wheel significantly improved. The highest surface contour precision for grinding wheels of the same type that can be theoretically achieved after laser profiling is completely dependent on the peak power density of the laser. The higher the laser peak power density is, the higher the surface contour precision of the grinding wheel after profiling.

  13. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    DOE PAGES

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO 3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO 3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO 2, the occurrence of the tetrahedrally-coordinated carbonates based on CO 4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO 3 carbonates upmore » to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO 3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less

  14. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues.

    PubMed

    Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M

    2016-03-01

    Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.

  15. Isotopic composition of water in a deep unsaturated zone beside a radioactive-waste disposal area near Beatty, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.

  16. Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems.

    PubMed

    Takai, Ken; Oida, Hanako; Suzuki, Yohey; Hirayama, Hisako; Nakagawa, Satoshi; Nunoura, Takuro; Inagaki, Fumio; Nealson, Kenneth H; Horikoshi, Koki

    2004-04-01

    Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.

  17. Ultrasonic phased array controller for hyperthermia applications.

    PubMed

    Benkeser, P J; Pao, T L; Yoon, Y J

    1991-01-01

    Multiple and mechanically scanned ultrasound transducer systems have demonstrated the efficacy of using ultrasound to produce deep localized hyperthermia. The use of ultrasonic phased arrays has been proposed as an alternative to these systems. A phased array offers a more flexible approach to heating tumours in that the size, shape, and position of its focal region can be altered during the course of treatment in order to achieve the desired temperature distribution. This added flexibility comes at the cost of increased complexity of the hardware necessary to drive the transducer because each element requires its own amplifer with both phase and amplitude control. In order for phased arrays with large numbers of elements to be feasible for hyperthermia applications, the complexity of this circuitry must be minimized. This paper describes a circuit design which simplifies the electronics required to control a phased array transducer system for hyperthermia applications. The design is capable of controlling virtually any type of phased array transducer operating at frequencies less than 2 MHz. The system performance was verified through beam profile measurements using a 48-element tapered phased array transducer.

  18. Double seismic zone for deep earthquakes in the izu-bonin subduction zone.

    PubMed

    Iidaka, T; Furukawa, Y

    1994-02-25

    A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.

  19. Anatomy of a turbidity current: Concentration and grain size structure of a deep-sea flow revealed by multiple-frequency acoustic profilers

    NASA Astrophysics Data System (ADS)

    Simmons, S.; Parsons, D. R.; Paull, C. K.; Barry, J.; Chaffey, M. R.; Gwiazda, R.; O'Reilly, T. C.; Maier, K. L.; Rosenberger, K. J.; Talling, P.; Xu, J.

    2017-12-01

    Turbidity currents are responsible for transporting large volumes of sediment to the deep ocean, yet remain poorly understood due to the limited number of field observations of these episodic, high energy events. As part of the Monterey Coordinated Canyon Experiment high resolution, sub-minute acoustic velocity and backscatter profiles were acquired with downward-looking acoustic Doppler current profilers (ADCPs) distributed along the canyon on moorings at depths ranging from 270 to 1,900 m over a period of 18 months. Additionally, three upward-looking ADCPs on different frequencies (300, 600 and 1200 kHz) profiled the water column above a seafloor instrument node (SIN) at 1850 m water depth. Traps on the moorings collected sediment carried by the flows at different heights above the seafloor and sediment cores were taken to determine the depositional record produced by the flows. Several sediment-laden turbidity flows were observed during the experiment, three of which ran out for more than 50 km to water depths of greater than 1,900 m and were observed on all of the moorings. Flow speeds of up to 6 m/s were observed and individual moorings, anchored by railroad wheels, moved up to 7.8 km down-canyon during these powerful events. We present results based on a novel analysis of the multiple-frequency acoustic data acquired by the ADCPs at the SIN integrated with grain size data from the sediment traps, close to the deepest mooring in the array where the flow thickened to the 70 m height of the ADCP above the bed. The analysis allows, for the first time, retrieval of the suspended sediment concentration and vertical distribution of grain size structure within a turbidity in spectacular detail. The details of the stratification and flow dynamics will be used to re-evaluate and discuss our existing models for these deep-sea flows.

  20. Development of the Vertical Electro Magnetic Profiling (VEMP) method

    NASA Astrophysics Data System (ADS)

    Miura, Yasuo; Osato, Kazumi; Takasugi, Shinji; Muraoka, Hirofumi; Yasukawa, Kasumi

    1996-09-01

    As a part of the "Deep-Seated Geothermal Resources Survey (DSGR)" project being undertaken by the New Energy and Industrial Technology Development Organization (NEDO), the "Vertical Electro Magnetic Profiling (VEMP)" method is being developed to accurately obtain deep resistivity structures. The VEMP method takes multi-frequency three-component magnetic field data in an open hole well using controlled source transmitters emitted at the surface (either loop or grounded-wire sources). Numerical simulations using EM3D have demonstrated that phase data of the VEMP method is not only very sensitive to the general resistivity structure, but will also indicate the presence of deeper anomalies. Forward modelling was used to determine the required transmitter moments for various grounded-wire and loop sources for a field test using the WD-1 well in the Kakkonda geothermal area. VEMP logging of the WD-1 well was carried out in May 1994 and the processed field data matches the computer simulations quite well.

  1. Deep eutectic solvent approach towards nickel/nickel nitride nanocomposites

    DOE PAGES

    Gage, Samuel H.; Ruddy, Daniel A.; Pylypenko, Svitlana; ...

    2016-12-15

    Nickel nitride is an attractive material for a broad range of applications including catalysis. However preparations and especially those targeting nanoscale particles remain a major challenge. Herein, we report a wet-chemical approach to produce nickel/nickel nitride nanocomposites using deep eutectic solvents. A choline chloride/urea deep eutectic solvent was used as a reaction medium to form gels containing nickel acetate tetrahydrate. Heat treatment of the gel in inert atmosphere forms nanoparticles embedded within a nitrogen-doped carbon matrix. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to understand the decomposition profile of the precursors and to select pyrolysis temperatures locatedmore » in regions of thermal stability. X-ray diffraction (XRD) confirmed the presence of metallic nickel, whereas X-ray photoelectron spectroscopy (XPS) suggested the existence of a nickel nitride surface layer. According to transmission electron microscopy (TEM) analysis these mixed phase, possibly core-shell type nanoparticles, have very defined facets. Furthermore, these materials represent a unique opportunity to tune catalytic properties of nickel-based catalysts through control of their composition, surface structure, and morphology; in addition to employing potential benefits of a nitrogen-doped carbon support.« less

  2. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and preconcentraion of lead and cadmium in edible oils.

    PubMed

    Karimi, Mehdi; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Tamaddon, Fatemeh; Azadi, Davood

    2015-11-01

    Deep eutectic liquid organic salt was used as the solvent and a liquid phase microextraction (DES-LPME) combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for separation, preconcentration and determination of lead and cadmium in edible oils. A 4:1 mixture of deep eutectic solvent and 2% nitric acid (200 µL) was added to an oil sample. The mixture was vortexed and transferred into a water bath at 50 °C and stirred for 5 minutes. After the extraction was completed, the phases were separated by centrifugation, and the enriched analytes in the deep eutectic solvent phase were determined by ETAAS. Under optimized extraction conditions and for an oil sample of 28 g, enhancement factors of 198 and 195 and limits of detection (defined as 3 Sb/m) of 8 and 0. 2 ng kg(-1) were achieved for lead and cadmium respectively. The method was successfully applied to the determination of lead and cadmium in various edible oils. Copyright © 2015. Published by Elsevier B.V.

  3. Effects of modulation phase on profile analysis in normal-hearing and hearing-impaired listeners

    NASA Astrophysics Data System (ADS)

    Rogers, Deanna; Lentz, Jennifer

    2003-04-01

    The ability to discriminate between sounds with different spectral shapes in the presence of amplitude modulation was measured in normal-hearing and hearing-impaired listeners. The standard stimulus was the sum of equal-amplitude modulated tones, and the signal stimulus was generated by increasing the level of half the tones (up components) and decreasing the level of half the tones (down components). The down components had the same modulation phase, and a phase shift was applied to the up components to encourage segregation from the down tones. The same phase shift was used in both standard and signal stimuli. Profile-analysis thresholds were measured as a function of the phase shift between up and down components. The phase shifts were 0, 30, 45, 60, 90, and 180 deg. As expected, thresholds were lowest when all tones had the same modulation phase and increased somewhat with increasing phase disparity. This small increase in thresholds was similar for both groups. These results suggest that hearing-impaired listeners are able to use modulation phase to group sounds in a manner similar to that of normal listeners. [Work supported by NIH (DC 05835).

  4. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling

    PubMed Central

    Štětina, Tomáš; Poupardin, Rodolphe; Korbelová, Jaroslava; Bruce, Alexander William

    2017-01-01

    Insects often overcome unfavorable seasons in a hormonally regulated state of diapause during which their activity ceases, development is arrested, metabolic rate is suppressed, and tolerance of environmental stress is bolstered. Diapausing insects pass through a stereotypic succession of eco-physiological phases termed “diapause development.” The phasing is varied in the literature, and the whole concept is sometimes criticized as being too artificial. Here we present the results of transcriptional profiling using custom microarrays representing 1,042 genes in the drosophilid fly, Chymomyza costata. Fully grown, third-instar larvae programmed for diapause by a photoperiodic (short-day) signal were assayed as they traversed the diapause developmental program. When analyzing the gradual dynamics in the transcriptomic profile, we could readily distinguish distinct diapause developmental phases associated with induction/initiation, maintenance, cold acclimation, and termination by cold or by photoperiodic signal. Accordingly, each phase is characterized by a specific pattern of gene expression, supporting the physiological relevance of the concept of diapause phasing. Further, we have dissected in greater detail the changes in transcript levels of elements of several signaling pathways considered critical for diapause regulation. The phase of diapause termination is associated with enhanced transcript levels in several positive elements stimulating direct development (the 20-hydroxyecdysone pathway: Ecr, Shd, Broad; the Wnt pathway: basket, c-jun) that are countered by up-regulation in some negative elements (the insulin-signaling pathway: Ilp8, PI3k, Akt; the target of rapamycin pathway: Tsc2 and 4EBP; the Wnt pathway: shaggy). We speculate such up-regulations may represent the early steps linked to termination of diapause programming. PMID:28720705

  5. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  6. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  7. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...

  8. Investigation of the retention/pH profile of zwitterionic fluoroquinolones in reversed-phase and ion-interaction high performance liquid chromatography.

    PubMed

    Pistos, C; Tsantili-Kakoulidou, A; Koupparis, M

    2005-09-15

    The retention/pH profiles of three fluoroquinolones, ofloxacin, norfloxacin and ciprofloxacin, was investigated by means of reversed-phase high performance liquid chromatography (RP-HPLC) and reversed-phase ion-interaction chromatography (RP-IIC), using an octadecylsilane stationary phase and acetonitrile as organic modifier. Sodium hexanesulphonate and tetrabutylammonium hydroxide were used as sources of counter ions in ion-interaction chromatography. The retention/pH profiles under in RP-HPLC were compared to the corresponding lipophilicity/pH profiles. Despite the rather hydrophilic nature of the three fluoroquinolones positive retention factors were obtained while there was a shift of the retention maximum towards more acidic pH values. This behavior was attributed mainly to non-hydrophobic silanophilic interactions with the silanized silica gel material of the stationary phase. In ion-interaction chromatography the effect of counter ions over a broad pH range was found to be ruled rather by the ion pair formation in the mobile phase which led to a drastic decrease in retention as a consequence of the disruption of the zwitterionic structure and thereupon the deliberation of a net charge in the molecules. At pH values at which zwitterionic structure was not favored both the ion-exchange and ion pair formation mechanisms were assumed to contribute to the retention.

  9. Effects of turbulence on mixed-phase deep convective clouds under different basic-state winds and aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2014-12-01

    The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.

  10. An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong

    2018-03-01

    An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.

  11. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    PubMed Central

    van Lier-Walqui, Marcus; Fridlind, Ann M.; Ackerman, Andrew S.; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R.; North, Kirk; Kollias, Pavlos; Posselt, Derek J.

    2017-01-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase (KDP) observed above the melting level are associated with deep convection updraft cells, so-called “KDP columns” are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR KDP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity (ZDR). Results indicate strong correlations of KDP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of KDP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of ZDR to KDP shows commonalities in information content of each, as well as potential problems with ZDR associated with observational artifacts. PMID:29503466

  12. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns aremore » analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.« less

  13. Phase Synchronization of Hemodynamic Variables at Rest and after Deep Breathing Measured during the Course of Pregnancy

    PubMed Central

    Papousek, Ilona; Roessler, Andreas; Hinghofer-Szalkay, Helmut; Lang, Uwe; Kolovetsiou-Kreiner, Vassiliki

    2013-01-01

    Background The autonomic nervous system plays a central role in the functioning of systems critical for the homeostasis maintenance. However, its role in the cardiovascular adaptation to pregnancy-related demands is poorly understood. We explored the maternal cardiovascular systems throughout pregnancy to quantify pregnancy-related autonomic nervous system adaptations. Methodology Continuous monitoring of heart rate (R-R interval; derived from the 3-lead electrocardiography), blood pressure, and thoracic impedance was carried out in thirty-six women at six time-points throughout pregnancy. In order to quantify in addition to the longitudinal effects on baseline levels throughout gestation the immediate adaptive heart rate and blood pressure changes at each time point, a simple reflex test, deep breathing, was applied. Consequently, heart rate variability and blood pressure variability in the low (LF) and high (HF) frequency range, respiration and baroreceptor sensitivity were analyzed in resting conditions and after deep breathing. The adjustment of the rhythms of the R-R interval, blood pressure and respiration partitioned for the sympathetic and the parasympathetic branch of the autonomic nervous system were quantified by the phase synchronization index γ, which has been adopted from the analysis of weakly coupled chaotic oscillators. Results Heart rate and LF/HF ratio increased throughout pregnancy and these effects were accompanied by a continuous loss of baroreceptor sensitivity. The increases in heart rate and LF/HF ratio levels were associated with an increasing decline in the ability to flexibly respond to additional demands (i.e., diminished adaptive responses to deep breathing). The phase synchronization index γ showed that the observed effects could be explained by a decreased coupling of respiration and the cardiovascular system (HF components of heart rate and blood pressure). Conclusions/Significance The findings suggest that during the course of

  14. Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles

    NASA Astrophysics Data System (ADS)

    Schwarz, Jakob; Kirchengast, Gottfried; Schwaerz, Marc

    2018-05-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere - such as pressure, temperature, and tropospheric water vapor profiles (involving background information) - can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP); Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and Meteorological Operational Satellite A (MetOp). The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together

  15. Model of flare lightcurve profile observed in soft X-rays

    NASA Astrophysics Data System (ADS)

    Gryciuk, Magdalena; Siarkowski, Marek; Gburek, Szymon; Podgorski, Piotr; Sylwester, Janusz; Kepa, Anna; Mrozek, Tomasz

    We propose a new model for description of solar flare lightcurve profile observed in soft X-rays. The method assumes that single-peaked `regular' flares seen in lightcurves can be fitted with the elementary time profile being a convolution of Gaussian and exponential functions. More complex, multi-peaked flares can be decomposed as a sum of elementary profiles. During flare lightcurve fitting process a linear background is determined as well. In our study we allow the background shape over the event to change linearly with time. Presented approach originally was dedicated to the soft X-ray small flares recorded by Polish spectrophotometer SphinX during the phase of very deep solar minimum of activity, between 23 rd and 24 th Solar Cycles. However, the method can and will be used to interpret the lightcurves as obtained by the other soft X-ray broad-band spectrometers at the time of both low and higher solar activity level. In the paper we introduce the model and present examples of fits to SphinX and GOES 1-8 Å channel observations as well.

  16. Using Phase Space Density Profiles to Investigate the Radiation Belt Seed Population

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Spence, H.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.

    2013-12-01

    It is believed that particles with energies of 100s of keV play a critical role in the acceleration of electrons within the radiation belt. Through wave particle interactions, these so called 'seed electrons' can be accelerated up to energies greater than 1 MeV. Using data from the MagEIS (Magnetic Electron Ion Spectrometer) Instrument onboard the Van Allen Probes we calculate phase space density within the radiation belts over a wide range of mu and K values. These phase space density profiles are combined with those from THEMIS, in order to see how the phase space density evolves over a large range of L*. In this presentation we examine how the seed electron population evolves in both time and L* during acceleration events. Comparing this to the evolution of the higher mu electron population allows us to determine what role the seed electrons played in the acceleration process. Finally, we compare several of these storms to examine the importance of the seed population to the acceleration process.

  17. Crystal chemistry of hydrous phases in the Al2O3-Fe2O3-H2O system: implications for water cycle in the deep lower mantle

    NASA Astrophysics Data System (ADS)

    Zhang, L.

    2016-12-01

    Hydrous minerals play an important role in the transportation and storage of water in the Earth's interior. Recently a pyrite-structured iron oxide (FeO2) (P-phase) was found stable at 76 GPa and 1800 K [1] and this discovery has brought new insights into the H2-O2 cycles in the deep mantle. In this study, we perform in situ synchrotron X-ray experiments in the Al2O3-Fe2O3-H2O system in a laser-heated diamond anvil cell (DAC) at P-T conditions in the deep lower mantle. The new results added more complexity to the H2-O2/H2O cycles in the deep lower mantle. The symmetry and unit-cell parameters of each phase in the run products were determined using the multigrain approach [2]. On the other hand, the d-H solid solution AlOOH-MgSiO2(OH)2 is the stable hydrous phase coexisting with bridgmanite or post-perovskite under equilibrium P-T conditions to the deepest lower mantle [3]. The detailed crystal chemistry of the newly found hydrous phases and its relations to the d-H phase have been investigated using both first-principles calculations and experiments, providing new understanding to the hydration mechanism and water storage in the deep mantle. It is worth mentioning that recent development in high pressure multigrain method has realized separation of each individual phase in a multiphase assemblage and even allowed in situ crystal structure determination of a minor phase in the assemblage contained in a DAC [4]. [1] Q. Hu, D. Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, and H. K. Mao, Nature 534, 241 (2016). [2] H. O. Sørensen et al., Zeitschrift für Kristallographie 227, 63 (2012). [3] I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, and M. Nishijima, Earth and Planetary Science Letters 401, 12 (2014). [4] L. Zhang, D. Popov, Y. Meng, J. Wang, C. Ji, B. Li, and H.-k. Mao, American Mineralogist 101, 231 (2016).

  18. Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis

    2003-01-01

    A cluster analysis technique is used to identify 16 "archetypal" vertical radar profile types from a large, globally representative sample of profiles from the TRMM Precipitation Radar. These include nine convective types (7 of these deep convective) and seven stratiform types (5 of these clearly glaciated). Radar profile classification provides an alternative to conventional deep convective storm metrics, such as 30 dBZ echo height, maximum reflectivity or VIL. As expected, the global frequency of occurrence of deep convective profile types matches satellite-observed total lightning production, including to very small scall local features. Each location's "mix" of profile types provides an objective description of the local convective spectrum, and in turn, is a first step in objectively classifying convective regimes. These classifiers are tested as inputs to a neural network which attempts to predict lightning occurrence based on radar-only storm observations, and performance is compared with networks using traditional radar metrics as inputs.

  19. Dehydrogenation of goethite in Earth’s deep lower mantle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qingyang; Kim, Duck Young; Liu, Jin

    2017-01-31

    The cycling of hydrogen influences the structure, composition, and stratification of Earth’s interior. Our recent discovery of pyrite-structured iron peroxide (designated as the P phase) and the formation of the P phase from dehydrogenation of goethite FeO 2H implies the separation of the oxygen and hydrogen cycles in the deep lower mantle beneath 1,800 km. Here we further characterize the residual hydrogen, x, in the P-phase FeO 2Hx. Using a combination of theoretical simulations and high-pressure–temperature experiments, we calibrated the x dependence of molar volume of the P phase. Within the current range of experimental conditions, we observed a compositionalmore » range of P phase of 0.39 < x < 0.81, corresponding to 19–61% dehydrogenation. Increasing temperature and heating time will help release hydrogen and lower x, suggesting that dehydrogenation could be approaching completion at the high-temperature conditions of the lower mantle over extended geological time. Our observations indicate a fundamental change in the mode of hydrogen release from dehydration in the upper mantle to dehydrogenation in the deep lower mantle, thus differentiating the deep hydrogen and hydrous cycles.« less

  20. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing.

    PubMed

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-06-15

    Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available

  1. Photoinduced current transient spectroscopy of deep levels and transport mechanisms in iron-doped GaN thin films grown by low pressure-metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Muret, P.; Pernot, J.; Azize, M.; Bougrioua, Z.

    2007-09-01

    Electrical transport and deep levels are investigated in GaN:Fe layers epitaxially grown on sapphire by low pressure metalorganic vapor phase epitaxy. Photoinduced current transient spectroscopy and current detected deep level spectroscopy are performed between 200 and 650 K on three Fe-doped samples and an undoped sample. A detailed study of the detected deep levels assigns dominant centers to a deep donor 1.39 eV below the conduction band edge EC and to a deep acceptor 0.75 eV above the valence band edge EV at low electric field. A strong Poole-Frenkel effect is evidenced for the donor. Schottky diodes characteristics and transport properties in the bulk GaN:Fe layer containing a homogenous concentration of 1019 Fe/cm3 are typical of a compensated semiconductor. They both indicate that the bulk Fermi level is located typically 1.4 eV below EC, in agreement with the neutrality equation and dominance of the deep donor concentration. This set of results demonstrates unambiguously that electrical transport in GaN:Fe is governed by both types, either donor or acceptor, of the iron impurity, either substitutional in gallium sites or associated with other defects.

  2. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data.

    PubMed

    Arango-Argoty, Gustavo; Garner, Emily; Pruden, Amy; Heath, Lenwood S; Vikesland, Peter; Zhang, Liqing

    2018-02-01

    Growing concerns about increasing rates of antibiotic resistance call for expanded and comprehensive global monitoring. Advancing methods for monitoring of environmental media (e.g., wastewater, agricultural waste, food, and water) is especially needed for identifying potential resources of novel antibiotic resistance genes (ARGs), hot spots for gene exchange, and as pathways for the spread of ARGs and human exposure. Next-generation sequencing now enables direct access and profiling of the total metagenomic DNA pool, where ARGs are typically identified or predicted based on the "best hits" of sequence searches against existing databases. Unfortunately, this approach produces a high rate of false negatives. To address such limitations, we propose here a deep learning approach, taking into account a dissimilarity matrix created using all known categories of ARGs. Two deep learning models, DeepARG-SS and DeepARG-LS, were constructed for short read sequences and full gene length sequences, respectively. Evaluation of the deep learning models over 30 antibiotic resistance categories demonstrates that the DeepARG models can predict ARGs with both high precision (> 0.97) and recall (> 0.90). The models displayed an advantage over the typical best hit approach, yielding consistently lower false negative rates and thus higher overall recall (> 0.9). As more data become available for under-represented ARG categories, the DeepARG models' performance can be expected to be further enhanced due to the nature of the underlying neural networks. Our newly developed ARG database, DeepARG-DB, encompasses ARGs predicted with a high degree of confidence and extensive manual inspection, greatly expanding current ARG repositories. The deep learning models developed here offer more accurate antimicrobial resistance annotation relative to current bioinformatics practice. DeepARG does not require strict cutoffs, which enables identification of a much broader diversity of ARGs. The

  3. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  4. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E.

    PubMed

    van Lier-Walqui, Marcus; Fridlind, Ann M; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase ( K DP ) observed above the melting level are associated with deep convection updraft cells, so-called " K DP columns" are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR K DP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity ( Z DR ). Results indicate strong correlations of K DP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of K DP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of Z DR to K DP shows commonalities in information content of each, as well as potential problems with Z DR associated with observational artifacts.

  5. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles

    USGS Publications Warehouse

    Liu, Hsi-Ping; Boore, David M.; Joyner, William B.; Oppenheimer, David H.; Warrick, Richard E.; Zhang, Wenbo; Hamilton, John C.; Brown, Leo T.

    2000-01-01

    Shear-wave velocities (VS) are widely used for earthquake ground-motion site characterization. VS data are now largely obtained using borehole methods. Drilling holes, however, is expensive. Nonintrusive surface methods are inexpensive for obtaining VS information, but not many comparisons with direct borehole measurements have been published. Because different assumptions are used in data interpretation of each surface method and public safety is involved in site characterization for engineering structures, it is important to validate the surface methods by additional comparisons with borehole measurements. We compare results obtained from a particular surface method (array measurement of surface waves associated with microtremor) with results obtained from borehole methods. Using a 10-element nested-triangular array of 100-m aperture, we measured surface-wave phase velocities at two California sites, Garner Valley near Hemet and Hollister Municipal Airport. The Garner Valley site is located at an ancient lake bed where water-saturated sediment overlies decomposed granite on top of granite bedrock. Our array was deployed at a location where seismic velocities had been determined to a depth of 500 m by borehole methods. At Hollister, where the near-surface sediment consists of clay, sand, and gravel, we determined phase velocities using an array located close to a 60-m deep borehole where downhole velocity logs already exist. Because we want to assess the measurements uncomplicated by uncertainties introduced by the inversion process, we compare our phase-velocity results with the borehole VS depth profile by calculating fundamental-mode Rayleigh-wave phase velocities from an earth model constructed from the borehole data. For wavelengths less than ~2 times of the array aperture at Garner Valley, phase-velocity results from array measurements agree with the calculated Rayleigh-wave velocities to better than 11%. Measurement errors become larger for wavelengths 2

  6. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  7. Surface radical chain-transfer reaction in deep eutectic solvents for preparation of silica-grafted stationary phases in hydrophilic interaction chromatography.

    PubMed

    Yang, Beibei; Cai, Tianpei; Li, Zhan; Guan, Ming; Qiu, Hongdeng

    2017-12-01

    In this paper, deep eutectic solvents (DESs) were firstly used as new and green solvents for the preparation of polymer-grafted silica stationary phases. 1-Vinylimidazole and acrylic acid were homopolymerized and copolymerized on silica via surface radical chain-transfer reaction in the DESs. Three stationary phases including poly(1-vinylimidazole)-, poly(acrylic acid)-, poly(1-vinylimidazole-co-acrylic acid)-grafted silica were obtained and characterized by elemental analysis and Fourier transform infrared spectroscopy. Their hydrophilic interaction chromatographic properties were investigated for separation of nucleosides, nucleobases, saccharides and amino acids. The retention changes of nucleosides and nucleobases on these columns were investigated under different chromatographic conditions including acetonitrile content, salt concentration, pH of mobile phase and column temperature. The repeatability of these columns was also investigated. The results demonstrate that DESs can be used as new media for the synthesis of silica-based stationary phases by homopolymerization and copolymerization on the surface of porous silica particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterizing the metatranscriptomic profile of archaeal metabolic genes at deep-sea hydrothermal vents in the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Galambos, D.; Reveillaud, J. C.; Anderson, R.; Huber, J. A.

    2017-12-01

    Deep-sea hydrothermal vent systems host a wide diversity of bacteria, archaea and viruses. Although the geochemical conditions at these vents are well-documented, the relative metabolic activity of microbial lineages, especially among archaea, remains poorly characterized. The deep, slow-spreading Mid-Cayman Rise, which hosts the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields, allows for the comparison of vent sites with different geochemical characteristics. Previous metagenomic work indicated that despite the distinct geochemistry at Von Damm and Piccard, the functional profile of microbial communities between the two sites was similar. We examined relative metabolic gene activity using a metatranscriptomic analysis and observed functional similarity between Von Damm and Piccard, which is consistent with previous results. Notably, the relative expression of the methyl-coenzyme M reductase (mcr) gene was elevated in both vent fields. Additionally, we analyzed the ratio of RNA expression to DNA abundance of fifteen archaeal metagenome-assembled genomes (MAGs) across the two fields. Previous work showed higher archaeal diversity at Von Damm; our results indicate relatively even expression among archaeal lineages at Von Damm. In contrast, we observed lower archaeal diversity at Piccard, but individual archaeal lineages were very highly expressed; Thermoprotei showed elevated transcriptional activity, which is consistent with higher temperatures and sulfur levels at Piccard. At both Von Damm and Piccard, specific Methanococcus lineages were more highly expressed than others. Future analyses will more closely examine metabolic genes in these Methanococcus MAGs to determine why some lineages are more active at a vent field than others. We will conduct further statistical analyses to determine whether significant differences exist between Von Damm and Piccard and whether there are correlations between geochemical metadata and metabolic gene or

  9. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water less than 400 meters deep (see § 203.30(a)), has no existing deep or ultra-deep wells and that the... depths partly or entirely less than 200 meters and has not previously produced from a deep well (§ 203.30... which is 16,000 feet TVD SS and your lease is located in water 100 meters deep. Then in 2008, you drill...

  10. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    PubMed

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  11. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  12. Deep seismic sounding in northern Eurasia

    USGS Publications Warehouse

    Benz, H.M.; Unger, J.D.; Leith, W.S.; Mooney, W.D.; Solodilov, L.; Egorkin, A.V.; Ryaboy, V.Z.

    1992-01-01

    For nearly 40 years, the former Soviet Union has carried out an extensive program of seismic studies of the Earth's crust and upper mantle, known as “Deep Seismic Sounding” or DSS [Piwinskii, 1979; Zverev and Kosminskaya, 1980; Egorkin and Pavlenkova, 1981; Egorkin and Chernyshov, 1983; Scheimer and Borg, 1985]. Beginning in 1939–1940 with a series of small-scale seismic experiments near Moscow, DSS profiling has broadened into a national multiinstitutional exploration effort that has completed almost 150,000 km of profiles covering all major geological provinces of northern Eurasia [Ryaboy, 1989].

  13. Deep Space Habitat Concept of Operations for Transit Mission Phases

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.

  14. Detection of deep water formation from remote sensing chlorophyll in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Bahamon, Nixon; Ahumada, Miguel-Angel; Martin, Adrian; Henson, Stephanie

    2015-04-01

    The Northwestern Mediterranean Sea is one of the few regions in the world where Deep Water Formation (DWF) occurs. During wintertime cold and dry winds that typically occur in strong bursts lasting a few days, are able to erode the near-surface stability over this area, exposing the weakly stratified underwaters and initiate a phase of violent mixing and deep convection. DWF is not a steady-state process that recurs every year. Variations in wind stress and heat flux over the winter can induce a marked interannual variability: during some years the process is specially intense and completely absent during others. The extent of the area over which DWF occurs is also uncertain. The interannual variability of the DWF process is also associated to the variability in the seasonal phytoplankton dynamics over the area. The extent of the vertical mixing set the total amount of nutrients available for the phytoplankton during the following spring bloom. However, before the bloom, when deep convection is still active, surface chlorophyll (an index for phytoplankton biomass) is vertically diluted showing low surface concentration. The occurrence of these patches of anomalously low chlorophyll concentration can, in principle, be associated to the presence of active deep convection. In this study we investigate the possibility of exploiting such association in order to quantify the duration of deep convection and the extent of the area over which it occurs. These goals will be achieved through the analysis of remote sensing chlorophyll data and in-situ Argo-floats profiles.

  15. Instability induced by orthopyroxene phase transformation and implications for deep earthquakes below 300 km depth

    NASA Astrophysics Data System (ADS)

    Shi, F.; Wang, Y.; Zhang, J.; Yu, T.; Zhu, L.

    2017-12-01

    Global earthquake occurrence rate falls exponentially from the surface to 300 km depth, and then peaks again near 500 km depth. Unassisted frictional sliding will not function at depth below the brittle-ductile transition depth (10-15 km) because increasing pressure trends to inhibit frictional sliding and increasing temperature promotes ductile flow. Two main hypotheses have been proposed and demonstrated in the laboratory for the generation of earthquakes at depth, including dehydration embrittlement (e.g., Rayleigh and Paterson, 1965) for intermediate-depth (70-300 km) earthquakes, metastable olivine phase transformation induced anticrack faulting (e.g., Green and Burnley, 1989) for deep-focus (410-660 km) earthquakes. However, the possibility of earthquake generation by pyroxene phase transformation, another important constituent mineral in the upper mantle and transition zone has never been explored in the laboratory. Here we report axial deformation experiments on hypersthene [(Mg,Fe)SiO3], which has the same structure as enstatite, with the phase transformation to high-pressure monoclinic phase (same structure as the high-pressure clinoenstatite) occurring at lower pressures, in a deformation-DIA (D-DIA) apparatus interfaced with an acoustic emission (AE) monitoring system. Our results show that hypersthene deformed within its stability field (<2GPa and 1000 oC) behaves in a ductile manner without any AE activity. In contrast, numerous AE events were observed during the deformation of metastable hyposthene in its high pressure monoclinic phase field (>5GPa, 1000-1300 oC). This finding provides an additional viable mechanism for earthquakes at depths >300km and moonquakes at 700 - 1200 km depths. Reference: Barcheck, C. Grace, et al. EPSL,349 (2012): 153-160;van Keken, Peter E., et al.JGR,116.B1 (2011);Green II, H. W., and P. C. Burnley. Nature 341.6244 (1989): 733-737.

  16. Temperature-profile methods for estimating percolation rates in arid environments

    USGS Publications Warehouse

    Constantz, Jim; Tyler, Scott W.; Kwicklis, Edward

    2003-01-01

    Percolation rates are estimated using vertical temperature profiles from sequentially deeper vadose environments, progressing from sediments beneath stream channels, to expansive basin-fill materials, and finally to deep fractured bedrock underlying mountainous terrain. Beneath stream channels, vertical temperature profiles vary over time in response to downward heat transport, which is generally controlled by conductive heat transport during dry periods, or by advective transport during channel infiltration. During periods of stream-channel infiltration, two relatively simple approaches are possible: a heat-pulse technique, or a heat and liquid-water transport simulation code. Focused percolation rates beneath stream channels are examined for perennial, seasonal, and ephemeral channels in central New Mexico, with estimated percolation rates ranging from 100 to 2100 mm d−1 Deep within basin-fill and underlying mountainous terrain, vertical temperature gradients are dominated by the local geothermal gradient, which creates a profile with decreasing temperatures toward the surface. If simplifying assumptions are employed regarding stratigraphy and vapor fluxes, an analytical solution to the heat transport problem can be used to generate temperature profiles at specified percolation rates for comparison to the observed geothermal gradient. Comparisons to an observed temperature profile in the basin-fill sediments beneath Frenchman Flat, Nevada, yielded water fluxes near zero, with absolute values <10 mm yr−1 For the deep vadose environment beneath Yucca Mountain, Nevada, the complexities of stratigraphy and vapor movement are incorporated into a more elaborate heat and water transport model to compare simulated and observed temperature profiles for a pair of deep boreholes. Best matches resulted in a percolation rate near zero for one borehole and 11 mm yr−1 for the second borehole.

  17. 30 CFR 203.35 - What administrative steps must I take to use the RSV earned by a qualified phase 2 or phase 3...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? 203.35 Section 203.35 Mineral... steps must I take to use the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? To use an RSV... of the size of the RSV earned by your lease. (2) If you produced from a qualified phase 2 or phase 3...

  18. 30 CFR 203.35 - What administrative steps must I take to use the RSV earned by a qualified phase 2 or phase 3...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? 203.35 Section 203.35 Mineral... steps must I take to use the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? To use an RSV... of the size of the RSV earned by your lease. (2) If you produced from a qualified phase 2 or phase 3...

  19. 30 CFR 203.35 - What administrative steps must I take to use the RSV earned by a qualified phase 2 or phase 3...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? 203.35 Section 203.35 Mineral... steps must I take to use the RSV earned by a qualified phase 2 or phase 3 ultra-deep well? To use an RSV... of the size of the RSV earned by your lease. (2) If you produced from a qualified phase 2 or phase 3...

  20. Bibliometric profile of deep brain stimulation.

    PubMed

    Hu, Kejia; Moses, Ziev B; Xu, Wendong; Williams, Ziv

    2017-10-01

    We aimed to identify and analyze the characteristics of the 100 most highly-cited papers in the research field of deep brain stimulation (DBS). The Web of Science was searched for highly-cited papers related to DBS research. The number of citations, countries, institutions of origin, year of publication, and research area were noted and analyzed. The 100 most highly-cited articles had a mean of 304.15 citations. These accrued an average of 25.39 citations a year. The most represented target by far was the subthalamic nucleus (STN). These articles were published in 46 high-impact journals, with Brain (n = 10) topping the list. These articles came from 11 countries, with the USA contributing the most highly-cited articles (n = 29); however, it was the University of Toronto (n = 13) in Canada that was the institution with the most highly-cited studies. This study identified the 100 most highly-cited studies and highlighted a historical perspective on the progress in the field of DBS. These findings allow for the recognition of the most influential reports and provide useful information that can indicate areas requiring further investigation.

  1. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments.

    PubMed

    Chen, Baowei; Yang, Ying; Liang, Ximei; Yu, Ke; Zhang, Tong; Li, Xiangdong

    2013-11-19

    Knowledge of the origins and dissemination of antibiotic resistance genes (ARGs) is essential for understanding modern resistomes in the environment. The mechanisms of the dissemination of ARGs can be revealed through comparative studies on the metagenomic profiling of ARGs between relatively pristine and human-impacted environments. The deep ocean bed of the South China Sea (SCS) is considered to be largely devoid of anthropogenic impacts, while the Pearl River Estuary (PRE) in south China has been highly impacted by intensive human activities. Commonly used antibiotics (sulfamethazine, norfloxacin, ofloxacin, tetracycline, and erythromycin) have been detected through chemical analysis in the PRE sediments, but not in the SCS sediments. In the relatively pristine SCS sediments, the most prevalent and abundant ARGs are those related to resistance to macrolides and polypeptides, with efflux pumps as the predominant mechanism. In the contaminated PRE sediments, the typical ARG profiles suggest a prevailing resistance to antibiotics commonly used in human health and animal farming (including sulfonamides, fluoroquinolones, and aminoglycosides), and higher diversity in both genotype and resistance mechanism than those in the SCS. In particular, antibiotic inactivation significantly contributed to the resistance to aminoglycosides, β-lactams, and macrolides observed in the PRE sediments. There was a significant correlation in the levels of abundance of ARGs and those of mobile genetic elements (including integrons and plasmids), which serve as carriers in the dissemination of ARGs in the aquatic environment. The metagenomic results from the current study support the view that ARGs naturally originate in pristine environments, while human activities accelerate the dissemination of ARGs so that microbes would be able to tolerate selective environmental stress in response to anthropogenic impacts.

  2. Dissipation in the deep interiors of Ganymede and Europa

    NASA Astrophysics Data System (ADS)

    Hussmann, Hauke; Shoji, Daigo; Steinbruegge, Gregor; Stark, Alexander; Sohl, Frank

    2017-04-01

    Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Tidal flexing in the deep interiors can be a significant heat source for the satellites' thermal-orbital evolution. Whereas typical structure models of Europa consist of a core, a silicate mantle, an ocean and an outer ice-I shell [1], pressures inside Ganymede are sufficient for high-pressure ice phases to occur between the silicate mantle and the ocean [2]. With current data it is unknown whether the deep interiors (i.e., Europa's silicate shell and Ganymede's silicate mantle and/or high-pressure ice layer) are dissipative. Other possibilities would be that the dissipation rates are in general very low (unlikely at least for Europa due to recent observations) or that dissipative processes are mainly occurring in the ice-I shell and/or ocean. Thus, for evaluations of the heating state of these satellites, it is important to measure the magnitude of the interior dissipation. However, observation of the interior layers such as high-pressure ice layers is more challenging than that of the surface ice-I layer. Here we suggest a method to constrain the dissipation states of the deep interiors of Ganymede and Europa by altimetry and gravity measurements from an orbiting or multi-flyby spacecraft. Tidal variations are generally described by the Love numbers k2 and h2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags of these complex numbers contain information about the rheological and dissipative states of the satellites. For the satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference between the lags of k2 and h2 can provide information on the rheological and thermal state of the

  3. Temperature profiles in the earth of importance to deep electrical conductivity models

    NASA Astrophysics Data System (ADS)

    Čermák, Vladimír; Laštovičková, Marcela

    1987-03-01

    Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350 1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200 1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.

  4. Accurate Ultrasonic Measurement of Surface Profile Using Phase Shift of Echo and Inverse Filtering

    NASA Astrophysics Data System (ADS)

    Arihara, Chihiro; Hasegawa, Hideyuki; Kanai, Hiroshi

    2006-05-01

    Atherosclerosis is the main cause of circulatory diseases such as myocardial infarction and cerebral infarction, and it is very important to diagnose atherosclerosis in its early stage. In the early stage of atherosclerosis, the luminal surface of an arterial wall becomes rough because of the injury of the endothelium [R. Ross: New Engl. J. Med. 340 (2004) 115]. Conventional ultrasonic diagnostic equipments cannot detect such roughness on the order of micrometer because of their low resolution of approximately 0.1 mm. In this study, for the accurate detection of surface roughness, an ultrasonic beam was scanned in the direction that is parallel to the surface of an object. When there is a gap on the surface, the phase of the echo from the surface changes because the distance between the probe and the surface changes during the scanning. Therefore, surface roughness can be assessed by estimating the phase shift of echoes obtained during the beam scanning. Furthermore, lateral resolution, which is deteriorated by a finite diameter of the ultrasound beam, was improved by an inverse filter. By using the proposed method, the surface profile of a phantom, which had surface roughness on the micrometer order, was detected, and the estimated surface profiles became more precise by applying the inverse filter.

  5. Early vertical correction of the deep curve of Spee.

    PubMed

    Martins, Renato Parsekian

    2017-01-01

    Even though few technological advancements have occurred in Orthodontics recently, the search for more efficient treatments continues. This paper analyses how to accelerate and improve one of the most arduous phases of orthodontic treatment, i.e., correction of the curve of Spee. The leveling of a deep curve of Spee can happen simultaneously with the alignment phase through a method called Early Vertical Correction (EVC). This technique uses two cantilevers affixed to the initial flexible archwire. This paper describes the force system produced by EVC and how to control its side effects. The EVC can reduce treatment time in malocclusions with deep curves of Spee, by combining two phases of the therapy, which clinicians ordinarily pursue sequentially.

  6. 30 CFR 203.30 - Which leases are eligible for royalty relief as a result of drilling a phase 2 or phase 3 ultra...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.30 Which leases...

  7. Crop response to deep tillage - a meta-analysis

    NASA Astrophysics Data System (ADS)

    Schneider, Florian; Don, Axel; Hennings, Inga; Schmittmann, Oliver; Seidel, Sabine J.

    2017-04-01

    Subsoil, i.e. the soil layer below the topsoil, stores tremendous stocks of nutrients and can keep water even under drought conditions. Deep tillage may be a method to enhance the plant-availability of subsoil resources. However, in field trials, deep tillage effects on crop yields were inconsistent. Therefore, we conducted a meta-analysis of crop yield response to subsoiling, deep ploughing and deep mixing of soil profiles. Our search resulted in 1530 yield comparisons following deep and conventional control tillage on 67 experimental cropping sites. The vast majority of the data derived from temperate latitudes, from trials conducted in the USA (679 observations) and Germany (630 observations). On average, crop yield response to deep tillage was slightly positive (6% increase). However, individual deep tillage effects were highly scattered including about 40% yield depressions after deep tillage. Deep tillage on soils with root restrictive layers increased crop yields about 20%, while soils containing >70% silt increased the risk of yield depressions following deep tillage. Generally, deep tillage effects increased with drought intensity indicating deep tillage as climate adaptation measure at certain sites. Our results suggest that deep tillage can facilitate the plant-availability of subsoil nutrients, which increases crop yields if (i) nutrients in the topsoil are growth limiting, and (ii) deep tillage does not come at the cost of impairing topsoil fertility. On sites with root restrictive soil layers, deep tillage can be an effective measure to mitigate drought stress and improve the resilience of crops. However, deep tillage should only be performed on soils with a stable structure, i.e. <70% silt content. We will discuss the contribution of deep tillage options to enhance the sustainability of agricultural production by facilitating the uptake of nutrients and water from the subsoil.

  8. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.41 If I have... not . . . And if it later . . . Then your lease . . . (1) produced gas or oil from any deep well or...

  9. Blind source deconvolution for deep Earth seismology

    NASA Astrophysics Data System (ADS)

    Stefan, W.; Renaut, R.; Garnero, E. J.; Lay, T.

    2007-12-01

    We present an approach to automatically estimate an empirical source characterization of deep earthquakes recorded teleseismically and subsequently remove the source from the recordings by applying regularized deconvolution. A principle goal in this work is to effectively deblur the seismograms, resulting in more impulsive and narrower pulses, permitting better constraints in high resolution waveform analyses. Our method consists of two stages: (1) we first estimate the empirical source by automatically registering traces to their 1st principal component with a weighting scheme based on their deviation from this shape, we then use this shape as an estimation of the earthquake source. (2) We compare different deconvolution techniques to remove the source characteristic from the trace. In particular Total Variation (TV) regularized deconvolution is used which utilizes the fact that most natural signals have an underlying spareness in an appropriate basis, in this case, impulsive onsets of seismic arrivals. We show several examples of deep focus Fiji-Tonga region earthquakes for the phases S and ScS, comparing source responses for the separate phases. TV deconvolution is compared to the water level deconvolution, Tikenov deconvolution, and L1 norm deconvolution, for both data and synthetics. This approach significantly improves our ability to study subtle waveform features that are commonly masked by either noise or the earthquake source. Eliminating source complexities improves our ability to resolve deep mantle triplications, waveform complexities associated with possible double crossings of the post-perovskite phase transition, as well as increasing stability in waveform analyses used for deep mantle anisotropy measurements.

  10. Profiling Patients' Healthcare Needs to Support Integrated, Person-Centered Models for Long-Term Disease Management (Profile): Research Design.

    PubMed

    Elissen, Arianne Mj; Hertroijs, Dorijn Fl; Schaper, Nicolaas C; Vrijhoef, Hubertus Jm; Ruwaard, Dirk

    2016-04-29

    This article presents the design of PROFILe, a study investigating which (bio)medical and non-(bio)medical patient characteristics should guide more tailored chronic care. Based on this insight, the project aims to develop and validate 'patient profiles' that can be used in practice to determine optimal treatment strategies for subgroups of chronically ill with similar healthcare needs and preferences. PROFILe is a practice-based research comprising four phases. The project focuses on patients with type 2 diabetes. During the first study phase, patient profiles are drafted based on a systematic literature research, latent class growth modeling, and expert collaboration. In phase 2, the profiles are validated from a clinical, patient-related and statistical perspective. Phase 3 involves a discrete choice experiment to gain insight into the patient preferences that exist per profile. In phase 4, the results from all analyses are integrated and recommendations formulated on which patient characteristics should guide tailored chronic care. PROFILe is an innovative study which uses a uniquely holistic approach to assess the healthcare needs and preferences of chronically ill. The patient profiles resulting from this project must be tested in practice to investigate the effects of tailored management on patient experience, population health and costs.

  11. Rates and extent of microbial debromination in the deep subseafloor biosphere

    NASA Astrophysics Data System (ADS)

    Berg, R. D.; Solomon, E. A.; Morris, R. M.

    2013-12-01

    Recent genomic and porewater geochemical data suggest that reductive dehalogenation of a wide range of halogenated organic compounds could represent an important energy source for deep subseafloor microbial communities. At continental slope sites worldwide, there is a remarkably linear relationship between porewater profiles of ammonium and bromide, indicating that the factors controlling the distribution and rates of dehalogenation have the potential to influence carbon and nitrogen cycling in the deep subsurface biosphere. Though this metabolic pathway could play an important role in the cycling of otherwise refractory pools of carbon and nitrogen in marine sediments and provide energy to microbial communities in the deep subsurface biosphere, the rates and extent of dehalogenation in marine sediments are poorly constrained. Here we report net reaction rate profiles of debromination activity in continental slope sediments, calculated from numerical modeling of porewater bromide profiles from several margins worldwide. The reaction rate profiles indicate three common zones of debromination activity in slope sediments: 1) low rates of debromination, and a potential bromine sink, in the upper sediment column correlating to the sulfate reduction zone, with net bromide removal rates from -3.6 x 10^-2 to -4.85 x 10^-1 μmol m^-2 yr^-1, 2) high rates of debromination from the sulfate-methane transition zone to ~40-100 mbsf, with net bromide release rates between 7.1 x 10^-2 to 3.9 x 10^-1 μmol m^-2 yr^-1, and 3) an inflection point at ~40-100 mbsf, below which net rates of debromination decrease by an order of magnitude and at several sites are indistinguishable from zero. These results indicate that dehalogenating activity is widely distributed in marine sediments, providing energy to fuel deep subseafloor microbial communities, with potentially important consequences for the global bromine and nitrogen cycles.

  12. The Pyrolytic Profile of Lyophilized and Deep-Frozen Compact Part of the Human Bone

    PubMed Central

    Lodowska, Jolanta; Wolny, Daniel; Kurkiewicz, Sławomir; Węglarz, Ludmiła

    2012-01-01

    Background. Bone grafts are used in the treatment of nonunion of fractures, bone tumors and in arthroplasty. Tissues preserved by lyophilization or deep freezing are used as implants nowadays. Lyophilized grafts are utilized in the therapy of birth defects and bone benign tumors, while deep-frozen ones are applied in orthopedics. The aim of the study was to compare the pyrolytic pattern, as an indirect means of the analysis of organic composition of deep-frozen and lyophilized compact part of the human bone. Methods. Samples of preserved bone tissue were subjected to thermolysis and tetrahydroammonium-hydroxide- (TMAH-) associated thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). Results. Derivatives of benzene, pyridine, pyrrole, phenol, sulfur compounds, nitriles, saturated and unsaturated aliphatic hydrocarbons, and fatty acids (C12–C20) were identified in the pyrolytic pattern. The pyrolyzates were the most abundant in derivatives of pyrrole and nitriles originated from proteins. The predominant product in pyrolytic pattern of the investigated bone was pyrrolo[1,2-α]piperazine-3,6-dione derived from collagen. The content of this compound significantly differentiated the lyophilized graft from the deep-frozen one. Oleic and palmitic acid were predominant among fatty acids of the investigated samples. The deep-frozen implants were characterized by higher percentage of long-chain fatty acids than lyophilized grafts. PMID:22619606

  13. Deep-Diving California Sea Lions: Are they Pushing their Physiological Limit

    DTIC Science & Technology

    2013-09-30

    backpack digital recorders to measure blood oxygen depletion, heart rate, and flipper stroke rate in dives of California sea lions during maternal...relationship between changes in heart rate to blood O2 profiles, and 3) documentation of flipper stroke rate profiles during shallow and deep dives, and...assessment of the relationship of stroke rate to both changes in heart rate and changes in blood O2 profiles. APPROACH Objective 1: In order to

  14. Communication: spin-boson model with diagonal and off-diagonal coupling to two independent baths: ground-state phase transition in the deep sub-Ohmic regime.

    PubMed

    Zhao, Yang; Yao, Yao; Chernyak, Vladimir; Zhao, Yang

    2014-04-28

    We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling.

  15. Early vertical correction of the deep curve of Spee

    PubMed Central

    Martins, Renato Parsekian

    2017-01-01

    ABSTRACT Even though few technological advancements have occurred in Orthodontics recently, the search for more efficient treatments continues. This paper analyses how to accelerate and improve one of the most arduous phases of orthodontic treatment, i.e., correction of the curve of Spee. The leveling of a deep curve of Spee can happen simultaneously with the alignment phase through a method called Early Vertical Correction (EVC). This technique uses two cantilevers affixed to the initial flexible archwire. This paper describes the force system produced by EVC and how to control its side effects. The EVC can reduce treatment time in malocclusions with deep curves of Spee, by combining two phases of the therapy, which clinicians ordinarily pursue sequentially. PMID:28658363

  16. Classification of ECG beats using deep belief network and active learning.

    PubMed

    G, Sayantan; T, Kien P; V, Kadambari K

    2018-04-12

    A new semi-supervised approach based on deep learning and active learning for classification of electrocardiogram signals (ECG) is proposed. The objective of the proposed work is to model a scientific method for classification of cardiac irregularities using electrocardiogram beats. The model follows the Association for the Advancement of medical instrumentation (AAMI) standards and consists of three phases. In phase I, feature representation of ECG is learnt using Gaussian-Bernoulli deep belief network followed by a linear support vector machine (SVM) training in the consecutive phase. It yields three deep models which are based on AAMI-defined classes, namely N, V, S, and F. In the last phase, a query generator is introduced to interact with the expert to label few beats to improve accuracy and sensitivity. The proposed approach depicts significant improvement in accuracy with minimal queries posed to the expert and fast online training as tested on the MIT-BIH Arrhythmia Database and the MIT-BIH Supra-ventricular Arrhythmia Database (SVDB). With 100 queries labeled by the expert in phase III, the method achieves an accuracy of 99.5% in "S" versus all classifications (SVEB) and 99.4% accuracy in "V " versus all classifications (VEB) on MIT-BIH Arrhythmia Database. In a similar manner, it is attributed that an accuracy of 97.5% for SVEB and 98.6% for VEB on SVDB database is achieved respectively. Graphical Abstract Reply- Deep belief network augmented by active learning for efficient prediction of arrhythmia.

  17. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.

    PubMed

    Cui, Peng; Zhong, Tingyan; Wang, Zhuo; Wang, Tao; Zhao, Hongyu; Liu, Chenglin; Lu, Hui

    2018-06-01

    Circadian genes express periodically in an approximate 24-h period and the identification and study of these genes can provide deep understanding of the circadian control which plays significant roles in human health. Although many circadian gene identification algorithms have been developed, large numbers of false positives and low coverage are still major problems in this field. In this study we constructed a novel computational framework for circadian gene identification using deep neural networks (DNN) - a deep learning algorithm which can represent the raw form of data patterns without imposing assumptions on the expression distribution. Firstly, we transformed time-course gene expression data into categorical-state data to denote the changing trend of gene expression. Two distinct expression patterns emerged after clustering of the state data for circadian genes from our manually created learning dataset. DNN was then applied to discriminate the aperiodic genes and the two subtypes of periodic genes. In order to assess the performance of DNN, four commonly used machine learning methods including k-nearest neighbors, logistic regression, naïve Bayes, and support vector machines were used for comparison. The results show that the DNN model achieves the best balanced precision and recall. Next, we conducted large scale circadian gene detection using the trained DNN model for the remaining transcription profiles. Comparing with JTK_CYCLE and a study performed by Möller-Levet et al. (doi: https://doi.org/10.1073/pnas.1217154110), we identified 1132 novel periodic genes. Through the functional analysis of these novel circadian genes, we found that the GTPase superfamily exhibits distinct circadian expression patterns and may provide a molecular switch of circadian control of the functioning of the immune system in human blood. Our study provides novel insights into both the circadian gene identification field and the study of complex circadian-driven biological

  18. Emotional labor actors: a latent profile analysis of emotional labor strategies.

    PubMed

    Gabriel, Allison S; Daniels, Michael A; Diefendorff, James M; Greguras, Gary J

    2015-05-01

    Research on emotional labor focuses on how employees utilize 2 main regulation strategies-surface acting (i.e., faking one's felt emotions) and deep acting (i.e., attempting to feel required emotions)-to adhere to emotional expectations of their jobs. To date, researchers largely have considered how each strategy functions to predict outcomes in isolation. However, this variable-centered perspective ignores the possibility that there are subpopulations of employees who may differ in their combined use of surface and deep acting. To address this issue, we conducted 2 studies that examined surface acting and deep acting from a person-centered perspective. Using latent profile analysis, we identified 5 emotional labor profiles-non-actors, low actors, surface actors, deep actors, and regulators-and found that these actor profiles were distinguished by several emotional labor antecedents (positive affectivity, negative affectivity, display rules, customer orientation, and emotion demands-abilities fit) and differentially predicted employee outcomes (emotional exhaustion, job satisfaction, and felt inauthenticity). Our results reveal new insights into the nature of emotion regulation in emotional labor contexts and how different employees may characteristically use distinct combinations of emotion regulation strategies to manage their emotional expressions at work. (c) 2015 APA, all rights reserved.

  19. Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection.

    PubMed

    Wahab, Noorul; Khan, Asifullah; Lee, Yeon Soo

    2017-06-01

    Different types of breast cancer are affecting lives of women across the world. Common types include Ductal carcinoma in situ (DCIS), Invasive ductal carcinoma (IDC), Tubular carcinoma, Medullary carcinoma, and Invasive lobular carcinoma (ILC). While detecting cancer, one important factor is mitotic count - showing how rapidly the cells are dividing. But the class imbalance problem, due to the small number of mitotic nuclei in comparison to the overwhelming number of non-mitotic nuclei, affects the performance of classification models. This work presents a two-phase model to mitigate the class biasness issue while classifying mitotic and non-mitotic nuclei in breast cancer histopathology images through a deep convolutional neural network (CNN). First, nuclei are segmented out using blue ratio and global binary thresholding. In Phase-1 a CNN is then trained on the segmented out 80×80 pixel patches based on a standard dataset. Hard non-mitotic examples are identified and augmented; mitotic examples are oversampled by rotation and flipping; whereas non-mitotic examples are undersampled by blue ratio histogram based k-means clustering. Based on this information from Phase-1, the dataset is modified for Phase-2 in order to reduce the effects of class imbalance. The proposed CNN architecture and data balancing technique yielded an F-measure of 0.79, and outperformed all the methods relying on specific handcrafted features, as well as those using a combination of handcrafted and CNN-generated features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial.

    PubMed

    Zhu, R; Liu, X N; Hu, G K; Sun, C T; Huang, G L

    2014-11-24

    Negative refraction of elastic waves has been studied and experimentally demonstrated in three- and two-dimensional phononic crystals, but Bragg scattering is impractical for low-frequency wave control because of the need to scale the structures to manageable sizes. Here we present an elastic metamaterial with chiral microstructure made of a single-phase solid material that aims to achieve subwavelength negative refraction of elastic waves. Both negative effective mass density and modulus are observed owing to simultaneous translational and rotational resonances. We experimentally demonstrate negative refraction of the longitudinal elastic wave at the deep-subwavelength scale in the metamaterial fabricated in a stainless steel plate. The experimental measurements are in good agreement with numerical simulations. Moreover, wave mode conversion related with negative refraction is revealed and discussed. The proposed elastic metamaterial may thus be used as a flat lens for elastic wave focusing.

  1. Quantitative phenotyping via deep barcode sequencing.

    PubMed

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  2. Quantitative phenotyping via deep barcode sequencing

    PubMed Central

    Smith, Andrew M.; Heisler, Lawrence E.; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J.; Chee, Mark; Roth, Frederick P.; Giaever, Guri; Nislow, Corey

    2009-01-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or “Bar-seq,” outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that ∼20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene–environment interactions on a genome-wide scale. PMID:19622793

  3. Deep learning for studies of galaxy morphology

    NASA Astrophysics Data System (ADS)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.

    2017-06-01

    Establishing accurate morphological measurements of galaxies in a reasonable amount of time for future big-data surveys such as EUCLID, the Large Synoptic Survey Telescope or the Wide Field Infrared Survey Telescope is a challenge. Because of its high level of abstraction with little human intervention, deep learning appears to be a promising approach. Deep learning is a rapidly growing discipline that models high-level patterns in data as complex multilayered networks. In this work we test the ability of deep convolutional networks to provide parametric properties of Hubble Space Telescope like galaxies (half-light radii, Sérsic indices, total flux etc..). We simulate a set of galaxies including point spread function and realistic noise from the CANDELS survey and try to recover the main galaxy parameters using deep-learning. We compare the results with the ones obtained with the commonly used profile fitting based software GALFIT. This way showing that with our method we obtain results at least equally good as the ones obtained with GALFIT but, once trained, with a factor 5 hundred time faster.

  4. Development of Autonomous Aerobraking - Phase 2

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2013-01-01

    Phase 1 of the Development of Autonomous Aerobraking (AA) Assessment investigated the technical capability of transferring the processes of aerobraking maneuver (ABM) decision-making (currently performed on the ground by an extensive workforce and communicated to the spacecraft via the deep space network) to an efficient flight software algorithm onboard the spacecraft. This document describes Phase 2 of this study, which was a 12-month effort to improve and rigorously test the AA Development Software developed in Phase 1. Aerobraking maneuver; Autonomous Aerobraking; Autonomous Aerobraking Development Software; Deep Space Network; NASA Engineering and Safety Center

  5. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices.

    PubMed

    Bachim, Brent L; Gaylord, Thomas K

    2005-01-20

    A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

  6. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.31... applies if your lease: (i) Has produced gas or oil from a deep well with a perforated interval the top of...

  7. Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography-searching for alternatives to organic solvents.

    PubMed

    Sutton, Adam T; Fraige, Karina; Leme, Gabriel Mazzi; da Silva Bolzani, Vanderlan; Hilder, Emily F; Cavalheiro, Alberto J; Arrua, R Dario; Funari, Cristiano Soleo

    2018-06-01

    Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.

  8. Influence of ocean surface conditions on atmospheric vertical thermodynamic structure and deep convection

    NASA Technical Reports Server (NTRS)

    Fu, Rong; Del Genio, Anthony D.; Rossow, William B.

    1994-01-01

    The authors analyze the influence of Sea Surface Temperature (SST) and surface wind divergence on atmospheric thermodynamic structure and the resulting effects on the occurrence of deep convection using National Meteorological Center radiosonde data and International Satellite Cloud Climatology Program data for July 1983-July 1985. The onset of deep convection requires not only the existence of positive convective available potential energy (CAPE), but also an unstable planetary boundary layer (PBL). A stable PBL is observed to suppress deep convection even when CAPE is positive. Variations of SST have a major effect on CAPE, but surface wind divergence can also affect deep convection by changing the lapse rate in the lower troposphere and humidity in the PBL. Specifically, when SST is greater than or equal to 28 C, CAPE is always positive, and surface wind divergence does not qualitatively change the buoyancy profile above the PBL. Strong surface wind divergence, however, stabilizes the PBL so as to suppress the initiation of deep convection. In warm SST regions, CAPE is greater than 0 regardless of assumptions about condensate loading, although the pseudoadiabatic limit is more consistent with the observed deep convection than the reversible moist-adiabatic limit under these circumstances. When SST is less than 27 C, CAPE is usually negative and inhibits convection, but strong surface wind convergence can destabilize the inversion layer and moisten the PBL enough to make the atmosphere neutrally stable in the mean. As a result, deep convection is generally enhanced either when SST is greater than or equal to 28 C in the absence of strong surface wind divergence or when strong surface wind convergence occurs even if SST is less than 27 C. The anomalous suppression of deep convection in the warm area of the equatorial west Pacific lying between the intertropical convergence zone (ITCZ) and south Pacific convergence zone (SPCZ) is probably caused by dryness in the

  9. Derivation of Cloud Heating Rate Profiles using observations of Mixed-Phase Arctic Clouds: Impacts of Solar Zenith Angle

    NASA Astrophysics Data System (ADS)

    Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.

    2005-12-01

    Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.

  10. Deep-brain-stimulation does not impair deglutition in Parkinson's disease.

    PubMed

    Lengerer, Sabrina; Kipping, Judy; Rommel, Natalie; Weiss, Daniel; Breit, Sorin; Gasser, Thomas; Plewnia, Christian; Krüger, Rejko; Wächter, Tobias

    2012-08-01

    A large proportion of patients with Parkinson's disease develop dysphagia during the course of the disease. Dysphagia in Parkinson's disease affects different phases of deglutition, has a strong impact on quality of life and may cause severe complications, i.e., aspirational pneumonia. So far, little is known on how deep-brain-stimulation of the subthalamic nucleus influences deglutition in PD. Videofluoroscopic swallowing studies on 18 patients with Parkinson's disease, which had been performed preoperatively, and postoperatively with deep-brain-stimulation-on and deep-brain-stimulation-off, were analyzed retrospectively. The patients were examined in each condition with three consistencies (viscous, fluid and solid). The 'New Zealand index for multidisciplinary evaluation of swallowing (NZIMES) Subscale One' for qualitative and 'Logemann-MBS-Parameters' for quantitative evaluation were assessed. Preoperatively, none of the patients presented with clinically relevant signs of dysphagia. While postoperatively, the mean daily levodopa equivalent dosage was reduced by 50% and deep-brain-stimulation led to a 50% improvement in motor symptoms measured by the UPDRS III, no clinically relevant influence of deep-brain-stimulation-on swallowing was observed using qualitative parameters (NZIMES). However quantitative parameters (Logemann scale) found significant changes of pharyngeal parameters with deep-brain-stimulation-on as compared to preoperative condition and deep-brain-stimulation-off mostly with fluid consistency. In Parkinson patients without dysphagia deep-brain-stimulation of the subthalamic nucleus modulates the pharyngeal deglutition phase but has no clinically relevant influence on deglutition. Further studies are needed to test if deep-brain-stimulation is a therapeutic option for patients with swallowing disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Characterization of irradiation induced deep and shallow impurities

    NASA Astrophysics Data System (ADS)

    Treberspurg, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Krammer, Manfred; Valentan, Manfred

    2013-12-01

    Silicon Detectors close to the interaction point of the High Luminosity Large Hardron Collider (HL-LHC) have to withstand a harsh irradiation environment. In order to evaluate the behaviour of shallow and deep defects, induced by neutron irradiation, spreading resistance resistivity measurements and capacitance voltage measurements have been performed. These measurements, deliver information about the profile of shallow impurities after irradiation as well as indications of deep defects in the Space Charge Region (SCR) and the Electrical Neutral Bulk (ENB). By considering the theoretical background of the measurement both kinds of defects can be investigated independently from each other.

  12. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the

  13. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    PubMed

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  14. The role of deep nitrogen and dynamic rooting profiles on vegetation dynamics and productivity in response to permafrost thaw and climate change in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Hewitt, R. E.; Helene, G.; Taylor, D. L.; McGuire, A. D.; Mack, M. C.

    2017-12-01

    The release of permafrost-derived nitrogen (N) has the potential to fertilize tundra vegetation, modulating plant competition, stimulating productivity, and offsetting carbon losses from thawing permafrost. Dynamic rooting, mycorrhizal interactions, and coupling of N availability and root N uptake have been identified as gaps in ecosystem models. As a first step towards understanding whether Arctic plants can access deep permafrost-derived N, we characterized rooting profiles and quantified acquisition of 15N tracer applied at the permafrost boundary by moist acidic tundra plants subjected to almost three decades of warming at Toolik Lake, Alaska. In the ambient control plots the vegetation biomass is distributed between five plant functional types (PFTs): sedges, evergreen and deciduous shrubs, mosses and in lower abundance, forbs. The warming treatment has resulted in the increase of deciduous shrub biomass and the loss of sedges, evergreen shrubs, and mosses. We harvested roots by depth increment down to the top of the permafrost. Roots were classified by size class and PFT. The average thaw depth in the warmed plots was 58.3 cm ± 6.4 S.E., close to 18 cm deeper than the average thaw depth in the ambient plots (40.8 cm ± 1.8 S.E.). Across treatments the deepest rooting species was Rubus chamaemorus (ambient 40.8 cm ± 1.8 S.E., warmed 50.3 cm ± 9.8 S.E.), a non-mycorrhizal forb, followed by Eriophorum vaginatum, a non-mycorrhizal sedge. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs were rooted at more shallow depths. Deeply rooted non-mycorrhizal species had the greatest uptake of 15N tracer within 24 hours across treatments. Tracer uptake was greatest for roots of E. vaginatum in ambient plots and R. chamaemorus in warmed plots. Root profiles were integrated into a process-based ecosystem model coupled with a dynamic vegetation model. Functions modeling dynamic rooting profile relative to thaw depth were implemented for each PFT. The

  15. Solid phase extraction and metabolic profiling of exudates from living copepods

    PubMed Central

    Heuschele, Jan; Nylund, Göran M.; Pohnert, Georg; Pavia, Henrik; Bjærke, Oda; Pender-Healy, Larisa A.; Tiselius, Peter; Kiørboe, Thomas

    2016-01-01

    Copepods are ubiquitous in aquatic habitats. They exude bioactive compounds that mediate mate finding or induce defensive traits in prey organisms. However, little is known about the chemical nature of the copepod exometabolome that contributes to the chemical landscape in pelagic habitats. Here we describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds that constitute a specific chemical pattern either qualitatively or quantitatively indicating copepod presence. The majority of the compounds were present in both female and male exudates, but nine compounds were mainly or exclusively present in female exudates and hence potential pheromone candidates. Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms. PMID:26788422

  16. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments

    NASA Astrophysics Data System (ADS)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.

    2017-12-01

    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers

  17. Phase transitions in local equation-of-state approximation and anomalies of spatial charge profiles in non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.

    2018-01-01

    Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.

  18. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Ullah, Fareed

    2017-04-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins and two chlorophylls. Lutein (806.0 µg/g), chlorophyll b' (410.0 µg/g), chlorophyll a (162.4 µg/g), 9'-Z-neoxanthin (142.8 µg/g) and all-E-violaxanthin (82.2 µg/g)) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of thirteen compounds, namely p-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g) and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for possible medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a potential source of nutraceuticals or as a functional food ingredient.

  19. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b′ (410.0 μg/g), chlorophyll a (162.4 μg/g), 9′-Z-neoxanthin (142.8 μg/g) and all-E-violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient. PMID:28497036

  20. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b ' (410.0 μg/g), chlorophyll a (162.4 μg/g), 9'- Z -neoxanthin (142.8 μg/g) and all- E -violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5- O -caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient.

  1. Tracer constraints on organic particle transfer efficiency to the deep ocean

    NASA Astrophysics Data System (ADS)

    Weber, T. S.; Cram, J. A.; Deutsch, C. A.

    2016-02-01

    The "transfer efficiency" of sinking organic particles through the mesopelagic zone is a critical determinant of ocean carbon sequestration timescales, and the atmosphere-ocean partition of CO2. Our ability to detect large-scale variations in transfer efficiency is limited by the paucity of particle flux data from the deep ocean, and the potential biases of bottom-moored sediment traps used to collect it. Here we show that deep-ocean particle fluxes can be reconstructed by diagnosing the rate of phosphate accumulation and oxygen disappearance along deep circulation pathways in an observationally constrained Ocean General Circulation Model (OGCM). Combined with satellite and model estimates of carbon export from the surface ocean, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1000m and 2000m that is high ( 20%) at high latitudes and negligible (<5%) throughout subtropical gyres, with intermediate values in the tropics. This pattern is at odds with previous estimates of deep transfer efficiency derived from bottom-moored sediment traps, but is consistent with upper-ocean flux profiles measured by neutrally buoyant sediment traps, which show strong attenuation of low latitude particle fluxes over the top 500m. Mechanistically, the pattern can be explained by spatial variations in particle size distributions, and the temperature-dependence of remineralization. We demonstrate the biogeochemical significance of our findings by comparing estimates of deep-ocean carbon sequestration in a scenario with spatially varying transfer efficiency to one with a globally uniform "Martin-curve" particle flux profile.

  2. Femtosecond deep-infrared optical parametric oscillator pumped directly by a Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    O'Donnell, Callum; Chaitanya Kumar, S.; Zawilski, Kevin T.; Schunemann, Peter G.; Ebrahim-Zadeh, Majid

    2018-02-01

    We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on the nonlinear optical crystal, CdSiP2 (CSP), pumped directly by a Ti:sapphire laser, for the first time. By pumping CSP at <1 μm, we have achieved practical output powers at the longest wavelengths generated by any Ti:sapphire-pumped OPO. Using a combination of pump wavelength tuning, type-I critical phase-matching, and cavity delay tuning, we have generated continuously tunable radiation across 6654-8373 nm (1194-1503 cm-1) at 80.5 MHz repetition rate, providing up to 20 mW of average power at 7314 nm and <7 mW beyond 8000 nm, with idler spectra exhibiting bandwidths of 140-180 nm across the tuning range. Moreover, the near-IR signal is tunable across 1127-1192 nm, providing up to 37 mW of average power at 1150 nm. Signal pulses, characterised using intensity autocorrelation, have durations of 260-320 fs, with corresponding time-bandwidth product of ΔυΔτ 1. The idler and signal output exhibit a TEM00 spatial profile with single-peak Gaussian distribution. With an equivalent spectral brightness of 6.68×1020 photons s-1 mm-2 sr-1 0.1% BW-1, this OPO represents a viable table-top alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology and medical diagnostics.

  3. New pharmacokinetic methods. III. Two simple test for deep pool effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, T.R.; Greenblatt, D.J.; Schumacher, G.E.

    1990-08-01

    If a portion of administered drug is distributed into a deep peripheral compartment, the drug's actual elimination half-life during the terminal exponential phase of elimination may be longer than determined by a single dose study or a tracer dose study (deep pool effect). Two simple methods of testing for deep pool effect applicable to drugs with either linear or nonlinear pharmacokinetic properties are described. The methods are illustrated with stable isotope labeled (13C15N2) tracer dose studies of phenytoin. No significant (P less than .05) deep pool effect was detected.

  4. In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents

    PubMed Central

    Hayyan, Maan; Looi, Chung Yeng; Hayyan, Adeeb; Wong, Won Fen; Hashim, Mohd Ali

    2015-01-01

    The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes. PMID:25679975

  5. Velocity and Attenuation Profiles in the Monterey Deep-Sea Fan

    DTIC Science & Technology

    1987-12-01

    a. 11 o n i n and depth. Sol ’^ a 11 e i"i u a 11 o >) a i::> 1 n Ci sediment for each of the f i...i. n c t ion o f f r e q u e n c; y...estimate of sea floor depth was obtained from an oceano - graphic map of the Monterey fan (’Oceanographic Data of the Monterey Deep Sea Fan’, 1st

  6. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    PubMed

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Depths and Ages of Deep-Sea Corals From the Medusa Expedition

    NASA Astrophysics Data System (ADS)

    Fernandez, D.; Adkins, J. F.; Robinson, L. F.; Scheirer, D.; Shank, T.

    2003-12-01

    From May-June 2003 we used the DSV Alvin and the RSV Atlantis to collect modern and fossil deep-sea corals from the New England and Muir Seamounts. Our goal was to collect depth transects of corals from a variety of ages to measure paleo chemical profiles in the North Atlantic. Because deep-sea corals can be dated with both U-series and radiocarbon methods, we are especially interested in measuring past D14C profiles to constrain the paleo overturning rate of the deep ocean. We collected over 3,300 fossil Desmophyllum cristagalli individuals, 10s of kgs of Solenosmillia sp. and numerous Enallopsamia rostrata and Caryophilia sp. These samples spanned a depth range from 1,150-2,500 meters and refute the notion that deep-sea corals are too sparsely distributed to be useful for paleoclimate reconstructions. Despite widespread evidence for mass wasting on the seamounts, fossil corals were almost always found in growth position. This observation alleviates some of the concern associated with dredge samples where down-slope transport of samples can not be characterized. Fossil scleractinia were often found to have recruited onto other carbonate skeletons, including large branching gorgonians. The U-series age distribution of these recruitment patterns will constrain how much paleoclimatic time a particular "patch" can represent. In addition, U-series ages, combined with the observed differences in species distribution, will begin to inform our understanding of deep-sea coral biogeography. A lack of modern D. cristagalli on Muir seamount, but an abundance of fossil samples at this site, is the most striking example of changes in oceanic conditions playing a role in where deep-sea corals grow.

  8. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., on a lease that is located entirely or partly in water less than 200 meters deep; or (2) May 18, 2007, on a lease that is located entirely in water more than 200 meters deep. ... Leases Not Subject to Deep Water Royalty Relief § 203.34 To which production may an RSV earned by...

  9. Phased Retrofits in Existing Homes in Florida Phase II. Shallow Plus Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Sutherland; Parker, D.; Martin, E.

    2016-02-01

    The BAPIRC team and Florida Power and Light (FPL) electric utility pursued a pilot phased energy-efficiency retrofit program in Florida by creating detailed data on the energy and economic performance of two levels of retrofit - simple and deep. For this Phased Deep Retrofit (PDR) project, a total of 56 homes spread across the utility partner's territory in east central Florida, southeast Florida, and southwest Florida were instrumented between August 2012 and January 2013, and received simple pass-through retrofit measures during the period of March 2013 - June 2013. Ten of these homes received a deeper package of retrofits duringmore » August 2013 - December 2013.« less

  10. Deep learning with convolutional neural network in radiology.

    PubMed

    Yasaka, Koichiro; Akai, Hiroyuki; Kunimatsu, Akira; Kiryu, Shigeru; Abe, Osamu

    2018-04-01

    Deep learning with a convolutional neural network (CNN) is gaining attention recently for its high performance in image recognition. Images themselves can be utilized in a learning process with this technique, and feature extraction in advance of the learning process is not required. Important features can be automatically learned. Thanks to the development of hardware and software in addition to techniques regarding deep learning, application of this technique to radiological images for predicting clinically useful information, such as the detection and the evaluation of lesions, etc., are beginning to be investigated. This article illustrates basic technical knowledge regarding deep learning with CNNs along the actual course (collecting data, implementing CNNs, and training and testing phases). Pitfalls regarding this technique and how to manage them are also illustrated. We also described some advanced topics of deep learning, results of recent clinical studies, and the future directions of clinical application of deep learning techniques.

  11. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    PubMed

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan

    NASA Astrophysics Data System (ADS)

    Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan

    2017-04-01

    Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.

  13. Advances in deep-UV processing using cluster tools

    NASA Astrophysics Data System (ADS)

    Escher, Gary C.; Tepolt, Gary; Mohondro, Robert D.

    1993-09-01

    Deep-UV laser lithography has shown the capability of supporting the manufacture of multiple generations of integrated circuits (ICs) due to its wide process latitude and depth of focus (DOF) for 0.2 micrometers to 0.5 micrometers feature sizes. This capability has been attained through improvements in deep-UV wide field lens technology, excimer lasers, steppers and chemically amplified, positive deep-UV resists. Chemically amplified deep-UV resists are required for 248 nm lithography due to the poor absorption and sensitivity of conventional novolac resists. The acid catalyzation processes of the new resists requires control of the thermal history and environmental conditions of the lithographic process. Work is currently underway at several resist vendors to reduce the need for these controls, but practical manufacturing solutions exist today. One of these solutions is the integration of steppers and resist tracks into a `cluster tool' or `Lithocell' to insure a consistent thermal profile for the resist process and reduce the time the resist is exposed to atmospheric contamination. The work here reports processing and system integration results with a Machine Technology, Inc (MTI) post-exposure bake (PEB) track interfaced with an advanced GCA XLS 7800 deep-UV stepper [31 mm diameter, variable NA (0.35 - 0.53) and variable sigma (0.3 - 0.74)].

  14. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers.

  15. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2

    PubMed Central

    Maeda, Fumiya; Ohtani, Eiji; Kamada, Seiji; Sakamaki, Tatsuya; Hirao, Naohisa; Ohishi, Yasuo

    2017-01-01

    Diamond is an evidence for carbon existing in the deep Earth. Some diamonds are considered to have originated at various depth ranges from the mantle transition zone to the lower mantle. These diamonds are expected to carry significant information about the deep Earth. Here, we determined the phase relations in the MgCO3-SiO2 system up to 152 GPa and 3,100 K using a double sided laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. MgCO3 transforms from magnesite to the high-pressure polymorph of MgCO3, phase II, above 80 GPa. A reaction between MgCO3 phase II and SiO2 (CaCl2-type SiO2 or seifertite) to form diamond and MgSiO3 (bridgmanite or post-perovsktite) was identified in the deep lower mantle conditions. These observations suggested that the reaction of the MgCO3 phase II with SiO2 causes formation of super-deep diamond in cold slabs descending into the deep lower mantle. PMID:28084421

  16. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  17. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    PubMed Central

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  18. Frequency and morphology of tropical tropopause layer cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep convection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; McFarlane, Sally A.

    2010-09-16

    Tropical Tropopause Layer cirrus (TTLC) profiles identified from CALIPSO LIDAR measurements are grouped into cloud objects and classified according to whether or not they are connected to deep convection. TTLC objects connected to deep convection are optically and physically thicker than isolated objects, consistent with what would be expected if connected objects were formed from convective detrainment and isolated objects formed in situ. In the tropics (±20 Latitude), 36% of TTLC profiles are classified as connected to deep convection, 43% as isolated, and the remaining 21% are part of lower, thicker cirrus clouds. Regions with higher occurence of deep convectionmore » also have higher occurrence of TTLC, and a greater percentage of those TTLC are connected to deep convection. Cloud top heights of both isolated and connected clouds are distributed similarly with respect to the height of the cold point tropopause. No difference in thickness or optical depth was found between TTLC above deep convection or above clear sky, though both cloud base and top heights are higher over deep convection than over clear sky.« less

  19. Single-crystal structure determination of hydrous minerals and insights into a wet deep lower mantle

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Yuan, H.; Meng, Y.; Popov, D.

    2017-12-01

    Water enters the Earth's interior through hydrated subducting slabs. How deep within the lower mantle (670-2900 km depth) can water be transported down and stored depends upon the availability of hydrous phases that is thermodynamically stable under the high P-T conditions and have a sufficiently high density to sink through the lower mantle. Phase H [MgSiH2O4] (1) and the δ-AlOOH (2) form solid solutions that are stable in the deep lower mantle (3), but the solid solution phase is 10% lighter than the corresponding lower mantle. Recent experimental discoveries of the pyrite (Py) structured FeO2 and FeOOH (4-6) suggest that these Fe-enriched phases can be transported to the deepest lower mantle owing to their high density. We have further discovered a very dense hydrous phase in (Fe,Al)OOH with a previously unknown hexagonal symmetry and this phase is stable relative to the Py-phase under extreme high P-T conditions in the deep lower mantle. Through in situ multigrain analysis (7) and single-crystal structure determination of the hydrous minerals at P-Tconditions of the deep lower mantle, we can obtain detailed structure information of the hydrous phases and therefore provide insights into the hydration mechanism in the deep lower mantle. These highly stable hydrous minerals extend the water cycle at least to the depth of 2900 km. 1. M. Nishi et al., Nature Geoscience 7, 224-227 (2014). 2. E. Ohtani, K. Litasov, A. Suzuki, T. Kondo, Geophysical Research Letters 28, 3991-3993 (2001). 3. I. Ohira et al., Earth and Planetary Science Letters 401, 12-17 (2014). 4. Q. Hu et al., Proceedings of the National Academy of Sciences of the United States of America 114, 1498-1501 (2017). 5. M. Nishi, Y. Kuwayama, J. Tsuchiya, T. Tsuchiya, Nature 547, 205-208 (2017). 6. Q. Hu et al., Nature 534, 241-244 (2016). 7. L. Zhang et al., American Mineralogist 101, 231-234 (2016).

  20. Fluorescence characteristics in the deep waters of South Gulf of México.

    PubMed

    Schifter, I; Sánchez-Reyna, G; González-Macías, C; Salazar-Coria, L; González-Lozano, C

    2017-10-15

    Vertical profiles of deep-water fluorescence determined by the chlorophyll sensor, polycyclic aromatic hydrocarbons, biomarkers, and other miscellaneous parameters measured in the southern Gulf of Mexico are reported. In the course of the survey, unexpected deep fluorescences were recorded (>1100m depth) in half of the 40 stations studied, a novel finding in this area of the Gulf. Currently, the deep-water fluorescence phenomenon is not completely understood, however we observe linear correlation between the fluorescence intensity and chlorophyll-α concentrations and coincidence of higher number of hydrocarbonoclastic bacteria in samples collected precisely in the deep-water fluorescence. This information is particularly interesting in relation to the Deepwater Horizon oil spill in 2010, in view that the aftermaths of the spill can be observed till today as oil plumes trapped in deep water layers that may disturb the natural water ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 228Ra and 226Ra Profiles from the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, H.; Chung, Y.; Lin, C.

    2005-05-01

    We previously reported the distributions of 228Ra and 226Ra in the northern South China Sea (SCS) which showed that both nuclides in surface waters were much higher than those in the open oceans because the SCS was enclosed mostly by landmasses which are known as sources of these nuclides. Large temporal and spectial variations were also observed probably due to the monsoons and intrusion of the Kuroshio Current. During a recent cruise conducted in the northern SCS in February, 2004, three vertical 228Ra profiles were measured by gamma spectrometry on the Ra isotopes which were concentrated first by the MnO2-impregnated acrylic fiber and then acid-washed as sample solution for counting. The two deep water 228Ra profiles are remarkably similar, showing high values in the surface layer and fairly uniform at about 10 to 13 dpm/100L below 200m depth but with a clear increase toward the bottom due to input from the underlying sediments. The shallow water profile on the shelf shows higher 228Ra values due to both vertical and horizontal mixing of the shelf water with additional source from the shore zone. Additional 228Ra profiles measured on samples from earlier cruises show that the deep water values may differ significantly (up to 5 dpm/100L) at the same location in different seasons or cruises. The associated 226Ra profiles are also variable but quite comparable to those in the northwest Pacific in deep water. 226Ra activities in the shallow water (less than 1000m depth) are higher in the SCS than in the open oceans. The 228Ra/226Ra activity ratios vary mostly from about 0.3 to 0.5 in the deep water. These values are much higher than those in the open oceans which are generally less than 0.1.

  2. Exploring the Function Space of Deep-Learning Machines

    NASA Astrophysics Data System (ADS)

    Li, Bo; Saad, David

    2018-06-01

    The function space of deep-learning machines is investigated by studying growth in the entropy of functions of a given error with respect to a reference function, realized by a deep-learning machine. Using physics-inspired methods we study both sparsely and densely connected architectures to discover a layerwise convergence of candidate functions, marked by a corresponding reduction in entropy when approaching the reference function, gain insight into the importance of having a large number of layers, and observe phase transitions as the error increases.

  3. Seven hundred years of peat formation recorded throughout a deep floating mire profile from Central Italy

    NASA Astrophysics Data System (ADS)

    Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro; Zaccone, Claudio

    2016-04-01

    ), an ash content ranging from 0.8 and 7.4%, an average gravimetric water content of 26.6±7.7 gwater gdrypeat-1, and a pH generally increasing with depth (from 4.1 to 7.2). The C content along the profile ranged between 35 and 47% (avg., 41±4%), whereas the N between 0.3 and 1.1% (avg., 0.5±0.1%). Main atomic ratios (C/N, H/C and O/C) and FT-IR spectra seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as "peat". In fact, the 14C age dating suggests that the first 110 cm of Sphagnum material accumulated in ca. 55 yrs, thus resulting in an average growing rate of 2 cm yr-1. The remaining 300 cm (from 100 to 400 cm of depth), i.e., the submerged part of the island, consist of peat showing completely different botanical composition (reed-fen peat and silty peat rich in reeds) and physical and chemical properties. In particular, both bulk density (avg., 0.09±0.05 g cm-3) and ash content increase, reaching their maximum at 300-325 cm of depth (0.27 g cm-3 and 17%, respectively), whereas the average gravimetric water content significantly decreases (17.4±9.0 gwater gdrypeat-1). The pH ranges from 6.6 and 7.4. Both C and N along this section of the profile show higher average contents (44±3 and 1.3±0.6%, respectively) compared to those recorded in the upper 100 cm layer; furthermore, the decrease with depth of C/N, H/C and O/C atomic ratios, as well as main absorption bands of FT-IR spectra, clearly indicate the occurrence of an organic matter highly humified. The estimated accumulation rate for the bottom 300 cm of the island is 0.5 cm yr-1. At the best of our knowledge, this work represents the first characterization of a (4 m) deep floating mire profile. At Posta Fibreno, the deep water layer below the base of the island (7 m) and the movement on the water surface probably avoided the transition from floating island to firm land, thus allowing this island to float during the

  4. Deep learning for computational biology.

    PubMed

    Angermueller, Christof; Pärnamaa, Tanel; Parts, Leopold; Stegle, Oliver

    2016-07-29

    Technological advances in genomics and imaging have led to an explosion of molecular and cellular profiling data from large numbers of samples. This rapid increase in biological data dimension and acquisition rate is challenging conventional analysis strategies. Modern machine learning methods, such as deep learning, promise to leverage very large data sets for finding hidden structure within them, and for making accurate predictions. In this review, we discuss applications of this new breed of analysis approaches in regulatory genomics and cellular imaging. We provide background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights. In addition to presenting specific applications and providing tips for practical use, we also highlight possible pitfalls and limitations to guide computational biologists when and how to make the most use of this new technology. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Potential subjects' responses to an ethics questionnaire in a phase I study of deep brain stimulation in early Parkinson's disease.

    PubMed

    Finder, Stuart G; Bliton, Mark J; Gill, Chandler E; Davis, Thomas L; Konrad, Peter E; Charles, P David

    2012-01-01

    Central to ethically justified clinical trial design is the need for an informed consent process responsive to how potential subjects actually comprehend study participation, especially study goals, risks, and potential benefits. This will be particularly challenging when studying deep brain stimulation and whether it impedes symptom progression in Parkinson's disease, since potential subjects will be Parkinson's patients for whom deep brain stimulation will likely have therapeutic value in the future as their disease progresses. As part of an expanded informed consent process for a pilot Phase I study of deep brain stimulation in early stage Parkinson's disease, an ethics questionnaire composed of 13 open-ended questions was distributed to potential subjects. The questionnaire was designed to guide potential subjects in thinking about their potential participation. While the purpose of the study (safety and tolerability) was extensively presented during the informed consent process, in returned responses 70 percent focused on effectiveness and 91 percent included personal benefit as poten- tial benefit from enrolling. However, 91 percent also indicated helping other Parkinson's patients as motivation when considering whether or not to enroll. This combination of responses highlights two issues to which investigators need to pay close attention in future trial designs: (1) how, and in what ways, informed consent processes reinforce potential subjects' preconceived understandings of benefit, and (2) that potential subjects see themselves as part of a community of Parkinson's sufferers with responsibilities extending beyond self-interest. More importantly, it invites speculation that a different paradigm for informed consent may be needed.

  6. Optimized Structures for Low-Profile Phase Change Thermal Spreaders

    NASA Astrophysics Data System (ADS)

    Sharratt, Stephen Andrew

    Thin, low-profile phase change thermal spreaders can provide cooling solutions for some of today's most pressing heat flux dissipation issues. These thermal issues are only expected to increase as future electronic circuitry requirements lead to denser and potentially 3D chip packaging. Phase change based heat spreaders, such as heat pipes or vapor chambers, can provide a practical solution for effectively dissipating large heat fluxes. This thesis reports a comprehensive study of state-of-the-art capillary pumped wick structures using computational modeling, micro wick fabrication, and experimental analysis. Modeling efforts focus on predicting the shape of the liquid meniscus inside a complicated 3D wick structure. It is shown that this liquid shape can drastically affect the wick's thermal resistance. In addition, knowledge of the liquid meniscus shape allows for the computation of key parameters such as permeability and capillary pressure which are necessary for predicting the maximum heat flux. After the model is validated by comparison to experimental results, the wick structure is optimized so as to decrease overall wick thermal resistance and increase the maximum capillary limited heat flux before dryout. The optimized structures are then fabricated out of both silicon and copper using both traditional and novel micro-fabrication techniques. The wicks are made super-hydrophilic using chemical and thermal oxidation schemes. A sintered monolayer of Cu particles is fabricated and analyzed as well. The fabricated wick structures are experimentally tested for their heat transfer performance inside a well controlled copper vacuum chamber. Heat fluxes as high as 170 W/cm2 are realized for Cu wicks with structure heights of 100 μm. The structures optimized for both minimized thermal resistance and high liquid supply ability perform much better than their non-optimized counterparts. The super-hydrophilic oxidation scheme is found to drastically increase the maximum

  7. Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Rossi, Serena; Sileoni, Valeria; Perretti, Giuseppe; Marconi, Ombretta

    2014-03-30

    The objective of this study was a multivariate characterization of the volatile profile of beers. Such a characterization is timely considering the increasing worldwide consumption of beer, the continuous growth of microbreweries and the importance of volatile compounds to beer flavour. A method employing solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) was optimized and then applied to a sample set of 36 industrial and craft beers of various styles and fermentation types. The volatile profiles of different beer styles is described, with particular attention paid to the volatile compounds characteristic of a spontaneously fermented lambic raspberry framboise beer. Furthermore, it was also possible to identify which specific volatile compounds are principally responsible for the differences in the volatile profiles of top- and bottom-fermented beers. Moreover, a volatile fingerprint of the craft top-fermented Italian beers was defined, as they show a very similar volatile profile. Finally, the volatile compounds that are characteristic of the bock-style beers are described. The SPME-GC-MS analytical method optimized in this study is suitable for characterizing the volatile fingerprint of different beers, especially on the basis of the kind of fermentation (top, bottom or spontaneous), the method of production and the style of the beer. © 2013 Society of Chemical Industry.

  8. Deep Sleep and Parietal Cortex Gene Expression Changes Are Related to Cognitive Deficits with Age

    PubMed Central

    Buechel, Heather M.; Popovic, Jelena; Searcy, James L.; Porter, Nada M.; Thibault, Olivier; Blalock, Eric M.

    2011-01-01

    Background Age-related cognitive deficits negatively affect quality of life and can presage serious neurodegenerative disorders. Despite sleep disruption's well-recognized negative influence on cognition, and its prevalence with age, surprisingly few studies have tested sleep's relationship to cognitive aging. Methodology We measured sleep stages in young adult and aged F344 rats during inactive (enhanced sleep) and active (enhanced wake) periods. Animals were behaviorally characterized on the Morris water maze and gene expression profiles of their parietal cortices were taken. Principal Findings Water maze performance was impaired, and inactive period deep sleep was decreased with age. However, increased deep sleep during the active period was most strongly correlated to maze performance. Transcriptional profiles were strongly associated with behavior and age, and were validated against prior studies. Bioinformatic analysis revealed increased translation and decreased myelin/neuronal pathways. Conclusions The F344 rat appears to serve as a reasonable model for some common sleep architecture and cognitive changes seen with age in humans, including the cognitively disrupting influence of active period deep sleep. Microarray analysis suggests that the processes engaged by this sleep are consistent with its function. Thus, active period deep sleep appears temporally misaligned but mechanistically intact, leading to the following: first, aged brain tissue appears capable of generating the slow waves necessary for deep sleep, albeit at a weaker intensity than in young. Second, this activity, presented during the active period, seems disruptive rather than beneficial to cognition. Third, this active period deep sleep may be a cognitively pathologic attempt to recover age-related loss of inactive period deep sleep. Finally, therapeutic strategies aimed at reducing active period deep sleep (e.g., by promoting active period wakefulness and/or inactive period deep sleep) may

  9. [Indirect usage of miniscrew anchorage to intrude overerupted mandibular incisors in a Class II patient with a deep overbite].

    PubMed

    Ishihara, Yoshihito; Kuroda, Shingo; Sugawara, Yasuyo; Balam, Tarek A; Takano-Yamamoto, Teruko; Yamashiro, Takashi

    2016-06-01

    Vertical dentoalveolar discrepancies are a common problem in orthodontic patients but are often difficult to treat with traditional mechanics. This case report illustrates the successful treatment of overerupted mandibular incisors via the indirect use of miniscrew anchorage. A woman (age, 22 years 9 months) had chief complaints of maxillary incisor protrusion and crooked teeth. An excessive curve of Spee caused by elongation of the mandibular incisors was also found. The patient was diagnosed with a severe Class II Division 1 malocclusion and a deep overbite. After extraction of the mandibular first premolars and the subsequent leveling phase, the elongated incisors were intruded with a novel method, which involved the combined use of sectional archwires and miniscrews placed in the premolar areas. After the procedure, the mandibular incisors had been intruded by 6.5 mm with no undesirable side effects. The total active treatment period was 42 months. The resultant occlusion and satisfactory facial profile were maintained after 30 months of retention. Our novel intrusion approach shows potential for correcting a deep overbite. © EDP Sciences, SFODF, 2016.

  10. Tumours of Deep Lobe of Parotid Gland: Our Experience.

    PubMed

    Dass, Arjun; Gupta, Nitin; Singhal, S K; Verma, Hitesh

    2015-12-01

    Parotidectomy surgeries are being routinely performed by ENT surgeons nowadays. Parotid tumours can present with a variety of manifestations ranging from a barely noticeable mass to a large tumour with facial paralysis. Most benign parotid tumours are located in the superficial lobe though rarely deep lobe may also be involved, while malignant tumours are generally seen to involve both the lobes of the gland. We present clinico-radiological-pathological profile of 25 patients who underwent parotid surgeries for tumours involving deep lobe alone or the whole gland, and were operated at our institute during the period from January 2011 to December 2012. This study was a retroprospective observational analysis with the aim of analyzing the epidemiology, radiological, surgical and histopathological profile of these patients. Among 25 patients who underwent parotid surgeries, 17 patients underwent total conservative parotidectomy, while 5 patients underwent radical parotidectomy. In 3 patients, extended radical parotidectomy was performed. We also report the complications and follow-up of these patients. We concluded that fine needle aspiration cytology (FNAC) findings and final histopathological report may not always correlate.

  11. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals.

    PubMed

    Yum, Lauren K; Baumgarten, Sebastian; Röthig, Till; Roder, Cornelia; Roik, Anna; Michell, Craig; Voolstra, Christian R

    2017-07-25

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  12. Comparison of Direct Oral Anticoagulants and Warfarin in the Treatment of Deep Venous Thrombosis in the Chronic Phase.

    PubMed

    Wakakura, Shingo; Hara, Fumihiko; Fujino, Tadashi; Hamai, Asami; Ohara, Hiroshi; Kabuki, Takayuki; Harada, Masahiko; Ikeda, Takanori

    2018-01-27

    We assessed the efficacy and safety of direct oral anticoagulants (DOACs) for the treatment of deep venous thrombosis (DVT) in the chronic phase through comparison with conventional warfarin therapy.A total of 807 consecutive patients who were diagnosed with having DVT in the chronic phase were included (484 patients to warfarin therapy and 323 patients to DOAC therapy). The condition of leg veins was assessed 3 to 6 months after starting the therapies by ultrasound examination. Major bleeding and mortality during the therapies were followed-up.There was no significant difference between the two groups in the thrombosis improvement rate (DOAC group: 91.2% versus warfarin group: 88.9%). There was no significant difference between the two groups in major bleeding (DOAC group: 1.8% versus warfarin group: 1.8%). In patients with active cancer, the DOAC group had a borderline higher thrombosis improvement rate than the warfarin group (92.1% versus 80.0%, P = 0.05). The proportion of major bleeding in the patients with active cancer was slightly higher in the warfarin group than in the DOAC group (4.3% versus 2.8%; P = 0.71). Active cancer was not an independent risk factor for major bleeding and recurrence in the DOAC group (OR 2.68, 95% CI 0.51-14.1; P = 0.24 and OR 0.65, 95% CI 0.20-2.07; P = 0.47).In treatment using oral anticoagulants for DVT in the chronic phase, DOACs exhibited equal efficacy and safety as warfarin did. Particularly DOACs appear to be an attractive therapeutic option for cancer-associated DVT in chronic phase, with relatively low anticipated rates of recurrence and major bleeding.

  13. Changes in chemical composition of frozen coated fish products during deep-frying.

    PubMed

    Pérez-Palacios, Trinidad; Petisca, Catarina; Casal, Susana; Ferreira, Isabel M P L V O

    2014-03-01

    This work evaluates the influence of deep-frying coated fish products on total fat, fatty acid (FA) and amino acid profile, and on the formation of volatile compounds, with special attention on furan and its derivatives due to their potential harmful characteristics. As expected, deep-frying in sunflower oil increased linoleic acid content, but total fat amount increased only by 2% on a dry basis. Eicosapentanoic and docosahexanoic acids were preserved while γ- and α-linoleic acids were oxidised. Deep-frying also induces proteolysis, releasing free AA, and the formation of volatile compounds, particularly aldehydes and ketones arising from polyunsaturated FA. In addition, high quantities of furanic compounds, particularly furan and furfuryl alcohol, are generated during deep-frying coated fish. The breaded crust formed could contribute simultaneously for the low uptake of fat, preservation of long chain n-3 FA, and for the high amounts of furanic compounds formed during the deep-frying process.

  14. Global deep-sea extinctions during the Pleistocene ice ages

    NASA Astrophysics Data System (ADS)

    Hayward, Bruce W.

    2001-07-01

    The dark, near-freezing environment of the deep oceans is regarded as one of the most stable habitats on Earth, and this stability is generally reflected in the slow turnover rates (extinctions and appearances) of the organisms that live there. By far the best fossil record of deep-sea organisms is provided by the shells of benthic foraminifera (Protista). A little-known global extinction of deep-sea benthic foraminifera occurred during the Pleistocene ice ages. In the southwest Pacific, it caused the disappearance of at least two families, 15 genera, and 48 species (˜15% 25% of the fauna) of dominantly uniserial, elongate foraminifera with distinctive apertural modifications. These forms progressively died back and became extinct during glacial periods in the late Pliocene to middle Pleistocene (ca. 2.5 0.6 Ma); most extinctions occurred between 1.0 and 0.6 Ma, at the time of the middle Pleistocene climatic revolution. This first high-resolution study of this extinction event indicates that it was far more significant for deep-sea diversity loss than previously reported (10 species). The middle Pleistocene extinction was the most dramatic last phase of a worldwide decline in the abundance of these elongate forms, a phase that began during cooling near the Eocene-Oligocene boundary and continued during the middle Miocene. Clearly these taxa declined when the world cooled, but the reason is yet to be resolved.

  15. Robust visual tracking via multiscale deep sparse networks

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo

    2017-04-01

    In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.

  16. Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele

    2017-04-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which

  17. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales.

    PubMed

    Schiro, Kathleen A; Ahmed, Fiaz; Giangrande, Scott E; Neelin, J David

    2018-05-01

    A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014-2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation-buoyancy relation across the tropics. Deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.

  18. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    USGS Publications Warehouse

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  19. Effects of groundwater withdrawal on borehole flow and salinity measured in deep monitor wells in Hawai'i-implications for groundwater management

    USGS Publications Warehouse

    Rotzoll, Kolja

    2010-01-01

    Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not

  20. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.

    PubMed

    Juneidi, Ibrahim; Hayyan, Maan; Mohd Ali, Ozair

    2016-04-01

    An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.

  1. Lau phase interferometer for the measurement of the temperature and temperature profile of a gaseous flame

    NASA Astrophysics Data System (ADS)

    Shakher, Chandra; Thakur, Madhuri

    2001-05-01

    In this paper we have investigated the utility of Lau phase interferometer with white light source and circular gratings to measure temperature and temperature profile of an axisymmetric flame. In Lau phase interferometer the two gratings are separated by infinite distance. The third grating is placed at a distance Z equals n.p2(lambda) , (where n is an integer, d is the pitch of the grating and (lambda) is the wavelength of the white light source). The sensitivity of the system is determined by the pitch 'p' of the grating and the distance Z between the gratings. If the distance Z between the two gratings is increased to enhance the sensitivity, the accuracy of measurement is reduced because of the reduction in the fringe contrast. In white light Lau phase interferometer the fringe contrast can be improved by optimizing the self-image plane and the pitch of the grating. From the recorded interferogram the angle of deflection ((phi) ) is measured and temperature at a different point of the flame is calculated. The temperature measured using Lau phase interferometer is in good agreement with the temperature measured by thermocouple and dataloger. Details of the theoretical analysis and experimental results are presented.

  2. Viral Infection Induces Expression of Novel Phased MicroRNAs from Conserved Cellular MicroRNA Precursors

    PubMed Central

    Zhang, Jiayao; Zhao, Shuqi; Zheng, Hong; Gao, Ge; Wei, Liping; Li, Yi

    2011-01-01

    RNA silencing, mediated by small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs), is a potent antiviral or antibacterial mechanism, besides regulating normal cellular gene expression critical for development and physiology. To gain insights into host small RNA metabolism under infections by different viruses, we used Solexa/Illumina deep sequencing to characterize the small RNA profiles of rice plants infected by two distinct viruses, Rice dwarf virus (RDV, dsRNA virus) and Rice stripe virus (RSV, a negative sense and ambisense RNA virus), respectively, as compared with those from non-infected plants. Our analyses showed that RSV infection enhanced the accumulation of some rice miRNA*s, but not their corresponding miRNAs, as well as accumulation of phased siRNAs from a particular precursor. Furthermore, RSV infection also induced the expression of novel miRNAs in a phased pattern from several conserved miRNA precursors. In comparison, no such changes in host small RNA expression was observed in RDV-infected rice plants. Significantly RSV infection elevated the expression levels of selective OsDCLs and OsAGOs, whereas RDV infection only affected the expression of certain OsRDRs. Our results provide a comparative analysis, via deep sequencing, of changes in the small RNA profiles and in the genes of RNA silencing machinery induced by different viruses in a natural and economically important crop host plant. They uncover new mechanisms and complexity of virus-host interactions that may have important implications for further studies on the evolution of cellular small RNA biogenesis that impact pathogen infection, pathogenesis, as well as organismal development. PMID:21901091

  3. On the possibility of using multi-element phased arrays for shock-wave action on deep brain structures

    NASA Astrophysics Data System (ADS)

    Rosnitskiy, P. B.; Gavrilov, L. R.; Yuldashev, P. V.; Sapozhnikov, O. A.; Khokhlova, V. A.

    2017-09-01

    A noninvasive ultrasound surgery method that relies on using multi-element focused phased arrays is being successfully used to destroy tumors and perform neurosurgical operations in deep structures of the human brain. However, several drawbacks that limit the possibilities of the existing systems in their clinical use have been revealed: a large size of the hemispherical array, impossibility of its mechanical movement relative to the patient's head, limited volume of dynamic focusing around the center of curvature of the array, and side effect of overheating skull. Here we evaluate the possibility of using arrays of smaller size and aperture angles to achieve shock-wave formation at the focus for thermal and mechanical ablation (histotripsy) of brain tissue taking into account current intensity limitations at the array elements. The proposed approach has potential advantages to mitigate the existing limitations and expand the possibilities of transcranial ultrasound surgery.

  4. The Deep Space Network stability analyzer

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Greenhall, Charles A.; Hamell, Robert L.; Kuhnle, Paul F.

    1995-01-01

    A stability analyzer for testing NASA Deep Space Network installations during flight radio science experiments is described. The stability analyzer provides realtime measurements of signal properties of general experimental interest: power, phase, and amplitude spectra; Allan deviation; and time series of amplitude, phase shift, and differential phase shift. Input ports are provided for up to four 100 MHz frequency standards and eight baseband analog (greater than 100 kHz bandwidth) signals. Test results indicate the following upper bounds to noise floors when operating on 100 MHz signals: -145 dBc/Hz for phase noise spectrum further than 200 Hz from carrier, 2.5 x 10(exp -15) (tau =1 second) and 1.5 x 10(exp -17) (tau =1000 seconds) for Allan deviation, and 1 x 10(exp -4) degrees for 1-second averages of phase deviation. Four copies of the stability analyzer have been produced, plus one transportable unit for use at non-NASA observatories.

  5. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    PubMed

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  6. Investigation of the Profile Control Mechanisms of Dispersed Particle Gel

    PubMed Central

    Zhao, Guang; Dai, Caili; Zhao, Mingwei

    2014-01-01

    Dispersed particle gel (DPG) particles of nano- to micron- to mm-size have been prepared successfully and will be used for profile control treatment in mature oilfields. The profile control and enhanced oil recovery mechanisms of DPG particles have been investigated using core flow tests and visual simulation experiments. Core flow test results show that DPG particles can easily be injected into deep formations and can effectively plug the high permeability zones. The high profile improvement rate improves reservoir heterogeneity and diverts fluid into the low permeability zone. Both water and oil permeability were reduced when DPG particles were injected, but the disproportionate permeability reduction effect was significant. Water permeability decreases more than the oil permeability to ensure that oil flows in its own pathways and can easily be driven out. Visual simulation experiments demonstrate that DPG particles can pass directly or by deformation through porous media and enter deep formations. By retention, adsorption, trapping and bridging, DPG particles can effectively reduce the permeability of porous media in high permeability zones and divert fluid into a low permeability zone, thus improving formation profiles and enhancing oil recovery. PMID:24950174

  7. Audiologist-patient communication profiles in hearing rehabilitation appointments.

    PubMed

    Meyer, Carly; Barr, Caitlin; Khan, Asaduzzaman; Hickson, Louise

    2017-08-01

    To profile the communication between audiologists and patients in initial appointments on a biomedical-psychosocial continuum; and explore the associations between these profiles and 1) characteristics of the appointment and 2) patients' decisions to pursue hearing aids. Sixty-three initial hearing assessment appointments were filmed and audiologist-patient communication was coded using the Roter Interaction Analysis System. A hierarchical cluster analysis was conducted to profile audiologist-patient communication, after which regression modelling and Chi-squared analyses were conducted. Two distinct audiologist-patient communication profiles were identified during both the history taking phase (46=biopsychosocial profile, 15=psychosocial profile) and diagnosis and management planning phase (45=expanded biomedical profile, 11=narrowly biomedical profile). Longer appointments were significantly more likely to be associated with an expanded biomedical interaction during the diagnosis and management planning phase. No significant associations were found between audiologist-patient communication profile and patients' decisions to pursue hearing aids. Initial audiology consultations appear to remain clinician-centred. Three quarters of appointments began with a biopsychosocial interaction; however, 80% ended with an expanded biomedical interaction. Findings suggest that audiologists could consider modifying their communication in initial appointments to more holistically address the needs of patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Analysis of black pepper volatiles by solid phase microextraction-gas chromatography: A comparison of terpenes profiles with hydrodistillation.

    PubMed

    Jeleń, Henryk H; Gracka, Anna

    2015-10-30

    Solid phase microextraction (SPME) is widely used in food flavor compounds analysis in majority for profiling volatile compounds. Based on such profiles conclusions are often drawn concerning the percentage composition of volatile compounds in particular food, spices or raw materials. This paper focuses on the usefulness of SPME for the profiling of volatile compounds from spices using black pepper as an example. SPME profiles obtained in different analytical conditions were compared to the profile of pepper volatiles obtained using hydrodistillation in Clevenger apparatus. The profiles of both monoterpenes and sesquiterpenes of black pepper were highly dependent on sample weight (0.1 and 1g samples were tested), and extraction time (durations from 2 to 120min were tested), regardless of the SPME fiber used (PDMS and CAR/PDMS coatings were used). The characteristic phenomenon for extraction from dry ground pepper was the decrease of monoterpenes % share in volatiles with increasing extraction times, whereas at the same time the % contents of sesquiterpenes increased. Addition of water to ground pepper substantially changed extraction kinetics and mutual proportions of mono to sesquiterpenes compared to dry samples by minimizing changes in mono- to sesquiterpenes ratio in different extraction times. Obtained results indicate that SPME can be a fast extraction method for volatiles of black pepper. Short extraction times (2-10min) in conjunction with the fast GC analysis (2.1min) proposed here may offer fast alternative to hydrodistillation allowing black pepper terpenes characterization. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics.

    PubMed

    Yu, Miao; Yang, Chao; Li, Xiao-Ming; Lei, Tian-Yu; Sun, Hao-Xuan; Dai, Li-Ping; Gu, Yu; Ning, Xue; Zhou, Ting; Wang, Chao; Zeng, Hai-Bo; Xiong, Jie

    2017-06-29

    The exploration of localized surface plasmon resonance (LSPR) beyond the usual visible waveband, for example within the ultraviolet (UV) or deep-ultraviolet (D-UV) regions, is of great significance due to its unique applications in secret communications and optics. However, it is still challenging to universally synthesize the corresponding metal nanostructures due to their high activity. Herein, we report a universal, eco-friendly, facile and rapid synthesis of various nano-metals encapsulated by ultrathin carbon shells, significantly with a remarkable deep-UV LSPR characteristic, via a liquid-phase laser fabrication method. Firstly, a new generation of the laser ablation in liquid (LAL) method has been developed with an emphasis on the elaborate selection of solvents to generate ultrathin carbon shells, and hence to stabilize the formed metal nanocrystals. As a result, a series of metal@carbon nanoparticles (NPs), including Cr@C, Ti@C, Fe@C, V@C, Al@C, Sn@C, Mn@C and Pd@C, can be fabricated by this modified LAL method. Interestingly, these NPs exhibit LSPR peaks in the range of 200-330 nm, which are very rare for localized surface plasmon resonance. Consequently, the UV plasmonic effects of these metal@carbon NPs were demonstrated both by the observed enhancement in UV photoluminescence (PL) from the carbon nanoshells and by the improvement of the photo-responsivity of UV GaN photodetectors. This work could provide a universal method for carbon shelled metal NPs and expand plasmonics into the D-UV waveband.

  10. JGR special issue on Deep Earthquakes

    NASA Astrophysics Data System (ADS)

    The editor and associate editors of the Journal of Geophysical Research—Solid Earth and Planets invite the submission of manuscripts for a special issue on the topic “Deep- and Intermediate-Focus Earthquakes, Phase Transitions, and the Mechanics of Deep Subduction.”Manuscripts should be submitted to JGR Editor Gerald Schubert (Department of Earth and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90024) before July 1, 1986, in accordance with the usual rules for manuscript submission. Submitted papers will undergo the normal JGR review procedure. For more information, contact either Schubert or the special guest associate editor, Cliff Frohlich (Institute for Geophysics, University of Texas at Austin, 4920 North IH-35, Austin, TX 78751; telephone: 512-451-6223).

  11. Formation of ore minerals in metamorphic rocks of the German continental deep drilling site (KTB)

    NASA Astrophysics Data System (ADS)

    Kontny, A.; Friedrich, G.; Behr, H. J.; de Wall, H.; Horn, E. E.; Möller, P.; Zulauf, G.

    1997-08-01

    The German Continental Deep Drilling Program (KTB) drilled a 9.1 km deep profile through amphibolite facies metamorphic rocks and reached in situ temperatures of 265°C. Each lithologic unit is characterized by typical ore mineral assemblages related to the regional metamorphic conditions. Paragneisses contain pyrrhotite + rutile + ilmenite ± graphite, metabasic units bear ilmenite + rutile + pyrrhotite ± pyrite, and additionally, the so-called variegated units yield pyrrhotite + titanite assemblages. In the latter unit, magnetite + ilmenite + rutile + titanite assemblages related to the lower amphibolite facies breakdown of ilmenite-hematite solid solution also occur locally. Retrograde hydrothermal mineralization which commenced during Upper Carboniferous times is characterized by the following geochemical conditions: (1) low saline Na-K-Mg-Cl fluids with sulfur and oxygen fugacities at the pyrite-pyrrhotite buffer and temperatures of 400-500°C, (2) fluids with CO2, CH4±N2, andpH, Eh, sulfur, and oxygen fugacity in the stability field of graphite + pyrite at temperatures of 280-350° and (3) moderate to high saline Ca-Na-Cl fluids with CH4+ N2; sulfur and oxygen fugacity are in the stability field of pyrrhotite at temperatures <300°C. The latter environment is confirmed by in situ conditions found at the bottom of the deep drilling. Monoclinic, ferrimagnetic pyrrhotite is the main carrier of magnetization which disappears below about 8.6 km, corresponding to in situ temperatures of about 250°C. Below this depth, hexagonal antiferromagnetic pyrrhotite with a Curie temperature of 260°C is the stable phase. Temperature-dependent transformation of pyrrhotite and the reaching of its Curie isotherm within the Earth crust are one of the striking results of the KTB deep drilling project.

  12. Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.; Denman, K. L.; Powell, T. M.; Richerson, P. J.; Richards, R. C.; Goldman, C. R.

    1984-01-01

    Chlorophyll-temperature profiles were measured across Lake Tahoe about every 10 days from April through July 1980. Analysis of the 123 profiles and associated productivity and nutrient data identified three important processes in the formation and dynamics of the deep chlorophyll maximum (DCM): turbulent diffusion, nutrient supply rate, and light availability. Seasonal variation in these three processes resulted in three regimes: a diffusion-dominated regime with a weak DCM, a variable-mixing regime with a pronounced, nutrient supply-dominated DCM, and a stable regime with a deep, moderate light availability-dominated DCM. The transition between the first two regimes occurred in about 10 days, the transition between the last two more gradually over about 3 weeks. The degree of spatial variability of the DCM was highest in the second regime and lowest in the third. These data indicate that the DCM in Lake Tahoe is constant in neither time nor space.

  13. Behavioural profiles are shaped by social experience: when, how and why.

    PubMed

    Sachser, Norbert; Kaiser, Sylvia; Hennessy, Michael B

    2013-05-19

    The comprehensive understanding of individual variation in behavioural profiles is a current and timely topic not only in behavioural ecology, but also in biopsychological and biomedical research. This study focuses on the shaping of behavioural profiles by the social environment in mammals. We review evidence that the shaping of behavioural profiles occurs from the prenatal phase through adolescence and beyond. We focus specifically on adolescence, a sensitive phase during which environmental stimuli have distinctive effects on the modulation of behavioural profiles. We discuss causation, in particular, how behavioural profiles are shaped by social stimuli through behavioural and neuroendocrine processes. We postulate a central role for maternal hormones during the prenatal phase, for maternal behaviour during lactation and for the interaction of testosterone and stress hormones during adolescence. We refer to evolutionary history and attempt to place developmental shaping into broader evolutionary historical trends. Finally, we address survival value. We argue that the shaping of behavioural profiles by environmental stimuli from the prenatal phase through adolescence represents an effective mechanism for repeated and rapid adaptation during the lifetime. Notably, the adolescent phase may provide a last chance for correction if the future environment deviates from that predicted in earlier phases.

  14. Next Step Toward Widespread Residential Deep Energy Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlvaine, J.; Saunders, S.; Bordelon, E.

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  15. Technical note: GODESS - a profiling mooring in the Gotland Basin

    NASA Astrophysics Data System (ADS)

    Prien, Ralf D.; Schulz-Bull, Detlef E.

    2016-07-01

    This note describes a profiling mooring with an interdisciplinary suite of sensors taking profiles between 180 and 30 m depth. It consists of an underwater winch, moored below 180 m depth, and a profiling instrumentation platform. In its described setup it can take about 200 profiles at pre-programmed times or intervals with one set of batteries. This allows for studies over an extended period of time (e.g. two daily profiles over a time of 3 months). The Gotland Deep Environmental Sampling Station (GODESS) in the Eastern Gotland Basin of the Baltic Sea is aimed at investigations of redoxcline dynamics. The described system can be readily adapted to other research foci by changing the profiling instrumentation platform and its payload.

  16. Processes of deep terrestrial mantles and cores

    NASA Technical Reports Server (NTRS)

    Jeanloz, Raymond

    1991-01-01

    Ultrahigh pressure experiments are currently focused on revealing processes occurring deep inside planets. This is in addition to the traditional emphasis on the constitution of planetary interiors, such as the identification of the high pressure perovskite phase of (Mg,Fe)SiO3 as the predominant mineral inside the Earth, and probably Venus. For example, experiments show that the mechanism of geochemical differentiation, separation of partial melts, differs fundamentally in the lower mantles of Earth and Venus than at near surface conditions. In addition to structural transformations, changes in chemical bonding caused by pressure can also be significant for planetary interiors. Measurements of AC and DC electrical conductivity can be obtained at ultrahigh pressures and temperatures, to greater than 80 GPa and 3000 K simultaneously, using the laser heated diamond cell. Anhydrous lower mantle assemblages (perovskite + or - oxide phases) exhibit an electrical conductivity that depends strongly on Fe content. Contrary to traditional assumptions, temperature affects the conductivity of lower mantle assemblages relatively little. The Earth's deep focus seismicity can be explained by the recycling of water into the mantle.

  17. White Matter Tract Injury is Associated with Deep Gray Matter Iron Deposition in Multiple Sclerosis.

    PubMed

    Bergsland, Niels; Tavazzi, Eleonora; Laganà, Maria Marcella; Baglio, Francesca; Cecconi, Pietro; Viotti, Stefano; Zivadinov, Robert; Baselli, Giuseppe; Rovaris, Marco

    2017-01-01

    With respect to healthy controls (HCs), increased iron concentrations in the deep gray matter (GM) and decreased white matter (WM) integrity are common findings in multiple sclerosis (MS) patients. The association between these features of the disease remains poorly understood. We investigated the relationship between deep iron deposition in the deep GM and WM injury in associated fiber tracts in MS patients. Sixty-six MS patients (mean age 50.0 years, median Expanded Disability Status Scale 5.25, mean disease duration 19.1 years) and 29 HCs, group matched for age and sex were imaged on a 1.5T scanner. Susceptibility-weighted imaging and diffusion tensor imaging (DTI) were used for assessing high-pass filtered phase values in the deep GM and normal appearing WM (NAWM) integrity in associated fiber tracts, respectively. Correlation analyses investigated the associations between filtered phase values (suggestive of iron content) and WM damage. Areas indicative of increased iron levels were found in the left and right caudates as well as in the left thalamus. MS patients presented with decreased DTI-derived measures of tissue integrity in the associated WM tracts. Greater mean, axial and radial diffusivities were associated with increased iron levels in all three GM areas (r values .393 to .514 with corresponding P values .003 to <.0001). Global NAWM diffusivity measures were not related to mean filtered phase values within the deep GM. Increased iron concentration in the deep GM is associated with decreased tissue integrity of the connected WM in MS patients. Copyright © 2016 by the American Society of Neuroimaging.

  18. Stability of organic carbon in deep soil layers controlled by fresh carbon supply.

    PubMed

    Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia

    2007-11-08

    The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.

  19. Descriptive sensory profiling of double emulsions with gelled and non-gelled inner water phase.

    PubMed

    Oppermann, A K L; Piqueras-Fiszman, B; de Graaf, C; Scholten, E; Stieger, M

    2016-07-01

    The use of double emulsions (w 1 /o/w 2 ) has been acknowledged as a promising strategy to reduce oil content in several food applications. Despite the potential of double emulsions for oil reduction, their sensory properties have not been investigated. In this study, we investigated sensory perception of double emulsions by descriptive sensory profiling using a trained panel (n=11). Two sets of emulsions with either 30 or 50% dispersed phase fraction were studied. Each set differed in composition (gelled and non-gelled inner w 1 phase, gelatin as gelling agent) and fat reduction level (30 to 50%), but was similar in oil droplet size and viscosity. Fat reduction level depended on the amount of water droplets entrapped inside the oil droplets. Emulsions were evaluated on nine attributes describing taste (T), mouth-feel (MF) and after-feel (AF) perception, including thickness (MF), creaminess (MF, AF), fattiness (MF, AF), and cohesiveness (MF). The replacement of oil by small water droplets w 1 did not decrease the intensity of fat-related attributes. When inner w 1 droplets were gelled, 47wt.% of oil could be replaced while increasing the intensity of fat-related attributes. This indicates that the sensory perception of single and double emulsions with gelled and non-gelled w 1 phase is mainly determined by the total oil droplet surface area. The composition of the inner water phase (gelled or not) also influences the sensory perception of double emulsions. We conclude that fat reduction up to 47wt.% can be achieved in double emulsions while maintaining or enhancing fat-related sensory perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. II - Model results

    NASA Technical Reports Server (NTRS)

    Yeh, Hwa-Young M.; Prasad, N.; Mack, Robert A.; Adler, Robert F.

    1990-01-01

    In this June 29, 1986 case study, a radiative transfer model is used to simulate the aircraft multichannel microwave brightness temperatures presented in the Adler et al. (1990) paper and to study the convective storm structure. Ground-based radar data are used to derive hydrometeor profiles of the storm, based on which the microwave upwelling brightness temperatures are calculated. Various vertical hydrometeor phase profiles and the Marshall and Palmer (M-P, 1948) and Sekhon and Srivastava (S-S, 1970) ice particle size distributions are experimented in the model. The results are compared with the aircraft radiometric data. The comparison reveals that the M-P distribution well represents the ice particle size distribution, especially in the upper tropospheric portion of the cloud; the S-S distribution appears to better simulate the ice particle size at the lower portion of the cloud, which has a greater effect on the low-frequency microwave upwelling brightness temperatures; and that, in deep convective regions, significant supercooled liquid water (about 0.5 g/cu m) may be present up to the -30 C layer, while in less convective areas, frozen hydrometeors are predominant above -10 C level.

  1. Emissions from simulated deep-seated fires in domestic waste.

    PubMed

    Lönnermark, Anders; Blomqvist, Per; Marklund, Stellan

    2008-01-01

    The emissions from deep-seated fires in domestic waste have been investigated. The gas phase yields of PAH, PCDD/F, PCB, HCB, particles, and metals associated to the particulate matter were analysed during a series of simulated deep-seated fires. The method of extinguishment was varied and in cases where water was used for extinguishment, the runoff water was analysed for PAH, PCDD/F, PCB, hexachlorobenzene, and metals. In total six tests were performed. In four of the tests, samples of the fire residue were analysed for PCDD/F, PCBs, and chlorobenzenes.

  2. Design and characterisation of a phased antenna array for intact breast hyperthermia.

    PubMed

    Curto, Sergio; Garcia-Miquel, Aleix; Suh, Minyoung; Vidal, Neus; Lopez-Villegas, Jose M; Prakash, Punit

    2018-05-01

    Currently available hyperthermia technology is not well suited to treating cancer malignancies in the intact breast. This study investigates a microwave applicator incorporating multiple patch antennas, with the goal of facilitating controllable power deposition profiles for treating lesions at diverse locations within the intact breast. A 3D-computational model was implemented to assess power deposition profiles with 915 MHz applicators incorporating a hemispheric groundplane and configurations of 2, 4, 8, 12, 16 and 20 antennas. Hemispheric breast models of 90 mm and 150 mm diameter were considered, where cuboid target volumes of 10 mm edge length (1 cm 3 ) and 30 mm edge length (27 cm 3 ) were positioned at the centre of the breast, and also located 15 mm from the chest wall. The average power absorption (αPA) ratio expressed as the ratio of the PA in the target volume and in the full breast was evaluated. A 4-antenna proof-of-concept array was fabricated and experimentally evaluated. Computational models identified an optimal inter-antenna spacing of 22.5° along the applicator circumference. Applicators with 8 and 12 antennas excited with constant phase presented the highest αPA at centrally located and deep-seated targets, respectively. Experimental measurements with a 4-antenna proof-of-concept array illustrated the potential for electrically steering power deposition profiles by adjusting the relative phase of the signal at antenna inputs. Computational models and experimental results suggest that the proposed applicator may have potential for delivering conformal thermal therapy in the intact breast.

  3. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, George V.

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep boreholemore » is located kilometers away.« less

  4. A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by Auckland Island

    NASA Astrophysics Data System (ADS)

    Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun

    2017-01-01

    A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.

  5. 30 CFR 203.34 - To which production may an RSV earned by qualified phase 2 and phase 3 ultra-deep wells on my...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.34 To which... lease, except as provided in paragraph (c) of § 203.33; (c) To any liquid hydrocarbon (oil and...

  6. 30 CFR 203.33 - To which production do I apply the RSV earned by qualified phase 2 and phase 3 ultra-deep wells...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.33... from qualified wells on or after May 18, 2007, reported on the Oil and Gas Operations Report, Part A...

  7. Numerical modeling of benthic processes in the deep Arabian Sea

    NASA Astrophysics Data System (ADS)

    Luff, Roger; Wallmann, Klaus; Grandel, Sibylle; Schlüter, Michael

    Aerobic and anaerobic degradation of particulate organic carbon (POC) and carbonate equilibria in deep-sea surface sediments were studied at five stations located in the western (WAST), northern (NAST), eastern (EAST), central (CAST), and southern (SAST) Arabian Sea. In situ oxygen fluxes, porewater profiles of dissolved oxygen, nitrate, and Mn, pH profiles and solid-phase profiles of particulate organic carbon, Mn, and Fe were measured at each station. An early diagenesis model was applied to simulate the degradation and dissolution processes and to determine the benthic fluxes of POC, oxygen, nitrate, phosphate, CO 2, HCO 3-, and CO 32-. The benthic data sets were evaluated to constrain the POC input and the kinetics of organic matter degradation used in the model. The modeling showed that the POC rain rate to the seafloor is high at the western and northern stations, and decreases towards the southeast. At stations located in the vicinity of continental margins (WAST, NAST, EAST), 5-7% of the primary production sinks to the deep-sea floor. This unusually high POC rain is either caused by dust particles that accelerate and amplify the particle export from the euphotic zone or by rapid lateral transport processes. At the more remote stations (CAST, SAST) that receive lower dust inputs, the rain efficiency decreases to 1-4%. In the model, organic matter was separated into three fractions (3-G-model) that differ considerably in reactivity. At stations WAST, NAST, EAST, and CAST the bulk of organic matter is composed of extremely labile organic matter with a first order degradation constant ( k) of 15-30 yr -1. The moderately labile fraction with a kinetic constant of 0.2-0.6 yr -1 dominates the POC input at the oligotrophic station in the southern Arabian Sea (SAST). The third fraction that has a very low reactivity ( k=2-5×10 -4 yr -1) is only a minor component of the POC rain at all investigated stations. More than 95% of the organic matter is consumed in aerobic

  8. Seismic Imaging Reveals Deep-Penetrating Fault Planes in the Wharton Basin Oceanic Mantle

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Singh, S. C.; Dyment, J.; Hananto, N. D.; Chauhan, A.

    2011-12-01

    We present images from a deep multi-channel seismic reflection survey acquired in 2006 over the oceanic lithosphere of the Wharton Basin offshore northern Sumatra, NW of Simeulue island. The main ~230-km long seismic profile is roughly parallel to the trench at ~32-66 km distance from the subduction front and crosses (at oblique angles to both flow line and isochron directions) an entire segment of 55-57 my-old fast-spread crust formed at the extinct Wharton spreading center, as well as two bounding ~N5°E trending fracture zones near its extremities; complementary data is provided by the oceanic portions of two margin-crossing profiles on either side shot during the same survey. This high-quality, 12-km streamer dataset acquired for deep reflection imaging (10000 cu in tuned airgun array and 15-m source and streamer depths) reveals the presence of mostly SE-dipping (20 to 40 degrees dip) events cutting across and extending below the oceanic Moho, down to a maximum depth below seafloor of ~37 km, at ~5 km spacing along the trench-parallel profile. Similar dipping mantle events are imaged on the oceanic portion of another long-offset profile acquired in 2009 offshore central Sumatra south of Pagai island, which will also be presented. Such events are unlikely to be imaging artefacts of the 2D acquisition, such as out-of-plane energy originating from sharp, buried basement reliefs trending obliquely to the profile. Due to their geometry, they do not seem to be associated with plate bending at the trench outer-rise, which has a relatively modest expression at the seafloor and within the incoming sedimentary section north of the Simeulue elbow. We propose that these deep-penetrating dipping reflectors are fossil fault planes formed due to compressive stresses at the beginning of the continent-continent collision between India and Eurasia, the early stages of which were responsible for the cessation of seafloor spreading at the Wharton ridge at ca 40 Ma.

  9. Cyriax's deep friction massage application parameters: Evidence from a cross-sectional study with physiotherapists.

    PubMed

    Chaves, Paula; Simões, Daniela; Paço, Maria; Pinho, Francisco; Duarte, José Alberto; Ribeiro, Fernando

    2017-12-01

    Deep friction massage is one of several physiotherapy interventions suggested for the management of tendinopathy. To determine the prevalence of deep friction massage use in clinical practice, to characterize the application parameters used by physiotherapists, and to identify empirical model-based patterns of deep friction massage application in degenerative tendinopathy. observational, analytical, cross-sectional and national web-based survey. 478 physiotherapists were selected through snow-ball sampling method. The participants completed an online questionnaire about personal and professional characteristics as well as specific questions regarding the use of deep friction massage. Characterization of deep friction massage parameters used by physiotherapists were presented as counts and proportions. Latent class analysis was used to identify the empirical model-based patterns. Crude and adjusted odds ratios and 95% confidence intervals were computed. The use of deep friction massage was reported by 88.1% of the participants; tendinopathy was the clinical condition where it was most frequently used (84.9%) and, from these, 55.9% reported its use in degenerative tendinopathy. The "duration of application" parameters in chronic phase and "frequency of application" in acute and chronic phases are those that diverge most from those recommended by the author of deep friction massage. We found a high prevalence of deep friction massage use, namely in degenerative tendinopathy. Our results have shown that the application parameters are heterogeneous and diverse. This is reflected by the identification of two application patterns, although none is in complete agreement with Cyriax's description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Initiation and evolution of the Oligo-Miocene rift basins of southwestern Europe: Contribution of deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Bois, C.

    1993-11-01

    Southwestern European Oligo-Miocene rift basins have recently been investigated by deep seismic reflection profiling. The study of these data, together with other geophysical and geological data, shows that the rifts, which run from the Rhinegraben to the western Mediterranean, do not form a single clearcut system. The N-trending rifts (Rhinegraben, Bresse and Limagne) were developed on a cold and rigid lithosphere affected by the Alpine collision. The NE-trending rifts (southeastern France, Gulf of Lions and Valencia Trough) were formed slightly later in a backarc basin associated with an active segment of the European-Iberian plate that was heated, affected by widespread calcalkaline volcanism and probably weakened. All the southwestern European rifts and basins together may, however, be related to a common heritage represented by the boundary between the European-Iberian and African-Apulian plates that was created in the Jurassic with the initiation of the Tethys Ocean. The present features of the southwestern European Oligo-Miocène rift basins may be explained by a combination of three geodynamic mechanisms: mechanical stretching of the lithosphere, active mantle uplifting, and subordinate lithospheric flexuring. All the rifts were probably initiated by passive stretching. A systematic discrepancy between stretching derived from fault analysis and attenuation of the crust has been observed in all the rifts. This suggests that these rifts were subsequently reworked by one or several active mantle upwelling events associated with late shoulder uplift, asthenosphere upwelling and anomalous P-wave velocities in the lowermost crust and the uppermost mantle. Crustal attenuation may have been achieved by mantle intrusion, metamorphism of the deep crust and/or its delamination. Some of the rifts were affected by lithospheric flexuring. Combinations, in various proportions, of a small number of geodynamic mechanisms probably controlled many basins in the world. This

  11. Kelvin Wave Influence on the Shallow-to-Deep Transition Over the Amazon

    NASA Astrophysics Data System (ADS)

    Rowe, A.; Serra, Y. L.

    2017-12-01

    The suite of observations from GOAmazon and CHUVA offers a unique opportunity to examine land-based convective processes in the tropics, including the poorly represented shallow-to-deep transition. This study uses these data to investigate impacts of Kelvin waves on the the shallow-to-deep transition over the Central Amazon. The Kelvin waves that propagate over the region often originate over the tropical central and east Pacific, with local generation over the Andes also observed. The observed 15 m s-1 phase speed and 4500 km wave length during the two-year campaign are in agreement with previously published studies of these waves across the tropics. Also in agreement with previous studies, we find the waves are most active during the wet season (November-May) for this region. Using four separate convective event classes (clear-sky, nonprecipitating cumulus congestus, afternoon deep convection, and mesoscale convective systems), we examine how the convection preferentially develops for different phases of the Kelvin waves seen during GOAmazon. We additionally examine surface meteorological variables, the vertical thermodynamic and dynamic structure of the troposphere, vertical moist static stability, integrated column water vapor and liquid water, and surface energy fluxes within the context of these convective classes to identify the important environmental factors contributing to observed periods of enhanced deep convection related to the waves. Results suggest that the waves significantly modify the local environment, such as creating a deep layer of moisture throughout the troposphere, favoring more organized convection in the active than in the suppressed phase of the wave. The significance of wave-related environmental modifications are assessed by comparing local rainfall accumulations during Kelvin wave activity to that when the waves are not present. Future work will further explore the shallow-to-deep transition and its modulation by Kelvin wave activity

  12. Experimental multi-phase CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.J.; Koksalan, T.

    2004-01-01

    Long-term CO2 saturated brine-rock experiments were conducted to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration mineral phases within deep-saline aquifers. Experimental results were consistent with theoretical thermodynamic calculations when CO2-saturated brines were reacted with limestone rocks. The CO2-saturated brine-limestone reactions were characterized by compositional and mineralogical-changes in the aquifer fluid and formation rocks that were dependent on initial brine composition as were the changes in formation porosity, especially dissolved sulfate. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone rocks relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions occured on a measurable but kinetically slow time scale at 120??C.

  13. Phased Retrofits in Existing Homes in Florida Phase II: Shallow Plus Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, K.; Parker, D.; Martin, E.

    The BAPIRC team and Florida Power and Light (FPL) electric utility pursued a pilot phased energy-efficiency retrofit program in Florida by creating detailed data on the energy and economic performance of two levels of retrofit - simple and deep. For this Phased Deep Retrofit (PDR) project, a total of 56 homes spread across the utility partner's territory in east central Florida, southeast Florida, and southwest Florida were instrumented between August 2012 and January 2013, and received simple pass-through retrofit measures during the period of March 2013 - June 2013. Ten of these homes received a deeper package of retrofits duringmore » August 2013 - December 2013. A full account of Phase I of this project, including detailed home details and characterization, is found in Parker et al, 2015 (currently in draft). Phase II of this project, which is the focus of this report, applied the following additional retrofit measures to select homes that received a shallow retrofit in Phase I: a) Supplemental mini-split heat pump (MSHP) (6 homes); b) Ducted and space coupled Heat Pump Water Heater (8 homes); c) Exterior insulation finish system (EIFS) (1 homes); d) Window retrofit (3 homes); e) Smart thermostat (21 homes: 19 NESTs; 2 Lyrics); f) Heat pump clothes dryer (8 homes); g) Variable speed pool pump (5 homes).« less

  14. Behavioural profiles are shaped by social experience: when, how and why

    PubMed Central

    Sachser, Norbert; Kaiser, Sylvia; Hennessy, Michael B.

    2013-01-01

    The comprehensive understanding of individual variation in behavioural profiles is a current and timely topic not only in behavioural ecology, but also in biopsychological and biomedical research. This study focuses on the shaping of behavioural profiles by the social environment in mammals. We review evidence that the shaping of behavioural profiles occurs from the prenatal phase through adolescence and beyond. We focus specifically on adolescence, a sensitive phase during which environmental stimuli have distinctive effects on the modulation of behavioural profiles. We discuss causation, in particular, how behavioural profiles are shaped by social stimuli through behavioural and neuroendocrine processes. We postulate a central role for maternal hormones during the prenatal phase, for maternal behaviour during lactation and for the interaction of testosterone and stress hormones during adolescence. We refer to evolutionary history and attempt to place developmental shaping into broader evolutionary historical trends. Finally, we address survival value. We argue that the shaping of behavioural profiles by environmental stimuli from the prenatal phase through adolescence represents an effective mechanism for repeated and rapid adaptation during the lifetime. Notably, the adolescent phase may provide a last chance for correction if the future environment deviates from that predicted in earlier phases. PMID:23569292

  15. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Ohno, N.; Shibata, Y.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less

  16. Obtaining Unique, Comprehensive Deep Seismic Sounding Data Sets for CTBT Monitoring and Broad Seismological Studies

    DTIC Science & Technology

    2007-07-02

    TYPE Final Report 3. DATES COVERED (From - To) 26-Sep-01 to 26-Jun-07 4. TITLE AND SUBTITLE OBTAINING UNIQUE, COMPREHENSIVE DEEP SEISMIC ... seismic records from 12 major Deep Seismic Sounding (DSS) projects acquired in 1970-1980’s in the former Soviet Union. The data include 3-component...records from 22 Peaceful Nuclear Explosions (PNEs) and over 500 chemical explosions recorded by a grid of linear, reversed seismic profiles covering a

  17. Multipurpose exciter with low phase noise

    NASA Technical Reports Server (NTRS)

    Conroy, B.; Le, D.

    1989-01-01

    Results of an effort to develop a lower-cost exciter with high stability, low phase noise, and controllable phase and frequency for use in Deep Space Network and Goldstone Solar System Radar applications are discussed. Included is a discussion of the basic concept, test results, plans, and concerns.

  18. Clinico-Pathological Profile of Deep Neck Space Infection: A Prospective Study.

    PubMed

    Das, Rumpa; Nath, Gorakh; Mishra, Anupam

    2017-09-01

    Deep neck space infections (DNI) has been a common and serious disease, involving several spaces created by planes of greater and lesser resistance between the fascial layers of the neck. Infection of deep neck space has been dangerous due to its potential ease of spread from one space to other space, associated sepsis and upper airway obstruction. This prospective study was done in 45 patients of DNI over a period of 1 year. Patients with age of 1 month to 80 years of both the sexes were included. Patient's particular, clinical presentation and associated co-morbid conditions, physical examination, routine laboratory investigations and radiological investigations were analyzed. Patients were treated, response to the treatment was assessed and follow-up was done. In present study, DNI was more commonly seen in rural population (67%) with a male predominance (69%). Mean age of presentation was 34.4 years. Odontogenic infection (64.11%) was the commonest etiological factor and diabetes mellitus (26.66%) was the commonest co-morbid condition. Most common presenting symptom was neck pain and neck swelling (91.1%) and submandibular space (66.6%) was the most commonly involved space followed by sublingual space (44.6%). Both medical and surgical treatment was needed in most of the cases (77.77%). 77.7% cases showed complete regression, 15.5% showed partial regression and they lost to follow-up, 4.4% expired and 2.2% showed progressive deterioration. DNI is a common and life-threatening disease. Early diagnosis and management is necessary for complete cure and to prevent complications associated with DNIs.

  19. NASA deep space network operations planning and preparation

    NASA Technical Reports Server (NTRS)

    Jensen, W. N.

    1982-01-01

    The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.

  20. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  1. Deep Segmentation from 2D Forward Modeling and 3D Tomography of the Maranhão-Barreirinhas-Ceará Margin, NW Brazil

    NASA Astrophysics Data System (ADS)

    Afonso Dias, Nuno; Afilhado, Alexandra; Schnürle, Philippe; Gallais, Flora; Soares, José; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Moulin, Maryline; Aslanian, Daniel; Matias, Luís; Evain, Mikael; Loureiro, Afonso

    2017-04-01

    The deep crustal structure of the North-East equatorial Brazilian margin, was investigated during the MAGIC (Margins of brAzil, Ghana and Ivory Coast) joint project, conducted in 2012. The main goal set to understand the fundamental processes leading to the thinning and finally breakup of the continental crust, in a context of a Pull-apart system with two strike-slip borders. The offshore Barreirinhas Basin, was probed by a set of 5 intersecting deep seismic wide-angle profiles, with the deployment of short-period OBS's from IFREMER and land stations from the Brazilian pool. The experiment was devoted to obtain the 2D structure along the directions of flow lines, parallel to margin segmentation and margin segmentation, from tomography and forward modeling. The OBS's deployed recorded also lateral shooting along some profiles, allowing a 3D tomography inversion complementing the results of 2D modeling. Due to the large variation of the water column thickness, heterogeneous crustal structure and Moho depth, several approaches were tested to generate initial input models, to set the grid parameterization and inversion parameters. The assessment of the 3D model was performed by standard synthetic tests and comparison with the obtained 2D forward models. The results evidence a NW-SE segmentation of the margin, following the opening direction of this pull-apart basin, and N-S segmentation that marks the passage between Basins II-III. The signature of the segmentation is evident in the tomograms, where the shallowing of the basement from Basin II towards the oceanic domain is well marked by a NW-SE velocity gradient. Both 2D forward modeling and 3D tomographic inversion indicate a N-S segmentation in the proto-oceanic and oceanic domains, at least at the shallow mantle level. In the southern area the mantle is much faster than on the north. In all profiles crossing Basin II, a deep layer with velocities of 7-4-7.6 km/s generates both refracted as well as reflected phases

  2. Phase-step retrieval for tunable phase-shifting algorithms

    NASA Astrophysics Data System (ADS)

    Ayubi, Gastón A.; Duarte, Ignacio; Perciante, César D.; Flores, Jorge L.; Ferrari, José A.

    2017-12-01

    Phase-shifting (PS) is a well-known technique for phase retrieval in interferometry, with applications in deflectometry and 3D-profiling, which requires a series of intensity measurements with certain phase-steps. Usually the phase-steps are evenly spaced, and its knowledge is crucial for the phase retrieval. In this work we present a method to extract the phase-step between consecutive interferograms. We test the proposed technique with images corrupted by additive noise. The results were compared with other known methods. We also present experimental results showing the performance of the method when spatial filters are applied to the interferograms and the effect that they have on their relative phase-steps.

  3. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  4. Deep-release of Epon 828 epoxy from the shock-driven reaction product phase

    NASA Astrophysics Data System (ADS)

    Lang, John; Fredenburg, Anthony; Coe, Joshua; Dattelbaum, Dana

    2017-06-01

    A challenge in improving equations-of-state (EOS) for polymers and their product phase is the lack of off-Hugoniot data. Here, we describe a novel experimental approach for obtaining release pathways along isentropes from the shocked products. A series of gas-gun experiments was conducted to obtain release isentropes of the products for 70/30 wt% Epon 828 epoxy resin/Jeffamine T-403 curing agent. Thin epoxy flyers backed by a low-density syntactic foam were impacted into LiF windows at up to 6.3 mm/ μs, creating stresses in excess of those required for reaction ( 25 GPa). Following a sustained shock input, a rarefaction fan from the back of the thin flyer reduced the pressure in the epoxy products along a release isentrope. Optical velocimetry (PDV) was used to measure the particle velocity at the epoxy/LiF interface. Numerical simulations using several different EOS describing the reactant-to-product transformation were conducted, and the results were compared with measured wave profiles. The best agreement with experiment was obtained using separate tabular EOS for the polymer ``reactant'' (e.g. epoxy) and product mixture, suggesting the transition to the products is irreversible.

  5. Italian and Spanish commercial tomato sauces for pasta dressing: study of sensory and head-space profiles by Flash Profiling and solid-phase microextraction-gas chomatography-mass spectrometry.

    PubMed

    Bendini, Alessandra; Vallverdú-Queralt, Anna; Valli, Enrico; Palagano, Rosa; Lamuela-Raventos, Rosa Maria; Toschi, Tullia Gallina

    2017-08-01

    The sensory and head-space profiles of Italian and Spanish commercial tomato sauces were investigated. The Flash Profiling method was used to evaluate sensory characteristics. Samples within each set were ranked according to selected descriptors. One hundred volatile compounds were identified by solid-phase microextraction-gas chomatography-mass spectrometry. For Italian samples, the sensory notes of basil/aromatic herbs, acid and cooked tomato were among those perceived most by the assessors, whereas, in Spanish samples, the sensory attributes of garlic/onion and onion/sweet pepper and, in Italian samples, cooked tomato were among those found most frequently. Data were elaborated using multivariate statistical approaches and interesting correlations were observed among the different sensory attributes and related volatile compounds. Spanish samples were characterized by the highest content of volatiles linked to the thermal treatment of tomatoes and to raw and sautéed garlic and onion, whereas the Italian samples were characterized by terpenic compounds typical of basil and volatile molecules derived from fresh tomato. These results confirm the influence of both formulation and production processes on the aromatic profile (sensory attributes and volatile compounds) of tomato products, which is probably related to the different eating habits and culinary traditions in Italy and Spain. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Deep Shear Wave Velocity of Southern Bangkok and Vicinity

    NASA Astrophysics Data System (ADS)

    Wongpanit, T.; Hayashi, K.; Pananont, P.

    2017-09-01

    Bangkok is located on the soft marine clay in the Lower Chao Phraya Basin which can amplify seismic wave and can affect the shaking of buildings during an earthquake. Deep shear wave velocity of the sediment in the basin are useful for study the effect of the soft sediment on the seismic wave and can be used for earthquake engineering design and ground shaking estimation, especially for a deep basin. This study aims to measure deep shear wave velocity and create 2D shear wave velocity profile down to a bedrock in the southern Bangkok by the Microtremor measurements with 2 seismographs using Spatial Autocorrelation (2-SPAC) technique. The data was collected during a day time on linear array geometry with offsets varying between 5-2,000 m. Low frequency of natural tremor (0.2-0.6 Hz) was detected at many sites, however, very deep shear wave data at many sites are ambiguous due to man-made vibration noises in the city. The results show that shear wave velocity of the sediment in the southern Bangkok is between 100-2,000 ms-1 and indicate that the bedrock depth is about 600-800 m, except at Bang Krachao where bedrock depth is unclear.

  7. The Next Step Toward Widespread Residential Deep Energy Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlvaine, J.; Martin, E.; Saunders, S.

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  8. Introducing Convective Cloud Microphysics to a Deep Convection Parameterization Facilitating Aerosol Indirect Effects

    NASA Astrophysics Data System (ADS)

    Alapaty, K.; Zhang, G. J.; Song, X.; Kain, J. S.; Herwehe, J. A.

    2012-12-01

    Short lived pollutants such as aerosols play an important role in modulating not only the radiative balance but also cloud microphysical properties and precipitation rates. In the past, to understand the interactions of aerosols with clouds, several cloud-resolving modeling studies were conducted. These studies indicated that in the presence of anthropogenic aerosols, single-phase deep convection precipitation is reduced or suppressed. On the other hand, anthropogenic aerosol pollution led to enhanced precipitation for mixed-phase deep convective clouds. To date, there have not been many efforts to incorporate such aerosol indirect effects (AIE) in mesoscale models or global models that use parameterization schemes for deep convection. Thus, the objective of this work is to implement a diagnostic cloud microphysical scheme directly into a deep convection parameterization facilitating aerosol indirect effects in the WRF-CMAQ integrated modeling systems. Major research issues addressed in this study are: What is the sensitivity of a deep convection scheme to cloud microphysical processes represented by a bulk double-moment scheme? How close are the simulated cloud water paths as compared to observations? Does increased aerosol pollution lead to increased precipitation for mixed-phase clouds? These research questions are addressed by performing several WRF simulations using the Kain-Fritsch convection parameterization and a diagnostic cloud microphysical scheme. In the first set of simulations (control simulations) the WRF model is used to simulate two scenarios of deep convection over the continental U.S. during two summer periods at 36 km grid resolution. In the second set, these simulations are repeated after incorporating a diagnostic cloud microphysical scheme to study the impacts of inclusion of cloud microphysical processes. Finally, in the third set, aerosol concentrations simulated by the CMAQ modeling system are supplied to the embedded cloud microphysical

  9. The dark side of the hyporheic zone: Depth profiles of nitrogen and its processing in stream sediments

    USGS Publications Warehouse

    Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.

    2011-01-01

    1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.

  10. Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes.

    PubMed

    Durant, Thomas J S; Olson, Eben M; Schulz, Wade L; Torres, Richard

    2017-12-01

    Morphologic profiling of the erythrocyte population is a widely used and clinically valuable diagnostic modality, but one that relies on a slow manual process associated with significant labor cost and limited reproducibility. Automated profiling of erythrocytes from digital images by capable machine learning approaches would augment the throughput and value of morphologic analysis. To this end, we sought to evaluate the performance of leading implementation strategies for convolutional neural networks (CNNs) when applied to classification of erythrocytes based on morphology. Erythrocytes were manually classified into 1 of 10 classes using a custom-developed Web application. Using recent literature to guide architectural considerations for neural network design, we implemented a "very deep" CNN, consisting of >150 layers, with dense shortcut connections. The final database comprised 3737 labeled cells. Ensemble model predictions on unseen data demonstrated a harmonic mean of recall and precision metrics of 92.70% and 89.39%, respectively. Of the 748 cells in the test set, 23 misclassification errors were made, with a correct classification frequency of 90.60%, represented as a harmonic mean across the 10 morphologic classes. These findings indicate that erythrocyte morphology profiles could be measured with a high degree of accuracy with "very deep" CNNs. Further, these data support future efforts to expand classes and optimize practical performance in a clinical environment as a prelude to full implementation as a clinical tool. © 2017 American Association for Clinical Chemistry.

  11. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in water between 200 and 400 meters deep, you begin drilling an original deep well with a perforated... 200 meters deep; (ii) May 18, 2007, for an RSV earned by a qualified deep well on a lease that is located entirely in water more than 200 meters deep; or (iii) The date that the first qualified well that...

  12. Structure of the ripple phase in lecithin bilayers.

    PubMed Central

    Sun, W J; Tristram-Nagle, S; Suter, R M; Nagle, J F

    1996-01-01

    The phases of the x-ray form factors are derived for the ripple (Pbeta') thermodynamic phase in the lecithin bilayer system. By combining these phases with experimental intensity data, the electron density map of the ripple phase of dimyristoyl-phosphatidylcholine is constructed. The phases are derived by fitting the intensity data to two-dimensional electron density models, which are created by convolving an asymmetric triangular ripple profile with a transbilayer electron density profile. The robustness of the model method is indicated by the result that many different models of the transbilayer profile yield essentially the same phases, except for the weaker, purely ripple (0,k) peaks. Even with this residual ambiguity, the ripple profile is well determined, resulting in 19 angstroms for the ripple amplitude and 10 degrees and 26 degrees for the slopes of the major and the minor sides, respectively. Estimates for the bilayer head-head spacings show that the major side of the ripple is consistent with gel-like structure, and the minor side appears to be thinner with lower electron density. Images Fig. 1 Fig. 2 PMID:8692934

  13. Deep drawing of 304 L Steel Sheet using Vegetable oils as Forming Lubricants

    NASA Astrophysics Data System (ADS)

    Shashidhara, Y. M.; Jayaram, S. R.

    2012-12-01

    The study involves the evaluation of deep drawing process using two non edible oils, Pongam (Pongammia pinnata) and Jatropha (Jatropha carcass) as metal forming lubricants. Experiments are conducted on 304L steel sheets under the raw and modified oils with suitable punch and die on a hydraulic press of 200 ton capacity. The punch load, draw-in-length and wall thickness distribution for deep drawn cups are observed. The drawn cups are scanned using laser scanning technique and 3D models are generated using modeling package. The wall thickness profiles of cups at different sections (or height) are measured using CAD package. Among the two raw oils, the drawn cups under Jatropha oil, have uniform wall thickness profile compared to Pongam oil. Uneven flow of material and cup rupturing is observed under methyl esters of Pongam and Jatropha oil lubricated conditions. However, the results are observed under epoxidised Jatropha oil with uniform metal flow and wall thicknesses compared to mineral and other versions of vegetable oils.

  14. Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific

    PubMed Central

    Umling, Natalie E.; Thunell, Robert C.

    2017-01-01

    The deep ocean is most likely the primary source of the radiocarbon-depleted CO2 released to the atmosphere during the last deglaciation. While there are well-documented millennial scale Δ14C changes during the most recent deglaciation, most marine records lack the resolution needed to identify more rapid ventilation events. Furthermore, potential age model problems with marine Δ14C records may obscure our understanding of the phase relationship between inter-ocean ventilation changes. Here we reconstruct changes in deep water and thermocline radiocarbon content over the last deglaciation in the eastern equatorial Pacific (EEP) using benthic and planktonic foraminiferal 14C. Our records demonstrate that ventilation of EEP thermocline and deep waters occurred synchronously during the last deglaciation. In addition, both gradual and rapid deglacial radiocarbon changes in these Pacific records are coeval with changes in the Atlantic records. This in-phase behaviour suggests that the Southern Ocean overturning was the dominant driver of changes in the Atlantic and Pacific ventilation during deglaciation. PMID:28112161

  15. Novel locomotor muscle design in extreme deep-diving whales.

    PubMed

    Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A

    2013-05-15

    Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

  16. Profiling under UNIX by patching

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1986-01-01

    Profiling under UNIX is done by inserting counters into programs either before or during the compilation or assembly phases. A fourth type of profiling involves monitoring the execution of a program, and gathering relevant statistics during the run. This method and an implementation of this method are examined, and its advantages and disadvantages are discussed.

  17. Phases and interfaces from real space atomically resolved data: Physics-based deep data image analysis

    DOE PAGES

    Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; ...

    2016-08-12

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysismore » is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.« less

  18. Analytical aspects of plant metabolite profiling platforms: current standings and future aims.

    PubMed

    Seger, Christoph; Sturm, Sonja

    2007-02-01

    Over the past years, metabolic profiling has been established as a comprehensive systems biology tool. Mass spectrometry or NMR spectroscopy-based technology platforms combined with unsupervised or supervised multivariate statistical methodologies allow a deep insight into the complex metabolite patterns of plant-derived samples. Within this review, we provide a thorough introduction to the analytical hard- and software requirements of metabolic profiling platforms. Methodological limitations are addressed, and the metabolic profiling workflow is exemplified by summarizing recent applications ranging from model systems to more applied topics.

  19. Effects of fortified lysine on the amino acid profile and sensory qualities of deep-fried and dried noodles.

    PubMed

    Polpuech, C; Chavasit, V; Srichakwal, P; Paniangvait, P

    2011-08-01

    Lysine fortification of wheat flour has been used toward reducing protein energy malnutrition in developing countries. The feasibility of fortifying instant noodles with lysine was evaluated based on sensory qualities and the residual lysine content. Fifty grams of deep-fried and dried instant noodles were fortified with 0.23 and 0.21 g lysine, respectively. The production temperatures used for deep-frying were 165-175 degrees C and for drying, 80-105 degrees C; these are the temperatures used in the industrial production of both kinds of noodles. Lysine fortification was then performed at the local factories using the commercial production lines and packaging for both types of instant noodles. Both fortified and unfortified deep-fried and dried instant noodles were stored at 50 degrees C under fluorescent light for 2 and 4 months, respectively. The fortified products were tested for residual lysine content and sensory qualities as compared with unfortified noodles. The results show fortified products from the tested processing temperatures were all accepted. After storage, significant losses of lysine were not found in both types of noodles analysed. The lysine-fortified noodles had amino acid scores of 102% and 122%, respectively. After 2 months, the sensory quality of fortified deep-fried noodles was still acceptable; however, the dried noodles turned to an unacceptable dark colour. This study shows that it is feasible to fortify deep-fried instant noodles with lysine, though lysine fortification exhibited an undesirable colour in the dried instant noodles after storage.

  20. Monitoring the deep western boundary current in the western North Pacific by echo intensity measured with lowered acoustic Doppler current profiler

    NASA Astrophysics Data System (ADS)

    Komaki, Kanae; Nagano, Akira

    2018-05-01

    Oxidation of iron and manganese ions is predominant in the oxygen-rich deep western boundary current (DWBC) within the Pacific Ocean. By the faster removal of particulate iron hydroxide and manganese oxide, densities of the particulate matters are considered to be lower in the DWBC than the interior region. To detect the density variation of suspended particles between the DWBC and interior regions, we analyzed echo intensity (EI) measured in the western North Pacific by hydrographic casts with a 300 kHz lowered acoustic Doppler current profiler (LADCP) in a whole water column. At depths greater than 3000 m ( 3000 dbar), EI is almost uniformly low between 12°N and 30°N but peaks sharply from 30°N to 35°N to a maximum north of 35°N. EI is found to be anomalously low in the DWBC compared to the background distribution. The DWBC pathways are identifiable by the low EI and high dissolved oxygen concentration. EI data by LADCPs and other acoustic instruments may be used to observe the temporal variations of the DWBC pathways.

  1. Chemical stratigraphy of the Apollo 17 deep drill cores 70009-70007

    NASA Technical Reports Server (NTRS)

    Ehmann, W. D.; Ali, M. Z.

    1977-01-01

    A description is presented of an analysis of a total of 26 samples from three core segments (70009, 70008, 70007) of the Apollo 17 deep drill string. The deep drill string was taken about 700 m east of the Camelot Crater in the Taurus-Littrow region of the moon. Three core segments have been chemically characterized from the mainly coarse-grained upper portion of the deep drill string. The chemical data suggest that the entire 70007-70009 portion of the deep drill string examined was not deposited as a single unit, but was formed by several events sampling slightly different source materials which may have occurred over a relatively short period of time. According to the data from drill stem 70007, there were at least two phases of deposition. Core segment 70009 is probably derived from somewhat different source material than 70008. It seems to be a very well mixed material.

  2. Variability of oceanic deep convective system vertical structures observed by CloudSat in Indo-Pacific regions associated with the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    Yuan, Jian

    2016-09-01

    Vertical structures of deep convective systems during the Madden-Julian oscillation (MJO) are investigated using CloudSat radar measurements in Indo-Pacific oceanic areas. In active phases of the MJO, relatively more large systems and connected mesoscale convective systems (CMCSs) occur. The occurrence frequency of CMCSs peaks in the onset phase, a phase earlier than separated mesoscale convective systems (SMCSs). Compared with SMCSs, CMCSs of all sizes have weaker reflectivity above 8 km in their deep precipitating portions and thick anvil clouds closely linked to them, suggesting more "stratiform" physics associated with them. SMCSs and CMCSs together produce relatively the least anvil clouds in the onset phase, while their deep precipitating portions show stronger/weaker reflectivity above 8 km before/after the onset phase. Thus, after the onset phase of the MJO, mesoscale convective systems shift toward a more "convective" organization because SMCSs maximize after the onset, while their internal structures appear more stratiform because internally they have weaker reflectivity above 8 km. CMCSs coincide with a more humid middle troposphere spatially, even at the same locations a few days before they occur. Middle-tropospheric moistening peaks in the onset phase. Moistening of the free troposphere around deep convective systems shows relatively stronger moistening/drying below 700 hPa before/after the onset phase than domain-mean averages. Low-topped clouds occur most frequently around CMCSs and in active phases, consistent with the presence of a moister free troposphere. Coexistence of these phenomena suggests that the role of middle troposphere moisture in the formation of CMCSs should be better understood.

  3. Trends in Performance and Characteristics of Ultra-Stable Oscillators for Deep Space Radio Science Experiments

    NASA Technical Reports Server (NTRS)

    Asmar, Sami

    1997-01-01

    Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.

  4. How to Use CA-125 More Effectively in the Diagnosis of Deep Endometriosis

    PubMed Central

    Raymundo, Thiers Soares; Soares, Leila Cristina; Pereira, Thiago Rodrigues Dantas; Demôro, Alessandra Viviane Evangelista

    2017-01-01

    Deep infiltrative endometriosis (DIE) is a severe form of the disease. The median time interval from the onset of symptoms to diagnosis of endometriosis is around 8 years. In this prospective study patients were divided into two groups: cases (34 DIE patients) and control (20 tubal ligation patients). The main objective of this study was to evaluate the performance of CA-125 measurement in the menstrual and midcycle phases of the cycle, as well as the difference in its levels between the two phases, for the early diagnosis of DIE. Area Under the Curve (AUC) of CA-125 in menstrual phase and of the difference between menstrual and midcycle phases had the best performance (both with AUC = 0.96), followed by CA-125 in the midcycle (AUC = 0.89). The ratio between menstrual and midcycle phases had the worst performance. CA-125 may be useful for the diagnosis of deep endometriosis, especially when both are collected during menstruation and in midcycle. These may help to decrease the long interval until the definitive diagnosis of DIE. Multicentric studies with larger samples should be performed to better evaluate the cost-effectiveness of measuring CA-125 in two different phases of the menstrual cycle. PMID:28660213

  5. The deep Algerian margin structure revisited by the Algerian-French SPIRAL research program, stage 2 : Wide-ange seismic experiment

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral

    2010-05-01

    During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.

  6. Fe-Ni-Cu-C-S phase relations at high pressures and temperatures - The role of sulfur in carbon storage and diamond stability at mid- to deep-upper mantle

    NASA Astrophysics Data System (ADS)

    Tsuno, Kyusei; Dasgupta, Rajdeep

    2015-02-01

    Constraining the stable form of carbon in the deep mantle is important because carbon has key influence on mantle processes such as partial melting and element mobility, thereby affecting the efficiency of carbon exchange between the endogenic and exogenic reservoirs. In the reduced, mid- to deep-upper mantle, the chief host of deep carbon is expected to be graphite/diamond but in the presence of Fe-Ni alloy melt in the reduced mantle and owing to high solubility of carbon in such alloy phase, diamond may become unstable. To investigate the nature of stable, C-bearing phases in the reduced, mid- to deep-upper mantle, here we have performed experiments to examine the effect of sulfur on the phase relations of the Ni-rich portion of Fe-Ni ± Cu-C-S system, and carbon solubility in the Fe-Ni solid and Fe-Ni-S liquid alloys at 6-8 GPa and 800-1400 °C using a multianvil press. Low-temperature experiments for six starting mixes (Ni/(Fe + Ni) ∼ 0.61, 8-16 wt.% S) contain C-bearing, solid Fe-Ni alloy + Fe-Ni-C-S alloy melt + metastable graphite, and the solid alloy-out boundary is constrained, at 1150-1200 °C at 6 GPa and 900-1000 °C at 8 GPa for S-poor starting mix, and at 1000-1050 °C at 6 GPa and 900-1000 °C at 8 GPa for the S-rich starting mix. The carbon solubility in the liquid alloy significantly diminishes from 2.1 to 0.8 wt.% with sulfur in the melt increasing from 8 to 24 wt.%, irrespective of temperature. We also observed a slight decrease of carbon solubility in the liquid alloy with increasing pressure when alloy liquid contains >∼18 wt.% S, and with decreasing Ni/(Fe + Ni) ratio from 0.65 to ∼0.53. Based on our results, diamond, coexisting with Ni-rich sulfide liquid alloy is expected to be stable in the reduced, alloy-bearing oceanic mantle with C content as low as 20 to 5 ppm for mantle S varying between 100 and 200 ppm. Deep, reduced root of cratonic mantle, on the other hand, is expected to have C distributed among solid alloy, liquid alloy

  7. Halo density profiles and baryon physics

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Li, Xi-Guo

    2017-08-01

    The radial dependence of the pseudo phase-space density, ρ( r)/ σ 3( r) is studied. We find that the pseudo phase-space density for halos consisting both of dark matter and baryons is approximately a power-law only down to 0.1% of the virial radius while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. Halos consisting just of dark matter, as the one in dark matter only simulations, are characterized by an approximately power-law behavior. The results argue against universality of the pseudo phase-space density, when the baryons effect are included, and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in [1].

  8. Characteristics of PAHs from deep-frying and frying cooking fumes.

    PubMed

    Yao, Zhiliang; Li, Jing; Wu, Bobo; Hao, Xuewei; Yin, Yong; Jiang, Xi

    2015-10-01

    Cooking fumes are an important indoor source of polycyclic aromatic hydrocarbons (PAHs). Because indoor pollution has a more substantial impact on human health than outdoor pollution, PAHs from cooking fumes have drawn considerable attention. In this study, 16 PAHs emitted through deep-frying and frying methods using rapeseed, soybean, peanut, and olive oil were examined under a laboratory fume hood. Controlled experiments were conducted to collect gas- and particulate-phase PAHs emitted from the cooking oil fumes, and PAH concentrations were quantified via high-performance liquid chromatography (HPLC). The results show that deep-frying methods generate more PAHs and benzo[a]pyrene (B[a]P) (1.3 and 10.9 times, respectively) because they consume greater volumes of edible oil and involve higher oil temperatures relative to those of frying methods. In addition, the total B[a]Peq concentration of deep-frying is 2.2-fold larger than that of frying. Regarding the four types of edible oils studied, rapeseed oil produced more PAH emission than the other three oil varieties. For all of the cooking tests, three- and four-ringed PAHs were the main PAH components regardless of the food and oil used. Concerning the PAH partition between gas and particulate phase, the gaseous compounds accounted for 59-96 % of the total. Meanwhile, the particulate fraction was richer of high molecular weight PAHs (five-six rings). Deep-frying and frying were confirmed as important sources of PAH pollution in internal environments. The results of this study provide additional insights into the polluting features of PAHs produced via cooking activities in indoor environments.

  9. Seismic Imaging of Circumpolar Deep Water Exchange across the Shelf Break of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Gunn, K.; White, N.; Larter, R. D.; Falder, M.; Caulfield, C. C. P.

    2016-02-01

    The western Antarctic Peninsula is an area of recent extreme atmospheric warming. In the adjacent ocean, there is particular interest in on-shelf movement of Circumpolar Deep Water as a possible link to changing climate by affecting ice shelf processes. Here, we investigate on-shelf intrusions using two-dimensional seismic imaging of the water column which has vertical and horizontal resolutions of 10 m. 8 seismic profiles were acquired in February 2015 using the RRS James Clark Ross. These profiles traverse the shelf break and cross two bathymetric features, the Marguerite and Biscoe troughs, which may play a role in water exchange processes. Seismic data were acquired using two Generator-Injector air guns fired every 10 s with a pressure of 2000 psi. Reflections were recorded on a 2.4 km streamer of 192 receivers spaced every 12.5 m. Observed reflections in the processed records are caused by rapid changes of temperature ( 80%) and salinity ( 20%), delineating water masses of different properties. 13 XCTDs and XBTs plus a 38 kHz echo-sounder profile were simultaneously acquired along seismic profiles and used for calibration. Preliminary results show the top of the Winter Water layer as a bright reflection at 50-120 m depth across the entire survey, corresponding to temperatures ≤ -1°C. Curved, discontinuous, eddy-like reflections, also seen on echo-sounder profiles, are attributed to modified Upper Circumpolar Deep Water with temperatures ≥ 1.34°C. A warm core eddy, 11 km long and 220 m high, is visible 2 km inland of the shelf break. Pure Upper Circumpolar Deep Water of temperatures ≥ 1.80°C is aligned with weak but discernible, lens-shaped reflections. Eddy-like structures and the overall reflective morphology yield useful insights into shelf exchange processes, suggestive of three potential mechanisms: (i) topography controlled flow; (ii) an 'ice-pump' mechanism; and (iii) mesoscale eddies.

  10. D-region differential-phase measurements and ionization variability studies

    NASA Technical Reports Server (NTRS)

    Weiland, R. M.; Bowhill, S. A.

    1978-01-01

    Measurements of electron densities in the D region are made by the partial-reflection differential-absorption and differential-phase techniques. The differential-phase data are obtained by a hard-wired phase-measuring system. Electron-sensity profiles obtained by the two techniques on six occasions are plotted and compared. Electron-density profiles obtained at the same time on 30 occasions during the years 1975 through 1977 are averaged to form a single profile for each technique. The effect of varying the assumed collision-frequency profile on these averaged profiles is studied. Time series of D-region electron-sensity data obtained by 3.4 minute intervals on six days during the summer of 1977 are examined for wave-like disturbances and tidal oscillations.

  11. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, O.; Biblot, J.; Janssen, P. A. E. M.

    2016-02-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. I will show some results from the coupled atmosphere-wave-ocean ensemble forecast system of ECMWF where these wave effects are now included in the ocean model component.

  12. Perception of facial profiles: influence of female sex hormones and personality traits.

    PubMed

    Jovic, T; Pavlic, A; Varga, S; Kovacevic Pavicic, D; Slaj, M; Spalj, S

    2016-11-01

    The observational study investigated whether women's perception of the facial profile is related to changes in sex hormones during the menstrual cycle and under the influence of personality traits. Participants were heterosexual Caucasian normally menstruating women not using oral contraceptives (N = 30, aged 20-44 years). The profile attractiveness was assessed by grading of thirteen men's and women's Caucasian profile distortions by a visual analogue scale (0 = least to 100 = most attractive) in the non-ovulating phase and ovulating phase of the menstrual cycle. Male profiles were graded twice-in social and emotional contexts. Personality traits were assessed by Big Five Inventory. The most attractive male profiles in both phases and contexts were a straight profile or mild lip retrusion. According to cluster analysis, non-ovulating females distinguish skeletal from dentoalveolar alterations; however, maxillary retrognathism was considered to be closer to an attractive profile, which were resulting from dentoalveolar manipulations only. Ovulating females, when considering emotional relationship, exhibit lowest preference for males with convex profiles and extreme concave profile, while they consider males with slightly prominent chins due to maxillary retrognathism, mandibular prognathism or pronounced lip retrusion closer to the most attractive males. No clear patterns of influence of personality traits were detected. Moderate lip protrusion was the most attractive female profile in ovulating and straight profile in non-ovulating phase. The favorable profiles, on average, are the same regardless of the female hormonal status and personality traits. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Three-Dimensional Analysis of Deep Space Network Antenna Coverage

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Fuentes, Michael; Meyer, Nicholas; Sil, Amy

    2012-01-01

    There is a need to understand NASA s Deep Space Network (DSN) coverage gaps and any limitations to provide redundant communication coverage for future deep space missions, especially for manned missions to Moon and Mars. The DSN antennas are required to provide continuous communication coverage for deep space flights, interplanetary missions, and deep space scientific observations. The DSN consists of ground antennas located at three sites: Goldstone in USA, Canberra in Australia, and Madrid in Spain. These locations are not separated by the exactly 120 degrees and some DSN antennas are located in the bowl-shaped mountainous terrain to shield against radiofrequency interference resulting in a coverage gap in the southern hemisphere for the current DSN architecture. To analyze the extent of this gap and other coverage limitations, simulations of the DSN architecture were performed. In addition to the physical properties of the DSN assets, the simulation incorporated communication forward link calculations and azimuth/elevation masks that constrain the effects of terrain for each DSN antenna. Analysis of the simulation data was performed to create coverage profiles with the receiver settings at a deep space altitudes ranging from 2 million to 10 million km and a spherical grid resolution of 0.25 degrees with respect to longitude and latitude. With the results of these simulations, two- and three-dimensional representations of the area without communication coverage and area with coverage were developed, showing the size and shape of the communication coverage gap projected in space. Also, the significance of this communication coverage gap is analyzed from the simulation data.

  14. A deep auto-encoder model for gene expression prediction.

    PubMed

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  15. Kinematic solar dynamo models with a deep meridional flow

    NASA Astrophysics Data System (ADS)

    Guerrero, G. A.; Muñoz, J. D.

    2004-05-01

    We develop two different solar dynamo models to verify the hypothesis that a deep meridional flow can restrict the appearance of sunspots below 45°, proposed recently by Nandy & Choudhuri. In the first one, a single polytropic approximation for the density profile was taken, for both radiative and convective zones. In the second one, that of Pinzon & Calvo-Mozo, two polytropes were used to distinguish between both zones. The magnetic buoyancy mechanism proposed by Dikpati & Charbonneau was chosen in both models. We have in fact obtained that a deep meridional flow pushes the maxima of toroidal magnetic field towards the solar equator, but, in contrast to Nandy & Choudhuri, a second zone of maximal fields remains at the poles. The second model, although closely resembling the solar standard model of Bahcall et al., gives solar cycles three times longer than observed.

  16. Differential phase measurements of D-region partial reflections

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Sechrist, C. F., Jr.

    1972-01-01

    Differential phase partial reflection measurements were used to deduce D region electron density profiles. The phase difference was measured by taking sums and differences of amplitudes received on an array of crossed dipoles. The reflection model used was derived from Fresnel reflection theory. Seven profiles obtained over the period from 13 October 1971 to 5 November 1971 are presented, along with the results from simultaneous measurements of differential absorption. Some possible sources of error and error propagation are discussed. A collision frequency profile was deduced from the electron concentration calculated from differential phase and differential absorption.

  17. Development of realtime connected element interferometry at the Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Edwards, C. D.

    1990-01-01

    Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.

  18. Experimental multi-phase H2O-CO2 brine interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.; Koksalan, T.

    2004-01-01

    The burning of fossil fuel and other anthropogenic activities have caused a continuous and dramatic 30% increase of atmospheric CO2 over the past 150 yr. CO2 sequestration is increasingly being viewed as a tool for managing these anthropogenic CO2 emissions to the atmosphere. CO2-saturated brine-rock experiments were carried out to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration in mineral phases within deep-saline aquifers. Experimental results were generally consistent with theoretical thermodynamic calculations. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions were occurring on a measurable but kinetically slow time scale at 120??C.

  19. Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic

    NASA Astrophysics Data System (ADS)

    Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander; Luke, Edward P.

    2018-03-01

    The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populations in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (ZDR), while an enhanced specific differential phase (KDP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce ZDR and KDP values close to 0, suggesting the occurrence of a riming process. Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and ZDR.

  20. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.43 To... less than 200 meters deep, you began drilling an original deep well with a perforated interval the top...

  1. Deep dissection: motivating students beyond rote learning in veterinary anatomy.

    PubMed

    Cake, Martin A

    2006-01-01

    The profusion of descriptive, factual information in veterinary anatomy inevitably creates pressure on students to employ surface learning approaches and "rote learning." This phenomenon may contribute to negative perceptions of the relevance of anatomy as a discipline. Thus, encouraging deep learning outcomes will not only lead to greater satisfaction for both instructors and learners but may have the added effect of raising the profile of and respect for the discipline. Consideration of the literature reveals the broad scope of interventions required to motivate students to go beyond rote learning. While many of these are common to all disciplines (e.g., promoting active learning, making higher-order goals explicit, reducing content in favor of concepts, aligning assessment with outcomes), other factors are peculiar to anatomy, such as the benefits of incorporating clinical tidbits, "living anatomy," the anatomy museum, and dissection classes into a "learning context" that fosters deep approaches. Surprisingly, the 10 interventions discussed focus more on factors contributing to student perceptions of the course than on drastic changes to the anatomy course itself. This is because many traditional anatomy practices, such as dissection and museum-based classes, are eminently compatible with active, student-centered learning strategies and the adoption of deep learning approaches by veterinary students. Thus the key to encouraging, for example, dissection for deep learning ("deep dissection") lies more in student motivation, personal engagement, curriculum structure, and "learning context" than in the nature of the learning activity itself.

  2. Effects of Deep Convection on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2007-01-01

    This presentation will trace the important research developments of the last 20+ years in defining the roles of deep convection in tropospheric chemistry. The role of deep convection in vertically redistributing trace gases was first verified through field experiments conducted in 1985. The consequences of deep convection have been noted in many other field programs conducted in subsequent years. Modeling efforts predicted that deep convection occurring over polluted continental regions would cause downstream enhancements in photochemical ozone production in the middle and upper troposphere due to the vertical redistribution of ozone precursors. Particularly large post-convective enhancements of ozone production were estimated for convection occurring over regions of pollution from biomass burning and urban areas. These estimates were verified by measurements taken downstream of biomass burning regions of South America. Models also indicate that convective transport of pristine marine boundary layer air causes decreases in ozone production rates in the upper troposphere and that convective downdrafts bring ozone into the boundary layer where it can be destroyed more rapidly. Additional consequences of deep convection are perturbation of photolysis rates, effective wet scavenging of soluble species, nucleation of new particles in convective outflow, and the potential fix stratosphere-troposphere exchange in thunderstorm anvils. The remainder of the talk will focus on production of NO by lightning, its subsequent transport within convective clouds . and its effects on downwind ozone production. Recent applications of cloud/chemistry model simulations combined with anvil NO and lightning flash observations in estimating NO Introduction per flash will be described. These cloud-resolving case-study simulations of convective transport and lightning NO production in different environments have yielded results which are directly applicable to the design of lightning

  3. North Atlantic deep water formation and AMOC in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline

    2017-07-01

    Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  4. DAMA/LIBRA-phase1 results and perspectives of the phase2

    NASA Astrophysics Data System (ADS)

    Bernabei, R.; Belli, P.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C. J.; d'Angelo, A.; d'Angelo, S.; Di Marco, A.; He, H. L.; Incicchitti, A.; Kuang, H. H.; Ma, X. H.; Montecchia, F.; Sheng, X. D.; Wang, R. G.; Ye, Z. P.

    2016-07-01

    The DAMA/LIBRA experiment (˜ 250 kg of highly radio-pure NaI(Tl)) is running deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. Here we briefly recall the results obtained in its first phase of measurements (DAMA/LIBRA-phase1; total exposure: 1.04 ton × yr). DAMA/LIBRA-phase1 and the former DAMA/NaI (cumulative exposure: 1.33 ton × yr) give evidence at 9.3 σ C.L. for the presence of DM particles in the galactic halo by exploiting the model-independent DM annual modulation signature. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade. At present DAMA/LIBRA-phase2 is running with increased sensitivity.

  5. Self-Reported Wellness Profiles of Professional Australian Football Players During the Competition Phase of the Season.

    PubMed

    Gallo, Tania F; Cormack, Stuart J; Gabbett, Tim J; Lorenzen, Christian H

    2017-02-01

    Gallo, TF, Cormack, SJ, Gabbett, TJ, and Lorenzen, CH. Self-reported wellness profiles of professional Australian football players during the competition phase of the season. J Strength Cond Res 31(2): 495-502, 2017-With the prevalence of customized self-report measures in high-performance sport, and the incomplete understanding of athletes' perceived wellness in response to matches and training load, the objective of this study was to explore weekly wellness profiles within the context of the competitive season of professional Australian football. Internal match load, measured through the session-rating of perceived exertion method, match-to-match microcycle, stage of the season, and training load were included in multivariate linear models to determine their effect on weekly wellness profile (n = 1,835). There was a lower weekly training load on a 6-day microcycle compared with a 7-day and 8-day microcycle. Match load had no significant impact on weekly wellness profile, while there was an interaction between microcycle and days postmatch. There was a likely moderately lower wellness Z-score 1 day postmatch for an 8-day microcycle (mean; 95% confidence interval: -1.79; -2.02 to -1.56) compared with a 6-day (-1.19; -1.30 to -1.08) and 7-day (-1.22; -1.34 to -1.09) cycle (d; 95% confidence interval: -0.82; -1.3 to -0.36, -0.78; -1.3 to -0.28, respectively). The second half of the season saw a possibly small reduction in overall wellness Z-score than the first half of the season (0.22; 0.12-0.32). Finally, training load had no effect on wellness Z-score when controlled for days postmatch, microcycle, and stage of the season. These results provide information on the status of players in response to matches and fixed conditions. Knowing when wellness Z-score returns to baseline relative to the length of the microcycle may lead practitioners to prescribe the heaviest load of the week accordingly. Furthermore, wellness "red flags" should be made relative to the

  6. A Study of Phased Array Antennas for NASA's Deep Space Network

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Huang, John; Cesarone, Robert J.

    2001-01-01

    In this paper we briefly discuss various options but focus on the feasibility of the phased arrays as a viable option for this application. Of particular concern and consideration will be the cost, reliability, and performance compared to the present 70-meter antenna system, particularly the gain/noise temperature levels in the receive mode. Many alternative phased arrays including planar horizontal arrays, hybrid mechanically/electronically steered arrays, phased array of mechanically steered reflectors, multi-faceted planar arrays, phased array-fed lens antennas, and planar reflect-arrays are compared and their viability is assessed. Although they have many advantages including higher reliability, near-instantaneous beam switching or steering capability, the cost of such arrays is presently prohibitive and it is concluded that the only viable array options at the present are the arrays of a few or many small reflectors. The active planar phased arrays, however, may become feasible options in the next decade and can be considered for deployment in smaller configurations as supplementary options.

  7. A longitudinal study of women's depression symptom profiles during and after the postpartum phase.

    PubMed

    Fox, Molly; Sandman, Curt A; Davis, Elysia Poggi; Glynn, Laura M

    2018-04-01

    An issue of critical importance for psychiatry and women's health is whether postpartum depression (PPD) represents a unique condition. The Diagnostic and Statistical Manual of Mental Disorders asserts that major depressive disorder (MDD) may present with peripartum onset, without suggesting any other differences between MDD and PPD. The absence of any distinct features calls into question the nosologic validity of PPD as a diagnostic category. The present study investigates whether symptom profiles differ between PPD and depression occurring outside the postpartum phase. In a prospective, longitudinal study of parturient women (N = 239), we examine the manifestation of depression symptoms. We assess factor structure of symptom profiles, and whether factors are differentially pronounced during and after the postpartum period. Factors were revealed representing: Worry, Emotional/Circadian/Energetic Dysregulation, Somatic/Cognitive, Appetite, Distress Display, and Anger symptoms. The factor structure was validated at postpartum and after-postpartum timepoints. Interestingly, the Worry factor, comprising anxiety and guilt, was significantly more pronounced during the postpartum timepoint, and the Emotional/Circadian/Energetic Dysregulation factor, which contained sadness and anhedonia, was significantly less pronounced during the postpartum period. These results suggest that PPD may be a unique syndrome, necessitating research, diagnosis, and treatment strategies distinct from those for MDD. Results indicate the possibility that Worry is an enhanced feature of PPD compared to depression outside the postpartum period, and the crucial role of sadness/anhedonia in MDD diagnosis may be less applicable to PPD diagnosis. © 2018 Wiley Periodicals, Inc.

  8. Mars entry guidance based on an adaptive reference drag profile

    NASA Astrophysics Data System (ADS)

    Liang, Zixuan; Duan, Guangfei; Ren, Zhang

    2017-08-01

    The conventional Mars entry tracks a fixed reference drag profile (FRDP). To improve the landing precision, a novel guidance approach that utilizes an adaptive reference drag profile (ARDP) is presented. The entry flight is divided into two phases. For each phase, a family of drag profiles corresponding to various trajectory lengths is planned. Two update windows are investigated for the reference drag profile. At each window, the ARDP is selected online from the profile database according to the actual range-to-go. The tracking law for the selected drag profile is designed based on the feedback linearization. Guidance approaches using the ARDP and the FRDP are then tested and compared. Simulation results demonstrate that the proposed ARDP approach achieves much higher guidance precision than the conventional FRDP approach.

  9. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part II - Iron-sulfur coupling

    NASA Astrophysics Data System (ADS)

    Taillefert, Martial; Beckler, Jordon S.; Cathalot, Cécile; Michalopoulos, Panagiotis; Corvaisier, Rudolph; Kiriazis, Nicole; Caprais, Jean-Claude; Pastor, Lucie; Rabouille, Christophe

    2017-08-01

    Deep-sea fans are well known depot centers for organic carbon that should promote sulfate reduction. At the same time, the high rates of deposition of unconsolidated metal oxides from terrigenous origin may also promote metal-reducing microbial activity. To investigate the eventual coupling between the iron and sulfur cycles in these environments, shallow sediment cores (< 50 cm) across various channels and levees in the Congo River deep-sea fan ( 5000 m) were profiled using a combination of geochemical methods. Interestingly, metal reduction dominated suboxic carbon remineralization processes in most of these sediments, while dissolved sulfide was absent. In some 'hotspot' patches, however, sulfate reduction produced large sulfide concentrations which supported chemosynthetic-based benthic megafauna. These environments were characterized by sharp geochemical boundaries compared to the iron-rich background environment, suggesting that FeS precipitation efficiently titrated iron and sulfide from the pore waters. A companion study demonstrated that methanogenesis was active in the deep sediment layers of these patchy ecosystems, suggesting that sulfate reduction was promoted by alternative anaerobic processes. These highly reduced habitats could be fueled by discrete, excess inputs of highly labile natural organic matter from Congo River turbidites or by exhumation of buried sulfide during channel flank erosion and slumping. Sulfidic conditions may be maintained by the mineralization of decomposition products from local benthic macrofauna or bacterial symbionts or by the production of more crystalline Fe(III) oxide phases that are less thermodynamically favorable than sulfate reduction in these bioturbated sediments. Overall, the iron and sulfur biogeochemical cycling in this environment is unique and much more similar to a coastal ecosystem than a deep-sea environment.

  10. Hydrologic processes in deep vadose zones in interdrainage arid environments

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Scanlon, Bridget R.; Hogan, James F.; Phillips, Fred M.; Scanlon, Bridget R.

    2004-01-01

    A unifying theory for the hydrology of desert vadose zones is particularly timely considering the rising population and water stresses in arid and semiarid regions. Conventional models cannot reconcile the apparent discrepancy between upward flow indicated by hydraulic gradient data and downward flow suggested by environmental tracer data in deep vadose zone profiles. A conceptual model described here explains both hydraulic and tracer data remarkably well by incorporating the hydrologic role of desert plants that encroached former juniper woodland 10 to 15 thousand years ago in the southwestern United States. Vapor transport also plays an important role in redistributing moisture through deep soils, particularly in coarse-grained sediments. Application of the conceptual model to several interdrainage arid settings reproduces measured matric potentials and chloride accumulation by simulating the transition from downward flow to upward flow just below the root zone initiated by climate and vegetation change. Model results indicate a slow hydraulic drying response in deep vadose zones that enables matric potential profiles to be used to distinguish whether precipitation episodically percolated below the root zone or was completely removed via evapotranspiration during the majority of the Holocene. Recharge declined dramatically during the Holocene in interdrainage basin floor settings of arid and semiarid basins. Current flux estimates across the water table in these environmental settings, are on the order of 0.01 to 0.1 mm yr-1 and may be recharge (downward) or discharge (upward) depending on vadose zone characteristics, such as soil texture, geothermal gradient, and water table depth. In summary, diffuse recharge through the basin floor probably contributes only minimally to the total recharge in arid and semiarid basins.

  11. Development of diapiric structures in the upper mantle due to phase transitions

    NASA Technical Reports Server (NTRS)

    Liu, M.; Yuen, D. A.; Zhao, W.; Honda, S.

    1991-01-01

    Solid-state phase transition in time-dependent mantle convection can induce diapiric flows in the upper mantle. When a deep mantle plume rises toward phase boundaries in the upper mantle, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower mantle may control the fate of deep mantle plumes, allowing hot plumes to go through and retarding the tepid ones.

  12. Quaternary tectonics from seismic interpretation and its potential relation with deep geothermal fluids in the Marche (Central Italy).

    NASA Astrophysics Data System (ADS)

    Chicco, Jessica; Invernizzi, Chiara; Pierantoni, Pietro Paolo; Costa, Mario

    2017-04-01

    structures observed in the seismic profiles and the high degree of fracturing that accompanies these complex and recent fault systems can facilitate the exchange between deep and superficial fluids. In other cases, like in coastal structural high, it can have a role in preventing the sea water ingression. This significant consideration can be supported also by the direct relation of electrical conductivity with the amount of rainfall revealed from studied piezometers along the carbonate Marche ridge. It should be explained through a specific behaviour (typical of carbonate aquifers, known as the "piston-flow phase") which implies an increase of groundwater mineralization as a result of transmission of the hydraulic pressure from the saturated zone, through fractures as important way for fluids circulation. Ultimately, we suggest that the structural control could be an important factor in influencing both the surface and the groundwater flow behaviours, and then convective component of the heat transport in the studied area.

  13. Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1-x ,Ga x )Se2 Film Fabricated by Three-Stage Process

    NASA Astrophysics Data System (ADS)

    Wang, Shenghao; Nazuka, Takehiro; Hagiya, Hideki; Takabayashi, Yutaro; Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru; Islam, Muhammad M.; Akimoto, Katsuhiro; Sakurai, Takeaki

    2018-02-01

    For copper indium gallium selenide [Cu(In1-x ,Ga x )Se2, CIGS]-based solar cells, defect states or impurity phase always form due to both the multinary compositions of CIGS film and the difficulty of controlling the growth process, especially for high Ga concentration. To further improve device performance, it is important to understand such formation of impurity phase or defect states during fabrication. In the work presented herein, the formation mechanism of impurity phase Cu2-δ Se and its depth profile in CIGS film with high Ga content, in particular CuGaSe2 (i.e., CGS), were investigated by applying different growth conditions (i.e., normal three-stage process and two-cycle three-stage process). The results suggest that impurity phase Cu2-δ Se is distributed nonuniformly in the film because of lack of Ga diffusion. The formed Cu2-δ Se can be removed by etching the as-deposited CGS film with bromine-methanol solution, resulting in improved device performance.

  14. Radio science electron density profiles of lunar ionosphere based on the service module of circumlunar return and reentry spacecraft

    NASA Astrophysics Data System (ADS)

    Wang, M.; Han, S.; Ping, J.; Tang, G.; Zhang, Q.

    2017-09-01

    The existence of lunar ionosphere has been under debate for a long time. Radio occultation experiments had been performed by both Luna 19/22 and SELENE missions and electron column density of lunar ionosphere was provided. The Apollo 14 mission also acquired the electron density with in situ measurements. But the results of these missions don't well-matched. In order to explore the lunar ionosphere, radio occultation with the service module of Chinese circumlunar return and reentry spacecraft has been performing. One coherent S-band and X-band radio signals were recorded by China deep space stations, and local correlation was adopted to compute carrier phases of both signals. Based on the above work, the electron density profiles of lunar ionosphere was obtained and analyzed.

  15. An extensive phase space for the potential martian biosphere.

    PubMed

    Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D

    2011-12-01

    We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.

  16. Sensory, psychological, and metabolic dysfunction in HIV-associated peripheral neuropathy: A cross-sectional deep profiling study

    PubMed Central

    Phillips, Tudor J.C.; Brown, Matthew; Ramirez, Juan D.; Perkins, James; Woldeamanuel, Yohannes W.; Williams, Amanda C. de C.; Orengo, Christine; Bennett, David L.H.; Bodi, Istvan; Cox, Sarah; Maier, Christoph; Krumova, Elena K.; Rice, Andrew S.C.

    2014-01-01

    HIV-associated sensory neuropathy (HIV-SN) is a frequent complication of HIV infection and a major source of morbidity. A cross-sectional deep profiling study examining HIV-SN was conducted in people living with HIV in a high resource setting using a battery of measures which included the following: parameters of pain and sensory symptoms (7 day pain diary, Neuropathic Pain Symptom Inventory [NPSI] and Brief Pain Inventory [BPI]), sensory innervation (structured neurological examination, quantitative sensory testing [QST] and intraepidermal nerve fibre density [IENFD]), psychological state (Pain Anxiety Symptoms Scale-20 [PASS-20], Depression Anxiety and Positive Outlook Scale [DAPOS], and Pain Catastrophizing Scale [PCS], insomnia (Insomnia Severity Index [ISI]), and quality of life (Short Form (36) Health Survey [SF-36]). The diagnostic utility of the Brief Peripheral Neuropathy Screen (BPNS), Utah Early Neuropathy Scale (UENS), and Toronto Clinical Scoring System (TCSS) were evaluated. Thirty-six healthy volunteers and 66 HIV infected participants were recruited. A novel triumvirate case definition for HIV-SN was used that required 2 out of 3 of the following: 2 or more abnormal QST findings, reduced IENFD, and signs of a peripheral neuropathy on a structured neurological examination. Of those with HIV, 42% fulfilled the case definition for HIV-SN (n = 28), of whom 75% (n = 21) reported pain. The most frequent QST abnormalities in HIV-SN were loss of function in mechanical and vibration detection. Structured clinical examination was superior to QST or IENFD in HIV-SN diagnosis. HIV-SN participants had higher plasma triglyceride, concentrations depression, anxiety and catastrophizing scores, and prevalence of insomnia than HIV participants without HIV-SN. PMID:24973717

  17. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.

    2017-11-01

    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.

  18. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study.

    PubMed

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K

    2017-11-21

    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (C d ) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of C d with positive and negative surface potentials.

  19. Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state

    NASA Astrophysics Data System (ADS)

    Kawamura, Taichi; Lognonné, Philippe; Nishikawa, Yasuhiro; Tanaka, Satoshi

    2017-07-01

    While deep moonquakes are seismic events commonly observed on the Moon, their source mechanism is still unexplained. The two main issues are poorly constrained source parameters and incompatibilities between the thermal profiles suggested by many studies and the apparent need for brittle properties at these depths. In this study, we reinvestigated the deep moonquake data to reestimate its source parameters and uncover the characteristics of deep moonquake faults that differ from those on Earth. We first improve the estimation of source parameters through spectral analysis using "new" broadband seismic records made by combining those of the Apollo long- and short-period seismometers. We use the broader frequency band of the combined spectra to estimate corner frequencies and DC values of spectra, which are important parameters to constrain the source parameters. We further use the spectral features to estimate seismic moments and stress drops for more than 100 deep moonquake events from three different source regions. This study revealed that deep moonquake faults are extremely smooth compared to terrestrial faults. Second, we reevaluate the brittle-ductile transition temperature that is consistent with the obtained source parameters. We show that the source parameters imply that the tidal stress is the main source of the stress glut causing deep moonquakes and the large strain rate from tides makes the brittle-ductile transition temperature higher. Higher transition temperatures open a new possibility to construct a thermal model that is consistent with deep moonquake occurrence and pressure condition and thereby improve our understandings of the deep moonquake source mechanism.

  20. Ecohydrological control of deep drainage in arid and semiarid regions

    USGS Publications Warehouse

    Seyfried, M.S.; Schwinning, S.; Walvoord, Michelle Ann; Pockman, W. T.; Newman, B.D.; Jackson, R.B.; Phillips, F.M.

    2005-01-01

    The amount and spatial distribution of deep drainage (downward movement of water across the bottom of the root zone) and groundwater recharge affect the quantity and quality of increasingly limited groundwater in arid and semiarid regions. We synthesize research from the fields of ecology and hydrology to address the issue of deep drainage in arid and semiarid regions. We start with a recently developed hydrological model that accurately simulates soil water potential and geochemical profiles measured in thick (>50 m), unconsolidated vadose zones. Model results indicate that, since the climate change that marked the onset of the Holocene period 10 000–15 000 years ago, there has been no deep drainage in vegetated interdrainage areas and that continuous, relatively low (<−1 MPa) soil water potentials have been maintained at depths of 2–3 m. A conceptual model consistent with these results proposes that the native, xeric‐shrub‐dominated, plant communities that gained dominance during the Holocene generated and maintained these conditions. We present three lines of ecological evidence that support the conceptual model. First, xeric shrubs have sufficiently deep rooting systems with low extraction limits to generate the modeled conditions. Second, the characteristic deep‐rooted soil–plant systems store sufficient water to effectively buffer deep soil from climatic fluctuations in these dry environments, allowing stable conditions to persist for long periods of time. And third, adaptations resulting in deep, low‐extraction‐limit rooting systems confer significant advantages to xeric shrubs in arid and semiarid environments. We then consider conditions in arid and semiarid regions in which the conceptual model may not apply, leading to the expectation that portions of many arid and semiarid watersheds supply some deep drainage. Further ecohydrologic research is required to elucidate critical climatic and edaphic thresholds, evaluate the role of

  1. 30 CFR 203.42 - What conditions and limitations apply to royalty relief for deep wells and phase 1 ultra-deep wells?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling... has produced gas or oil from a well with a perforated interval the top of which is 18,000 feet TVD SS or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep...

  2. Accumulation of artificial radionuclides in deep sediments of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Garcia-Orellana, J.; Sanchez-Cabeza, J. A.; Masque, P.; Costa, E.; Bruach, J. M.; Morist, A.; Luna, J. A.

    2003-04-01

    Concentrations and inventories of artificial radionuclides (90Sr, 137Cs and 239,40Pu) were determined in deep sediment cores (3.000 m) collected in the western and eastern basins of the Mediterranean Sea in the frame of the ADIOS project. Artificial radionuclides enter the Mediterranean Sea mainly though atmospheric deposition after nuclear weapons tests and the Chernobyl accident, but also through the river discharge of effluents of nuclear facilities (e.g. Rhone and Ebro rivers). The aim of this work is to investigate the degree by which pollutants are transferred to the deep environment of the Mediterranean Sea as a basis to elucidate their effects on benthic organisms. The mean inventories of 239+240Pu, 137Cs and 90Sr in the Western basin are 2.77 ± 0.26, 68 ± 12 and < 7 Bq\\cdotm-2 respectively and 3.29 ± 0.60, 115 ± 33 and 249±154 Bq\\cdotm-2 in the Eastern basin. The activity - depth profiles of 210Pb, together with 14C dating, indicate that sediment mixing redistributes the artificial radionuclides within the first 2 cm of the sedimentary column. Artificial radionuclides inventories in the deep-sea sediments were used to calculate the fraction of the total inventory of artificial radionuclides that is accumulated in the deep sea sediments after scavenging from the water column. Indeed, a balance of the radionuclide distributions in the water column allows evaluating the importance of lateral transport of particulate matter from the continental margins on the accumulation of artificial radionuclides in the deep, open Mediterranean Sea. This is achieved in i) comparison with reported data from coastal areas at different locations in the Mediterranean Sea, and ii) balance of the distribution of the natural radionuclide 210Pb in studied areas (vertical profiles of dissolved and particulate activities, fluxes determined by using sediment trap deployed at different depths and inventories in the bottom sediments). The results, taking into account radioactive

  3. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  4. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    PubMed Central

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  5. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2005-09-30

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.« less

  6. Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099

    USGS Publications Warehouse

    Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F

    2016-05-04

    The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by

  7. Experimental Attempts for Deep Insertion in Ultrasonically Forced Insertion Process

    NASA Astrophysics Data System (ADS)

    Ono, Satoshi; Aoyagi, Manabu; Tamura, Hideki; Takano, Takehiro

    2011-07-01

    In this paper, we describe two attempts of obtaining deep insertion in an ultrasonically forced insertion (USFI) process. One was to correct the inclination of an inserted rod by passively generated bending vibrations. The inclination causes a partial plastic deformation, which decreases the holding power of processing materials. Two types of horn with grooves for excitation of bending vibrations were examined. The other was to make differences in vibration velocity and the phase of a rod and a metal plate by damping the vibration of a metal plate by using a rubber sheet. As results, the attempts proposed in this study were confirmed to be effective to obtain a deep insertion.

  8. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; Oppo, Delia W.; Clark, Peter U.; Jahn, Alexandra; Marcott, Shaun A.; Lindsay, Keith

    2017-10-01

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ˜1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  9. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Liu, Z.; Brady, E. C.; Oppo, D.; Clark, P. U.; Jahn, A.; Marcott, S. A.; Lindsay, K. T.

    2017-12-01

    The large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by 1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  10. Deep eutectic solvent based gas-assisted dispersive liquid-phase microextraction combined with gas chromatography and flame ionization detection for the determination of some pesticide residues in fruit and vegetable samples.

    PubMed

    Farajzadeh, Mir Ali; Sattari Dabbagh, Masoumeh; Yadeghari, Adeleh

    2017-05-01

    In this study, a gas-assisted dispersive liquid-phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4-chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water-immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247-355 and 49-71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24-1.4 and 0.71-4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 30 CFR 203.41 - If I have a qualified deep well or a qualified phase 1 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 200 meters but entirely less than 400 meters deep that: (1) Occurs before December 18, 2008; and (2... § 203.31(b) applies. In both situations, your lease must be partly or entirely in less than 200 meters...

  12. Stable isotope labeling-solid phase extraction-mass spectrometry analysis for profiling of thiols and aldehydes in beer.

    PubMed

    Zheng, Shu-Jian; Wang, Ya-Lan; Liu, Ping; Zhang, Zheng; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2017-12-15

    In this study, we developed a strategy for profiling of thiols and aldehydes in beer samples by stable isotope labeling-solid phase extraction-liquid chromatography-double precursor ion scan/double neutral loss scan-mass spectrometry analysis (SIL-SPE-LC-DPIS/DNLS-MS). A pair of isotope reagents (ω-bromoacetonylquinolinium bromide, BQB; ω-bromoacetonylquinolinium-d 7 bromide, BQB-d 7 ) were used to label thiols; while for the aldehydes, a pair of isotope reagents (4-(2-(trimethylammonio) ethoxy) benzenaminium halide, 4-APC; 4-(2-(trimethylammonio) ethoxy) benzenaminium halide-d 4 , 4-APC-d 4 ) were used. The labeled thiols and aldehydes were extracted and purified with solid-phase extraction, respectively, followed by LC-MS analysis. Using the proposed SIL-SPE-LC-DPIS/DNLS-MS methods, 76 thiol and 25 aldehyde candidates were found in beer. Furthermore, we established SIL-SPE-LC-MRM-MS methods for the relative quantitation of thiols and aldehydes in different beer samples. The results showed that the contents of thiols and aldehydes are closely related to the brands and origins of beers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Trajectory design for the Deep Space Program Science Experiment (DSPSE) mission

    NASA Astrophysics Data System (ADS)

    Carrington, D.; Carrico, J.; Jen, J.; Roberts, C.; Seacord, A.; Sharer, P.; Newman, L.; Richon, K.; Kaufman, B.; Middour, J.

    In 1994, the Deep Space Program Science Experiment (DSPSE) spacecraft will become the first spacecraft to perform, in succession, both a lunar orbiting mission and a deep-space asteroid encounter mission. The primary mission objective is to perform a long-duration flight-test of various new-technology lightweight components, such as sensors, in a deep-space environment. The mission has two secondary science objectives: to provide high-resolution imaging of the entire lunar surface for mapping purposes and flyby imaging of the asteroid 1620 Geographos. The DSPSE mission is sponsored by the Strategic Defense Initiative Organization (SDIO). As prime contractor, the Naval Research Laboratory (NRL) is building the spacecraft and will conduct mission operations. The Goddard Space Flight Center's (GSFC) Flight Dynamics Division is supporting NRL in the areas of The Deep Space Network (DSN) will provide tracking support. The DSPSE mission will begin with a launch from the Western Test Range in late January 1994. Following a minimum 1.5-day stay in a low-Earth parking orbit, a solid kick motor burn will boost DSPSE into an 18-day, 2.5-revolution phasing orbit transfer trajectory to the Moon. Two burns to insert DSPSE into a lunar polar orbit suitable for the mapping mission will be followed by mapping orbit maintenance and adjustment operations over a period of 2 sidereal months. In May 1994, a lunar orbit departure maneuver, in conjunction with a lunar swingby 26 days later, will propel DSPSE onto a heliocentric transfer that will intercept Geographos on September 1, 1994. This paper presents the characteristics, deterministic delta-Vs, and design details of each trajectory phase of this unique mission, together with the requirements, constraints, and design considerations to which each phase is subject. Numerous trajectory plots and tables of significant trajectory events are included. Following a discussion of the results of a preliminary launch window analysis, a

  14. Dissolved inorganic carbon isotopic composition of the Gulf of Mexico deep-water masses.

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, J. G.; Herguera, J. C.; Ferreira-Bartrina, V.; Hernández-Ayón, J. M.; Camacho-Ibar, V.

    2014-12-01

    This study provides new data for the establishment of a carbon biogeochemical dynamics baseline in the deep Gulf of Mexico (GM) based on carbon isotopes in dissolved inorganic carbon. Water samples from 40 deep-water stations south of 25˚N were collected during XIXIMI-2 cruise, July 2011, aboard BO/Justo Sierra. Vertical profiles of temperature, salinity and dissolved oxygen (DO) were further measured in each station. In the Stable Isotopes Laboratory at CICESE we determined the carbon isotopic composition of the dissolved inorganic carbon (DIC) (δ13CDIC). Remarkably, density, DO and δ13CCID profiles showed a clear difference between the Loop current and the deep-waters of the GM south of 25˚N. We found the following average δ13CCID values in the Loop current and in the deep-waters of the Gulf: subtropical underwater (SUW): 0.73±0.06‰ and 0.86±0.04‰; 18 degree water (18W): 0.76 ± 0.08‰ and 0.58± 0.06‰; North Atlantic central water (NACW): 0.77 ± 0.05‰ and 0.71 ± 0.09‰; South Atlantic central water (SACW): 0.80 ± 0.08‰ and 0.77 ± 0.07‰; Antartic intermediate water (AAIW): 1.00 ± 0.06‰ and 0.90 ± 0.08‰; North Atlantic deep water (NADW): 1.03 ± 0.06‰ and 1.01 ± 0.10‰. We will discuss how the biological component, δ13CCID-BIO, of subsurface water masses match very closely the apparent oxygen utilization relation described by Kroopnick, 1985, with the exception of SUW, and as a consequence the 18W is probably the water mass most affected by organic carbon remineralization processes in the GM south of 25˚N. We further show how these waters seem to store a larger proportion of anthropogenic carbon than the deeper water masses.

  15. Does the Deep Layer of the Deep Temporalis Fascia Really Exist?

    PubMed

    Li, Hui; Li, Kaide; Jia, Wenhao; Han, Chaoying; Chen, Jinlong; Liu, Lei

    2018-04-14

    It has been widely accepted that a split of the deep temporal fascia occurs approximately 2 to 3 cm above the zygomatic arch and extends into the superficial and deep layers. The deep layer of the deep temporal fascia is between the superficial temporal fat pad and the temporal muscle. However, during procedures, the authors noted the absence of the deep layer of the deep temporal fascia between the superficial temporal fat pad and the temporal muscle. This prospective study was conducted to clarify the presence or absence of a deep layer of the deep temporal fascia. Anatomic layers of the soft tissues of the temporal region, with reference to the deep temporal fascia, were investigated in 130 cases operated on for zygomaticofacial fractures using the supratemporal approach from June 2013 to June 2017. Of 130 surgeries, the authors found the absence of a thick, obviously identifiable, fascial layer between the superficial temporal fat pad and the temporal muscle. In fact, the authors found nothing above the temporal muscle in most cases. In a few cases, the authors observed only a small amount of scattered loose connective tissue between the superficial temporal fat pad and the temporal muscle. This clinical study showed the absence of a thick, obviously identifiable, fascial layer between the superficial temporal fat pad and the temporal muscle, which suggests that a "deep layer of the deep temporal fascia" might not exist. Copyright © 2018. Published by Elsevier Inc.

  16. The Deep Space Network as an instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Renzetti, N. A.

    1993-01-01

    Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.

  17. North Atlantic deep water formation and AMOC in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Wåhlin, Anna

    2017-04-01

    North Atlantic deep water formation processes and properties in climate models are indicative of their ability to simulate future ocean circulation, ventilation, carbon and heat uptake, and sea level rise. Historical time series of temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to reveal the causes and consequences of North Atlantic deep water formation in models. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. The trigger of deep convection varies among models; for one third it is intense surface cooling only, while the remaining two thirds also need upward mixing of subsurface warm salty water. The models with the most intense deep convection have the most accurate deep water properties, which are warmer and fresher than in the other models. They also have the strongest Atlantic Meridional Overturning Circulation (AMOC). For over half of the models, 40% of the variability of the AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas, with 3 and 4 years lag respectively. Understanding the dynamical drivers of the AMOC in models is key to realistically forecast a possible slow down and its consequences on the global circulation and marine life.

  18. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.

    PubMed

    Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick

    2016-03-10

    The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.

  19. The impact of baryonic discs on the shapes and profiles of self-interacting dark matter halos

    NASA Astrophysics Data System (ADS)

    Sameie, Omid; Creasey, Peter; Yu, Hai-Bo; Sales, Laura V.; Vogelsberger, Mark; Zavala, Jesús

    2018-06-01

    We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tight correlation between the dark matter and baryon distributions. A deep baryonic potential shortens the phase of SIDM core expansion and triggers core contraction. This effect can be further enhanced by a large self-scattering cross section. We find the final SIDM density profile is sensitive to the baryonic concentration and the strength of dark matter self-interactions. Assuming a spherical initial halo, we also study evolution of the SIDM halo shape together with the density profile. The halo shape at later epochs deviates from spherical symmetry due to the influence of the non-spherical disc potential, and its significance depends on the baryonic contribution to the total gravitational potential, relative to the dark matter one. In addition, we construct a multi-component model for the Milky Way, including an SIDM halo, a stellar disc and a bulge, and show it is consistent with observations from stellar kinematics and streams.

  20. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales

    DOE PAGES

    Schiro, Kathleen A.; Ahmed, Fiaz; Giangrande, Scott E.; ...

    2018-04-17

    Representations of strongly precipitating deep-convective systems in climate models are among the most important factors in their simulation. Parameterizations of these motions face the dual challenge of unclear pathways to including mesoscale organization and high sensitivity of convection to approximations of turbulent entrainment of environmental air. Ill-constrained entrainment processes can even affect global average climate sensitivity under global warming. Multiinstrument observations from the Department of Energy GoAmazon2014/5 field campaign suggest that an alternative formulation from radar-derived dominant updraft structure yields a strong relationship of precipitation to buoyancy in both mesoscale and smaller-scale convective systems. This simultaneously provides a key stepmore » toward representing the influence of mesoscale convection in climate models and sidesteps a problematic dependence on traditional entrainment rates. A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014–2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies

  1. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiro, Kathleen A.; Ahmed, Fiaz; Giangrande, Scott E.

    Representations of strongly precipitating deep-convective systems in climate models are among the most important factors in their simulation. Parameterizations of these motions face the dual challenge of unclear pathways to including mesoscale organization and high sensitivity of convection to approximations of turbulent entrainment of environmental air. Ill-constrained entrainment processes can even affect global average climate sensitivity under global warming. Multiinstrument observations from the Department of Energy GoAmazon2014/5 field campaign suggest that an alternative formulation from radar-derived dominant updraft structure yields a strong relationship of precipitation to buoyancy in both mesoscale and smaller-scale convective systems. This simultaneously provides a key stepmore » toward representing the influence of mesoscale convection in climate models and sidesteps a problematic dependence on traditional entrainment rates. A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014–2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies

  2. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  3. Shaping field for deep tissue microscopy

    NASA Astrophysics Data System (ADS)

    Colon, J.; Lim, H.

    2015-05-01

    Information capacity of a lossless image-forming system is a conserved property determined by two imaging parameters - the resolution and the field of view (FOV). Adaptive optics improves the former by manipulating the phase, or wavefront, in the pupil plane. Here we describe a homologous approach, namely adaptive field microscopy, which aims to enhance the FOV by controlling the phase, or defocus, in the focal plane. In deep tissue imaging, the useful FOV can be severely limited if the region of interest is buried in a thick sample and not perpendicular to the optic axis. One must acquire many z-scans and reconstruct by post-processing, which exposes tissue to excessive radiation and is also time consuming. We demonstrate the effective FOV can be substantially enhanced by dynamic control of the image plane. Specifically, the tilt of the image plane is continuously adjusted in situ to match the oblique orientation of the sample plane within tissue. The utility of adaptive field microscopy is tested for imaging tissue with non-planar morphology. Ocular tissue of small animals was imaged by two-photon excited fluorescence. Our results show that adaptive field microscopy can utilize the full FOV. The freedom to adjust the image plane to account for the geometrical variations of sample could be extremely useful for 3D biological imaging. Furthermore, it could facilitate rapid surveillance of cellular features within deep tissue while avoiding photo damages, making it suitable for in vivo imaging.

  4. Observation and modelling of the Fe XXI line profile observed by IRIS during the impulsive phase of flares

    NASA Astrophysics Data System (ADS)

    Polito, V.; Testa, P.; De Pontieu, B.; Allred, J. C.

    2017-12-01

    The observation of the high temperature (above 10 MK) Fe XXI 1354.1 A line with the Interface Region Imaging Spectrograph (IRIS) has provided significant insights into the chromospheric evaporation process in flares. In particular, the line is often observed to be completely blueshifted, in contrast to previous observations at lower spatial and spectral resolution, and in agreement with predictions from theoretical models. Interestingly, the line is also observed to be mostly symmetric and with a large excess above the thermal width. One popular interpretation for the excess broadening is given by assuming a superposition of flows from different loop strands. In this work, we perform a statistical analysis of Fe XXI line profiles observed by IRIS during the impulsive phase of flares and compare our results with hydrodynamic simulations of multi-thread flare loops performed with the 1D RADYN code. Our results indicate that the multi-thread models cannot easily reproduce the symmetry of the line and that some other physical process might need to be invoked in order to explain the observed profiles.

  5. Deep Seismic Imaging of the Hellenic Subduction Zone with New MCS Data of the SISMED Project

    NASA Astrophysics Data System (ADS)

    Becel, A.; Mireille, L.; Hussni, S.; Dessa, J. X.; Schenini, L.; Sachpazi, M.; Vitard, C.

    2016-12-01

    The southwestern segment of the Hellenic subduction zone has generated a M>8 tsunamigenic earthquake in the past (365 AD), the largest event ever reported in Europe, but fundamental questions remain about the deep geometry and characteristics of the interplate fault and connected splay faults in the overriding plate that might be rooted in the megathrust. In the Fall 2012, the ULYSSE seismic program acquired deep penetration multichannel seismic (MCS) and OBS refraction profiles across a 300-km-wide section of the forearc domain. MCS data were acquired with a 4.5 km-long streamer on board the R/V Le Pourquoi Pas? from the French IFREMER facilities. The two 240 km-long seismic reflection dip profiles reveal a large and rough topography of the top of the forearc crust in both the outer and inner domains, including a several km thick forearc basin. Despite the thick Messinian evaporites at shallow depths, the 11000 cu.in airgun source reveal several discontinuous arcward-dipping reflections at 15 km depth beneath the outer forearc domain that could be related to the top of the subducting oceanic crust. Unfortunately, the 4.5 km-long streamer is too short for improving their lateral continuity and getting more detailed constraints on their geometry. In the Fall 2015, we chartered the R/V Marcus Langseth equipped with unmatched seismic facilities in the European academic fleet by means of a strong mobilization of the French and American involved laboratories (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Pau Univ.) and their research agencies (CNRS, NSF, OCA, and UCA). During the SISMED survey (Seismic Imaging inveStigation in MEDiterranean Sea for deep seismogenic faults), we collected with the R/V Marcus Langseth a 210 km-long profile coincident with the eastern ULYSSE transect with the 8 km-long streamer and a 6600 cu.in tuned airgun array shot every 50 meters. The source and the streamer were towed at a depth of 12 m to maximize low frequencies and deep imaging. Here

  6. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    PubMed Central

    2010-01-01

    Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE) are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host-pathogen interactions and evolutionary history

  7. Long-period amplification in deep alluvial basins and consequences for site-specific probabilistic seismic-hazard: the case of Castelleone in the Po Plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Barani, S.; Mascandola, C.; Massa, M.; Spallarossa, D.

    2017-12-01

    The recent Emilia seismic sequence (Northern Italy) occurred at the end of the first half of 2012 with main shock of Mw6.1 highlighted the importance of studying site effects in the Po Plain, the larger and deeper sedimentary basin in Italy. As has long been known, long-period amplification related to deep sedimentary basins can significantly affect the characteristics of the ground-motion induced by strong earthquakes. It follows that the effects of deep sedimentary deposits on ground shaking require special attention during the definition of the design seismic action. The work presented here analyzes the impact of deep-soil discontinuities on ground-motion amplification, with particular focus on long-period probabilistic seismic-hazard assessment. The study focuses on the site of Castelleone, where a seismic station of the Italian National Seismic Network has been recording since 2009. Our study includes both experimental and numerical site response analyses. Specifically, extensive active and passive geophysical measurements were carried out in order to define a detailed shear-wave velocity (VS) model to be used in the numerical analyses. These latter are needed to assess the site-specific ground-motion hazard. Besides classical seismic refraction profiles and multichannel analysis of surface waves, we analyzed ambient vibration measurements in both single and array configurations. The VS profile was determined via joint inversion of the experimental phase-velocity dispersion curve with the ellipticity curve derived from horizontal-to-vertical spectral ratios. The profile shows two main discontinuities at depths of around 160 and 1350 m, respectively. The probabilistic site-specific hazard was assessed in terms of both spectral acceleration and displacement. A partially non-ergodic approach was adopted. We have found that the spectral acceleration hazard is barely sensitive to long-period (up to 10 s) amplification related to the deeper discontinuity whereas the

  8. Incorporating ecosystem services into environmental management of deep-seabed mining

    NASA Astrophysics Data System (ADS)

    Le, Jennifer T.; Levin, Lisa A.; Carson, Richard T.

    2017-03-01

    Accelerated exploration of minerals in the deep sea over the past decade has raised the likelihood that commercial mining of the deep seabed will commence in the near future. Environmental concerns create a growing urgency for development of environmental regulations under commercial exploitation. Here, we consider an ecosystem services approach to the environmental policy and management of deep-sea mineral resources. Ecosystem services link the environment and human well-being, and can help improve sustainability and stewardship of the deep sea by providing a quantitative basis for decision-making. This paper briefly reviews ecosystem services provided by habitats targeted for deep-seabed mining (hydrothermal vents, seamounts, nodule provinces, and phosphate-rich margins), and presents practical steps to incorporate ecosystem services into deep-seabed mining regulation. The linkages and translation between ecosystem structure, ecological function (including supporting services), and ecosystem services are highlighted as generating human benefits. We consider criteria for identifying which ecosystem services are vulnerable to potential mining impacts, the role of ecological functions in providing ecosystem services, development of ecosystem service indicators, valuation of ecosystem services, and implementation of ecosystem services concepts. The first three steps put ecosystem services into a deep-seabed mining context; the last two steps help to incorporate ecosystem services into a management and decision-making framework. Phases of environmental planning discussed in the context of ecosystem services include conducting strategic environmental assessments, collecting baseline data, monitoring, establishing marine protected areas, assessing cumulative impacts, identifying thresholds and triggers, and creating an environmental damage compensation regime. We also identify knowledge gaps that need to be addressed in order to operationalize ecosystem services

  9. A deep reef in deep trouble

    USGS Publications Warehouse

    Menza, Charles; Kendall, M.; Rogers, C.; Miller, J.

    2007-01-01

    The well-documented degradation of shallower reefs which are often closer to land and more vulnerable to pollution, sewage and other human-related stressors has led to the suggestion that deeper, more remote offshore reefs could possibly serve as sources of coral and fish larvae to replenish the shallower reefs. Yet, the distribution, status, and ecological roles of deep (>30 m) Caribbean reefs are not well known. In this report, an observation of a deep reef which has undergone a recent extensive loss of coral cover is presented. In stark contrast to the typical pattern of coral loss in shallow reefs, the deeper corals were most affected. This report is the first description of such a pattern of coral loss on a deep reef.

  10. Characterization of double diffusive convection step and heat budget in the deep Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Lu, Y.

    2013-12-01

    In this paper, we explore the hydrographic structure and heat budget in deep Canada Basin using data measured with McLane-Moored-Profilers (MMPs), bottom-pressure-recorders (BPRs), and conductivity-temperature-depth (CTD) profilers. From the bottom upward, a homogenous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75oN, 150oW). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ~1.8×10-5 m 2s-1 while that of the other steps is ~10-6 m 2s-1. The vertical heat flux through DDC steps is evaluated with different methods. We find that the heat flux (0.1-11 mWm-2) is much smaller than geothermal heating (~50 mWm-2), which suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, while those of heat flux and effective diffusivity are found to be approximately log-normal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuation close to the sea floor distributed asymmetrically and skewed towards positive values, which provides direct indication that geothermal heating is transferred into ocean. Both BPR and CTD data suggest that geothermal heating, not the warming of upper ocean, is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent the vertical heat transfer, geothermal heating will be unlikely to have significant effect on the middle and upper oceans.

  11. Identifying QCD Transition Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Pang, Long-gang; Su, Nan; Petersen, Hannah; Stoecker, Horst; Wang, Xin-Nian

    2018-02-01

    In this proceeding we review our recent work using supervised learning with a deep convolutional neural network (CNN) to identify the QCD equation of state (EoS) employed in hydrodynamic modeling of heavy-ion collisions given only final-state particle spectra ρ(pT, V). We showed that there is a traceable encoder of the dynamical information from phase structure (EoS) that survives the evolution and exists in the final snapshot, which enables the trained CNN to act as an effective "EoS-meter" in detecting the nature of the QCD transition.

  12. Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Project Status

    NASA Technical Reports Server (NTRS)

    Gromski, J.; Majamaki, A. N.; Chianese, S. G.; Weinstock, V. D.; Kim, T.

    2010-01-01

    NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of the Exploration Initiative, with a particular focus on the needs of the Altair Project. To meet Altair requirements, several technical challenges need to be overcome, one of which is the ability for the lunar descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202, a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two phases of pintle injector testing. The first phase of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at several power levels across the designed 10:1 throttle range. The second phase of testing was performed on a calorimeter chamber and demonstrated injector performance at various power levels (75%, 50%, 25%, 10%, and 7.5%) across the throttle range as well as chamber heat flux to show that the engine can close an expander cycle design across the throttle range. This paper provides an overview of the TR202 program. It describes the different phases of the program with the key milestones of each phase. It then shows when those milestones were met. Next, it describes how the test data was used to update the conceptual design and how the test data has created a database for deep throttling cryogenic pintle technology that is readily scaleable and can be used to again update the design once the Altair program's requirements are firm. The final section of the paper describes the path forward, which includes

  13. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning

    PubMed Central

    Preuer, Kristina; Lewis, Richard P I; Hochreiter, Sepp; Bender, Andreas; Bulusu, Krishna C; Klambauer, Günter

    2018-01-01

    Abstract Motivation While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, Deep Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies. Results DeepSynergy was compared to other machine learning methods such as Gradient Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest publicly available synergy dataset with respect to mean squared error. DeepSynergy significantly outperformed the other methods with an improvement of 7.2% over the second best method at the prediction of novel drug combinations within the space of explored drugs and cell lines. At this task, the mean Pearson correlation coefficient between the measured and the predicted values of DeepSynergy was 0.73. Applying DeepSynergy for classification of these novel drug combinations resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found that all compared methods exhibit low predictive performance when extrapolating to unexplored drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset. We envision that DeepSynergy could be a valuable tool for selecting novel synergistic drug combinations. Availability and implementation DeepSynergy is available via www.bioinf.jku.at/software/DeepSynergy. Contact klambauer

  14. High-speed rupture during the initiation of the 2015 Bonin Islands deep earthquake

    NASA Astrophysics Data System (ADS)

    Zhan, Z.; Ye, L.; Shearer, P. M.; Lay, T.; Kanamori, H.

    2015-12-01

    Among the long-standing questions on how deep earthquakes rupture, the nucleation phase of large deep events is one of the most puzzling parts. Resolving the rupture properties of the initiation phase is difficult to achieve with far-field data because of the need for accurate corrections for structural effects on the waveforms (e.g., attenuation, scattering, and site effects) and alignment errors. Here, taking the 2015 Mw 7.9 Bonin Islands earthquake (depth = 678 km) as an example, we jointly invert its far-field P waves at multiple stations for the average rupture speed during the first second of the event. We use waveforms from a closely located aftershock as empirical Green's functions, and correct for possible differences in focal mechanisms and waveform misalignments with an iterative approach. We find that the average initial rupture speed is over 5 km/s, significantly higher than the average rupture speed of 3 km/s later in the event. This contrast suggests that rupture speeds of deep earthquakes can be highly variable during individual events and may define different stages of rupture, potentially with different mechanisms.

  15. [Effects of land use change on soil active organic carbon in deep soils in Hilly Loess Plateau region of Northwest China].

    PubMed

    Zhang, Shuai; Xu, Ming-Xiang; Zhang, Ya-Feng; Wang, Chao-Hua; Chen, Gai

    2015-02-01

    Response of soil active organic carbon to land-use change has become a hot topic in current soil carbon and nutrient cycling study. Soil active organic carbon distribution characteristics in soil profile under four land-use types were investigated in Ziwuling forest zone of the Hilly Loess Plateau region. The four types of land-use changes included natural woodland converted into artificial woodland, natural woodland converted into cropland, natural shrubland converted into cropland and natural shrubland converted into revegetated grassland. Effects of land-use changes on soil active organic carbon in deep soil layers (60-200 cm) were explored by comparison with the shallow soil layers (0-60 cm). The results showed that: (1) The labile organic carbon ( LOC) and microbial carbon (MBC) content were mainly concentrated in the shallow 0-60 cm soil, which accounted for 49%-66% and 71%-84% of soil active organic carbon in the profile (0-200 cm) under different land-use types. Soil active organic carbon content in shallow soil was significantly varied for the land-use changes types, while no obvious difference was observed in soil active organic carbon in deep soil layer. (2) Land-use changes exerted significant influence on soil active organic carbon, the active organic carbon in shallow soil was more sensitive than that in deep soil. The four types of land-use changes, including natural woodland to planted woodland, natural woodland to cropland, natural shrubland to revegetated grassland and natural shrubland to cropland, LOC in shallow soil was reduced by 10%, 60%, 29%, 40% and LOC in the deep layer was decreased by 9%, 21%, 12%, 1%, respectively. MBC in the shallow soil was reduced by 24% 73%, 23%, 56%, and that in the deep layer was decreased by 25%, 18%, 8% and 11%, respectively. (Land-use changes altered the distribution ratio of active organic carbon in soil profile. The ratio between LOC and SOC in shallow soil increased when natural woodland and shrubland were

  16. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes.

    PubMed

    Hingston, Patricia; Chen, Jessica; Allen, Kevin; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium's cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the

  17. Temporal and spatial dispersion of human body temperature during deep hypothermia.

    PubMed

    Opatz, O; Trippel, T; Lochner, A; Werner, A; Stahn, A; Steinach, M; Lenk, J; Kuppe, H; Gunga, H C

    2013-11-01

    Clinical temperature management remains challenging. Choosing the right sensor location to determine the core body temperature is a particular matter of academic and clinical debate. This study aimed to investigate the relationship of measured temperatures at different sites during surgery in deep hypothermic patients. In this prospective single-centre study, we studied 24 patients undergoing cardiothoracic surgery: 12 in normothermia, 3 in mild, and 9 in deep hypothermia. Temperature recordings of a non-invasive heat flux sensor at the forehead were compared with the arterial outlet temperature of a heart-lung machine, with the temperature on a conventional vesical bladder thermistor and, for patients undergoing deep hypothermia, with oesophageal temperature. Using a linear model for sensor comparison, the arterial outlet sensor showed a difference among the other sensor positions between -0.54 and -1.12°C. The 95% confidence interval ranged between 7.06 and 8.82°C for the upper limit and -8.14 and -10.62°C for the lower limit. Because of the hysteretic shape, the curves were divided into phases and fitted into a non-linear model according to time and placement of the sensors. During cooling and warming phases, a quadratic relationship could be observed among arterial, oesophageal, vesical, and cranial temperature recordings, with coefficients of determination ranging between 0.95 and 0.98 (standard errors of the estimate 0.69-1.12°C). We suggest that measured surrogate temperatures as indices of the cerebral temperature (e.g. vesical bladder temperature) should be interpreted with respect to the temporal and spatial dispersion during cooling and rewarming phases.

  18. Deep Borehole Disposal Safety Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Stein, Emily; Price, Laura L.

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept.more » It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.« less

  19. Ka-Band Transponder for Deep-Space Radio Science

    NASA Technical Reports Server (NTRS)

    Dennis, Matthew S.; Mysoor, Narayan R.; Folkner, William M.; Mendoza, Ricardo; Venkatesan, Jaikrishna

    2008-01-01

    A one-page document describes a Ka-band transponder being developed for use in deep-space radio science. The transponder receives in the Deep Space Network (DSN) uplink frequency band of 34.2 to 34.7 GHz, transmits in the 31.8- to 32.3 GHz DSN downlink band, and performs regenerative ranging on a DSN standard 4-MHz ranging tone subcarrier phase-modulated onto the uplink carrier signal. A primary consideration in this development is reduction in size, relative to other such transponders. The transponder design is all-analog, chosen to minimize not only the size but also the number of parts and the design time and, thus, the cost. The receiver features two stages of frequency down-conversion. The receiver locks onto the uplink carrier signal. The exciter signal for the transmitter is derived from the same source as that used to generate the first-stage local-oscillator signal. The ranging-tone subcarrier is down-converted along with the carrier to the second intermediate frequency, where the 4-MHz tone is demodulated from the composite signal and fed into a ranging-tone-tracking loop, which regenerates the tone. The regenerated tone is linearly phase-modulated onto the downlink carrier.

  20. Deformation mechanics of deep surface flaw cracks

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Nagy, A.; Beissner, R. E.

    1972-01-01

    A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas.

  1. Towards Scalable Deep Learning via I/O Analysis and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pumma, Sarunya; Si, Min; Feng, Wu-Chun

    Deep learning systems have been growing in prominence as a way to automatically characterize objects, trends, and anomalies. Given the importance of deep learning systems, researchers have been investigating techniques to optimize such systems. An area of particular interest has been using large supercomputing systems to quickly generate effective deep learning networks: a phase often referred to as “training” of the deep learning neural network. As we scale existing deep learning frameworks—such as Caffe—on these large supercomputing systems, we notice that the parallelism can help improve the computation tremendously, leaving data I/O as the major bottleneck limiting the overall systemmore » scalability. In this paper, we first present a detailed analysis of the performance bottlenecks of Caffe on large supercomputing systems. Our analysis shows that the I/O subsystem of Caffe—LMDB—relies on memory-mapped I/O to access its database, which can be highly inefficient on large-scale systems because of its interaction with the process scheduling system and the network-based parallel filesystem. Based on this analysis, we then present LMDBIO, our optimized I/O plugin for Caffe that takes into account the data access pattern of Caffe in order to vastly improve I/O performance. Our experimental results show that LMDBIO can improve the overall execution time of Caffe by nearly 20-fold in some cases.« less

  2. Interface dissolution control of the 14C profile in marine sediment

    USGS Publications Warehouse

    Keir, R.S.; Michel, R.L.

    1993-01-01

    The process of carbonate dissolution at the sediment-water interface has two possible endmember boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and 230Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in 230Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5000 years ago. ?? 1993.

  3. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    DOE PAGES

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; ...

    2017-10-01

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive

  4. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive

  5. Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation

    PubMed Central

    Cagnan, Hayriye; Brittain, John-Stuart; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Joint, Carole; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2013-01-01

    High frequency deep brain stimulation of the thalamus can help ameliorate severe essential tremor. Here we explore how the efficacy, efficiency and selectivity of thalamic deep brain stimulation might be improved in this condition. We started from the hypothesis that the effects of electrical stimulation on essential tremor may be phase dependent, and that, in particular, there are tremor phases at which stimuli preferentially lead to a reduction in the amplitude of tremor. The latter could be exploited to improve deep brain stimulation, particularly if tremor suppression could be reinforced by cumulative effects. Accordingly, we stimulated 10 patients with essential tremor and thalamic electrodes, while recording tremor amplitude and phase. Stimulation near the postural tremor frequency entrained tremor. Tremor amplitude was also modulated depending on the phase at which stimulation pulses were delivered in the tremor cycle. Stimuli in one half of the tremor cycle reduced median tremor amplitude by ∼10%, while those in the opposite half of the tremor cycle increased tremor amplitude by a similar amount. At optimal phase alignment tremor suppression reached 27%. Moreover, tremor amplitude showed a non-linear increase in the degree of suppression with successive stimuli; tremor suppression was increased threefold if a stimulus was preceded by four stimuli with a similar phase relationship with respect to the tremor, suggesting cumulative, possibly plastic, effects. The present results pave the way for a stimulation system that tracks tremor phase to control when deep brain stimulation pulses are delivered to treat essential tremor. This would allow treatment effects to be maximized by focussing stimulation on the optimal phase for suppression and by ensuring that this is repeated over many cycles so as to harness cumulative effects. Such a system might potentially achieve tremor control with far less power demand and greater specificity than current high frequency

  6. Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander

    The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populationsmore » in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (Z DR), while an enhanced specific differential phase (K DP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce Z DR and K DP values close to 0, suggesting the occurrence of a riming process. A Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and Z DR.« less

  7. Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic

    DOE PAGES

    Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander; ...

    2018-03-16

    The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populationsmore » in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (Z DR), while an enhanced specific differential phase (K DP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce Z DR and K DP values close to 0, suggesting the occurrence of a riming process. A Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and Z DR.« less

  8. Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less

  9. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation.

    PubMed

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C; Oppo, Delia W; Clark, Peter U; Jahn, Alexandra; Marcott, Shaun A; Lindsay, Keith

    2017-10-17

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18 O of benthic foraminiferal calcite (δ 18 O c ). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18 O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18 O c likely reflects early warming of the deep northern North Atlantic by ∼1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18 O, and call for caution when inferring water mass changes from δ 18 O c records while assuming uniform changes in deep temperatures.

  10. Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation

    DOE PAGES

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; ...

    2017-10-02

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less

  11. Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks.

    PubMed

    Tran, Son N; d'Avila Garcez, Artur S

    2018-02-01

    Developments in deep learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a deep network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into deep networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained deep networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in deep networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of deep belief networks. Furthermore, the proposed symbolic characterization of deep networks provides a novel method for the insertion of prior knowledge and training of deep networks. With the use of this method, a deep neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.

  12. Global minimum profile error (GMPE) - a least-squares-based approach for extracting macroscopic rate coefficients for complex gas-phase chemical reactions.

    PubMed

    Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K

    2018-01-03

    Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.

  13. Variable neutron star free precession in Hercules X-1 from evolution of RXTE X-ray pulse profiles with phase of the 35-d cycle

    NASA Astrophysics Data System (ADS)

    Postnov, K.; Shakura, N.; Staubert, R.; Kochetkova, A.; Klochkov, D.; Wilms, J.

    2013-10-01

    Accretion of matter on to the surface of a freely precessing neutron star (NS) with a complex non-dipole magnetic field can explain the change of X-ray pulse profiles of Her X-1 observed by RXTE with the phase of the 35-d cycle. We demonstrate this using all available measurements of X-ray pulse profiles in the 9-13 keV energy range obtained with the RXTE/Proportional Counter Array (PCA). The measured profiles guided the elaboration of a geometrical model and the definition of locations of emitting poles, arcs and spots on the NS surface which satisfactorily reproduce the observed pulse profiles and their dependence on free precession phase. We have found that the observed trend of the times of the 35-d turn-ons on the O-C diagram, which can be approximated by a collection of consecutive linear segments around the mean value, can be described by our model by assuming a variable free precession period, with a fractional period change of about a few per cent. Under this assumption and using our model, we have found that the times of phase zero of the NS free precession (which we identify with the maximum separation of the brightest spot on the NS surface with the NS spin axis) occur about 1.6 d after the mean turn-on times inside each `stable' epoch, producing a linear trend on the O-C diagram with the same slope as the observed times of turn-ons. We propose that the 2.5 per cent changes in the free precession period that occur on time scales of several to tens of 35-d cycles can be related to wandering of the principal inertia axis of the NS body due to variations in the patterns of accretion on to the NS surface. The closeness of periods of the disc precession and the NS free precession can be explained by the presence of a synchronization mechanism in the system, which modulates the dynamical interaction of the gas streams and the accretion disc with the NS free precession period.

  14. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    PubMed

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  15. Investigating Jupiter's Deep Flow Structure using the Juno Magnetic and Gravity Measurements

    NASA Astrophysics Data System (ADS)

    Duer, K.; Galanti, E.; Cao, H.; Kaspi, Y.

    2017-12-01

    Jupiter's flow below its cloud-level is still largely unknown. The gravity measurements from Juno provide now an initial insight into the depth of the flow via the relation between the gravity field and the flow field. Furthermore, additional constraints could be put on the flow if the expected Juno magnetic measurements are also used. Specifically, the gravity and magnetic measurements can be combined to allow a more robust estimate of the deep flow structure. However, a complexity comes from the fact that both the radial profile of the flow, and it's connection to the induced magnetic field, might vary with latitude. In this study we propose a method for using the expected Juno's high-precision measurements of both the magnetic and gravity fields, together with latitude dependent models that relate the measurements to the structure of the internal flow. We simulate possible measurements by setting-up specific deep wind profiles and forward calculate the resulting anomalies in both the magnetic and gravity fields. We allow these profiles to include also latitude dependency. The relation of the flow field to the gravity field is based on thermal wind balance, and it's relation to the magnetic field is via a mean-field electrodynamics balance. The latter includes an alpha-effect, describing the mean magnetic effect of turbulent rotating convection, which might also vary with latitude. Using an adjoint based optimization process, we examine the ability of the combined magnetic-gravity model to decipher the flow structure under the different potential Juno measurements. We investigate the effect of different latitude dependencies on the derived solutions and their associated uncertainties. The novelty of this study is the combination of two independent Juno measurements for the calculation of a latitudinal dependent interior flow profile. This method might lead to a better constraint of Jupiter's flow structure.

  16. Deep Vein Thrombosis

    MedlinePlus

    Deep vein thrombosis, or DVT, is a blood clot that forms in a vein deep in the body. Most ... vein swells, the condition is called thrombophlebitis. A deep vein thrombosis can break loose and cause a serious problem ...

  17. Lithosphere structure of the west Qinling orogenic belt revealed by deep seismic reflection profile

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2009-12-01

    The west Qinling orogen located in the northeastern margin of the Qinghai-Tibet plateau, is transformation zone between the N-S-trending and E-W-trending tectonics in the Chinese continent. Further study of the fine crust structure of the west Qinling orogen and its relationships with surrounding basins have very important significance for understanding tectonic response of the northeastern margin of the plateau about collision convergence of the Indian block and Asian block and learning formation and evolution of the plateau. In 2009, we reprocessed the data of the Tangke-Hezuo deep seismic reflection profiles collected in 2004 across the west Qinling orogen and the northern Songpan block. The new results show the lithosphere fine structure of the west Qinling orogen. Reflection features indicate that an interface at 6.0-7.0s (TWT) divided the crust into the upper and lower crust, whose structural style and deformation are totally different. Integrating geological data, we deduce that the interface at 6.0-7.0s (depth with 18-21 km) was the basement detachment, which made deformation decoupled of the upper and lower crust. The multi-layered reflections in the upper crust reveal the sedimentary covers of the west Qinling orogen, disclose the thickness of the various structure layer and deformation degree, and provide a basis for the prospective evaluation of a multi-metallic mineral and energy exploration. The north dipping strong reflection characteristics of the lower crust in the west Qinling orogen constituted imbricate structure, such imbricate structural features provide seismology evidence for researching the west Qinling thrusting toward the northern Songpan block, and have great significance for studying formation and evolution of the Songpan-Garze structure. Moho reflections are observed around 17.0-17.2s, characterized by nearly horizontal reflections, which implies the west Qinling orogen underwent an intense extension post orogeny caused the lithosphere

  18. The use of conduction model in laser weld profile computation

    NASA Astrophysics Data System (ADS)

    Grabas, Bogusław

    2007-02-01

    Profiles of joints resulting from deep penetration laser beam welding of a flat workpiece of carbon steel were computed. A semi-analytical conduction model solved with Green's function method was used in computations. In the model, the moving heat source was attenuated exponentially in accordance with Beer-Lambert law. Computational results were compared with those in the experiment.

  19. Determination of subthalamic nucleus location by quantitative analysis of despiked background neural activity from microelectrode recordings obtained during deep brain stimulation surgery.

    PubMed

    Danish, Shabbar F; Baltuch, Gordon H; Jaggi, Jurg L; Wong, Stephen

    2008-04-01

    Microelectrode recording during deep brain stimulation surgery is a useful adjunct for subthalamic nucleus (STN) localization. We hypothesize that information in the nonspike background activity can help identify STN boundaries. We present results from a novel quantitative analysis that accomplishes this goal. Thirteen consecutive microelectrode recordings were retrospectively analyzed. Spikes were removed from the recordings with an automated algorithm. The remaining "despiked" signals were converted via root mean square amplitude and curve length calculations into "feature profile" time series. Subthalamic nucleus boundaries determined by inspection, based on sustained deviations from baseline for each feature profile, were compared against those determined intraoperatively by the clinical neurophysiologist. Feature profile activity within STN exhibited a sustained rise in 10 of 13 tracks (77%). The sensitivity of STN entry was 60% and 90% for curve length and root mean square amplitude, respectively, when agreement within 0.5 mm of the neurophysiologist's prediction was used. Sensitivities were 70% and 100% for 1 mm accuracy. Exit point sensitivities were 80% and 90% for both features within 0.5 mm and 1.0 mm, respectively. Reproducible activity patterns in deep brain stimulation microelectrode recordings can allow accurate identification of STN boundaries. Quantitative analyses of this type may provide useful adjunctive information for electrode placement in deep brain stimulation surgery.

  20. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    NASA Astrophysics Data System (ADS)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  1. Deep proteomic profiling of vasopressin-sensitive collecting duct cells. I. Virtual Western blots and molecular weight distributions.

    PubMed

    Yang, Chin-Rang; Tongyoo, Pumipat; Emamian, Milad; Sandoval, Pablo C; Raghuram, Viswanathan; Knepper, Mark A

    2015-12-15

    The mouse mpkCCD cell line is a continuous cultured epithelial cell line with characteristics of renal collecting duct principal cells. This line is widely used to study epithelial transport and its regulation. To provide a data resource useful for experimental design and interpretation in studies using mpkCCD cells, we have carried out "deep" proteomic profiling of these cells using three levels of fractionation (differential centrifugation, SDS-PAGE, and HPLC) followed by tandem mass spectrometry to identify and quantify proteins. The analysis of all resulting samples generated 34.6 gigabytes of spectral data. As a result, we identified 6,766 proteins in mpkCCD cells at a high level of stringency. These proteins are expressed over eight orders of magnitude of protein abundance. The data are provided to users as a public data base (https://helixweb.nih.gov/ESBL/Database/mpkFractions/). The mass spectrometry data were mapped back to their gel slices to generate "virtual Western blots" for each protein. For most of the 6,766 proteins, the apparent molecular weight from SDS-PAGE agreed closely with the calculated molecular weight. However, a substantial fraction (>15%) of proteins was found to run aberrantly, with much higher or much lower mobilities than predicted. These proteins were analyzed to identify mechanisms responsible for altered mobility on SDS-PAGE, including high or low isoelectric point, high or low hydrophobicity, physiological cleavage, residence in the lysosome, posttranslational modifications, and expression of alternative isoforms due to alternative exon usage. Additionally, this analysis identified a previously unrecognized isoform of aquaporin-2 with apparent molecular mass <20 kDa. Copyright © 2015 the American Physiological Society.

  2. Automated AFM for small-scale and large-scale surface profiling in CMP applications

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2018-03-01

    As the feature size is shrinking in the foundries, the need for inline high resolution surface profiling with versatile capabilities is increasing. One of the important areas of this need is chemical mechanical planarization (CMP) process. We introduce a new generation of atomic force profiler (AFP) using decoupled scanners design. The system is capable of providing small-scale profiling using XY scanner and large-scale profiling using sliding stage. Decoupled scanners design enables enhanced vision which helps minimizing the positioning error for locations of interest in case of highly polished dies. Non-Contact mode imaging is another feature of interest in this system which is used for surface roughness measurement, automatic defect review, and deep trench measurement. Examples of the measurements performed using the atomic force profiler are demonstrated.

  3. Deep eutectic-solvothermal synthesis of nanostructured ceria

    PubMed Central

    Hammond, Oliver S.; Edler, Karen J.; Bowron, Daniel T.; Torrente-Murciano, Laura

    2017-01-01

    Ceria is a technologically important material with applications in catalysis, emissions control and solid-oxide fuel cells. Nanostructured ceria becomes profoundly more active due to its enhanced surface area to volume ratio, reactive surface oxygen vacancy concentration and superior oxygen storage capacity. Here we report the synthesis of nanostructured ceria using the green Deep Eutectic Solvent reline, which allows morphology and porosity control in one of the less energy-intensive routes reported to date. Using wide Q-range liquid-phase neutron diffraction, we elucidate the mechanism of reaction at a molecular scale at considerably milder conditions than the conventional hydrothermal synthetic routes. The reline solvent plays the role of a latent supramolecular catalyst where the increase in reaction rate from solvent-driven pre-organization of the reactants is most significant. This fundamental understanding of deep eutectic-solvothermal methodology will enable future developments in low-temperature synthesis of nanostructured ceria, facilitating its large-scale manufacturing using green, economic, non-toxic solvents. PMID:28120829

  4. Chabazite and dolomite formation in a dolocrete profile: An example of a complex alkaline paragenesis in Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Alonso-Zarza, Ana M.; Bustamante, Leticia; Huerta, Pedro; Rodríguez-Berriguete, Álvaro; Huertas, María José

    2016-05-01

    This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.

  5. Outokumpu Deep Drill Hole: Window to the Precambrian bedrock

    NASA Astrophysics Data System (ADS)

    Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo

    2017-04-01

    Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a

  6. Dasatinib rapidly induces deep molecular response in chronic-phase chronic myeloid leukemia patients who achieved major molecular response with detectable levels of BCR-ABL1 transcripts by imatinib therapy.

    PubMed

    Shiseki, Masayuki; Yoshida, Chikashi; Takezako, Naoki; Ohwada, Akira; Kumagai, Takashi; Nishiwaki, Kaichi; Horikoshi, Akira; Fukuda, Tetsuya; Takano, Hina; Kouzai, Yasuji; Tanaka, Junji; Morita, Satoshi; Sakamoto, Junichi; Sakamaki, Hisashi; Inokuchi, Koiti

    2017-10-01

    With the introduction of imatinib, a first-generation tyrosine kinase inhibitor (TKI) to inhibit BCR-ABL1 kinase, the outcome of chronic-phase chronic myeloid leukemia (CP-CML) has improved dramatically. However, only a small proportion of CP-CML patients subsequently achieve a deep molecular response (DMR) with imatinib. Dasatinib, a second-generation TKI, is more potent than imatinib in the inhibition of BCR-ABL1 tyrosine kinase in vitro and more effective in CP-CML patients who do not achieve an optimal response with imatinib treatment. In the present study, we attempted to investigate whether switching the treatment from imatinib to dasatinib can induce DMR in 16 CP-CML patients treated with imatinib for at least two years who achieved a major molecular response (MMR) with detectable levels of BCR-ABL1 transcripts. The rates of achievement of DMR at 1, 3, 6 and 12 months after switching to dasatinib treatment in the 16 patients were 44% (7/16), 56% (9/16), 63% (10/16) and 75% (12/16), respectively. The cumulative rate of achieving DMR at 12 months from initiation of dasatinib therapy was 93.8% (15/16). The proportion of natural killer cells and cytotoxic T cells in peripheral lymphocytes increased after switching to dasatinib. In contrast, the proportion of regulatory T cells decreased during treatment. The safety profile of dasatinib was consistent with previous studies. Switching to dasatinib would be a therapeutic option for CP-CML patients who achieved MMR but not DMR by imatinib, especially for patients who wish to discontinue TKI therapy.

  7. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    NASA Astrophysics Data System (ADS)

    de Beer, D.; Haeckel, M.; Neumann, J.; Wegener, G.; Inagaki, F.; Boetius, A.

    2013-02-01

    This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulphate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed to emanate from the sediments, and the pH reached approximately 4.5 in a sediment depth >6 cm, as determined in situ by microsensors. Methane and sulphate co-occurred in most sediment samples from the vicinity of the vents down to a depth of at least 3 m. However, SR and AOM were restricted to the upper 7-15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulphate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000-1700 mM), through the ensuing high H2CO3 levels (approx. 1-2 mM) uncouples the proton-motive-force (PMF) and thus inhibits biological energy conservation by ATPase-driven phosphorylation. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  8. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    NASA Astrophysics Data System (ADS)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  9. Super-deep diamond genesis at Redox conditions of slab-mantle boundary

    NASA Astrophysics Data System (ADS)

    Gao, J.; Chen, B.; Wu, X.

    2017-12-01

    Diamond genesis is an intriguing issue for diamond resources and the deep carbon cycle of the Earth's interiors. Super-deep diamonds, representing only 6% of the global diamond population, often host inclusions with phase assemblages requiring a sublithospheric origin (>300 km). Being the windows for probing the deep Earth, super-deep diamonds with their distinctive micro-inclusions not only record a history of oceanic lithosphere subduction and upward transport at a depth of >250 km to even 1000 km, but indicate their genesis pertinent to mantle-carbonate melts in a Fe0-bufferred reduced condition. Our pilot experiments have evidenced the formation of diamonds from MgCO3-Fe0 system in a diamond anvil cell device at 25 GPa and 1800 K. Detailed experimental investigations of redox mechanism of MgCO3-Fe0 and CaCO3-Fe0 coupling have been conducted using multi-anvil apparatus. The conditions are set along the oceanic lithosphere subduction paths in the pressure-temperature range of 10-24 GPa and 1200-2000 K, covering the formation region of most super-deep diamonds. The clear reaction zones strongly support the redox reaction between carbonatitic slab and Fe0-bearing metals under mantle conditions. Our study has experimentally documented the possibility of super-deep diamond genesis at redox conditions of carbonateitic slab and Fe0-bearings. The kinetics of diamond formation as a function of pressure-temperature conditions are also discussed.

  10. Heart-Rate Variability During Deep Sleep in World-Class Alpine Skiers: A Time-Efficient Alternative to Morning Supine Measurements.

    PubMed

    Herzig, David; Testorelli, Moreno; Olstad, Daniela Schäfer; Erlacher, Daniel; Achermann, Peter; Eser, Prisca; Wilhelm, Matthias

    2017-05-01

    It is increasingly popular to use heart-rate variability (HRV) to tailor training for athletes. A time-efficient method is HRV assessment during deep sleep. To validate the selection of deep-sleep segments identified by RR intervals with simultaneous electroencephalography (EEG) recordings and to compare HRV parameters of these segments with those of standard morning supine measurements. In 11 world-class alpine skiers, RR intervals were monitored during 10 nights, and simultaneous EEGs were recorded during 2-4 nights. Deep sleep was determined from the HRV signal and verified by delta power from the EEG recordings. Four further segments were chosen for HRV determination, namely, a 4-h segment from midnight to 4 AM and three 5-min segments: 1 just before awakening, 1 after waking in supine position, and 1 in standing after orthostatic challenge. Training load was recorded every day. A total of 80 night and 68 morning measurements of 9 athletes were analyzed. Good correspondence between the phases selected by RR intervals vs those selected by EEG was found. Concerning root-mean-squared difference of successive RR intervals (RMSSD), a marker for parasympathetic activity, the best relationship with the morning supine measurement was found in deep sleep. HRV is a simple tool for approximating deep-sleep phases, and HRV measurement during deep sleep could provide a time-efficient alternative to HRV in supine position.

  11. [Sedation in the terminal phase of life].

    PubMed

    Verhagen, E H; Eliel, M R; de Graeff, A; Teunissen, S C

    1999-12-25

    In 2 patients, a woman aged 38 years and a man aged 48 years, in the terminal phase of life due to metastasized+ malignancy, palliative care failed. They suffered seriously from pain, delirium, restlessness, nausea, and fear. Deep sedation was given to induce almost continuous sleep without the intention of causing death. After one and five quiet days respectively the patients died. Deep sedation is an option when palliative care fails to diminish serious suffering. Midazolam, given by continuous subcutaneous infusion is the drug of choice.

  12. A flexible 70 MHz phase-controlled double waveguide system for hyperthermia treatment of superficial tumours with deep infiltration.

    PubMed

    van Stam, Gerard; Kok, H Petra; Hulshof, Maarten C C M; Kolff, M Willemijn; van Tienhoven, Geertjan; Sijbrands, Jan; Bakker, Akke; Zum Vörde Sive Vörding, Paul J; Oldenborg, Sabine; de Greef, Martijn; Rasch, Coen R N; Crezee, Hans

    2017-11-01

    Superficial tumours with deep infiltration in the upper 15 cm of the trunk cannot be treated adequately with existing hyperthermia systems. The aim of this study was to develop, characterise and evaluate a new flexible two-channel hyperthermia system (AMC-2) for tumours in this region. The two-channel AMC-2 system has two horizontally revolving and height adjustable 70 MHz waveguides. Three different interchangeable antennas with sizes 20 × 34, 15 × 34 and 8.5 × 34 cm were developed and their electrical properties were determined. The performance of the AMC-2 system was tested by measurements of the electric field distribution in a saline water filled elliptical phantom, using an electric field vector probe. Clinical feasibility was demonstrated by treatment of a melanoma in the axillary region. Phantom measurements showed a good performance for all waveguides. The large reflection of the smallest antenna has to be compensated by increased forward power. Field patterns become asymmetrical when using smaller top antennas, necessitating phase corrections. The clinical application showed that tumours deeper than 4 cm can be heated adequately. A median tumour temperature of 42 °C can be reached up to 12 cm depth with adequate antenna positioning and phase-amplitude steering. This 70 MHz AMC-2 waveguide system is a useful addition to existing loco-regional hyperthermia equipment as it is capable of heating axillary tumours and other tumours deeper than 4 cm.

  13. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  14. Polarization-multiplexed plasmonic phase generation with distributed nanoslits.

    PubMed

    Lee, Seung-Yeol; Kim, Kyuho; Lee, Gun-Yeal; Lee, Byoungho

    2015-06-15

    Methods for multiplexing surface plasmon polaritons (SPPs) have been attracting much attention due to their potentials for plasmonic integrated systems, plasmonic holography, and optical tweezing. Here, using closely-distanced distributed nanoslits, we propose a method for generating polarization-multiplexed SPP phase profiles which can be applied for implementing general SPP phase distributions. Two independent types of SPP phase generation mechanisms - polarization-independent and polarization-reversible ones - are combined to generate fully arbitrary phase profiles for each optical handedness. As a simple verification of the proposed scheme, we experimentally demonstrate that the location of plasmonic focus can be arbitrary designed, and switched by the change of optical handedness.

  15. Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Yan, Lixin; Du, YingChao; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2018-02-01

    Premodulated comblike electron bunch trains are used in a wide range of research fields, such as for wakefield-based particle acceleration and tunable radiation sources. We propose an optimized compression scheme for bunch trains in which a traveling wave accelerator tube and a downstream drift segment are together used as a compressor. When the phase injected into the accelerator tube for the bunch train is set to ≪-10 0 ° , velocity bunching occurs in a deep overcompression mode, which reverses the phase space and maintains a velocity difference within the injected beam, thereby giving rise to a compressed comblike electron bunch train after a few-meter-long drift segment; we call this the deep overcompression scheme. The main benefits of this scheme are the relatively large phase acceptance and the uniformity of compression for the bunch train. The comblike bunch train generated via this scheme is widely tunable: For the two-bunch case, the energy and time spacings can be continuously adjusted from +1 to -1 MeV and from 13 to 3 ps, respectively, by varying the injected phase of the bunch train from -22 0 ° to -14 0 ° . Both theoretical analysis and beam dynamics simulations are presented to study the properties of the deep overcompression scheme.

  16. Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Pommier, Anne

    2017-12-01

    We report electrical conductivity measurements on metal-olivine systems at about 5 and 6 GPa and up to 1,675°C in order to investigate the electrical properties of core-mantle boundary (CMB) systems. Electrical experiments were conducted in the multianvil apparatus using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from 10-2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at the temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury's interior, we propose an electrical profile of the deep interior of the planet that accounts for a layered CMB-outer core structure. The electrical model agrees with existing conductivity estimates of Mercury's lower mantle and CMB using magnetic observations and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence the planet's structure and cooling history.

  17. The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2

    NASA Astrophysics Data System (ADS)

    Lebonnois, Sebastien; Schubert, Gerald

    2017-07-01

    With temperatures around 700 K and pressures of around 75 bar, the deepest 12 km of the atmosphere of Venus are so hot and dense that the atmosphere behaves like a supercritical fluid. The Soviet VeGa-2 probe descended through the atmosphere in 1985 and obtained the only reliable temperature profile for the deep Venusian atmosphere thus far. In this temperature profile, the atmosphere appears to be highly unstable at altitudes below 7 km, contrary to expectations. We argue that the VeGa-2 temperature profile could be explained by a change in the atmospheric gas composition, and thus molecular mass, with depth. We propose that the deep atmosphere consists of a non-homogeneous layer in which the abundance of N2--the second most abundant constituent of the Venusian atmosphere after CO2--gradually decreases to near-zero at the surface. It is difficult to explain a decline in N2 towards the surface with known nitrogen sources and sinks for Venus. Instead we suggest, partly based on experiments on supercritical fluids, that density-driven separation of N2 from CO2 can occur under the high pressures of Venus's deep atmosphere, possibly by molecular diffusion, or by natural density-driven convection. If so, the amount of nitrogen in the atmosphere of Venus is 15% lower than commonly assumed. We suggest that similar density-driven separation could occur in other massive planetary atmospheres.

  18. Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Qi; Lu, Yuan-Zheng

    2013-12-01

    In this paper, we explore the hydrographic structure and heat budget in the deep Canada Basin by using data measured with McLane-Moored-Profilers (MMP), bottom pressure recorders (BPR), and conductivity-temperature-depth (CTD) profilers. Upward from the bottom, a homogeneous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A (75°N,150°W). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is ˜1.8 × 10-5 m2s-1, while that of the other steps is ˜10-6 m2s-1. The vertical heat flux through the DDC steps is evaluated by using different methods. We find that the heat flux (0.1-11 mWm -2) is much smaller than geothermal heating (˜50 mWm -2). This suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, whereas those of heat flux and effective diffusivity are found to be approximately lognormal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuations close to the sea floor were distributed asymmetrically and skewed toward positive values, which provide a direct observation that geothermal heating was transferred into the ocean. Both BPR and CTD data suggest that geothermal heating and not the warming of the upper ocean is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent vertical heat transfer, geothermal heating is unlikely to have a significant effect on the middle and upper Arctic Ocean.

  19. Measurement of gas-liquid partition coefficient and headspace concentration profiles of perfume materials by solid-phase microextraction and capillary gas chromatography-mass spectrometry

    PubMed

    Liu; Wene

    2000-09-01

    An empirical model describing the relationship between the partition coefficients (K) of perfume materials in the solid-phase microextraction (SPME) fiber stationary phase and the Linearly Temperature Programmed Retention Index (LTPRI) is obtained. This is established using a mixture of eleven selected fragrance materials spiked in mineral oil at different concentration levels to simulate liquid laundry detergent matrices. Headspace concentrations of the materials are measured using both static headspace and SPME-gas chromatography analysis. The empirical model is tested by measuring the K values for fourteen perfume materials experimentally. Three of the calculated K values are within 2-19% of the measured K value, and the other eleven calculated K values are within 22-59%. This range of deviation is understandable because a diverse mixture was used to cover most chemical functionalities in order to make the model generally applicable. Better prediction accuracy is expected when a model is established using a specific category of compounds, such as hydrocarbons or aromatics. The use of this method to estimate distribution constants of fragrance materials in liquid matrices is demonstrated. The headspace SPME using the established relationship between the gas-liquid partition coefficient and the LTPRI is applied to measure the headspace concentration of fragrances. It is demonstrated that this approach can be used to monitor the headspace perfume profiles over consumer laundry and cleaning products. This method can provide high sample throughput, reproducibility, simplicity, and accuracy for many applications for screening major fragrance materials over consumer products. The approach demonstrated here can be used to translate headspace SPME results into true static headspace concentration profiles. This translation is critical for obtaining the gas-phase composition by correcting for the inherent differential partitioning of analytes into the fiber stationary

  20. Bayesian mixture analysis for metagenomic community profiling.

    PubMed

    Morfopoulou, Sofia; Plagnol, Vincent

    2015-09-15

    Deep sequencing of clinical samples is now an established tool for the detection of infectious pathogens, with direct medical applications. The large amount of data generated produces an opportunity to detect species even at very low levels, provided that computational tools can effectively profile the relevant metagenomic communities. Data interpretation is complicated by the fact that short sequencing reads can match multiple organisms and by the lack of completeness of existing databases, in particular for viral pathogens. Here we present metaMix, a Bayesian mixture model framework for resolving complex metagenomic mixtures. We show that the use of parallel Monte Carlo Markov chains for the exploration of the species space enables the identification of the set of species most likely to contribute to the mixture. We demonstrate the greater accuracy of metaMix compared with relevant methods, particularly for profiling complex communities consisting of several related species. We designed metaMix specifically for the analysis of deep transcriptome sequencing datasets, with a focus on viral pathogen detection; however, the principles are generally applicable to all types of metagenomic mixtures. metaMix is implemented as a user friendly R package, freely available on CRAN: http://cran.r-project.org/web/packages/metaMix sofia.morfopoulou.10@ucl.ac.uk Supplementary data are available at Bionformatics online. © The Author 2015. Published by Oxford University Press.

  1. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal.

    PubMed

    Li, Mingzhong; Qiu, Shi; Lu, Yan; Wang, Ke; Lai, Xiaojun; Rehan, Mohammad

    2014-09-01

    The aim of this work was to investigate the influence of hydroxypropyl methylcellulose (HPMC) on the phase transformation and release profile of carbamazepine-nicotinamide (CBZ-NIC) cocrystal in solution and in sustained release matrix tablets. The polymorphic transitions of the CBZ-NIC cocrystal and its crystalline properties were examined by differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Raman spectroscopy, and scanning electron microscopy (SEM). The apparent CBZ solubility and dissolution rate of CBZ-NIC cocrystal were constant in different concentrations of HPMC solutions. In a lower percentage of HPMC in the matrix tablets, the CBZ release profile of the CBZ-NIC cocrystal was nonlinear and declined over time. With an increased HPMC content in the tablets, the CBZ-NIC cocrystal formulation showed a significantly higher CBZ release rate in comparison with the other two formulations of CBZ III and the physical mixture. Because of a significantly improved dissolution rate of the CBZ-NIC cocrystal, the rate of CBZ entering into solution is significantly faster than the rate of formation of the CBZ-HPMC soluble complex in solution, leading to a higher supersaturation level of CBZ and subsequently precipitation of CBZ dihydrate.

  2. Smectite Dehydration, Membrane Filtration, and Pore-Water Freshening in Deep Ultra-Low Permeability Formations: Deep Processes in the Nankai Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Sample, J. C.; Even, E.; Poeppe, D.; Henry, P.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    We address the fundamental questions surrounding the nature of water and chemical transport processes deep within sedimentary basin and accretionary-wedge environments. Consolidation and permeability studies conducted to 165 MPa (~10km depth) indicate that ultra-tight clay formations (10-18 m2 to10-21 m2) can substantially modify the fluids migrating through then. Pore-water extractions conducted on smectite/illite rich core samples obtained from 1-3 km depths at IODP (NanTroSEIZE, Chikyu) deep-riser drilling Site C0002, at the elevated loads required to squeeze waters from such deeply buried sediment (stresses up to 100 MPa),resulted in anomalous patterns of sequential freshening with progressive loading. More accurate laboratory investigations (both incremental loading and Constant Rate of Strain test) revealed that such freshening initiates above 20 MPa and progresses with consolidation to become greater than 20% by effective normal load of 165 MPa. Log-log plots of stress vs. hydraulic conductivity reveal that trends remain linear to elevated stresses and total porosities as low at 14%. The implications are that stress induced smectite dehydration and/or membrane filtration effects cause remarkable changes in pore water chemistry with fluid migration through deep, tight, clay-rich formations. These changes should occur in addition to any thermally induced diagenetic and clay-dehydration effects on pore water chemistry. Work is progressing to evaluate the impact of clay composition and temperature to ascertain if purely illitic compositions show similar trends and if the mass fractionation of water and other isotopes also occurs. Such studies will ascertain if the presence of smectite is a prerequisite for freshening or if membrane filtration is a major process in earth systems containing common clay minerals. The results have major implications for interpretations of mass chemical balances, pore water profiles, and the hydrologic, geochemical, and stress state

  3. The biological pump: Profiles of plankton production and consumption in the upper ocean

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.; Glen Harrison, W.

    The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.

  4. Deep Neural Network Detects Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  5. Deep focus earthquakes in the laboratory

    NASA Astrophysics Data System (ADS)

    Schubnel, Alexandre; Brunet, Fabrice; Hilairet, Nadège; Gasc, Julien; Wang, Yanbin; Green, Harry W., II

    2014-05-01

    While the existence of deep earthquakes have been known since the 1920's, the essential mechanical process responsible for them is still poorly understood and remained one of the outstanding unsolved problems of geophysics and rock mechanics. Indeed, deep focus earthquake occur in an environment fundamentally different from that of shallow (<100 km) earthquakes. As pressure and temperature increase with depth however, intra-crystalline plasticity starts to dominate the deformation regime so that rocks yield by plastic flow rather than by brittle fracturing. Olivine phase transitions have provided an attractive alternative mechanism for deep focus earthquakes. Indeed, the Earth mantle transition zone (410-700km) is the locus of the two successive polymorphic transitions of olivine. Such scenario, however, runs into the conceptual barrier of initiating failure in a pressure (P) and temperature (T) regime where deviatoric stress relaxation is expected to be achieved through plastic flow. Here, we performed laboratory deformation experiments on Germanium olivine (Mg2GeO4) under differential stress at high pressure (P=2-5GPa) and within a narrow temperature range (T=1000-1250K). We find that fractures nucleate at the onset of the olivine to spinel transition. These fractures propagate dynamically (i.e. at a non-negligible fraction of the shear wave velocity) so that intense acoustic emissions are generated. Similar to deep-focus earthquakes, these acoustic emissions arise from pure shear sources, and obey the Gutenberg-Richter law without following Omori's law. Microstructural observations prove that dynamic weakening likely involves superplasticity of the nanocrystalline spinel reaction product at seismic strain rates. Although in our experiments the absolute stress value remains high compared to stresses expected within the cold core of subducted slabs, the observed stress drops are broadly consistent with those calculated for deep earthquakes. Constant differential

  6. Dynamic stresses in a Francis model turbine at deep part load

    NASA Astrophysics Data System (ADS)

    Weber, Wilhelm; von Locquenghien, Florian; Conrad, Philipp; Koutnik, Jiri

    2017-04-01

    A comparison between numerically obtained dynamic stresses in a Francis model turbine at deep part load with experimental ones is presented. Due to the change in the electrical power mix to more content of new renewable energy sources, Francis turbines are forced to operate at deep part load in order to compensate stochastic nature of wind and solar power and to ensure grid stability. For the extension of the operating range towards deep part load improved understanding of the harsh flow conditions and their impact on material fatigue of hydraulic components is required in order to ensure long life time of the power unit. In this paper pressure loads on a model turbine runner from unsteady two-phase computational fluid dynamics simulation at deep part load are used for calculation of mechanical stresses by finite element analysis. Therewith, stress distribution over time is determined. Since only few runner rotations are simulated due to enormous numerical cost, more effort has to be spent to evaluation procedure in order to obtain objective results. By comparing the numerical results with measured strains accuracy of the whole simulation procedure is verified.

  7. Iron and intrinsic deep level states in Ga2O3

    NASA Astrophysics Data System (ADS)

    Ingebrigtsen, M. E.; Varley, J. B.; Kuznetsov, A. Yu.; Svensson, B. G.; Alfieri, G.; Mihaila, A.; Badstübner, U.; Vines, L.

    2018-01-01

    Using a combination of deep level transient spectroscopy, secondary ion mass spectrometry, proton irradiation, and hybrid functional calculations, we identify two similar deep levels that are associated with Fe impurities and intrinsic defects in bulk crystals and molecular beam epitaxy and hydride vapor phase epitaxi-grown epilayers of β-Ga2O3. First, our results indicate that FeGa, and not an intrinsic defect, acts as the deep acceptor responsible for the often dominating E2 level at ˜0.78 eV below the conduction band minimum. Second, by provoking additional intrinsic defect generation via proton irradiation, we identified the emergence of a new level, labeled as E2*, having the ionization energy very close to that of E2, but exhibiting an order of magnitude larger capture cross section. Importantly, the properties of E2* are found to be consistent with its intrinsic origin. As such, contradictory opinions of a long standing literature debate on either extrinsic or intrinsic origin of the deep acceptor in question converge accounting for possible contributions from E2 and E2* in different experimental conditions.

  8. Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model

    USGS Publications Warehouse

    Stelzer, Robert S.; Bartsch, Lynn

    2012-01-01

    Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates

  9. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes

    PubMed Central

    Hingston, Patricia; Chen, Jessica; Allen, Kevin; Truelstrup Hansen, Lisbeth

    2017-01-01

    The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium’s cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and

  10. Synthesis of photobleachable deep UV resists based on single component nonchemically amplified resist system

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Seon; Kim, Su-Min; Park, Ji-Young; Kim, Jin-Baek

    2006-03-01

    In a general way, non-CARs consist of the matrix resins and photoactive compounds (PACs), and the dissolution properties of the resists are dependent on the amount of PACs. In common, I-line and G-line resists based on novolac and diazonaphthoquinone (DNQ) are typical non-CARs. But most PACs absorb much light in the deep UV, and they are poorly photobleached by deep UV exposure. This strong absorption of PACs prevents the deep UV light from reaching the bottom of the resist film, leading to scum and sloped pattern profiles. Several PACs which contain diazoketo groups have been reported for deep UV lithography. Our goal in this investigation is to find a proper resist that is processable without photoacid generator and induces both photobleaching in the deep UV regions and polarity change upon exposure. We thought diazoketo groups attached to the polymer side chains could give such effects. There is no necessity for the post-exposure bake step that is the cause of acid-diffusion. The diazoketo groups undergo the Wolff rearrangement upon irradiation in the deep UV, affording ketenes that react with water to provide base soluble photoproducts. The polymers were synthesized by radical copolymerization of 2-(2-diazo-3-oxo-butyryloxy)-ethyl methacrylate, 2-hydroxyethyl methacrylate, and γ-butyrolacton-2-yl methacrylate. The single component resist showed 0.7μm line and space patterns using a mercury-xenon lamp in a contact printing mode.

  11. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  12. National Environmental/Energy Workforce Assessment, Phase II, Post-Secondary Education Profile: Pesticides.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    Pesticide- and toxicology-related programs were reviewed in 21 states and in 26 academic institutions. These programs represent a sample, only, of the various programs available nationwide. Enrollment profiles are given for both pesticide and toxicology programs. The programs described in these profiles are served by a total of 620 faculty.…

  13. RETINAL DEEP CAPILLARY ISCHEMIA ASSOCIATED WITH AN OCCLUDED CONGENITAL RETINAL MACROVESSEL.

    PubMed

    Hasegawa, Taiji; Ogata, Nahoko

    2017-01-01

    To report the case of a patient with an occluded congenital retinal macrovessel accompanied by retinal deep capillary ischemia. A 38-year-old woman presented with a 2-day history of a paracentral scotoma of her right eye. Fundus photograph showed a dilated congenital retinal macrovessel with arteriovenous anastomosis, an intravascular white region indicating the thrombus at arteriovenous anastomotic region, and an area of retinal whitening temporal to the fovea. The spectral domain optical coherence tomography images through the area of retinal whitening showed a thickening and highly reflectivity at the level of the inner nuclear layer, which is likely due to the deep capillary ischemia. After 6 weeks, spectral domain optical coherence tomography images through the same area demonstrated a thinning and atrophy of only the inner nuclear layer, and the patient's paracentral scotoma persisted. Acute capillary hemodynamic changes caused deep capillary ischemia. The spectral domain optical coherence tomography showed a highly reflective lesion at the level of the inner nuclear layer in the acute phase.

  14. The Potential of Phased Arrays for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Pogorzelski, Ronald J.

    2000-01-01

    Phased array antennas provide a set of operational capabilities which are very attractive for certain mission applications and not very attractive for others. Such antennas are by no means a panacea for telecommunications. In this paper the features of phased arrays are reviewed and their implications for space missions are considered in terms of benefits and costs. The primary capability provided by a phased array is electronic beam agility. The beam direction may be controlled at electronic speeds (vs. mechanical actuation) permitting time division multiplexing of multiple "users." Moreover, the beam direction can be varied over a full hemisphere (for a planar array). On the other hand, such antennas are typically much more complicated than the more commonly used reflectors and horns and this implies higher cost. In some applications, this increased cost must be accepted if the mission is to be carried out at all. The SIR-C radar is an example of such a case albeit not for deep space. Assuming for the sake of argument that the complexity and cost of a phased array can be significantly reduced, where can such antennas be of value in the future of planetary exploration? Potential applications to be discussed are planetary rovers, landers, and orbiters including both the areosynchronous and low orbit varieties. In addition, consideration is given to links from deep space to earth. As may be fairly obvious, the deep space link to earth would not benefit from the wide angle steering capability provided by a phase array whereas a rover could gain advantage from the capability to steer a beam anywhere in the sky. In the rover case, however, physical size of the aperture becomes a significant factor which, of course, has implications regarding the choice of frequency band. Recent research work concerning phased arrays has suggested that future phased arrays might be made less complex and, therefore, less costly. Successful realization of such phased arrays would enable

  15. Deep Space Telecommunications

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  16. Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal

    2006-09-30

    The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less

  17. Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal; Paul Gigl; Mark Hunt

    2007-07-31

    The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less

  18. Frequency Domain Beamforming for a Deep Space Network Downlink Array

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2012-01-01

    This paper describes a frequency domain beamformer to array up to 8 antennas of NASA's Deep Space Network currently in development. The objective of this array is to replace and enhance the capability of the DSN 70m antennas with multiple 34m antennas for telemetry, navigation and radio science use. The array will coherently combine the entire 500 MHz of usable bandwidth available to DSN receivers. A frequency domain beamforming architecture was chosen over a time domain based architecture to handle the large signal bandwidth and efficiently perform delay and phase calibration. The antennas of the DSN are spaced far enough apart that random atmospheric and phase variations between antennas need to be calibrated out on an ongoing basis in real-time. The calibration is done using measurements obtained from a correlator. This DSN Downlink Array expands upon a proof of concept breadboard array built previously to develop the technology and will become an operational asset of the Deep Space Network. Design parameters for frequency channelization, array calibration and delay corrections will be presented as well a method to efficiently calibrate the array for both wide and narrow bandwidth telemetry.

  19. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    PubMed

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-03

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  20. Muscle activation patterns in acceleration-based phases during reach-to-grasp movement.

    PubMed

    Tokuda, Keisuke; Lee, Bumsuk; Shiihara, Yasufumi; Takahashi, Kazuhiro; Wada, Naoki; Shirakura, Kenji; Watanabe, Hideomi

    2016-11-01

    [Purpose] An earlier study divided reaching activity into characteristic phases based on hand velocity profiles. By synchronizing muscle activities and the acceleration profile, a phasing approach for reaching movement, based on hand acceleration profiles, was attempted in order to elucidate the roles of individual muscle activities in the different phases of the acceleration profile in reaching movements. [Subjects and Methods] Ten healthy volunteer subjects participated in this study. The aim was to electromyographically evaluate muscles around the shoulder, the upper trapezius, the anterior deltoid, the biceps brachii, and the triceps brachii, most of which have been used to evaluate arm motion, as well as the acceleration of the upper limb during simple reaching movement in the reach-to-grasp task. [Results] Analysis showed the kinematic trajectories of the acceleration during a simple biphasic profile of the reaching movement could be divided into four phases: increasing acceleration (IA), decreasing acceleration (DA), increasing deceleration (ID), and decreasing deceleration (DD). Muscles around the shoulder showed different activity patterns, which were closely associated with these acceleration phases. [Conclusion] These results suggest the important role of the four phases, derived from the acceleration trajectory, in the elucidation of the muscular mechanisms which regulate and coordinate the muscles around the shoulder in reaching movements.

  1. Motivational profiles of medical students: association with study effort, academic performance and exhaustion.

    PubMed

    Kusurkar, Rashmi A; Croiset, Gerda; Galindo-Garré, Francisca; Ten Cate, Olle

    2013-06-19

    Students enter the medical study with internally generated motives like genuine interest (intrinsic motivation) and/or externally generated motives like parental pressure or desire for status or prestige (controlled motivation). According to Self-determination theory (SDT), students could differ in their study effort, academic performance and adjustment to the study depending on the endorsement of intrinsic motivation versus controlled motivation. The objectives of this study were to generate motivational profiles of medical students using combinations of high or low intrinsic and controlled motivation and test whether different motivational profiles are associated with different study outcomes. Participating students (N = 844) from University Medical Center Utrecht, the Netherlands, were classified to different subgroups through K-means cluster analysis using intrinsic and controlled motivation scores. Cluster membership was used as an independent variable to assess differences in study strategies, self-study hours, academic performance and exhaustion from study. Four clusters were obtained: High Intrinsic High Controlled (HIHC), Low Intrinsic High Controlled (LIHC), High Intrinsic Low Controlled (HILC), and Low Intrinsic Low Controlled (LILC). HIHC profile, including the students who are interest + status motivated, constituted 25.2% of the population (N = 213). HILC profile, including interest-motivated students, constituted 26.1% of the population (N = 220). LIHC profile, including status-motivated students, constituted 31.8% of the population (N = 268). LILC profile, including students who have a low-motivation and are neither interest nor status motivated, constituted 16.9% of the population (N = 143). Interest-motivated students (HILC) had significantly more deep study strategy (p < 0.001) and self-study hours (p < 0.05), higher GPAs (p < 0.001) and lower exhaustion (p < 0.001) than status-motivated (LIHC) and low

  2. Motivational profiles of medical students: Association with study effort, academic performance and exhaustion

    PubMed Central

    2013-01-01

    Background Students enter the medical study with internally generated motives like genuine interest (intrinsic motivation) and/or externally generated motives like parental pressure or desire for status or prestige (controlled motivation). According to Self-determination theory (SDT), students could differ in their study effort, academic performance and adjustment to the study depending on the endorsement of intrinsic motivation versus controlled motivation. The objectives of this study were to generate motivational profiles of medical students using combinations of high or low intrinsic and controlled motivation and test whether different motivational profiles are associated with different study outcomes. Methods Participating students (N = 844) from University Medical Center Utrecht, the Netherlands, were classified to different subgroups through K-means cluster analysis using intrinsic and controlled motivation scores. Cluster membership was used as an independent variable to assess differences in study strategies, self-study hours, academic performance and exhaustion from study. Results Four clusters were obtained: High Intrinsic High Controlled (HIHC), Low Intrinsic High Controlled (LIHC), High Intrinsic Low Controlled (HILC), and Low Intrinsic Low Controlled (LILC). HIHC profile, including the students who are interest + status motivated, constituted 25.2% of the population (N = 213). HILC profile, including interest-motivated students, constituted 26.1% of the population (N = 220). LIHC profile, including status-motivated students, constituted 31.8% of the population (N = 268). LILC profile, including students who have a low-motivation and are neither interest nor status motivated, constituted 16.9% of the population (N = 143). Interest-motivated students (HILC) had significantly more deep study strategy (p < 0.001) and self-study hours (p < 0.05), higher GPAs (p < 0.001) and lower exhaustion (p < 0.001) than status

  3. Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are one of the functional non-coding small RNAs involved in the epigenetic control of the plant genome. Although plants contain both evolutionary conserved miRNAs and species-specific miRNAs within their genomes, computational methods often only identify evolutionary conserved miRNAs. The recent sequencing of the Brassica rapa genome enables us to identify miRNAs and their putative target genes. In this study, we sought to provide a more comprehensive prediction of B. rapa miRNAs based on high throughput small RNA deep sequencing. Results We sequenced small RNAs from five types of tissue: seedlings, roots, petioles, leaves, and flowers. By analyzing 2.75 million unique reads that mapped to the B. rapa genome, we identified 216 novel and 196 conserved miRNAs that were predicted to target approximately 20% of the genome’s protein coding genes. Quantitative analysis of miRNAs from the five types of tissue revealed that novel miRNAs were expressed in diverse tissues but their expression levels were lower than those of the conserved miRNAs. Comparative analysis of the miRNAs between the B. rapa and Arabidopsis thaliana genomes demonstrated that redundant copies of conserved miRNAs in the B. rapa genome may have been deleted after whole genome triplication. Novel miRNA members seemed to have spontaneously arisen from the B. rapa and A. thaliana genomes, suggesting the species-specific expansion of miRNAs. We have made this data publicly available in a miRNA database of B. rapa called BraMRs. The database allows the user to retrieve miRNA sequences, their expression profiles, and a description of their target genes from the five tissue types investigated here. Conclusions This is the first report to identify novel miRNAs from Brassica crops using genome-wide high throughput techniques. The combination of computational methods and small RNA deep sequencing provides robust predictions of miRNAs in the genome. The finding of numerous novel mi

  4. Characteristics of Moderately Deep Tropical Convection Observed by Dual-Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Powell, Scott

    2017-04-01

    Moderately deep cumulonimbus clouds (often erroneously called congestus) over the tropical warm pool play an important role in large-scale dynamics by moistening the free troposphere, thus allowing for the upscale growth of convection into mesoscale convective systems. Direct observational analysis of such convection has been limited despite a wealth of radar data collected during several field experiments in the tropics. In this study, the structure of isolated cumulonimbus clouds, particularly those in the moderately deep mode with heights of up to 8 km, as observed by RHI scans obtained with the S-PolKa radar during DYNAMO is explored. Such elements are first identified following the algorithm of Powell et al (2016); small contiguous regions of echo are considered isolated convection. Within isolated echo objects, echoes are further subdivided into core echoes, which feature vertical profiles reflectivity and differential reflectivity that is similar to convection embedded in larger cloud complexes, and fringe echoes, which contain vertical profiles of differential reflectivity that are more similar to stratiform regions. Between the surface and 4 km, reflectivities of 30-40 (10-20) dBZ are most commonly observed in isolated convective core (fringe) echoes. Convective cores in echo objects too wide to be considered isolated have a ZDR profile that peaks near the surface (with values of 0.5-1 dB common), and decays linearly to about 0.3 dB at and above an altitude of 6 km. Stratiform echoes have a minimum ZDR below of 0-0.5 dB below the bright band and a constant distribution centered on 0.5 dB above the bright band. The isolated convective core and fringe respectively possess composite vertical profiles of ZDR that resemble convective and stratiform echoes. The mode of the distribution of aspect ratios of isolated convection is approximately 2.3, but the long axis of isolated echo objects demonstrates no preferred orientation. An early attempt at illustrating

  5. Characterization of the aroma profile of novel Brazilian wines by solid-phase microextraction using polymeric ionic liquid sorbent coatings.

    PubMed

    Crucello, Juliana; Miron, Luiz F O; Ferreira, Victor H C; Nan, He; Marques, Marcia O M; Ritschel, Patricia S; Zanus, Mauro C; Anderson, Jared L; Poppi, Ronei J; Hantao, Leandro W

    2018-05-28

    In this study, a series of polymeric ionic liquid (PIL) sorbent coatings is evaluated for the extraction of polar volatile organic compounds (VOCs) from Brazilian wines using headspace solid-phase microextraction (HS-SPME), including samples from 'Isabella' and 'BRS Magna' cultivars-the latter was recently introduced by the Brazilian Agricultural Research Corporation - National Grape & Wine Research Center. The structurally tuned SPME coatings were compared to the commercial SPME phases, namely poly(acrylate) (PA) and divinylbenzene/carboxen/poly(dimethylsiloxane) (DVB/CAR/PDMS). The separation, detection and identification of the aroma profiles were obtained using comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS). The best performing PIL-based SPME fiber, namely 1-hexadecyl-3-vinylimidazolium bis[(trifluoromethyl)sulfonyl]imide with 1,12-di(3-vinylimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide incorporated cross-linker supported on an elastic nitinol wire, exhibited superior performance to DVB/CAR/PDMS regarding the average number of extracted peaks and extracted more polar analytes providing additional insight into the aroma profile of 'BRS Magna' wines. Four batches of wine were evaluated, namely 'Isabella' and 'BRS Magna' vintages 2015 and 2016, using highly selective PIL-based SPME coatings and enabled the detection of 350+ peaks. Furthermore, this is the first report evaluating the aroma of 'BRS Magna' wines. A hybrid approach that combined pixel-based Fisher ratio and peak table-based data comparison was used for data handling. This proof-of-concept experiment provided reliable and statistically valid distinction of wines that may guide regulation agencies to create high sample throughput protocols to screen wines exported by Brazilian vintners. Graphical abstract Highly selective extraction of wine aroma using polymeric ionic liquid.

  6. A helium P-Cygni profile in RR Lyrae stars?

    NASA Astrophysics Data System (ADS)

    Gillet, D.; Sefyani, F. L.; Benhida, A.; Fabas, N.; Mathias, P.; Benkhaldoun, Z.; Daassou, A.

    2016-03-01

    Context. Until 2006, helium emission lines had never been observed in RR Lyrae stars. For the first time, a pre-maximum helium emission in 11 RRab stars was observed during rising light (around the pulsation phase 0.92) and the reappearance of helium emission near maximum light (phase 0.0) in one RRab star: RV Oct. This post-maximum emission has been only observed in the He I λ5875.66 (D3) line. Its intensity is very weak, and its profile mimics a P-Cygni profile with the emission peak centered at the laboratory wavelength. The physical explanation for this unexpected line profile has not been proposed yet. Aims: Using new observations of RR Lyr, we investigate the physical origin of the presence of a P-Cygni profile in the He I λ5875.66 (D3) line. Methods: High-resolution spectra of RR Lyr, collected with a spectrograph eShel/C14 at the Oukaïmeden Observatory (Morocco) in 2013, were analyzed to understand the origin of the observed P-Cygni profile at D3. Results: When the shock intensity is moderate, helium emission cannot be produced in the shock wake, and consequently, the two consecutive helium emissions (pre- and post-maximum light emissions) are not observed. This is the most frequent case. When the shock intensity becomes high enough, a pre-maximum He I emission first occurs, which can be followed by the appearance of a P-Cygni profile if the shock intensity is still strong in the high atmosphere. The observation of a P-Cygni profile means that the shock wave is already detached from the photosphere. It is shown that the shock strongly first decelerates between the pulsation phases 0.90 and 1.04 from 130 km s-1 to 60 km s-1, probably before accelerating again to 80 km s-1 near phase 1.30. Conclusions: The presence of the P-Cygni profile seems to be a natural consequence of the large extension of the expanding atmosphere, which is induced by strong (radiative) shock waves propagating toward the high atmosphere. This kind of P-Cygni profile has already been

  7. Producing superfluid circulation states using phase imprinting

    NASA Astrophysics Data System (ADS)

    Kumar, Avinash; Dubessy, Romain; Badr, Thomas; De Rossi, Camilla; de Goër de Herve, Mathieu; Longchambon, Laurent; Perrin, Hélène

    2018-04-01

    We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of "helicoidal" intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited resolution.

  8. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus.

    PubMed

    Poelchau, Monica F; Reynolds, Julie A; Elsik, Christine G; Denlinger, David L; Armbruster, Peter A

    2013-05-22

    Seasonal environments present fundamental physiological challenges to a wide range of insects. Many temperate insects surmount the exigencies of winter by undergoing photoperiodic diapause, in which photoperiod provides a token cue that initiates an alternative developmental programme leading to dormancy. Pre-diapause is a crucial preparatory phase of this process, preceding developmental arrest. However, the regulatory and physiological mechanisms of diapause preparation are largely unknown. Using high-throughput gene expression profiling in the Asian tiger mosquito, Aedes albopictus, we reveal major shifts in endocrine signalling, cell proliferation, metabolism, energy production and cellular structure across pre-diapause development. While some hallmarks of diapause, such as insulin signalling and stress response, were not important at the transcriptional level, two genes, Pepck and PCNA, appear to show diapause-induced transcriptional changes across insect taxa. These processes demonstrate physiological commonalities between Ae. albopictus pre-diapause and diapause strategies across insects, and support the idea of a genetic 'toolkit' for diapause. Observations of gene expression trends from a comparative developmental perspective suggest that individual physiological processes are delayed against a background of a fixed morphological ontogeny. Our results demonstrate how deep sequencing can provide new insights into elusive molecular bases of complex ecological adaptations.

  9. Deep Web video

    ScienceCinema

    None Available

    2018-02-06

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  10. Attenuation of Slab determined from T-wave generation by deep earthquakes

    NASA Astrophysics Data System (ADS)

    Huang, J.; Ni, S.

    2006-05-01

    T-wave are seismically generated acoustic waves that propagate over great distance in the ocean sound channel (SOFAR). Because of the high attenuation in both the upper mantle and the ocean crust, T wave is rarely observed for earthquakes deeper than 80 km. However some deep earthquakes deeper than 80km indeed generate apparent T-waves if the subducted slab is continuous Okal et al. (1997) . We studied the deep earthquakes in the Fiji/Tonga region, where the subducted lithosphere is old and thus with small attenuation. After analyzing 33 earthquakes with the depth from 10 Km to 650 Km in Fiji/Tonga, we observed and modeled obvious T-phases from these earthquakes observed at station RAR. We used the T-wave generated by deep earthquakes to compute the quality factor of the Fiji/Tonga slab. The method used in this study is followed the equation (1) by [Groot-Hedlin et al,2001][1]. A=A0/(1+(Ω0/Ω)2)×exp(-LΩ/Qv)×Ωn where the A is the amplitude computed by the practicable data, amplitude depending on the earthquakes, and A0 is the inherent frequency related with the earthquake's half duration, L is the length of ray path that P wave or S travel in the slab, and the V is the velocity of P-wave. In this study, we fix the n=2, by assuming the T- wave scattering points in the Fiji/Tonga island arc having the same attribution as the continental shelf. After some computing and careful analysis, we determined the quality factor of the Fiji/Tonga to be around 1000, Such result is consistent with results from the traditional P,S-wave data[Roth & Wiens,1999][2] . Okal et al. (1997) pointed out that the slab in the part of central South America was also a continuous slab, by modeling apparent T-waves from the great 1994 Bolivian deep earthquake in relation to channeling of S wave energy propagating upward through the slab[3]. [1]Catherine D. de Groot-Hedlin, John A. Orcutt, excitation of T-phases by seafloor scattering, J. Acoust. Soc, 109,1944-1954,2001. [2]Erich G.Roth and

  11. Graphical classification of DNA sequences of HLA alleles by deep learning.

    PubMed

    Miyake, Jun; Kaneshita, Yuhei; Asatani, Satoshi; Tagawa, Seiichi; Niioka, Hirohiko; Hirano, Takashi

    2018-04-01

    Alleles of human leukocyte antigen (HLA)-A DNAs are classified and expressed graphically by using artificial intelligence "Deep Learning (Stacked autoencoder)". Nucleotide sequence data corresponding to the length of 822 bp, collected from the Immuno Polymorphism Database, were compressed to 2-dimensional representation and were plotted. Profiles of the two-dimensional plots indicate that the alleles can be classified as clusters are formed. The two-dimensional plot of HLA-A DNAs gives a clear outlook for characterizing the various alleles.

  12. DeepInfer: open-source deep learning deployment toolkit for image-guided therapy

    NASA Astrophysics Data System (ADS)

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-03-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  13. DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy.

    PubMed

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A; Kapur, Tina; Wells, William M; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-02-11

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

  14. DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy

    PubMed Central

    Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang

    2017-01-01

    Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose “DeepInfer” – an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections. PMID:28615794

  15. Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research

    PubMed Central

    Pierret, Alain; Maeght, Jean-Luc; Clément, Corentin; Montoroi, Jean-Pierre; Hartmann, Christian; Gonkhamdee, Santimaitree

    2016-01-01

    Background Deep roots are a common trait among a wide range of plant species and biomes, and are pivotal to the very existence of ecosystem services such as pedogenesis, groundwater and streamflow regulation, soil carbon sequestration and moisture content in the lower troposphere. Notwithstanding the growing realization of the functional significance of deep roots across disciplines such as soil science, agronomy, hydrology, ecophysiology or climatology, research efforts allocated to the study of deep roots remain incommensurate with those devoted to shallow roots. This is due in part to the fact that, despite technological advances, observing and measuring deep roots remains challenging. Scope Here, other reasons that explain why there are still so many fundamental unresolved questions related to deep roots are discussed. These include the fact that a number of hypotheses and models that are widely considered as verified and sufficiently robust are only partly supported by data. Evidence has accumulated that deep rooting could be a more widespread and important trait among plants than usually considered based on the share of biomass that it represents. Examples that indicate that plant roots have different structures and play different roles with respect to major biochemical cycles depending on their position within the soil profile are also examined and discussed. Conclusions Current knowledge gaps are identified and new lines of research for improving our understanding of the processes that drive deep root growth and functioning are proposed. This ultimately leads to a reflection on an alternative paradigm that could be used in the future as a unifying framework to describe and analyse deep rooting. Despite the many hurdles that pave the way to a practical understanding of deep rooting functions, it is anticipated that, in the relatively near future, increased knowledge about the deep rooting traits of a variety of plants and crops will have direct and tangible

  16. The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis

    NASA Astrophysics Data System (ADS)

    Loughman, Robert; Bhartia, Pawan K.; Chen, Zhong; Xu, Philippe; Nyaku, Ernest; Taha, Ghassan

    2018-05-01

    The theoretical basis of the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm is presented. The algorithm uses an assumed bimodal lognormal aerosol size distribution to retrieve aerosol extinction profiles at 675 nm from OMPS LP radiance measurements. A first-guess aerosol extinction profile is updated by iteration using the Chahine nonlinear relaxation method, based on comparisons between the measured radiance profile at 675 nm and the radiance profile calculated by the Gauss-Seidel limb-scattering (GSLS) radiative transfer model for a spherical-shell atmosphere. This algorithm is discussed in the context of previous limb-scattering aerosol extinction retrieval algorithms, and the most significant error sources are enumerated. The retrieval algorithm is limited primarily by uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction, which violate the spherical-shell atmosphere assumed in the version 1 algorithm, may also limit the quality of the retrieved aerosol extinction profiles significantly.

  17. DeepNeuron: an open deep learning toolbox for neuron tracing.

    PubMed

    Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui

    2018-06-06

    Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.

  18. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis

    PubMed Central

    Almeida, Nuno F.; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Rubiales, Diego; Vaz Patto, Maria C.

    2015-01-01

    Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding. PMID:25852725

  19. High-accuracy deep-UV Ramsey-comb spectroscopy in krypton

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Altmann, Robert K.; Dreissen, Laura S.; Eikema, Kjeld S. E.

    2017-01-01

    In this paper, we present a detailed account of the first precision Ramsey-comb spectroscopy in the deep UV. We excite krypton in an atomic beam using pairs of frequency-comb laser pulses that have been amplified to the millijoule level and upconverted through frequency doubling in BBO crystals. The resulting phase-coherent deep-UV pulses at 212.55 nm are used in the Ramsey-comb method to excite the two-photon 4p^6 → 4p^5 5p [1/2 ]_0 transition. For the {}^{84}Kr isotope, we find a transition frequency of 2829833101679(103) kHz. The fractional accuracy of 3.7 × 10^{-11} is 34 times better than previous measurements, and also the isotope shifts are measured with improved accuracy. This demonstration shows the potential of Ramsey-comb excitation for precision spectroscopy at short wavelengths.

  20. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    t'Kindt, Ruben; Jorge, Lucie; Dumont, Emmie; Couturon, Pauline; David, Frank; Sandra, Pat; Sandra, Koen

    2012-01-03

    An LC-MS based method for the profiling and characterization of ceramide species in the upper layer of human skin is described. Ceramide samples, collected by tape stripping of human skin, were analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry operated in both positive and negative electrospray ionization mode. All known classes of ceramides could be measured in a repeatable manner. Furthermore, the data set showed several undiscovered ceramides, including a class with four hydroxyl functionalities in its sphingoid base. High-resolution MS/MS fragmentation spectra revealed that each identified ceramide species is composed of several skeletal isomers due to variation in carbon length of the respective sphingoid bases and fatty acyl building blocks. The resulting variety in skeletal isomers has not been previously demonstrated. It is estimated that over 1000 unique ceramide structures could be elucidated in human stratum corneum. Ceramide species with an even and odd number of carbon atoms in both chains were detected in all ceramide classes. Acid hydrolysis of the ceramides, followed by LC-MS analysis of the end-products, confirmed the observed distribution of both sphingoid bases and fatty acyl groups in skin ceramides. The study resulted in an accurate mass retention time library for targeted profiling of skin ceramides. It is furthermore demonstrated that targeted data processing results in an improved repeatability versus untargeted data processing (72.92% versus 62.12% of species display an RSD < 15%). © 2011 American Chemical Society

  1. Mesoscale kinematics derived from X-band Doppler radar observations of convective versus stratiform precipitation and comparison with GPS radiosonde profiles

    NASA Astrophysics Data System (ADS)

    Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.

    2015-11-01

    Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an

  2. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images.

    PubMed

    Niioka, Hirohiko; Asatani, Satoshi; Yoshimura, Aina; Ohigashi, Hironori; Tagawa, Seiichi; Miyake, Jun

    2018-01-01

    In the field of regenerative medicine, tremendous numbers of cells are necessary for tissue/organ regeneration. Today automatic cell-culturing system has been developed. The next step is constructing a non-invasive method to monitor the conditions of cells automatically. As an image analysis method, convolutional neural network (CNN), one of the deep learning method, is approaching human recognition level. We constructed and applied the CNN algorithm for automatic cellular differentiation recognition of myogenic C2C12 cell line. Phase-contrast images of cultured C2C12 are prepared as input dataset. In differentiation process from myoblasts to myotubes, cellular morphology changes from round shape to elongated tubular shape due to fusion of the cells. CNN abstract the features of the shape of the cells and classify the cells depending on the culturing days from when differentiation is induced. Changes in cellular shape depending on the number of days of culture (Day 0, Day 3, Day 6) are classified with 91.3% accuracy. Image analysis with CNN has a potential to realize regenerative medicine industry.

  3. The MUSE Hubble Ultra Deep Field Survey. VII. Fe II* emission in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Paalvast, Mieke; Boogaard, Leindert; Maseda, Michael; Bacon, Roland; Blaizot, Jérémy; Brinchmann, Jarle; Epinat, Benoît; Feltre, Anna; Marino, Raffaella Anna; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Verhamme, Anne; Weilbacher, Peter M.; Wisotzki, Lutz

    2017-11-01

    Non-resonant Fe II* (λ2365, λ2396, λ2612, λ2626) emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3.15' × 3.15' mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 Fe II* emitters and 50 MgIII (λλ2796,2803) emitters from a sample of 271 [O II]λλ3726,3729 emitters with reliable redshifts from z = 0.85-1.50 down to 2 × 10-18 (3σ) ergs s-1 cm-2 (for [O II]), covering the M⋆ range from 108-1011 M⊙. The Fe II* and Mg II emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 109 M⊙ and star formation rates (SFRs) of ≲ 1 M⊙ yr-1 have MgIII emission without accompanying Fe II* emission, whereas galaxies with masses above 1010 M⊙ and SFRs ≳ 10 M⊙ yr-1 have Fe II* emission without accompanying MgIII emission. Between these two regimes, galaxies have both MgIII and Fe II* emission, typically with MgIII P Cygni profiles. Indeed, the MgIII profile shows a progression along the main sequence from pure emission to P Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgIII emission profiles have lower SFR surface densities than those with either MgIII P Cygni profiles or Fe II* emission. These spectral signatures produced through continuum scattering and fluorescence, MgIII P Cygni profiles and Fe II* emission, are better candidates for tracing galactic outflows than pure MgIII emission, which may originate from HIII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeIII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.

  4. Detecting metastable olivine wedge beneath Japan Sea with deep earthquake coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Shen, Z.; Zhan, Z.

    2017-12-01

    It has been hypothesized for decades that the lower-pressure olivine phase would kinetically persist in the interior of slab into the transition zone, forming a low-velocity "Metastable Olivine Wedge" (MOW). MOW, if exists, would play a critical role in generating deep earthquakes and parachuting subducted slabs with its buoyancy. However, seismic evidences for MOW are still controversial, and it is suggested that MOW can only be detected using broadband waveforms given the wavefront healing effects for travel times. On the other hand, broadband waveforms are often complicated by shallow heterogeneities. Here we propose a new method using the source-side interferometry of deep earthquake coda to detect MOW. In this method, deep earthquakes are turned into virtual sensors with the reciprocity theorem, and the transient strain from one earthquake to the other is estimated by cross-correlating the coda from the deep earthquake pair at the same stations. This approach effectively isolates near-source structure from complicated shallow structures, hence provide finer resolution to deep slab structures. We apply this method to Japan subduction zone with Hi-Net data, and our preliminary result does not support a large MOW model (100km thick at 410km) as suggested by several previous studies. Metastable olivine at small scales or distributed in an incoherent manner in deep slabs may still be possible.

  5. DeepSig: deep learning improves signal peptide detection in proteins.

    PubMed

    Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita

    2018-05-15

    The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website. pierluigi.martelli@unibo.it. Supplementary data are available at Bioinformatics online.

  6. Geomorphology of the Eastern North American Continental Margin: the role of deep sea sedimentation processes

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Campbell, C.; Piper, D.; Chaytor, J. D.; Gardner, J. V.; Rebesco, M.

    2016-12-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data in concert with subbottom profiler and seismic reflection data. Most of the continental margin has a steep (>3o) upper slope down to 1500 to 2500 m and then a gradual middle and lower slope with a general concave upward shape There is a constant interplay of deep sea sedimentation processes, but the general morphology is dictated by the dominant one. Erosion by off-shelf sediment transport in turbidity currents creating channels, gullies and canyons creates the steep upper slope. These gullies and canyons amalgamate to form singular channels that are conduits to the abyssal plain. This process results in a general seaward flattening of gradients, producing an exponentially decaying slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a two-segment slope, and/or a significant downslope gradient change where MTDs pinch out. Large sediment bodies deposited by contour-following currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. Along their crests, they form a linear profile from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts tend to form bathymetric steps in profile, where they onlap the margin. Stacked drifts create several steps. Turbidites of the abyssal plain onlap

  7. [Soil organic carbon mineralization of Black Locust forest in the deep soil layer of the hilly region of the Loess Plateau, China].

    PubMed

    Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai

    2012-11-01

    The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.

  8. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.

  9. Deep cerebral microbleeds are negatively associated with HDL-C in elderly first-time ischemic stroke patients.

    PubMed

    Igase, Michiya; Kohara, Katsuhiko; Igase, Keiji; Yamashita, Shiro; Fujisawa, Mutsuo; Katagi, Ryosuke; Miki, Tetsuro

    2013-02-15

    Cerebral microbleeds (CMBs) detected on T2*-weighted MRI gradient-echo have been associated with increased risk of cerebral infarction. We evaluated risk factors for these lesions in a cohort of first-time ischemic stroke patients. Presence of CMBs in consecutive first-time ischemic stroke patients was evaluated. The location of CMBs was classified by cerebral region as strictly lobar (lobar CMBs) and deep or infratentorial (deep CMBs). Logistic regression analysis was performed to determine the contribution of lipid profile to the presence of CMBs. One hundred and sixteen patients with a mean age of 70±10years were recruited. CMBs were present in 74 patients. The deep CMBs group had significantly lower HDL-C levels than those without CMBs. In univariable analysis, advanced periventricular hyperintensity grade (PVH>2) and decreased HDL-C were significantly associated with the deep but not the lobar CMB group. On logistic regression analysis, HDL-C (beta=-0.06, p=0.002) and PVH grade >2 (beta=3.40, p=0.005) were independent determinants of deep CMBs. Low HDL-C may be a risk factor of deep CMBs, including advanced PVH status, in elderly patients with acute ischemic stroke. Management of HDL-C levels might be a therapeutic target for the prevention of recurrence of stroke. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The effect of on-demand vs deep neuromuscular relaxation on rating of surgical and anaesthesiologic conditions in patients undergoing thoracolaparoscopic esophagectomy (DEPTH trial): study protocol for a randomized controlled trial.

    PubMed

    Veelo, Denise P; Gisbertz, Suzanne S; Hannivoort, Rebekka A; van Dieren, Susan; Geerts, Bart F; van Berge Henegouwen, Mark I; Hollmann, Markus W

    2015-08-05

    Deep muscle relaxation has been shown to facilitate operating conditions during laparoscopic surgery. Minimally invasive esophageal surgery is a high-risk procedure in which the use of deep neuromuscular block (NMB) may improve conditions in the thoracic phase as well. Neuromuscular antagonists can be given on demand or by continuous infusion (deep NMB). However, the positioning of the patient often hampers train-of-four (TOF) monitoring. A continuous infusion thus may result in a deep NMB at the end of surgery. The use of neostigmine not only is insufficient for reversing deep NMB but also may be contraindicated for this procedure because of its cholinergic effects. Sugammadex is an effective alternative but is rather expensive. This study aims to evaluate the use of deep versus on-demand NMB on operating, anaesthesiologic conditions, and costs in patients undergoing a two- or three-phase thoracolaparoscopic esophageal resection. We will conduct a single-center randomized controlled double-blinded intervention study. Sixty-six patients undergoing a thoracolaparoscopic esophageal resection will be included. Patients will receive either continuous infusion of rocuronium 0.6 mg/kg per hour (group 1) or continuous infusion of NaCl 0.9 % 0.06 ml/kg per hour (group 2). In both groups, on-demand boluses of rocuronium can be given (open-label design). The primary aim of this study is to compare the surgical rating scale (SRS) during the abdominal phase. Main secondary aims are to evaluate SRS during the thoracic phase, to evaluate anesthesiologic conditions, and to compare costs (in euros) associated with use of rocuronium, sugammadex, and duration of surgery. This study is the first to evaluate the benefits of deep neuromuscular relaxation on surgical and anaesthesiologic conditions during thoracolaparoscopic esophageal surgery. This surgical procedure is unique because it consists of both an abdominal phase and a thoracic phase taking place in different order depending

  11. Redistribution of Decompression Stop Time from Shallow to Deep Stops Increases Incidence of Decompression Sickness in Air Decompression Dives

    DTIC Science & Technology

    2011-07-22

    year old active duty male diver surfaced from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops...effort, and this episode responded immediately to pressure. AGE is unlikely due to the experience of the diver, the MK 20 FFM characteristics, and...from a 170/30 air dive at <corr>12:11<corr> on 24AUG06 using MK 20 FFM and following the A-2 “deep stops” experimental decompression profile

  12. Characterization of a suspected terrestrial deep groundwater discharge area on the Canadian Precambrian Shield

    NASA Astrophysics Data System (ADS)

    Sheppard, Marsha I.; Thibault, D. H.; Milton, G. M.; Reid, J. A. K.; Smith, P. A.; Stevens, K.

    1995-03-01

    Underground storage and disposal of hazardous wastes require an understanding of groundwater flow and the ability to locate recharge and discharge. Usually, recharge and discharge occur at a transition zone where dispersion/advection, molecular diffusion and biogeochemical processes control the fate of a contaminants leaving an underground facility. Appropriate landscape modelling for risk assessment cannot proceed until this interface is well defined and groundwater discharge can be mapped. Although discharge locations have traditionally been thought of as aquatic, the presence of animal licks suggests the possibility of terrestrial discharge. We have characterized a suspected terrestrial discharge, a well-used deer lick, (1) physically, through surficial mapping, and vegetation and soil profile analyses; (2) geophysically, through magnetic and very low-frequency electromagnetic tilt-angle surveys; (3) hydrogeologically, through water-table elevation measurements; (4) geochemically, through overburden analyses for 238U, 226Ra, 210Pb, Na, tritium, Cl and 36{Cl}/{Cl} atom ratios, as well as pore-water and groundwater analyses for pH, electrical conductivity (EC) and major anions and cations; and (5) thermally, through overburden-rock interface temperatures. Halophytic plants and sedges contained more Na, Cl and 238U than averages reported in the literature. Lineament alignment, coincident with elevated groundwater EC, supported the presence and position of a subsurface fracture. Groundwater chemistry suggested that interfering runoff from a nearby ridge masked the chemical signatures expected of deep groundwater but attest to the weak and possibly ephemeral nature of this discharge. Interpretation of the geochemical data was supported by solute transport modelling. Good agreement between the predictions using an unsaturated soil model, a simple wetland compartment model and the observed profile implied that evapotranspiration, seasonal water-table fluctuations and

  13. Deep Part Load Flow Analysis in a Francis Model turbine by means of two-phase unsteady flow simulations

    NASA Astrophysics Data System (ADS)

    Conrad, Philipp; Weber, Wilhelm; Jung, Alexander

    2017-04-01

    Hydropower plants are indispensable to stabilize the grid by reacting quickly to changes of the energy demand. However, an extension of the operating range towards high and deep part load conditions without fatigue of the hydraulic components is desirable to increase their flexibility. In this paper a model sized Francis turbine at low discharge operating conditions (Q/QBEP = 0.27) is analyzed by means of computational fluid dynamics (CFD). Unsteady two-phase simulations for two Thoma-number conditions are conducted. Stochastic pressure oscillations, observed on the test rig at low discharge, require sophisticated numerical models together with small time steps, large grid sizes and long simulation times to cope with these fluctuations. In this paper the BSL-EARSM model (Explicit Algebraic Reynolds Stress) was applied as a compromise between scale resolving and two-equation turbulence models with respect to computational effort and accuracy. Simulation results are compared to pressure measurements showing reasonable agreement in resolving the frequency spectra and amplitude. Inner blade vortices were predicted successfully in shape and size. Surface streamlines in blade-to-blade view are presented, giving insights to the formation of the inner blade vortices. The acquired time dependent pressure fields can be used for quasi-static structural analysis (FEA) for fatigue calculations in the future.

  14. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP)

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Brauer, Achim; Schwab, Markus J.; Waldmann, Nicolas D.; Enzel, Yehouda; Kitagawa, Hiroyuki; Torfstein, Adi; Frank, Ute; Dulski, Peter; Agnon, Amotz; Ariztegui, Daniel; Ben-Avraham, Zvi; Goldstein, Steven L.; Stein, Mordechai

    2014-10-01

    The sedimentary sections that were deposited from the Holocene Dead Sea and its Pleistocene precursors are excellent archives of the climatic, environmental and seismic history of the Levant region. Yet, most of the previous work has been carried out on sequences of lacustrine sediments exposed at the margins of the present-day Dead Sea, which were deposited only when the lake surface level rose above these terraces (e.g. during the Last Glacial period) and typically are discontinuous due to major lake level variations in the past. Continuous sedimentation can only be expected in the deepest part of the basin and, therefore, a deep drilling has been accomplished in the northern basin of the Dead Sea during winter of 2010-2011 within the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. Approximately 720 m of sediment cores have been retrieved from two deep and several short boreholes. The longest profile (5017-1), revealed at a water depth of ˜300 m, reaches 455 m below the lake floor (blf, i.e. to ˜1175 m below global mean sea level) and comprises approximately the last 220-240 ka. The record covers the upper part of the Amora (penultimate glacial), the Last Interglacial Samra, the Last Glacial Lisan and the Holocene Ze'elim Formations and, therewith, two entire glacial-interglacial cycles. Thereby, for the first time, consecutive sediments deposited during the MIS 6/5, 5/4 and 2/1 transitions were recovered from the Dead Sea basin, which are not represented in sediments outcropping on the present-day lake shores. In this paper, we present essential lithological data including continuous magnetic susceptibility and geochemical scanning data and the basic stratigraphy including first chronological data of the long profile (5017-1) from the deep basin. The results presented here (a) focus on the correlation of the deep basin deposits with main on-shore stratigraphic units, thus providing a unique comprehensive stratigraphic framework for

  15. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway.

    PubMed

    Bell, David B; Jung, Simon J A; Kroon, Dick; Hodell, David A; Lourens, Lucas J; Raymo, Maureen E

    2015-07-20

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7-4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ(13)C) and oxygen (δ(18)O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ(13)C and δ(18)O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate.

  16. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway

    PubMed Central

    Bell, David B.; Jung, Simon J. A.; Kroon, Dick; Hodell, David A.; Lourens, Lucas J.; Raymo, Maureen E.

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7–4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ13C) and oxygen (δ18O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ13C and δ18O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate. PMID:26193070

  17. Beacon Beams for Deep Turbulence High Energy Laser Beam Directors

    DTIC Science & Technology

    2012-11-02

    variance and nC is the atmospheric refractive index structure constant. The effect of turbulence on the focused beacon beam on target, TR...complete phase conjugation of the beacon beam is accomplished by employing Brillouin enhanced optical four wave mixing. A beacon beam formed by...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6790--12-9445 Beacon Beams for Deep Turbulence High Energy Laser Beam Directors P

  18. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium.

    PubMed

    Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.

  19. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    PubMed Central

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  20. Designing scattering-free isotropic index profiles using phase-amplitude equations

    NASA Astrophysics Data System (ADS)

    King, C. G.; Horsley, S. A. R.; Philbin, T. G.

    2018-05-01

    The Helmholtz equation can be written as coupled equations for the amplitude and phase. By considering spatial phase distributions corresponding to reflectionless wave propagation in the plane and solving for the amplitude in terms of this phase, we designed two-dimensional graded-index media which do not scatter light. We give two illustrative examples, the first of which is a periodic grating for which diffraction is completely suppressed at a single frequency at normal incidence to the periodicity. The second example is a medium which behaves as a "beam shifter" at a single frequency; acting to laterally shift a plane wave, or sufficiently wide beam, without reflection.