Local discretization method for overdamped Brownian motion on a potential with multiple deep wells.
Nguyen, P T T; Challis, K J; Jack, M W
2016-11-01
We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.
Local discretization method for overdamped Brownian motion on a potential with multiple deep wells
NASA Astrophysics Data System (ADS)
Nguyen, P. T. T.; Challis, K. J.; Jack, M. W.
2016-11-01
We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.
Root growth and water relations of oak and birch seedlings.
Osonubi, O; Davies, W J
1981-01-01
First year seedlings of English oak (Quercus Cobur) and silver birch (Betula pendula) were subjected to pressure-volume analysis to investigate the water potential components and cell wall properties of single leaves. It was hoped that this rapid-drying technique would differentiate between reductions in plant solute potential resulting from dehydration and the effects of solute accumulation.Comparison of results from these experiments with those of slow drying treatments (over a number of days) with plants growing in tubes of soil, indicated that some solute accumulation may have occurred in drying oak leaves. High leaf turgor and leaf conductance were maintained for a significant period of the drying cycle. Roots of well-watered oak plants extended deep into the soil profile, and possibly as a result of solute regulation and therefore turgor maintenance, root growth of unwatered plants was greater than that of their well-watered counterparts. This was particularly the case deep in the profile. As a result of deep root penetration, water deep in the soil core was used by oak plants to maintain plant turgor, and quite low soil water potentials were recorded in the lower soil segments.Root growth of well-watered birch seedlings was prolific but roots of both well-watered and unwatered plants were restricted to the upper part of the profile. Root growth of unwatered plants was reduced despite the existence of high soil water potentials deep in the profile. Shallow rooting birch seedlings were unable to use this water.Pressure-volume analysis indicated that significant reductions of water potential, which are required for water uptake from drying soil, would occur in oak with only a small reduction in plant water content compared to the situation in birch. This was a result of the low solute potential in oak leaves combined with a high modulus of elasticity of cell walls. Deep rooting of oak seedlings, combined with these characteristics, which will be particularly important when soil deep in the profile begins to dry, mean that this species may be comparatively successful when growing on dry sites.
Azzolina, Nicholas A; Small, Mitchell J; Nakles, David V; Glazewski, Kyle A; Peck, Wesley D; Gorecki, Charles D; Bromhal, Grant S; Dilmore, Robert M
2015-01-20
This work uses probabilistic methods to simulate a hypothetical geologic CO2 storage site in a depleted oil and gas field, where the large number of legacy wells would make it cost-prohibitive to sample all wells for all measurements as part of the postinjection site care. Deep well leakage potential scores were assigned to the wells using a random subsample of 100 wells from a detailed study of 826 legacy wells that penetrate the basal Cambrian formation on the U.S. side of the U.S./Canadian border. Analytical solutions and Monte Carlo simulations were used to quantify the statistical power of selecting a leaking well. Power curves were developed as a function of (1) the number of leaking wells within the Area of Review; (2) the sampling design (random or judgmental, choosing first the wells with the highest deep leakage potential scores); (3) the number of wells included in the monitoring sampling plan; and (4) the relationship between a well’s leakage potential score and its relative probability of leakage. Cases where the deep well leakage potential scores are fully or partially informative of the relative leakage probability are compared to a noninformative base case in which leakage is equiprobable across all wells in the Area of Review. The results show that accurate prior knowledge about the probability of well leakage adds measurable value to the ability to detect a leaking well during the monitoring program, and that the loss in detection ability due to imperfect knowledge of the leakage probability can be quantified. This work underscores the importance of a data-driven, risk-based monitoring program that incorporates uncertainty quantification into long-term monitoring sampling plans at geologic CO2 storage sites.
Water resources data of the Seward area, Alaska
Dearborn, Larry L.; Anderson, Gary S.; Zenone, Chester
1979-01-01
Seward, Alaska, obtains a water supply of about 2 million gallons per day primarily from Marathon Springs and the Fort Raymond well field. The springs have supplied up to 800 gallons per minute, and the city 's deep wells currently have a combined capacity of about 3,000 gallons per minute. Freshwater is abundant in the area; future public supplies could be derived from both shallow and deep ground water and from stream impoundment with diversion. High deep-aquifer transmissivity at the Fort Raymond well field indicates that additional wells could be developed there. Water quality is generally not a problem for public consumption. A flood potential exists along several streams having broad alluvial fans. (Woodard-USGS)
Coral communities as indicators of ecosystem-level impacts of the Deepwater Horizon spill
Fisher, Charles R.; Demopoulos, Amanda W.J.; Cordes, Erik E.; Baums, Iliana B.; White, Helen K.; Bourque, Jill R.
2014-01-01
The Macondo oil spill released massive quantities of oil and gas from a depth of 1500 meters. Although a buoyant plume carried released hydrocarbons to the sea surface, as much as half stayed in the water column and much of that in the deep sea. After the hydrocarbons reached the surface, weathering processes, burning, and the use of a dispersant caused hydrocarbon-rich marine snow to sink into the deep sea. As a result, this spill had a greater potential to affect deep-sea communities than had any previous spill. Here, we review the literature on impacts on deep-sea communities from the Macondo blowout and provide additional data on sediment hydrocarbon loads and the impacts on sediment infauna in areas with coral communities around the Macondo well. We review the literature on the genetic connectivity of deep-sea species in the Gulf of Mexico and discuss the potential for wider effects on deep Gulf coral communities.
NASA Astrophysics Data System (ADS)
Grehan, Anthony J.; Arnaud-Haond, Sophie; D'Onghia, Gianfranco; Savini, Alessandra; Yesson, Chris
2017-11-01
The deep sea covers 65% of the earth's surface and 95% of the biosphere but only a very small fraction (less than 0.0001%) of this has been explored (Rogers et al., 2015; Taylor and Roterman, 2017). However, current knowledge indicates that the deep ocean is characterized by a high level of biodiversity and by the presence of important biological and non-renewable resources. As well as vast flat and muddy plains, the topography of the deep ocean contains a variety of complex and heterogeneous seafloor features, such as canyons, seamounts, cold seeps, hydrothermal vents and biogenic (deep-water coral) reefs and sponge bioherms that harbour an unquantified and diverse array of organisms. The deep sea, despite its remoteness, provides a variety of supporting, provisioning, regulating and cultural, ecosystem goods and services (Thurber et al., 2014). The recent push for 'Blue Growth', to unlock the potential of seas and oceans (European Commission, 2017) has increased the focus on the potential to exploit resources in the deep-sea and consequently the need for improved management (Thurber et al., 2014).
2014-09-30
mammals face potentially dramatic changes in the environment, as well as continued disturbances of their ocean habitat from shipping, sonar, fisheries... Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). Journal of Animal Ecology 77:936-947.
Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue
2016-12-01
Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.
Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions.
Choi, Hongyoon
2018-04-01
Recent advances in deep learning have impacted various scientific and industrial fields. Due to the rapid application of deep learning in biomedical data, molecular imaging has also started to adopt this technique. In this regard, it is expected that deep learning will potentially affect the roles of molecular imaging experts as well as clinical decision making. This review firstly offers a basic overview of deep learning particularly for image data analysis to give knowledge to nuclear medicine physicians and researchers. Because of the unique characteristics and distinctive aims of various types of molecular imaging, deep learning applications can be different from other fields. In this context, the review deals with current perspectives of deep learning in molecular imaging particularly in terms of development of biomarkers. Finally, future challenges of deep learning application for molecular imaging and future roles of experts in molecular imaging will be discussed.
Pan, Hua-Qi; Hu, Jiang-Chun
2015-10-01
Pseudomonas sp. 10B238 was a putatively novel species of Pseudomonas, isolated from a deep-sea sediment of the South China Sea, which had the genetic potential to produce secondary metabolites related to nonribosomal peptides (NRPs), as well as showed moderate antimicrobial activities. Here we report a high quality draft genome of Pseudomonas sp. 10B238, which comprises 4,933,052bp with the G+C content of 60.23%. A total of 11 potential secondary metabolite biosynthetic gene clusters were predicted, including a NRP for new peptide siderophore. And many anaerobic respiratory terminal enzymes were found for life in deep-sea environments. Our results may provide insights into biosynthetic pathway for antimicrobial bioactive compounds and be helpful to understand the physiological characteristic of this species. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Duque, J.
The use of geophysics prospection in hydrogeology is widely used as a way to find groundwater under difficult hydrogeologic potential rocks. The porphyric rocks lay- ered in the northern part of Beja city, are the most unproductive regional aquifer. Usu- ally this aquifer has an upper layer of 5 to 15 meters deep of weathered rock and a second layer build by fractures rock till 30 metres deep. Above this deep the probabil- ity to find groundwater is extremely low. For instance it is a very superficial aquifer that usually accomplish the topographic surface. The water use is essential for human purposes and here are used mainly for human and cattle supply. In order verify the goodness of a geophysic method and at the same time to supply a large farm called Herdade da Apariça, it was performed the geophysical method of Very Low Frequency (VLF-EM) with ABEM (WADI) equipment, in three areas previously defined by inter- pretation of aerial photography, as zones that have relative hydrogeological potential. It was performed a total of 5 profiles with 1970 m. The geophysic prospecting and hydrogeologic research allowed to drill 5 boreholes, being 4 extraction wells and 1 piezometric well. The productivity of the abstraction wells are between 2,000 L/h and 10,000 L/h, which is a very good yield when compared with the other yield values get from wells inside this aquifer. VLF proved in this conditions to be an essential tool to increment the tax success of drilling wells.
Energy Levels in Quantum Wells.
NASA Astrophysics Data System (ADS)
Zang, Jan Xin
Normalized analytical equations for eigenstates of an arbitrary one-dimensional configuration of square potentials in a well have been derived. The general formulation is used to evaluate the energy levels of a particle in a very deep potential well containing seven internal barriers. The configuration can be considered as a finite superlattice sample or as a simplified model for a sample with only several atom layers. The results are shown in graphical forms as functions of the height and width of the potential barriers and as functions of the ratio of the effective mass in barrier to the mass in well. The formation of energy bands and surface eigenstates from eigenstates of a deep single well, the coming close of two energy bands and a surface state which are separate ordinarily, and mixing of the wave function of a surface state with the bulk energy bands are seen. Then the normalized derivation is extended to study the effect of a uniform electric field applied across a one-dimensional well containing an internal configuration of square potentials The general formulation is used to calculate the electric field dependence of the energy levels of a deep well with five internal barriers. Typical results are shown in graphical forms as functions of the barrier height, barrier width, barrier effective mass and the field strength. The formation of Stark ladders and surface states from the eigenstates of a single deep well in an electric field, the localization process of wave functions with changing barrier height, width, and field strength and their anticrossing behaviors are seen. The energy levels of a hydrogenic impurity in a uniform medium and in a uniform magnetic field are calculated with variational methods. The energy eigenvalues for the eigenstates with major quantum number less than or equal to 3 are obtained. The results are consistent with previous results. Furthermore, the energy levels of a hydrogenic impurity at the bottom of a one-dimensional parabolic quantum well with a magnetic field normal to the plane of the well are calculated with the finite-basis-set variational method. The limit of small radial distance and the limit of great radial distance are considered to choose a set of proper basis functions. It is found that the energy levels increase with increasing parabolic parameter alpha and increase with increasing normalized magnetic field strength gamma except those levels with magnetic quantum number m < 0 at small gamma.
An alternative tensiometer design for deep vadose zone monitoring
NASA Astrophysics Data System (ADS)
Moradi, A. B.; Kandelous, M. M.; Hopmans, J. W.
2015-12-01
The conventional tensiometer is among the most accurate devices for soil water matric potential measurements, as well as for estimations of soil water flux from soil water potential gradients. Uncertainties associated with conventional tensiometers such as caused by ambient temperature effects and the draining of the tensiometer tube, as well as their limitation for deep soil monitoring has prevented their widespread use for vadose zone monitoring, despite their superior accuracy, in general. We introduce an alternative tensiometer design that offers the accuracy of the conventional tensiometer, while minimizing afore-mentioned uncertainties and limitations. The proposed alternative tensiometer largely eliminates temperature-induced diurnal fluctuations and uncertainties associated with the draining of the tensiometer tube, and removes the limitation in installation depth. In addition, the manufacturing costs of this alternative tensiometer design is close to that of the conventional tensiometer, while it is especially suited for monitoring of soil water potential gradients as required for soil water flux measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less
Freedman, Adam J. E.; Tan, BoonFei; Thompson, Janelle R.
2017-05-02
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected super-critical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO 2- water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four membersmore » of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. In conclusion, the existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling.« less
Deep geothermal resources in the Yangbajing Field, Tibet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Ping; Jin Jian; Duo Ji
1997-12-31
Since the first well was bored in July 1997 in the Yangbajing geothermal field, more than 80 wells have been drilled. The total of installed capacity is 25.18MWe for geothermal power plant that has generated about 1.0 x 10{sup 9} kWh electricity in all. Temperatures inside shallow reservoir are in the range from 150{degrees}C to 165{degrees}C. No high-temperature field if found below the shallow reservoir in the southern part. In order to enlarge the installed capacity and solve pressure decline in current productive wells, an exploration project of deep geothermal resources has been carried out in the northern part. Themore » highest temperature of 329{degrees}C was detected in well ZK4002 at 1850m depth in 1994. Well ZK4001 drilled in 1996 flows out high-enthalpy thermal fluid at the wellhead, in which the average temperature is 248{degrees}C in the feeding zones. There is a great potential for power generation in the northern part. The exploitation of deep geothermal resources would effect the production of existing wells.« less
Source and transport of human enteric viruses in deep municipal water supply wells
Bradbury, Kenneth R.; Borchardt, Mark A.; Gotkowitz, Madeline; Spencer, Susan K.; Zhu, Jun; Hunt, Randall J.
2013-01-01
Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.
Movahedi, Faezeh; Coyle, James L; Sejdic, Ervin
2018-05-01
Deep learning, a relatively new branch of machine learning, has been investigated for use in a variety of biomedical applications. Deep learning algorithms have been used to analyze different physiological signals and gain a better understanding of human physiology for automated diagnosis of abnormal conditions. In this paper, we provide an overview of deep learning approaches with a focus on deep belief networks in electroencephalography applications. We investigate the state-of-the-art algorithms for deep belief networks and then cover the application of these algorithms and their performances in electroencephalographic applications. We covered various applications of electroencephalography in medicine, including emotion recognition, sleep stage classification, and seizure detection, in order to understand how deep learning algorithms could be modified to better suit the tasks desired. This review is intended to provide researchers with a broad overview of the currently existing deep belief network methodology for electroencephalography signals, as well as to highlight potential challenges for future research.
Characterisation of DOC and its relation to the deep terrestrial biosphere
NASA Astrophysics Data System (ADS)
Vieth, Andrea; Vetter, Alexandra; Sachse, Anke; Horsfield, Brian
2010-05-01
The deep subsurface is populated by a large number of microorganisms playing a pivotal role in the carbon cycling. The question arises as to the origin of the potential carbon sources that support deep microbial communities and their possible interactions within the deep subsurface. As the carbon sources need to be dissolved in formation fluids to become available to microorganisms, the dissolved organic carbon (DOC) needs further characterisation as regards concentration, structural as well as molecular composition and origin. The Malm carbonates in the Molasse basin of southern Germany are of large economic potential as they are targets for both hydrocarbon and geothermal exploration (ANDREWS et al., 1987). Five locations that differ in their depth of the Malm aquifer between 220 m and 3445 m below surface have been selected for fluid sampling. The concentration and the isotopic composition of the DOC have been determined. To get a better insight into the structural composition of the DOC, we also applied size exclusion chromatography and quantified the amount of low molecular weight organic acids (LMWOA) by ion chromatography. With increasing depth of the aquifer the formation fluids show increasing salinity as chloride concentrations increase from 2 to 300 mg/l and also the composition of the DOC changes. Water samples from greater depth (>3000 m) showed that the DOC mainly consists of LMWOA (max. 83 %) and low percentages of neutral compounds (alcohols, aldehyde, ketones, amino acids) as well as "building blocks". Building blocks have been described to be the oxidation intermediates from humic substances to LMWOA. With decreasing depth of the aquifer, the DOC of the fluid becomes increasingly dominated by neutral compounds and the percentage of building blocks increases to around 27%. The fluid sample from 220 m depth still contains a small amount of humic substances. The DOC of formation fluids in some terrestrial sediments may originate from organic-rich layers like coals and source rocks which may provide carbon sources for the deep biosphere by leaching water soluble organic compounds. We investigated the potential of a series of Eocene-Pleistocene coals, mudstones and sandstones from New Zealand with different maturities (Ro between 0.29 and 0.39) and total organic carbon content (TOC) regarding their potential to release such compounds. The water extraction of these New Zealand coals using Soxhlet apparatus resulted in yields of LMWOA that may feed the local deep terrestrial biosphere over geological periods of time (VIETH et al., 2008). However, the DOC of the water extracts mainly consisted of humic substances. To investigate the effect of thermal maturity of the organic matter as well as the effect of the organic matter type on the extraction yields, we examined additional coal samples (Ro between 0.29 and 0.80) and source rock samples from low to medium maturity (Ro between 0.3 to 1.1). Within our presentation we would like to show the compositional diversity and variability of dissolved organic compounds in natural formation fluids as well as in water extracts from a series of very different lithologies and discuss their effects on the carbon cycling in the deep terrestrial subsurface. References: Andrews, J. N., Youngman, M. J., Goldbrunner, J. E., and Darling, W. G., 1987. The geochemistry of formation waters in the Molasse Basin of Upper Austria. Environmental Geology 10, 43-57. Vieth, A., Mangelsdorf, K., Sykes, R., and Horsfield, B., 2008. Water extraction of coals - potential to estimate low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere? Organic Geochemistry 39, 985-991.
SchNet - A deep learning architecture for molecules and materials
NASA Astrophysics Data System (ADS)
Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R.
2018-06-01
Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning, in general, and deep learning, in particular, are ideally suitable for representing quantum-mechanical interactions, enabling us to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for molecules and materials, where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study on the quantum-mechanical properties of C20-fullerene that would have been infeasible with regular ab initio molecular dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapin, M.A.; Tiller, G.M.; Mahaffie, M.J.
1996-12-31
Economic considerations of the deep-water turbidite play, in the Gulf of Mexico and elsewhere, require large reservoir volumes to be drained by relatively few, very expensive wells. Deep-water development projects to date have been planned on the basis of high-quality 3-D seismic data and sparse well control. The link between 3-D seismic, well control, and the 3-D geological and reservoir architecture model are demonstrated here for Pliocene turbidite sands of the {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. This information was used to better understand potential reservoir compartments for development well planning.
NASA Astrophysics Data System (ADS)
Lloyd, K. G.; Bird, J. T.; Shumaker, A.
2014-12-01
Very little is known about how evolutionary branches that are distantly related to cultured microorganisms make a living in the deep subsurface marine environment. Here, sediments are cut-off from surface inputs of organic substrates for tens of thousands of years; yet somehow support a diverse population of microorganisms. We examined the potential metabolic and ecological roles of uncultured archaea and bacteria in IODP Leg 347: Baltic Sea Paleoenvironment samples, using quantitative PCR holes 60B, 63E, 65C, and 59C and single cell genomic analysis for hole 60B. We quantified changes in total archaea and bacteria, as well as deeply-branching archaeal taxa with depth. These sediment cores alternate between high and low salinities, following a glacial cycle. This allows changes in the quantities of these groups to be placed in the context of potentially vastly different organic matter sources. In addition, single cells were isolated, and their genomes were amplified and sequenced to allow a deeper look into potential physiologies of uncultured deeply-branching organisms found up to 86 meters deep in marine sediments. Together, these data provide deeper insight into the relationship between microorganisms and their organic matter substrates in this extreme environments.
AlN/GaN Digital Alloy for Mid- and Deep-Ultraviolet Optoelectronics.
Sun, Wei; Tan, Chee-Keong; Tansu, Nelson
2017-09-19
The AlN/GaN digital alloy (DA) is a superlattice-like nanostructure formed by stacking ultra-thin ( ≤ 4 monolayers) AlN barriers and GaN wells periodically. Here we performed a comprehensive study on the electronics and optoelectronics properties of the AlN/GaN DA for mid- and deep-ultraviolet (UV) applications. Our numerical analysis indicates significant miniband engineering in the AlN/GaN DA by tuning the thicknesses of AlN barriers and GaN wells, so that the effective energy gap can be engineered from ~3.97 eV to ~5.24 eV. The band structure calculation also shows that the valence subbands of the AlN/GaN DA is properly rearranged leading to the heavy-hole (HH) miniband being the top valence subband, which results in the desired transverse-electric polarized emission. Furthermore, our study reveals that the electron-hole wavefunction overlaps in the AlN/GaN DA structure can be remarkably enhanced up to 97% showing the great potential of improving the internal quantum efficiency for mid- and deep-UV device application. In addition, the optical absorption properties of the AlN/GaN DA are analyzed with wide spectral coverage and spectral tunability in mid- and deep-UV regime. Our findings suggest the potential of implementing the AlN/GaN DA as a promising active region design for high efficiency mid- and deep-UV device applications.
Bohonyi, Noémi; Pohóczky, Krisztina; Szalontai, Bálint; Perkecz, Anikó; Kovács, Krisztina; Kajtár, Béla; Orbán, Lajos; Varga, Tamás; Szegedi, Sarolta; Bódis, József; Koppán, Miklós
2017-01-01
Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. In this study, patients undergoing laparoscopic surgery were investigated: severe dysmenorrhoea due to rectosigmoid deep infiltrating endometriosis (n = 15), uterine fibroid-induced moderate dysmenorrhoea (n = 7) and tubal infertility with no pain (n = 6). TRPA1 and TRPV1 mRNA and protein expressions were determined by quantitative polymerase chain reaction and semi-quantitative immunohistochemistry from the endometrium samples taken by curettage. Results were correlated with the clinical characteristics including pain intensity. TRPA1 and TRPV1 receptors were expressed in the healthy human endometrium at mRNA and protein levels. Sparse, scattered cytoplasmic TRPA1 and TRPV1 immunopositivities were found in the stroma and epithelial layers. We detected upregulated mRNA levels in deep infiltrating endometriosis lesions, and TRPV1 gene expression was also elevated in autocontrol endometrium of deep infiltrating endometriosis patients. Histological scoring revealed significant TRPA1 and TRPV1 difference between deep infiltrating endometriosis stroma and epithelium, and in deep infiltrating endometriosis epithelium compared to control samples. Besides, we measured elevated stromal TRPV1 immunopositivity in deep infiltrating endometriosis. Stromal TRPA1 and TRPV1 immunoreactivities strongly correlated with dysmenorrhoea severity, as well TRPV1 expression on ectopic epithelial cells and macrophages with dyspareunia. Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the healthy human endometrium and confirm the expression of TRPV1 channels. Their upregulations in rectosigmoid deep infiltrating endometriosis lesions and correlations with pain intensity suggest potential roles in pathophysiological mechanisms of the disease. PMID:28478727
Bohonyi, Noémi; Pohóczky, Krisztina; Szalontai, Bálint; Perkecz, Anikó; Kovács, Krisztina; Kajtár, Béla; Orbán, Lajos; Varga, Tamás; Szegedi, Sarolta; Bódis, József; Helyes, Zsuzsanna; Koppán, Miklós
2017-01-01
Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. In this study, patients undergoing laparoscopic surgery were investigated: severe dysmenorrhoea due to rectosigmoid deep infiltrating endometriosis ( n = 15), uterine fibroid-induced moderate dysmenorrhoea ( n = 7) and tubal infertility with no pain ( n = 6). TRPA1 and TRPV1 mRNA and protein expressions were determined by quantitative polymerase chain reaction and semi-quantitative immunohistochemistry from the endometrium samples taken by curettage. Results were correlated with the clinical characteristics including pain intensity. TRPA1 and TRPV1 receptors were expressed in the healthy human endometrium at mRNA and protein levels. Sparse, scattered cytoplasmic TRPA1 and TRPV1 immunopositivities were found in the stroma and epithelial layers. We detected upregulated mRNA levels in deep infiltrating endometriosis lesions, and TRPV1 gene expression was also elevated in autocontrol endometrium of deep infiltrating endometriosis patients. Histological scoring revealed significant TRPA1 and TRPV1 difference between deep infiltrating endometriosis stroma and epithelium, and in deep infiltrating endometriosis epithelium compared to control samples. Besides, we measured elevated stromal TRPV1 immunopositivity in deep infiltrating endometriosis. Stromal TRPA1 and TRPV1 immunoreactivities strongly correlated with dysmenorrhoea severity, as well TRPV1 expression on ectopic epithelial cells and macrophages with dyspareunia. Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the healthy human endometrium and confirm the expression of TRPV1 channels. Their upregulations in rectosigmoid deep infiltrating endometriosis lesions and correlations with pain intensity suggest potential roles in pathophysiological mechanisms of the disease.
2015-08-01
of the injection purpose, i.e., secondary oil and gas recovery, disposal of waste fluids, geothermal energy, and/or UHP hydraulic fracturing...activities such as reservoir impoundment, mining, wastewater injection, geothermal systems and CO2 capture have been linked directly to induced...activities, e.g., deep fluid injection, geothermal injection, and/or UHP wells, that critically affect deep lithologies and alter the existing mechanical
2011-01-01
Background Schizophrenia is a chronic and disabling disease that presents with delusions and hallucinations. Auditory hallucinations are usually expressed as voices speaking to or about the patient. Previous studies have examined the effect of repetitive transcranial magnetic stimulation (TMS) over the temporoparietal cortex on auditory hallucinations in schizophrenic patients. Our aim was to explore the potential effect of deep TMS, using the H coil over the same brain region on auditory hallucinations. Patients and methods Eight schizophrenic patients with refractory auditory hallucinations were recruited, mainly from Beer Ya'akov Mental Health Institution (Tel Aviv university, Israel) ambulatory clinics, as well as from other hospitals outpatient populations. Low-frequency deep TMS was applied for 10 min (600 pulses per session) to the left temporoparietal cortex for either 10 or 20 sessions. Deep TMS was applied using Brainsway's H1 coil apparatus. Patients were evaluated using the Auditory Hallucinations Rating Scale (AHRS) as well as the Scale for the Assessment of Positive Symptoms scores (SAPS), Clinical Global Impressions (CGI) scale, and the Scale for Assessment of Negative Symptoms (SANS). Results This preliminary study demonstrated a significant improvement in AHRS score (an average reduction of 31.7% ± 32.2%) and to a lesser extent improvement in SAPS results (an average reduction of 16.5% ± 20.3%). Conclusions In this study, we have demonstrated the potential of deep TMS treatment over the temporoparietal cortex as an add-on treatment for chronic auditory hallucinations in schizophrenic patients. Larger samples in a double-blind sham-controlled design are now being preformed to evaluate the effectiveness of deep TMS treatment for auditory hallucinations. Trial registration This trial is registered with clinicaltrials.gov (identifier: NCT00564096). PMID:21303566
Deep learning and the electronic structure problem
NASA Astrophysics Data System (ADS)
Mills, Kyle; Spanner, Michael; Tamblyn, Isaac
In the past decade, the fields of artificial intelligence and computer vision have progressed remarkably. Supported by the enthusiasm of large tech companies, as well as significant hardware advances and the utilization of graphical processing units to accelerate computations, deep neural networks (DNN) are gaining momentum as a robust choice for many diverse machine learning applications. We have demonstrated the ability of a DNN to solve a quantum mechanical eigenvalue equation directly, without the need to compute a wavefunction, and without knowledge of the underlying physics. We have trained a convolutional neural network to predict the total energy of an electron in a confining, 2-dimensional electrostatic potential. We numerically solved the one-electron Schrödinger equation for millions of electrostatic potentials, and used this as training data for our neural network. Four classes of potentials were assessed: the canonical cases of the harmonic oscillator and infinite well, and two types of randomly generated potentials for which no analytic solution is known. We compare the performance of the neural network and consider how these results could lead to future advances in electronic structure theory.
Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert
This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less
DeepBlue epigenomic data server: programmatic data retrieval and analysis of epigenome region sets
Albrecht, Felipe; List, Markus; Bock, Christoph; Lengauer, Thomas
2016-01-01
Large amounts of epigenomic data are generated under the umbrella of the International Human Epigenome Consortium, which aims to establish 1000 reference epigenomes within the next few years. These data have the potential to unravel the complexity of epigenomic regulation. However, their effective use is hindered by the lack of flexible and easy-to-use methods for data retrieval. Extracting region sets of interest is a cumbersome task that involves several manual steps: identifying the relevant experiments, downloading the corresponding data files and filtering the region sets of interest. Here we present the DeepBlue Epigenomic Data Server, which streamlines epigenomic data analysis as well as software development. DeepBlue provides a comprehensive programmatic interface for finding, selecting, filtering, summarizing and downloading region sets. It contains data from four major epigenome projects, namely ENCODE, ROADMAP, BLUEPRINT and DEEP. DeepBlue comes with a user manual, examples and a well-documented application programming interface (API). The latter is accessed via the XML-RPC protocol supported by many programming languages. To demonstrate usage of the API and to enable convenient data retrieval for non-programmers, we offer an optional web interface. DeepBlue can be openly accessed at http://deepblue.mpi-inf.mpg.de. PMID:27084938
High energy helion scattering: A ``model-independent'' analysis
NASA Astrophysics Data System (ADS)
Djaloeis, A.; Gopal, S.
1981-03-01
Angular distributions of helions elastically scattered from 24Mg, 58Ni, 90Zr and 120Sn at Eτ = 130 MeV have been subjected to a "model-independent" analysis in the framework of the optical model. The real part of the optical potential was represented by a spline-function; volume and surface absorptions were considered. Both the shallow and the deep families of the helion optical potential were investigated. The spline potentials are found to deviate from the Woods-Saxon shape. The experimental data are well described by optical potentials with either a volume or a surface absorption. However, the volume absorption consistently gives better fits. For 24Mg, 90Zr and 120Sn both shallow and deep potential families result in comparable fit qualities. For 58Ni the discrete ambiguity is resolved in favour of the shallow family. From the analysis the values of the rms radius of matter distribution have been extracted.
Clarke, Frank Eldridge; Jones, Blair F.
1972-01-01
Nine ground-water samples from the principal shallow and deep North Sahara aquifers of Algeria and Tunisia were examined to determine the relation of their chemical composition to corrosion and mineral encrustation thought to be contributing to observed decline in well capacities within a UNESCO/UNDP Special Fund Project area. Although the shallow and deep waters differ significantly in certain quality factors, all are sulfochloride types with corrosion potentials ranging from moderate to extreme. None appear to be sufficiently supersaturated with troublesome mineral species to cause rapid or severe encrustation of filter pipes or other well parts. However, calcium carbonate encrustation of deep-well cooling towers and related irrigation pipes can be expected because of loss of carbon dioxide and water during evaporative cooling. Corrosion products, particularly iron sulfide, can be expected to deposit in wells producing waters from the deep aquifers. This could reduce filterpipe openings and increase casing roughness sufficiently to cause significant reduction in well capacity. It seems likely, however, that normal pressure reduction due to exploitation of the artesian systems is a more important control of well performance. If troublesome corrosion and related encrustation are confirmed by downhole inspection, use of corrosion-resisting materials, such as fiber-glass casing and saw-slotted filter pipe (shallow wells only), or stainless-steel screen, will minimize the effects of the waters represented by these samples. A combination of corrosion-resisting stainless steel filter pipe electrically insulated from the casing with a nonconductive spacer and cathodic protection will minimize external corrosion of steel casing, if this is found to be a problem. However, such installations are difficult to make in very deep wells and difficult to control in remote areas. Both the shallow waters and the deep waters examined in this study will tend to cause soil salinization because their salt contents are relatively high, and both have sodium absorption ratios which are unfavorable to sodium-sensitive soils and vegetation. Proper drainage and soil treatment are the only means of overcoming these problems during irrigation.
NASA Astrophysics Data System (ADS)
Kukowski, Nina; Totsche, Kai Uwe; Abratis, Michael; Habisreuther, Annett; Ward, Timothy; Influins Drilling-Team
2014-05-01
To shed light on the coupled dynamics of near surface and deep fluids in a sedimentary basin on various scales, ranging from the pore scale to the extent of an entire basin, is of paramount importance to understand the functioning of sedimentary basins fluid systems and therefore e.g. drinking water supply. It is also the fundamental goal of INFLUINS (INtegrated FLuid dynamics IN Sedimentary basins), a research initiative of several groups from Friedrich-Schiller University of Jena and their partners. This research association is focusing on the nearby Thuringian basin, a well confined, small intra-continental sedimentary basin in Germany, as a natural geo laboratory. In a multidisciplinary approach, embracing different fields of geophysics like seismic reflection profiling or airborne geomagnetics, structural geology, sedimentology, hydrogeology, hydrochemistry and hydrology, remote sensing, microbiology and mineralogy, among others, and including both, field-based, laboratory-based and computer-based research, an integral INFLUINS topic is the potential interaction of aquifers within the basin and at its rims. The Thuringian basin, which is composed of sedimentary rocks from the latest Paleozoic and mainly Triassic, is particularly suited to undertake such research as it is of relative small size, about 50 to 100 km, easily accessible, and quite well known from previous studies, and therefore also a perfect candidate for deep drilling. After the acquisition of 76 km seismic reflection data in spring 2011, to get as much relevant data as possible from a deep drilling at the cross point between two seismic profiles with a limited financial budget, an optimated core sampling and measuring strategy including partial coring, borehole geophysics and pump tests as well as a drill hole design, which enables for later continuation of drilling down to the basement, had been developed. Drilling Triassic rocks from Keuper to lower Buntsandstein was successfully realised down to a final depth of 1179 m from late June to mid-September 2013. Here, we give an introduction into the layout of INFLUINS deep drilling together with a summary of preliminary results, e.g. on the nature of the boundaries between Muschelkalk and Buntsandstein, and between upper and middle Buntsandstein, a complete core recovery of upper Buntsandstein saliniferous formations as well as unexpectedly low porosity and permeability of potential aquifers.
Sediment Transportation Induced by Deep-Seated Landslides in a Debris Flow Basin in Taiwan
NASA Astrophysics Data System (ADS)
Lin, Meei Ling; Chen, Te Wei; Chen, Yong Sheng; Sin Jhuang, Han
2016-04-01
Typhoon Morakot brought huge amount of rainfall to the southern Taiwan in 2009 and caused severe landslides and debris flow hazard. After Typhoon Morakot, it was found that the volume of sediment transported by the debris flow and its effects on the affected area were much more significant compared to previous case history, which may due to the huge amount of rainfall causing significant deep-seated landslides in the basin. In this study, the effects and tendency of the sediment transportation in a river basin following deep-seated landslides caused by typhoon Morakot were evaluated. We used LiDAR, DEM, and aerial photo to identify characteristics of deep-seated landslides in a debris flow river basin, KSDF079 in Liuoguey District, Kaohsiung City, Taiwan. Eight deep-seated landslides were identified in the basin. To estimate the potential landslide volume associated with the deep-seated landslides, the stability analysis was conducted to locate the critical sliding surface, and the potential landside volume was estimated based on the estimation equation proposed by the International Geotechnical Societies' UNESCO Working Party on World Landslide Inventory (WP/WLI, 1990). The total potential landslide volume of the eight deep-seated landslides in KSDF079 basin was about 28,906,856 m3. Topographic analysis was performed by using DEM before and LiDAR derived DEM after typhoon Morakot to calculate the landslide volume transported. The result of erosion volume and deposition volume lead to a run out volume of 5,832,433 m3. The results appeared to consist well with the field condition and aerial photo. Comparing the potential landslide volume and run out volume of eight deep-seated landslides, it was found that the remaining potential landslide volume was about 80%. Field investigation and topographic analysis of the KSDF079 debris flow revealed that a significant amount of sediment deposition remained in the river channel ranging from the middle to the downstream section of the channel, and the channel has been widen. Such large proportion of landslide volume remained in the basin on deep-seated landslide scars and debris flow river channel would likely to cause further debris transportation in the future events. The stability analysis used in this study provided a feasible method and satisfactory results for estimating sediment volume transportation associated with the deep-seated landslides in the study area. Combination of the stability analysis results and the topographic analysis provided estimation of sediment transportation caused by the deep-seated landslides, and trend variation of further sediment transport of the basin, which could provide vital information for hazard mitigation. Keyword: deep-seated landslide, sediment transport, DEM, LiDAR, stability analysis
Quantum-chemical insights from deep tensor neural networks
Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre
2017-01-01
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems. PMID:28067221
Quantum-chemical insights from deep tensor neural networks.
Schütt, Kristof T; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R; Tkatchenko, Alexandre
2017-01-09
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol -1 ) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.
Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.
André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V
2011-01-01
The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.
Quantum-chemical insights from deep tensor neural networks
NASA Astrophysics Data System (ADS)
Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre
2017-01-01
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.
Geologic and operational summary, COST No. G-2 well, Georges Bank area, North Atlantic OCS
Amato, Roger V.; Simonis, Edvardas K.
1980-01-01
The Continental Offshore Stratigraphic Test (COST) No. G-2 well is the second deep well to be drilled in the Georges Bank Basin and the third in a series of COST wells on the Atlantic Outer Continental Shelf (OCS). The G-2 was drilled by Ocean Production Company, acting as the operator for 19 participating companies between January 6 and August 30, 1977. The semisubmersible rig Ocean Victory was used to drill the well to a depth of 21,874 feet at a location 132 statute miles east-southeast of Nantucket Island in 272 feet of water. An earlier deep Stratigraphic test, the COST No. G-l well, was drilled 42 statute miles west of the G-2 well, to a depth of 16,071 feet in 1976 (fig. 1). Geological and engineering data obtained from the well were used by companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for lease sale 42 held on December 18, 1979. The Stratigraphic test was intentionally drilled away from any potential petroleum-bearing feature, but in a block bordering several tracts that were included in the sale area.
Delineation of potential deep seated landslides in a watershed using environmental index
NASA Astrophysics Data System (ADS)
Lai, Siao Ying; Lin, Chao Yuan; Lin, Cheng Yu
2016-04-01
The extreme rainfall induced deep seated landslides cause more attentions recently. Extreme rainfall can accelerate soil moisture content and surface runoff in slopeland which usually results in severe headward erosion and slope failures in an upstream watershed. It's a crucial issue for disaster prevention to extract the sites of potential deep seated landslide dynamically. Landslide risk and scale in a watershed were well discussed in this study. Risk of landslide occurrence in a watershed can be calculated from the multiplication of hazard and vulnerability for a certain event. A synthesis indicator derived from the indices of inverted extreme rainfall, road development and inverted normalized difference vegetation index can be effectively used as vulnerability for a watershed before the event. Landslide scale estimated from the indices of soil depth, headward erosion, river concave and dip slope could be applied to locate the hotspots of deep seated landslide in a watershed. The events of Typhoon Morakot in 2009 and Soudelor in 2015 were also selected in this study to verify the delineation accuracy of the model for the references of related authorities.
1990-02-09
temperatures at which hydrates are stable, gas produced in deep-ocean, near -surface sediment or rising into it from below, will be transformed into gas...seafloor. When water becomes heated naturally at ridge plumes and elsewhere, it rises and is further replaced by polar-water inflow. In the North Atlantic...Bottom of HSZ1200 N j Permafrost [ / Methane hydrate-stability zone Fig. 8 - Cross section through 10 near -shore wells from the north slope of Alaska
System concepts and design examples for optical communication with planetary spacecraft
NASA Astrophysics Data System (ADS)
Lesh, James R.
Systems concepts for optical communication with future deep-space (planetary) spacecraft are described. These include not only the optical transceiver package aboard the distant spacecraft, but the earth-vicinity optical-communications receiving station as well. Both ground-based, and earth-orbiting receivers are considered. Design examples for a number of proposed or potential deep-space missions are then presented. These include an orbital mission to Saturn, a Lander and Rover mission to Mars, and an astronomical mission to a distance of 1000 astronomical units.
Incorporating ecosystem services into environmental management of deep-seabed mining
NASA Astrophysics Data System (ADS)
Le, Jennifer T.; Levin, Lisa A.; Carson, Richard T.
2017-03-01
Accelerated exploration of minerals in the deep sea over the past decade has raised the likelihood that commercial mining of the deep seabed will commence in the near future. Environmental concerns create a growing urgency for development of environmental regulations under commercial exploitation. Here, we consider an ecosystem services approach to the environmental policy and management of deep-sea mineral resources. Ecosystem services link the environment and human well-being, and can help improve sustainability and stewardship of the deep sea by providing a quantitative basis for decision-making. This paper briefly reviews ecosystem services provided by habitats targeted for deep-seabed mining (hydrothermal vents, seamounts, nodule provinces, and phosphate-rich margins), and presents practical steps to incorporate ecosystem services into deep-seabed mining regulation. The linkages and translation between ecosystem structure, ecological function (including supporting services), and ecosystem services are highlighted as generating human benefits. We consider criteria for identifying which ecosystem services are vulnerable to potential mining impacts, the role of ecological functions in providing ecosystem services, development of ecosystem service indicators, valuation of ecosystem services, and implementation of ecosystem services concepts. The first three steps put ecosystem services into a deep-seabed mining context; the last two steps help to incorporate ecosystem services into a management and decision-making framework. Phases of environmental planning discussed in the context of ecosystem services include conducting strategic environmental assessments, collecting baseline data, monitoring, establishing marine protected areas, assessing cumulative impacts, identifying thresholds and triggers, and creating an environmental damage compensation regime. We also identify knowledge gaps that need to be addressed in order to operationalize ecosystem services concepts in deep-seabed mining regulation and propose potential tools to fill them.
Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J C; Haut, R; Jahn, G
2010-02-19
An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations.more » Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... in water between 200 and 400 meters deep, you begin drilling an original deep well with a perforated... 200 meters deep; (ii) May 18, 2007, for an RSV earned by a qualified deep well on a lease that is located entirely in water more than 200 meters deep; or (iii) The date that the first qualified well that...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not... royalty relief under § 203.41. If . . . Then . . . (a) Your lease has produced gas or oil from a well with... RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b...
DeepBlue epigenomic data server: programmatic data retrieval and analysis of epigenome region sets.
Albrecht, Felipe; List, Markus; Bock, Christoph; Lengauer, Thomas
2016-07-08
Large amounts of epigenomic data are generated under the umbrella of the International Human Epigenome Consortium, which aims to establish 1000 reference epigenomes within the next few years. These data have the potential to unravel the complexity of epigenomic regulation. However, their effective use is hindered by the lack of flexible and easy-to-use methods for data retrieval. Extracting region sets of interest is a cumbersome task that involves several manual steps: identifying the relevant experiments, downloading the corresponding data files and filtering the region sets of interest. Here we present the DeepBlue Epigenomic Data Server, which streamlines epigenomic data analysis as well as software development. DeepBlue provides a comprehensive programmatic interface for finding, selecting, filtering, summarizing and downloading region sets. It contains data from four major epigenome projects, namely ENCODE, ROADMAP, BLUEPRINT and DEEP. DeepBlue comes with a user manual, examples and a well-documented application programming interface (API). The latter is accessed via the XML-RPC protocol supported by many programming languages. To demonstrate usage of the API and to enable convenient data retrieval for non-programmers, we offer an optional web interface. DeepBlue can be openly accessed at http://deepblue.mpi-inf.mpg.de. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...
Code of Federal Regulations, 2014 CFR
2014-07-01
... qualified deep well or qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (b) of this... a qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (c) of this section. (b) If your lease meets the requirements in paragraph (a)(1) of this section, it earns the RSV prescribed in...
Code of Federal Regulations, 2012 CFR
2012-07-01
... qualified deep well or qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (b) of this... a qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (c) of this section. (b) If your lease meets the requirements in paragraph (a)(1) of this section, it earns the RSV prescribed in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... qualified deep well or qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (b) of this... a qualified phase 1 ultra-deep well, earns an RSV specified in paragraph (c) of this section. (b) If your lease meets the requirements in paragraph (a)(1) of this section, it earns the RSV prescribed in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep wells or phase 1 ultra-deep wells. (b) You determine RSV under § 203.41 for the first qualified deep... wells, that determination establishes the total RSV available for that drilling depth interval on your...
Deep learning for tumor classification in imaging mass spectrometry.
Behrmann, Jens; Etmann, Christian; Boskamp, Tobias; Casadonte, Rita; Kriegsmann, Jörg; Maaß, Peter
2018-04-01
Tumor classification using imaging mass spectrometry (IMS) data has a high potential for future applications in pathology. Due to the complexity and size of the data, automated feature extraction and classification steps are required to fully process the data. Since mass spectra exhibit certain structural similarities to image data, deep learning may offer a promising strategy for classification of IMS data as it has been successfully applied to image classification. Methodologically, we propose an adapted architecture based on deep convolutional networks to handle the characteristics of mass spectrometry data, as well as a strategy to interpret the learned model in the spectral domain based on a sensitivity analysis. The proposed methods are evaluated on two algorithmically challenging tumor classification tasks and compared to a baseline approach. Competitiveness of the proposed methods is shown on both tasks by studying the performance via cross-validation. Moreover, the learned models are analyzed by the proposed sensitivity analysis revealing biologically plausible effects as well as confounding factors of the considered tasks. Thus, this study may serve as a starting point for further development of deep learning approaches in IMS classification tasks. https://gitlab.informatik.uni-bremen.de/digipath/Deep_Learning_for_Tumor_Classification_in_IMS. jbehrmann@uni-bremen.de or christianetmann@uni-bremen.de. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Zhang, Wei
In this research project I have investigated AlGaN alloys and their quantum structures for applications in deep UV and terahertz optoelectronic devices. For the deep UV emitter applications the materials and devices were grown by rf plasma-assisted molecular beam epitaxy on 4H-SiC, 6H-SiC and c-plane sapphire substrates. In the growth of AlGaN/AlN multiple quantum wells on SiC substrates, the AlGaN wells were grown under excess Ga, far beyond than what is required for the growth of stoichiometric AlGaN films, which resulted in liquid phase epitaxy growth mode. Due to the statistical variations of the excess Ga on the growth front we found that this growth mode leads to films with lateral variations in the composition and thus, band structure potential fluctuations. Transmission electron microscopy shows that the wells in such structures are not homogeneous but have the appearance of quantum dots. We find by temperature dependent photoluminescence measurements that the multiple quantum wells with band structure potential fluctuations emit at 240 nm and have room temperature internal quantum efficiency as high as 68%. Furthermore, they were found to have a maximum net modal optical gain of 118 cm-1 at a transparency threshold corresponding to 1.4 x 1017 cm-3 excited carriers. We attribute this low transparency threshold to population inversion of only the regions of the potential fluctuations rather than of the entire matrix. Some prototype deep UV emitting LED structures were also grown by the same method on sapphire substrates. Optoelectronic devices for terahertz light emission and detection, based on intersubband transitions in III-nitride semiconductor quantum wells, were grown on single crystal c-plane GaN substrates. Growth conditions such the ratio of group III to active nitrogen fluxes, which determines the appropriate Ga-coverage for atomically smooth growth without requiring growth interruptions were employed. Emitters designed in the quantum cascade structure were fabricated into mesa-structure devices and the I-V characterization at 20 K indicates sequential tunneling with electroluminescence emission at about 10 THz. Similarly, Far-infrared photoconductive detectors were grown by the same method. Photocurrent spectra centered at 23 mum (13 THz) are resolved up to 50 K, with responsivity of approximately 7 mA/W.
Vertical migration of municipal wastewater in deep injection well systems, South Florida, USA
NASA Astrophysics Data System (ADS)
Maliva, Robert G.; Guo, Weixing; Missimer, Thomas
2007-11-01
Deep well injection is widely used in South Florida, USA for wastewater disposal largely because of the presence of an injection zone (“boulder zone” of Floridan Aquifer System) that is capable of accepting very large quantities of fluids, in some wells over 75,000 m3/day. The greatest potential risk to public health associated with deep injection wells in South Florida is vertical migration of wastewater, containing pathogenic microorganisms and pollutants, into brackish-water aquifer zones that are being used for alternative water-supply projects such as aquifer storage and recovery. Upwards migration of municipal wastewater has occurred in a minority of South Florida injection systems. The results of solute-transport modeling using the SEAWAT program indicate that the measured vertical hydraulic conductivities of the rock matrix would allow for only minimal vertical migration. Fracturing at some sites increased the equivalent average vertical hydraulic conductivity of confining zone strata by approximately four orders of magnitude and allowed for vertical migration rates of up 80 m/year. Even where vertical migration was rapid, the documented transit times are likely long enough for the inactivation of pathogenic microorganisms.
Freedman, Adam J.E.; Tan, BoonFei
2017-01-01
Summary Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO2 reservoirs, which serve as analogs for the long‐term fate of sequestered scCO2, harbor a ‘deep carbonated biosphere’ with carbon cycling potential. We sampled subsurface fluids from scCO2‐water separators at a natural scCO2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO2 and N2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO2 reservoir indicates that potential impacts of the deep biosphere on CO2 fate and transport should be taken into consideration as a component of GCS planning and modelling. PMID:28229521
NASA Astrophysics Data System (ADS)
Cheong, D.; Kim, D.; Kim, Y.
2010-12-01
The block 6-1 located in the southwestern margin of the Ulleung basin, East Sea (Sea of Japan) is an area where recently produces commercial natural gas and condensate. A total of 17 exploratory wells have been drilled, and also many seismic explorations have been carried out since early 1970s. Among the wells and seismic sections, the Gorae 1 well and a seismic section through the Gorae 1-2 well were chosen for this simulation work. Then, a 2-D graphic simulation using SEDPAK elucidates the evolution, burial history and diagenesis of the sedimentary sequence. The study area is a suitable place for modeling a petroleum system and evaluating hydrocarbon potential of reservoir. Shale as a source rock is about 3500m deep from sea floor, and sandstones interbedded with thin mud layers are distributed as potential reservoir rocks from 3,500m to 2,000m deep. On top of that, shales cover as seal rocks and overburden rocks upto 900m deep. Input data(sea level, sediment supply, subsidence rate, etc) for the simulation was taken from several previous published papers including the well and seismic data, and the thermal maturity of the sediment was calculated from known thermal gradient data. In this study area, gas and condensate have been found and commercially produced, and the result of the simulation also shows that there is a gas window between 4000m and 6000m deep, so that three possible interpretations can be inferred from the simulation result. First, oil has already moved and gone to the southeastern area along uplifting zones. Or second, oil has never been generated because organic matter is kerogen type 3, and or finally, generated oil has been converted into gas by thermally overcooking. SEDPAK has an advantage that it provides the timing and depth information of generated oil and gas with TTI values even though it has a limit which itself can not perform geochemical modeling to analyze thermal maturity level of source rocks. Based on the result of our simulation, added exploratory wells are required to discover deeper gas located in the study area.
Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface
Kristensen, Andreas H.; Henriksen, Kaj; Mortensen, Lars; Scow, Kate M.; Moldrup, Per
2011-01-01
Naturally occurring biodegradation of petroleum hydrocarbons in the vadose zone depends on the physical soil environment influencing field-scale gas exchange and pore-scale microbial metabolism. In this study, we evaluated the effect of soil physical heterogeneity on biodegradation of petroleum vapors in a 16-m-deep, layered vadose zone. Soil slurry experiments (soil/water ratio 10:30 w/w, 25°C) on benzene biodegradation under aerobic and well-mixed conditions indicated that the biodegradation potential in different textured soil samples was related to soil type rather than depth, in the order: sandy loam > fine sand > limestone. Similarly, O2 consumption rates during in situ respiration tests performed at the site were higher in the sandy loam than in the fine sand, although the difference was less significant than in the slurries. Laboratory and field data generally agreed well and suggested a significant potential for aerobic biodegradation, even with nutrient-poor and deep subsurface conditions. In slurries of the sandy loam, the biodegradation potential declined with increasing in situ water saturation (i.e., decreasing air-filled porosity in the field). This showed a relation between antecedent undisturbed field conditions and the slurry biodegradation potential, and suggested airfilled porosity to be a key factor for the intrinsic biodegradation potential in the field. PMID:21617737
Local vs. volume conductance activity of field potentials in the human subthalamic nucleus
Marmor, Odeya; Valsky, Dan; Joshua, Mati; Bick, Atira S; Arkadir, David; Tamir, Idit; Bergman, Hagai; Israel, Zvi
2017-01-01
Subthalamic nucleus field potentials have attracted growing research and clinical interest over the last few decades. However, it is unclear whether subthalamic field potentials represent locally generated neuronal subthreshold activity or volume conductance of the organized neuronal activity generated in the cortex. This study aimed at understanding of the physiological origin of subthalamic field potentials and determining the most accurate method for recording them. We compared different methods of recordings in the human subthalamic nucleus: spikes (300–9,000 Hz) and field potentials (3–100 Hz) recorded by monopolar micro- and macroelectrodes, as well as by differential-bipolar macroelectrodes. The recordings were done outside and inside the subthalamic nucleus during electrophysiological navigation for deep brain stimulation procedures (150 electrode trajectories) in 41 Parkinson’s disease patients. We modeled the signal and estimated the contribution of nearby/independent vs. remote/common activity in each recording configuration and area. Monopolar micro- and macroelectrode recordings detect field potentials that are considerably affected by common (probably cortical) activity. However, bipolar macroelectrode recordings inside the subthalamic nucleus can detect locally generated potentials. These results are confirmed by high correspondence between the model predictions and actual correlation of neuronal activity recorded by electrode pairs. Differential bipolar macroelectrode subthalamic field potentials can overcome volume conductance effects and reflect locally generated neuronal activity. Bipolar macroelectrode local field potential recordings might be used as a biological marker of normal and pathological brain functions for future electrophysiological studies and navigation systems as well as for closed-loop deep brain stimulation paradigms. NEW & NOTEWORTHY Our results integrate a new method for human subthalamic recordings with a development of an advanced mathematical model. We found that while monopolar microelectrode and macroelectrode recordings detect field potentials that are considerably affected by common (probably cortical) activity, bipolar macroelectrode recordings inside the subthalamic nucleus (STN) detect locally generated potentials that are significantly different than those recorded outside the STN. Differential bipolar subthalamic field potentials can be used in navigation and closed-loop deep brain stimulation paradigms. PMID:28202569
Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications
NASA Technical Reports Server (NTRS)
Morabito, David; Hastrup, Rolf
2004-01-01
This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.
NASA Astrophysics Data System (ADS)
Jakubský, Michal; Lenhard, Richard; Vantúch, Martin; Malcho, Milan
2012-04-01
In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057), whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3).
Tornabene, Luke; Baldwin, Carole C
2017-01-01
A new species of deep-reef fish in the goby genus Palatogobius is described from recent submersible collections off Curaçao and Dominica. Video footage of schools of this species reveal predation by the invasive Indo-Pacific lionfish (Pterois spp.), the first record of undescribed fauna potentially being eaten by lionfish outside of its native range. We present molecular phylogenetic data for all valid species of Palatogobius and related genera, as well as a taxonomic key to the species of Palatogobius and a generic key to Palatogobius and related genera in the western Atlantic. Lastly, we discuss ecological and behavioral aspects of some deep-reef fishes in light of potential threats from invasive lionfish.
NASA Astrophysics Data System (ADS)
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-04-01
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-04-15
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-01-01
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features. PMID:27079888
Koschinsky, Andrea; Heinrich, Luise; Boehnke, Klaus; Cohrs, J Christopher; Markus, Till; Shani, Maor; Singh, Pradeep; Stegen, Karen Smith; Werner, Welf
2018-06-19
Deep-sea mining refers to the retrieval of marine mineral resources such as manganese nodules, ferromanganese crusts and seafloor massive sulfide deposits, which contain a variety of metals that serve as crucial raw materials for a range of applications, from electronic devices to renewable energy technologies to construction materials. With the intent of decreasing dependence on imports, supporting the economy and potentially even overcoming the environmental problems related to conventional terrestrial mining, a number of public and private institutions have re-discovered their interest in exploring the prospects of deep-sea mining, which had been deemed economically and technically unfeasible in the early 1980 s. To date, many national and international research projects are grappling to understand the economic environmental, social and legal implications of potential commercial deep-sea mining operations: a challenging endeavor due to the complexity of direct impacts and spill-over effects. In this paper, we present a comprehensive overview of the current state of knowledge in the aforementioned fields as well as a comparison of the impacts associated with conventional terrestrial mining. Furthermore, we identify knowledge gaps that should be urgently addressed to ensure that the world at large benefits from safe, efficient and environmentally-sound mining procedures. We conclude by highlighting the need for interdisciplinary research and international cooperation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Enhancement of free tropospheric ozone production by deep convection
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Simpson, Joanne
1994-01-01
It is found from model simulations of trace gas and meteorological data from aircraft campaigns that deep convection may enhance the potential for photochemical ozone production in the middle and upper troposphere by up to a factor of 60. Examination of half a dozen individual convective episodes show that the degree of enhancement is highly variable. Factors affecting enhancement include boundary layer NO(x) mixing ratios, differences in the strength and structure of convective cells, as well as variation in the amount of background pollution already in the free troposphere.
Code of Federal Regulations, 2011 CFR
2011-07-01
... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.41 If I have... not . . . And if it later . . . Then your lease . . . (1) produced gas or oil from any deep well or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... a result of drilling a deep well or a phase 1 ultra-deep well? 203.40 Section 203.40 Mineral... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.40 Which...
Novel x-ray silicon detector for 2D imaging and high-resolution spectroscopy
NASA Astrophysics Data System (ADS)
Castoldi, Andrea; Gatti, Emilio; Guazzoni, Chiara; Longoni, Antonio; Rehak, Pavel; Strueder, Lothar
1999-10-01
A novel x-ray silicon detector for 2D imaging has been recently proposed. The detector, called Controlled-Drift Detector, is operated in integrate-readout mode. Its basic feature is the fast transport of the integrated charge to the output electrode by means of a uniform drift field. The drift time of the charge packet identifies the pixel of incidence. A new architecture to implement the Controlled- Drift Detector concept will be presented. The potential wells for the integration of the signal charge are obtained by means of a suitable pattern of deep n-implants and deep p-implants. During the readout mode the signal electrons are transferred in the drift channel that flanks each column of potential wells where they drift towards the collecting electrode at constant velocity. The first experimental measurements demonstrate the successful integration, transfer and drift of the signal electrons. The low output capacitance of the readout electrode together with the on- chip front-end electronics allows high resolution spectroscopy of the detected photons.
Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico
White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W. J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.
2012-01-01
To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems. PMID:22454495
Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico.
White, Helen K; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M; Cordes, Erik E; Quattrini, Andrea M; Nelson, Robert K; Camilli, Richard; Demopoulos, Amanda W J; German, Christopher R; Brooks, James M; Roberts, Harry H; Shedd, William; Reddy, Christopher M; Fisher, Charles R
2012-12-11
To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.
Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico
White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W.J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.
2012-01-01
To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.
[Deep skin infection with Scedosporium apiospermum-infection in a renal transplant patient].
Strunk, T; Blume, J-H; Szeimies, R-M
2015-03-01
A 57-year-old immunosuppressed patient presented with multiple erythematous papules and pustules as well as isolated ulcerations on the right lower leg and subcutaneous nodules on the right thigh. The biopsy revealed granulomatous inflammation with numerous fungal hyphae, which were IDentified as Scedosporium apiospermum by PCR. He was treated with voriconazole 2 × 200 mg daily as well assurgical debridement. Scedosporium apiospermum is a rare pathogenic agent of deep mold fungus infections. Skin infections with Scedosporium apiospermum are underdiagnosed because of different clinical manifestations. In immunosuppressed patients, an infection represents a potentially life-threatening complication. Precise identification of the agent with introduction of antimycotic therapy appears to be pivotal to prevent fulminant disease.
Greene, Samuel M; Shan, Xiao; Clary, David C
2016-02-28
We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.
Convective Available Potential Energy of World Ocean
NASA Astrophysics Data System (ADS)
Su, Z.; Ingersoll, A. P.; Thompson, A. F.
2012-12-01
Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open-ocean convection may arise through strong surface buoyancy fluxes (Schott et al. 1996), or by thermobaric instability (Akitomo 1999a, b). Ingersoll (2005) demonstrated that thermobaric-induced deep convection is due to the abrupt release of ocean potential energy into kinetic energy. In atmospheric dynamics, Convective Available Potential Energy (CAPE) has long been an important thermodynamic variable (Arakawa and Schubert 1974) that has been used to forecast moist convection (Doswell and Rasmussen 1994) and to test the performance of GCMs (Ye et al. 1998). However, the development of a similar diagnostic in the ocean has received little attention.; World Ocean Convective Available Potential Energy distribution in North-Hemisphere Autumn (J/kg)
NASA Technical Reports Server (NTRS)
Andrews, Russell J.
2003-01-01
Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.
Andrews, Russell J
2003-05-01
Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S
2016-02-01
The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns aremore » analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.« less
Groundwater storage variations in the North China Plain using multiple space geodetic observations
NASA Astrophysics Data System (ADS)
Feng, W.; Longuevergne, L.; Kusche, J.; Liang, S.; Zhang, Y.; Scanlon, B. R.; Shum, C. K.; Yeh, P. J. F.; Long, D.; Cao, G.; Zhong, M.; Xu, H.; Xia, J.
2017-12-01
Water storage and pressure variations in the subsurface generate measurable gravity changes and surface displacements. This study presents the joint interpretation of GRACE and GPS/InSAR observations to better understand shallow and deep groundwater storage (GWS) variations associated with unsustainable pumping and impact of climate variability in the North China Plain (NCP). On seasonal timescales, GRACE-derived GWS variations are well explained by the combined effect of groundwater abstraction due to anthropogenic irrigation activities and groundwater recharge from natural precipitation. Interannual GWS variations in the NCP detected by GRACE is consistent with precipitation anomalies. During the drought years (e.g., 2002 and 2014), significant GWS depletion is detected by GRACE satellites. The GRACE-derived GWS variation rate is -8.0 ± 1.5 km3/yr during 2002-2014, which is significantly larger than the estimate from phreatic monitoring well observations. The difference between them indicates the significant GWS depletion in the confined deep aquifers of the NCP, generating large subsidence rates, which has been largely underestimated up to now. The GWS variation rate in deep aquifers estimated from GPS/InSAR observations can explain the difference between the GWS depletion rate from GRACE and that from well observations. Both GRACE and surface displacement offer significant potential to better understand water redistribution in shallow and deep aquifer systems of the NCP.
Code of Federal Regulations, 2010 CFR
2010-07-01
... water less than 400 meters deep (see § 203.30(a)), has no existing deep or ultra-deep wells and that the... depths partly or entirely less than 200 meters and has not previously produced from a deep well (§ 203.30... which is 16,000 feet TVD SS and your lease is located in water 100 meters deep. Then in 2008, you drill...
The Geomechanics of CO 2 Storage in Deep Sedimentary Formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny
2012-01-12
This study provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the Inmore » Salah CO 2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO 2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO 2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. In conclusion, for such large-scale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.« less
Geohydrology of deep-aquifer system monitoring-well site at Marina, Monterey County, California
Hanson, Randall T.; Everett, Rhett; Newhouse, Mark W.; Crawford, Steven M.; Pimentel, M. Isabel; Smith, Gregory A.
2002-01-01
In 2000, a deep-aquifer system monitoring-well site (DMW1) was completed at Marina, California to provide basic geologic and hydrologic information about the deep-aquifer system in the coastal region of the Salinas Valley. The monitoring-well site contains four wells in a single borehole; one completed from 930 to 950 feet below land surface (bls) in the Paso Robles Formation (DMW1-4); one 1,040 to 1,060 feet below land surface in the upper Purisima Formation (DMW1-3); one from 1,410 to 1,430 feet below land surface in the middle Purisima Formation (DMW1-2); and one from 1,820 to 1,860 feet below land surface in the lower Purisima Formation (DMW1-1). The monitoring site is installed between the coast and several deep-aquifer system supply wells in the Marina Coast Water District, and the completion depths are within the zones screened in those supply wells. Sediments below a depth of 955 feet at DMW1 are Pliocene age, whereas the sediments encountered at the water-supply wells are Pleistocene age at an equivalent depth. Water levels are below sea level in DMW1 and the Marina Water District deep-aquifer system supply wells, which indicate that the potential for seawater intrusion exists in the deep-aquifer system. If the aquifers at DMW1 are hydraulically connected with the submarine outcrops in Monterey Bay, then the water levels at the DMW1 site are 8 to 27 feet below the level necessary to prevent seawater intrusion. Numerous thick fine-grained interbeds and confining units in the aquifer systems retard the vertical movement of fresh and saline ground water between aquifers and restrict the movement of seawater to narrow water-bearing zones in the upper-aquifer system.Hydraulic testing of the DMW1 and the Marina Water District supply wells indicates that the tested zones within the deep-aquifer system are transmissive water-bearing units with hydraulic conductivities ranging from 2 to 14.5 feet per day. The hydraulic properties of the supply wells and monitoring wells are similar, even though the wells are completed in different geologic formations.Geophysical logs collected at the DMW1 site indicate saline water in most water-bearing zones shallower than 720 feet below land surface and from about 1,025 to 1,130 feet below land surface, and indicate fresher water from about 910 to 950 feet below land surface (DMW1-4), 1,130 to 1,550 feet below land surface, and below 1,650 feet below land surface. Temporal differences between electromagnetic induction logs indicate possible seasonal seawater intrusion in five water-bearing zones from 350 to 675 feet below land surface in the upper-aquifer system.The water-chemistry analyses from the deep-aquifer system monitoring and supply wells indicate that these deep aquifers in the Marina area contain potable water with the exception of the saline water in well DMW1-3. The saline water from well DMW1-3 has a chloride concentration of 10,800 milligrams per liter and dissolved solids concentration of 23,800 milligrams per liter. The source of this water was determined not to be recent seawater based on geochemical indicators and the age of the ground water. The high salinity of this ground water may be related to the dissolution of salts from the saline marine clays that surround the water-bearing zone screened by DMW1-3. The major ion water chemistry of the monitoring wells and the nearby MCWD water-supply wells are similar, which may indicate they are in hydraulic connection, even though the stratigraphic layers differ below 955 feet below land surface.No tritium was detected in samples from the deep monitoring wells. The lack of tritium suggest that there is no recent recharge water (less than 50 years old) in the deep-aquifer system at the DMW1 site. The carbon-14 analyses of these samples indicate ground water from the monitoring site was recharged thousands of years ago.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.43 To... less than 200 meters deep, you began drilling an original deep well with a perforated interval the top...
Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R
2017-06-01
Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Reconstructing free-energy landscapes for nonequilibrium periodic potentials
NASA Astrophysics Data System (ADS)
López-Alamilla, N. J.; Jack, Michael W.; Challis, K. J.
2018-03-01
We present a method for reconstructing the free-energy landscape of overdamped Brownian motion on a tilted periodic potential. Our approach exploits the periodicity of the system by using the k -space form of the Smoluchowski equation and we employ an iterative approach to determine the nonequilibrium tilt. We reconstruct landscapes for a number of example potentials to show the applicability of the method to both deep and shallow wells and near-to- and far-from-equilibrium regimes. The method converges logarithmically with the number of Fourier terms in the potential.
Baldwin, Carole C.
2017-01-01
A new species of deep-reef fish in the goby genus Palatogobius is described from recent submersible collections off Curaçao and Dominica. Video footage of schools of this species reveal predation by the invasive Indo-Pacific lionfish (Pterois spp.), the first record of undescribed fauna potentially being eaten by lionfish outside of its native range. We present molecular phylogenetic data for all valid species of Palatogobius and related genera, as well as a taxonomic key to the species of Palatogobius and a generic key to Palatogobius and related genera in the western Atlantic. Lastly, we discuss ecological and behavioral aspects of some deep-reef fishes in light of potential threats from invasive lionfish. PMID:28542432
VULNERABILITY OF LOW-ARSENIC AQUIFERS TO MUNICIPAL PUMPING IN BANGLADESH
Knappett, P. S. K.; Mailloux, B. J.; Choudhury, I.; Khan, M. R.; Michael, H. A.; Barua, S.; Mondal, D. R.; Steckler, M. S.; Akhter, S. H.; Ahmed, K. M.; Bostick, B.; Harvey, C. F.; Shamsudduha, M.; Shuai, P.; Mihajlov, I.; Mozumder, R.; van Geen, A.
2017-01-01
Sandy aquifers deposited >12,000 years ago, some as shallow as 30 m, have provided a reliable supply of low-arsenic (As) drinking water in rural Bangladesh. This study concerns the potential risk of contaminating these aquifers in areas surrounding the city of Dhaka where hydraulic heads in aquifers >150 m deep have dropped by 70 m in a few decades due to municipal pumping. Water levels measured continuously from 2012 to 2014 in 12 deep (>150m), 3 intermediate (90–150 m) and 6 shallow (<90 m) community wells, 1 shallow private well, and 1 river piezometer show that the resulting drawdown cone extends 15–35 km east of Dhaka. Water levels in 4 low-As community wells within the 62–147 m depth range closest to Dhaka were inaccessible by suction for up to a third of the year. Lateral hydraulic gradients in the deep aquifer system ranged from 1.7×10−4 to 3.7×10−4 indicating flow towards Dhaka throughout 2012–2014. Vertical recharge on the edge of the drawdown cone was estimated at 0.21±0.06 m/yr. The data suggest that continued municipal pumping in Dhaka could eventually contaminate some relatively shallow community wells. PMID:28966395
An Assessment of Research Gaps Related to Deep Water Wellbore Integrity
NASA Astrophysics Data System (ADS)
Tkach, M. K.; Radonjic, M.; Kutchko, B. G.
2017-12-01
In order for a deep-water wellbore to uphold its integrity under high pressure - high temperature conditions, the wellbore must possess complete zonal isolation while surrounded in an extreme environment. Highly variable temperature and pressure ranges, shallow flow zones, as well as potentially corrosive fluids and gasses all present unique challenges to the job of the cement which maintains that zonal isolation. As such, alternative options to mainstream choices often present themselves as attractive avenues of discovery. As it is of utmost importance to maintain structural integrity under HPHT conditions, cement slurries are pumped downhole to provide zonal isolation and structural support to offshore wells. The wellbore system potentially faces a variety of temperature and pressure fluctuations from the immediate onset. These fluctuations may affect the hydration properties of the cement. It is also important to consider the chemical interactions that the cement may have at the rock-cement interface where potential degradation or annulus gaps may occur further risking a decrease in zonal isolation. This presentation intends to review some of the important issues regarding zonal isolation in HPHT conditions and to highlight critical knowledge gaps in order to generate important research questions.
2014-06-01
use and camping facilities, a boat launch and mooring area, sanitary facilities, and wells for drinking water at Conestoga Reservoir. Additional...gently sloping to very steep, well drained, loamy clay soils that formed in glacial till. The Sharpsburg series is a deep, moderately drained soil...Unfortunately, due to the number of potential sources ( sanitary wastewater, storm water, Conestoga Reservoir Rehabilitation Project U.S. Army Corps of
Environmental risk management and preparations for the first deep water well in Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, F.
Statoil is among the leaders in protecting health, environment and safety in all aspects of the business. The evaluations of business opportunities and development of blocks opened by authorities for petroleum exploration, are assessed in accordance with the goals for environmental protection. Progressive improvement of environmental performance is secured through proper environmental risk management. In 1995, Statoil, the technical operator on Block 210 off the Nigerian coast, was the first company to drill in deep waters in this area. An exploration well was drilled in a water depth of about 320 meters. The drilling preparations included environmental assessment, drillers Hazop,more » oil spill drift calculations, oil spill response plans and environmental risk analysis. In the environmental preparations for the well, Statoil adhered to local and national government legislation, as well as to international guidelines and company standards. Special attention was paid to the environmental sensitivity of potentially affected areas. Statoil co-operated with experienced local companies, with the authorities and other international and national oil companies. This being the first deep water well offshore Nigeria, it was a challenge to co-operate with other operators in the area. The preparations that were carried out, will set the standard for future environmental work in the area. Co-operation difficulties in the beginning were turned positively into a attitude to the environmental challenge.« less
NASA Astrophysics Data System (ADS)
Sharova, A. S.; Maklygina, YU S.; Lisichkin, G. V.; Mingalev, P. G.; Loschenov, V. B.
2016-08-01
The spectroscopic properties of potentially perspective nanostructure: diamond nanoparticles with a surface layer of IR-photosensitizer, bacteriochlorin, were experimentally investigated in this study. Such specific structure of the object encourages enhancement of the drug tropism to the tumor, as well as increasing of photodynamic penetration depth. The size distribution spectra of diamond nanoparticles; diamond nanoparticles, artificially covered with bacteriochlorin molecules layer, in aqueous solution, were obtained during the study. Based on the absorption and fluorescence spectra analysis, the benefits of functional nanostructure as a drug for deep-lying tumor diagnostics and therapy were reviewed.
Erban, Laura E; Gorelick, Steven M; Zebker, Howard A; Fendorf, Scott
2013-08-20
Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km(2)) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene-Miocene-age aquifers, where nearly 900 wells at depths of 200-500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water.
Erban, Laura E.; Gorelick, Steven M.; Zebker, Howard A.; Fendorf, Scott
2013-01-01
Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km2) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene–Miocene-age aquifers, where nearly 900 wells at depths of 200–500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water. PMID:23918360
Herbert, Cornelia; Kissler, Johanna
2010-05-01
Valence-driven modulation of the startle reflex, that is larger eyeblinks during viewing of unpleasant pictures and inhibited blinks while viewing pleasant pictures, is well documented. The current study investigated, whether this motivational priming pattern also occurs during processing of unpleasant and pleasant words, and to what extent it is influenced by shallow vs. deep encoding of verbal stimuli. Emotional and neutral adjectives were presented for 5s, and the acoustically elicited startle eyeblink response was measured while subjects memorized the words by means of shallow or deep processing strategies. Results showed blink potentiation to unpleasant and blink inhibition to pleasant adjectives in subjects using shallow encoding strategies. In subjects using deep-encoding strategies, blinks were larger for pleasant than unpleasant or neutral adjectives. In line with this, free recall of pleasant words was also better in subjects who engaged in deep processing. The results suggest that motivational priming holds as long as processing is perceptual. However, during deep processing the startle reflex appears to represent a measure of "processing interrupt", facilitating blinks to those stimuli that are more deeply encoded. Copyright 2010 Elsevier B.V. All rights reserved.
Salih, Hafiz H; Li, Jiaxing; Kaplan, Ruth; Dastgheib, Seyed A
2017-10-01
Carbon dioxide (CO 2 ) injection in deep saline aquifers is a promising option for CO 2 geological sequestration. However, brine extraction may be necessary to control the anticipated increase in reservoir pressure resulting from CO 2 injection. The extracted brines usually have elevated concentrations of total dissolved solids (TDS) and other contaminants and require proper handling or treatment. Different options for the handling or treatment of a high-TDS brine extracted from a potential CO 2 sequestration site (Mt. Simon Sandstone, Illinois, USA) are evaluated here through a life cycle assessment (LCA) study. The objective of this LCA study is to evaluate the environmental impact (EI) of various treatment or disposal options, namely, deep well disposal (Case 1); near-zero liquid discharge (ZLD) treatment followed by disposal of salt and brine by-products (Case 2); and near-ZLD treatment assuming beneficial use of the treatment by-products (Case 3). Results indicate that energy use is the dominant factor determining the overall EI. Because of the high energy consumption, desalination of the pretreated brine (Cases 2 and 3) results in the highest EI. Consequently, the overall EI of desalination cases falls mainly into two EI categories: global warming potential and resources-fossil fuels. Deep well disposal has the least EI when the EI of brine injection into deep formations is not included. The overall freshwater consumption associated with different life cycle stages of the selected disposal or treatment options is 0.6-1.8 m 3 of freshwater for every 1.0 m 3 of brine input. The freshwater consumption balance is 0.6 m 3 for every 1.0 m 3 of brine input for Case 3 when desalination by-products are utilized for beneficial uses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aquifer disposal of carbon dioxide for greenhouse effect mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, N.; Naymik, T.G.; Bergman, P.
1998-07-01
Deep aquifer sequestration of carbon dioxide (CO{sup 2}), generated from power plant and other industrial emissions, is being evaluated as one of the potential options for the reduction of atmospheric greenhouse gas emissions. The major advantages of using deep aquifers are that the disposal facilities may be located close to the sources, thus reducing the CO{sub 2} transport costs. The potential capacity is much larger than the projected CO{sub 2} emissions over the next century, and it is a long-term/permanent sequestration option, because a large portion of the injected CO{sub 2} may be fixed into the aquifer by dissolution ormore » mineralization. The major limitations include the potentially high cost, the risk of upward migration, and the public perception of risk. Most of the cost is due to the need to separate CO{sub 2} from other flue gases, rather than the actual cost of disposal. Hazardous liquid waste and acid gas disposal in deep sedimentary formations is a well-established practice. There are also numerous facilities for storage of natural gases in depleted oil and gas reservoirs. The only current facility for aquifer disposal of CO{sub 2} is the offshore injection well at Sleipner Vest in the North Sea in Norway operated by Statoil. Exxon and Pertamina are planning an offshore aquifer disposal facility at Natuna gas field in Indonesia. A major evaluation of the feasibility of CO{sub 2} disposal in the European Union and Norway has been conducted under project Joule II. The data and experience obtained from the existing deep-waste disposal facilities and from the Sleipner Vest site form a strong foundation for further research and development on CO{sub 2} sequestration. Federal Energy Technology Center (FETC) is currently leading a project that uses data from an existing hazardous waste disposal facility injecting in the Mt. Simon Sandstone aquifer in Ohio to evaluate hydrogeologic, geochemical, and social issues related to CO{sub 2} disposal.« less
Aquifer disposal of carbon dioxide for greenhouse effect mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, N.; Naymik, T.G.; Bergman, P.
1998-04-01
Deep aquifer sequestration of carbon dioxide (CO{sub 2}) generated from power plant and other industrial emissions, is being evaluated as one of the potential options for the reduction of atmospheric greenhouse gas emissions. The major advantages of using deep aquifers are that the disposal facilities may be located close to the sources, thus reducing the CO{sub 2} transport costs. The potential capacity is much larger than the projected CO{sub 2} emissions over the next century, and it is a long-term/permanent sequestration option, because a large portion of the injected CO{sub 2} may be fixed into the aquifer by dissolution ormore » mineralization. The major limitations include the potentially high cost, the risk of upward migration, and the public perception of risk. Most of the cost is due to the need to separate CO{sub 2} from other flue gases, rather than the actual cost of disposal. Hazardous liquid waste and acid gas disposal in deep sedimentary formations is a well-established practice. There are also numerous facilities for storage of natural gases in depleted oil and gas reservoirs. The only current facility for aquifer disposal of CO{sub 2} is the offshore injection well at Sleipner Vest in the North Sea in Norway operated by Statoil. Exxon and Pertamina are planning an offshore aquifer disposal facility at Natuna gas field in Indonesia. A major evaluation of the feasibility of CO{sub 2} disposal in the European Union and Norway has been conducted under project Joule II. The data and experience obtained from the existing deep-waste disposal facilities and from the Sleipner Vest site form a strong foundation for further research and development on CO{sub 2} sequestration. Federal Energy Technology Center (FETC) is currently leading a project that uses data from an existing hazardous waste disposal facility injecting in the Mt. Simon Sandstone aquifer in Ohio to evaluate hydrogeologic, geochemical, and social issues related to CO{sub 2} disposal.« less
The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform
NASA Technical Reports Server (NTRS)
Bhattacharya, S.
2018-01-01
Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.
Röthig, Till; Yum, Lauren K.; Kremb, Stephan G.; Roik, Anna; Voolstra, Christian R.
2017-01-01
Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L−1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment. PMID:28303925
Röthig, Till; Yum, Lauren K; Kremb, Stephan G; Roik, Anna; Voolstra, Christian R
2017-03-17
Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L -1 ) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.
Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiang; Techtmann, Stephen M.; Woo, Hannah L.
Deep marine oil spills like the Deepwater Horizon (DWH) in the Gulf of Mexico have the potential to drastically impact marine systems. Crude oil contamination in marine systems remains a concern, especially for countries around the Mediterranean Sea with off shore oil production. The goal of this study was to investigate the response of indigenous microbial communities to crude oil in the deep Eastern Mediterranean Sea (E. Med.) water column and to minimize potential bias associated with storage and shifts in microbial community structure from sample storage. 16S rRNA amplicon sequencing was combined with GeoChip metagenomic analysis to monitor themore » microbial community changes to the crude oil and dispersant in on-ship microcosms set up immediately after water collection. After 3 days of incubation at 14 °C, the microbial communities from two different water depths: 824 m and 1210 m became dominated by well-known oil degrading bacteria. The archaeal population and the overall microbial community diversity drastically decreased. Similarly, GeoChip metagenomic analysis revealed a tremendous enrichment of genes related to oil biodegradation, which was consistent with the results from the DWH oil spill. These results highlight a rapid microbial adaption to oil contamination in the deep E. Med., and indicate strong oil biodegradation potentia« less
NASA Astrophysics Data System (ADS)
Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen
2016-05-01
Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.
Conger, Randall W.
1997-01-01
Between April 23, 1996, and June 21, 1996, the U.S. Environmental Protection Agency contracted Haliburton-NUS, Inc., to drill four clusters of three monitoring wells near the Keystone Sanitation Superfund Site. The purpose of the wells is to allow monitoring and sampling of shallow, intermediate, and deep waterbearing zones for the purpose of determining the horizontal and vertical distribution of any contaminated ground water migrating from the Keystone Site. Twelve monitoring wells, ranging in depth from 50 to 397.9 feet below land surface, were drilled in the vicinity of the Keystone Site. The U.S. Geological Survey conducted borehole-geophysical logging and determined, with geophysical logs and other available data, the ideal intervals to be screened in each well. Geophysical logs were run on four intermediate and four deep wells, and a caliper log only was run on shallow well CL-AD-173 (HN-1S). Interpretation of geophysical logs and existing data determined the placement of screens within each borehole.
In-Situ Contained And Of Volatile Soil Contaminants
Varvel, Mark Darrell
2005-12-27
The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.
In-Situ Containment and Extraction of Volatile Soil Contaminants
Varvel, Mark Darrell
2005-12-27
The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.
van Lier-Walqui, Marcus; Fridlind, Ann M.; Ackerman, Andrew S.; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R.; North, Kirk; Kollias, Pavlos; Posselt, Derek J.
2017-01-01
The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase (KDP) observed above the melting level are associated with deep convection updraft cells, so-called “KDP columns” are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR KDP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity (ZDR). Results indicate strong correlations of KDP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of KDP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of ZDR to KDP shows commonalities in information content of each, as well as potential problems with ZDR associated with observational artifacts. PMID:29503466
van Lier-Walqui, Marcus; Fridlind, Ann M; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J
2016-02-01
The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote-sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase ( K DP ) observed above the melting level are associated with deep convection updraft cells, so-called " K DP columns" are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR K DP volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity ( Z DR ). Results indicate strong correlations of K DP volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of K DP columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of Z DR to K DP shows commonalities in information content of each, as well as potential problems with Z DR associated with observational artifacts.
NASA Astrophysics Data System (ADS)
Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.
2017-11-01
The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.
Xiao, Cao; Choi, Edward; Sun, Jimeng
2018-06-08
To conduct a systematic review of deep learning models for electronic health record (EHR) data, and illustrate various deep learning architectures for analyzing different data sources and their target applications. We also highlight ongoing research and identify open challenges in building deep learning models of EHRs. We searched PubMed and Google Scholar for papers on deep learning studies using EHR data published between January 1, 2010, and January 31, 2018. We summarize them according to these axes: types of analytics tasks, types of deep learning model architectures, special challenges arising from health data and tasks and their potential solutions, as well as evaluation strategies. We surveyed and analyzed multiple aspects of the 98 articles we found and identified the following analytics tasks: disease detection/classification, sequential prediction of clinical events, concept embedding, data augmentation, and EHR data privacy. We then studied how deep architectures were applied to these tasks. We also discussed some special challenges arising from modeling EHR data and reviewed a few popular approaches. Finally, we summarized how performance evaluations were conducted for each task. Despite the early success in using deep learning for health analytics applications, there still exist a number of issues to be addressed. We discuss them in detail including data and label availability, the interpretability and transparency of the model, and ease of deployment.
Evolution of a dark soliton in a parabolic potential: Application to Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brazhnyi, V.A.; Konotop, V.V.
2003-10-01
Evolution of a dark soliton in a one-dimensional Bose-Einstein condensate trapped by a harmonic potential is studied analytically and numerically. In the case of a deep soliton, main characteristics of its motion such as frequency and amplitude of oscillations are calculated by means of the perturbation theory which in the leading order results in a Newtonian dynamics, corrections to which are computed as well.
30 CFR 203.1 - What is MMS's authority to grant royalty relief?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (water less than 400 meters deep) and you produce from an ultra-deep well (top of the perforated interval... less than 400 meters deep and you produce from a deep well (top of the perforated interval is at least... from any lease if: (1) Your lease is in deep water (water at least 200 meters deep); (2) Your lease is...
Sulfur and iron cycling in deep-subsurface, coal bed-containing sediments off Shimokita (Japan)
NASA Astrophysics Data System (ADS)
Riedinger, N.; Smirnoff, M. N.; Gilhooly, W.; Phillips, S. C.; Lyons, T. W.; 337 Scientific Party, I.
2013-12-01
The main goal of IODP Expedition 337 was the identification and characterization of the deep coal bed biosphere and hydrocarbon system off the Shimokita Peninsula (Japan) in the northwestern Pacific using the D/V Chikyu. To accomplish this scientific objective, it was also necessary to investigate the inorganic biogeochemistry in order to identify possible electron acceptors and bio-essential nutrients. These biogeochemical parameters greatly influence both, the composition and abundance of microbial communities as well as the organic carbon cycle. In turn, the microbially mediated carbon cycle influences the diagenetic reactions in the subsurface, thus, altering geochemical and physical characteristics of the material. Here we present results from metal and sulfur geochemical analyses from the deep-subsurface sediments (about 1250 to 2466 mbsf) at Site C0020 off Shimokita. The measured concentrations of acid volatile sulfur (AVS) as well as chromium reducible sulfur (CRS) reflect the alteration of iron oxides to iron sulfides and indicate that the main sulfur-bearing phase in the investigated sediments is pyrite. Concentrations of intermediate sulfur species are minor and occur mainly in the coal-bearing interval. Our data show that the uppermost sediments contain higher amounts of pyrite (up to 1.2 wt.%) with an average of 0.5 wt.% compared to the deeper deposits (below about 1800 mbsf), which show an average of 0.16 wt.%. In contrast, iron oxide concentrations are highest in the deeper sediment sections (up to 0.4%), where pyrite concentrations are low. The alteration of iron oxides to sulfides in theses lower section was probably governed by the amount of available sulfide in the pore water. The occurrence of (bio-)reactive iron phases in these deeply buried sediments has implications for the deep biosphere as those minerals have the potential to serve as electron acceptors during burial, including reactions involving deep sourced electron donors, such as hydrogen and methane - related to the coal bed as the potential source. Thus, the deep subsurface coal beds off Shimokita provide an ideal environment to investigate microbial and metal interactions under extreme conditions.
Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction
NASA Astrophysics Data System (ADS)
Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim
2015-11-01
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.
Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction
Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim
2015-01-01
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China. PMID:26538179
Unusual Deep Water sponge assemblage in South China-Witness of the end-Ordovician mass extinction.
Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim
2015-11-05
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.
NASA Astrophysics Data System (ADS)
Ladevèze, P.; Séjourné, S.; Rivard, C.; Lavoie, D.; Lefebvre, R.; Rouleau, A.
2018-03-01
In the St. Lawrence sedimentary platform (eastern Canada), very little data are available between shallow fresh water aquifers and deep geological hydrocarbon reservoir units (here referred to as the intermediate zone). Characterization of this intermediate zone is crucial, as the latter controls aquifer vulnerability to operations carried out at depth. In this paper, the natural fracture networks in shallow aquifers and in the Utica shale gas reservoir are documented in an attempt to indirectly characterize the intermediate zone. This study used structural data from outcrops, shallow observation well logs and deep shale gas well logs to propose a conceptual model of the natural fracture network. Shallow and deep fractures were categorized into three sets of steeply-dipping fractures and into a set of bedding-parallel fractures. Some lithological and structural controls on fracture distribution were identified. The regional geologic history and similarities between the shallow and deep fracture datasets allowed the extrapolation of the fracture network characterization to the intermediate zone. This study thus highlights the benefits of using both datasets simultaneously, while they are generally interpreted separately. Recommendations are also proposed for future environmental assessment studies in which the existence of preferential flow pathways and potential upward fluid migration toward shallow aquifers need to be identified.
NASA Astrophysics Data System (ADS)
Webb, C. H.; Foglia, L.; Fogg, G. E.; McClain, J.
2017-12-01
Precipitation in mountainous systems is responsible for much of the world's freshwater supply. Volcanic mountains in particular may have the capacity to store large amounts of groundwater, due to the relatively high permeability of volcanic rocks as compared to fractured crystalline rocks. These qualities make volcanic aquifers likely candidates for laterally extensive deep groundwater systems. However, the depth extent of these aquifers is not well understood and has been little studied, due to the dearth of well data in most mountain systems. When determining a water budget, especially for mountainous regions, it is necessary to understand the extent of the entire system, including the deep components. Mount Shasta of the California cascade volcanoes is one potential case of a deep groundwater system with the capacity to store significant amounts of water. In order to develop a conceptual model of the role of deep and regional groundwater flow in the Mt. Shasta groundwater system, the region was modeled using MODFLOW_2005, the finite difference flow model developed by USGS. The model was constrained using SRTM topography data, spring flow rates, PRISM precipitation rates, and well log levels. Geologic cross sections and gravity data were referenced in order to create a realistic estimate of the aquifer's structure down to 6km in depth. The aquifer stratigraphy was then represented by using 6 layers with 2-4 zones of hydraulic conductivity per layer to account for both vertical and lateral differences in lithology as well as decreasing permeability with depth. These hydraulic conductivity parameters of the model were varied using inverse modeling (UCODE_2014) to determine which layers and zones could support flow and still produce results consistent with existing well logs. Depth of flow was also corroborated with resistivity data collected in Shasta Valley using magnetotelluric (MT) soundings. Depths with comparatively low electrical resistivity were assumed to be aquifer units, and zones with high resistivity were assumed to be aquitards. By performing MT soundings in multiple locations and dividing the model into zones, this model tests both the maximum depth of flow as well as how that depth varies with lithology and geographical location.
NASA Astrophysics Data System (ADS)
Mansor, Md Yazid; Snedden, J. W.; Sarg, J. F.; Smith, B. S.; Kolich, T.; Carter, M.
1999-04-01
Limited well control, great distances from age-equivalent producing fields, and a largely unknown stratigraphy necessitated use of sequence stratigraphic methods to assess exploration risk associated with reservoir, source and seal distribution in the Mobil-operated Deep-water Blocks of Sarawak, Malaysia. These methods allowed predictions to be made and reservoir risks to be halved in each of the locations drilled in 1995. Predictions regarding reservoir and stratigraphy proved correct, as the Mulu-1 and Bako-1 wells penetrated numerous high-quality, thick sandstone reservoirs in the Middle to Lower Miocene section. Shallow marine sandstones dominate the vertical succession in both wells, with characteristic aggradational, upward-coarsening log motifs. Cores display classic wave-generated stratification and hummocky cross-bedding. Evidence, such as marginal-marine to neritic microfauna in cuttings of both wells, supports these interpretations. Lack of hydrocarbon charge in the two wells may be due to their position relative to coaly hydrocarbon source beds. These prospects have high trap and seal integrity, being well defined on seismics as high relief horst blocks covered by a very thick shale-prone section. The Mulu-1 well, for example, is located at least 20-30 km down stratigraphic dip from mapped coeval lower coastal-plain deposits. Amplitude anomalies on the flank of the Mulu horst are probably derived from transported organics buried in deep Plio-Pleistocene kitchens in the northwest portion of the Mobil blocks. Remaining potential of mapped prospects is high and efforts continue at characterizing the petroleum system of the Deep-water Blocks. Seismic attribute and interval velocity analyses provide new clues to the location of probable coaly source rocks, especially when viewed in their regional and sequence stratigraphic context. Future work is planned and will serve to reduce risk to acceptable levels and support further drilling in this prospective hydrocarbon province.
Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific
Umling, Natalie E.; Thunell, Robert C.
2017-01-01
The deep ocean is most likely the primary source of the radiocarbon-depleted CO2 released to the atmosphere during the last deglaciation. While there are well-documented millennial scale Δ14C changes during the most recent deglaciation, most marine records lack the resolution needed to identify more rapid ventilation events. Furthermore, potential age model problems with marine Δ14C records may obscure our understanding of the phase relationship between inter-ocean ventilation changes. Here we reconstruct changes in deep water and thermocline radiocarbon content over the last deglaciation in the eastern equatorial Pacific (EEP) using benthic and planktonic foraminiferal 14C. Our records demonstrate that ventilation of EEP thermocline and deep waters occurred synchronously during the last deglaciation. In addition, both gradual and rapid deglacial radiocarbon changes in these Pacific records are coeval with changes in the Atlantic records. This in-phase behaviour suggests that the Southern Ocean overturning was the dominant driver of changes in the Atlantic and Pacific ventilation during deglaciation. PMID:28112161
Deep brain stimulation mechanisms: beyond the concept of local functional inhibition.
Deniau, Jean-Michel; Degos, Bertrand; Bosch, Clémentine; Maurice, Nicolas
2010-10-01
Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high-frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high-frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson's disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
Ongoing research has identified infectious human enteric viruses in the Madison, Wisconsin, public supply wells that draw water from a deep, confined sandstone aquifer. These viruses most likely originate from leaking sanitary sewers and are a potential human health risk. Due to a relatively short (...
Refinement of learned skilled movement representation in motor cortex deep output layer
Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho
2017-01-01
The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433
Johnston, Richard; Hug, Stephan J; Inauen, Jennifer; Khan, Nasreen I; Mosler, Hans-Joachim; Yang, Hong
2014-08-01
As part of a trans-disciplinary research project, a series of surveys and interventions were conducted in different arsenic-affected regions of rural Bangladesh. Surveys of institutional stakeholders identified deep tubewells and piped water systems as the most preferred options, and the same preferences were found in household surveys of populations at risk. Psychological surveys revealed that these two technologies were well-supported by potential users, with self-efficacy and social norms being the principal factors driving behavior change. The principal drawbacks of deep tubewells are that installation costs are too high for most families to own private wells, and that for various socio-cultural-religious reasons, people are not willing to walk long distances to access communal tubewells. In addition, water sector planners have reservations about greater exploitation of the deep aquifer, out of concern for current or future geogenic contamination. Groundwater models and field studies have shown that in the great majority of the affected areas, the risk of arsenic contamination of deep groundwater is small; salinity, iron, and manganese are more likely to pose problems. These constituents can in some cases be avoided by exploiting an intermediate depth aquifer of good chemical quality, which is hydraulically and geochemically separate from the arsenic-contaminated shallow aquifer. Deep tubewells represent a technically sound option throughout much of the arsenic-affected regions, and future mitigation programs should build on and accelerate construction of deep tubewells. Utilization of deep tubewells, however, could be improved by increasing the tubewell density (which requires stronger financial support) to reduce travel times, by considering water quality in a holistic way, and by accompanying tubewell installation with motivational interventions based on psychological factors. By combining findings from technical and social sciences, the efficiency and success of arsenic mitigation in general - and installation of deep tubewells in particular - can be significantly enhanced. Copyright © 2013 Elsevier B.V. All rights reserved.
2004-01-01
Parsons Company and Texas Water Development Board, 1967; Schultz and others, 1967; Morris and Prehn , 1971; and Stucky and Arnwine, 1971). Desalination is...Inland desalination operations commonly dispose of concentrate using evaporation ponds (Morris and Prehn , 1971; Stucky and Arnwine, 1971) or deep-well...New Mexico, 1976). The potential contribution of desalination to water supply in New Mexico has been discussed by Morris and Prehn (1971) and Stucky
Anantharaman, Karthik; Breier, John A; Sheik, Cody S; Dick, Gregory J
2013-01-02
Hydrothermal vents are a well-known source of energy that powers chemosynthesis in the deep sea. Recent work suggests that microbial chemosynthesis is also surprisingly pervasive throughout the dark oceans, serving as a significant CO(2) sink even at sites far removed from vents. Ammonia and sulfur have been identified as potential electron donors for this chemosynthesis, but they do not fully account for measured rates of dark primary production in the pelagic water column. Here we use metagenomic and metatranscriptomic analyses to show that deep-sea populations of the SUP05 group of uncultured sulfur-oxidizing Gammaproteobacteria, which are abundant in widespread and diverse marine environments, contain and highly express genes encoding group 1 Ni, Fe hydrogenase enzymes for H(2) oxidation. Reconstruction of near-complete genomes of two cooccurring SUP05 populations in hydrothermal plumes and deep waters of the Gulf of California enabled detailed population-specific metatranscriptomic analyses, revealing dynamic patterns of gene content and transcript abundance. SUP05 transcripts for genes involved in H(2) and sulfur oxidation are most abundant in hydrothermal plumes where these electron donors are enriched. In contrast, a second hydrogenase has more abundant transcripts in background deep-sea samples. Coupled with results from a bioenergetic model that suggest that H(2) oxidation can contribute significantly to the SUP05 energy budget, these findings reveal the potential importance of H(2) as a key energy source in the deep ocean. This study also highlights the genomic plasticity of SUP05, which enables this widely distributed group to optimize its energy metabolism (electron donor and acceptor) to local geochemical conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Means, Ken; Muring, Timothy M.; Sams, Neal W.
NETL has reviewed available information and evaluated the deep geothermal and natural gas resources located beneath the Camp Dawson National Guard Training Center in West Virginia. This facility is located in the northeastern portion of the state in Preston County, near the town of Kingwood. This study reviews options for the onsite drilling of wells for the production of geothermal heat or natural gas, as well as the utilization of these resources for on-site power and heating needs. Resources of potential interest are at subsurface depths between 7,000 feet and 15,000 feet.
Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance
NASA Astrophysics Data System (ADS)
Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut
2017-10-01
Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially important component of deep-sea microeukaryote communities.
Investigating uncultured microbes and their role in a deep subseafloor ammonium sink
NASA Astrophysics Data System (ADS)
Kirkpatrick, J. B.; Spivack, A. J.; Smith, D. C.; D'Hondt, S. L.
2013-12-01
The marine deep biosphere is thought to hold a large reservoir of both microbial cells and untapped genetic diversity. One potential driving force behind the vast amount of uncultured organisms are unconventional redox pairs which may not be favorable at benchtop conditions, but can support life in other circumstances. One instance of this is the previously documented thermodynamic favorability of ammonium oxidation with sulfate in sediments such as those investigated here from the Indian Ocean. Using 454 tag sequencing of 16S DNA, we identified uncultured archaea and bacteria potentially playing key roles at the sulfate and ammonium interface. First, the phylogenetic identity of organisms potentially involved in this reaction is inferred, as well as thermodynamic considerations of potential pathways. Several novel phyla, as well as Clostridiales, appear over-represented at the reaction zone. Secondly, to understand the metabolic capability of these target organisms, these sequences have been cross-referenced with assemblies from metagenomic data sets, and connections to functional genes are being elucidated. Finally, we discuss parallels with near-shore coastal sediment from Narragansett Bay, Rhode Island, where geochemical similarities have been found. While the thermodynamic regime is similar to the Indian Ocean, suggesting the potential for a broad geographic distribution, accessibility provides the opportunity to construct bioreactors to test rates and pathways of ammonium and sulfate fluxes. Iron content may be a key factor in determining reaction favorability. We present ongoing work in this area and the pros and cons of different bioreactor designs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.31... applies if your lease: (i) Has produced gas or oil from a deep well with a perforated interval the top of...
30 CFR 203.44 - What administrative steps must I take to use the royalty suspension volume?
Code of Federal Regulations, 2011 CFR
2011-07-01
... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on... in writing of your intent to begin drilling operations on all deep wells and phase 1 ultra-deep wells...
Rectus sheath hematoma with low molecular weight heparin administration: a case series.
Sullivan, Laura E J; Wortham, Dale C; Litton, Kayleigh M
2014-09-01
Rectus sheath hematoma is an uncommon but potentially serious bleeding complication that can occur spontaneously or as a result of anticoagulation administration. Case number one: A 62 year old chronically ill Caucasian female develops a rectus sheath hematoma seven days after hospital discharge. The previous hospitalization included low molecular weight heparin administration for deep vein thrombosis prophylaxis. The patient ultimately chooses comfort care and expires due to sepsis and respiratory failure. Case number two: A 79 year old Caucasian male develops a rectus sheath hematoma during hospital admission where LMWH is used for deep vein thrombosis prophylaxis. He is managed conservatively; however, his hematocrit drops from 46 to 25.8%. Case number three: A 44 year old chronically ill Caucasian female is treated with therapeutic low molecular weight heparin for recent deep vein thrombosis during a hospital admission. She develops a large rectus sheath hematoma requiring embolization as well as blood transfusion. We believe this reflects an underreported significant cause of morbidity and mortality with low molecular weight heparin administration. We review the pathophysiology of rectus sheath hematoma as well as its presentation, diagnosis, and treatment. We identify at-risk populations and proposed contributing factors. We also discuss factors leading to underreporting as well as preventive strategies implemented at our institution.
Tang, Dang; Wang, Cheng; Gao, Yongjun; Pu, Jun; Long, Jiang; Xu, Wei
2016-10-06
Deep hypothermia is known for its organ-preservation properties, which is introduced into surgical operations on the brain and heart, providing both safety in stopping circulation as well as an attractive bloodless operative field. However, the molecular mechanisms have not been clearly identified. This study was undertaken to determine the influence of deep hypothermia on neural apoptosis and the potential mechanism of these effects in PC12 cells following oxygen-glucose deprivation. Deep hypothermia (18°C) was given to PC12 cells while the model of oxygen-glucose deprivation (OGD) induction for 1h. After 24h of reperfusion, the results showed that deep hypothermia decreased the neural apoptosis, and significantly suppressed overexpression of Bax, CytC, Caspase 3, Caspase 9 and cleaved PARP-1, and inhibited the reduction of Bcl-2 expression. While deep hypothermia increased the LC3II/LC3I and Beclin 1, an autophagy marker, which can be inhibited by 3-methyladenine (3-MA), indicating that deep hypothermia-enhanced autophagy ameliorated apoptotic cell death in PC12 cells subjected to OGD. Based on these findings we propose that deep hypothermia protects against neural apoptosis after the induction of OGD by attenuating the mitochondrial apoptosis pathway, moreover, the mechanism of these antiapoptosis effects is related to the enhancement of autophagy, which autophagy might provide a means of neuroprotection against OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Protective Benefits of Deep Tube Wells Against Childhood Diarrhea in Matlab, Bangladesh
Winston, Jennifer Jane; Escamilla, Veronica; Perez-Heydrich, Carolina; Carrel, Margaret; Yunus, Mohammad; Streatfield, Peter Kim
2013-01-01
Objectives. We investigated whether deep tube wells installed to provide arsenic-free groundwater in rural Bangladesh have the added benefit of reducing childhood diarrheal disease incidence. Methods. We recorded cases of diarrhea in children younger than 5 years in 142 villages of Matlab, Bangladesh, during monthly community health surveys in 2005 and 2006. We surveyed the location and depth of 12 018 tube wells and integrated these data with diarrhea data and other data in a geographic information system. We fit a longitudinal logistic regression model to measure the relationship between childhood diarrhea and deep tube well use. We controlled for maternal education, family wealth, year, and distance to a deep tube well. Results. Household clusters assumed to be using deep tube wells were 48.7% (95% confidence interval = 27.8%, 63.5%) less likely to have a case of childhood diarrhea than were other household clusters. Conclusions. Increased access to deep tube wells may provide dual benefits to vulnerable populations in Matlab, Bangladesh, by reducing the risk of childhood diarrheal disease and decreasing exposure to naturally occurring arsenic in groundwater. PMID:23409905
Simulation optimization of spherical non-polar guest recognition by deep-cavity cavitands
Wanjari, Piyush P.; Gibb, Bruce C.; Ashbaugh, Henry S.
2013-01-01
Biomimetic deep-cavity cavitand hosts possess unique recognition and encapsulation properties that make them capable of selectively binding a range of non-polar guests within their hydrophobic pocket. Adamantane based derivatives which snuggly fit within the pocket of octa-acid deep cavity cavitands exhibit some of the strongest host binding. Here we explore the roles of guest size and attractiveness on optimizing guest binding to form 1:1 complexes with octa-acid cavitands in water. Specifically we simulate the water-mediated interactions of the cavitand with adamantane and a range of simple Lennard-Jones guests of varying diameter and attractive well-depth. Initial simulations performed with methane indicate hydrated methanes preferentially reside within the host pocket, although these guests frequently trade places with water and other methanes in bulk solution. The interaction strength of hydrophobic guests increases with increasing size from sizes slightly smaller than methane to Lennard-Jones guests comparable in size to adamantane. Over this guest size range the preferential guest binding location migrates from the bottom of the host pocket upwards. For guests larger than adamantane, however, binding becomes less favorable as the minimum in the potential-of-mean force shifts to the cavitand face around the portal. For a fixed guest diameter, the Lennard-Jones well-depth is found to systematically shift the guest-host potential-of-mean force to lower free energies, however, the optimal guest size is found to be insensitive to increasing well-depth. Ultimately our simulations show that adamantane lies within the optimal range of guest sizes with significant attractive interactions to match the most tightly bound Lennard-Jones guests studied. PMID:24359375
Cheng, Kok Suen; Chang, Yun Fah; Han, Ray P S; Lee, Poh Foong
2017-01-01
Practitioners of mindfulness are reported to have greater cognitive control especially in conflict monitoring, response inhibition and sustained attention. However, due to the various existing methods in each mindfulness practices and also, the high commitment factor, a barrier still exists for an individual to pick up the practices. Therefore, the effect of short duration deep breathing on the cognitive control is investigated here. Short duration guided deep breathing videos consisting of 5, 7 and 9 min respectively were created and used on subjects training. The effect on cognitive control was assessed using a Go/NoGo task along with event-related potential (ERP) measurements at Fz, Cz, and Pz. From the study, the significant outcome showed at the follow-up session in which participants engaged for 5 min deep breathing group showed a profound NoGo N2 amplitude increment as compared to the control group, indicating an enhanced conflict monitoring ability. An inverse relationship between the NoGo N2 amplitude and the breathing duration is observed as well at the follow-up session. These results indicated the possibility of performing short duration deep breathing guided by a video to achieve an enhanced conflict monitoring as an alternative to other mindfulness practices and 5 min is found to be the optimum practice duration. This study is the first to establish a relationship between deep breathing and conflict monitoring through ERP. The study population of young adults taken from the same environment reduces the variance in ERP results due to age and environment. A larger sample size would provide a greater statistical power. A longer duration of deep breathing should be investigated to further clarify the relationship between the practice duration and the NoGo N2 amplitude. The result can be split by gender and analyzed separately due to the different brain structure of males and females.
A proposal to investigate higher enthalpy geothermal systems in the USA
NASA Astrophysics Data System (ADS)
Elders, W. A.
2013-12-01
After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly productive capable of generating >35 MWe from superheated steam at a well-head temperature of ~450°C. Plans for deep drilling to explore for deeper, much higher enthalpy, geothermal resources are already underway in the Taupo Volcanic Zone of New Zealand (Project HADES), and in northeast Japan the 'Beyond Brittle Project' (Project JBBP) is an ambitious program attempting to create an EGS reservoir in ~500oC rocks. However in the USA there is no comparable national program to develop such resources. There is a significant undeveloped potential for developing high-enthalpy geothermal systems in the western USA, Hawaii and Alaska. The purpose of this paper is to encourage the formation of a consortium to systematically explore, assess, and eventually develop such higher-enthalpy geothermal resources. Not only would this help develop large new sources of energy but it would permit scientific studies of pressure-temperature regimes not otherwise available for direct investigation, such as the coupling of magmatic and hydrothermal systems.
30 CFR 250.415 - What must my casing and cementing programs include?
Code of Federal Regulations, 2010 CFR
2010-07-01
... included in API RP 65, Recommended Practice for Cementing Shallow Water Flow Zones in Deep Water Wells... and are in either of the following two areas: (1) An “area with an unknown shallow water flow potential” is a zone or geologic formation where neither the presence nor absence of potential for a shallow...
This presentation will provide a conceptual preview of an Area of Review (AoR) tool being developed by EPA’s Office of Research and Development that applies analytic and semi-analytical mathematical solutions to elucidate potential risks associated with geologic sequestration of ...
Is most of the Tommotian missing in the White-Inyo region eastern California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corsetti, F.A.
Integration of carbon-isotope chemostratigraphic data with trace fossil assemblages suggests that a significant hiatus may be present within the Lower Member of the Deep Spring Formation, potentially impacting the placement of the Neoproterozoic-Cambrian boundary in eastern California and western Nevada. A positive carbon-isotopic excursion of 4% PDB is present in the lowermost Lower Deep Spring, and is associated with Zone 1 trace fossils (latest Vendian) and small shelly fossils of disputed age (latest Proterozoic or Tommotian). A negative isotopic excursion is observed throughout the remaining Deep Spring Formation, and is associated with Zone 3 trace fossils (latest Tommotian-Atdabanian in age).more » The positive excursion in the lowermost Deep Spring is tentatively correlated with the pronounced isotopic maximum in the latest Vendian (possibly Nemakit-Daldyn) of the Siberian Platform (cycle 1 of Kirshvink et al., 1991). The negative excursion is correlated with a similar trend in the latest Tommotian-Atdabanian of the Siberian Platform (cycle 4 of Kirshvink et al., 1991). Thus, a hiatus, potentially encompassing most of the Tommotian, is postulated to be present within the Lower Member of the Deep Spring Formation. Although the fossil and isotopic data are consistent with the presence of a break in the section, sedimentological field evidence for the hiatus is somewhat cryptic. The recognition of this hiatus may impact the global significance of the presumed Tommotian small shelly fossils of the White-Inyo region, as well as the placement of the Neoproterozoic-Cambrian boundary in this sequence.« less
Grill, Warren M; Cantrell, Meredith B; Robertson, Matthew S
2008-02-01
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.
Potential impact of global climate change on benthic deep-sea microbes.
Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio
2017-12-15
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Bertschinger, Edmund; Dekel, Avishai; Faber, Sandra M.; Dressler, Alan; Burstein, David
1990-01-01
A potential flow reconstruction algorithm has been applied to the real universe to reconstruct the three-dimensional potential, velocity, and mass density fields smoothed on large scales. The results are shown as maps of these fields, revealing the three-dimensional structure within 6000 km/s distance from the Local Group. The dominant structure is an extended deep potential well in the Hydra-Centaurus region, stretching across the Galactic plane toward Pavo, broadly confirming the Great Attractor (GA) model of Lynden-Bell et al. (1988). The Local Supercluster appears to be an extended ridge on the near flank of the GA, proceeding through the Virgo Southern Extension to the Virgo and Ursa Major clusters. The Virgo cluster and the Local Group are both falling toward the bottom of the GA potential well with peculiar velocities of 658 + or - 121 km/s and 565 + or - 125 km/s, respectively.
Deep subsurface microbial processes
Lovley, D.R.; Chapelle, F.H.
1995-01-01
Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of other habitats, the study of deep subsurface microbiology is still in its infancy.
Chavez, III, Ramiro; Cai, Min; Tlach, Brian; ...
2016-01-20
Four new cross-conjugated small molecules based on a central benzo[1,2-d:4,5-d']bisoxazole moiety possessing semi-independently tunable HOMO and LUMO levels were synthesized and the properties of these materials were evaluated experimentally and theoretically. The molecules were thermally stable with 5% weight loss occurring well above 350 °C. The cruciforms all exhibited blue emission in solution ranging from 433–450 nm. Host–guest OLEDs fabricated from various concentrations of these materials using the small molecule host 4,4'-bis(9-carbazolyl)-biphenyl (CBP) exhibited deep blue-emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.15 ≤ x ≤ 0.17, 0.05 ≤ y ≤ 0.11), and maximum luminance efficiencies as highmore » as ~2 cd A–1. Lastly, these results demonstrate the potential of benzobisoxazole cruciforms as emitters for developing high-performance deep blue OLEDs.« less
Deep magnetic capture of magnetically loaded cells for spatially targeted therapeutics.
Huang, Zheyong; Pei, Ning; Wang, Yanyan; Xie, Xinxing; Sun, Aijun; Shen, Li; Zhang, Shuning; Liu, Xuebo; Zou, Yunzeng; Qian, Juying; Ge, Junbo
2010-03-01
Magnetic targeting has recently demonstrated potential in promoting magnetically loaded cell delivery to target lesion, but its application is limited by magnetic attenuation. For deep magnetic capture of cells for spatial targeting therapeutics, we designed a magnetic pole, in which the magnetic field density can be focused at a distance from the pole. As flowing through a tube served as a model of blood vessels, the magnetically loaded mesenchymal stem cells (MagMSCs) were highly enriched at the site distance from the magnetic pole. The cell capture efficiency was positively influenced by the magnetic flux density, and inversely influenced by the flow velocity, and well-fitted with the deductive value by theoretical considerations. It appeared to us that the spatially-focused property of the magnetic apparatus promises a new deep targeting strategy to promote homing and engraftment for cellular therapy. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Electronics for Deep Space Cryogenic Applications
NASA Technical Reports Server (NTRS)
Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.
2002-01-01
Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.
Biron, Vincent L; Kurien, George; Dziegielewski, Peter; Barber, Brittany; Seikaly, Hadi
2013-02-26
Deep neck space abscesses (DNAs) are relatively common otolaryngology-head and neck surgery emergencies and can result in significant morbidity with potential mortality. Traditionally, surgical incision and drainage (I&D) with antibiotics has been the mainstay of treatment. Some reports have suggested that ultrasound-guided drainage (USD) is a less invasive and effective alternative in select cases. To compare I&D vs USD of well-defined DNAs, using a randomized controlled clinical trial design. The primary outcome measure was effectiveness (length of hospital stay (LOHS) and safety), and the secondary outcome measure was overall cost to the healthcare system. Patients presenting to the University of Alberta Emergency Department with a well-defined deep neck space abscess were recruited in the study. Patients were randomized to surgical or US-guided drainage, placed on intravenous antibiotics and admitted with airway precautions. Following drainage with either intervention, abscess collections were cultured and drains were left in place until discharge. Seventeen patients were recruited in the study. We found a significant difference in mean LOHS between patients who underwent USD (3.1 days) vs I&D (5.2 days). We identified significant cost savings associated with USD with a 41% cost reduction in comparison to I&D. USD drainage of deep neck space abscesses in a certain patient population is effective, safe, and results in a significant cost savings to the healthcare system.
Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun
2016-01-01
Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028
Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun
2016-11-24
Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than -10 dB within the -3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.
Viaña, John Noel M; Gilbert, Frederic
2018-01-01
Memory dysfunction and cognitive impairments due to Alzheimer's disease can affect the selfhood and identity of afflicted individuals, causing distress to both people with Alzheimer's disease and their caregivers. Recently, a number of case studies and clinical trials have been conducted to determine the potential of deep brain stimulation as a therapeutic modality for people with Alzheimer's disease. Some of these studies have shown that deep brain stimulation could induce flashbacks and stabilize or even improve memory. However, deep brain stimulation itself has also been attributed as a potential threat to identity and selfhood, especially when procedure-related adverse events arise. We anticipate potential effects of deep brain stimulation for people with Alzheimer's disease on selfhood, reconciling information from medical reports, psychological, and sociological investigations on the impacts of deep brain stimulation or Alzheimer's disease on selfhood. A tripartite model of the self that extends the scope of Rom Harré's and Steve Sabat's social constructionist framework was used. In this model, potential effects of deep brain stimulation for Alzheimer's disease on Self 1 or singularity through use of first-person indexicals, and gestures of self-reference, attribution, and recognition; Self 2 or past and present attributes, knowledge of these characteristics, and continuity of narrative identity; and Self 3 or the relational and social self are explored. The ethical implications of potential effects of deep brain stimulation for Alzheimer's disease on the tripartite self are then highlighted, focusing on adapting informed consent procedures and care provided throughout the trial to account for both positive and negative plausible effects on Self 1, Self 2, and Self 3.
NASA Astrophysics Data System (ADS)
AlOmar, Mohamed Khalid; Alsaadi, Mohammed Abdulhakim; Hayyan, Maan; Akib, Shatirah; Hashim, Mohd Ali
2016-12-01
Herein, we present the use of deep eutectic solvent (DES) as functionalization agents for carbon nanotubes (CNTs) to form novel adsorbents for removal of arsenic ions (As3+) from water. Two DESs systems were prepared using methyltriphenylphosphonium bromide (MTPB) and benzyltriphenylphosphonium chloride (BTPC) as salts, in conjugation with glycerol (Gly) as a hydrogen bond donor. The resulting novel adsorbents were characterized using thermogravimetric analysis (TGA), Zeta potential, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, XRD, EDX, FESEM, and BET surface area. Optimization studies were carried out utilizing RSM-CCD experimental design to estimate the optimum removal conditions for each adsorbent. The adsorption experimental data of both adsorbents were found to fit well with pseudo-second-order kinetics model, as well as with Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity of a MTPB-DES-functionalized CNTs adsorbent was 23.4 mg/g.
Optical subnet concepts for the deep space network
NASA Technical Reports Server (NTRS)
Shaik, K.; Wonica, D.; Wilhelm, M.
1993-01-01
This article describes potential enhancements to the Deep Space Network, based on a subnet of receiving stations that will utilize optical communications technology in the post-2010 era. Two optical subnet concepts are presented that provide full line-of-sight coverage of the ecliptic, 24 hours a day, with high weather availability. The technical characteristics of the optical station and the user terminal are presented, as well as the effects of cloud cover, transmittance through the atmosphere, and background noise during daytime or nighttime operation on the communications link. In addition, this article identifies candidate geographic sites for the two network concepts and includes a link design for a hypothetical Pluto mission in 2015.
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
ERIC Educational Resources Information Center
Bey, Marie A.
2012-01-01
The key to educational reform is the well-prepared teacher. Giving the teacher continuous, immediate, and supported access to interactive whiteboard (IWB) professional development programs (PDPs) is necessary for creating the potential for deep and sustained changes of the educational programs. This qualitative case study explored the negative and…
The development of the ''Sleeping Giant'' deep basin natural gas, Alberta Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, D.L.
1984-02-01
During the past seven years attention has been focused on ''mega'' projects and the frontier areas for continental energy self sufficiency. However, a giant conventional resource project has been developing without fanfare. This project has potential impact on the well being of Canada and the North American energy scene. This ''Sleeping Giant'', which delivered its initial sales gas on November 1, 1979 is the Alberta (Elmworth) Deep Basin. The project area covers 67,400 square km (26,000 square miles) and contains potentially hydrocarbon bearing sediments over a thickness of 4,572 meters (15,000 feet). This basin is best equated in terms ofmore » size and reserves to the famous San Juan Basin. Since its discovery in 1976 approximately 1,000 multi-zoned gas wells have been drilled and reserves in the order of 140,000 10/sup 6/m/sup 3/ (5 trillion cubic feet) have been recognized by gas purchasers. Ten gas plants have been constructed with capacity of roughly 28,174 10/sup 3/m/sup 3/ (1 billion cubic feet) per day. This paper documents the development of these reserves and the stages in the construction of field facilities.« less
Transoral robotic surgery of craniocervical junction and atlantoaxial spine: a cadaveric study.
Lee, John Y K; O'Malley, Bert W; Newman, Jason G; Weinstein, Gregory S; Lega, Bradley; Diaz, Jason; Grady, M Sean
2010-01-01
The goal of this study was to determine the potential role and current limitations of the da Vinci surgical robot in transoral decompression of craniocervical junction (CCJ). The da Vinci Surgical System was used in 2 cadaver heads with neck and clavicles intact. Both neurosurgeons and otolaryngologists familiar with the open microscopic procedure, as well as the transoral robotic surgical procedure, undertook dissection and decompression of the CCJ. The robotic system provided superb illumination and 3D depth perception even several centimeters deep to the posterior oropharyngeal mucosa. The 30 degrees endoscope improved cephalad visualization, eliminating the need to split the soft palate for exposure of the lower clivus. The "intuitive" nature of the da Vinci surgical robot arms provided an advantage in allowing the ability to suture the dura mater in a deep, dark corridor. Because visualization was excellent, tremor-free closure was possible. The authors' findings suggest that transoral robotic surgery, with the da Vinci robot system, holds great potential for decompression of the CCJ as well as resection of both extra- and intradural tumors of this region. Further instrument development is necessary and continued investigation is warranted.
NASA Astrophysics Data System (ADS)
Brunet, P.; Gloaguen, E.
2014-12-01
Designing and monitoring of geothermal systems is a complex task which requires a multidisciplinary approach. Deep geothermal reservoir models are prone to greater uncertainty, with a lack of direct data and lower resolution of surface geophysical methods. However, recent technical advances have enabled the potential use of permanent downhole vertical resistivity arrays for monitoring fluid injection. As electrical resistivity is sensitive to temperature changes, such data could provide valuable information for deep geothermal reservoir characterization. The objective of this study is to assess the potential of time-lapse cross-borehole ERT to constrain 3D realizations of geothermal reservoir properties. The synthetic case of a permeable geothermal reservoir in a sedimentary basin was set up, as a confined deep and saline sandstone aquifer with intermediate reservoir temperatures (150ºC), depth (1 km) and 30m thickness. The reservoir permeability distribution is heterogeneous, as the result of a fluvial depositional environment. The ERT monitoring system design is a triangular arrangement of 3 wells at 150 m spacing, including 1 injection and 1 extraction well. The optimal number and spacing of electrodes of the ERT array design is site-specific and has been assessed through a sensibility study. Dipole-dipole and pole-pole electrode configurations were used. The study workflow was the following: 1) Generation of a reference reservoir model and 100 stochastic realizations of permeability; 2) Simulation of saturated single-phase flow and heat transport of reinjection of cooled formation fluid (50ºC) with TOUGH2 software; 3) Time-lapse forward ERT modeling on the reference model and all realizations (observed and simulated apparent resistivity change); 4) heuristic optimization on ERT computed and calculated data. Preliminary results show significant reduction of parameter uncertainty, hence realization space, with assimilation of cross-borehole ERT data. Loss in sensitivity of ERT between boreholes is compensated here by the stochastic modeling approach, rather than using a deterministic inversion scheme. Our results suggest stochastic reservoir simulations, together with assimilation of cross-borehole ERT data, could be useful tools for design and monitoring of deep geothermal systems.
Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G
2014-08-19
The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.
Opportunities and obstacles for deep learning in biology and medicine.
Ching, Travers; Himmelstein, Daniel S; Beaulieu-Jones, Brett K; Kalinin, Alexandr A; Do, Brian T; Way, Gregory P; Ferrero, Enrico; Agapow, Paul-Michael; Zietz, Michael; Hoffman, Michael M; Xie, Wei; Rosen, Gail L; Lengerich, Benjamin J; Israeli, Johnny; Lanchantin, Jack; Woloszynek, Stephen; Carpenter, Anne E; Shrikumar, Avanti; Xu, Jinbo; Cofer, Evan M; Lavender, Christopher A; Turaga, Srinivas C; Alexandari, Amr M; Lu, Zhiyong; Harris, David J; DeCaprio, Dave; Qi, Yanjun; Kundaje, Anshul; Peng, Yifan; Wiley, Laura K; Segler, Marwin H S; Boca, Simina M; Swamidass, S Joshua; Huang, Austin; Gitter, Anthony; Greene, Casey S
2018-04-01
Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine. © 2018 The Authors.
Opportunities and obstacles for deep learning in biology and medicine
2018-01-01
Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes and treatment of patients—and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine. PMID:29618526
Stable architectures for deep neural networks
NASA Astrophysics Data System (ADS)
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
Investigation of North Pond crustal fluids by poised potential methods
NASA Astrophysics Data System (ADS)
Jones, R. M.; Orcutt, B.
2017-12-01
Microbes are present in the deep subsurface but their rates of activity, potential metabolisms and roles in the environment are still largely unknown. The marine deep crustal subsurface accounts for approximately 2.3x1018 m2 of the earth's volume, making this environment potentially significant to earth processes despite low productivity inherent in resource limited conditions. This has implications for geochemical cycling and exploring limits of life, linking to the `follow the energy' approach for defining habitability on earth and further afield. Most resources for life in the marine deep crust originate from rock. One subset of lithotrophic interactions involves direct transfer between electron acceptors and donors embedded in minerals and microbes. In this investigation, poised potential methods such as chronoamperometry were used to investigate mineral-microbe electron transfer interactions in the context of North Pond, a Mid-Atlantic ridge site representative of cool, sediment-covered basalts that make up the majority of the deep marine subsurface. Electrodes were poised at potentials corresponding approximately to particular lithotrophic oxidation reactions to enrich for sub-sections of North Pond deep subsurface fluid communities that were associated with direct electron transfer at these potentials.
NASA Astrophysics Data System (ADS)
Shi, Y.; Jiang, G.; Hu, S.
2017-12-01
Daqing, as the largest oil field of China with more than 50 years of exploration and production history for oil and gas, its geothermal energy utilization was started in 2000, with a main focus on district heating and direct use. In our ongoing study, data from multiple sources are collected, including BHT, DST, steady state temperature measurements in deep wells and thermophysical properties of formations. Based on these measurements, an elaborate investigation of the temperature field of Daqing Oilfield is made. Moreover, through exploration for oil and gas, subsurface geometry, depth, thickness and properties of the stratigraphic layers have been extensively delineated by well logs and seismic profiles. A 3D model of the study area is developed incorporating the information of structure, stratigraphy, basal heat flow, and petrophysical and thermophysical properties of strata. Based on the model, a simulation of the temperature field of Daqing Oilfield is generated. A purely conductive regime is presumed, as demonstrated by measured temperature log in deep wells. Wells W1, W2 and SK2 are used as key wells for model calibration. Among them, SK2, as part of the International Continental Deep Drilling Program, has a designed depth of 6400m, the steady state temperature measurement in the borehole has reached the depth of 4000m. The results of temperature distribution generated from simulation and investigation are compared, in order to evaluate the potential of applying the method to other sedimentary basins with limited borehole temperature measurements but available structural, stratigraphic and thermal regime information.
High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier
Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.
2015-01-06
In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO 3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO 3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO 2, the occurrence of the tetrahedrally-coordinated carbonates based on CO 4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO 3 carbonates upmore » to relevant lower-mantle conditions of approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO 3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.« less
Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.
Carapezzi, Stefania; Castaldini, Antonio; Mancarella, Fulvio; Poggi, Antonella; Cavallini, Anna
2016-04-27
Silicon nanowires (Si NWs) are widely investigated nowadays for implementation in advanced energy conversion and storage devices, as well as many other possible applications. Black silicon (BSi)-NWs are dry etched NWs that merge the advantages related to low-dimensionality with the special industrial appeal connected to deep reactive ion etching (RIE). In fact, RIE is a well established technique in microelectronics manufacturing. However, RIE processing could affect the electrical properties of BSi-NWs by introducing deep states into their forbidden gap. This work applies deep level transient spectroscopy (DLTS) to identify electrically active deep levels and the associated defects in dry etched Si NW arrays. Besides, the successful fitting of DLTS spectra of BSi-NWs-based Schottky barrier diodes is an experimental confirmation that the same theoretical framework of dynamic electronic behavior of deep levels applies in bulk as well as in low dimensional structures like NWs, when quantum confinement conditions do not occur. This has been validated for deep levels associated with simple pointlike defects as well as for deep levels associated with defects with richer structures, whose dynamic electronic behavior implies a more complex picture.
NASA Astrophysics Data System (ADS)
Bochet, O.; Dufresne, A.; Pédrot, M.; Chatton, E.; Labasque, T.; Ben Maamar, S.; Burté, L.; de la Bernardie, J.; Guihéneuf, N.; Lavenant, N.; Petton, C.; Bour, O.; Aquilina, L.; Le Borgne, T.
2015-12-01
Biofilms play a major role in controlling the fluxes and reactivity of chemical species transported in hydro-logical systems. Micro-organisms require both electron donors and electron acceptors for cellular growth, proliferation and maintenance of their metabolic functions. The mechanisms controlling these reactions derive from the interactions occurring at the micro-scale that depend on mineral compositions, the biota of subsurface environment, but also fluid mixing, which determines the local concentrations of nutriments, electron donors and electron acceptors. Hence, mixing zones between oxygen and nutriment rich shallow groundwater and mineralized deep groundwater are often considered as potential hotspots of microbial activity, although relatively few field data document flow distributions, transport properties, chemical gradients and micro-organisms distributions across these mixing interfaces. Here we investigate the origin of a localized biofilm development observed in the fractured granite aquifer at the Ploemeur observatory (H+ network hplus.ore.fr).This biofilm composed of ferro-oxidizing bacteria is observed in an 130m deep artesian well. Borehole video logs show an important colonization of the well by the biofilm in the shallower part (0 to 60m), while it is inexistent in the deeper part (60 to 130m). As flow is localized in a few deep and shallow fractures, we presume that the spatial distribution of biofilm is controlled by mixing between shallow and deep groundwater. To verify this hypothesis we conducted a field campaign with joint characterization of the flow and chemical composition of water flowing from the different fractures, as well as the microbiological composition of the biofilm at different depth, using pyrosequencing techniques. We will discuss in this presentation the results of this interdisciplinary dataset and their implications for the occurrence of hotspots of microbiological activity in the subsurface.
Ayotte, Joseph D; Argue, Denise M; McGarry, Frederick J
2005-01-01
The occurrence of methyl tert-butyl ether (MTBE) in water from public wells in New Hampshire has increased steadily over the past several years. Using a laboratory reporting level of 0.2 microg/L, 40% of samples from public wells and 21% from private wells in southeast New Hampshire have measurable concentrations of MTBE. The rate of occurrence of MTBE varied significantly for public wells by establishmenttype; for example, 63% of public wells serving residential properties have MTBE concentrations above 0.2 microg/L, whereas lower rates were found for schools (21%). MTBE concentrations correlate strongly with urban factors, such as population density. Surprisingly, MTBE was correlated positively with well depth for public supply wells. Well depth is inversely related to yield in New Hampshire bedrock wells, which may mean that there is less opportunity for dilution of MTBE captured by deep wells. Another possibility is that the source(s) of water to low-yield wells may be dominated by leakage from potentially contaminated shallow groundwater through near-surface fractures or along the well casing. These wells may also have relatively large contributing areas (due to low recharge at the bedrock surface) and therefore have a greater chance of intersecting MTBE sources. This finding is significant because deep bedrock wells are often considered to be less vulnerable to contamination than shallow wells, and in southeast New Hampshire, wells are being drilled deeper in search of increased supply.
Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS
Amato, Roger V.; Bebout, John W.
1980-01-01
The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.
Mud Volcanoes in the Martian Lowlands: Potential Windows to Fluid-Rich Samples from Depth
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; Allen, Carlton C.
2009-01-01
The regional setting of the Chryse-Acidalia area augurs well for a fluid-rich subsurface, accumulation of diverse rock types reflecting the wide catchment area, astrobiological prospectivity, and mud volcanism. This latter provides a mechanism for transporting samples from relatively great depth to the surface. Since mud volcanoes are not associated with extreme heat or shock pressures, materials they transport to the surface are likely to be relatively unaltered; thus such materials could contain interpretable remnants of potential martian life (e.g., organic chemical biomarkers, mineral biosignatures, or structural remains) as well as unmetamorphosed rock samples. None of the previous landings on Mars was located in an area with features identified as potential mud volcanoes (Fig. 3), but some of these features may offer targets for future missions aimed at sampling deep fluid-rich strata with potential habitable zones.
Reinforced dynamics for enhanced sampling in large atomic and molecular systems
NASA Astrophysics Data System (ADS)
Zhang, Linfeng; Wang, Han; E, Weinan
2018-03-01
A new approach for efficiently exploring the configuration space and computing the free energy of large atomic and molecular systems is proposed, motivated by an analogy with reinforcement learning. There are two major components in this new approach. Like metadynamics, it allows for an efficient exploration of the configuration space by adding an adaptively computed biasing potential to the original dynamics. Like deep reinforcement learning, this biasing potential is trained on the fly using deep neural networks, with data collected judiciously from the exploration and an uncertainty indicator from the neural network model playing the role of the reward function. Parameterization using neural networks makes it feasible to handle cases with a large set of collective variables. This has the potential advantage that selecting precisely the right set of collective variables has now become less critical for capturing the structural transformations of the system. The method is illustrated by studying the full-atom explicit solvent models of alanine dipeptide and tripeptide, as well as the system of a polyalanine-10 molecule with 20 collective variables.
Potential restrictions for CO2 sequestration sites due to shale and tight gas production.
Elliot, T R; Celia, M A
2012-04-03
Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.
NASA Astrophysics Data System (ADS)
Sharuga, S. M.; Benfield, M. C.
2016-02-01
The Deepwater Horizon oil spill in 2010 created a need for more thorough studies of deep-sea benthic biota, especially in soft-sediment areas of the Northern Gulf of Mexico (GoM). These benthic environments are increasingly vulnerable as demand and exploitation of resources in these areas grow. A 15°, 250 m long radial transect survey design was developed for use with industrial remotely operated vehicles (ROVs) to quantify benthic megafaunal communities in the vicinity of the MC252 well. Further, a customized database system was developed to explore natural and anthropogenic factors potentially responsible for influencing benthic megafaunal characteristics in this area. Biotic and abiotic characteristics were extracted from ROV videos collected one year after the Deepwater Horizon spill at seven study sites ranging from 2-39 km away from MC252, and located at depths from 850-1500 m. Seafloor environments differed amongst the sites, with differences found to be related to location and depth. Benthic megafauna in ten taxonomic categories were evaluated in order to compare benthic community characteristics, including density and diversity. Overall, community composition was found to be primarily related to depth and, to a lesser degree, site location. Results from this study suggest that depth, location, and the abiotic environment (ex. seafloor features, including anthropogenic disturbance) play important roles in the abundances and diversity of deep-sea benthic megafauna in the Northern GoM and should be considered when conducting environmental studies. This study demonstrates the utility of industrial-based deep-sea imaging platforms as a readily accessible option for collecting valuable information on deep-sea environments. These platforms exhibit excellent potential for use in determining baseline data and evaluating ecosystem changes and/or recovery.
Bors, Eleanor K.; Rowden, Ashley A.; Maas, Elizabeth W.; Clark, Malcolm R.; Shank, Timothy M.
2012-01-01
Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region. PMID:23185341
Berson, Diane S.; Cohen, Joel L.; Roberts, Wendy E.; Starker, Isaac; Wang, Beatrice
2010-01-01
Chemical peeling is a popular, relatively inexpensive, and generally safe method for treatment of some skin disorders and to refresh and rejuvenate skin. This article focuses on chemical peels and their use in routine clinical practice. Chemical peels are classified by the depth of action into superficial, medium, and deep peels. The depth of the peel is correlated with clinical changes, with the greatest change achieved by deep peels. However, the depth is also associated with longer healing times and the potential for complications. A wide variety of peels are available, utilizing various topical agents and concentrations, including a recent salicylic acid derivative, β-lipohydroxy acid, which has properties that may expand the clinical use of peels. Superficial peels, penetrating only the epidermis, can be used to enhance treatment for a variety of conditions, including acne, melasma, dyschromias, photodamage, and actinic keratoses. Medium-depth peels, penetrating to the papillary dermis, may be used for dyschromia, multiple solar keratoses, superficial scars, and pigmentary disorders. Deep peels, affecting reticular dermis, may be used for severe photoaging, deep wrinkles, or scars. Peels can be combined with other in-office facial resurfacing techniques to optimize outcomes and enhance patient satisfaction and allow clinicians to tailor the treatment to individual patient needs. Successful outcomes are based on a careful patient selection as well as appropriate use of specific peeling agents. Used properly, the chemical peel has the potential to fill an important therapeutic need in the dermatologist's and plastic surgeon's armamentarium. PMID:20725555
Deep Learning for Automated Extraction of Primary Sites From Cancer Pathology Reports.
Qiu, John X; Yoon, Hong-Jun; Fearn, Paul A; Tourassi, Georgia D
2018-01-01
Pathology reports are a primary source of information for cancer registries which process high volumes of free-text reports annually. Information extraction and coding is a manual, labor-intensive process. In this study, we investigated deep learning and a convolutional neural network (CNN), for extracting ICD-O-3 topographic codes from a corpus of breast and lung cancer pathology reports. We performed two experiments, using a CNN and a more conventional term frequency vector approach, to assess the effects of class prevalence and inter-class transfer learning. The experiments were based on a set of 942 pathology reports with human expert annotations as the gold standard. CNN performance was compared against a more conventional term frequency vector space approach. We observed that the deep learning models consistently outperformed the conventional approaches in the class prevalence experiment, resulting in micro- and macro-F score increases of up to 0.132 and 0.226, respectively, when class labels were well populated. Specifically, the best performing CNN achieved a micro-F score of 0.722 over 12 ICD-O-3 topography codes. Transfer learning provided a consistent but modest performance boost for the deep learning methods but trends were contingent on the CNN method and cancer site. These encouraging results demonstrate the potential of deep learning for automated abstraction of pathology reports.
Basin analysis of North Sea viking graben: new techniques in an old basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliffe, J.E.; Cao, S.; Lerche, I.
1987-05-01
Rapid sedimentation rates from the Upper Cretaceous to Tertiary in the North Sea require that burial history modeling account for overpressuring. Use of a quantitative fluid flow/compaction model, along with the inversion of thermal indicators to obtain independent estimates of paleoheat flu, can greatly enhance their knowledge of a basin's evolution and hydrocarbon potential. First they assess the modeling sensitivity to the quality of data and variation of other input parameters. Then application to 16 wells with vitrinite data in the Viking graben north of 59/sup 0/ latitude and to pseudo-wells derived from deep seismic profiling of BIRPA greatly enhancesmore » the study of regional variations. A Tissot generation model is run on all the wells for each potential source rock. The resulting amounts of oil and gas generated are contoured to produce a regional oil and gas provenance map for each source rock. The model results are compared and tested against the known producing fields. Finally, by restoration of the two-dimensional seismic reflection profiles, the temporal variations of basement subsidence and paleoheat flow are related to the tectonic zoning of the region and to the extensional history. The combined structural, thermal, and depositional information available due to technological progress in both modeling and deep seismic profiling allows a better understanding of previously proposed models of extension.« less
Kikuchi, Sakiko; Mitsunobu, Satoshi; Takaki, Yoshihiro; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Nakamura, Kentaro; Abe, Mariko; Hirai, Miho; Yamamoto, Masahiro; Uematsu, Katsuyuki; Miyazaki, Junichi; Nunoura, Takuro; Takahashi, Yoshio; Takai, Ken
2016-01-01
ABSTRACT It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. IMPORTANCE We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy–energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species as well as the potential contribution of the zetaproteobacterial population to the in situ production. These key findings provide important information for understanding the mechanisms of both geomicrobiological iron cycling and the formation of iron-dominated mats in deep-sea hydrothermal fields. PMID:27422841
NASA Astrophysics Data System (ADS)
Qi, Jihong; Xu, Mo; An, Chengjiao; Wu, Mingliang; Zhang, Yunhui; Li, Xiao; Zhang, Qiang; Lu, Guoping
2017-02-01
Abundant geothermal springs occur along the Moxi fault located in western Sichuan Province (the eastern edge of the Qinghai-Tibet plateau), highlighted by geothermal water outflow with an unusually high temperature of 218 °C at 21.5 MPa from a 2010-m borehole in Laoyulin, Kangding. Earthquake activity occurs relatively more frequently in the region and is considered to be related to the strong hydrothermal activity. Geothermal waters hosted by a deep fault may provide evidence regarding the deep underground; their aqueous chemistry and isotopic information can indicate the mechanism of thermal springs. Cyclical variations of geothermal water outflows are thought to work under the effect of solid earth tides and can contribute to understanding conditions and processes in underground geo-environments. This paper studies the origin and variations of the geothermal spring group controlled by the Moxi fault and discusses conditions in the deep ground. Flow variation monitoring of a series of parameters was performed to study the geothermal responses to solid tides. Geothermal reservoir temperatures are evaluated with Na-K-Mg data. The abundant sulfite content, dissolved oxygen (DO) and oxidation-reduction potential (ORP) data are discussed to study the oxidation-reduction states. Strontium isotopes are used to trace the water source. The results demonstrate that geothermal water could flow quickly through the Moxi fault the depth of the geothermal reservoir influences the thermal reservoir temperature, where supercritical hot water is mixed with circulating groundwater and can reach 380 °C. To the southward along the fault, the circulation of geothermal waters becomes shallower, and the waters may have reacted with metamorphic rock to some extent. Our results provide a conceptual deep heat source model for geothermal flow and the reservoir characteristics of the Moxi fault and indicate that the faulting may well connect the deep heat source to shallower depths. The approach of hot spring variation research also has potential benefits for earthquake monitoring and prediction.
Rotzoll, Kolja
2010-01-01
Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not provide an accurate indication of water quality in the adjacent aquifer. Hence, the measured midpoint in boreholes is a better proxy for freshwater-lens thickness. Brackish water transported upward in a deep monitor well can exit the borehole in the upper, freshwater part of the aquifer and affect the water quality in nearby production wells. Piezometers installed at different depths will provide the best information on aquifer salinity because they are unaffected by borehole flow. Despite the effects of borehole flow, monitoring the midpoint in deep monitor wells is still useful to identify long-term trends in the movement of the transition zone.
2013-01-01
Introduction Deep neck space abscesses (DNAs) are relatively common otolaryngology-head and neck surgery emergencies and can result in significant morbidity with potential mortality. Traditionally, surgical incision and drainage (I&D) with antibiotics has been the mainstay of treatment. Some reports have suggested that ultrasound-guided drainage (USD) is a less invasive and effective alternative in select cases. Objectives To compare I&D vs USD of well-defined DNAs, using a randomized controlled clinical trial design. The primary outcome measure was effectiveness (length of hospital stay (LOHS) and safety), and the secondary outcome measure was overall cost to the healthcare system. Methods Patients presenting to the University of Alberta Emergency Department with a well-defined deep neck space abscess were recruited in the study. Patients were randomized to surgical or US-guided drainage, placed on intravenous antibiotics and admitted with airway precautions. Following drainage with either intervention, abscess collections were cultured and drains were left in place until discharge. Results Seventeen patients were recruited in the study. We found a significant difference in mean LOHS between patients who underwent USD (3.1 days) vs I&D (5.2 days). We identified significant cost savings associated with USD with a 41% cost reduction in comparison to I&D. Conclusions USD drainage of deep neck space abscesses in a certain patient population is effective, safe, and results in a significant cost savings to the healthcare system. PMID:23672735
Mestre, Nélia C; Calado, Ricardo; Soares, Amadeu M V M
2014-02-01
The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kwasniok, Frank; Lohmann, Gerrit
2009-12-01
A method for systematically deriving simple nonlinear dynamical models from ice-core data is proposed. It offers a tool to integrate models and theories with paleoclimatic data. The method is based on the unscented Kalman filter, a nonlinear extension of the conventional Kalman filter. Here, we adopt the abstract conceptual model of stochastically driven motion in a potential that allows for two distinctly different states. The parameters of the model-the shape of the potential and the noise level-are estimated from a North Greenland ice-core record. For the glacial period from 70 to 20 ky before present, a potential is derived that is asymmetric and almost degenerate. There is a deep well corresponding to a cold stadial state and a very shallow well corresponding to a warm interstadial state.
NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.; Coats, G. D.
1982-01-01
A mesoscale atmospheric simulation system is described that is being developed in order to improve the simulation of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development, and significant atmospheric transport processes. Present emphasis in model development is in the parameterization of physical processes, time-dependent boundary conditions, sophisticated initialization and analysis procedures, nested grid solutions, and applications software development. Basic characteristics of the system as of March 1982 are listed. In a case study, the Grand Island tornado outbreak of 3 June 1980 is considered in substantial detail. Results of simulations with a mesoscale atmospheric simulation system indicate that over the high plains subtle interactions between existing jet streaks and deep well mixed boundary layers can lead to well organized patterns of mesoscale divergence and pressure falls. The amplitude and positioning of these mesoscale features is a function of the subtle nonlinear interaction between the pre-existing jet-streak and deep well mixed boundary layers. Model results for the case study indicate that the model has the potential for forecasting the precursor mesoscale convective environment.
Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.
2011-01-01
A coherent uplink array consisting of up to three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R-4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.
Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.
2011-01-01
A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.
Extended Hard-X-Ray Emission in the Inner Few Parsecs of the Galaxy
NASA Technical Reports Server (NTRS)
Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.; Krivonos, Roman A.; Mori, Kaya; Baganoff, Frederick K.; Barriere, Nicholas M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.;
2015-01-01
The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems2, 3, 4, 5.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.33... from qualified wells on or after May 18, 2007, reported on the Oil and Gas Operations Report, Part A...
Maeng, Sung Kyu; Ameda, Emmanuel; Sharma, Saroj K; Grützmacher, Gesche; Amy, Gary L
2010-07-01
Natural treatment systems such as bank filtration (BF) and artificial recharge (via an infiltration basin) are a robust barrier for many organic micropollutants (OMPs) and may represent a low-cost alternative compared to advanced drinking water treatment systems. This study analyzes a comprehensive database of OMPs at BF and artificial recharge (AR) sites located near Lake Tegel in Berlin (Germany). The focus of the study was on the derivation of correlations between the removal efficiencies of OMPs and key factors influencing the performance of BF and AR. At the BF site, shallow monitoring wells located close to the Lake Tegel source exhibited oxic conditions followed by prolonged anoxic conditions in deep monitoring wells and a production well. At the AR site, oxic conditions prevailed from the recharge pond along monitoring wells to the production well. Long residence times of up to 4.5 months at the BF site reduced the temperature variation during soil passage between summer and winter. The temperature variations were greater at the AR site as a consequence of shorter residence times. Deep monitoring wells and the production well located at the BF site were under the influence of ambient groundwater and old bank filtrate (up to several years of age). Thus, it is important to account for mixing with native groundwater and other sources (e.g., old bank filtrate) when estimating the performance of BF with respect to removal of OMPs. Principal component analysis (PCA) was used to investigate correlations between OMP removals and hydrogeochemical conditions with spatial and temporal parameters (e.g., well distance, residence time and depth) from both sites. Principal component-1 (PC1) embodied redox conditions (oxidation-reduction potential and dissolved oxygen), and principal component-2 (PC2) embodied degradation potential (e.g., total organic carbon and dissolved organic carbon) with the calcium carbonate dissolution potential (Ca(2+) and HCO(3)(-)) for the BF site. These two PCs explained a total variance of 55% at the BF site. At the AR site, PCA revealed redox conditions (PC1) and degradation potential with temperature (PC2) as principal components, which explained a total variance of 56%. Copyright 2010 Elsevier Ltd. All rights reserved.
Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials.
Houston, Brady; Blumenfeld, Zack; Quinn, Emma; Bronte-Stewart, Helen; Chizeck, Howard
2015-01-01
Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.
NASA Technical Reports Server (NTRS)
Kuiper, T. B. H.; Resch, G. M.
2000-01-01
The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.
Extended Operation of Stirling Convertors in a Thermal Vacuum Environment
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.
2006-01-01
A 110 watt Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA exploration missions. The development effort is being performed by Lockheed Martin under contract to the Department of Energy (DOE). Infinia, Corp. supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been initiated at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG110, however the requirement for low mass was not considered. This test demonstrates the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The status of the test as well as the data gathered will be presented in this paper.
Updates to Enhanced Geothermal System Resource Potential Estimate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad
The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned inmore » 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.« less
Update to Enhanced Geothermal System Resource Potential Estimate: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad
2016-10-01
The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned inmore » 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.« less
Subgap time of flight: A spectroscopic study of deep levels in semi-insulating CdTe:Cl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pousset, J.; Farella, I.; Cola, A., E-mail: adriano.cola@le.imm.cnr.it
2016-03-14
We report on a study of deep levels in semi-insulating CdTe:Cl by means of a time-of-flight spectral approach. By varying the wavelength of a pulsed optical source within the CdTe energy gap, transitions to/from localized levels generate free carriers which are analysed through the induced photocurrent transients. Both acceptor-like centers, related to the A-center, and a midgap level, 0.725 eV from the valence band, have been detected. The midgap level is close to the Fermi level and is possibly a recombination center responsible for the compensation mechanism. When the irradiance is varied, either linear or quadratic dependence of the electron andmore » hole collected charge are observed, depending on the dominant optical transitions. The analysis discloses the potentiality of such a novel approach exploitable in the field of photorefractive materials as well as for deep levels spectroscopy.« less
On the impact of approximate computation in an analog DeSTIN architecture.
Young, Steven; Lu, Junjie; Holleman, Jeremy; Arel, Itamar
2014-05-01
Deep machine learning (DML) holds the potential to revolutionize machine learning by automating rich feature extraction, which has become the primary bottleneck of human engineering in pattern recognition systems. However, the heavy computational burden renders DML systems implemented on conventional digital processors impractical for large-scale problems. The highly parallel computations required to implement large-scale deep learning systems are well suited to custom hardware. Analog computation has demonstrated power efficiency advantages of multiple orders of magnitude relative to digital systems while performing nonideal computations. In this paper, we investigate typical error sources introduced by analog computational elements and their impact on system-level performance in DeSTIN--a compositional deep learning architecture. These inaccuracies are evaluated on a pattern classification benchmark, clearly demonstrating the robustness of the underlying algorithm to the errors introduced by analog computational elements. A clear understanding of the impacts of nonideal computations is necessary to fully exploit the efficiency of analog circuits.
Deep wells integrated with microfluidic valves for stable docking and storage of cells.
Jang, Yun-Ho; Kwon, Cheong Hoon; Kim, Sang Bok; Selimović, Seila; Sim, Woo Young; Bae, Hojae; Khademhosseini, Ali
2011-02-01
In this paper, we describe a microfluidic mechanism that combines microfluidic valves and deep wells for cell localization and storage. Cells are first introduced into the device via externally controlled flow. Activating on-chip valves was used to interrupt the flow and to sediment the cells floating above the wells. Thus, valves could be used to localize the cells in the desired locations. We quantified the effect of valves in the cell storage process by comparing the total number of cells stored with and without valve activation. We hypothesized that in deep wells external flows generate low shear stress regions that enable stable, long-term docking of cells. To assess this hypothesis we conducted numerical calculations to understand the influence of well depth on the forces acting on cells. We verified those predictions experimentally by comparing the fraction of stored cells as a function of the well depth and input flow rate upon activation of the valves. As expected, upon reintroduction of the flow the cells in the deep wells were not moved whereas those in shallow wells were washed away. Taken together, our paper demonstrates that deep wells and valves can be combined to enable a broad range of cell studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using Groundwater physiochemical properties for assessing potential earthquake precursor
NASA Astrophysics Data System (ADS)
Inbar, Nimrod; Reuveni, Yuval; Anker, Yaakov; Guttman, Joseph
2017-04-01
Worldwide studies reports pre-seismic, co-seismic and post-seismic reaction of groundwater to earthquakes. The unique hydrological and geological situation in Israel resulted in relatively deep water wells which are located close to seismically active tectonic plate boundary. Moreover, the Israeli experience show that anomalies may occurs 60-90 minutes prior to the seismic event (Guttman et al., 2005; Anker et al., 2016). Here, we try to assess the possible connection between changes in physiochemical parameters of groundwater and earthquakes along the Dead Sea Transform (DST) region. A designated network of monitoring stations was installed in MEKOROT abandoned deep water wells, continuously measuring water table, conductivity and temperature at a sampling rate of 1 minute. Preliminary analysis compares changes in the measured parameters with rain events, tidal effects and earthquake occurrences of all measured magnitudes (>2.5Md) at monitoring area surroundings. The acquired data set over one year recorded simultaneous abrupt changes in several wells which seems disconnected from standard hydrological occurrences such as precipitation, abstraction or tidal effects. At this stage, our research aims to determine and rationalize a baseline for "normal response" of the measured parameters to external occurrences while isolating those cases in which "deviations" from that base line is recorded. We apply several analysis techniques both in time and frequency domain with the measured signal as well as statistical analysis of several measured earthquake parameters, which indicate potential correlations between earthquakes occurrences and the measured signal. We show that at least in one seismic event (5.1 Md) a potential precursor may have been recorded. Reference: Anker, Y., N. Inbar, A. Y. Dror, Y. Reuveni, J. Guttman, A. Flexer, (2016). Groundwater response to ground movements, as a tool for earthquakes monitoring and a possible precursor. 8th International Conference on Urban Planning and Transportation. Guttman, J., Flexer, A. & Yellin-Dror, A. (2005). Water level changes in wells - a predictor for earthquakes? IAHS Publ. Vol. 303, pp. 1-5.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 200 meters but entirely less than 400 meters deep that: (1) Occurs before December 18, 2008; and (2... § 203.31(b) applies. In both situations, your lease must be partly or entirely in less than 200 meters...
HomozygosityMapper2012--bridging the gap between homozygosity mapping and deep sequencing.
Seelow, Dominik; Schuelke, Markus
2012-07-01
Homozygosity mapping is a common method to map recessive traits in consanguineous families. To facilitate these analyses, we have developed HomozygosityMapper, a web-based approach to homozygosity mapping. HomozygosityMapper allows researchers to directly upload the genotype files produced by the major genotyping platforms as well as deep sequencing data. It detects stretches of homozygosity shared by the affected individuals and displays them graphically. Users can interactively inspect the underlying genotypes, manually refine these regions and eventually submit them to our candidate gene search engine GeneDistiller to identify the most promising candidate genes. Here, we present the new version of HomozygosityMapper. The most striking new feature is the support of Next Generation Sequencing *.vcf files as input. Upon users' requests, we have implemented the analysis of common experimental rodents as well as of important farm animals. Furthermore, we have extended the options for single families and loss of heterozygosity studies. Another new feature is the export of *.bed files for targeted enrichment of the potential disease regions for deep sequencing strategies. HomozygosityMapper also generates files for conventional linkage analyses which are already restricted to the possible disease regions, hence superseding CPU-intensive genome-wide analyses. HomozygosityMapper is freely available at http://www.homozygositymapper.org/.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? (a) You must apply the RSV prescribed in § 203.41(b) and (c) to gas volumes produced from...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? (a) You must apply the RSV prescribed in § 203.41(b) and (c) to gas volumes produced from...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false To which production do I apply the RSV earned... production do I apply the RSV earned from qualified deep wells or qualified phase 1 ultra-deep wells on my lease? (a) You must apply the RSV prescribed in § 203.41(b) and (c) to gas volumes produced from...
Code of Federal Regulations, 2011 CFR
2011-07-01
... MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling... has produced gas or oil from a well with a perforated interval the top of which is 18,000 feet TVD SS or deeper, your lease cannot earn an RSV under § 203.41 as a result of drilling any subsequent deep...
NASA Astrophysics Data System (ADS)
Holzer, Mark; DeVries, Timothy; Bianchi, Daniele; Newton, Robert; Schlosser, Peter; Winckler, Gisela
2017-01-01
Hydrothermal vents along the ocean's tectonic ridge systems inject superheated water and large amounts of dissolved metals that impact the deep ocean circulation and the oceanic cycling of trace metals. The hydrothermal fluid contains dissolved mantle helium that is enriched in 3He relative to the atmosphere, providing an isotopic tracer of the ocean's deep circulation and a marker of hydrothermal sources. This work investigates the potential for the 3He/4He isotope ratio to constrain the ocean's mantle 3He source and to provide constraints on the ocean's deep circulation. We use an ensemble of 11 data-assimilated steady-state ocean circulation models and a mantle helium source based on geographically varying sea-floor spreading rates. The global source distribution is partitioned into 6 regions, and the vertical profile and source amplitude of each region are varied independently to determine the optimal 3He source distribution that minimizes the mismatch between modeled and observed δ3He. In this way, we are able to fit the observed δ3He distribution to within a relative error of ∼15%, with a global 3He source that ranges from 640 to 850 mol yr-1, depending on circulation. The fit captures the vertical and interbasin gradients of the δ3He distribution very well and reproduces its jet-sheared saddle point in the deep equatorial Pacific. This demonstrates that the data-assimilated models have much greater fidelity to the deep ocean circulation than other coarse-resolution ocean models. Nonetheless, the modelled δ3He distributions still display some systematic biases, especially in the deep North Pacific where δ3He is overpredicted by our models, and in the southeastern tropical Pacific, where observed westward-spreading δ3He plumes are not well captured. Sources inferred by the data-assimilated transport with and without isopycnally aligned eddy diffusivity differ widely in the Southern Ocean, in spite of the ability to match the observed distributions of CFCs and radiocarbon for either eddy parameterization.
In situ stress and fracture permeability along the Stillwater fault zone, Dixie Valley Nevada
Hickman, S.H.; Barton, C.A.; Zoback, M.D.; Morin, R.; Sass, J.; Benoit, R.
1997-01-01
Borehole televiewer and hydrologic logging and hydraulic fracturing stress measurements were carried out in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Precision temperature and spinner flowmeter logs were also acquired in well 73B-7, with and without simultaneously injecting water into the well. Localized perturbations to well-bore temperature and flow were used to identify hydraulically conductive fractures. Comparison of these data with fracture orientations from the televiewer log indicates that permeable fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active shear planes in the current west-northwest extensional stress regime at Dixie Valley.
Sarkar, Sujoy; Sampath, S
2016-05-28
Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.
Heterotrophic Protists in Hypersaline Microbial Mats and Deep Hypersaline Basin Water Columns
Edgcomb, Virginia P.; Bernhard, Joan M.
2013-01-01
Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline microbial mats in solar salterns of Guerrero Negro, Mexico and benthic microbialite communities from Hamelin Pool, Shark Bay, Western Australia. New data on eukaryotic diversity from Shark Bay microbialites indicates eukaryotes are more diverse than previously reported. Although this comparison shows that eukaryotic communities in hypersaline habitats with varying physicochemical characteristics are unique, several groups are commonly found, including diverse alveolates, strameonopiles, and fungi, as well as radiolaria. Many eukaryote sequences (SSU) in both regions also have no close homologues in public databases, suggesting that these environments host unique microbial eukaryote assemblages with the potential to enhance our understanding of the capacity of eukaryotes to adapt to hypersaline conditions. PMID:25369746
Dual-mode imaging with radiolabeled gold nanorods
NASA Astrophysics Data System (ADS)
Agarwal, Ashish; Shao, Xia; Rajian, Justin R.; Zhang, Huanan; Chamberland, David L.; Kotov, Nicholas A.; Wang, Xueding
2011-05-01
Many nanoparticle contrast agents have difficulties with deep tissue and near-bone imaging due to limited penetration of visible photons in the body and mineralized tissues. We are looking into the possibility of mediating this problem while retaining the capabilities of the high spatial resolution associated with optical imaging. As such, the potential combination of emerging photoacoustic imaging and nuclear imaging in monitoring of antirheumatic drug delivery by using a newly developed dual-modality contrast agent is investigated. The contrast agent is composed of gold nanorods (GNRs) conjugated to the tumor necrosis factor (TNF-α) antibody and is subsequently radiolabeled by 125I. ELISA experiments designed to test TNF-α binding are performed to prove the specificity and biological activity of the radiolabeled conjugated contrast agent. Photoacoustic and nuclear imaging are performed to visualize the distribution of GNRs in articular tissues of the rat tail joints in situ. Findings from the two imaging modalities correspond well with each other in all experiments. Our system can image GNRs down to a concentration of 10 pM in biological tissues and with a radioactive label of 5 μCi. This study demonstrates the potential of combining photoacoustic and nuclear imaging modalities through one targeted contrast agent for noninvasive monitoring of drug delivery as well as deep and mineralized tissue imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, Cody; Wood, Thomas; Neupane, Ghanashyam
2014-10-01
The Eastern Snake River Plain (ESRP) is an area of high regional heat flux due the movement of the North American Plate over the Yellowstone Hotspot beginning ca.16 Ma. Temperature gradients between 45-60 °C/km (up to double the global average) have been calculated from deep wells that penetrate the upper aquifer system (Blackwell 1989). Despite the high geothermal potential, thermal signatures from hot springs and wells are effectively masked by the rapid flow of cold groundwater through the highly permeable basalts of the Eastern Snake River Plain aquifer (ESRPA) (up to 500+ m thick). This preliminary study is part ofmore » an effort to more accurately predict temperatures of the ESRP deep thermal reservoir while accounting for the effects of the prolific cold water aquifer system above. This study combines the use of traditional geothermometry, mixing models, and a multicomponent equilibrium geothermometry (MEG) tool to investigate the geothermal potential of the ESRP. In March, 2014, a collaborative team including members of the University of Idaho, the Idaho National Laboratory, and the Lawrence Berkeley National Laboratory collected 14 thermal water samples from and adjacent to the Eastern Snake River Plain. The preliminary results of chemical analyses and geothermometry applied to these samples are presented herein.« less
Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii
NASA Astrophysics Data System (ADS)
Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.
2010-12-01
Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.
Pitt, William A.; Meyer, Frederick W.
1976-01-01
The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.
Geersing, G J; Zuithoff, N P A; Kearon, C; Anderson, D R; Ten Cate-Hoek, A J; Elf, J L; Bates, S M; Hoes, A W; Kraaijenhagen, R A; Oudega, R; Schutgens, R E G; Stevens, S M; Woller, S C; Wells, P S; Moons, K G M
2014-03-10
To assess the accuracy of the Wells rule for excluding deep vein thrombosis and whether this accuracy applies to different subgroups of patients. Meta-analysis of individual patient data. Authors of 13 studies (n = 10,002) provided their datasets, and these individual patient data were merged into one dataset. Studies were eligible if they enrolled consecutive outpatients with suspected deep vein thrombosis, scored all variables of the Wells rule, and performed an appropriate reference standard. Multilevel logistic regression models, including an interaction term for each subgroup, were used to estimate differences in predicted probabilities of deep vein thrombosis by the Wells rule. In addition, D-dimer testing was added to assess differences in the ability to exclude deep vein thrombosis using an unlikely score on the Wells rule combined with a negative D-dimer test result. Overall, increasing scores on the Wells rule were associated with an increasing probability of having deep vein thrombosis. Estimated probabilities were almost twofold higher in patients with cancer, in patients with suspected recurrent events, and (to a lesser extent) in males. An unlikely score on the Wells rule (≤ 1) combined with a negative D-dimer test result was associated with an extremely low probability of deep vein thrombosis (1.2%, 95% confidence interval 0.7% to 1.8%). This combination occurred in 29% (95% confidence interval 20% to 40%) of patients. These findings were consistent in subgroups defined by type of D-dimer assay (quantitative or qualitative), sex, and care setting (primary or hospital care). For patients with cancer, the combination of an unlikely score on the Wells rule and a negative D-dimer test result occurred in only 9% of patients and was associated with a 2.2% probability of deep vein thrombosis being present. In patients with suspected recurrent events, only the modified Wells rule (adding one point for the previous event) is safe. Combined with a negative D-dimer test result (both quantitative and qualitative), deep vein thrombosis can be excluded in patients with an unlikely score on the Wells rule. This finding is true for both sexes, as well as for patients presenting in primary and hospital care. In patients with cancer, the combination is neither safe nor efficient. For patients with suspected recurrent disease, one extra point should be added to the rule to enable a safe exclusion.
Improved multidimensional semiclassical tunneling theory.
Wagner, Albert F
2013-12-12
We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.
Code of Federal Regulations, 2010 CFR
2010-07-01
... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on... qualified ultra-deep well is a directional well (either an original well or a sidetrack) drilled across a...
Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology Reports
Qiu, John; Yoon, Hong-Jun; Fearn, Paul A.; ...
2017-05-03
Pathology reports are a primary source of information for cancer registries which process high volumes of free-text reports annually. Information extraction and coding is a manual, labor-intensive process. Here in this study we investigated deep learning and a convolutional neural network (CNN), for extracting ICDO- 3 topographic codes from a corpus of breast and lung cancer pathology reports. We performed two experiments, using a CNN and a more conventional term frequency vector approach, to assess the effects of class prevalence and inter-class transfer learning. The experiments were based on a set of 942 pathology reports with human expert annotations asmore » the gold standard. CNN performance was compared against a more conventional term frequency vector space approach. We observed that the deep learning models consistently outperformed the conventional approaches in the class prevalence experiment, resulting in micro and macro-F score increases of up to 0.132 and 0.226 respectively when class labels were well populated. Specifically, the best performing CNN achieved a micro-F score of 0.722 over 12 ICD-O-3 topography codes. Transfer learning provided a consistent but modest performance boost for the deep learning methods but trends were contingent on CNN method and cancer site. Finally, these encouraging results demonstrate the potential of deep learning for automated abstraction of pathology reports.« less
Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology Reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, John; Yoon, Hong-Jun; Fearn, Paul A.
Pathology reports are a primary source of information for cancer registries which process high volumes of free-text reports annually. Information extraction and coding is a manual, labor-intensive process. Here in this study we investigated deep learning and a convolutional neural network (CNN), for extracting ICDO- 3 topographic codes from a corpus of breast and lung cancer pathology reports. We performed two experiments, using a CNN and a more conventional term frequency vector approach, to assess the effects of class prevalence and inter-class transfer learning. The experiments were based on a set of 942 pathology reports with human expert annotations asmore » the gold standard. CNN performance was compared against a more conventional term frequency vector space approach. We observed that the deep learning models consistently outperformed the conventional approaches in the class prevalence experiment, resulting in micro and macro-F score increases of up to 0.132 and 0.226 respectively when class labels were well populated. Specifically, the best performing CNN achieved a micro-F score of 0.722 over 12 ICD-O-3 topography codes. Transfer learning provided a consistent but modest performance boost for the deep learning methods but trends were contingent on CNN method and cancer site. Finally, these encouraging results demonstrate the potential of deep learning for automated abstraction of pathology reports.« less
Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume.
Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B
2016-02-01
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4-V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1-C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations.
Drilling a deep geologic test well at Hilton Head Island, South Carolina
Schultz, Arthur P.; Seefelt, Ellen L.
2011-01-01
The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC), is drilling a deep geologic test well at Hilton Head Island, S.C. The test well is scheduled to run between mid-March and early May 2011. When completed, the well will be about 1,000 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Hilton Head area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.
Opportunities and challenges in studies of deep life (Invited)
NASA Astrophysics Data System (ADS)
Edwards, K. J.
2010-12-01
Over the past two decades, there has been an increasing awareness within the geological, microbiological, and oceanographic communities of the potentially vast microbial biosphere that is harbored beneath the surface of the Earth. With this awareness has come a mounting effort to study this potential biome - to better quantify biomass abundance, activity, and biogeochemical activity. In the Earth system, the largest deep subsurface biome is also the least accessible - the deep ocean subsurface biosphere. The oceanic deep biosphere also has greatest potential for influencing global scale biogeochemical processes -the carbon and energy cycles for example, and other elemental cycles. To address these topics and mount interdisciplinary efforts to study the deep subsurface marine biosphere, we have recently formed a center in support integrative, collaborative investigations. The national science foundation Center for Dark Biosphere Investigations (C-DEBI), has been initiated for the explicit purpose of resolving the extent, function, dynamics and implications of the subseafloor biosphere. This talk will discuss C-DEBI science, with focus on some of the opportunities and challenges in the study of deep life in the ocean, and the role that C-DEBI will play in meeting them
Prasad, Kamalesh; Mondal, Dibyendu; Sharma, Mukesh; Freire, Mara G; Mukesh, Chandrakant; Bhatt, Jitkumar
2018-01-15
Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.
2005-09-24
Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to themore » Pacific Northwest National Laboratory in support of this project.« less
Becker, Carol J.
2006-01-01
The aquifer units of the Central Oklahoma aquifer underlie about 2,890 square miles of central Oklahoma and are used extensively to supply water for municipal, domestic, industrial, and agricultural needs. The Central Oklahoma aquifer also is commonly referred to as the Garber-Wellington aquifer because the Garber Sandstone and Wellington Formation yield the greatest quantities of usable water for domestic and high-capacity wells. The major water-quality concerns for the Central Oklahoma aquifer described by the U.S. Geological Survey National Water Quality Assessment Program (1987 to 1992) were elevated concentrations of nitrate nitrogen in shallow water and the occurrence of arsenic, chromium, and selenium in parts of the aquifer. The quality of water from deep public-water supply wells in the Central Oklahoma aquifer is monitored by the State of Oklahoma. The chemical quality of water from shallow domestic wells is not monitored, and, therefore, there is a concern that well owners may be unknowingly ingesting water with nitrate nitrogen, arsenic, chromium, selenium, and other chemical constituents at concentrations that are considered harmful. As a result of this concern, the Oklahoma Department of Environmental Quality and the U.S. Geological Survey collaborated on a study to sample water during June 2003 through August 2005 from 23 shallow wells (less than 200 feet in depth) and 28 deep wells (200 feet or greater in depth) completed in the bedrock aquifer units of the Central Oklahoma aquifer. The objectives of the study were to describe the chemical quality of water from shallow and deep wells and to determine if the differences in constituent concentrations are statistically significant. Water from shallow wells had significantly higher concentrations of calcium, magnesium, bicarbonate, sulfate, chloride, and nitrate nitrogen than water from deep wells. There were no significant differences between concentrations of dissolved solids, sodium, and fluoride in water from shallow and deep wells. Water from 9 shallow wells had nitrate nitrogen concentrations greater than 2 milligrams per liter, suggesting nitrogen sources at land surface have had an effect on water from these wells. Water from three shallow wells (13 percent) exceeded the nitrate nitrogen maximum contaminant level of 10 milligrams per liter in drinking water. Water from shallow wells had significantly lower concentrations of arsenic, chromium, iron, and selenium than water from deep wells, whereas, concentrations of barium, copper, manganese, and zinc were similar. Water-quality data indicate that arsenic frequently occurs in shallow ground water from the Central Oklahoma aquifer, but at low concentrations (<10 micrograms per liter). The occurrence of chromium and selenium in water from shallow wells was infrequent and at low concentrations in this study. It does not appear that the quality of water from a shallow well can be predicted based on the quality of water from a nearby deep well. The results show that in general terms, shallow ground water has significantly higher concentrations of most major ions and significantly lower concentrations of arsenic, chromium, and selenium than water from deep wells.
Sutton, Nora B; van der Kraan, Geert M; van Loosdrecht, Mark C M; Muyzer, Gerard; Bruining, Johannes; Schotting, Ruud J
2009-04-01
While millions of people drink arsenic-contaminated tube well water across Bangladesh, there is no recent scientific explanation which is able to either comprehensively explain arsenic mobilization or to predict the spatial distribution of affected wells. Rather, mitigation strategies have focused on the sinking of deep tube wells into the currently arsenic-free Pleistocene aquifer. In this study, Bangladesh shallow tube wells identified as contaminated and uncontaminated, as well as deep tube wells, were analyzed for geochemical and in situ microbiological composition. Whereas arsenic was detected in all Holocene aquifer wells, no arsenic was found in wells accessing the Pleistocene aquifer. Bacterial genera, including Comamonadaceae, Acidovorax, Acinetobacter, and Hydrogenophaga, associated with tolerance of high arsenic concentrations, rather than dissimilatory Fe(III) or As(V) reduction, were identified in shallow tube wells, indicating that mobilization may not occur at depth, but is rather due to drawdown of surface contaminated water. Deep tube wells contained microbes indicative of aerobic conditions, including the genera Aquabacterium, Limnobacter, and Roseomonas. It is concluded that through drawdown of arsenic or organic matter, further utilization of the Pleistocene aquifer could result in contamination similar to that observed in the Holocene aquifer.
2010-01-01
Background Nematodes represent the most abundant benthic metazoa in one of the largest habitats on earth, the deep sea. Characterizing major patterns of biodiversity within this dominant group is a critical step towards understanding evolutionary patterns across this vast ecosystem. The present study has aimed to place deep-sea nematode species into a phylogenetic framework, investigate relationships between shallow water and deep-sea taxa, and elucidate phylogeographic patterns amongst the deep-sea fauna. Results Molecular data (18 S and 28 S rRNA) confirms a high diversity amongst deep-sea Enoplids. There is no evidence for endemic deep-sea lineages in Maximum Likelihood or Bayesian phylogenies, and Enoplids do not cluster according to depth or geographic location. Tree topologies suggest frequent interchanges between deep-sea and shallow water habitats, as well as a mixture of early radiations and more recently derived lineages amongst deep-sea taxa. This study also provides convincing evidence of cosmopolitan marine species, recovering a subset of Oncholaimid nematodes with identical gene sequences (18 S, 28 S and cox1) at trans-Atlantic sample sites. Conclusions The complex clade structures recovered within the Enoplida support a high global species richness for marine nematodes, with phylogeographic patterns suggesting the existence of closely related, globally distributed species complexes in the deep sea. True cosmopolitan species may additionally exist within this group, potentially driven by specific life history traits of Enoplids. Although this investigation aimed to intensively sample nematodes from the order Enoplida, specimens were only identified down to genus (at best) and our sampling regime focused on an infinitesimal small fraction of the deep-sea floor. Future nematode studies should incorporate an extended sample set covering a wide depth range (shelf, bathyal, and abyssal sites), utilize additional genetic loci (e.g. mtDNA) that are informative at the species level, and apply high-throughput sequencing methods to fully assay community diversity. Finally, further molecular studies are needed to determine whether phylogeographic patterns observed in Enoplids are common across other ubiquitous marine groups (e.g. Chromadorida, Monhysterida). PMID:21167065
Courtene-Jones, Winnie; Quinn, Brian; Gary, Stefan F; Mogg, Andrew O M; Narayanaswamy, Bhavani E
2017-12-01
Microplastics are widespread in the natural environment and present numerous ecological threats. While the ultimate fate of marine microplastics are not well known, it is hypothesized that the deep sea is the final sink for this anthropogenic contaminant. This study provides a quantification and characterisation of microplastic pollution ingested by benthic macroinvertebrates with different feeding modes (Ophiomusium lymani, Hymenaster pellucidus and Colus jeffreysianus) and in adjacent deep water > 2200 m, in the Rockall Trough, Northeast Atlantic Ocean. Despite the remote location, microplastic fibres were identified in deep-sea water at a concentration of 70.8 particles m -3 , comparable to that in surface waters. Of the invertebrates examined (n = 66), 48% ingested microplastics with quantities enumerated comparable to coastal species. The number of ingested microplastics differed significantly between species and generalized linear modelling identified that the number of microplastics ingested for a given tissue mass was related to species and not organism feeding mode or the length or overall weight of the individual. Deep-sea microplastics were visually highly degraded with surface areas more than double that of pristine particles. The identification of synthetic polymers with densities greater and less than seawater along with comparable quantities to the upper ocean indicates processes of vertical re-distribution. This study presents the first snapshot of deep ocean microplastics and the quantification of microplastic pollution in the Rockall Trough. Additional sampling throughout the deep-sea is required to assess levels of microplastic pollution, vertical transportation and sequestration, which have the potential to impact the largest global ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deep reefs are not universal refuges: Reseeding potential varies among coral species
Bongaerts, Pim; Riginos, Cynthia; Brunner, Ramona; Englebert, Norbert; Smith, Struan R.; Hoegh-Guldberg, Ove
2017-01-01
Deep coral reefs (that is, mesophotic coral ecosystems) can act as refuges against major disturbances affecting shallow reefs. It has been proposed that, through the provision of coral propagules, such deep refuges may aid in shallow reef recovery; however, this “reseeding” hypothesis remains largely untested. We conducted a genome-wide assessment of two scleractinian coral species with contrasting reproductive modes, to assess the potential for connectivity between mesophotic (40 m) and shallow (12 m) depths on an isolated reef system in the Western Atlantic (Bermuda). To overcome the pervasive issue of endosymbiont contamination associated with de novo sequencing of corals, we used a novel subtraction reference approach. We have demonstrated that strong depth-associated selection has led to genome-wide divergence in the brooding species Agaricia fragilis (with divergence by depth exceeding divergence by location). Despite introgression from shallow into deep populations, a lack of first-generation migrants indicates that effective connectivity over ecological time scales is extremely limited for this species and thus precludes reseeding of shallow reefs from deep refuges. In contrast, no genetic structuring between depths (or locations) was observed for the broadcasting species Stephanocoenia intersepta, indicating substantial potential for vertical connectivity. Our findings demonstrate that vertical connectivity within the same reef system can differ greatly between species and that the reseeding potential of deep reefs in Bermuda may apply to only a small number of scleractinian species. Overall, we argue that the “deep reef refuge hypothesis” holds for individual coral species during episodic disturbances but should not be assumed as a broader ecosystem-wide phenomenon. PMID:28246645
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, S. S., E-mail: sspan@issp.ac.cn, E-mail: ghli@issp.ac.cn; Li, F. D.; Liu, Q. W.
2015-05-07
SnO{sub 2} quantum dots (QDs) are potential materials for deep ultraviolet (DUV) light emitting devices. In this study, we report the temperature and excitation power-dependent exciton luminescence from SnO{sub 2} QDs. The exciton emission exhibits anomalous blue shift, accompanied with band width reduction with increasing temperature and excitation power above 300 K. The anomalous temperature dependences of the peak energy and band width are well interpreted by the strongly localized carrier thermal hopping process and Gaussian shape of band tails states, respectively. The localized wells and band tails at conduction minimum are considered to be induced by the surface oxygen defectsmore » and local potential fluctuation in SnO{sub 2} QDs.« less
NASA's Space Launch System: A Transformative Capability for Deep Space Missions
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2017-01-01
Already making substantial progress toward its first launches, NASA’s Space Launch System (SLS) exploration-class launch vehicle presents game-changing new opportunities in spaceflight, enabling human exploration of deep space, as well as a variety of missions and mission profiles that are currently impossible. Today, the initial configuration of SLS, able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), is well into final production and testing ahead of its planned first flight, which will send NASA’s new Orion crew vehicle around the moon and will deploy 13 CubeSats, representing multiple disciplines, into deep space. At the same time, production work is already underway toward the more-capable Block 1B configuration, planned to debut on the second flight of SLS, and capable of lofting 105 tons to LEO or of co-manifesting large exploration systems with Orion on launches to the lunar vicinity. Progress being made on the vehicle for that second flight includes initial welding of its core stage and testing of one of its engines, as well as development of new elements such as the powerful Exploration Upper Stage and the Universal Stage Adapter “payload bay.” Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO to support humans missions to Mars. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles or substantially increased spacecraft mass. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe. This presentation will give an overview of SLS’ capabilities and its current status, and discuss the vehicle’s potential for human exploration of deep space and other game-changing utilization opportunities.
Heliophysics Radio Observations Enabled by the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Kasper, J. C.
2018-02-01
This presentation reviews the scientific potential of low frequency radio imaging from space, the SunRISE radio interferometer, and the scientific value of larger future arrays in deep space and how they would benefit from the Deep Space Gateway.
Mechanical Properties for Advanced Engine Materials
1992-04-01
electric potential differences, fractography , and model verification. 2.1.2 Creep This investigation [Khobaib] studied the creep behavior of SCS-6/Ti-24AI-1...dependent behavior [Bushnell; Hunsaker et al.] into an in-house code, MAGNA [Brockman], was more cost effective than obtaining, learning , and modifying a new...the applicability of Eqn. (13) to disks with deep notches. These results correlated well with Eqn. (13) as shown in Fig. 4.4.3.-1 and confirmed its
Ovarian vein thrombosis: A complication of percutaneous nephrolithotomy
Ho, Louisa; Hall, Grayson; Thomas, Richard; Beiko, Darren
2016-01-01
The medical and surgical complications of percutaneous nephrolithotomy (PCNL) are well-known, including deep venous thrombosis. Ovarian vein thrombosis (OVT) is a rare, but potentially serious type of venous thrombosis that has not previously been reported as a complication of PCNL or ureteral stent placement. We report a case of OVT associated with ureteral stenting following a tubeless PCNL. This complication was successfully managed conservatively without any short- or long-term sequelae. PMID:27695586
Fortunato, Caroline S; Huber, Julie A
2016-08-01
The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.
Deep-level stereoscopic multiple traps of acoustic vortices
NASA Astrophysics Data System (ADS)
Li, Yuzhi; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong
2017-04-01
Based on the radiation pattern of a planar piston transducer, the mechanisms underlying the generation of axially controllable deep-level stereoscopic multiple traps of acoustic vortices (AV) using sparse directional sources were proposed with explicit formulae. Numerical simulations for the axial and cross-sectional distributions of acoustic pressure and phase were conducted for various ka (product of the wave number and the radius of transducer) values at the frequency of 1 MHz. It was demonstrated that, for bigger ka, besides the main-AV (M-AV) generated by the main lobes of the sources, cone-shaped side-AV (S-AV) produced by the side lobes were closer to the source plane at a relatively lower pressure. Corresponding to the radiation angles of pressure nulls between the main lobe and the side lobes of the sources, vortex valleys with nearly pressure zero could be generated on the central axis to form multiple traps, based on Gor'kov potential theory. The number and locations of vortex valleys could be controlled accurately by the adjustment of ka. With the established eight-source AV generation system, the existence of the axially controllable multiple traps was verified by the measured M-AV and S-AVs as well as the corresponding vortex valleys. The favorable results provided the feasibility of deep-level stereoscopic control of AV and suggested potential application of multiple traps for particle manipulation in the area of biomedical engineering.
NASA Astrophysics Data System (ADS)
Wang, Han; Zhang, Linfeng; Han, Jiequn; E, Weinan
2018-07-01
Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model.
Optimizing Multi-Station Template Matching to Identify and Characterize Induced Seismicity in Ohio
NASA Astrophysics Data System (ADS)
Brudzinski, M. R.; Skoumal, R.; Currie, B. S.
2014-12-01
As oil and gas well completions utilizing multi-stage hydraulic fracturing have become more commonplace, the potential for seismicity induced by the deep disposal of frac-related flowback waters and the hydraulic fracturing process itself has become increasingly important. While it is rare for these processes to induce felt seismicity, the recent increase in the number of deep injection wells and volumes injected have been suspected to have contributed to a substantial increase of events = M 3 in the continental U.S. over the past decade. Earthquake template matching using multi-station waveform cross-correlation is an adept tool for investigating potentially induced sequences due to its proficiency at identifying similar/repeating seismic events. We have sought to refine this approach by investigating a variety of seismic sequences and determining the optimal parameters (station combinations, template lengths and offsets, filter frequencies, data access method, etc.) for identifying induced seismicity. When applied to a sequence near a wastewater injection well in Youngstown, Ohio, our optimized template matching routine yielded 566 events while other template matching studies found ~100-200 events. We also identified 77 events on 4-12 March 2014 that are temporally and spatially correlated with active hydraulic fracturing in Poland Township, Ohio. We find similar improvement in characterizing sequences in Washington and Harrison Counties, which appear to be related to wastewater injection and hydraulic fracturing, respectively. In the Youngstown and Poland Township cases, focal mechanisms and double difference relocation using the cross-correlation matrix finds left-lateral faults striking roughly east-west near the top of the basement. We have also used template matching to determine isolated earthquakes near several other wastewater injection wells are unlikely to be induced based on a lack of similar/repeating sequences. Optimized template matching utilizes high-quality reliable stations within pre-existing seismic networks and is therefore a cost-efficient monitoring strategy for identifying and characterizing potentially induced seismic sequences.
Hamilton, Scott L.; Davis, Kathryn; Thompson, Christopher D. H.; Turchik, Alan; Jenkinson, Ryan; Simpson, Doug; Sala, Enric
2018-01-01
Tristan da Cunha Islands, an archipelago of four rocky volcanic islands situated in the South Atlantic Ocean and part of the United Kingdom Overseas Territories (UKOTs), present a rare example of a relatively unimpacted temperate marine ecosystem. We conducted the first quantitative surveys of nearshore kelp forests, offshore pelagic waters and deep sea habitats. Kelp forests had very low biodiversity and species richness, but high biomass and abundance of those species present. Spatial variation in assemblage structure for both nearshore fish and invertebrates/algae was greatest between the three northern islands and the southern island of Gough, where sea temperatures were on average 3-4o colder. Despite a lobster fishery that provides the bulk of the income to the Tristan islands, lobster abundance and biomass are comparable to or greater than many Marine Protected Areas in other parts of the world. Pelagic camera surveys documented a rich biodiversity offshore, including large numbers of juvenile blue sharks, Prionace glauca. Species richness and abundance in the deep sea is positively related to hard rocky substrate and biogenic habitats such as sea pens, crinoids, whip corals, and gorgonians were present at 40% of the deep camera deployments. We observed distinct differences in the deep fish community above and below ~750 m depth. Concurrent oceanographic sampling showed a discontinuity in temperature and salinity at this depth. While currently healthy, Tristan’s marine ecosystem is not without potential threats: shipping traffic leading to wrecks and species introductions, pressure to increase fishing effort beyond sustainable levels and the impacts of climate change all could potentially increase in the coming years. The United Kingdom has committed to protection of marine environments across the UKOTs, including Tristan da Cunha and these results can be used to inform future management decisions as well as provide a baseline against which future monitoring can be based. PMID:29596484
Caselle, Jennifer E; Hamilton, Scott L; Davis, Kathryn; Thompson, Christopher D H; Turchik, Alan; Jenkinson, Ryan; Simpson, Doug; Sala, Enric
2018-01-01
Tristan da Cunha Islands, an archipelago of four rocky volcanic islands situated in the South Atlantic Ocean and part of the United Kingdom Overseas Territories (UKOTs), present a rare example of a relatively unimpacted temperate marine ecosystem. We conducted the first quantitative surveys of nearshore kelp forests, offshore pelagic waters and deep sea habitats. Kelp forests had very low biodiversity and species richness, but high biomass and abundance of those species present. Spatial variation in assemblage structure for both nearshore fish and invertebrates/algae was greatest between the three northern islands and the southern island of Gough, where sea temperatures were on average 3-4o colder. Despite a lobster fishery that provides the bulk of the income to the Tristan islands, lobster abundance and biomass are comparable to or greater than many Marine Protected Areas in other parts of the world. Pelagic camera surveys documented a rich biodiversity offshore, including large numbers of juvenile blue sharks, Prionace glauca. Species richness and abundance in the deep sea is positively related to hard rocky substrate and biogenic habitats such as sea pens, crinoids, whip corals, and gorgonians were present at 40% of the deep camera deployments. We observed distinct differences in the deep fish community above and below ~750 m depth. Concurrent oceanographic sampling showed a discontinuity in temperature and salinity at this depth. While currently healthy, Tristan's marine ecosystem is not without potential threats: shipping traffic leading to wrecks and species introductions, pressure to increase fishing effort beyond sustainable levels and the impacts of climate change all could potentially increase in the coming years. The United Kingdom has committed to protection of marine environments across the UKOTs, including Tristan da Cunha and these results can be used to inform future management decisions as well as provide a baseline against which future monitoring can be based.
Gittel, Antje; Mussmann, Marc; Sass, Henrik; Cypionka, Heribert; Könneke, Martin
2008-10-01
The identity and abundance of potentially active sulfate-reducing bacteria (SRB) in several metre deep sediments of a tidal sand flat in the German Wadden Sea were assessed by directed cultivation and cultivation-independent CARD-FISH analysis (catalysed reporter deposition fluorescence in situ hybridization). Presumably abundant SRB from different sediment layers between 0.5 and 4 m depth were selectively enriched in up to million-fold diluted cultures supplemented with lactate, acetate or hydrogen. Partial 16S rRNA gene sequences obtained from highest dilution steps showing sulfide formation indicated growth of deltaproteobacterial SRB belonging to the Desulfobulbaceae and the Desulfobacteraceae as well as of members of the Firmicutes. Subsequent isolation resulted in 10 novel phylotypes of both litho- and organotrophic sulfate-reducing Deltaproteobacteria. Molecular pre-screening identified six isolates as members of the Desulfobulbaceae, sharing highest identities with either candidatus 'Desulfobacterium corrodens' (95-97%) or Desulfobacterium catecholicum (98%), and four isolates as members of Desulfobacteraceae, being related to either Desulfobacter psychrotolerans (98%) or Desulfobacula phenolica (95-97%). Relatives of D. phenolica were exlusively isolated from 50 and 100 cm deep sediments with 10 and 2 mM of pore water sulfate respectively. In contrast, relatives of D. corrodens, D. psychrotolerans and D. catecholicum were also obtained from layers deeper than 100 cm and with less than 2 mM sulfate. The high in situ abundance of members of both families in sediment layers beneath 50 cm could be confirmed via CARD-FISH analysis performed with a set of six SRB-specific oligonucleotide probes. Moreover, SRB represented a numerically significant fraction of the microbial community throughout the sediment (up to 7%) and reached even higher cell numbers in deep, sulfate-poor layers than in the sulfate-rich surface sediment. This relatively large community size of potentially active SRB in deep sandy sediments might on the one hand be a result of their syntrophic association with other anaerobes. Our results furthermore support the hypothesis that enhanced advective pore water transport might supply nutrients to microbial communities in deep sandy sediments and point to their so far unrecognized contribution to biogeochemical processes in Wadden Sea sediments.
Makita, Hiroko; Kikuchi, Sakiko; Mitsunobu, Satoshi; Takaki, Yoshihiro; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Nakamura, Kentaro; Abe, Mariko; Hirai, Miho; Yamamoto, Masahiro; Uematsu, Katsuyuki; Miyazaki, Junichi; Nunoura, Takuro; Takahashi, Yoshio; Takai, Ken
2016-10-01
It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy-energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species as well as the potential contribution of the zetaproteobacterial population to the in situ production. These key findings provide important information for understanding the mechanisms of both geomicrobiological iron cycling and the formation of iron-dominated mats in deep-sea hydrothermal fields. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.
Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian
2014-10-01
Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sarkar, Sujoy; Sampath, S
2016-05-11
A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.
Curriculum Handbook--Project D.E.E.P. Developing Exceptional Educational Potential.
ERIC Educational Resources Information Center
Badgley, Lynn Schiffer
The guide presents curriculum objectives of Project DEEP (Developing Exceptional Educational Potential), a resource room approach to the education of gifted elementary pupils. The first part of the handbook provides information on the background and foundation of a gifted curriculum (including such topics as student identification and needed…
Code of Federal Regulations, 2010 CFR
2010-07-01
... Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.46 To which production do I... (b): You have two shallow oil wells on your lease. Then you drill a certified unsuccessful well and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.
Shaffer’s (2010) article reports on the long term impact of less than perfect retention of anthropogenic CO2 stored in deep geologic reservoirs and in the ocean. The central thesis of this article is predicated on two deeply flawed assumptions. The first and most glaring is the implicit assumption that society has only one means of reducing greenhouse gas emissions, carbon dioxide capture and storage (CCS). Secondly, there is absolutely no geophysical nor geomechanical basis for assuming an exponential decay of CO2 stored in deep geologic formations as done by Schaffer. Shaffer’s analysis of the impact of leakage from anthropogenic CO2more » stored in deep geologic reservoirs are based upon two fundamentally flawed assumptions and therefore the reported results as well as the public policy conclusions presented in the paper need to be read with this understanding in mind as far less CO2 stored below ground because society drew upon a broad portfolio of advanced energy technologies over the coming century coupled with a more technically accurate conceptualization of CO2 storage in the deep subsurface and the important role of secondary and tertiary trapping mechanisms would have yield a far less pessimistic view of the potential role that CCS can play in a broader portfolio of societal responses to the very serious threat posed by climate change.« less
Molnar, Maja; Komar, Mario; Brahmbhatt, Harshad; Babić, Jurislav; Jokić, Stela; Rastija, Vesna
2017-09-05
Deep eutectic solvents, as green and environmentally friendly media, were utilized in the synthesis of novel coumarinyl Schiff bases. Novel derivatives were synthesized from 2-((4-methyl-2-oxo-2 H -chromen-7-yl)oxy)acetohydrazide and corresponding aldehyde in choline chloride:malonic acid (1:1) based deep eutectic solvent. In these reactions, deep eutectic solvent acted as a solvent and catalyst as well. Novel Schiff bases were synthesized in high yields (65-75%) with no need for further purification, and their structures were confirmed by mass spectra, ¹H and 13 C NMR. Furthermore, their antioxidant activity was determined and compared to antioxidant activity of previously synthesized derivatives, thus investigating their structure-activity relationship utilizing quantitative structure-activity relationship QSAR studies. Calculation of molecular descriptors has been performed by DRAGON software. The best QSAR model ( R tr = 0.636; R ext = 0.709) obtained with three descriptors ( MATS3m , Mor22u , Hy ) implies that the pairs of atoms higher mass at the path length 3, three-dimensional arrangement of atoms at scattering parameter s = 21 Å - ¹, and higher number of hydrophilic groups (-OH, -NH) enhanced antioxidant activity. Electrostatic potential surface of the most active compounds showed possible regions for donation of electrons to 1,1-diphenyl-2-picryhydrazyl (DPPH) radicals.
Vertical migrations of a deep-sea fish and its prey.
Afonso, Pedro; McGinty, Niall; Graça, Gonçalo; Fontes, Jorge; Inácio, Mónica; Totland, Atle; Menezes, Gui
2014-01-01
It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL). This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering) data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel) as well as long-term (seasonal) scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic) of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.
NASA Astrophysics Data System (ADS)
Copeland, Adrienne Marie
Patchiness of prey can influence the behavior of a predator, as predicted by the optimal foraging theory which states that an animal will maximize the energy gain while minimizing energy loss. While this relationship has been studied and is relatively well understood in some terrestrial systems, the same is far from true in marine systems. It is as important to investigate this in the marine realm in order to better understand predator distribution and behavior. Micronekton, organisms from 2-20 cm, might be a key component in understanding this as it is potentially an essential link in the food web between primary producers and higher trophic levels, including cephalopods which are primary prey items of deep diving odontocetes (toothed whales). My dissertation assesses the spatial and temporal variability of micronekton in the Northwestern Hawaiian Islands (NWHI), the Main Hawaiian Islands' (MHI) Island of Hawaii, and the Gulf of Mexico (GOM). Additionally it focuses on understanding the relationship between the spatial distribution of micronekton and environmental and geographic factors, and how the spatial and temporal variability of this micronekton relates to deep diving odontocete foraging. I used both an active Simrad EK60 echosounder system to collect water column micronekton backscatter and a passive acoustic system to detect the presence of echolocation clicks from deep diving beaked, sperm, and short-finned pilot whales. My results provide insight into what might be contributing to hotspots of micronekton which formed discrete layers in all locations, a shallow scattering layer (SSL) from the surface to about 200 m and a deep scattering layer (DSL) starting at about 350 m. In both the GOM and the NWHI, the bathymetry and proximity to shore influenced the amount of micronekton backscatter with locations closer to shore and at shallower depths having higher backscatter. We found in all three locations that some species of deep diving odontocetes were searching for prey in these areas with higher micronekton backscatter. Beaked whales in the NWHI, short-finned pilot whales in the NWHI and MHI, and sperm whales in the GOM where present in areas of higher micronekton backscatter. These hotspots of backscatter may be good predictors of the distribution of some deep-diving toothed whale foragers since the hotspots potentially indicate a food web supporting the prey of the cetaceans.
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Langenheim, V.E.; Griscom, Andrew; Jachens, R.C.; Hildenbrand, T.G.
2000-01-01
Gravity and magnetic data provide new insights on the structural underpinnings of the San Fernando Basin region, which may be important to ground motion models. Gravity data indicate that a deep basin (>5 km) underlies the northern part of the San Fernando Valley; this deep basin is required to explain the lowest gravity values over the Mission Hills thrust fault. Gravity modeling, constrained by well data and density information, shows that the basin may reach a thickness of 8 km, coinciding with the upper termination of the 1994 Northridge earthquake mainshock rupture. The basin is deeper than previous estimates by 2 to 4 km; this estimate is the result of high densities for the gravels of the Pliocene-Pleisocene Saugus Formation. The geometry of the southern margin of the deep basin is not well-constrained by the gravity data, but may dip to the south. Recently acquired seismic data along the LARSE (Los Angeles Regional Seismic Experiment) II profile may provide constraints to determine the location and attitude of the basin edge. Gravity and aeromagnetic models across the eastern margin of the San Fernando Valley indicate that the Verdugo fault may dip to the southwest along its southern extent and therefore have a normal fault geometry whereas it clearly has a thrust fault geometry along its northern strand.
Wynn, Jeff; Fleming, John A.
2012-01-01
Hydrocarbons released into the deep ocean are an inevitable consequence of natural seep, seafloor drilling, and leaking wellhead-to-collection-point pipelines. The Macondo 252 (Deepwater Horizon) well blowout of 2010 was even larger than the Ixtoc event in the Gulf of Campeche in 1979. History suggests it will not be the last accidental release, as deepwater drilling expands to meet an ever-growing demand. For those who must respond to this kind of disaster, the first line of action should be to know what is going on. This includes knowing where an oil plume is at any given time, where and how fast it is moving, and how it is evolving or degrading. We have experimented in the laboratory with induced polarization as a method to track hydrocarbons in the seawater column and find that finely dispersed oil in seawater gives rise to a large distributed capacitance. From previous sea trials, we infer this could potentially be used to both map and characterize oil plumes, down to a ratio of less than 0.001 oil-to-seawater, drifting and evolving in the deep ocean. A side benefit demonstrated in some earlier sea trials is that this same approach in modified form can also map certain heavy placer minerals, as well as communication cables, pipelines, and wrecks buried beneath the seafloor.
High Class-Imbalance in pre-miRNA Prediction: A Novel Approach Based on deepSOM.
Stegmayer, Georgina; Yones, Cristian; Kamenetzky, Laura; Milone, Diego H
2017-01-01
The computational prediction of novel microRNA within a full genome involves identifying sequences having the highest chance of being a miRNA precursor (pre-miRNA). These sequences are usually named candidates to miRNA. The well-known pre-miRNAs are usually only a few in comparison to the hundreds of thousands of potential candidates to miRNA that have to be analyzed, which makes this task a high class-imbalance classification problem. The classical way of approaching it has been training a binary classifier in a supervised manner, using well-known pre-miRNAs as positive class and artificially defining the negative class. However, although the selection of positive labeled examples is straightforward, it is very difficult to build a set of negative examples in order to obtain a good set of training samples for a supervised method. In this work, we propose a novel and effective way of approaching this problem using machine learning, without the definition of negative examples. The proposal is based on clustering unlabeled sequences of a genome together with well-known miRNA precursors for the organism under study, which allows for the quick identification of the best candidates to miRNA as those sequences clustered with known precursors. Furthermore, we propose a deep model to overcome the problem of having very few positive class labels. They are always maintained in the deep levels as positive class while less likely pre-miRNA sequences are filtered level after level. Our approach has been compared with other methods for pre-miRNAs prediction in several species, showing effective predictivity of novel miRNAs. Additionally, we will show that our approach has a lower training time and allows for a better graphical navegability and interpretation of the results. A web-demo interface to try deepSOM is available at http://fich.unl.edu.ar/sinc/web-demo/deepsom/.
Edge systems in the deep ocean
NASA Astrophysics Data System (ADS)
Coon, Andrew; Earp, Samuel L.
2010-04-01
DARPA has initiated a program to explore persistent presence in the deep ocean. The deep ocean is difficult to access and presents a hostile environment. Persistent operations in the deep ocean will require new technology for energy, communications and autonomous operations. Several fundamental characteristics of the deep ocean shape any potential system architecture. The deep sea presents acoustic sensing opportunities that may provide significantly enhanced sensing footprints relative to sensors deployed at traditional depths. Communication limitations drive solutions towards autonomous operation of the platforms and automation of data collection and processing. Access to the seabed presents an opportunity for fixed infrastructure with no important limitations on size and weight. Difficult access and persistence impose requirements for long-life energy sources and potentially energy harvesting. The ocean is immense, so there is a need to scale the system footprint for presence over tens of thousands and perhaps hundreds of thousands of square nautical miles. This paper focuses on the aspect of distributed sensing, and the engineering of networks of sensors to cover the required footprint.
Hydrologic processes in deep vadose zones in interdrainage arid environments
Walvoord, Michelle Ann; Scanlon, Bridget R.; Hogan, James F.; Phillips, Fred M.; Scanlon, Bridget R.
2004-01-01
A unifying theory for the hydrology of desert vadose zones is particularly timely considering the rising population and water stresses in arid and semiarid regions. Conventional models cannot reconcile the apparent discrepancy between upward flow indicated by hydraulic gradient data and downward flow suggested by environmental tracer data in deep vadose zone profiles. A conceptual model described here explains both hydraulic and tracer data remarkably well by incorporating the hydrologic role of desert plants that encroached former juniper woodland 10 to 15 thousand years ago in the southwestern United States. Vapor transport also plays an important role in redistributing moisture through deep soils, particularly in coarse-grained sediments. Application of the conceptual model to several interdrainage arid settings reproduces measured matric potentials and chloride accumulation by simulating the transition from downward flow to upward flow just below the root zone initiated by climate and vegetation change. Model results indicate a slow hydraulic drying response in deep vadose zones that enables matric potential profiles to be used to distinguish whether precipitation episodically percolated below the root zone or was completely removed via evapotranspiration during the majority of the Holocene. Recharge declined dramatically during the Holocene in interdrainage basin floor settings of arid and semiarid basins. Current flux estimates across the water table in these environmental settings, are on the order of 0.01 to 0.1 mm yr-1 and may be recharge (downward) or discharge (upward) depending on vadose zone characteristics, such as soil texture, geothermal gradient, and water table depth. In summary, diffuse recharge through the basin floor probably contributes only minimally to the total recharge in arid and semiarid basins.
Bjørndal, Lars; Demant, Sune; Dabelsteen, Sally
2014-04-01
Studies on dental regeneration involving interventions for pulp therapy such as regeneration and revascularization procedures are promising for the injured tooth; however, a complete replication of the original pulp tissue does not seem to take place. In cases in which we wish to preserve or maintain parts of the pulp during treatment, it is apparent that the effectiveness of healing or biological regeneration is dependent on the degree of inflammation of the pulp tissue. Thus, the control or prevention of a pulp infection is still a major issue for the clinicians. Data indicate that the typical reason for performing endodontic treatment is deep caries. The biological concept of vital pulp therapy associated with deep caries takes the treatment and evaluation of the unexposed as well as the exposed pulp into account. Interestingly, the clinical diagnosis is typically the same. Deep caries with reversible pulpitis may receive differing treatments such as excavation procedures aiming to avoid pulp exposure or more pulp invasive treatments such as pulp capping or pulpotomy. This should not be the case. Consequently, huge treatment variation is noted among clinicians based on the same caries diagnosis. Which treatment should be selected? High-quality trials are needed, and it is important to obtain information on the actual lesion depth and an estimate of the lesion activity before treatment. These may be basic indicators for the regenerative potential of dental pulp. Recent clinical trials dealing with the treatment of deep caries lesion are discussed, including pulp invasive and noninvasive concepts, to attempt to solve the task of getting the best clinical outcome for adult patients. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.30 Which leases...
Code of Federal Regulations, 2011 CFR
2011-07-01
... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.34 To which... lease, except as provided in paragraph (c) of § 203.33; (c) To any liquid hydrocarbon (oil and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to Deep Water Royalty Relief § 203.35 What... Development in writing of your intent to begin drilling operations on all your ultra-deep wells. (b) Before...
Reed-Solomon Codes and the Deep Hole Problem
NASA Astrophysics Data System (ADS)
Keti, Matt
In many types of modern communication, a message is transmitted over a noisy medium. When this is done, there is a chance that the message will be corrupted. An error-correcting code adds redundant information to the message which allows the receiver to detect and correct errors accrued during the transmission. We will study the famous Reed-Solomon code (found in QR codes, compact discs, deep space probes,ldots) and investigate the limits of its error-correcting capacity. It can be shown that understanding this is related to understanding the "deep hole" problem, which is a question of determining when a received message has, in a sense, incurred the worst possible corruption. We partially resolve this in its traditional context, when the code is based on the finite field F q or Fq*, as well as new contexts, when it is based on a subgroup of F q* or the image of a Dickson polynomial. This is a new and important problem that could give insight on the true error-correcting potential of the Reed-Solomon code.
Studies in Cup Drawing Behavior of Polymer Laminated Sheet Metal
NASA Astrophysics Data System (ADS)
Elnagmi, M.; Jain, M.; Bruhis, M.; Nielsen, K.
2011-08-01
Axisymmetric deep drawing behavior of a polymer laminated sheet metal (PLSM) is investigated using an axisymmetric cup drawing test. PLSMs are of interest as a replacement for painted finishes for automotive applications as they have the potential to achieve good quality long lasting and aesthetically appealing surfaces on stamped parts. However, there is limited understanding of PLSMs in automotive deep drawing situations to produce complex 3-D parts. The tests are carried out using well-controlled, laboratory-based, dual-action, servo-hydraulic forming presses under blank-holder force and punch displacement control conditions. An optical strain mapping system is used to measure the surface strains (and to construct 3D strain maps) from the film side of the deformed samples for a range of forming conditions. Deep drawing characteristics such as punch load versus punch displacement traces, strain distribution along the cup profile, flange wrinkling and fracture characteristics are experimentally assessed for stainless steel-plastic film laminated sheet materials. Also the effect of lamination pressure on wrinkling and delamination is investigated for a decorative pressure sensitive adhesive film affixed to the stainless steel sheet.
Chu, Liliang; Wang, Shaowei; Li, Kanghui; Xi, Wang; Zhao, Xinyuan; Qian, Jun
2014-01-01
Near-infrared (NIR) imaging technology has been widely used for biomedical research and applications, since it can achieve deep penetration in biological tissues due to less absorption and scattering of NIR light. In our research, polymer nanoparticles with NIR fluorophores doped were synthesized. The morphology, absorption/emission features and chemical stability of the fluorescent nanoparticles were characterized, separately. NIR fluorescent nanoparticles were then utilized as bright optical probes for macro in vivo imaging of mice, including sentinel lymph node (SLN) mapping, as well as distribution and excretion monitoring of nanoparticles in animal body. Furthermore, we applied the NIR fluorescent nanoparticles in in vivo microscopic bioimaging via a confocal microscope. Under the 635 nm-CW excitation, the blood vessel architecture in the ear and the brain of mice, which were administered with nanoparticles, was visualized very clearly. The imaging depth of our one-photon microscopy, which was assisted with NIR fluorescent nanoprobes, can reach as deep as 500 μm. Our experiments show that NIR fluorescent nanoparticles have great potentials in various deep-tissue imaging applications. PMID:25426331
Zhang, Nan; Wang, Ronghui; Hao, Junnian; Yang, Yang; Zou, Hongmi; Wang, Zhigang
2017-01-01
High-intensity focused ultrasound (HIFU) is a promising and noninvasive treatment for solid tumors, which has been explored for potential clinical applications. However, the clinical applications of HIFU for large and deep tumors such as hepatocellular carcinoma (HCC) are severely limited by unsatisfactory imaging guidance, long therapeutic times, and damage to normal tissue around the tumor due to the high power applied. In this study, we developed doxorubicin/perfluorohexane-encapsulated hollow mesoporous Prussian blue nanoparticles (HMPBs-DOX/PFH) as theranostic agents, which can effectively guide HIFU therapy and enhance its therapeutic effects in combination with chemotherapy, by decreasing the cavitation threshold. We investigated the effects of this agent on ultrasound and magnetic resonance imaging in vitro and in vivo. In addition, we showed a highly efficient HIFU therapeutic effect against HCC tumors, as well as controlled drug release, owing to the phase-transitional performance of the PFH. We therefore conclude that HMPB-DOX/PFH is a safe and efficient nanoplatform, which holds significant promise for cancer theranostics against deep tumors in clinical settings.
Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency.
Weber, Thomas; Cram, Jacob A; Leung, Shirley W; DeVries, Timothy; Deutsch, Curtis
2016-08-02
The "transfer efficiency" of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.
Zhang, Nan; Wang, Ronghui; Hao, Junnian; Yang, Yang; Zou, Hongmi; Wang, Zhigang
2017-01-01
High-intensity focused ultrasound (HIFU) is a promising and noninvasive treatment for solid tumors, which has been explored for potential clinical applications. However, the clinical applications of HIFU for large and deep tumors such as hepatocellular carcinoma (HCC) are severely limited by unsatisfactory imaging guidance, long therapeutic times, and damage to normal tissue around the tumor due to the high power applied. In this study, we developed doxorubicin/perfluorohexane-encapsulated hollow mesoporous Prussian blue nanoparticles (HMPBs-DOX/PFH) as theranostic agents, which can effectively guide HIFU therapy and enhance its therapeutic effects in combination with chemotherapy, by decreasing the cavitation threshold. We investigated the effects of this agent on ultrasound and magnetic resonance imaging in vitro and in vivo. In addition, we showed a highly efficient HIFU therapeutic effect against HCC tumors, as well as controlled drug release, owing to the phase-transitional performance of the PFH. We therefore conclude that HMPB-DOX/PFH is a safe and efficient nanoplatform, which holds significant promise for cancer theranostics against deep tumors in clinical settings. PMID:29042775
Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency
Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis
2016-01-01
The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere−ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate. PMID:27457946
Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency
NASA Astrophysics Data System (ADS)
Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis
2016-08-01
The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (˜25%) at high latitudes and low (˜5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.
Lai, Yen-Ho; Chiang, Chih-Sheng; Kao, Tzu-Hsun; Chen, San-Yuan
2018-01-01
Deep penetration of large-sized drug nanocarriers into tumors is important to improve the efficacy of tumor therapy. In this study, we developed a size-changeable "Trojan Horse" nanocarrier (THNC) composed of paclitaxel (PTX)-loaded Greek soldiers (GSs; ~20 nm) assembled in an amphiphilic gelatin matrix with hydrophilic losartan (LST) added. With amphiphilic gelatin matrix cleavage by matrix metalloproteinase-2, LST showed fast release of up to 60% accumulated drug at 6 h, but a slow release kinetic (~20%) was detected in the PTX from the GSs, indicating that THNCs enable controllable release of LST and PTX drugs for penetration into the tumor tissue. The in vitro cell viability in a 3D tumor spheroid model indicated that the PTX-loaded GSs liberated from THNCs showed deeper penetration as well as higher cytotoxicity, reducing a tumor spheroid to half its original size and collapsing the structure of the tumor microenvironment. The results demonstrate that the THNCs with controlled drug release and deep penetration of magnetic GSs show great potential for cancer therapy.
Czarnecki, John B.; Stanton, Gregory P.; Freiwald, David A.
2001-01-01
The Red River Aluminum site near Stamps, Arkansas, contains waste piles of salt cake and metal byproducts from the smelting of aluminum. The waste piles are subjected to about 50 inches of rainfall a year, resulting in the dissolution of the salts and metal. To assess the potential threat to underlying ground-water resources at the site, its hydrogeology was characterized by measuring water levels and field parameters of water quality in 23 wells and at 2 surface-water sites. Seventeen of these monitor wells were constructed at various depths for this study to allow for the separate characterization of the shallow and deep ground-water systems, the calculation of vertical gradients, and the collection of water samples at different depths within the flow system. Lithologic descriptions from drill-hole cuttings and geophysical logs indicate the presence of interbedded sands, gravels, silts, and clays to depths of 65 feet. The regionally important Sparta aquifer underlies the site. Water levels in shallow wells indicate radial flow away from the salt-cake pile located near the center of the site. Flow in the deep system is to the west and southwest toward Bodcau Creek. Water-level data from eight piezometer nests indicate a downward hydraulic gradient from the shallow to deep systems across the site. Values of specific conductance (an indicator of dissolved salts) ranged from 215 to 196,200 microsiemens per centimeter and indicate that saline waters are being transported horizontally and vertically downward away from the site
Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes
NASA Astrophysics Data System (ADS)
Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John
2015-12-01
Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially the lithospheric stresses imposed by increasing edifice load.
A Participative Tool for Sharing, Annotating and Archiving Submarine Video Data
NASA Astrophysics Data System (ADS)
Marcon, Y.; Kottmann, R.; Ratmeyer, V.; Boetius, A.
2016-02-01
Oceans cover more than 70 percent of the Earth's surface and are known to play an essential role on all of the Earth systems and cycles. However, less than 5 percent of the ocean bottom has been explored and many aspects of the deep-sea world remain poorly understood. Increasing our ocean literacy is a necessity in order for specialists and non-specialists to better grasp the roles of the ocean on the Earth's system, its resources, and the impact of human activities on it. Due to technological advances, deep-sea research produces ever-increasing amounts of scientific video data. However, using such data for science communication and public outreach purposes remains difficult as tools for accessing/sharing such scientific data are often lacking. Indeed, there is no common solution for the management and analysis of marine video data, which are often scattered across multiple research institutes or working groups and it is difficult to get an overview of the whereabouts of those data. The VIDLIB Deep-Sea Video Platform is a web-based tool for sharing/annotating time-coded deep-sea video data. VIDLIB provides a participatory way to share and analyze video data. Scientists can share expert knowledge for video analysis without the need to upload/download large video files. Also, VIDLIB offers streaming capabilities and has potential for participatory science and science communication in that non-specialists can ask questions on what they see and get answers from scientists. Such a tool is highly valuable in terms of scientific public outreach and popular science. Video data are by far the most efficient way to communicate scientific findings to a non-expert public. VIDLIB is being used for studying the impact of deep-sea mining on benthic communities as well as for exploration in polar regions. We will present the structure and workflow of VIDLIB as well as an example of video analysis. VIDLIB (http://vidlib.marum.de) is funded by the EU EUROFLEET project and the Helmholtz Alliance ROBEX.
New Era of Scientific Ocean Drilling
NASA Astrophysics Data System (ADS)
Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.
2014-12-01
The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.
Watkins, B M; Smith, G M; Little, R H; Kessler, J
1999-04-01
Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated water derived from the deep well. Inhalation of dust (11 radionuclides) and external irradiation (1 radionuclide) were also identified as significant exposure modes. Contribution to the total flux to dose conversion factor from the drinking water pathway for each radionuclide was also assessed and for most radionuclides was found to be less than 10% of the total flux to dose conversion factor summed across all pathways. Some of the uncertainties related to the results were considered. The biosphere modeling results have been applied within an EPRI Total Systems Performance Assessment of Yucca Mountain. Conclusions and recommendations for future performance assessments are provided.
Auditory processing during deep propofol sedation and recovery from unconsciousness.
Koelsch, Stefan; Heinke, Wolfgang; Sammler, Daniela; Olthoff, Derk
2006-08-01
Using evoked potentials, this study investigated effects of deep propofol sedation, and effects of recovery from unconsciousness, on the processing of auditory information with stimuli suited to elicit a physical MMN, and a (music-syntactic) ERAN. Levels of sedation were assessed using the Bispectral Index (BIS) and the Modified Observer's Assessment of Alertness and Sedation Scale (MOAAS). EEG-measurements were performed during wakefulness, deep propofol sedation (MOAAS 2-3, mean BIS=68), and a recovery period. Between deep sedation and recovery period, the infusion rate of propofol was increased to achieve unconsciousness (MOAAS 0-1, mean BIS=35); EEG measurements of recovery period were performed after subjects regained consciousness. During deep sedation, the physical MMN was markedly reduced, but still significant. No ERAN was observed in this level. A clear P3a was elicited during deep sedation by those deviants, which were task-relevant during the awake state. As soon as subjects regained consciousness during the recovery period, a normal MMN was elicited. By contrast, the P3a was absent in the recovery period, and the P3b was markedly reduced. Results indicate that the auditory sensory memory (as indexed by the physical MMN) is still active, although strongly reduced, during deep sedation (MOAAS 2-3). The presence of the P3a indicates that attention-related processes are still operating during this level. Processes of syntactic analysis appear to be abolished during deep sedation. After propofol-induced anesthesia, the auditory sensory memory appears to operate normal as soon as subjects regain consciousness, whereas the attention-related processes indexed by P3a and P3b are markedly impaired. Results inform about effects of sedative drugs on auditory and attention-related mechanisms. The findings are important because these mechanisms are prerequisites for auditory awareness, auditory learning and memory, as well as language perception during anesthesia.
Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target.
Nacev, A; Weinberg, I N; Stepanov, P Y; Kupfer, S; Mair, L O; Urdaneta, M G; Shimoji, M; Fricke, S T; Shapiro, B
2015-01-14
The ability to use magnets external to the body to focus therapy to deep tissue targets has remained an elusive goal in magnetic drug targeting. Researchers have hitherto been able to manipulate magnetic nanotherapeutics in vivo with nearby magnets but have remained unable to focus these therapies to targets deep within the body using magnets external to the body. One of the factors that has made focusing of therapy to central targets between magnets challenging is Samuel Earnshaw's theorem as applied to Maxwell's equations. These mathematical formulations imply that external static magnets cannot create a stable potential energy well between them. We posited that fast magnetic pulses could act on ferromagnetic rods before they could realign with the magnetic field. Mathematically, this is equivalent to reversing the sign of the potential energy term in Earnshaw's theorem, thus enabling a quasi-static stable trap between magnets. With in vitro experiments, we demonstrated that quick, shaped magnetic pulses can be successfully used to create inward pointing magnetic forces that, on average, enable external magnets to concentrate ferromagnetic rods to a central location.
Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - June 1977
Pascale, Charles A.; Martin, J.B.
1978-01-01
This report presents the hydraulic and chemical data collected from June 1, 1975, when injection began, to June 30, 1977 through a monitoring program at a deep-well waste-injection system at the American Cyanamid Company's plant near Milton, about 12 miles northwest of Pensacola. The injection system consists of a primary injection well, a standby injection well, and two deep monitor wells all completed open hole in the lower limestone of the Floridan aquifer and one shallow-monitor well completed in the upper limestone of the Floridan aquifer. Two of the monitor wells and the standby injection well are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations 8,180 feet northeast, 1,560 feet south, and 1,025 feet southwest of the primary injection well. The shallow-monitor well, used to observe any effects in the first permeable zone above the 200-foot-thick confining bed, is 28 feet north of the primary injection well. Since injection began in June 1975, 607 million gallons of treated industrial liquid waste with a pH of 4.6 to 6.3 and containing high concentrations of nitrate, organic nitrogen and carbon have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at the injection well in June 1977 average 137 pounds per square inch and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Water levels rose from 36 to 74 feet at the three wells used to monitor the injection zone during the 25-month period. The water level in the shallow-monitor well declined about 8 feet. No changes were detected in the chemical character of water from the shallow-monitor well and deep-monitor well-north. Increases in concentration of bicarbonate and dissolved organic carbon were detected in water from the deep-test monitor well in February 1976 and at the standby injection well in August 1976. In addition to increases in bicarbonate and dissolved organic carbon, sulfate, total organic nitrogen, and total nitrogen concentrations have also increased substantially in samples from these wells. Nitrogen gas concentrations in water samples collected at the three deep-monitor wells ranged from 19 to 176 milligrams per liter, methane from 4.5 to 11.4 milligrams per liter, and carbon dioxide from 7.7 to 44 milligrams per liter. The most probable number of denitrifying bacteria in water samples collected at the three deep-monitor wells ranged from less than 2 colonies to 17 colonies per 100 milliliters. None of the water samples collected in April 1977 at the three deep-monitor wells showed positive concentrations of acetone, ethanol, methanol, or acrylonitrile.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.
2014-12-01
Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.
Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Zhang, Linfeng; Han, Jiequn; Wang, Han; Car, Roberto; E, Weinan
2018-04-01
We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.
Menza, Charles; Kendall, M.; Rogers, C.; Miller, J.
2007-01-01
The well-documented degradation of shallower reefs which are often closer to land and more vulnerable to pollution, sewage and other human-related stressors has led to the suggestion that deeper, more remote offshore reefs could possibly serve as sources of coral and fish larvae to replenish the shallower reefs. Yet, the distribution, status, and ecological roles of deep (>30 m) Caribbean reefs are not well known. In this report, an observation of a deep reef which has undergone a recent extensive loss of coral cover is presented. In stark contrast to the typical pattern of coral loss in shallow reefs, the deeper corals were most affected. This report is the first description of such a pattern of coral loss on a deep reef.
NASA Technical Reports Server (NTRS)
Goldberg, Mitchell D.; Fleming, Henry E.
1994-01-01
An algorithm for generating deep-layer mean temperatures from satellite-observed microwave observations is presented. Unlike traditional temperature retrieval methods, this algorithm does not require a first guess temperature of the ambient atmosphere. By eliminating the first guess a potentially systematic source of error has been removed. The algorithm is expected to yield long-term records that are suitable for detecting small changes in climate. The atmospheric contribution to the deep-layer mean temperature is given by the averaging kernel. The algorithm computes the coefficients that will best approximate a desired averaging kernel from a linear combination of the satellite radiometer's weighting functions. The coefficients are then applied to the measurements to yield the deep-layer mean temperature. Three constraints were used in deriving the algorithm: (1) the sum of the coefficients must be one, (2) the noise of the product is minimized, and (3) the shape of the approximated averaging kernel is well-behaved. Note that a trade-off between constraints 2 and 3 is unavoidable. The algorithm can also be used to combine measurements from a future sensor (i.e., the 20-channel Advanced Microwave Sounding Unit (AMSU)) to yield the same averaging kernel as that based on an earlier sensor (i.e., the 4-channel Microwave Sounding Unit (MSU)). This will allow a time series of deep-layer mean temperatures based on MSU measurements to be continued with AMSU measurements. The AMSU is expected to replace the MSU in 1996.
NASA Astrophysics Data System (ADS)
Pasquale, V.; Chiozzi, P.; Verdoya, M.
2013-05-01
Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.
Matroshka AstroRad Radiation Experiment (MARE) on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Gaza, R.; Hussein, H.; Murrow, D.; Hopkins, J.; Waterman, G.; Milstein, O.; Berger, T.; Przybyla, B.; Aeckerlein, J.; Marsalek, K.; Matthiae, D.; Rutczynska, A.
2018-02-01
The Matroshka AstroRad Radiation Experiment is a science payload on Orion EM-1 flight. A research platform derived from MARE is proposed for the Deep Space Gateway. Feedback is invited on desired Deep Space Gateway design features to maximize its science potential.
The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii
NASA Astrophysics Data System (ADS)
Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.
2008-12-01
Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Schaap, M. G.
2012-12-01
Over the past fifteen years, the University of Arizona has carried out four controlled infiltration experiments in a 3600 m2, 15 meter deep vadose zone (Maricopa, Arizona) in which the evolution of moisture content (9 wells, 25 cm resolution), and matric potential (27 locations) was monitored and the subsurface stratigraphy, texture (1042 samples), and bulk density (251 samples) was characterized. In order to simulate the subsurface moisture dynamics it is necessary to define the 3D structure of the subsurface hydraulic characteristics (i.e. moisture retention and hydraulic functions). Several simple to complex strategies are possible ranging from stratigraphy based layering using hydraulic parameters derived from core samples to sophisticated numerical inversions based on 3D geostatistics and site-specific pedotransfer functions. A range of approaches will be evaluated on objective metrics that quantify how well the observed moisture dynamics are matched by simulations. We will evaluate the worth of auxiliary data such as observed matric potentials and quantity the number of texture samples needed to arrive at effective descriptions of subsurface structure. In addition, we will discuss more subjective metrics that evaluate the relative effort involved and estimate monetary cost of each method. While some of the results will only be valid for the studied site, some general conclusions will be possible about the effectiveness of particular methods for other semi-arid sites.
Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system
NASA Astrophysics Data System (ADS)
Hegglin, M. I.; Brunner, D.; Wernli, H.; Schwierz, C.; Martius, O.; Hoor, P.; Fischer, H.; Spelten, N.; Schiller, C.; Krebsbach, M.; Parchatka, U.; Weers, U.; Staehelin, J.; Peter, Th.
2004-01-01
Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52° N) to Faro, Portugal (37° N) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the intrusion features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365 K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM model are seen only up to about tropopause height at 340 hPa and 270hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models.
Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system
NASA Astrophysics Data System (ADS)
Hegglin, M. I.; Brunner, D.; Wernli, H.; Schwierz, C.; Martius, O.; Hoor, P.; Fischer, H.; Parchatka, U.; Spelten, N.; Schiller, C.; Krebsbach, M.; Weers, U.; Staehelin, J.; Peter, Th.
2004-05-01
Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52ºN) to Faro, Portugal (37ºN) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the intrusion features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365 K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM model are seen only up to about tropopause height at 340 hPa and 270hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models.
Central ridge of Newfoundland: Little explored, potential large
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, N.R. De
The Central ridge on the northeastern Grand Banks off Newfoundland represents a large area with known hydrocarbon accumulations and the potential for giant fields. It covers some 17,000 sq km with water less than 400 m deep. The first major hydrocarbon discovery on the Newfoundland Grand Banks is giant Hibernia field in the Jeanne d'Arc basin. Hibernia field, discovered in 1979, has reserves of 666 million bbl and is due onstream in 1997. Since Hibernia, 14 other discoveries have been made on the Grand Banks, with three on the Central ridge. Oil was first discovered on Central Ridge in 1980more » with the Mobil et al. South Tempest G-88 well. In 1982 gas was discovered with the Mobil et al. North Dana I-43 well 30 km northeast of the earlier discovery. In 1983 gas and condensate were discovered with the Husky-Bow Valley et al. Trave E-87 well 20 km south of the South Tempest well. These discoveries are held under significant discovery licenses and an additional 2,400 sq km are held under exploration licenses. The paper discusses the history of the basin, the reservoir source traps, and the basin potential.« less
NASA Astrophysics Data System (ADS)
Hernández-Molina, Francisco Javier; Stow, Dorrik A. V.; Llave, Estefanía; Rebesco, Michele; Ercilla, Gemma; van Rooij, David; Mena, Anxo; Vázquez, Juan-Tomás; Voelker, Antje H. L.
2011-12-01
Deep-water circulation is a critical part of the global conveyor belt that regulates Earth's climate. The bottom (contour)-current component of this circulation is of key significance in shaping the deep seafloor through erosion, transport, and deposition. As a result, there exists a high variety of large-scale erosional and depositional features (drifts) that together form more complex contourite depositional systems on continental slopes and rises as well as in ocean basins, generated by different water masses flowing at different depths and at different speeds either in the same or in opposite directions. Yet, the nature of these deep-water processes and the deposited contourites is still poorly understood in detail. Their ultimate decoding will undoubtedly yield information of fundamental importance to the earth and ocean sciences. The international congress Deep-water Circulation: Processes & Products was held from 16-18 June 2010 in Baiona, Spain, hosted by the University of Vigo. Volume 31(5/6) of Geo-Marine Letters is a special double issue containing 17 selected contributions from the congress, guest edited by F.J. Hernández-Molina, D.A.V. Stow, E. Llave, M. Rebesco, G. Ercilla, D. Van Rooij, A. Mena, J.-T. Vázquez and A.H.L. Voelker. The papers and discussions at the congress and the articles in this special issue provide a truly multidisciplinary perspective of interest to both academic and industrial participants, contributing to the advancement of knowledge on deep-water bottom circulation and related processes, as well as contourite sedimentation. The multidisciplinary contributions (including geomorphology, tectonics, stratigraphy, sedimentology, paleoceanography, physical oceanography, and deep-water ecology) have demonstrated that advances in paleoceanographic reconstructions and our understanding of the ocean's role in the global climate system depend largely on the feedbacks among disciplines. New insights into the link between the biota of deep-water ecosystems and bottom currents confirm the need for this field to be investigated and mapped in detail. Likewise, it is confirmed that deep-water contourites are not only of academic interest but also potential resources of economic value. Cumulatively, both the congress and the present volume serve to demonstrate that the role of bottom currents in shaping the seafloor has to date been generally underestimated, and that our understanding of such systems is still in its infancy. Future research on contourites, using new and more advanced techniques, should focus on a more detailed visualization of water-mass circulation and its variability, in order to decipher the physical processes involved and the associations between drifts and other common bedforms. Moreover, contourite facies models should be better established, including their associations with other deep-water sedimentary environments both in modern and ancient submarine domains. The rapid increase in deep-water exploration and the new deep-water technologies available to the oil industry and academic institutions will undoubtedly lead to spectacular advances in contourite research in terms of processes, morphology, sediment stacking patterns, facies, and their relationships with other deep-marine depositional systems.
Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.
Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua
2014-04-01
Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.
Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic
Burgess, W.G.; Hoque, M.A.; Michael, H.A.; Voss, C.I.; Breit, G.N.; Ahmed, K.M.
2010-01-01
Shallow groundwater, the primary water source in the Bengal Basin, contains up to 100 times the World Health Organization (WHO) drinking-water guideline of 10g l 1 arsenic (As), threatening the health of 70 million people. Groundwater from a depth greater than 150m, which almost uniformly meets the WHO guideline, has become the preferred alternative source. The vulnerability of deep wells to contamination by As is governed by the geometry of induced groundwater flow paths and the geochemical conditions encountered between the shallow and deep regions of the aquifer. Stratification of flow separates deep groundwater from shallow sources of As in some areas. Oxidized sediments also protect deep groundwater through the ability of ferric oxyhydroxides to adsorb As. Basin-scale groundwater flow modelling suggests that, over large regions, deep hand-pumped wells for domestic supply may be secure against As invasion for hundreds of years. By contrast, widespread deep irrigation pumping might effectively eliminate deep groundwater as an As-free resource within decades. Finer-scale models, incorporating spatial heterogeneity, are needed to investigate the security of deep municipal abstraction at specific urban locations. ?? 2010 Macmillan Publishers Limited. All rights reserved.
Gaussian basis functions for highly oscillatory scattering wavefunctions
NASA Astrophysics Data System (ADS)
Mant, B. P.; Law, M. M.
2018-04-01
We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.
Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume
Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B
2016-01-01
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4–V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1–C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations. PMID:26230048
NASA Astrophysics Data System (ADS)
Baker, Philip; Minzlaff, Ulrike; Schoenle, Alexandra; Schwabe, Enrico; Hohlfeld, Manon; Jeuck, Alexandra; Brenke, Nils; Prausse, Dennis; Rothenbeck, Marcel; Brix, Saskia; Frutos, Inmaculada; Jörger, Katharina M.; Neusser, Timea P.; Koppelmann, Rolf; Devey, Colin; Brandt, Angelika; Arndt, Hartmut
2018-02-01
Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07-3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024-0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link between surface and benthic production and has to be further considered in the future as a regular carbon input to the deep-sea floor in the North Atlantic.
Code of Federal Regulations, 2013 CFR
2013-07-01
... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...
Code of Federal Regulations, 2014 CFR
2014-07-01
... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...
Code of Federal Regulations, 2012 CFR
2012-07-01
... a result of drilling a phase 2 or phase 3 ultra-deep well? 203.30 Section 203.30 Mineral Resources... for royalty relief as a result of drilling a phase 2 or phase 3 ultra-deep well? Your lease may... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from...
Brien, Dianne L.; Reid, Mark E.
2007-01-01
Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the base of Qva, thereby increasing the potential for landslides. Our analysis simulates the ground-water flow using the results of a 3-D ground-water flow model, MODFLOW-2000 (Harbaugh and others, 2000), to generate a 3-D pore-pressure field. Areas of elevated pore pressure reflect the influence of a perched ground-water table in Qva, as well as ground-water convergence in the coastal re-entrants. We obtain a realistic model of deep-seated landsliding by combining 3-D pore pressures with heterogeneous strength properties. The results show the least-stable areas where pore pressures are locally elevated in Qva. We compare our results with records of past landslides. The predicted leaststable areas include two historically active deep-seated landslides and areas adjacent to these landslides.
Relativistic features and time delay of laser-induced tunnel ionization
NASA Astrophysics Data System (ADS)
Yakaboylu, Enderalp; Klaiber, Michael; Bauke, Heiko; Hatsagortsyan, Karen Z.; Keitel, Christoph H.
2013-12-01
The electron dynamics in the classically forbidden region during relativistic tunnel ionization is investigated. The classical forbidden region in the relativistic regime is identified by defining a gauge-invariant total-energy operator. Introducing position-dependent energy levels inside the tunneling barrier, we demonstrate that the relativistic tunnel ionization can be well described by a one-dimensional intuitive picture. This picture predicts that, in contrast to the well-known nonrelativistic regime, the ionized electron wave packet arises with a momentum shift along the laser's propagation direction. This is compatible with results from a strong-field approximation calculation where the binding potential is assumed to be zero ranged. Further, the tunneling time delay, stemming from Wigner's definition, is investigated for model configurations of tunneling and compared with results obtained from the exact propagator. By adapting Wigner's time delay definition to the ionization process, the tunneling time is investigated in the deep-tunneling and in the near-threshold-tunneling regimes. It is shown that while in the deep-tunneling regime signatures of the tunneling time delay are not measurable at remote distance, they are detectable, however, in the latter regime.
Rajmohan, Natarajan; Patel, Neelam; Singh, Gaurav; Amarasinghe, Upali A
2017-09-01
Groundwater samples were collected from 44 wells in the Ramganga Sub-Basin (RSB), India, and analysed for major ions, nutrients and trace metals. The primary goal of this study is to evaluate the hydrochemistry and to identify the geochemical processes that govern the water chemistry in the shallow and deep tube wells in the study area using geochemical methods. The knowledge of changes in hydrochemistry of the aquifers is important for both groundwater recharge and use in the region. This study found that there are substantial differences of water chemistry between shallow and deep wells. In the shallow wells, the average concentrations of total dissolved solid (TDS), Na, K, Ca, Mg, HCO 3 , Cl, SO 4 , NO 3 , PO 4 , F, Cu, Mn, Fe and Cr are twofold higher than the deep wells. The concentrations of dissolved silica in the groundwater do not vary with the depth, which implies that the variation in the water chemistry is not due to mineral dissolution alone. Major ion ratios and saturation indices suggest that the water chemistry is predominantly controlled by dissolution of carbonate minerals, silicate weathering and ion exchange reactions. Thermodynamic evaluation (ion activity ratios and stability filed diagrams) indicates that the kaolinite and gibbsite controlled the water chemistry in the both shallow and deep wells. In addition, the groundwater chemistry in the shallow wells is affected by the vertical infiltration of contaminated water from surface contamination sources and nitrification process. In the deep wells, absence of NO 3 and low concentrations of Cl, SO 4 , PO 4 and F imply the role of regional flow and denitrification in the groundwater. Results concluded that proper management plan is necessary to protect the shallow aquifer in the RSB since shallow aquifer pumping is less expensive than the deeper one.
Machine Learning in Medical Imaging.
Giger, Maryellen L
2018-03-01
Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision medicine. Copyright © 2018. Published by Elsevier Inc.
30 CFR 203.45 - If I drill a certified unsuccessful well, what royalty relief will my lease earn?
Code of Federal Regulations, 2011 CFR
2011-07-01
... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.45 If I drill a certified unsuccessful well, what... 30 Mineral Resources 2 2011-07-01 2011-07-01 false If I drill a certified unsuccessful well, what...
Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease
Milosevic, Luka; Kalia, Suneil K; Hodaie, Mojgan; Lozano, Andres M; Fasano, Alfonso; Popovic, Milos R; Hutchison, William D
2018-01-01
Abstract Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease symptoms. The therapeutic benefits of deep brain stimulation are frequency-dependent, but the underlying physiological mechanisms remain unclear. To advance deep brain stimulation therapy an understanding of fundamental mechanisms is critical. The objectives of this study were to (i) compare the frequency-dependent effects on cell firing in subthalamic nucleus and substantia nigra pars reticulata; (ii) quantify frequency-dependent effects on short-term plasticity in substantia nigra pars reticulata; and (iii) investigate effects of continuous long-train high frequency stimulation (comparable to conventional deep brain stimulation) on synaptic plasticity. Two closely spaced (600 µm) microelectrodes were advanced into the subthalamic nucleus (n = 27) and substantia nigra pars reticulata (n = 14) of 22 patients undergoing deep brain stimulation surgery for Parkinson’s disease. Cell firing and evoked field potentials were recorded with one microelectrode during stimulation trains from the adjacent microelectrode across a range of frequencies (1–100 Hz, 100 µA, 0.3 ms, 50–60 pulses). Subthalamic firing attenuated with ≥20 Hz (P < 0.01) stimulation (silenced at 100 Hz), while substantia nigra pars reticulata decreased with ≥3 Hz (P < 0.05) (silenced at 50 Hz). Substantia nigra pars reticulata also exhibited a more prominent increase in transient silent period following stimulation. Patients with longer silent periods after 100 Hz stimulation in the subthalamic nucleus tended to have better clinical outcome after deep brain stimulation. At ≥30 Hz the first evoked field potential of the stimulation train in substantia nigra pars reticulata was potentiated (P < 0.05); however, the average amplitude of the subsequent potentials was rapidly attenuated (P < 0.01). This is suggestive of synaptic facilitation followed by rapid depression. Paired pulse ratios calculated at the beginning of the train revealed that 20 Hz (P < 0.05) was the minimum frequency required to induce synaptic depression. Lastly, the average amplitude of evoked field potentials during 1 Hz pulses showed significant inhibitory synaptic potentiation after long-train high frequency stimulation (P < 0.001) and these increases were coupled with increased durations of neuronal inhibition (P < 0.01). The subthalamic nucleus exhibited a higher frequency threshold for stimulation-induced inhibition than the substantia nigra pars reticulata likely due to differing ratios of GABA:glutamate terminals on the soma and/or the nature of their GABAergic inputs (pallidal versus striatal). We suggest that enhancement of inhibitory synaptic plasticity, and frequency-dependent potentiation and depression are putative mechanisms of deep brain stimulation. Furthermore, we foresee that future closed-loop deep brain stimulation systems (with more frequent off stimulation periods) may benefit from inhibitory synaptic potentiation that occurs after high frequency stimulation. PMID:29236966
Sensitivity Studies of 3D Reservoir Simulation at the I-Lan Geothermal Area in Taiwan Using TOUGH2
NASA Astrophysics Data System (ADS)
Kuo, C. W.; Song, S. R.
2014-12-01
A large scale geothermal project conducted by National Science Council is initiated recently in I-Lan south area, northeastern Taiwan. The goal of this national project is to generate at least 5 MW electricity from geothermal energy. To achieve this goal, an integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature distribution, hydrology, geochemistry, heat source study etc. were performed to build a large scale 3D conceptual model of the geothermal potential sites. In addition, not only a well of 3000m deep but also several shallow wells are currently drilling to give us accurate information about the deep underground. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The geothermal gradient measured at one drilling well (1200m) is about 49.1˚C/km. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. The preliminary results of this area from all the investigations are used as input parameters to create a realistic numerical reservoir model. This work is using numerical simulator TOUGH2/EOS1 to study the geothermal energy potential in I-Lan area. Once we can successfully predict the geothermal energy potential in this area and generate 5 MW electricity, we can apply the similar methodology to the other potential sites in Taiwan, and therefore increase the percentage of renewable energy in the generation of electricity. A large scale of three-dimensional subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. The dimensions of the reservoir model in x, y, and z coordinates are 20x10x5 km, respectively. Once the conceptual model and the well locations are set up appropriately based on the field data, sensitivity studies on production and injection rates, heat source, fractures, and all the relevant parameters are performed to evaluate their effects on temperature distribution of reservoir for 30 years. Through these sensitivity studies, we can design the better geothermal system in I-Lan area and reduce the risk of exploitation.
The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform
NASA Astrophysics Data System (ADS)
Bhattacharya, S.
2018-02-01
Life science research on the Deep Space Gateway platform is an important precursor for long term human exploration of deep space. Ideas for utilizing flight hardware and well characterized model organisms will be discussed.
NASA Astrophysics Data System (ADS)
Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.
2014-12-01
In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.
NASA Astrophysics Data System (ADS)
Viikari, L.
This paper will examine the resource utilization regime as established by the body of international space law and by the 1979 Moon Treaty in particular, as well as the current problems pertaining to it. A particular area of interest is environmental protection vis-à-vis resource utilization. A potential source of fruitful analogy is provided by the deep seabed mineral utilization regime, as established by the 1982 United Nations Convention on the Law of the Sea, the 1994 New York Agreement amending it, and the recent 2000 Mining Code as the first part of more detailed regulations that will eventually govern exploration for and exploitation of all deep seabed minerals. Such comparison seems advantageous, because several developments in the field of using the space environment are showing obvious similarities with previous developments in the law of the sea regarding deep seabed resource management. The Moon and the deep seabed (and their natural resources) are also the only environs explicitly proclaimed as the common heritage of mankind. On the other hand, both domains are increasingly affected by commercializat ion and privatization, too. A recent new (legally non-binding) instrument for space activities is the 1996 Declaration on International Cooperation in the Exploration and Use of Outer Space for the Benefit and in the Interests of All States, Taking into Particular Account the Needs of Developing Countries. It attempts at an important compromise regarding the Common Heritage provision, offering a means to share benefits while recognizing market principles. These principles very much resemble the previous solutions adopted by the 1994 New York Agreement for the deep seabed. The paper attempts to reflect in particular upon the experience available from such developments.
Microbial community profiles and microbial carbon cycling in Orca Basin
NASA Astrophysics Data System (ADS)
Hyde, A.; Teske, A.; Joye, S. B.; Montoya, J. P.; Nigro, L.
2016-12-01
Orca Basin is the largest seafloor brine pools in the world, covering over 400 km2 and reaching brine layer depths of 200 m. The brine pool contains water 8 times denser than the overlying seawater and is separated from the overlying water column by a sharp pycnocline that prevents vertical mixing. The transition from ambient seawater to brine occurs over 100 m [2150 to 2250 m] and is characterized by distinct changes in temperature, salinity, chemical conditions, oxygen, and organic matter concentration. The sharp brine-seawater interface results in a sharp pycnocline, which serves as a particle trap for sinking marine organic matter. Previous studies have used lipids to show that this organic-rich interface is host to an active microbial community which is potentially involved in deep-sea carbon remineralization and metal-cycling. Additionally, previous work on methane, ethane, and propane concentrations and 13C-isotopic signatures has also implicated the brine pool, as well as the interface, as sources for biogenic low-molecular weight hydrocarbons, resulting from the high concentration of suspended organic matter above and within the brine pool. Here we investigate the profiles of microbial community composition and metabolic potential in Orca Basin, ranging from seawater through the Orca Basin chemocline and into the deep Orca Basin brine. To characterize the microbial community and stratification, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing of filtered water above, within, and below the Orca Basin chemocline. Our sequence data shows that three distinct and unique communities exist in the Orca Basin water column. We also use thermodynamic modeling of hydrocarbon degradation to investigate the favorability of C1-C3 hydrocarbon oxidation at the brine-seawater interface and the potential for Orca Basin to serve as a deep-sea hydrocarbon sink.
Going deeper in the automated identification of Herbarium specimens.
Carranza-Rojas, Jose; Goeau, Herve; Bonnet, Pierre; Mata-Montero, Erick; Joly, Alexis
2017-08-11
Hundreds of herbarium collections have accumulated a valuable heritage and knowledge of plants over several centuries. Recent initiatives started ambitious preservation plans to digitize this information and make it available to botanists and the general public through web portals. However, thousands of sheets are still unidentified at the species level while numerous sheets should be reviewed and updated following more recent taxonomic knowledge. These annotations and revisions require an unrealistic amount of work for botanists to carry out in a reasonable time. Computer vision and machine learning approaches applied to herbarium sheets are promising but are still not well studied compared to automated species identification from leaf scans or pictures of plants in the field. In this work, we propose to study and evaluate the accuracy with which herbarium images can be potentially exploited for species identification with deep learning technology. In addition, we propose to study if the combination of herbarium sheets with photos of plants in the field is relevant in terms of accuracy, and finally, we explore if herbarium images from one region that has one specific flora can be used to do transfer learning to another region with other species; for example, on a region under-represented in terms of collected data. This is, to our knowledge, the first study that uses deep learning to analyze a big dataset with thousands of species from herbaria. Results show the potential of Deep Learning on herbarium species identification, particularly by training and testing across different datasets from different herbaria. This could potentially lead to the creation of a semi, or even fully automated system to help taxonomists and experts with their annotation, classification, and revision works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan Lu; CHI Zhang; Hai Hanag
2014-04-01
Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoringmore » the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.« less
Student Engagement for Effective Teaching and Deep Learning
ERIC Educational Resources Information Center
Dunleavy, Jodene; Milton, Penny
2008-01-01
Today, all young people need to learn to "use their minds well" through deep engagement in learning that reflects skills, knowledge, and dispositions fit for their present lives as well as the ones they aspire to in the future. More than ever, their health and well being, success in the workplace, ability to construct identities and…
USDA-ARS?s Scientific Manuscript database
Previous work conducted by the Wisconsin Geological and Natural History Survey indicated that human enteric viruses from leaking sewers are present in several municipal wells in Madison, WI. These wells are the drinking water source for the City of Madison, are typically 700 to 900 feet deep, and pe...
Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes
NASA Astrophysics Data System (ADS)
Fink, Gabriel; Wessels, Martin; Wüest, Alfred
2016-09-01
Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 400 meters deep. (b) The lease has not produced gas or oil from a deep well or an ultra-deep well, except as provided in § 203.31(b). (c) If the lease is located entirely in more than 200 meters and entirely less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., State, or local laws and regulations. (1) Incineration. (2) Landfill. (3) Deep well injection. (d... by the following. This provision does not supercede any applicable Federal, State, or local laws and regulations. (1) Incineration. (2) Landfill. (3) Deep well injection. (b) Disposal of the process stream...
Proving Ground Potential Mission and Flight Test Objectives and Near Term Architectures
NASA Technical Reports Server (NTRS)
Smith, R. Marshall; Craig, Douglas A.; Lopez, Pedro Jr.
2016-01-01
NASA is developing a Pioneering Space Strategy to expand human and robotic presence further into the solar system, not just to explore and visit, but to stay. NASA's strategy is designed to meet technical and non-technical challenges, leverage current and near-term activities, and lead to a future where humans can work, learn, operate, and thrive safely in space for an extended, and eventually indefinite, period of time. An important aspect of this strategy is the implementation of proving ground activities needed to ensure confidence in both Mars systems and deep space operations prior to embarking on the journey to the Mars. As part of the proving ground development, NASA is assessing potential mission concepts that could validate the required capabilities needed to expand human presence into the solar system. The first step identified in the proving ground is to establish human presence in the cis-lunar vicinity to enable development and testing of systems and operations required to land humans on Mars and to reach other deep space destinations. These capabilities may also be leveraged to support potential commercial and international objectives for Lunar Surface missions. This paper will discuss a series of potential proving ground mission and flight test objectives that support NASA's journey to Mars and can be leveraged for commercial and international goals. The paper will discuss how early missions will begin to satisfy these objectives, including extensibility and applicability to Mars. The initial capability provided by the launch vehicle will be described as well as planned upgrades required to support longer and more complex missions. Potential architectures and mission concepts will be examined as options to satisfy proving ground objectives. In addition, these architectures will be assessed on commercial and international participation opportunities and on how well they develop capabilities and operations applicable to Mars vicinity missions.
How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry
NASA Astrophysics Data System (ADS)
Gutiérrez del Arroyo, O.; Silver, W. L.
2016-12-01
Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction, as well as physiochemical interactions between organic molecules and minerals in the heavy fraction. Together, our data suggests that hurricane disturbances, by providing unusually large quantities of litterfall, can serve as a periodic subsidy of organic matter to the soil, which helps to maintain soil fertility and promote soil C sequestration.
NASA Astrophysics Data System (ADS)
Lucier, Amie Marie
The role of geomechanical analysis in characterizing the feasibility of CO2 sequestration in deep saline aquifers is addressed in two investigations. The first investigation was completed as part of the Ohio River Valley CO2 Storage Project. We completed a geomechanical analysis of the Rose Run Sandstone, a potential injection zone, and its adjacent formations at the American Electric Power's 1.3 GW Mountaineer Power Plant in New Haven, West Virginia. The results of this analysis were then used to evaluate the feasibility of anthropogenic CO2 sequestration in the potential injection zone. First, we incorporated the results of the geomechanical analysis with a geostatistical aquifer model in CO2 injection flow simulations to test the effects of introducing a hydraulic fracture to increase injectivity. Then, we determined that horizontal injection wells at the Mountaineer site are feasible because the high rock strength ensures that such wells would be stable in the local stress state. Finally, we evaluated the potential for injection-induced seismicity. The second investigation concerning CO2 sequestration was motivated by the modeling and fluid flow simulation results from the first study. The geomechanics-based assessment workflow follows a bottom-up approach for evaluating regional deep saline aquifer CO2 injection and storage feasibility. The CO2 storage capacity of an aquifer is a function of its porous volume as well as its CO2 injectivity. For a saline aquifer to be considered feasible in this assessment it must be able to store a specified amount of CO2 at a reasonable cost per ton of CO 2. The proposed assessment workflow has seven steps. The workflow was applied to a case study of the Rose Run sandstone in the eastern Ohio River Valley. We found that it is feasible in this region to inject and store 113 Mt CO2/yr for 30 years at an associated well cost of less than 1.31 US$/t CO2, but only if injectivity enhancement techniques such as hydraulic fracturing and injection induced micro-seismicity are implemented. The second issue to which we apply geomechanical analysis in this thesis is mining-induced stress perturbations and induced seismicity in the TauTona gold mine, which is located in the Witwatersrand Basin of South Africa and is one of the deepest underground mines in the world. In the first investigation, we developed and tested a new technique for determining the virgin stress state near the TauTona gold mine. This technique follows an iterative forward modeling approach that combines observations of drilling induced borehole failures in borehole images, boundary element modeling of the mining-induced stress perturbations, and forward modeling of borehole failures based on the results of the boundary element modeling. The final result was a well constrained range of principal stress orientations and magnitudes that are consistent with all the observed failures and other stress indicators. In the second investigation, we used this constrained stress state to examine the likelihood of faulting to occur both on pre-existing fault planes that are optimally oriented to the virgin stress state and on faults affected by the mining-perturbed stress field, the latter of which is calculated with boundary element modeling. We made several recommendations that could potentially increase safety in deep South African mines as development continues. Finally, the third issue addressed in this thesis is the detection of stress-induced shear wave velocity anisotropy in a sub-salt environment. In this study, we tested a technique proposed by Boness and Zoback (2006) to identify structure-induced velocity anisotropy and isolate possible stress-induced velocity anisotropy. The investigation used cross-dipole sonic data from three deep water sub-salt wells in the Gulf of Mexico. First, we determined the parameters necessary to ensure the quality of the fast azimuth data used in our analysis. We then characterized the quality controlled measured fast directions as either structure-induced or stress-induced based on the results of the Boness and Zoback (2006) technique. We found that this technique supplements the use of dispersion curve analysis for characterizing anisotropy mechanisms. We also find that this technique has the potential to provide information on the stresses that can be used to validate numerical models of salt-related stress perturbations. (Abstract shortened by UMI.)
Deep learning of unsteady laminar flow over a cylinder
NASA Astrophysics Data System (ADS)
Lee, Sangseung; You, Donghyun
2017-11-01
Unsteady flow over a circular cylinder is reconstructed using deep learning with a particular emphasis on elucidating the potential of learning the solution of the Navier-Stokes equations. A deep neural network (DNN) is employed for deep learning, while numerical simulations are conducted to produce training database. Instantaneous and mean flow fields which are reconstructed by deep learning are compared with the simulation results. Fourier transform of flow variables has been conducted to validate the ability of DNN to capture both amplitudes and frequencies of flow motions. Basis decomposition of learned flow is performed to understand the underlying mechanisms of learning flow through DNN. The present study suggests that a deep learning technique can be utilized for reconstruction and, potentially, for prediction of fluid flow instead of solving the Navier-Stokes equations. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).
Sarmiento-Vizcaíno, Aida; González, Verónica; Braña, Alfredo F; Palacios, Juan J; Otero, Luis; Fernández, Jonathan; Molina, Axayacatl; Kulik, Andreas; Vázquez, Fernando; Acuña, José L; García, Luis A; Blanco, Gloria
2017-02-01
Marine Actinobacteria are emerging as an unexplored source for natural product discovery. Eighty-seven deep-sea coral reef invertebrates were collected during an oceanographic expedition at the submarine Avilés Canyon (Asturias, Spain) in a range of 1500 to 4700 m depth. From these, 18 cultivable bioactive Actinobacteria were isolated, mainly from corals, phylum Cnidaria, and some specimens of phyla Echinodermata, Porifera, Annelida, Arthropoda, Mollusca and Sipuncula. As determined by 16S rRNA sequencing and phylogenetic analyses, all isolates belong to the phylum Actinobacteria, mainly to the Streptomyces genus and also to Micromonospora, Pseudonocardia and Myceligenerans. Production of bioactive compounds of pharmacological interest was investigated by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) techniques and subsequent database comparison. Results reveal that deep-sea isolated Actinobacteria display a wide repertoire of secondary metabolite production with a high chemical diversity. Most identified products (both diffusible and volatiles) are known by their contrasted antibiotic or antitumor activities. Bioassays with ethyl acetate extracts from isolates displayed strong antibiotic activities against a panel of important resistant clinical pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi, all of them isolated at two main hospitals (HUCA and Cabueñes) from the same geographical region. The identity of the active extracts components of these producing Actinobacteria is currently being investigated, given its potential for the discovery of pharmaceuticals and other products of biotechnological interest.
Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques
Khalid Hussein
2012-02-01
This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Colorado Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics.
Making sound vortices by metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang
Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.
Making sound vortices by metasurfaces
NASA Astrophysics Data System (ADS)
Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Tang, Kun; Jia, Han; Ke, Manzhu; Peng, Shasha; Liu, Zhengyou
2016-08-01
Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.
Yoga Therapy: Building a Holding Environment for Somatic and Psyche Change.
McClure, Bud
2015-01-01
Drawing on ideas from D.W. Winnicott and the work of Quaker theologian Parker Palmer, this article discusses the concept of a holding environment, its refined understanding in the literature over the years, and how it can be optimally used in yoga therapy. The evidence shows that effectively establishing a holding environment can facilitate both somatic and deep structural change in a client, facilitating healing from primal wounding as well as the potential reconnection to the true self.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, M J; Moran, J E; Esser, B K
2010-04-14
This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sourcesmore » of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.« less
Finder, Stuart G; Bliton, Mark J; Gill, Chandler E; Davis, Thomas L; Konrad, Peter E; Charles, P David
2012-01-01
Central to ethically justified clinical trial design is the need for an informed consent process responsive to how potential subjects actually comprehend study participation, especially study goals, risks, and potential benefits. This will be particularly challenging when studying deep brain stimulation and whether it impedes symptom progression in Parkinson's disease, since potential subjects will be Parkinson's patients for whom deep brain stimulation will likely have therapeutic value in the future as their disease progresses. As part of an expanded informed consent process for a pilot Phase I study of deep brain stimulation in early stage Parkinson's disease, an ethics questionnaire composed of 13 open-ended questions was distributed to potential subjects. The questionnaire was designed to guide potential subjects in thinking about their potential participation. While the purpose of the study (safety and tolerability) was extensively presented during the informed consent process, in returned responses 70 percent focused on effectiveness and 91 percent included personal benefit as poten- tial benefit from enrolling. However, 91 percent also indicated helping other Parkinson's patients as motivation when considering whether or not to enroll. This combination of responses highlights two issues to which investigators need to pay close attention in future trial designs: (1) how, and in what ways, informed consent processes reinforce potential subjects' preconceived understandings of benefit, and (2) that potential subjects see themselves as part of a community of Parkinson's sufferers with responsibilities extending beyond self-interest. More importantly, it invites speculation that a different paradigm for informed consent may be needed.
Investigations of Very High Enthalpy Geothermal Resources in Iceland.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.
2012-12-01
The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal reservoir, without increasing its environmental foot print. If these efforts are successful, in future such very high enthalpy geothermal systems worldwide could become significant energy resources, where ever suitable young volcanic rocks occur, such as in the western USA, Hawaii, and Alaska.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.49 May I substitute the deep gas drilling provisions in § 203.0 and §§ 203.40... 30 Mineral Resources 2 2011-07-01 2011-07-01 false May I substitute the deep gas drilling...
30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to... drills and begins producing from a qualified phase 2 ultra-deep well in 2008 on a lease issued in 2004 in... which was exceeded. Example 2: Assume that a lessee: (1) Drills and produces from well no.1, a qualified...
NASA Astrophysics Data System (ADS)
Xu, M.; Zhong, L.; Yang, Y.
2017-12-01
Under the background of neotectonics, the multistage underground flow system has been form due the different responses of main stream and tributaries to crust uplift. The coupling of multistage underground flow systems influences the development of karst thoroughly. At first, the research area is divided into vadose area, shunted area and exorheic area based on the development characteristics of transverse valley. Combining the controlling-drain action with topographic index and analyzing the coupling features of multistage underground flow system. And then, based on the coupling of multistage underground flow systems, the characteristics of deep karst development were verified by the lossing degree of surface water, water bursting and karst development characteristics of tunnels. The vadose area is regional water system based, whose deep karst developed well. It resulted the large water inflow of tunnels and the surface water drying up. The shunted area, except the region near the transverse valleys, is characterized by regional water system. The developed deep karst make the surface water connect with deep ground water well, Which caused the relatively large water flow of tunnels and the serious leakage of surface water. The deep karst relatively developed poor in the regions near transverse valleys which is characterized by local water system. The exorheic area is local water system based, whose the deep karst developed poor, as well as the connection among surface water and deep ground water. It has result in the poor lossing of the surface water under the tunnel construction. This study broadens the application field of groundwater flow systems theory, providing a new perspective for the study of Karst development theory. Meanwhile it provides theoretical guidance for hazard assessment and environmental negative effect in deep-buried Karst tunnel construction.
The biodiversity of the deep Southern Ocean benthos.
Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K E; Gooday, A J; Hilbig, B; Linse, K; Thomson, M R A; Tyler, P A
2007-01-29
Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.
The biodiversity of the deep Southern Ocean benthos
Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K.E; Gooday, A.J; Hilbig, B; Linse, K; Thomson, M.R.A; Tyler, P.A
2006-01-01
Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae. PMID:17405207
Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model
Stelzer, Robert S.; Bartsch, Lynn
2012-01-01
Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates can be high in deep sediments of upwelling stream reaches, which may have implications for efforts to understand and quantify nitrogen transport and removal at larger scales.
NASA Astrophysics Data System (ADS)
Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; D'Ortenzio, F.; Bouin, M. N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; Coppola, L.; Mortier, L.; Raimbault, P.
2016-11-01
We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high-frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier "vintage" of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10-3/yr) and potential temperature (3.2 ± 0.5 × 10-3 C/yr) observed from 2009 to 2013 for the 600-2300 m layer. For the first time, the overlapping of the three "phases" of deep convection can be observed, with secondary vertical mixing events (2-4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event.
Integrated piezoelectric actuators in deep drawing tools to reduce the try-out
NASA Astrophysics Data System (ADS)
Neugebauer, Reimund; Mainda, Patrick; Kerschner, Matthias; Drossel, Welf-Guntram; Roscher, Hans-Jürgen
2011-05-01
Tool making is a very time consuming and expensive operation because many iteration loops are used to manually adjust tool components during the try-out process. That means that trying out deep drawing tools is 30% of the total costs. This is the reason why an active deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen to reduce the costs and production rates. The main difference between the active and conventional deep drawing tools is using piezoelectric actuators to control the forming process. The active tool idea, which is the main subject of this research, will be presented as well as the findings of experiments with the custom-built deep drawing tool. This experimental tool was designed according to production requirements and has been equipped with piezoelectric actuators that allow active pressure distribution on the sheet metal flange. The disposed piezoelectric elements are similar to those being used in piezo injector systems for modern diesel engines. In order to achieve the required force, the actuators are combined in a cluster that is embedded in the die of the deep drawing tool. One main objective of this work, i.e. reducing the time-consuming try-out-period, has been achieved with the experimental tool which means that the actuators were used to set static pressure distribution between the blankholder and die. We will present the findings of our analysis and the advantages of the active system over a conventional deep drawing tool. In addition to the ability of changing the static pressure distribution, the piezoelectric actuator can also be used to generate a dynamic pressure distribution during the forming process. As a result the active tool has the potential to expand the forming constraints to make it possible to manage forming restrictions caused by light weight materials in future.
NASA Astrophysics Data System (ADS)
Robinson, L. F.; Li, T.; Chen, T.; Burke, A.; Pegrum Haram, A.; Stewart, J.; Rae, J. W. B.; van de Flierdt, T.; Struve, T.; Wilson, D. J.
2017-12-01
Two decades ago it was first noted that the skeletal remains of deep-sea corals had the potential to provide absolutely dated archives of past ocean conditions. In the intervening twenty years this field has developed to the point where strategic collections and high throughput dating techniques now allow high resolution, well dated records of past deep sea behaviour to be produced. Likewise, efforts to improve understanding of biomineralisation and growth rates are leading to refinements in proxy tools useful for examining circulation, nutrient and carbon cycling, temperature and weathering processes. Deep-sea corals are particularly valuable archives in high latitude regions where radiocarbon-based age models are susceptible to large changes in surface reservoir ages. In this presentation we show new high resolution multiproxy records of the Southern Ocean (Drake Passage) made on U-Th dated corals spanning the last glacial cycle. With more than seventeen hundred reconnaissance ages, and around 200 precise isotope dilution U-Th ages, subtle changes in ocean behaviour can be identified during times of abrupt climate change. The geochemical signature of corals from the deepest sites, closest to modern day Lower Circumpolar Deep Waters, typically show a gradual shift from glacial to Holocene values during deglaciation, likely related to ventilation of the deep ocean. By contrast for the samples collected shallower in the water column (within sites currently bathed by Upper Circumpolar Deep Waters and Antarctic Intermediate and Mode Waters) the evidence points to a more complicated picture. Vertical zonation in the geochemical data suggests that periods of stratification are interspersed with mixing events within the upper 1500m of the water column. At the same time comparison to U-Th dated records from the low latitude Pacific and Atlantic points to an important role for the Southern Ocean in feeding the intermediate waters of both ocean basins throughout the deglaciation.
Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gomberg, Steve
2015-11-01
The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal)more » could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.« less
Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui
2018-04-24
An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Mayot, Nicolas; D'Ortenzio, Fabrizio; Uitz, Julia; Gentili, Bernard; Ras, Joséphine; Vellucci, Vincenzo; Golbol, Melek; Antoine, David; Claustre, Hervé
2017-12-01
Satellite ocean color observations revealed that unusually deep convection events in 2005, 2006, 2010, and 2013 led to an increased phytoplankton biomass during the spring bloom over a large area of the northwestern Mediterranean Sea (NWM). Here we investigate the effects of these events on the seasonal phytoplankton community structure, we quantify their influence on primary production, and we discuss the potential biogeochemical impact. For this purpose, we compiled in situ phytoplankton pigment data from five ship surveys performed in the NWM and from monthly cruises at a fixed station in the Ligurian Sea. We derived primary production rates from a light photosynthesis model applied to these in situ data. Our results confirm that the maximum phytoplankton biomass during the spring bloom is larger in years associated with intense deep convection events (+51%). During these enhanced spring blooms, the contribution of diatoms to total phytoplankton biomass increased (+33%), as well as the primary production rate (+115%). The occurrence of a highly productive bloom is also related to an increase in the phytoplankton bloom area (+155%) and in the relative contribution of diatoms to primary production (+63%). Therefore, assuming that deep convection in the NWM could be significantly weakened by future climate changes, substantial decreases in the spring production of organic carbon and of its export to deep waters can be expected.
The Deep Impact Network Experiment Operations Center
NASA Technical Reports Server (NTRS)
Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan
2009-01-01
Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.
Is the genetic landscape of the deep subsurface biosphere affected by viruses?
Anderson, Rika E; Brazelton, William J; Baross, John A
2011-01-01
Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.
Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses?
Anderson, Rika E.; Brazelton, William J.; Baross, John A.
2011-01-01
Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host–virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus–host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems. PMID:22084639
Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy.
Kyathanahally, Sreenath P; Döring, André; Kreis, Roland
2018-09-01
To make use of deep learning (DL) methods to detect and remove ghosting artifacts in clinical magnetic resonance spectra of human brain. Deep learning algorithms, including fully connected neural networks, deep-convolutional neural networks, and stacked what-where auto encoders, were implemented to detect and correct MR spectra containing spurious echo ghost signals. The DL methods were trained on a huge database of simulated spectra with and without ghosting artifacts that represent complex variations of ghost-ridden spectra, transformed to time-frequency spectrograms. The trained model was tested on simulated and in vivo spectra. The preliminary results for ghost detection are very promising, reaching almost 100% accuracy, and the DL ghost removal methods show potential in simulated and in vivo spectra, but need further refinement and quantitative testing. Ghosting artifacts in spectroscopy are problematic, as they superimpose with metabolites and lead to inaccurate quantification. Detection and removal of ghosting artifacts using traditional machine learning approaches with feature extraction/selection is difficult, as ghosts appear at different frequencies. Here, we show that DL methods perform extremely well for ghost detection if the spectra are treated as images in the form of time-frequency representations. Further optimization for in vivo spectra will hopefully confirm their "ghostbusting" capacity. Magn Reson Med 80:851-863, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE
The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...
Quantifying Potential Groundwater Recharge In South Texas
NASA Astrophysics Data System (ADS)
Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.
2015-12-01
Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.
A Critical Test of Nd isotopes as a Paleocirculation Proxy in the Southwest Atlantic
NASA Astrophysics Data System (ADS)
Wu, Y.; Goldstein, S. L.; Pena, L.; Hartman, A. E.; Rijkenberg, M. J. A.; de Baar, H. J. W.
2016-12-01
The application of Nd isotopes as a paleo-ocean circulation tracer assumes that Nd isotope ratios (ɛNd) effectively fingerprint different water masses and approximate expected values from water mass mixing. The Southwest Atlantic, with the major water masses involved in the Atlantic Meridional Ocean Circulation (southward flowing North Atlantic Deep Water, northward flowing Antarctic Intermediate Water and Antarctic Bottom Water), is one of the best places on Earth to evaluate how well Nd isotope ratios act like a conservative water mass tracer in the modern ocean. Seawater profiles and core-top sediments from 17 stations were sampled in the Southwest Atlantic in the South Atlantic Meridional GEOTRACES cruise (GA02 Leg 3; RRS James Cook 057) between Tierra del Fuego and the Equator. Along the cruise track, along with the possibility of "boundary exchange", there are several additional potential sources that could add external Nd to seawater and disturb the "quasi-conservative" behavior of ɛNd. For example, it transects the continental shelf in the far south, the Rio Grande Rise, volcanic seamounts, and the major geological age boundaries of South America. It also crosses the major Southern Hemisphere wind zones, allowing us to test the impacts of eolian dust input, as well as inputs from major rivers. Our results on seawater ɛNd show strikingly that the Southwest Atlantic transect confirms "quasi-conservative" behavior of ɛNd in intermediate and deep water. Shallow depths show local impacts but these are not transferred to intermediate and deep water.
Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal
2006-09-30
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinesh Agrawal; Paul Gigl; Mark Hunt
2007-07-31
The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joiningmore » (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.« less
Aissaoui, Tayeb; AlNashef, Inas M; Hayyan, Maan; Hashim, Mohd Ali
2015-10-05
Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, III, Ramiro; Cai, Min; Tlach, Brian
Four new cross-conjugated small molecules based on a central benzo[1,2-d:4,5-d']bisoxazole moiety possessing semi-independently tunable HOMO and LUMO levels were synthesized and the properties of these materials were evaluated experimentally and theoretically. The molecules were thermally stable with 5% weight loss occurring well above 350 °C. The cruciforms all exhibited blue emission in solution ranging from 433–450 nm. Host–guest OLEDs fabricated from various concentrations of these materials using the small molecule host 4,4'-bis(9-carbazolyl)-biphenyl (CBP) exhibited deep blue-emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.15 ≤ x ≤ 0.17, 0.05 ≤ y ≤ 0.11), and maximum luminance efficiencies as highmore » as ~2 cd A–1. Lastly, these results demonstrate the potential of benzobisoxazole cruciforms as emitters for developing high-performance deep blue OLEDs.« less
Photoacoustic tomography of foreign bodies in soft biological tissue.
Cai, Xin; Kim, Chulhong; Pramanik, Manojit; Wang, Lihong V
2011-04-01
In detecting small foreign bodies in soft biological tissue, ultrasound imaging suffers from poor sensitivity (52.6%) and specificity (47.2%). Hence, alternative imaging methods are needed. Photoacoustic (PA) imaging takes advantage of strong optical absorption contrast and high ultrasonic resolution. A PA imaging system is employed to detect foreign bodies in biological tissues. To achieve deep penetration, we use near-infrared light ranging from 750 to 800 nm and a 5-MHz spherically focused ultrasonic transducer. PA images were obtained from various targets including glass, wood, cloth, plastic, and metal embedded more than 1 cm deep in chicken tissue. The locations and sizes of the targets from the PA images agreed well with those of the actual samples. Spectroscopic PA imaging was also performed on the objects. These results suggest that PA imaging can potentially be a useful intraoperative imaging tool to identify foreign bodies.
Ramsey, Shaun C; Flaherty, Patrick M
2015-06-01
Deep vein thrombosis (DVT) is commonly encountered in the emergency department. Clinical models, such as the Wells criteria, allow physicians to estimate the probability of DVT in a patient. Current literature suggests a low pretest probability combined with a negative D-dimer laboratory study rules out DVT approximately 99% of the time. This case discusses a 37-year-old male patient who had a low pretest probability and a negative D-dimer, but was found to have a DVT on Doppler ultrasound. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: The astute emergency physician must not discount clinical suspicion in order to decide when radiographic imaging is warranted for a possible venous thromboembolism. New adjuncts, such as bedside ultrasonography, can also be implemented to further risk stratify patients, potentially decreasing morbidity and mortality associated with DVT. Copyright © 2015 Elsevier Inc. All rights reserved.
New technology applications: thrombolysis of acute deep vein thrombosis.
Marchigiano, Gail; Riendeau, Debra; Jo Morse, Carol
2006-01-01
Treatment of deep vein thrombosis traditionally has focused on preventing the potentially life-threatening complication of pulmonary embolism rather than on removing or reducing the thrombus. Although treatment with anticoagulants may prevent thrombus propagation, the body's intrinsic thrombolytic system is left to attempt clot dissolution. Because this natural process is generally ineffective in its ability to fully recanalize a proximal vein, the risks of recurrent thrombosis as well as the disabling complication of postthrombotic syndrome increase. Moreover, the long-term consequences of postthrombotic syndrome include pain, disability, and, for many, a significant decrease in the quality of life. Recent technology using high-frequency, low-power ultrasound, or mechanical thrombectomy with catheter-directed delivery of a thrombolytic drug directly into the clot is available and showing promise. Nurses are caring for patients who receive endovascular interventions with lytic infusions. The nursing challenge is to provide safe and effective patient care.
NASA Astrophysics Data System (ADS)
Chen, Hu; Zhang, Yi; Zhou, Jiliu; Wang, Ge
2017-09-01
Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods. Especially, our method has been favorably evaluated in terms of noise suppression and structural preservation.
Characteristics and factors of groundwater contamination in Asian coastal megacities
NASA Astrophysics Data System (ADS)
Saito, M.; Onodera, S. I.; Jin, G.; Shimizu, Y.; Admajaya, F. T.
2017-12-01
For the sustainable use of groundwater resources for the future, it is important to conserve its quality as well as quantity. Especially in the developing megacities, land subsidence and groundwater pollution by several contaminants (e.g. nitrogen, trace metals and organic pollutants etc.) is one of a critical environmental problems, because of the intensive extraction of groundwater and huge amount of contaminant load derived from domestic wastewater as well as agricultural and industrial wastewater. However, the process of groundwater degradation, including depletion and contamination with urbanization, has not been examined well in the previous studies. In the present study, we aim to confirm the characteristics and factors of groundwater contamination in coastal Asian megacities such as Osaka and Jakarta. In Osaka, groundwater was used as a water resource during the period of rapid population increase before 1970, and consequently groundwater resources have been degraded. Hydraulic potential of groundwater has been recovered after the regulation for abstraction. However, it is still below sea level in the deeper aquifer (>20 m) of some regions, and higher Cl-, NH4+-N and PO43-P concentrations were detected in these regions. The results also suggest that shallower aquifer (>10 m) is influenced by infiltration of sewage to groundwater. In the Jakarta metropolitan area, current hydraulic potential is below sea level in because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The distribution of Cl- and Mn concentration in groundwater suggests that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. It implies an accumulation of contaminants in deep aquifers. On the other hands, NO3-N in groundwater is suggested to be attenuated by the processes of denitrification and dilution in the coastal area.
Galazky, Imke; Kaufmann, Jörn; Lorenzl, Stefan; Ebersbach, Georg; Gandor, Florin; Zaehle, Tino; Specht, Sylke; Stallforth, Sabine; Sobieray, Uwe; Wirkus, Edyta; Casjens, Franziska; Heinze, Hans-Jochen; Kupsch, Andreas; Voges, Jürgen
2018-05-01
The pedunculopontine nucleus has been suggested as a potential deep brain stimulation target for axial symptoms such as gait and balance impairment in idiopathic Parkinson's disease as well as atypical Parkinsonian disorders. Seven consecutive patients with progressive supranuclear palsy received bilateral pedunculopontine nucleus deep brain stimulation. Inclusion criteria comprised of the clinical diagnosis of progressive supranuclear palsy, a levodopa-resistant gait and balance disorder, age <75 years, and absence of dementia or major psychiatric co-morbidities. Effects of stimulation frequencies at 8, 20, 60 and 130 Hz on motor scores and gait were assessed. Motor scores were followed up for two years postoperatively. Activities of daily living, frequency of falls, health-related quality of life, cognition and mood at 12 months were compared to baseline parameters. Surgical and stimulation related adverse events were assessed. Bilateral pedunculopontine nucleus deep brain stimulation at 8 Hz significantly improved axial motor symptoms and cyclic gait parameters, while high frequency stimulation did not ameliorate gait and balance but improved hypokinesia. This improvement however did not translate into clinically relevant benefits. Frequency of falls was not reduced. Activities of daily living, quality of life and frontal cognitive functions declined, while mood remained unchanged. Bilateral pedunculopontine nucleus deep brain stimulation in progressive supranuclear palsy generates frequency-dependent effects with improvement of cyclic gait parameters at low frequency and amelioration of hypokinesia at high frequency stimulation. However, these effects do not translate into a clinically important improvement. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Yin, Jun; Li, Jing; Kang, Junyong
2016-09-01
Recently, surface plasmon (SP)-exciton coupling has been wildly applied in nitride semiconductors in order to improve the spontaneous radiative recombination rate [1-3]. However, most works have been focused on the emission enhancement in InGaN-based blue or green light emitting diodes (LEDs). Practically, it is significantly important to improve the emission efficiency in deep-UV AlGaN-base quantum well (QW) structure due to its intrinsically low internal quantum efficiency (IQE) induced by the high defect density in its epitaxy layer [4]. But, the effective SP-exciton coupling with matched energy in deep-UV region is still a challenge issue due to the lack of appropriate metal structures and compatible fabrication techniques. In this work, the Al nanoparticles (NPs) were introduced by the nanosphere lithography (NSL) and deposition techniques into the AlGaN based MQWs with optimized size and structure. Due to the local surface plasmon (LSP) coupling with the excitons in QWs, emission enhancement in deep UV region has been achieved in the Al NPs decorated AlGaN MQWs structure with comparison to the bare MQWs. Theoretical calculations on the energy subbands of AlGaN QWs were further carried out to investigate the corresponding mechanisms, in which the hot carrier transition activated by SP-exciton coupling was believed to be mainly responsible for the enhancement. This work demonstrated a low cost, wafer scale fabrication process, which can be potentially employed to the practical SP-enhanced AlGaN-based deep UV LEDs with high IQEs.
Skandalakis, Georgios P; Koutsarnakis, Christos; Kalyvas, Aristotelis V; Skandalakis, Panagiotis; Johnson, Elizabeth O; Stranjalis, George
2018-05-05
The habenula is a small, mostly underrated structure in the pineal region. Multidisciplinary findings demonstrate an underlying complex connectivity of the habenula with the rest of the brain, subserving its major role in normal behavior and the pathophysiology of depression. These findings suggest the potential application of "habenular psychosurgery" in the treatment of mental disorders. The remission of two patients with treatment-resistant major depression treated with deep brain stimulation of the habenula supported the hypothesis that the habenula is an effective target for deep brain stimulation and initiated a surge of basic science research. This review aims to assess the viability of the deep brain stimulation of the habenula as a treatment option for treatment resistant depression. PubMed and the Cochrane Library databases were searched with no chronological restrictions for the identification of relevant articles. The results of this review are presented in a narrative form describing the functional neuroanatomy of the human habenula, its implications in major depression, findings of electrode implantation of this region and findings of deep brain stimulation of the habenula for the treatment of depression. Data assessing the hypothesis are scarce. Nonetheless, findings highlight the major role of the habenula in normal, as well as in pathological brain function, particularly in depression disorders. Moreover, findings of studies utilizing electrode implantation in the region of the habenula underscore our growing realization that research in neuroscience and deep brain stimulation complement each other in a reciprocal relationship; they are as self-reliant, as much as they depend on each other. Copyright © 2018. Published by Elsevier B.V.
Collapsed Dark Matter Structures
NASA Astrophysics Data System (ADS)
Buckley, Matthew R.; DiFranzo, Anthony
2018-02-01
The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.
Collapsed Dark Matter Structures.
Buckley, Matthew R; DiFranzo, Anthony
2018-02-02
The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.
NASA Astrophysics Data System (ADS)
Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun
2014-01-01
The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..
Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun
2014-01-01
The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735
Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun
2014-01-27
The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].
Cherian, M A; Richmond, I
2000-10-01
The potential health hazards of handling industrial fish are well documented. Wet fish in storage consume oxygen and produce poisonous gases as they spoil. In addition to oxygen depletion, various noxious agents have been demonstrated in association with spoilage including carbon dioxide, sulphur dioxide, and ammonia. A fatal case of methane and cyanide poisoning among a group of deep sea trawler men is described. Subsequent independent investigation as a result of this case led to the discovery of cyanides as a further potential noxious agent. This is thus the first case in which cyanide poisoning has been recognised as a potentially fatal complication of handling spoiled fish. The previous literature is reviewed and the implications of the current case are discussed.
Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation.
Fournier-Gosselin, Marie-Pierre; Lipsman, Nir; Saint-Cyr, Jean A; Hamani, Clement; Lozano, Andres M
2013-09-01
The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy. © 2013 International Parkinson and Movement Disorder Society.
Guo, Chunyan; Zhu, Ying; Ding, Jinhong; Fan, Silu; Paller, Ken A
2004-02-12
Memory encoding can be studied by monitoring brain activity correlated with subsequent remembering. To understand brain potentials associated with encoding, we compared multiple factors known to affect encoding. Depth of processing was manipulated by requiring subjects to detect animal names (deep encoding) or boldface (shallow encoding) in a series of Chinese words. Recognition was more accurate with deep than shallow encoding, and for low- compared to high-frequency words. Potentials were generally more positive for subsequently recognized versus forgotten words; for deep compared to shallow processing; and, for remembered words only, for low- than for high-frequency words. Latency and topographic differences between these potentials suggested that several factors influence the effectiveness of encoding and can be distinguished using these methods, even with Chinese logographic symbols.
Material and physical model for evaluation of deep brain activity contribution to EEG recordings
NASA Astrophysics Data System (ADS)
Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen
2015-12-01
Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.
HANDBOOK: ASSESSING THE FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE. Summaries of Recent Research
This handbook has been developed for use as a reference tool in evaluating the suitability of disposing of specific hazardous wastes in deep injection wells. sers of the document will get a better understanding of the factors that affect 1) geochemical waste-reservoir reactions o...
USDA-ARS?s Scientific Manuscript database
Human enteric viruses have been detected in the Madison, Wisconsin deep municipal well system. Earlier projects by the Wisconsin Geological and Natural History Survey (WGNHS) have used glass wool filters to sample groundwater for these viruses directly from the deep municipal wells. Polymerase chain...
Code of Federal Regulations, 2010 CFR
2010-01-01
... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States... within the stem cavity when deep or not well healed, or when the appearance is affected to a greater... deep or not well healed, or when the crack has weakened the cherry to the extent that it is likely to...
In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.
Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J
2015-01-01
The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... test, seismic, and economic data, if your well does meet the producibility requirements of 30 CFR part... Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep... suspension supplement? (a) Before you start drilling a well on your lease targeted to a reservoir at least 18...
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-01-01
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors. PMID:28608820
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-06-13
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.
Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z
2017-02-08
To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.
NASA Astrophysics Data System (ADS)
Bertrand, P.; Pedersen, T. F.; Schneider, R.; Shimmield, G.; Lallier-Verges, E.; Disnar, J. R.; Massias, D.; Villanueva, J.; Tribovillard, N.; Huc, A. Y.; Giraud, X.; Pierre, C.; VéNec-Peyré, M.-T.
2003-02-01
Sediments on the Namibian Margin in the SE Atlantic between water depths of ˜1000 and ˜3600 m are highly enriched in hydrocarbon-prone organic matter. Such sedimentation has occurred for more than 2 million years and is geographically distributed over hundreds of kilometers along the margin, so that the sediments of this region contain a huge concentrated stock of organic carbon. It is shown here that most of the variability in organic content is due to relative dilution by buried carbonates. This reflects both export productivity and diagenetic dissolution, not differences in either water column or bottom water anoxia and related enhanced preservation of organic matter. These observations offer a new mechanism for the formation of potential source rocks in a well-ventilated open ocean, in this case the South Atlantic. The organic richness is discussed in terms of a suite of probable controls including local wind-driven productivity (upwelling), trophic conditions, transfer efficiency, diagenetic processes, and climate-related sea level and deep circulation. The probability of past occurrences of such organic-rich facies in equivalent oceanographic settings at the edge of large oceanic basins should be carefully considered in deep offshore exploration.
Ng, Annie; Ren, Zhiwei; Shen, Qian; Cheung, Sin Hang; Gokkaya, Huseyin Cem; So, Shu Kong; Djurišić, Aleksandra B; Wan, Yangyang; Wu, Xiaojun; Surya, Charles
2016-12-07
Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH 3 NH 3 PbI 3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O 2 /N 2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.
Theory of copper impurities in ZnO
NASA Astrophysics Data System (ADS)
Lyons, John; Alkauskas, Audrius; Janotti, Anderson; van de Walle, Chris G.
Due to its connection to deep luminescence signals and its potential use as an acceptor dopant, copper has been one the most studied impurities in ZnO. From experiment, copper incorporating on the Zn site (CuZn) is known to lead to an acceptor level residing near the conduction band of ZnO, making CuZn an exceedingly deep acceptor. CuZn in ZnO has also long been linked with broad 2.4 eV green luminescence (GL) signals. In this work we explore the electrical and optical properties of Cu in ZnO using density functional theory (DFT). Due to the limitations of traditional forms of DFT, an accurate theoretical description of the electrical and optical properties of such deep centers has been difficult to achieve. Here we employ a screened hybrid density functional (HSE) to calculate the properties of Cu in ZnO. We determine the thermodynamic transition levels associated with CuZn in ZnO as well as the associated luminescence lineshapes of characteristic optical transitions. We find that HSE-calculated optical transitions are in close agreement with experimental studies. This work was supported in part by NSF and by ARO.
Analysis of Potential Deep-Seated Landslide in Hekeng Watershed by Environment Indices
NASA Astrophysics Data System (ADS)
Hsieh, C. J.; Chompuchan, C.
2014-12-01
Landslides are a major natural disaster in Taiwan relevant to the human life. After the catastrophic Xiaolin landslide during Typhoon Morakot in August 2009 caused around 400 casualties, the deep-seated landslide has become a serious issue. This study explored the potential deep-seated landslide in Hekeng watershed extracted from SPOT-5 imageries. The empirical topographic correction was applied to minimize effect of the mountain shaded area due to the difference of sun elevation and terrain angle. Consequently the multi-temporal environmental indices, i.e., modified Normalized Difference Vegetation Index (mNDVI) and modified Normalized Difference Water Index (mNDWI) were corrected. Seasonal vegetation cover and surface moisture change were analyzed incorporate with a slope which obtain from DEM data. The result showed that the distribution of potential deep-seated landslide vulnerable area mainly located at headstream watershed. It could be explained that the headstream watershed has less human interference, therefore the environmental indices interpreted those area as deep soil layer and dense vegetation coverage. However, the upstream canal could suffer from the long-term erosion and possibly cause slope toe collapse. In addition, the western watershed is the afforestation zone whereas the eastern watershed is natural forest zone with higher development ratio. The upslope forest management of eastern and western watershed should be discussed variously.
Strategic Technologies for Deep Space Transport
NASA Technical Reports Server (NTRS)
Litchford, Ronald J.
2016-01-01
Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.
Gardner, Philip M.; Masbruch, Melissa D.
2015-09-18
Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.
The deep, hot biosphere: Twenty-five years of retrospection.
Colman, Daniel R; Poudel, Saroj; Stamps, Blake W; Boyd, Eric S; Spear, John R
2017-07-03
Twenty-five years ago this month, Thomas Gold published a seminal manuscript suggesting the presence of a "deep, hot biosphere" in the Earth's crust. Since this publication, a considerable amount of attention has been given to the study of deep biospheres, their role in geochemical cycles, and their potential to inform on the origin of life and its potential outside of Earth. Overwhelming evidence now supports the presence of a deep biosphere ubiquitously distributed on Earth in both terrestrial and marine settings. Furthermore, it has become apparent that much of this life is dependent on lithogenically sourced high-energy compounds to sustain productivity. A vast diversity of uncultivated microorganisms has been detected in subsurface environments, and we show that H 2 , CH 4 , and CO feature prominently in many of their predicted metabolisms. Despite 25 years of intense study, key questions remain on life in the deep subsurface, including whether it is endemic and the extent of its involvement in the anaerobic formation and degradation of hydrocarbons. Emergent data from cultivation and next-generation sequencing approaches continue to provide promising new hints to answer these questions. As Gold suggested, and as has become increasingly evident, to better understand the subsurface is critical to further understanding the Earth, life, the evolution of life, and the potential for life elsewhere. To this end, we suggest the need to develop a robust network of interdisciplinary scientists and accessible field sites for long-term monitoring of the Earth's subsurface in the form of a deep subsurface microbiome initiative.
NASA Astrophysics Data System (ADS)
Alemayehu, Taye; Kebede, Tesfaye; Liu, Lanbo
2018-01-01
Despite being the longest river and the fourth in drainage area, Nile River has the lowest discharge per unit areas among the top ten rivers of the world. Understanding the hydrologic significance of the regional litho-stratigraphy and structures help to better understand the hydrodynamics. This work is aimed at characterizing the Baro-Akobo-Sobbat sub-basin of Nile and determine trans-basin flows. Integrated method is used to characterize the basin and determine the Baro-Akobo-Sobbat sub-basin's relationship with African Mesozoic Rifts. Oil and water well drilling logs; aeromagnetic, gravity and vertical electrical sounding data; and various study reports are used to establish regional lithostratigraphic correlations and determine trans-regional hydrogeological connectivity. A total of 633 samples collected from wells, springs, rivers, lakes, swamps and rain water are analysed for their chemical, stable isotopes, tritium and radon properties. The Baro-Akobo river basin is commonly presumed to have good groundwater potential, particularly in its lowland plain. However, it has poor exploitable groundwater potential and recharge rate due to the extensive clay cover, limited retention capacity and the loss of the bulk of the groundwaters through regional geological structures to the deep seated continental sediments; presumably reaching the hydraulically connected African Mesozoic Rifts; mainly Melut and Muglad. The deep underground northward flows, along Nile River is, presumably, retarded by Central African Shear Zone in the Sudan.
The State, Potential Distribution, and Biological Implications of Methane in the Martian Crust
NASA Technical Reports Server (NTRS)
Max, Michael D.; Clifford, Stephen M.
2000-01-01
The search for life on Mars has recently focused on its potential survival in deep (>2 km) subpermafrost aquifers where anaerobic bacteria, similar to those found in deep subsurface ecosystems on Earth, may have survived in an environment that has remained stable for billions of years. An anticipated by-product of this biological activity is methane. The detection of large deposits of methane gas and hydrate in the Martian cryosphere, or as emissions from deep fracture zones, would provide persuasive evidence of indigenous life and confirm the presence of a valuable in situ resource for use by future human explorers.
The underlying structure of skin wrinkles: a hyperspectral approach to crows feet
NASA Astrophysics Data System (ADS)
Puccetti, G.
2017-02-01
Skin wrinkles are visually perceived by consumers but they are also known to possess an underlying structure not apparent at the surface of the skin. This underlying structure can be brought out by polarized hyperspectral imaging. Wrinkle patterns of eye crow's feet are used as example to show a deeper existing pattern and their characterization versus age on a group of volunteers. The skin inhomogeneity changes within each layer of the skin and can be observed in the shorter wavelength region of the spectrum, about 450nm to 500nm which are well suited to image skin surface inhomogeneities within the central and deep epidermis. Imaging in the 550nm range can serve as a larger scale topology reference because of its deeper penetration into the upper dermis. This serves to bring out the underlying wrinkle pattern as imprinted by collagen anisotropies around deep folds but unapparent to the eye yet. The approach has potential applications in evaluating the internal skin patterns non visible to the eye by mapping their spectral dispersion. This method has thus potentials to evaluate the extent of subsurface structures such as acne and other scars and thereby the efficacy of treatments.
NASA Astrophysics Data System (ADS)
Griffiths, D.; Boehm, J.
2018-05-01
With deep learning approaches now out-performing traditional image processing techniques for image understanding, this paper accesses the potential of rapid generation of Convolutional Neural Networks (CNNs) for applied engineering purposes. Three CNNs are trained on 275 UAS-derived and freely available online images for object detection of 3m2 segments of railway track. These includes two models based on the Faster RCNN object detection algorithm (Resnet and Incpetion-Resnet) as well as the novel onestage Focal Loss network architecture (Retinanet). Model performance was assessed with respect to three accuracy metrics. The first two consisted of Intersection over Union (IoU) with thresholds 0.5 and 0.1. The last assesses accuracy based on the proportion of track covered by object detection proposals against total track length. In under six hours of training (and two hours of manual labelling) the models detected 91.3 %, 83.1 % and 75.6 % of track in the 500 test images acquired from the UAS survey Retinanet, Resnet and Inception-Resnet respectively. We then discuss the potential for such applications of such systems within the engineering field for a range of scenarios.
M. Bornyasz; R. Graham; M. Allen
2002-01-01
In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., on a lease that is located entirely or partly in water less than 200 meters deep; or (2) May 18, 2007, on a lease that is located entirely in water more than 200 meters deep. ... Leases Not Subject to Deep Water Royalty Relief § 203.34 To which production may an RSV earned by...
NASA Astrophysics Data System (ADS)
Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jérôme; Giordani, Hervé; Pennel, Romain; Sevault, Florence; Testor, Pierre
2017-04-01
Ocean deep convection is a major process of interaction between surface and deep ocean. The Gulf of Lions is a well-documented deep convection area in the Mediterranean Sea, and mesoscale dynamics is a known factor impacting this phenomenon. However, previous modelling studies don't allow to address the robustness of its impact with respect to the physical configuration and ocean intrinsic variability. In this study, the impact of mesoscale on ocean deep convection in the Gulf of Lions is investigated using a multi-resolution ensemble simulation of the northwestern Mediterranean sea. The eddy-permitting Mediterranean model NEMOMED12 (6km resolution) is compared to its eddy-resolving counterpart with the 2-way grid refinement AGRIF in the northwestern Mediterranean (2km resolution). We focus on the well-documented 2012-2013 period and on the multidecadal timescale (1979-2013). The impact of mesoscale on deep convection is addressed in terms of its mean and variability, its impact on deep water transformations and on associated dynamical structures. Results are interpreted by diagnosing regional mean and eddy circulation and using buoyancy budgets. We find a mean inhibition of deep convection by mesoscale with large interannual variability. It is associated with a large impact on mean and transient circulation and a large air-sea flux feedback.
Halogenation of Hydraulic Fracturing Additives in the Shale Well Parameter Space
NASA Astrophysics Data System (ADS)
Sumner, A. J.; Plata, D.
2017-12-01
Horizontal Drilling and Hydraulic fracturing (HDHF) involves the deep-well injection of a `fracking fluid' composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. The potential impacts of HDHF operations on water resources and ecosystems are numerous, and analyses of flowback samples revealed organic compounds from both geogenic and anthropogenic sources. Furthermore, halogenated chemicals were also detected, and these compounds are rarely disclosed, suggesting the in situ halogenation of reactive additives. To test this transformation hypothesis, we designed and operated a novel high pressure and temperature reactor system to simulate the shale well parameter space and investigate the chemical reactivity of twelve commonly disclosed and functionally diverse HDHF additives. Early results revealed an unanticipated halogenation pathway of α-β unsaturated aldehyde, Cinnamaldehyde, in the presence of oxidant and concentrated brine. Ongoing experiments over a range of parameters informed a proposed mechanism, demonstrating the role of various shale-well specific parameters in enabling the demonstrated halogenation pathway. Ultimately, these results will inform a host of potentially unintended interactions of HDHF additives during the extreme conditions down-bore of a shale well during HDHF activities.
Lobmeyer, D.H.; Anna, L.O.; Busby, J.F.
1982-01-01
This report documents the preliminary data obtained from Northern Great Plains test well 1 and describes the preliminary results and future testing plans. The intended audience includes hydrologists, local water users, drilling contractors, and water managers. The test well was drilled as part of the study to determine the water resource potential of the regional aquifer system in the Northern Great Plains, an area of about 250,000 sq mi. The well is 4,485 ft deep; nine cores were drilled totaling 182 ft; 157.42 ft of core were recovered. Sidewall cores were obtained from 24 horizons. Gamma and density scans of the cores were made, and selected parts were tested for density, porosity, and vertical and horizontal permeability. Eight zones were perforated and tested using conventional drill-stem tests and swabbing. Water samples were obtained from seven zones. No major potential sources of groundwater were penetrated by the test well. Estimated yields from selected zones range from about 240 gal/min with 400 ft of drawdown to about 5 gal/min flow at the surface. Dissolved-solids concentrations ranged from about 1,800 to 3,000 mg/l. (USGS)
Space and the Third Offset Symposium - Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahney, B.
The Third Offset Workshop explored the nature of the challenges and opportunities facing the United States as it is increasingly forced to integrate space into defense strategy as well as deterrence and strategic stability frameworks. Participants broadly agreed that Washington’s deep ties to allies and partners, as well as its history of leveraging an innovative U.S private sector, will be enduring competitive advantages against potential rivals into the foreseeable future. Yet panelists also highlighted key challenges from Russia and China’s rapid integration of space capabilities into conventional and nuclear warfighting, the pronounced growth in Chinese and Russian counterspace capabilities, andmore » tensions in the U.S.-Russia relationship.« less
Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using EEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois@Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
Inertial-Electrostatic Confinement (IEC) Fusion For Space Propulsion
NASA Technical Reports Server (NTRS)
Nadler, Jon
1999-01-01
An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using IEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois @ Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.
Gas potential of the Rome Trough in Kentucky: Results of recent Cambrian exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, D.C.; Drahovzal, J.A.
1996-09-01
A recent gas discovery in the Rome Trough suggests the need to re-evaluate the deep Cambrian potential of eastern Kentucky. A new phase of Cambrian exploration began in mid-1994 with a new pool discovery by the Carson Associates No. 1 Kazee well in Elliott County, Ky. This well blew out and initially flowed 11 MMcfd of gas from the upper Conasauga Group/Rome Formation at 6,258 to 6,270 feet. After this discovery, a second exploratory well (the Blue Ridge No. 1Greene) was drilled on a separate structure in Elliott County in late 1995. The Blue Ridge well was temporarily abandoned, butmore » had shows of gas and condensate. In early 1996, Carson Associates offset their initial discovery well with the No. 33 Lawson Heirs well. This activity follows a frustrating exploration history in the Rome Trough that is marked by numerous gas and oil shows, but rare commercial production. Only three single-well pools have produced commercial gas from the trough, including the recent Kazee well. Stratigraphic units below the Cambrian-Ordovician Knox Group in the Rome Trough are dramatically thicker than their equivalents on the shelf to the north. The interval in the trough is thought to include rocks as old as Early Cambrian, consisting of a basal sandstone, equivalents of the Shady/Tomstown Dolomite, the Rome Formation, and the Conasauga Formation. Sandstones and fractured shales have been responsible for most of the production to date, but dolostone intervals may also have potential. Limited seismic data indicate possible fan-delta and basin-floor fan deposits that may have reservoir potential.« less
Assessment of potential catastrophic landslides in Taiwan by airborne LiDAR-derived DEM
NASA Astrophysics Data System (ADS)
Hou, Chin-Shyong; Hsieh, Yu-Chung; Hu, Jyr-Ching; Chiu, Cheng-Lung; Chen, Hung-Jen; Fei, Li-Yuan
2013-04-01
The heavy rainfall of Typhoon Morakot caused severe damage to infrastructures, property and human lives in southern Taiwan in 2009. The most atrocious incident was the Hsiaolin landslide, which buried more than 400 victims. After this catastrophic event, the recognition of localities of deep-seated landslides becomes a critical issue in landslide hazard mitigation induced from extreme climate events. Consequently the airborne LiDAR survey was carried out in first phase from 2010 to 2012 by Central Geological Survey, MOEA in Taiwan in order to assess the potential catastrophic deep-seated landslides in the steep and rocky terrain in south-central Taiwan. The second phase of LiDAR survey is ongoing from 2013 to 2015 for the recognition and the assessment of possible impact area induced by deep-seated landslide in the mountainous area of whole Taiwan. Transitionally, the recognition of potential deep-seated landslide sites is adopted in term of landslide inventories from space-borne images, aerial photographs and field investigation. However, it is difficult to produce robust landslide inventories due to the poor spatial resolution of ground elevation and highly dense vegetation in mountainous area in Taiwan. In this study, the 1 m LiDAR-derived DEM is used to extract key geomorphological features such as crown cracks, minor scarps, toe of surface rupture at meter to sub-meter scale hidden under forests with high degree of accuracy. Preliminary result shows that about 400 potential landslide sites have been recognized to improve the quality of landslide inventories. In addition, detailed contour maps and visualized images are reproduced to outline the shape of potential deep-seated landslides. Further geomorphometric analyses based on hillshade, aspect, slope, eigenvalue ratio (ER) and openness will be integrated to easily create landslide inventories to mitigate landslide disasters in Taiwan mountainous area.
NASA Astrophysics Data System (ADS)
Harden-Davies, Harriet
2017-03-01
The deep-sea is a large source of marine genetic resources (MGR), which have many potential uses and are a growing area of research. Much of the deep-sea lies in areas beyond national jurisdiction (ABNJ), including 65% of the global ocean. MGR in ABNJ occupy a significant gap in the international legal framework. Access and benefit sharing of MGR is a key issue in the development of a new international legally-binding instrument under the United Nations Convention on the Law of the Sea (UNCLOS) for the conservation and sustainable use of marine biological diversity in ABNJ. This paper examines how this is relevant to deep-sea scientific research and identifies emerging challenges and opportunities. There is no internationally agreed definition of MGR, however, deep-sea genetic resources could incorporate any biological material including genes, proteins and natural products. Deep-sea scientific research is the key actor accessing MGR in ABNJ and sharing benefits such as data, samples and knowledge. UNCLOS provides the international legal framework for marine scientific research, international science cooperation, capacity building and marine technology transfer. Enhanced implementation could support access and benefit sharing of MGR in ABNJ. Deep-sea scientific researchers could play an important role in informing practical new governance solutions for access and benefit sharing of MGR that promote scientific research in ABNJ and support deep-sea stewardship. Advancing knowledge of deep-sea biodiversity in ABNJ, enhancing open-access to data and samples, standardisation and international marine science cooperation are significant potential opportunity areas.
The treatment of Parkinson's disease with deep brain stimulation: current issues.
Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars
2015-07-01
Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients' mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.
Control of tunneling in a double-well potential with chirped laser pulses
NASA Astrophysics Data System (ADS)
Vatasescu, Mihaela
2012-11-01
We investigate the use of chirped laser pulses to control the tunneling dynamics in the 0g-(6s,6p3/2) double well of Cs2 coupled with other electronic surfaces. The possibility to manipulate the tunneling dynamics appears in a pump-dump scheme designed to form deeply bound cold molecules by photoassociation of two cold cesium atoms in the 0g-(6s,6p3/2) electronic state coupled with a3Σu+ (6s,6s) electronic state. The dump pulse is acting on the 0g-(6s,6p3/2) barrier and can be used to control the tunneling and to capture population in the inner well in deep vibrational levels out of tunneling resonances.
Geothermal investigation of spring and well waters of the Los Alamos Region, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, F.E.; Sayer, S.
1980-04-01
The chemical and isotopic characters of 20 springs and wells in the Los Alamos area were investigated for indications of geothermal potential. These waters were compared with known hot and mineral springs from adjacent Valles Caldera and San Ysidro. All waters in the Los Alamos area are composed of meteoric water. Isotopic data show that the two primary aquifers beneath the Los Alamos region have different recharge areas. Relatively high concentrations of lithium, arsenic, chlorine, boron, and fluorine in some of the Los Alamos wells suggest these waters may contain a small fraction of thermal/mineral water of deep origin. Thermalmore » water probably rises up high-angle faults associated with a graben of the Rio Grande rift now buried by the Pajarito Plateau.« less
Electron dynamics and potential jump across slow mode shocks
NASA Technical Reports Server (NTRS)
Schwartz, Steven J.; Douglas, Fraser T.; Thomsen, Michelle F.; Feldman, William C.
1987-01-01
In the de Hoffmann-Teller reference frame, the cross-shock electric field is simply the thermoelectric field responsible for preserving charge neutrality. As such, it gives information regarding the heating and dissipation occurring within the shock. The total cross-shock potential can be determined by integrating a weighted electron pressure gradient through the shock, but this requires knowledge of the density and temperature profiles. Here, a recently proposed alternative approach relying on particle dynamics is exploited to provide an independent estimate of this potential. Both determinations are applied to slow mode shocks which form the plasma sheet boundary in the deep geomagnetic tail as observed by ISEE 3. The two methods correlate well. There is no indication of the expected transition from resistive to viscous shocks, although the highest Mach number shocks show the highest potentials. The implications of these results for the electron dissipation mechanisms and turbulence at the shock are discussed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... defects shall be considered as damage: (a) Cracks within the stem cavity when deep or not well healed, or... healed crack one-sixteenth inch in width extending one-half the greatest circumference of the stem cavity; (b) Cracks outside of the stem cavity when deep or not well healed, or when the crack has weakened...
Code of Federal Regulations, 2014 CFR
2014-01-01
... defects shall be considered as damage: (a) Cracks within the stem cavity when deep or not well healed, or... healed crack one-sixteenth inch in width extending one-half the greatest circumference of the stem cavity; (b) Cracks outside of the stem cavity when deep or not well healed, or when the crack has weakened...
USDA-ARS?s Scientific Manuscript database
Over the past eight years our research group has repeatedly detected human enteric viruses in water produced from deep (over 800 ft) bedrock water-supply wells in Madison, WI. The likely source of the viruses is leakage from urban sewers. These virus detections have been surprising because human ent...
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul B.; Eppler, Dean B.; Kennedy, Kriss J.; Lewis, Ruthan.; Sullivan, Thomas A.
2016-04-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting research objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will begin enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long duration spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fundamental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support staging of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken including rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective Crew Transportation/Provide ability to transport at least four crew to cislunar space Heavy Launch Capability/Provide beyond LEO launch capabilities to include crew, co-manisfested payloads, and large cargo In-Space Propulsion/Provide in-sapce propulsion capabilities to send crew and cargo on Mars-class mission durations and distances Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication Science/Enable science community objectives Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture Deep Space Habitation/Provide beyond LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: .NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space
NASA Astrophysics Data System (ADS)
Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas
2016-07-01
Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as sample-return. As mission durations increase from 20 days to 300 days, increasingly ambitious objectives may be undertaken in-cluding rendezvous with an asteroid or other near-Earth object. Research activities can occur inside the habitat, outside the habitat, via externally mounted instruments, or using free flying satellites/landers. Research Objectives: Primary mission objectives are listed below. In order to help define details of the mission architecture, including the means by which the architecture can be supported, more specific research objectives are needed. Title/Objective • Crew Transportation/Provide ability to transport at least four crew to cislunar space • Heavy Launch Capability/Provide beyond-LEO launch capabilities to include crew, co-manisfested pay-loads, and large cargo • In-Space Propulsion/Provide in-space propulsion capabilities to send crew and cargo on Mars-class mission durations and distances • Deep Space Navigation and Communication/Provide and validate cislunar and Mars system navigation and communication • Science/Enable science community objectives • Deep Space Operations/Provide deep-space operation capabilities: EVA, Staging, Logistics, Human-robotic integration, Autonomous operations • In-Situ Resource Utilization/Understand the nature and distribution of volatiles and extraction techniques, and decide on their potential use in the human exploration architecture • Deep Space Habitation/Provide beyond-LEO habitation systems sufficient to support at least four crew on Mars-class mission durations and dormancy • Crew Health/Validate crew health, performance, and mitigation protocols for Mars-class missions Reference: NASA, NASA's Journey to Mars: Pioneering Next Steps in Space Exploration. 34 ( October 8, 2015).
Kues, Georginna E.
1986-01-01
In 1980, toxic chemicals were detected in water samples from wells in and near Albuquerque 's San Jose well field. At the request of the Environmental Improvement Division of the New Mexico Health and Environment Department, the U.S. Geological Survey conducted a study to determine groundwater levels and flow direction. Water levels were measured in 44 wells in a 64 sq mi area along the Rio Grande and adjacent areas during a period of near maximum municipal pumpage. Based on the altitude of screened interval, wells were grouped into shallow (screened internal above an altitude of 4,800 ft) or deep (screened internal below an altitude of 4,800 ft) zones. Groundwater in the shallow zone generally moves from north to south parallel to flow in the Rio Grande. Groundwater in the deep zone generally moves from the northwest to the east and southeast. A poorly developed cone of depression within the deep zone was present in the northeast. Water levels in wells were as much as 18 feet higher in the shallow zone than in the deep zone in the vicinity of the San Jose well field, indicating a downward gradient. (Author 's abstract)
In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust
Salas, Everett C.; Bhartia, Rohit; Anderson, Louise; Hug, William F.; Reid, Ray D.; Iturrino, Gerardo; Edwards, Katrina J.
2015-01-01
The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities. PMID:26617595
The modern deep water coral reefs off NW-Europe: the largest reef province in the world
NASA Astrophysics Data System (ADS)
Dullo, W. C.; Freiwald, A.
2003-04-01
Recently discovered deep-water coral reefs and coral mounds in the Procupine Seabight and in the Rockall Trough are part of a North Atlantic coral reef province, stretching from the Iberian Peninsula up to northern Norway within the intermediate water-mass. Current research activities underline the significance of these coral eco-systems as a centre of extreme high biodiversity and biomass indicated by numerous economically important nurtrients for humans as well as resources for marine biochemical products. This unexpected high biological activity along continental margins, which is responsible for the formation of 100 m high biogenic mounds, creating impressive geological reliefs, portrays the complex coupling between hydrosphere and geosphere. The geological importance of these recent and living carbonate structures is underlined by the fact that this "reef type" or mud mound is a very prominent carbon hydrogen reservoir throughout earth history. Such mud mound structures cannot be compared with any other present-day shallow water reef. Our present knowledge about reefs and carbonate production is limited to the areas of the shallow shelves mainly within the tropical region. Only few studies exist from high latitudes and from the continental margin of NW Europe. Further occurences of these deep-water mounds have recently been discovered off West Africa and off SE Brasilia within the frame of exploration activities. The portion of the climate-forcing greenhouse gas CO_2, stored in these mounds during glacial and interglacial times has not been introduced into model runs and prediction scenarios so far. These mounds do not depend on glacial/interglacial sea-level changes in the same way as their shallow-water counterparts do. Deep-water coral mounds react and respond to changes in the oceanographic regime and are triggered by abrupt changes within the sedimentary environment (increased erosion of shelf sediments during low stands of sea level as well as slope instabilities). These properties of modern aphotic coral mounds provide the ideal potential for the interpretation of fossil deep-water mounds in order to study their control mechanisms and their oceanographic environment.
NASA Astrophysics Data System (ADS)
Ito, Y.; Noborio, K.
2015-12-01
In Japan, soil disinfection with hot water has been popular since the use of methyl bromide was restricted in 2005. Decreasing the amount of hot water applied may make farmers reduce the operation cost. To determine the appropriate amount of hot water needed for soil disinfection, HYDRUS-2D was evaluated. A field experiment was conducted and soil water content and soil temperature were measured at 5, 10, 20, 40, 60, 80 and 100 cm deep when 95oC hot water was applied. Irrigation tubing equipped with drippers every 30 cm were laid at the soil surface, z=0 cm. An irrigation rate for each dripper was 0.83 cm min-1 between t=0 and 120 min, and thereafter it was zero. Temperature of irrigation water was 95oC. Total simulation time with HYDRUS-2D was 720 min for a homogeneous soil. A simulating domain was selected as x=60 cm and z=100 cm. A potential evaporation rate was assumed to be 0 cm min-1 because the soil surface was covered with a plastic sheet. The boundary condition at the bottom was free drainage and those of both sides were no-flux conditions. Hydraulic properties and bulk densities measured at each depth were used for simulation. It was assumed that there was no organic matter contained. Soil thermal properties were adopted from previous study and HYDRUS 2D. Simulated temperatures at 5, 10, 20 and 40 cm deep agreed well with those measured although simulated temperatures at 60, 80, and 100 cm deep were overly estimated. Estimates of volumetric water content at 5 cm deep agreed well with measured values. Simulated values at 10 to 100 cm deep were overly estimated by 0.1 to 0.3 (m3 m-3). The deeper the soil became, the more the simulated wetting front lagged behind the measured one. It was speculated that water viscosity estimated smaller at high temperature might attributed to the slower advances of wetting front simulated with HYDRUS 2-D.
Hough, C.J.; Mahoney, E.N.; Robinson, J.A.
1992-01-01
Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.
Potential effects of deep-well waste disposal in western New York
Waller, Roger Milton; Turk, John T.; Dingman, Robert James
1978-01-01
Mathematical and laboratory models were used to observe, respectively, the hydraulic and chemical reactions that may take place during proposed injection of a highly acidic, iron-rich waste pickle liquor into a deep waste-disposal well in western New York. Field temperature and pressure conditions were simulated in the tests. Hydraulic pressure in the middle stages of the initial (1968) injection test had probably hydraulically fractured the Cambrian sandstone-dolomite formation adjacent to the borehole. Transmissivity of the formation is 13 feet squared per day. The proposed rate of injection (72,000 gallons per day) of waste pickle liquor would approach a wellhead pressure of 600 pounds per square inch in about a year. Hydraulic fracturing would reoccur at about 580 pounds per square inch. The measurable cone of influence would extend about 22 miles after injection for 1 year. Chemical reactions between acidic wastes and brine-saturated dolomite would create precipitates that would drastically reduce the permeability of the unfractured part of the dolomite. Nondolomitic sandstone permeability would not be affected by chemical reactions, but the pores might be plugged by the iron-bearing waste. The digital model can be used for qualitative predictions on a regional scale. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Liu, Fushun; Liu, Chengcheng; Chen, Jiefeng; Wang, Bin
2017-08-01
The key concept of spectrum response estimation with commercial software, such as the SESAM software tool, typically includes two main steps: finding a suitable loading spectrum and computing the response amplitude operators (RAOs) subjected to a frequency-specified wave component. In this paper, we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions. Based on estimated added mass and damping matrices of the structure, we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain. Then, we estimate the power density corresponding to each frequency component using the improved periodogram method. The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping. To validate the proposed method, we use a numerical semi-submerged pontoon from the SESAM. The numerical results show that the responses of the proposed method match well with those obtained from the traditional method. Furthermore, the estimated spectrum also matches well, which indicates its potential application to deep-water floating structures.
Improved QD-BRET conjugates for detection and imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing Yun; So, Min-kyung; Koh, Ai Leen
2008-08-01
Self-illuminating quantum dots, also known as QD-BRET conjugates, are a new class of quantum dot bioconjugates which do not need external light for excitation. Instead, light emission relies on the bioluminescence resonance energy transfer from the attached Renilla luciferase enzyme, which emits light upon the oxidation of its substrate. QD-BRET combines the advantages of the QDs (such as superior brightness and photostability, tunable emission, multiplexing) as well as the high sensitivity of bioluminescence imaging, thus holding the promise for improved deep tissue in vivo imaging. Although studies have demonstrated the superior sensitivity and deep tissue imaging potential, the stability ofmore » the QD-BRET conjugates in biological environment needs to be improved for long-term imaging studies such as in vivo cell tracking. In this study, we seek to improve the stability of QD-BRET probes through polymeric encapsulation with a polyacrylamide gel. Results show that encapsulation caused some activity loss, but significantly improved both the in vitro serum stability and in vivo stability when subcutaneously injected into the animal. Stable QD-BRET probes should further facilitate their applications for both in vitro testing as well as in vivo cell tracking studies.« less
234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing
2018-01-01
Deep ultraviolet (DUV) AlN-delta-GaN quantum well (QW) light-emitting diodes (LEDs) with emission wavelengths of 234 nm and 246 nm are proposed and demonstrated in this work. Our results reveal that the use of AlN-delta-GaN QW with ˜1-3 monolayer GaN delta-layer can achieve a large transverse electric (TE)-polarized spontaneous emission rate instead of transverse magnetic-polarized emission, contrary to what is observed in conventional AlGaN QW in the 230-250 nm wavelength regime. The switching of light polarization in the proposed AlN-delta-GaN QW active region is attributed to the rearrangement of the valence subbands near the Γ-point. The light radiation patterns obtained from angle-dependent electroluminescence measurements for the Molecular Beam Epitaxy (MBE)-grown 234 nm and 246 nm AlN-delta-GaN QW LEDs show that the photons are mainly emitted towards the surface rather than the edge, consistent with the simulated patterns achieved by the finite-difference time-domain modeling. The results demonstrate that the proposed AlN-delta-GaN QWs would potentially lead to high-efficiency TE-polarized surface-emitting DUV LEDs.
Discovery of a Novel Periodontal Disease-Associated Bacterium.
Torres, Pedro J; Thompson, John; McLean, Jeffrey S; Kelley, Scott T; Edlund, Anna
2018-06-02
One of the world's most common infectious disease, periodontitis (PD), derives from largely uncharacterized communities of oral bacteria growing as biofilms (a.k.a. plaque) on teeth and gum surfaces in periodontal pockets. Bacteria associated with periodontal disease trigger inflammatory responses in immune cells, which in later stages of the disease cause loss of both soft and hard tissue structures supporting teeth. Thus far, only a handful of bacteria have been characterized as infectious agents of PD. Although deep sequencing technologies, such as whole community shotgun sequencing have the potential to capture a detailed picture of highly complex bacterial communities in any given environment, we still lack major reference genomes for the oral microbiome associated with PD and other diseases. In recent work, by using a combination of supervised machine learning and genome assembly, we identified a genome from a novel member of the Bacteroidetes phylum in periodontal samples. Here, by applying a comparative metagenomics read-classification approach, including 272 metagenomes from various human body sites, and our previously assembled draft genome of the uncultivated Candidatus Bacteroides periocalifornicus (CBP) bacterium, we show CBP's ubiquitous distribution in dental plaque, as well as its strong association with the well-known pathogenic "red complex" that resides in deep periodontal pockets.
Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA.
McMahon, Peter B; Thomas, Judith C; Crawford, John T; Dornblaser, Mark M; Hunt, Andrew G
2018-09-01
Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27m from the contaminated monitoring well, had ~1000m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface. Published by Elsevier B.V.
Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA
McMahon, Peter B.; Thomas, Judith C.; Crawford, John T.; Dornblaser, Mark M.; Hunt, Andrew G.
2018-01-01
Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125 m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27 m from the contaminated monitoring well, had ~1000 m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20 mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18 m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface.
Stamm, Robert G.
2018-06-08
BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly completed. This was done for three principal reasons. First, there was an immediate need to know the distribution of the relatively undisturbed surface to near-surface bedrock geology and unconsolidated materials for the collection of baseline surface data prior to drill site development (drill pad access road, drill pad leveling) and later during monitoring associated with well drilling, well development, and well production. Second, it was necessary to know the bedrock geology to support the siting of: (1) multiple shallow groundwater monitoring wells (possibly as many as four) surrounding and located immediately adjacent to the drill pad, and (2) deep groundwater monitoring wells (possibly two) located at distance from the drill pad with one possibly being sited along one of the deviated production drill legs. Lastly, the framework geology would provide the lateral extent, thickness, lithology, and expected discontinuities of geologic units (to be parsed or grouped as hydrostratigraphic units) and regional structure trends as inputs into the groundwater model.This report provides the methodology of geologic data accumulation and aggregation, and its integration into a geographic information system (GIS) based program. The GIS program will allow multiple data to be exported in various formats (shapefiles [.shp], database files [.dbf], and Keyhole Markup Language files [.KML]) for use in surface and subsurface geologic site characterization, for sampling strategies, and for inputs for groundwater modeling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false May I substitute the deep gas drilling... MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Drilling Deep Gas Wells on Leases Not Subject to Deep Water Royalty Relief § 203.49 May I...
Nitrate Contamination of Deep Aquifers in the Salinas Valley, California
NASA Astrophysics Data System (ADS)
Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.
2011-12-01
The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged before agricultural activity began in the valley, while some shallower intervals draw in recycled irrigation water which can have a low tritium concentration but high nitrate concentration. The irrigation return water may take a decade or more to reach the water table, given that the vadose zone in some affected areas is more than 30 m deep, but downward migration is likely enhanced by preferential flow paths, plowing, crop removal, and sprinkler irrigation in surrounding fields. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. Fogg et al., 1999, in AGU Geophysical Monograph 108. Kulongoski et al., 2007. USGS Data Series Report 167 Monterey County Water Agency, 1997. Water Resources Data Report (Water Year 1994-1995) Moran et al., 2011. California GAMA Special Study: Nitrate Fate and Transport in the Salinas Valley. LLNL, in press.
NASA Astrophysics Data System (ADS)
Kopf, A.
2009-04-01
The Deep-Sea and Sub-Seafloor Frontiers project, DS3F, represents the continuation of the DSF roadmap towards the sustainable management of oceanic resources on a European scale. It will develop strategies for sub-seafloor sampling to contribute to a better understanding of deep-sea and sub-seafloor processes by connecting marine research in life and geosciences, climate and environmental change, as well as socio-economic issues and policy building. We propose to establish a long-lived research approach that considers (i) the need for a sustainable management of the ocean, and particularly the deep sea with enhanced activity (fishery, hydrocarbon exploration), (ii) the necessity to unravel deep-seated geological processes that drive seafloor ecosystems, and (iii) the value of seabed archives for the reconstruction of paleo-environmental conditions and the improved prediction of future climate change. Sub-seafloor drilling and sampling can provide two key components in understanding how deep-sea ecosystems function at present, and how they will respond to global change: (a) an inventory of present subsurface processes and biospheres, and their links to surface ecosystems, including seafloor observation and baseline studies, and (b) a high resolution archive of past variations in environmental conditions and biodiversity. For both components, an international effort is needed to share knowledge, methods and technologies, including mission-specific platforms to increase the efficiency, coverage and accuracy of sub-seafloor sampling and exploration. The deep biosphere has been discovered only within the past two decades and comprises the last major frontier for biological exploration. We lack fundamental knowledge of composition, diversity, distribution and metabolism in sub-seafloor biological communities at Earth's extremes, and their repercussions on seafloor ecosystems and life in the deep sea. There is equally an emerging need to shed light on geodynamic processes fuelling biological activity, and how such processes tie into the emission of geofuels and the formation of hydrocarbons and other resources. In addition, geodynamic processes may be cause natural hazards such as earthquake slip, submarine landslides, or tsunamis with a profound effect for humans and ecosystems. Their governing principles and potential triggers are poorly understood and often related to the sub-seafloor environment. In summary, the three main research areas in the Integrated Ocean Drilling Program (IODP; see Initial Science Plan www.iodp.org/isp/), i.e. geodynamics, climate and deep biosphere, as well as the goals of DS3F show a strong overlap and suggest an emerging need to join forces. This will result in the most efficient use of sub-seafloor sampling techniques and existing marine infrastructure to study the geosystem and its effects on biosphere and marine ecosystems. The DS3F initiative aims at providing a comprehensive "white paper" for a sustainable use of the oceans, an European Maritime Policy, and a strong link between European mission-specific drilling projects including IODP, IMAGES, ESF-EuroMARC and EC campaigns.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... respective annual catch limit (ACLs) for the deep-water complex (including yellowedge grouper, blueline... the snapper-grouper resource. DATES: The closure for the deep-water complex as well as the porgy...-grouper fishery of the South Atlantic, which includes yellowtail snapper, gray triggerfish, the deep-water...
Hoard, C.J.
2010-01-01
The U.S. Geological Survey is evaluating water availability and use within the Great Lakes Basin. This is a pilot effort to develop new techniques and methods to aid in the assessment of water availability. As part of the pilot program, a regional groundwater-flow model for the Lake Michigan Basin was developed using SEAWAT-2000. The regional model was used as a framework for assessing local-scale water availability through grid-refinement techniques. Two grid-refinement techniques, telescopic mesh refinement and local grid refinement, were used to illustrate the capability of the regional model to evaluate local-scale problems. An intermediate model was developed in central Michigan spanning an area of 454 square miles (mi2) using telescopic mesh refinement. Within the intermediate model, a smaller local model covering an area of 21.7 mi2 was developed and simulated using local grid refinement. Recharge was distributed in space and time using a daily output from a modified Thornthwaite-Mather soil-water-balance method. The soil-water-balance method derived recharge estimates from temperature and precipitation data output from an atmosphere-ocean coupled general-circulation model. The particular atmosphere-ocean coupled general-circulation model used, simulated climate change caused by high global greenhouse-gas emissions to the atmosphere. The surface-water network simulated in the regional model was refined and simulated using a streamflow-routing package for MODFLOW. The refined models were used to demonstrate streamflow depletion and potential climate change using five scenarios. The streamflow-depletion scenarios include (1) natural conditions (no pumping), (2) a pumping well near a stream; the well is screened in surficial glacial deposits, (3) a pumping well near a stream; the well is screened in deeper glacial deposits, and (4) a pumping well near a stream; the well is open to a deep bedrock aquifer. Results indicated that a range of 59 to 50 percent of the water pumped originated from the stream for the shallow glacial and deep bedrock pumping scenarios, respectively. The difference in streamflow reduction between the shallow and deep pumping scenarios was compensated for in the deep well by deriving more water from regional sources. The climate-change scenario only simulated natural conditions from 1991-2044, so there was no pumping stress simulated. Streamflows were calculated for the simulated period and indicated that recharge over the period generally increased from the start of the simulation until approximately 2017, and decreased from then to the end of the simulation. Streamflow was highly correlated with recharge so that the lowest streamflows occurred in the later stress periods of the model when recharge was lowest.
Transmission in near-infrared optical windows for deep brain imaging.
Shi, Lingyan; Sordillo, Laura A; Rodríguez-Contreras, Adrián; Alfano, Robert
2016-01-01
Near-infrared (NIR) radiation has been employed using one- and two-photon excitation of fluorescence imaging at wavelengths 650-950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR-low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100-1,350 nm), third (III, 1,600-1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bochet, Olivier; Le Borgne, Tanguy; Pédrot, Mathieu; Labasque, Thierry; Lavenant, Nicolas; Petton, Christophe; Dufresne, Alexis; Ben Maamar, Sarah; Chatton, Eliot; De la Bernardie, Jérôme; Aquilina, Luc
2015-04-01
Biofilm development in a hotspot of mixing between shallow and deep groundwater in a fractured aquifer: field evidence from joint flow, chemical and microbiological characterization Olivier Bochet1, Tanguy Le Borgne1, Mathieu Pédrot1, Thierry Labasque1, Nicolas Lavenant1, Christophe Petton1, Alexis Dufresne2,Sarah Ben Maamar1-2, Eliot Chatton1, Jérôme de la Bernardie1, Luc Aquilina1 1: Géosciences Rennes, CNRS UMR 6118, Université de Rennes 1, Campus de Beaulieu bât 14B, Rennes, France 2: Ecobio, CNRS UMR 6553, Université de Rennes 1, Campus de Beaulieu, bât 14, Rennes, France Biofilms play a major role in controlling the fluxes and reactivity of chemical species transported in hydrological systems. Their development can have either positive impacts on groundwater quality (e.g. attenuation of contaminants under natural or stimulated conditions), or possible negative effects on subsurface operations (e.g. bio-clogging of geothermal dipoles or artificial recharge systems). Micro-organisms require both electron donors and electron acceptors for cellular growth, proliferation and maintenance of their metabolic functions. The mechanisms controlling these reactions derive from the interactions occurring at the micro-scale that depend on mineral compositions, the biota of subsurface environment, but also fluid mixing, which determines the local concentrations of nutriments, electron donors and electron acceptors. Hence, mixing zones between oxygen and nutriment rich shallow groundwater and mineralized deep groundwater are often considered as potential hotspots of microbial activity, although relatively few field data document flow distributions, transport properties, chemical gradients and micro-organisms distributions across these mixing interfaces. Here we investigate the origin of a localized biofilm development observed in the fractured granite aquifer at the Ploemeur observatory (H+ network hplus.ore.fr).This biofilm composed of ferro-oxidizing bacteria is observed in an 130m deep artesian well. Borehole video logs show an important colonization of the well by the biofilm in the shallower part (0 to 60m), while it is inexistent in the deeper part (60 to 130m). As flow is localized in a few deep and shallow fractures, we presume that the spatial distribution of biofilm is controlled by mixing between shallow and deep groundwater. To verify this hypothesis we conducted a field campaign with joint characterization of the flow and chemical composition of water flowing from the different fractures, as well as the microbiological composition of the biofilm at different depth, using pyrosequencing techniques. We will discuss in this presentation the results of this interdisciplinary dataset and their implications for the occurrence of hotspots of microbiological activity in the subsurface.
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 203.36, your qualified well earns your lease an RSV shown in the following table in billions of cubic... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of gas... the price conditions in § 203.36, your qualified well earns your lease an RSV shown in the following...
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 203.36, your qualified well earns your lease an RSV shown in the following table in billions of cubic... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of gas... the price conditions in § 203.36, your qualified well earns your lease an RSV shown in the following...
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 203.36, your qualified well earns your lease an RSV shown in the following table in billions of cubic... 2 or qualified phase 3 ultra-deep wellthat is: Then your lease earns an RSV on this volume of gas... the price conditions in § 203.36, your qualified well earns your lease an RSV shown in the following...
Giddings Austin chalk enters deep lean-gas phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritis, G.
1995-12-25
Deep lean gas is the latest phase in the growth of the Giddings field Austin chalk play. The first phase involved drilling vertical oil and gas wells. Next came the horizontal well boom in the shallower Austin chalk area, which is still continuing. And now this third phase places horizontal laterals in the Austen chalk at about 14,000--15,000 ft to produce lean gas. The article describes the producing wells and gas gathering.
Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth
2013-01-01
Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498
Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations.
Yearsley, Jon M; Sigwart, Julia D
2011-01-01
Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.
The deep, hot biosphere: Twenty-five years of retrospection
Colman, Daniel R.; Poudel, Saroj; Stamps, Blake W.; Boyd, Eric S.; Spear, John R.
2017-01-01
Twenty-five years ago this month, Thomas Gold published a seminal manuscript suggesting the presence of a “deep, hot biosphere” in the Earth’s crust. Since this publication, a considerable amount of attention has been given to the study of deep biospheres, their role in geochemical cycles, and their potential to inform on the origin of life and its potential outside of Earth. Overwhelming evidence now supports the presence of a deep biosphere ubiquitously distributed on Earth in both terrestrial and marine settings. Furthermore, it has become apparent that much of this life is dependent on lithogenically sourced high-energy compounds to sustain productivity. A vast diversity of uncultivated microorganisms has been detected in subsurface environments, and we show that H2, CH4, and CO feature prominently in many of their predicted metabolisms. Despite 25 years of intense study, key questions remain on life in the deep subsurface, including whether it is endemic and the extent of its involvement in the anaerobic formation and degradation of hydrocarbons. Emergent data from cultivation and next-generation sequencing approaches continue to provide promising new hints to answer these questions. As Gold suggested, and as has become increasingly evident, to better understand the subsurface is critical to further understanding the Earth, life, the evolution of life, and the potential for life elsewhere. To this end, we suggest the need to develop a robust network of interdisciplinary scientists and accessible field sites for long-term monitoring of the Earth’s subsurface in the form of a deep subsurface microbiome initiative. PMID:28674200
Larval Transport Modeling of Deep-Sea Invertebrates Can Aid the Search for Undiscovered Populations
Yearsley, Jon M.; Sigwart, Julia D.
2011-01-01
Background Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate ‘stepping stone’ populations yet to be discovered. Conclusions/Significance We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess. PMID:21857992
Cherian, M; Richmond, I
2000-01-01
The potential health hazards of handling industrial fish are well documented. Wet fish in storage consume oxygen and produce poisonous gases as they spoil. In addition to oxygen depletion, various noxious agents have been demonstrated in association with spoilage including carbon dioxide, sulphur dioxide, and ammonia. A fatal case of methane and cyanide poisoning among a group of deep sea trawler men is described. Subsequent independent investigation as a result of this case led to the discovery of cyanides as a further potential noxious agent. This is thus the first case in which cyanide poisoning has been recognised as a potentially fatal complication of handling spoiled fish. The previous literature is reviewed and the implications of the current case are discussed. Key Words: industrial fish • methane • cyanide PMID:11064677
A deep learning approach for fetal QRS complex detection.
Zhong, Wei; Liao, Lijuan; Guo, Xuemei; Wang, Guoli
2018-04-20
Non-invasive foetal electrocardiography (NI-FECG) has the potential to provide more additional clinical information for detecting and diagnosing fetal diseases. We propose and demonstrate a deep learning approach for fetal QRS complex detection from raw NI-FECG signals by using a convolutional neural network (CNN) model. The main objective is to investigate whether reliable fetal QRS complex detection performance can still be obtained from features of single-channel NI-FECG signals, without canceling maternal ECG (MECG) signals. A deep learning method is proposed for recognizing fetal QRS complexes. Firstly, we collect data from set-a of the PhysioNet/computing in Cardiology Challenge database. The sample entropy method is used for signal quality assessment. Part of the bad quality signals is excluded in the further analysis. Secondly, in the proposed method, the features of raw NI-FECG signals are normalized before they are fed to a CNN classifier to perform fetal QRS complex detection. We use precision, recall, F-measure and accuracy as the evaluation metrics to assess the performance of fetal QRS complex detection. The proposed deep learning method can achieve relatively high precision (75.33%), recall (80.54%), and F-measure scores (77.85%) compared with three other well-known pattern classification methods, namely KNN, naive Bayes and SVM. the proposed deep learning method can attain reliable fetal QRS complex detection performance from the raw NI-FECG signals without canceling MECG signals. In addition, the influence of different activation functions and signal quality assessment on classification performance are evaluated, and results show that Relu outperforms the Sigmoid and Tanh on this particular task, and better classification performance is obtained with the signal quality assessment step in this study.
Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments.
Hoffmann, Katy; Hassenrück, Christiane; Salman-Carvalho, Verena; Holtappels, Moritz; Bienhold, Christina
2017-01-01
Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae , and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae , and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios.
Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network
Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng
2016-01-01
Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods. PMID:27754386
Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments
Hoffmann, Katy; Hassenrück, Christiane; Salman-Carvalho, Verena; Holtappels, Moritz; Bienhold, Christina
2017-01-01
Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae, and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae, and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios. PMID:28286496
NASA Astrophysics Data System (ADS)
Nord, Brian
2017-01-01
Strong gravitational lenses have potential as very powerful probes of dark energy and cosmic structure. However, efficiently finding lenses poses a significant challenge—especially in the era of large-scale cosmological surveys. I will present a new application of deep machine learning algorithms to find strong lenses, as well as the strong lens discovery program of the Dark Energy Survey (DES).Strong lenses provide unique information about the evolution of distant galaxies, the nature of dark energy, and the shapes of dark matter haloes. Current and future surveys, like DES and the Large Synoptic Survey Telescope, present an opportunity to find many thousands of strong lenses, far more than have ever been discovered. By and large, searches have heretofore relied on the time-consuming effort of human scanners. Deep machine learning frameworks, like convolutional neural nets, have revolutionized the task of image recognition, and have a natural place in the processing of astronomical images, including the search for strong lenses.Over five observing seasons, which started in August 2013, DES will carry out a wide-field survey of 5000 square degrees of the Southern Galactic Cap. DES has identified nearly 200 strong lensing candidates in the first two seasons of data. We have performed spectroscopic follow-up on a subsample of these candidates at Gemini South, confirming over a dozen new strong lenses. I will present this DES discovery program, including searches and spectroscopic follow-up of galaxy-scale, cluster-scale and time-delay lensing systems.I will focus, however, on a discussion of the successful search for strong lenses using deep learning methods. In particular, we show that convolutional neural nets present a new set of tools for efficiently finding lenses, and accelerating advancements in strong lensing science.
Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network.
Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng
2016-10-13
Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.
Glover, A G; Gooday, A J; Bailey, D M; Billett, D S M; Chevaldonné, P; Colaço, A; Copley, J; Cuvelier, D; Desbruyères, D; Kalogeropoulou, V; Klages, M; Lampadariou, N; Lejeusne, C; Mestre, N C; Paterson, G L J; Perez, T; Ruhl, H; Sarrazin, J; Soltwedel, T; Soto, E H; Thatje, S; Tselepides, A; Van Gaever, S; Vanreusel, A
2010-01-01
Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales by stochastic events such as volcanic eruptions, with associated fauna showing complex patterns of community succession. For the slow-spreading centres such as the Mid-Atlantic Ridge, vent sites appear to be stable over the time periods measured, with no discernable long-term trend. At cold seeps, inferences based on spatial studies in the Gulf of Mexico, and data on organism longevity, suggest that these sites are stable over many hundreds of years. However, at the Haakon Mosby mud volcano, a large, well-studied seep in the Barents Sea, periodic mud slides associated with gas and fluid venting may disrupt benthic communities, leading to successional sequences over time. For chemosynthetic ecosystems of biogenic origin (e.g. whale-falls), it is likely that the longevity of the habitat depends mainly on the size of the carcass and the ecological setting, with large remains persisting as a distinct seafloor habitat for up to 100 years. Studies of shallow-water analogs of deep-sea ecosystems such as marine caves may also yield insights into temporal processes. Although it is obvious from the geological record that past climate change has impacted deep-sea faunas, the evidence that recent climate change or climate variability has altered deep-sea benthic communities is extremely limited. This mainly reflects the lack of remote sensing of this vast seafloor habitat. Current and future advances in deep-ocean benthic science involve new remote observing technologies that combine a high temporal resolution (e.g. cabled observatories) with spatial capabilities (e.g. autonomous vehicles undertaking image surveys of the seabed). Copyright © 2010 Elsevier Ltd. All rights reserved.
The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.
Ma, Teng; Li, Hui; Yang, Hao; Lv, Xulin; Li, Peiyang; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-01-01
Motion-onset visual evoked potentials (mVEP) can provide a softer stimulus with reduced fatigue, and it has potential applications for brain computer interface(BCI)systems. However, the mVEP waveform is seriously masked in the strong background EEG activities, and an effective approach is needed to extract the corresponding mVEP features to perform task recognition for BCI control. In the current study, we combine deep learning with compressed sensing to mine discriminative mVEP information to improve the mVEP BCI performance. The deep learning and compressed sensing approach can generate the multi-modality features which can effectively improve the BCI performance with approximately 3.5% accuracy incensement over all 11 subjects and is more effective for those subjects with relatively poor performance when using the conventional features. Compared with the conventional amplitude-based mVEP feature extraction approach, the deep learning and compressed sensing approach has a higher classification accuracy and is more effective for subjects with relatively poor performance. According to the results, the deep learning and compressed sensing approach is more effective for extracting the mVEP feature to construct the corresponding BCI system, and the proposed feature extraction framework is easy to extend to other types of BCIs, such as motor imagery (MI), steady-state visual evoked potential (SSVEP)and P300. Copyright © 2016 Elsevier B.V. All rights reserved.
The treatment of Parkinson's disease with deep brain stimulation: current issues
Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars
2015-01-01
Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients’ mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation. PMID:26330809
Cloud Detection with the Earth Polychromatic Imaging Camera (EPIC)
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Marshak, Alexander; Lyapustin, Alexei; Torres, Omar; Wang, Yugie
2011-01-01
The Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) would provide a unique opportunity for Earth and atmospheric research due not only to its Lagrange point sun-synchronous orbit, but also to the potential for synergistic use of spectral channels in both the UV and visible spectrum. As a prerequisite for most applications, the ability to detect the presence of clouds in a given field of view, known as cloud masking, is of utmost importance. It serves to determine both the potential for cloud contamination in clear-sky applications (e.g., land surface products and aerosol retrievals) and clear-sky contamination in cloud applications (e.g., cloud height and property retrievals). To this end, a preliminary cloud mask algorithm has been developed for EPIC that applies thresholds to reflected UV and visible radiances, as well as to reflected radiance ratios. This algorithm has been tested with simulated EPIC radiances over both land and ocean scenes, with satisfactory results. These test results, as well as algorithm sensitivity to potential instrument uncertainties, will be presented.
Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.
Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L
2016-01-01
Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.
Bathymetric limits of chondrichthyans in the deep sea: A re-evaluation
NASA Astrophysics Data System (ADS)
Musick, J. A.; Cotton, C. F.
2015-05-01
Chondrichthyans are largely absent in abyssal (>3000 m) habitats in most regions of the world ocean and are uncommon below 2000 m. The deeper-living chondrichthyans include certain rajids, squaliforms and holocephalans. Several hypotheses have been erected to explain the absence of chondrichthyans from the abyss. These are mostly based on energetics: deep-sea food webs are impoverished due to their distance from primary production, and chondrichthyans, occupying the highest trophic levels, cannot be supported due to entropy among trophic levels. We examined this hypothesis by comparing trophic levels, calculated from dietary data, of deep-sea chondrichthyans with those of deep-sea teleosts. Chondrichthyans were mostly above trophic level 4, whereas all the teleosts examined were below that level. Both small and medium squaloids, as well as sharks and skates of large size, feed on fishes, cephalopods and scavenged prey, and thus occupy the highest trophic levels in bathydemersal fish communities. In addition, whereas teleosts and chondrichthyans both store lipids in their livers to support long periods of fasting, chondrichthyans must devote much of their liver lipids to maintain neutral buoyancy. Consequently teleosts with swim bladders are better adapted to survive in the abyss where food sources are sparse and unpredictable. The potential prey field for both chondrichthyans and teleosts declines in biomass and diversity with depth, but teleosts have more flexibility in their feeding mechanisms and food habits, and occupy abyssal trophic guilds for which chondrichthyans are ill adapted.
Nucleon-anti-nucleon intruder state of Dirac equation for nucleon in deep scalar potential well
NASA Astrophysics Data System (ADS)
Kuo, T. T. S.; Kuo, T. K.; Osnes, E.; Shu, S.
We solve the Dirac radial equation for a nucleon in a scalar Woods-Saxon potential well of depth V0 and radius r0. A sequence of values for the depth and radius are considered. For shallow potentials with -1000MeV ≤ V0 < 0 the wave functions for the positive-energy states ψ+(r) are dominated by their nucleon component f(r). But for deeper potentials with V0 ≤ -1500MeV the ψ+(r) s begin to have dominant anti-nucleon component f(r). In particular, a special intruder state enters with wave function ψ1/2(r) and energy E1/2. We have considered several r0 values between 2 and 8fm. For V0 ≤ -2000 MeV and the above r0 values. ψ1/2(r) is the only bound positive-energy state and has its g(r) closely equal to -f(r), both having a narrow wave packet shape centered around r0. The E1/2 of this state is practically independent of V0 for the above V0 range and obeys closely the relation E1/2 = ℏc/r0.
Vielstädte, Lisa; Haeckel, Matthias; Karstens, Jens; Linke, Peter; Schmidt, Mark; Steinle, Lea; Wallmann, Klaus
2017-09-05
Shallow gas migration along hydrocarbon wells constitutes a potential methane emission pathway that currently is not recognized in any regulatory framework or greenhouse gas inventory. Recently, the first methane emission measurements at three abandoned offshore wells in the Central North Sea (CNS) were conducted showing that considerable amounts of biogenic methane originating from shallow gas accumulations in the overburden of deep reservoirs were released by the boreholes. Here, we identify numerous wells poking through shallow gas pockets in 3-D seismic data of the CNS indicating that about one-third of the wells may leak, potentially releasing a total of 3-17 kt of methane per year into the North Sea. This poses a significant contribution to the North Sea methane budget. A large fraction of this gas (∼42%) may reach the atmosphere via direct bubble transport (0-2 kt yr -1 ) and via diffusive exchange of methane dissolving in the surface mixed layer (1-5 kt yr -1 ), as indicated by numerical modeling. In the North Sea and in other hydrocarbon-prolific provinces of the world shallow gas pockets are frequently observed in the sedimentary overburden and aggregate leakages along the numerous wells drilled in those areas may be significant.
Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Michael
2015-06-28
Surface exploration methods like geological mapping, mineralogical analysis, hydrogeochemistry, magnetotelluric as well as seismic, have been used to analyze the study area and identify a location for a production size exploration well. After that location has been identified in a blind resource scenario, a 5,657 feet deep deviated production size exploration well has been drilled. The surface casing is 13 3/8 inch with open hole starting at 4,136 feet. The well has been designed to be deepened up to 8,000 feet if needed. The first 4,180 feet have been sufficiently analyzed and were considered only of direct use interest priormore » to drilling. That has been confirmed. The remaining depth couldn't be logged by the time the report has been submitted because the well had an obstruction at 4,180 feet. Currently the power production potential for the drilling location cannot be determined without additional work-over of the well. The seismic conducted prior to drilling was a 100% success, providing a clear image of the subsurface and allowing for geosteering to be fact based and on target. Once the obstruction has been removed, work can continue to determine the power generation potential at that location.« less
Electronic Components and Circuits for Extreme Temperature Environments
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott
2003-01-01
Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained through in-house component and circuit testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.
Copper interstitial recombination centers in Cu3N
NASA Astrophysics Data System (ADS)
Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam; Hanifi, David; Salleo, Alberto; Magyari-Köpe, Blanka; Nishi, Yoshio; Bent, Stacey F.; Clemens, Bruce M.
2018-06-01
We present a comprehensive study of the earth-abundant semiconductor Cu3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies VCu have shallow defect levels while copper interstitials Cui behave as deep potential wells in the conduction band, which mediate Shockley-Read-Hall recombination. The existence of Cui defects has been experimentally verified using photothermal deflection spectroscopy. A Cu3N /ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. The absence of photocurrent can be explained by a large concentration of Cui recombination centers capturing electrons in p -type Cu3N .
Deep learning architectures for multi-label classification of intelligent health risk prediction.
Maxwell, Andrew; Li, Runzhi; Yang, Bei; Weng, Heng; Ou, Aihua; Hong, Huixiao; Zhou, Zhaoxian; Gong, Ping; Zhang, Chaoyang
2017-12-28
Multi-label classification of data remains to be a challenging problem. Because of the complexity of the data, it is sometimes difficult to infer information about classes that are not mutually exclusive. For medical data, patients could have symptoms of multiple different diseases at the same time and it is important to develop tools that help to identify problems early. Intelligent health risk prediction models built with deep learning architectures offer a powerful tool for physicians to identify patterns in patient data that indicate risks associated with certain types of chronic diseases. Physical examination records of 110,300 anonymous patients were used to predict diabetes, hypertension, fatty liver, a combination of these three chronic diseases, and the absence of disease (8 classes in total). The dataset was split into training (90%) and testing (10%) sub-datasets. Ten-fold cross validation was used to evaluate prediction accuracy with metrics such as precision, recall, and F-score. Deep Learning (DL) architectures were compared with standard and state-of-the-art multi-label classification methods. Preliminary results suggest that Deep Neural Networks (DNN), a DL architecture, when applied to multi-label classification of chronic diseases, produced accuracy that was comparable to that of common methods such as Support Vector Machines. We have implemented DNNs to handle both problem transformation and algorithm adaption type multi-label methods and compare both to see which is preferable. Deep Learning architectures have the potential of inferring more information about the patterns of physical examination data than common classification methods. The advanced techniques of Deep Learning can be used to identify the significance of different features from physical examination data as well as to learn the contributions of each feature that impact a patient's risk for chronic diseases. However, accurate prediction of chronic disease risks remains a challenging problem that warrants further studies.
Holocene Deep Ocean Variability Detected with Individual Benthic Foraminifera
NASA Astrophysics Data System (ADS)
Bova, S. C.; Herbert, T.; Fox-Kemper, B.
2015-12-01
Historical observations of deep ocean temperatures (>700 m water depth) show apparently unprecedented rates of warming over the past half century that parallel observed surface warming, on the order of 0.1°C/decade (Purkey and Johnson 2010). Most water masses below 700 m depth, however, have not been at the sea surface where they exchange heat and carbon with the atmosphere since well before industrialization (Gebbie and Huybers 2012). How then has the heat content of isolated deep water masses responded to climate change over the last century? In models, wave mechanisms propagate thermocline anomalies quickly (Masuda et al. 2010), but these dynamics are not fully understood. We therefore turn to the sedimentary record to constrain the bounds of earlier variability from Holocene anomalies. The oxygen isotopic composition (δ18O) of individual benthic foraminifera provide approximately month-long snapshots of the temperature and salinity of ambient deep water during calcification. We exploit the short lifespan of these organisms to reconstruct variability in δ18Oshell, and thus the variability in deep water temperature and salinity, during five 200-yr Holocene intervals at 1000 m water depth in the Eastern Equatorial Pacific (EEP). Modern variability in benthic foraminifer δ18O was too weak to detect but variability at 1000 m water depth in the EEP exceeded our detection limit during two Holocene intervals at high confidence (p<0.01), with δ18O anomalies up to ~0.6 ± 0.15‰ that persist for a month or longer. Although the source of these anomalies remains speculative, rapid communication between the surface and deep ocean that operates on human timescales, faster than previously recognized, or intrinsic variability that has not been active during the history of ocean observations are potential explanations. Further work combining models and high-resolution proxy data is needed to identify the mechanism and global extent of this type of subsurface variability in the global oceans.
NASA Astrophysics Data System (ADS)
Wilson, David J.; Galy, Albert; Piotrowski, Alexander M.; Banakar, Virupaxa K.
2015-08-01
We use reductive sediment leaching to extract lead (Pb) from the authigenic fraction of marine sediments and reconstruct the Pb isotope evolution of the deep central Indian Ocean over the past 250 thousand years at ∼3 kyr resolution. Temporal variations define a binary mixing line that is consistent with data from ferromanganese nodules and which records mixing between two well-defined endmembers through time. The unradiogenic endmember appears to represent a widely-distributed Pb source, from mid-ocean ridges or possibly volcanic aerosols, while the radiogenic endmember coincides with the composition of Ganges-Brahmaputra river sediments that are indicative of the Himalayan weathering inputs. Glacial-interglacial Pb isotope variations are striking and can be explained by an enhancement of Himalayan contributions by two to three times during interglacial periods, indicating that climate modulates the supply of dissolved elements to the ocean. While these changes could accurately record variations in the continental chemical weathering flux in response to warmer and wetter conditions during interglacials, the relative proportions of Pb derived from the Ganges and Brahmaputra appear to have been constant through time. This observation may point towards particulate-dissolved interactions in the estuary or pro-delta as a buffer of short timescale variability in the composition (and potentially flux) of the fluvial inputs. In addition, the changes are recorded at 3800 m water depth, and with the lack of deep water formation in the Bay of Bengal, a mechanism to transfer such a signature into the deep ocean could either be reversible scavenging of dissolved Pb inputs and/or boundary exchange on the deep sea fan. Unless the mechanism transferring the Pb isotope signature into the deep ocean was itself highly sensitive to global climate cycles, and with the absence of a precessional signal in our Pb isotope data, we suggest that the Indian climate and its influence on basin-scale chemical weathering were strongly modulated by glacial versus interglacial boundary conditions.
NASA Astrophysics Data System (ADS)
Tomaru, H.; Lu, Z.; Fehn, U.
2011-12-01
Because iodine has a strong association with organic matters in marine environments, pore waters in high methane potential region, in particular gas hydrate occurrences on the continental margins, are enriched significantly in iodine compared with seawater. Natural iodine system is composed of stable and radioactive species, I-129 (half-life of 15.7 Myr) has been used for estimating the age of source formations both for methane and iodine, because iodine can be liberated into pore water during the degradation of organic matter to methane in deep sediments. Here we present I-129 age data in pore waters collected from variety of gas hydrate occurrences on the continental margins. The I-129 ages in pore waters from these locations are significantly older than those of host sediments, indicating long-term transport and accumulation from deep/old sediments. The I-129 ages in the Japan Sea and Okhotsk Sea along the plate boundary between the North American and Amurian Plates correspond to the ages of initial spreading of these marginal seas, pointing to the massive deposition of organic matter for methane generation in deep sediments within limited periods. On the Pacific side of these areas, organic matter-rich back stop is responsible for methane in deep-seated gas hydrate deposits along the Nankai Trough. Deep coaly sequences responsible for deep conventional natural gas deposits are also responsible for overlying gas hydrate deposits off Shimokita Peninsula, NE Japan. Those in the Gulf of Mexico are correlative to the ages of sediments where the top of salt diapirs intrude. Marine sediments on the Pacific Plate subducting beneath the Australian Plate are likely responsible for the methane and iodine in the Hikurangi Trough, New Zealand. These ages reflect well the regional geological settings responsible for generation, transport, and accumulation of methane, I-129 is a key to understand the geological history of gas hydrate deposition.
Are Some Animals More Equal than Others? Animal Rights and Deep Ecology in Environmental Education
ERIC Educational Resources Information Center
Kopnina, Helen; Gjerris, Mickey
2015-01-01
This article focuses on the role of ethical perspectives such as deep ecology and animal rights in relation to environmental education, arguing that such perspectives are well-placed to reposition students as responsible planetary citizens. We focus on the linkage between non-consequentialism, animal rights, and deep ecology in an educational…
Deep X-ray lithography for the fabrication of microstructures at ELSA
NASA Astrophysics Data System (ADS)
Pantenburg, F. J.; Mohr, J.
2001-07-01
Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 μm are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described.
Tight-binding approach to overdamped Brownian motion on a bichromatic periodic potential.
Nguyen, P T T; Challis, K J; Jack, M W
2016-02-01
We present a theoretical treatment of overdamped Brownian motion on a time-independent bichromatic periodic potential with spatially fast- and slow-changing components. In our approach, we generalize the Wannier basis commonly used in the analysis of periodic systems to define a basis of S states that are localized at local minima of the potential. We demonstrate that the S states are orthonormal and complete on the length scale of the periodicity of the fast-changing potential, and we use the S-state basis to transform the continuous Smoluchowski equation for the system to a discrete master equation describing hopping between local minima. We identify the parameter regime where the master equation description is valid and show that the interwell hopping rates are well approximated by Kramers' escape rate in the limit of deep potential minima. Finally, we use the master equation to explore the system dynamics and determine the drift and diffusion for the system.
New Ways of Treating Data for Diatomic Molecule 'shelf' and Double-Minimum States
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.; Tao, Jason; Khanna, Shirin; Pashov, Asen; Tellinghuisen, Joel
2017-06-01
Electronic states whose potential energy functions have 'shelf' or double-minimum shapes have always presented special challenges because, as functions of vibrational quantum number, the vibrational energies/spacings and inertial rotational constants either have an abrupt change of character with discontinuous slope, or past a given point, become completely chaotic. The present work shows that a `traditional' methodology developed for deep `regular' single-well potentials can also provide accurate `parameter-fit' descriptions of the v-dependence of the vibrational energies and rotational constants of shelf-state potentials that allow a conventional RKR calculation of their Potential energy functions. It is also shown that a merging of Pashov's uniquely flexible 'spline point-wise' potential function representation with Le Roy's `Morse/Long-Range' (MLR) analytic functional form which automatically incorporates the correct theoretically known long-range form, yields an analytic function that incorporates most of the advantages of both approaches. An illustrative application of this method to data to a double-minimum state of Na_2 will be described.
Development of the EM tomography system by the vertical electromagnetic profiling (VEMP) method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Y.; Osato, K.; Takasugi, S.
1995-12-31
As a part of the {open_quotes}Deep-Seated Geothermal Resources Survey{close_quotes} project being undertaken by the NEDO, the Vertical ElectroMagnetic Profiling (VEMP) method is being developed to accurately obtain deep resistivity structure. The VEMP method acquires multi-frequency three-component magnetic field data in an open hole well using controlled sources (loop sources or grounded-wire sources) emitted at the surface. Numerical simulation using EM3D demonstrated that phase data of the VEMP method is very sensitive to resistivity structure and the phase data will also indicate presence of deep anomalies. Forward modelling was also used to determine required transmitter moments for various grounded-wire and loopmore » sources for a field test using the WD-1 well in the Kakkonda geothermal area. Field logging of the well was carried out in May 1994 and the processed field data matches well the simulated data.« less
Pan, Xiaoyong; Shen, Hong-Bin
2017-02-28
RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g. sequence, structure, their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains. The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate after outputting the potential discrete binding sites on the sequences, but how to assemble them into the meaningful binding motifs is a topic worth of further investigation. In viewing of these challenges, we propose a deep learning-based framework (iDeep) by using a novel hybrid convolutional neural network and deep belief network to predict the RBP interaction sites and motifs on RNAs. This new protocol is featured by transforming the original observed data into a high-level abstraction feature space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6%. Besides the overall enhanced prediction performance, the convolutional neural network module embedded in iDeep is also able to automatically capture the interpretable binding motifs for RBPs. Large-scale experiments demonstrate that these mined binding motifs agree well with the experimentally verified results, suggesting iDeep is a promising approach in the real-world applications. The iDeep framework not only can achieve promising performance than the state-of-the-art predictors, but also easily capture interpretable binding motifs. iDeep is available at http://www.csbio.sjtu.edu.cn/bioinf/iDeep.
NASA Astrophysics Data System (ADS)
Pueyo, E. L.; Klimowitz, J.; García-Lobón, J. L.; Calvín, P.; Casas, A. M.; Oliva, B.; Algeco2 Team
2012-04-01
The project "Identification and preliminary characterization of geological structures for geological storage of CO2" (ALGECO2) led by the IGME between 2009 and 2010 has made the first rigorous selection of potential CO2 reservoirs in Spain; more than one hundred structures were identified and subjected to preliminary evaluation. This assortment comprises more than thirty structures within the Pyrenees and the Ebro Basin (PE) domain. The discussion, based on the oil-exploration experience and regional geological knowledge (with the compilation of over 500 cross sections) has finally chosen 8 structures in the Pyrenees. Seismic data, oil industry wells and surface mapping have allowed building three-dimensional preliminary models of these structures. These potential reservoirs display storage capacities from a few Mt to hundreds Mt CO2. Besides, some Pyrenean structures are among the most favorable and reliable in the national ranking according to the panel of more than 150 experts of the ALGECO2 project. Two Pyrenean structural traps are notable for their large potential capacity; they have been coded as PE-GE-13 and PE-GE-14. The first one is a large and wide basement antiform located in the Northern Jaca-Pamplona Basin. There is an extensive seismic coverage in the area and a dozen of deep wells (2 of them 4,000 m deep). The reservoir consists of Buntsandstein sands (>80 m in thickness), being the Röt and Keuper facies the seal. The top of the reservoir is 1,720 m deep and the structure has a map-view surface > 500 km2. Preliminary 3D models allow estimating storage capacity > 300 Mt. On the other hand, the PE-GE-14 structure (partially overlapped in map-view with PE-GE-13) is a cover anticline related to an underneath thrust (but structurally higher than PE-GE-13). In this case, the reservoir-seal pair is formed by upper Paleocene platform limestones and the Eocene flysch and talus marls respectively. The structure has an area > 100 km2. The top of the reservoir is 1,300 m in depth and its thickness ≈ 80 m. It has an estimated storage capacity > 100 Mt of CO2. The exhaustive analysis of several hundreds of available seismic sections (surveys PP, DP, JAT, PJ, BB, P & SA) and the subsequent construction of balanced cross sections would allow improving the geometric definition of these two structures. The derived accurate 3D models would quantify the effectiveness of both traps. In order to support these underground reconstructions, an inexpensive geophysical survey (potential fields) would better constraint the basement-cover interface (where the reservoir is located). In conclusion, these structures represent two suggestive potential reservoirs; besides, an advanced evaluation of them requires modest investments.
Borchers, J.W.
1996-01-01
Planning efforts to implement the 1980 General Management Plan, which recommends relocating park administrative facilities and employee housing from Yosemite Valley in Yosemite National Park, California, have focused on the availability of water at potential relocation sites within the park. Ground-water resources and water-supply alternatives in the Wawona area, one of several potential relocation sites, were evaluated between June 1991 and October 1993. Ground water flowing from Biledo Spring near the headwaters of Rainier Creek, about 5 miles southeast of Wawona, is probably the most reliable source of good quality ground water for Wawona. A dilute calcium bicarbonate ground water flows from the spring at about 250 gallons per minute. No Giardia was detected in a water sample collected from Biledo Spring in July 1992. The concentration of dissolved 222radon at Biledo Spring was 420 picoCuries per liter, exceeding the primary drinking-water standard of 300 picoCuries per liter proposed by the U.S. Environmental Protection Agency. This concentration, however, was considerably lower than the concentrations of dissolved 222radon measured in ground water at Wawona. The median value for 15 wells sampled at Wawona was 4,500 picoCuries per liter. Water- quality samples from 45 wells indicate that ground water in the South Fork Merced River valley at Wawona is segregated vertically. Shallow wells produce a dilute calcium sodium bicarbonate water that results from chemical dissolution of minerals as water flows through fractured granitic rock from hillside recharge areas toward the valley floor. Tritium concentrations indicate that ground water in the shallow wells originated as precipitation after the 1960's when testing of atmospheric nuclear devices stopped. Ground water from the deep flowing wells in the valley floor is older sodium calcium chloride water. This older water probably originated either as precipitation during a climatically cooler period or as precipitation from altitudes between 1,400 and 3,700 feet higher than precipitation that recharged the local shallow ground-water-flow system. Chloride and associated cations in the deepground-water-flow system may result from upward leakage of saline ground water or from leaching of saline fluid inclusions in the granitic rocks. Water-level and pressure-gage measurements for 38 wells in the South Fork Merced River valley also indicate that the ground water in the valley is segregated vertically. Hydraulic head in deep fractures is as much as 160 feet above the valley floor. Vertical hydraulic gradients between the shallow and deep systems are as high as 4.5 feet per foot in one of two test holes drilled for this study. Measure- ments of in situ stress in the two test holes indicate that the vertical segregation of ground water may be related to pressures in the earth that squeeze horizontal fractures closed at depth. Fractures within a few hundred feet of land surface are poorly connected to fractures deeper beneath the valley. About 100 privately owned wells currently are in use at Wawona; but, the ground-water-flow system may not be an adequate source of good quality ground water for relocated park facilities. Yields from existing wells are low (median 4-5 gallons per minute) and traditional methods for locating high-yielding wells in fractured rocks have not been successful in this area. Concentrations of dissolved 222radon (median 4,500 picoCuries per liter) are high, and the development of deep ground water could cause deeper saline water to migrate upward into producing wells. The South Fork Merced River, the primary source of water supply for Wawona, does not meet current demands during late summer and autumn. Data collected between 1958 and 1968 indicate that 25 percent of the time discharge of the South Fork River at Wawona during the dry season (August through October) was less than 2 cubic feet per second the discharge rate at which the National Park Service is res
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Britannia Field is 130 miles northeast of Aberdeen. It underlies a separate oil field, Alba, which was discovered by Chevron in 1984 and has been on stream since 1994. Britannia`s reserves of gas and condensate are held in cretaceous sandstone at a depth of approximately 13,000 ft. When Britannia reaches full production, it has the potential (at 740 MMcf/D gas) to supply 8% of the total U.K. gas demand. Britannia`s reserves are being developed through a single drilling, production, and accommodation platform at the east end of the field. The platform has 36 well slots and is supported onmore » an eight-legged jacket in 459-ft-deep water. A subsea well center with 14 well slots will be 9 miles west of the platform. The paper discusses field development, field management, and performance to date.« less
Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone
Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W.; Haeni, F.P.
2005-01-01
Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.
A Psychiatric Formulary for Long-Duration Spaceflight.
Friedman, Eric; Bui, Brian
2017-11-01
Behavioral health is essential for the safety, well-being, and performance of crewmembers in both human spaceflight and Antarctic exploration. Over the past five decades, psychiatric issues have been documented in orbital spaceflight. In Antarctica, literature suggests up to 5% of wintering crewmembers could meet criteria for a psychiatric illness, including mood disorders, stressor-related disorders, sleep-wake disorders, and substance-related disorders. Experience from these settings indicates that psychiatric disorders on deep space missions must be anticipated. An important part of planning for the psychological health of crewmembers is the onboard provision of psychotropic drugs. These medications have been available on orbital missions. A greater variety and supply of these drugs exist at Antarctic facilities. The size and diversity of a deep space psychiatric formulary will be greater than that provided on orbital missions. Drugs to be provisioned include anxiolytics, antidepressants, mood stabilizers, antipsychotics, and hypnotics. Each drug category should include different medications, providing diverse pharmacokinetic, pharmacodynamic, and side effect profiles. The formulary itself should be rigorously controlled, given the abuse potential of some medications. In-flight treatment strategies could include psychological monitoring of well-being and early intervention for significant symptoms. Psychiatric emergencies would be treated aggressively with behavioral and pharmacological interventions to de-escalate potentially hazardous situations. On long-duration space missions, a robust psychiatric formulary could provide crewmembers autonomy and flexibility in treating a range of behavioral issues from depression to acute psychosis. This will contribute to the safety, health, and performance of crewmembers, and to mission success.Friedman E, Bui B. A psychiatric formulary for long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(11):1024-1033.
A tracer study of the deep water renewal in the European polar seas
NASA Astrophysics Data System (ADS)
Heinze, Ch.; Schlosser, P.; Koltermann, K. P.; Meincke, J.
1990-09-01
A study of the deep water renewal in the European polar seas (Norwegian Sea, Greenland Sea and Eurasian Basin) based on the distribution of tritium ( 3H), 3He, chlorofluoromethane (F-11 = CCL 3F), salinity and potential temperature is presented. Four different versions of a kinematic box model calibrated with the tracer data yield production rates and turnover times due to deep convection for Greenland Sea Deep Water (0.47-0.59 Sv, 27-34 y) and Eurasian Basin Deep Water (0.97-1.07 Sv, 83-92 y). Model calculations with different deep advective flow patterns (exchange at equal rates between each of the deep water masses or an internal circuit Eurasian Basin-Greenland Sea-Norwegian Sea-Eurasian Basin) give estimates of the deep horizontal transports, resulting in a turnover time of 13-16 years for Norwegian Sea Deep Water. The total turnover times (convection and deep advection) of the Greenland Sea and the Eurasian Basin are estimated to about 10 and 50 years, respectively. Mean hydrographic characteristics of the source water for Greenland Sea Deep Water and Eurasian Basin Deep Water are estimated from minimization of the deviations between modelled and observed hydrographic deep water values. The fractions of surface waters and intermediate waters making up the deep water of the Greenland Sea are estimated to about 80 and 20%, respectively.
NASA Astrophysics Data System (ADS)
Michael, H. A.; Voss, C. I.
2009-12-01
Widespread arsenic poisoning is occurring in large areas of Bangladesh and West Bengal, India due to high arsenic levels in shallow groundwater, which is the primary source of irrigation and drinking water in the region. The high-arsenic groundwater exists in aquifers of the Bengal Basin, a huge sedimentary system approximately 500km x 500km wide and greater than 15km deep in places. Deeper groundwater (>150m) is nearly universally low in arsenic and a potential source of safe drinking water, but evaluation of its sustainability requires understanding of the entire, interconnected regional aquifer system. Numerical modeling of flow and arsenic transport in the basin introduces problems of scale: challenges in representing the system in enough detail to produce meaningful simulations and answer relevant questions while maintaining enough simplicity to understand controls on processes and operating within computational constraints. A regional groundwater flow and transport model of the Bengal Basin was constructed to assess the large-scale functioning of the deep groundwater flow system, the vulnerability of deep groundwater to pumping-induced migration from above, and the effect of chemical properties of sediments (sorption) on sustainability. The primary challenges include the very large spatial scale of the system, dynamic monsoonal hydrology (small temporal scale fluctuations), complex sedimentary architecture (small spatial scale heterogeneity), and a lack of reliable hydrologic and geologic data. The approach was simple. Detailed inputs were reduced to only those that affect the functioning of the deep flow system. Available data were used to estimate upscaled parameter values. Nested small-scale simulations were performed to determine the effects of the simplifications, which include treatment of the top boundary condition and transience, effects of small-scale heterogeneity, and effects of individual pumping wells. Simulation of arsenic transport at the large scale adds another element of complexity. Minimization of numerical oscillation and mass balance errors required experimentation with solvers and discretization. In the face of relatively few data in a very large-scale model, sensitivity analyses were essential. The scale of the system limits evaluation of localized behavior, but results clearly identified the primary controls on the system and effects of various pumping scenarios and sorptive properties. It was shown that limiting deep pumping to domestic supply may result in sustainable arsenic-safe water for 90% of the arsenic-affected region over a 1000 year timescale, and that sorption of arsenic onto deep, oxidized Pleistocene sediments may increase the breakthrough time in unsustainable zones by more than an order of magnitude. Thus, both hydraulic and chemical defenses indicate the potential for sustainable, managed use of deep, safe groundwater resources in the Bengal Basin.
GEODSS Present Configuration and Potential
2014-06-28
to provide critical metric tracking capacity for deep space catalog maintenance. The follow-up TOS designed as a deployable gap filler in SSN deep...CASTOR) - A RAVEN System In Canada [3]WindowPane Observatory Lanphier Shutter System 2014 Retrieved From: http://windowpaneobservatory.com/ [4]J.N
Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production
NASA Astrophysics Data System (ADS)
Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.
2014-12-01
Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.
Study of the potential of wave energy in Malaysia
NASA Astrophysics Data System (ADS)
Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin
2017-07-01
Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.
Background rejection in NEXT using deep neural networks
Renner, J.; Farbin, A.; Vidal, J. Muñoz; ...
2017-01-16
Here, we investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the usemore » of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.« less
NASA Astrophysics Data System (ADS)
Klitzke, Peter; Franke, Dieter; Blumenberg, Martin; Weniger, Philipp; Lutz, Rüdiger; Berglar, Kai; Ehrhardt, Axel
2017-04-01
The Norwegian Barents Sea, as the westernmost part of the Arctic Eurasian shelf, is located between the Proterozoic East-European Craton in the south and Cenozoic passive margins in the north and the west. This region has experienced multiple changes of the stress regime including Paleozoic continental collision, multi-stage late Paleozoic to Mesozoic rifting and Pliocene/Pleistocene uplift and erosion. Particularly the southwestern Barents Sea is in focus of academic as well as industry-driven studies since decades due to its hydrocarbon potential. This contributed to a comprehensive database and the corresponding petroleum systems are well understood. Opposed to that, potential petroleum systems of the northern Barents Sea are only poorly investigated. It is widely agreed that late Cenozoic uplift and erosion episodes were more pronounced to the north. As a consequence, potential Triassic source rocks are covered only locally by Jurassic strata but by a thin layer of Quaternary deposits. One objective of our Arctic activities is to shed new light on the evolution of potential petroleum systems in the northern Barents Sea. Therefore, geophysical and geological data were acquired southeast of Svalbard in the area of the Olga Basin in 2015. The obtained data include 1750 km of 2D multi-channel seismic lines, 350 km of wide angle seismic lines by means of sonobuoys, sediment echosounder data, multi-beam data and potential field data. First interpretation of the seismic profiles reveals a locally dense network of Triassic normal faults bordering the Olga basin and partly reaching as deep as to the acoustic basement. In particular, north of the Olga Basin this Triassic fault system seems to have experienced post-glacial reactivation as indicated by sediment echosounder data. Surface sediments were sampled by use of gravity and multi coring. Low concentrations of methane in the adsorbed fraction of hydrocarbon gases within the center of the Olga Basin imply that the Jurassic strata is impermeable and could act a potential seal for hydrocarbons. Elevated methane concentrations on the other hand have been determined at the basin edge where Jurassic sediments crop out and additionally, above a reactivated fault, which suggests that these faults are potential pathways for hydrocarbon escape.
Smith, Parker J; Goeltz, John C
2017-12-07
The 1,2-diol moiety in a variety of substituted catechols allows formation of room temperature ionic melts in a 2:1 ratio with choline chloride or choline dihydrogen citrate. These deep eutectic solvents were 4.3-6.6 M in redox active catechols. Substituents on 3- and 4-substituted catechols shift both E° and pK a such that Hammett parameters predict the observed E p for oxidation in square wave voltammetry. The proton acceptor for the proton-coupled oxidation shifts the observed E p more strongly than the substituents within the substituents and acceptors reported here. The shift is predicted well by the pK a of the conjugate acid of the proton acceptor, i.e., water in aqueous solutions or chloride or dihydrogen citrate in the DESs in this study. Together, the substituent and the proton acceptor allow gross and fine-tuning of the oxidation potential for catechol over 750 mV, the first demonstration of control of the thermodynamics of proton-coupled electron transfer in deep eutectic solvents. Changing the substituents on the HBD affords fine control in tens of millivolts, while changing the base strength of the anion of the organic salt affords gross control across hundreds of millivolts.
NASA Astrophysics Data System (ADS)
Netburn, Amanda N.; Anthony Koslow, J.
2015-10-01
Climate change-induced ocean deoxygenation is expected to exacerbate hypoxic conditions in mesopelagic waters off the coast of southern California, with potentially deleterious effects for the resident fauna. In order to understand the possible impacts that the oxygen minimum zone expansion will have on these animals, we investigated the response of the depth of the deep scattering layer (i.e., upper and lower boundaries) to natural variations in midwater oxygen concentrations, light levels, and temperature over time and space in the southern California Current Ecosystem. We found that the depth of the lower boundary of the deep scattering layer (DSL) is most strongly correlated with dissolved oxygen concentration, and irradiance and oxygen concentration are the key variables determining the upper boundary. Based on our correlations and published estimates of annual rates of change to irradiance level and hypoxic boundary, we estimated the corresponding annual rate of change of DSL depths. If past trends continue, the upper boundary is expected to shoal at a faster rate than the lower boundary, effectively widening the DSL under climate change scenarios. These results have important implications for the future of pelagic ecosystems, as a change to the distribution of mesopelagic animals could affect pelagic food webs as well as biogeochemical cycles.
Time-reversed ultrasonically encoded (TRUE) focusing for deep-tissue optogenetic modulation
NASA Astrophysics Data System (ADS)
Brake, Joshua; Ruan, Haowen; Robinson, J. Elliott; Liu, Yan; Gradinaru, Viviana; Yang, Changhuei
2018-02-01
The problem of optical scattering was long thought to fundamentally limit the depth at which light could be focused through turbid media such as fog or biological tissue. However, recent work in the field of wavefront shaping has demonstrated that by properly shaping the input light field, light can be noninvasively focused to desired locations deep inside scattering media. This has led to the development of several new techniques which have the potential to enhance the capabilities of existing optical tools in biomedicine. Unfortunately, extending these methods to living tissue has a number of challenges related to the requirements for noninvasive guidestar operation, speed, and focusing fidelity. Of existing wavefront shaping methods, time-reversed ultrasonically encoded (TRUE) focusing is well suited for applications in living tissue since it uses ultrasound as a guidestar which enables noninvasive operation and provides compatibility with optical phase conjugation for high-speed operation. In this paper, we will discuss the results of our recent work to apply TRUE focusing for optogenetic modulation, which enables enhanced optogenetic stimulation deep in tissue with a 4-fold spatial resolution improvement in 800-micron thick acute brain slices compared to conventional focusing, and summarize future directions to further extend the impact of wavefront shaping technologies in biomedicine.
An observational study of entrainment rate in deep convection
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; ...
2015-09-22
This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less
An observational study of entrainment rate in deep convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang
This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less
Chemical dispersants can suppress the activity of natural oil-degrading microorganisms
Kleindienst, Sara; Seidel, Michael; Ziervogel, Kai; Grim, Sharon; Loftis, Kathy; Harrison, Sarah; Malkin, Sairah Y.; Perkins, Matthew J.; Field, Jennifer; Sogin, Mitchell L.; Dittmar, Thorsten; Passow, Uta; Medeiros, Patricia M.; Joye, Samantha B.
2015-01-01
During the Deepwater Horizon oil well blowout in the Gulf of Mexico, the application of 7 million liters of chemical dispersants aimed to stimulate microbial crude oil degradation by increasing the bioavailability of oil compounds. However, the effects of dispersants on oil biodegradation rates are debated. In laboratory experiments, we simulated environmental conditions comparable to the hydrocarbon-rich, 1,100 m deep plume that formed during the Deepwater Horizon discharge. The presence of dispersant significantly altered the microbial community composition through selection for potential dispersant-degrading Colwellia, which also bloomed in situ in Gulf deep waters during the discharge. In contrast, oil addition to deepwater samples in the absence of dispersant stimulated growth of natural hydrocarbon-degrading Marinobacter. In these deepwater microcosm experiments, dispersants did not enhance heterotrophic microbial activity or hydrocarbon oxidation rates. An experiment with surface seawater from an anthropogenically derived oil slick corroborated the deepwater microcosm results as inhibition of hydrocarbon turnover was observed in the presence of dispersants, suggesting that the microcosm findings are broadly applicable across marine habitats. Extrapolating this comprehensive dataset to real world scenarios questions whether dispersants stimulate microbial oil degradation in deep ocean waters and instead highlights that dispersants can exert a negative effect on microbial hydrocarbon degradation rates. PMID:26553985
[The possibility of using PlasmaDeepDive™ MRM panel in clinical diagnostics].
Miroshnichenko, Iu V; Petushkova, N A; Moskaleva, N E; Teryaeva, N B; Zgoda, V G; Ilgisonis, E V; Belyaev, A Yu
2015-01-01
Concentrations of 46 proteins have been determined in human blood plasma using PlasmaDeepDive™ MRM Panel ("Biognosys AG", Switzerland). 18 of them were included into the group of proteins with higher concentrations, also identified by the shotgun proteomic analysis. Based on literature data it is concluded that the PlasmaDeepDive™ MRM Panel is applicable for studies of human plasma samples for potential biomarkers of various nervous system disorders.
Wishart Deep Stacking Network for Fast POLSAR Image Classification.
Jiao, Licheng; Liu, Fang
2016-05-11
Inspired by the popular deep learning architecture - Deep Stacking Network (DSN), a specific deep model for polarimetric synthetic aperture radar (POLSAR) image classification is proposed in this paper, which is named as Wishart Deep Stacking Network (W-DSN). First of all, a fast implementation of Wishart distance is achieved by a special linear transformation, which speeds up the classification of POLSAR image and makes it possible to use this polarimetric information in the following Neural Network (NN). Then a single-hidden-layer neural network based on the fast Wishart distance is defined for POLSAR image classification, which is named as Wishart Network (WN) and improves the classification accuracy. Finally, a multi-layer neural network is formed by stacking WNs, which is in fact the proposed deep learning architecture W-DSN for POLSAR image classification and improves the classification accuracy further. In addition, the structure of WN can be expanded in a straightforward way by adding hidden units if necessary, as well as the structure of the W-DSN. As a preliminary exploration on formulating specific deep learning architecture for POLSAR image classification, the proposed methods may establish a simple but clever connection between POLSAR image interpretation and deep learning. The experiment results tested on real POLSAR image show that the fast implementation of Wishart distance is very efficient (a POLSAR image with 768000 pixels can be classified in 0.53s), and both the single-hidden-layer architecture WN and the deep learning architecture W-DSN for POLSAR image classification perform well and work efficiently.
NASA Astrophysics Data System (ADS)
Gagnon, Alexander C.; Adkins, Jess F.; Fernandez, Diego P.; Robinson, Laura F.
2007-09-01
Deep-sea corals are a new tool in paleoceanography with the potential to provide century long records of deep ocean change at sub-decadal resolution. Complicating the reconstruction of past deep-sea temperatures, Mg/Ca and Sr/Ca paleothermometers in corals are also influenced by non-environmental factors, termed vital effects. To determine the magnitude, pattern and mechanism of vital effects we measure detailed collocated Sr/Ca and Mg/Ca ratios, using a combination of micromilling and isotope-dilution ICP-MS across skeletal features in recent samples of Desmophyllum dianthus, a scleractinian coral that grows in the near constant environment of the deep-sea. Sr/Ca variability across skeletal features is less than 5% (2σ relative standard deviation) and variability of Sr/Ca within the optically dense central band, composed of small and irregular aragonite crystals, is significantly less than the surrounding skeleton. The mean Sr/Ca of the central band, 10.6 ± 0.1 mmol/mol (2σ standard error), and that of the surrounding skeleton, 10.58±0.09 mmol/mol, are statistically similar, and agree well with the inorganic aragonite Sr/Ca-temperature relationship at the temperature of coral growth. In the central band, Mg/Ca is greater than 3 mmol/mol, more than twice that of the surrounding skeleton, a general result observed in the relative Mg/Ca ratios of D. dianthus collected from separate oceanographic locations. This large vital effect corresponds to a ˜ 10 °C signal, when calibrated via surface coral Mg/Ca-temperature relationships, and has the potential to complicate paleoreconstructions. Outside the central band, Mg/Ca ratios increase with decreasing Sr/Ca. We explain the correlated behavior of Mg/Ca and Sr/Ca outside the central band by Rayleigh fractionation from a closed pool, an explanation that has been proposed elsewhere, but which is tested in this study by a simple and general relationship. We constrain the initial solution and effective partition coefficients for a Rayleigh process consistent with our accurate Metal/Ca measurements. A process other than Rayleigh fractionation influences Mg in the central band and our data constrain a number of possible mechanisms for the precipitation of this aragonite. Understanding the process affecting tracer behavior during coral biomineralization can help us better interpret paleoproxies in biogenic carbonates and lead to an improved deep-sea paleothermometer.
The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements
NASA Technical Reports Server (NTRS)
Zapata, Edgar
2017-01-01
In 2011, NASA released a report assessing the market for commercial crew and cargo services to low Earth orbit (LEO). The report stated that NASA had spent a few hundred million dollars in the Commercial Orbital Transportation Services (COTS) program on the portion related to the development of the Falcon 9 launch vehicle. Yet a NASA cost model predicted the cost would have been significantly more with a non-commercial cost-plus contracting approach. By 2016 a NASA request for information stated it must "maximize the efficiency and sustainability of the Exploration Systems development programs", as "critical to free resources for reinvestment...such as other required deep space exploration capabilities." This work joins the previous two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for "...other required deep space exploration capabilities." These other capabilities include landers, stages and more. We mature the concept of "costed baseball cards", adding cost estimates to NASA's space systems "baseball cards." We show some potential costs, including analysis, the basis of estimates, data sources and caveats to address a critical question - based on initial assessment, are significant agency resources justified for more detailed analysis and due diligence to understand and invest in public private partnerships for human deep space exploration systems? The cost analysis spans commercial to cost-plus contracting approaches, for smaller elements vs. larger, with some variation for lunar or Mars. By extension, we delve briefly into the potentially much broader significance of the individual cost estimates if taken together as a NASA investment portfolio where public private partnership are stitched together for deep space exploration. How might multiple improvements in individual systems add up to NASA human deep space exploration achievements, realistically, affordably, sustainably, in a relevant timeframe?
Deep challenges for China's war on water pollution.
Han, Dongmei; Currell, Matthew J; Cao, Guoliang
2016-11-01
China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO 3 N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ 15 N and δ 18 O NO3 values ranging from -14.9‰ to 35.5‰ and -8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsenko, Marina A.; Xu, Zhe; Liu, Tao
Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer
Hong, Matthew K. H.; Macintyre, Geoff; Wedge, David C.; ...
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones,more » even years after removal of the prostate. As a result, analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.« less
NASA Astrophysics Data System (ADS)
Fang, Kuai; Shen, Chaopeng; Kifer, Daniel; Yang, Xiao
2017-11-01
The Soil Moisture Active Passive (SMAP) mission has delivered valuable sensing of surface soil moisture since 2015. However, it has a short time span and irregular revisit schedules. Utilizing a state-of-the-art time series deep learning neural network, Long Short-Term Memory (LSTM), we created a system that predicts SMAP level-3 moisture product with atmospheric forcings, model-simulated moisture, and static physiographic attributes as inputs. The system removes most of the bias with model simulations and improves predicted moisture climatology, achieving small test root-mean-square errors (<0.035) and high-correlation coefficients >0.87 for over 75% of Continental United States, including the forested southeast. As the first application of LSTM in hydrology, we show the proposed network avoids overfitting and is robust for both temporal and spatial extrapolation tests. LSTM generalizes well across regions with distinct climates and environmental settings. With high fidelity to SMAP, LSTM shows great potential for hindcasting, data assimilation, and weather forecasting.
A deep belief network approach using VDRAS data for nowcasting
NASA Astrophysics Data System (ADS)
Han, Lei; Dai, Jie; Zhang, Wei; Zhang, Changjiang; Feng, Hanlei
2018-04-01
Nowcasting or very short-term forecasting convective storms is still a challenging problem due to the high nonlinearity and insufficient observation of convective weather. As the understanding of the physical mechanism of convective weather is also insufficient, the numerical weather model cannot predict convective storms well. Machine learning approaches provide a potential way to nowcast convective storms using various meteorological data. In this study, a deep belief network (DBN) is proposed to nowcast convective storms using the real-time re-analysis meteorological data. The nowcasting problem is formulated as a classification problem. The 3D meteorological variables are fed directly to the DBN with dimension of input layer 6*6*80. Three hidden layers are used in the DBN and the dimension of output layer is two. A box-moving method is presented to provide the input features containing the temporal and spatial information. The results show that the DNB can generate reasonable prediction results of the movement and growth of convective storms.
Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I
2018-01-01
Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information. PMID:29513219
Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David
2017-01-01
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management. PMID:28966847
Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David
2017-09-01
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management.
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer.
Hong, Matthew K H; Macintyre, Geoff; Wedge, David C; Van Loo, Peter; Patel, Keval; Lunke, Sebastian; Alexandrov, Ludmil B; Sloggett, Clare; Cmero, Marek; Marass, Francesco; Tsui, Dana; Mangiola, Stefano; Lonie, Andrew; Naeem, Haroon; Sapre, Nikhil; Phal, Pramit M; Kurganovs, Natalie; Chin, Xiaowen; Kerger, Michael; Warren, Anne Y; Neal, David; Gnanapragasam, Vincent; Rosenfeld, Nitzan; Pedersen, John S; Ryan, Andrew; Haviv, Izhak; Costello, Anthony J; Corcoran, Niall M; Hovens, Christopher M
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.
Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I
2018-03-07
Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.
Vernick, Kenneth D.
2017-01-01
Metavisitor is a software package that allows biologists and clinicians without specialized bioinformatics expertise to detect and assemble viral genomes from deep sequence datasets. The package is composed of a set of modular bioinformatic tools and workflows that are implemented in the Galaxy framework. Using the graphical Galaxy workflow editor, users with minimal computational skills can use existing Metavisitor workflows or adapt them to suit specific needs by adding or modifying analysis modules. Metavisitor works with DNA, RNA or small RNA sequencing data over a range of read lengths and can use a combination of de novo and guided approaches to assemble genomes from sequencing reads. We show that the software has the potential for quick diagnosis as well as discovery of viruses from a vast array of organisms. Importantly, we provide here executable Metavisitor use cases, which increase the accessibility and transparency of the software, ultimately enabling biologists or clinicians to focus on biological or medical questions. PMID:28045932
Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D
2016-01-01
Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.
Microbes of deep marine sediments as viewed by metagenomics
NASA Astrophysics Data System (ADS)
Biddle, J.
2015-12-01
Ten years after the first deep marine sediment metagenome was produced, questions still exist about the nucleic acid sequences we have retrieved. Current data sets, including the Peru Margin, Costa Rica Margin and Iberian Margin show that consistently, data forms larger assemblies at depth due to the reduced complexity of the microbial community. But are these organisms active or preserved? At SMTZs, a change in the assembly statistics is noted, as well as an increase in cell counts, suggesting that cells are truly active. As depth increases, genome sizes are consistently large, suggesting that much like soil microbes, sedimentary microbes may maintain a larger reportorie of genomic potential. Functional changes are seen with depth, but at many sites are not correlated to specific geochemistries. Individual genomes show changes with depth, which raises interesting questions on how the subsurface is settled and maintained. The subsurface does have a distinct genomic signature, including unusual microbial groups, which we are now able to analyze for total genomic content.