Lessons learned from the NEPTUNE power system, and other deep-sea adventures
NASA Astrophysics Data System (ADS)
Kirkham, Harold
2006-11-01
The development of underwater science systems presents some challenging technical issues. It seems that the best efforts of the engineers and scientists involved are sometimes inadequate, and projects that once seemed straightforward end up being late or over-budget, or cancelled. This paper will review some of the lessons that may be learned from the examples of three science projects in the deep ocean: the Deep Underwater Muon and Neutrino Detector neutrino detector, the H2O observatory, and the power system part of the NEPTUNE regional cabled observatory.
JGR special issue on Deep Earthquakes
NASA Astrophysics Data System (ADS)
The editor and associate editors of the Journal of Geophysical Research—Solid Earth and Planets invite the submission of manuscripts for a special issue on the topic “Deep- and Intermediate-Focus Earthquakes, Phase Transitions, and the Mechanics of Deep Subduction.”Manuscripts should be submitted to JGR Editor Gerald Schubert (Department of Earth and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90024) before July 1, 1986, in accordance with the usual rules for manuscript submission. Submitted papers will undergo the normal JGR review procedure. For more information, contact either Schubert or the special guest associate editor, Cliff Frohlich (Institute for Geophysics, University of Texas at Austin, 4920 North IH-35, Austin, TX 78751; telephone: 512-451-6223).
Preface: Deep Slab and Mantle Dynamics
NASA Astrophysics Data System (ADS)
Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.
2010-11-01
We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep mantle and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.
Gilbert, Frédéric; Ovadia, Daniela
2011-01-01
Deep brain stimulation (DBS) is optimistically portrayed in contemporary media. This already happened with psychosurgery during the first half of the twentieth century. The tendency of popular media to hype the benefits of DBS therapies, without equally highlighting risks, fosters public expectations also due to the lack of ethical analysis in the scientific literature. Media are not expected (and often not prepared) to raise the ethical issues which remain unaddressed by the scientific community. To obtain a more objective portrayal of DBS in the media, a deeper collaboration between the science community and journalists, and particularly specialized ones, must be promoted. Access to databases and articles, directly or through science media centers, has also been proven effective in increasing the quality of reporting. This article has three main objectives. Firstly, to explore the past media coverage of leukotomy, and to examine its widespread acceptance and the neglect of ethical issues in its depiction. Secondly, to describe how current enthusiastic coverage of DBS causes excessive optimism and neglect of ethical issues in patients. Thirdly, to discuss communication models and strategies to enhance media and science responsibility.
Gilbert, Frédéric; Ovadia, Daniela
2011-01-01
Deep brain stimulation (DBS) is optimistically portrayed in contemporary media. This already happened with psychosurgery during the first half of the twentieth century. The tendency of popular media to hype the benefits of DBS therapies, without equally highlighting risks, fosters public expectations also due to the lack of ethical analysis in the scientific literature. Media are not expected (and often not prepared) to raise the ethical issues which remain unaddressed by the scientific community. To obtain a more objective portrayal of DBS in the media, a deeper collaboration between the science community and journalists, and particularly specialized ones, must be promoted. Access to databases and articles, directly or through science media centers, has also been proven effective in increasing the quality of reporting. This article has three main objectives. Firstly, to explore the past media coverage of leukotomy, and to examine its widespread acceptance and the neglect of ethical issues in its depiction. Secondly, to describe how current enthusiastic coverage of DBS causes excessive optimism and neglect of ethical issues in patients. Thirdly, to discuss communication models and strategies to enhance media and science responsibility. PMID:21617733
Special Issue on Earth Science: The View From '76
ERIC Educational Resources Information Center
Geotimes, 1976
1976-01-01
Presents the latest developments concerning the following topics: astrogeology, coal, deep sea drilling project, engineering geology; environmental geology, exploration geophysics, geochemistry, geodynamics project, hydrology, industrial minerals, international geology, mapping, mathematical geology, metals, mineralogy, oil and gas, invertebrate…
NASA Astrophysics Data System (ADS)
Harden-Davies, Harriet
2017-03-01
The deep-sea is a large source of marine genetic resources (MGR), which have many potential uses and are a growing area of research. Much of the deep-sea lies in areas beyond national jurisdiction (ABNJ), including 65% of the global ocean. MGR in ABNJ occupy a significant gap in the international legal framework. Access and benefit sharing of MGR is a key issue in the development of a new international legally-binding instrument under the United Nations Convention on the Law of the Sea (UNCLOS) for the conservation and sustainable use of marine biological diversity in ABNJ. This paper examines how this is relevant to deep-sea scientific research and identifies emerging challenges and opportunities. There is no internationally agreed definition of MGR, however, deep-sea genetic resources could incorporate any biological material including genes, proteins and natural products. Deep-sea scientific research is the key actor accessing MGR in ABNJ and sharing benefits such as data, samples and knowledge. UNCLOS provides the international legal framework for marine scientific research, international science cooperation, capacity building and marine technology transfer. Enhanced implementation could support access and benefit sharing of MGR in ABNJ. Deep-sea scientific researchers could play an important role in informing practical new governance solutions for access and benefit sharing of MGR that promote scientific research in ABNJ and support deep-sea stewardship. Advancing knowledge of deep-sea biodiversity in ABNJ, enhancing open-access to data and samples, standardisation and international marine science cooperation are significant potential opportunity areas.
Voyager-Jupiter radio science data papers
NASA Technical Reports Server (NTRS)
Levy, G. S.; Wood, G. E.
1980-01-01
The reduction and interpretation of the radio science data from the Voyager 1 and 2 encounters of the planet Jupiter and its satellites resulted in the preparation of several papers for publication in the special Voyager-Jupiter issue of the Journal of Geophysical Research. The radio science and tracking systems of the Deep Space Network provide the data which makes this research possible. This article lists submitted papers by title, with their authors and with abstracts of their contents.
Geoethics in the Years of Living Dangerously
NASA Astrophysics Data System (ADS)
Schmitt, J.
2014-12-01
The geosciences lag behind the ecologic and atmospheric sciences in addressing the major scientific and societal ethical issues facing the inhabitants of planet Earth. Regardless, major emerging ethical issues at the interface of the earth system with society demand geoscientist engagement. These include climate change, extinction and biodiversity decline, transformation of terrestrial landscapes and related impacts on ocean ecosystems, and the consequential resonance of these changes on human health, economic and environmental justice, and political stability. The societal factors driving these issues derive from a world view founded on speciesism (human dominion), utilitarian use of resources, unquestioned population and economic growth, and human difficulty in perceiving deep time and large spatial scale. Accommodation of the supernatural, mythical, and political realms with science has led to widespread conflation of scientific consensus with opinion, driving denial of both climate change and evolution. Future success in rationally addressing these ethical conundrums requires geoscientist engagement across the social, political, economic, ethical, philosophical, and historical realms of inquiry. Geoscientists must be well-versed in earth system science principles and the major geologic concepts relevant to understanding anthropogenic change including deep time, the fossil record of evolution, and changes across multiple spatial and temporal scales that transcend human experience. They must also: 1) confront the global population issue, using the archaeological and historical record of its recent rapidly accelerated growth, especially as it impacts resource consumption and earth system function, 2) forcefully address the effects of agriculture on the atmosphere, terrestrial and marine ecosystems, disease, urbanization, and political instability, 3) apply the synthetic principles of conservation biology, including ecosystem science, geoecology, and major advances in understanding the cognitive abilities and social dimensions of non-human animals to address ethical issues involving humanity's impact on the Earth's biota, and 4) work to end the accommodation of belief systems with science that invariably leads to denialism and historical confabulation.
Kinds of Thinking, Styles of Reasoning
ERIC Educational Resources Information Center
Peters, Michael A.
2007-01-01
There is no more central issue to education than thinking and reasoning. Certainly, such an emphasis chimes with the rationalist and cognitive deep structure of the Western educational tradition. The contemporary tendency reinforced by cognitive science is to treat thinking ahistorically and aculturally as though physiology, brain structure and…
Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory
NASA Astrophysics Data System (ADS)
Roggenthen, W.; Wang, J.
2004-12-01
The Homestake Mine in South Dakota ceased gold production in 2002 and was sealed for entry in 2003. The announcement of mine closure triggered the revival of a national initiative to establish a deep underground facility, currently known as the Deep Underground Science and Engineering Laboratory (DUSEL). The National Science Foundation announced that solicitations were to be issued in 2004 and 2005, with the first one (known as S-1) issued in June, 2004. The focus of S-1 is on site non-specific technical requirements to define the scientific program at DUSEL. Earth scientists and physicists participated in an S-1 workshop at Berkeley in August, 2004. This abstract presents the prospects of the Homestake Mine to accommodate the earth science scientific programs defined at the S-1 workshop. The Homestake Mine has hundreds of kilometers of drifts over fifty levels accessible (upon mine reopening) for water evaluation, seepage quantification, seismic monitoring, geophysical imaging, geological mapping, mineral sampling, ecology and geo-microbiology. The extensive network of drifts, ramps, and vertical shafts allows installation of 10-kilometer-scale seismograph and electromagnetic networks. Ramps connecting different levels, typically separated by 150 ft, could be instrumented for flow and transport studies, prior to implementation of coupled thermal-hydro-chemical-mechanical-biological processes testing. Numerous large rooms are available for ecological and introduced-material evaluations. Ideas for installing instruments in cubic kilometers of rock mass can be realized over multiple levels. Environmental assessment, petroleum recovery, carbon sequestration were among the applications discussed in the S-1 workshop. If the Homestake Mine can be expediently reopened, earth scientists are ready to perform important tests with a phased approach. The drifts and ramps directly below the large open pit could be the first area for shallow testing. The 4,850 ft level is the next target area, which has a large lateral extent. Geophysical sensor stations could be installed at this level, together with stations along two main shafts accessing this level, and one winze below. After dewatering, rock mechanics and geotechnical engineering investigators could actively participate in room siting and excavation, at depths up to 8,000 ft. Geochemistry and geo-microbiology scientists would prefer additional drilling in deep zones beyond the mining and flooding perturbations. Additional earth science programs are being developed for the Homestake Mine, utilizing multiple levels and shafts. Many physics experiments require a site "as deep as possible" and special conditions to reduce background and cosmic rays. The Homestake Mine offers a very deep site and a vast amount of data and knowledge associated with its 125 years of mining operation. The cores from exploratory drilling into a mechanical strong unit, the Yates Formation, are available for scientific and engineering evaluations. A team from many institutions is being formed by Kevin Lesko, a neutrino scientist with experience in detecting neutrino oscillations with deep detectors in Canada and Japan. It is time for the United States to establish a DUSEL deep and large enough for next-generation physics and earth science long-term experiments. The Homestake Mine has these necessary attributes. The collaboration welcomes participation and contribution from scientists and engineers in the physics and earth science community for multi-disciplinary research during and after the restoration and conversion of the Homestake Mine.
NASA Astrophysics Data System (ADS)
Xiong, X.; Gao, R.; Li, Q.; Wang, H.
2012-12-01
The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.
Tibell, Lena A E; Rundgren, Carl-Johan
2010-01-01
Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.
Parallel Distributed Processing at 25: further explorations in the microstructure of cognition.
Rogers, Timothy T; McClelland, James L
2014-08-01
This paper introduces a special issue of Cognitive Science initiated on the 25th anniversary of the publication of Parallel Distributed Processing (PDP), a two-volume work that introduced the use of neural network models as vehicles for understanding cognition. The collection surveys the core commitments of the PDP framework, the key issues the framework has addressed, and the debates the framework has spawned, and presents viewpoints on the current status of these issues. The articles focus on both historical roots and contemporary developments in learning, optimality theory, perception, memory, language, conceptual knowledge, cognitive control, and consciousness. Here we consider the approach more generally, reviewing the original motivations, the resulting framework, and the central tenets of the underlying theory. We then evaluate the impact of PDP both on the field at large and within specific subdomains of cognitive science and consider the current role of PDP models within the broader landscape of contemporary theoretical frameworks in cognitive science. Looking to the future, we consider the implications for cognitive science of the recent success of machine learning systems called "deep networks"-systems that build on key ideas presented in the PDP volumes. Copyright © 2014 Cognitive Science Society, Inc.
The Great Observatories Origins Deep Survey (GOODS) Spitzer Legacy Science Program
NASA Astrophysics Data System (ADS)
Dickinson, M.; GOODS Team
2004-12-01
The Great Observatories Origins Deep Survey (GOODS) is an anthology of observing programs that are creating a rich, public, multiwavelength data set for studying galaxy formation and evolution. GOODS is observing two fields, one in each hemisphere, with extremely deep imaging and spectroscopy using the most powerful telescopes in space and on the ground. The GOODS Spitzer Legacy Science Program completes the trio of observations from NASA's Great Observatories, joining already-completed GOODS data from Chandra and Hubble. Barring unforeseen difficulties, the GOODS Spitzer observing program will have been completed by the end of 2004, and the first data products will have been released to the astronomical community. In this Special Oral Session, and in an accompanying poster session, the GOODS team presents early scientific results from this Spitzer Legacy program, as well as new research based on other GOODS data sets. I will introduce the session with a brief description of the Legacy observations and data set. Support for this work, part of the Spitzer Space Telescope Legacy Science Program, was provided by NASA through Contract Number 1224666 issued by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.
Rundgren, Carl-Johan
2010-01-01
Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life—often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from “pure sciences,” such as math, chemistry, and physics, through “applied sciences,” such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences. PMID:20194805
Advancing the Science of Community-Level Interventions
Beehler, Sarah; Deutsch, Charles; Green, Lawrence W.; Hawe, Penelope; McLeroy, Kenneth; Miller, Robin Lin; Rapkin, Bruce D.; Schensul, Jean J.; Schulz, Amy J.; Trimble, Joseph E.
2011-01-01
Community interventions are complex social processes that need to move beyond single interventions and outcomes at individual levels of short-term change. A scientific paradigm is emerging that supports collaborative, multilevel, culturally situated community interventions aimed at creating sustainable community-level impact. This paradigm is rooted in a deep history of ecological and collaborative thinking across public health, psychology, anthropology, and other fields of social science. The new paradigm makes a number of primary assertions that affect conceptualization of health issues, intervention design, and intervention evaluation. To elaborate the paradigm and advance the science of community intervention, we offer suggestions for promoting a scientific agenda, developing collaborations among professionals and communities, and examining the culture of science. PMID:21680923
Issues in deep space radiation protection
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Singleterry, R. C.; Clowdsley, M. S.; Thibeault, S. A.; Cheatwood, F. M.; Schimmerling, W.; Cucinotta, F. A.; Badhwar, G. D.;
2001-01-01
The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. c 2001. Elsevier Science Ltd. All rights reserved.
Human history and deep time in nineteenth-century British sciences: An introduction.
Sera-Shriar, Efram
2015-06-01
The historicisation of humans was a major endeavour in nineteenth-century Britain, and one that led to wide-ranging debates involving a variety of disciplinary approaches, new and old. Within the context of science and medicine these discussions centred on the issues of human origins and evolution. Did the various races living throughout the world develop from a single location, or were their physical and social differences evidence for their separate genesis? Which disciplinary tradition offered the best method for tracing human development? Was it even possible to trace that development, or had too much time passed since the dawn of humans? Furthermore, who had the authority to speak about these matters? This special issue will examine these core questions and introduce some of the ways that researchers attempted to historicise humans within the context of nineteenth-century British sciences. Copyright © 2015 Elsevier Ltd. All rights reserved.
A horizon scan of global conservation issues for 2012.
Sutherland, William J; Aveling, Ros; Bennun, Leon; Chapman, Eleanor; Clout, Mick; Côté, Isabelle M; Depledge, Michael H; Dicks, Lynn V; Dobson, Andrew P; Fellman, Liz; Fleishman, Erica; Gibbons, David W; Keim, Brandon; Lickorish, Fiona; Lindenmayer, David B; Monk, Kathryn A; Norris, Kenneth; Peck, Lloyd S; Prior, Stephanie V; Scharlemann, Jörn P W; Spalding, Mark; Watkinson, Andrew R
2012-01-01
Our aim in conducting annual horizon scans is to identify issues that, although currently receiving little attention, may be of increasing importance to the conservation of biological diversity in the future. The 15 issues presented here were identified by a diverse team of 22 experts in horizon scanning, and conservation science and its application. Methods for identifying and refining issues were the same as in two previous annual scans and are widely transferable to other disciplines. The issues highlight potential changes in climate, technology and human behaviour. Examples include warming of the deep sea, increased cultivation of perennial grains, burning of Arctic tundra, and the development of nuclear batteries and hydrokinetic in-stream turbines. Copyright © 2011 Elsevier Ltd. All rights reserved.
Unique deep-water ecosystems off the southeastern United States
Ross, Steve W.
2007-01-01
If nothing else, research in deep-sea environments teaches us how little we know about such important and productive habitats. The relatively recent discovery of hydrothermal-vent and cold-seep ecosystems illustrates this paucity of knowledge, and the subsequent explosion of research on these systems is a good example of the impact such concentrated efforts can have on marine sciences (see the March 2007 special issue of Oceanography on InterRidge, and Levin et al., 2007). The recent surge of interest in deep-sea corals is another example of how focused research on a particular subject can result in new perspectives on continental slope biotopes. Although deep-sea corals have been known for over 200 years, they were viewed as somewhat of a novelty, and research on them was sporadic, typically geologic, and usually only documented their occurrences (e.g., Stetson et al., 1962; Neumann et al., 1977; Paull et al., 2000).
NASA Technical Reports Server (NTRS)
Hall, Justin R.; Hastrup, Rolf C.
1990-01-01
The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.
NASA Astrophysics Data System (ADS)
Hall, Justin R.; Hastrup, Rolf C.
1990-10-01
The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.
PM Science Working Group Meeting on Spacecraft Maneuvers
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1997-01-01
The EOS PM Science Working Group met on May 6, 1997, to examine the issue of spacecraft maneuvers. The meeting was held at NASA Goddard Space Flight Center and was attended by the Team Leaders of all four instrument science teams with instruments on the PM-1 spacecraft, additional representatives from each of the four teams, the PM Project management, and random others. The meeting was chaired by the PM Project Scientist and open to all. The meeting was called in order to untangle some of the concerns raised over the past several months regarding whether or not the PM-1 spacecraft should undergo spacecraft maneuvers to allow the instruments to obtain deep-space views. Two of the Science Teams, those for the Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES), had strongly expressed the need for deep-space views in order to calibrate their instruments properly and conveniently. The other two teams, those for the Advanced Microwave Scanning Radiometer (AMSR-E) and the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the Humidity Sounder for Brazil (HSB), had expressed concerns that the maneuvers involve risks to the instruments and undesired gaps in the data sets.
ERIC Educational Resources Information Center
Lebeaume, Joel
2011-01-01
The French school system is a subjects-centred curriculum from the beginning of 1960s. This deep-rooted organisation tends to block the several attempts made to integrate the teaching of scientific school subjects. From an historical point of view, this paper describes the curricular system and the issue of its current change. It focuses on the…
NASA Astrophysics Data System (ADS)
McEntee, C.; Zurbuchen, T.; Easterling, W. E.; Gallaudet, T.; Werkheiser, W. H.; McEntee, C.; Zurbuchen, T.; Pandya, R.; Manduca, C. A.; Graumlich, L. J.; Snover, A. K.; Klinger, T.
2017-12-01
Now, more than any time in recent memory, scientists are stepping forward, eager to bring science to bear on environmental issues. The time could not be more ripe; we have the best tool ever developed by human kind for understanding cause and consequence: science itself. And we have an impressive tool kit for communicating science honed through decades of engagement. Despite these advances, we face a head wind. Public trust in experts is on the decline. Society's deep polarization means that wading into societal issues brings us uncomfortably close to the deep end of politics. The expertise that is required to tackle the thorniest of environmental problems is not just technical but also requires addressing differing value systems and pervasive issues of inequity. If we have robust science, honorable intentions, and good communication strategies, what's missing? It's all about design thinking, especially 1) empathy with users, 2) a discipline of prototyping, and 3) a tolerance for failure. In this talk, we share lessons in design thinking from the University of Washington's Climate Impacts Group and Washington Ocean Acidification Center, cornerstones of our new environmental institute, EarthLab. Connecting deeply and authentically with the experiences of user communities is at the core of our work. Collaboration is an iterative process centered on prototyping adaptive strategies in partnership with users. Using this approach, the Climate Impacts Group informs decision making ranging from culvert design to the Endangered Species Act, building long-term capacity for adaptation at every stage of the process. In partnership with the shellfish industry, the Washington Ocean Acidification Center pioneers adaptive strategies to sustain shellfish production—and shellfish producers—in a rapidly changing ocean. Finally, we will open the messy can of worms that is tolerance for failure. How can we afford failure in the context of declining public trust and support for science, and at a time when the stakes are so high? Practically speaking, can an assistant professor or soft-money researcher afford failure if he or she doesn't have tenure? Can a small business owner risk investment in a prototype that might fail? But, ultimately, how can we not afford to push the limits of innovation in addressing the pressing issues of the day?
The Science of Reading and Its Educational Implications
Seidenberg, Mark S.
2013-01-01
Research in cognitive science and neuroscience has made enormous progress toward understanding skilled reading, the acquisition of reading skill, the brain bases of reading, the causes of developmental reading impairments and how such impairments can be treated. My question is: if the science is so good, why do so many people read so poorly? I mainly focus on the United States, which fares poorly on cross-national comparisons of literacy, with about 25-30% of the population exhibiting literacy skills that are low by standard metrics. I consider three possible contributing factors, all of which turn on issues concerning the relationships between written and spoken language. They are: the fact that English has a deep alphabetic orthography; how reading is taught; and the impact of linguistic variability as manifested in the Black-White “achievement gap”. I conclude that there are opportunities to increase literacy levels by making better use of what we have learned about reading and language, but also institutional obstacles and understudied issues for which more evidence is badly needed. PMID:24839408
Chuck, Jo-Anne
2011-01-01
Science students leaving undergraduate programs are entering the biotechnology industry where they are presented with issues which require integration of science content. Students find this difficult as through-out their studies, most content is limited to a single subdiscipline (e.g., biochemistry, immunology). In addition, students need knowledge of the ethical, economic, and legal frame work in which the industry operates. This article presents an approach to deliver these outcomes in a collaborative and active learning modality which promotes deep learning. In the model, groups of final year undergraduate students form hypothetical biotechnology companies and identify real issues of interest to industry, make integrative team decisions, use professional level technology, and develop appropriate communication skills. The final successful teaching paradigm was based on self reflection, observation, and student feedback to ensure appropriate attainment of content, group work skills and increased confidence in professional decision-making. It is these outcomes which will facilitate life long learning skills, a major outcome applicable for all tertiary education. Copyright © 2011 Wiley Periodicals, Inc.
Position paper: the science of deep specification.
Appel, Andrew W; Beringer, Lennart; Chlipala, Adam; Pierce, Benjamin C; Shao, Zhong; Weirich, Stephanie; Zdancewic, Steve
2017-10-13
We introduce our efforts within the project 'The science of deep specification' to work out the key formal underpinnings of industrial-scale formal specifications of software and hardware components, anticipating a world where large verified systems are routinely built out of smaller verified components that are also used by many other projects. We identify an important class of specification that has already been used in a few experiments that connect strong component-correctness theorems across the work of different teams. To help popularize the unique advantages of that style, we dub it deep specification , and we say that it encompasses specifications that are rich , two-sided , formal and live (terms that we define in the article). Our core team is developing a proof-of-concept system (based on the Coq proof assistant) whose specification and verification work is divided across largely decoupled subteams at our four institutions, encompassing hardware microarchitecture, compilers, operating systems and applications, along with cross-cutting principles and tools for effective specification. We also aim to catalyse interest in the approach, not just by basic researchers but also by users in industry.This article is part of the themed issue 'Verified trustworthy software systems'. © 2017 The Author(s).
Excess plutonium disposition: The deep borehole option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, K.L.
1994-08-09
This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues relatedmore » to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.« less
NASA Astrophysics Data System (ADS)
Hall, Justin R.; Hastrup, Rolf C.
The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.
Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications
NASA Astrophysics Data System (ADS)
Maskey, M.; Ramachandran, R.; Miller, J.
2017-12-01
Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.
Nanomaterials and nanofabrication for biomedical applications
NASA Astrophysics Data System (ADS)
Cheng, Chao-Min; Chia-Wen Wu, Kevin
2013-08-01
Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery carriers (e.g. polymers, gold nanoparticles, Prussian blue nanoparticles, mesoporous silica nanoparticles and carbon-based nanomaterials). Here, we would like to show our deep appreciation to all authors and reviewers. Without their great help and contributions, this focus issue, including the review and original papers, would not have been published on schedule. This focus issue may not cover all issues in this emerging scientific field; however, we believe that our efforts have great potential 'to hurl a boulder to draw a jade' and ignite innovation and challenging discussion in the relevant scientific communities.
Science and Technology Review April/May 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolic, R J
2011-03-03
At Lawrence Livermore National Laboratory, the focus is on science and technology research to ensure the nation's security. That expertise is also applied to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight time a year to communicate, to a broad audience, the Laboratory's scientific and technological accomplishments in fulfilling its primary missions. The publication's goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. In this issue for April/May 2011, the features are 'Dealing with the Nonlinear Battlefield' andmore » 'From Video to Knowledge.' Research highlights are 'Kinetic Models Predict Biofuel Efficiency,' Going Deep with MEGa-Rays' and 'Energy on Demand.'« less
Archaeology as a social science.
Smith, Michael E; Feinman, Gary M; Drennan, Robert D; Earle, Timothy; Morris, Ian
2012-05-15
Because of advances in methods and theory, archaeology now addresses issues central to debates in the social sciences in a far more sophisticated manner than ever before. Coupled with methodological innovations, multiscalar archaeological studies around the world have produced a wealth of new data that provide a unique perspective on long-term changes in human societies, as they document variation in human behavior and institutions before the modern era. We illustrate these points with three examples: changes in human settlements, the roles of markets and states in deep history, and changes in standards of living. Alternative pathways toward complexity suggest how common processes may operate under contrasting ecologies, populations, and economic integration.
Archaeology as a social science
Smith, Michael E.; Feinman, Gary M.; Drennan, Robert D.; Earle, Timothy; Morris, Ian
2012-01-01
Because of advances in methods and theory, archaeology now addresses issues central to debates in the social sciences in a far more sophisticated manner than ever before. Coupled with methodological innovations, multiscalar archaeological studies around the world have produced a wealth of new data that provide a unique perspective on long-term changes in human societies, as they document variation in human behavior and institutions before the modern era. We illustrate these points with three examples: changes in human settlements, the roles of markets and states in deep history, and changes in standards of living. Alternative pathways toward complexity suggest how common processes may operate under contrasting ecologies, populations, and economic integration. PMID:22547811
A Public Outreach Blog for the CANDELS Project
NASA Astrophysics Data System (ADS)
Kartaltepe, Jeyhan S.; Pforr, J.; CANDELS Collaboration
2013-01-01
In May 2012 the CANDELS collaboration launched a public outreach blog, aimed at the general public, where we discuss CANDELS related science. CANDELS (the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) is a large Hubble Space Telescope Multi-Cycle Treasury Program to image portions of the five most commonly studied deep fields in the near-infrared with WFC3. This large collaboration encompasses a wide range of science topics including galaxy evolution and observational cosmology. We seek to understand how galaxies in the early universe formed and evolved to become the galaxies we see today. We post on a wide variety of topics including general background discussion on many issues in extragalactic astronomy, current science results and papers, highlights from meetings that we have attended, and what life as an astronomer is like (going on observing runs, writing proposals, and how we became interested in astronomy). The posts are written by a large number of collaboration members at different career stages (including students, postdocs, and permanent staff/faculty members) and is widely read and advertised on Facebook, Twitter, and Google+. Our blog can be found here: http://candels-collaboration.blogspot.com
Study of wear performance of deep drawing tooling
NASA Astrophysics Data System (ADS)
Naranje, Vishal G.; Karthikeyan, Ram; Nair, Vipin
2017-09-01
One of the most common challenges for many of the mechanical engineers and also in the field of materials science is the issue of occurrences of wear of the material parts which is used in certain applications that involves such surface interactions. In this paper, wear behaviour of particular grade High Carbon High Chromium Steel and many most famously D2, H13, O1 known as the Viking steel has been studied, evaluated and analyzed under certain processing parameters such as speed, load, track diameter and time required for deep drawing process to know it’s the wear rate and coefficient of friction. Also, the significance of the processing parameters which is used for wear testing analysis is also examined.
DSMS science operations concept
NASA Technical Reports Server (NTRS)
Connally, M. J.; Kuiper, T. B.
2001-01-01
The Deep Space Mission System (DSMS) Science Operations Concept describes the vision for enabling the use of the DSMS, particularly the Deep Space Network (DSN) for direct science observations in the areas of radio astronomy, planetary radar, radio science and VLBI.
Life science teachers' decision making on sex education
NASA Astrophysics Data System (ADS)
Gill, Puneet Singh
The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and medically accurate information about sex education. Through this research, I hope to extend the discussion about sex education to life science classrooms, where youth can discuss how sex occurs according to scientific concepts and processes. However, science classrooms are caught in a double bind: They maintain positivist methods of teaching science while paying little attention to the nature of science or the nature and function of science that offer explanations of scientific phenomena. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive frameworks that shaped these decisions. I also analyzed the ways that these relationships functioned to produce certain truths, or discourses. The current trends in research concerning SSI are pointing to understanding how controversial issues are framed according to personal philosophies, identities, and teaching approaches. If we can understand science teachers' inner aspects as they relate to sexuality education, we can also understand the deep-seeded motivations behind how these specific issues are being taught. In science classrooms where a discussion of the body is part of the curriculum, specific discourses of the body and sex/sexuality are excluded. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive practices that shaped these decisions.
Materials Degradation and Detection (MD2): Deep Dive Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep
2013-02-01
An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas ismore » discussed in the paper.« less
Key Challenges for Life Science Payloads on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Anthony, J. H.; Niederwieser, T.; Zea, L.; Stodieck, L.
2018-02-01
Compared to ISS, Deep Space Gateway life science payloads will be challenged by deep space radiation and non-continuous habitation. The impacts of these two differences on payload requirements, design, and operations are discussed.
Autonomous Science Operations Technologies for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.
2018-02-01
Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.
The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform
NASA Astrophysics Data System (ADS)
Bhattacharya, S.
2018-02-01
Life science research on the Deep Space Gateway platform is an important precursor for long term human exploration of deep space. Ideas for utilizing flight hardware and well characterized model organisms will be discussed.
LSST: Cadence Design and Simulation
NASA Astrophysics Data System (ADS)
Cook, Kem H.; Pinto, P. A.; Delgado, F.; Miller, M.; Petry, C.; Saha, A.; Gee, P. A.; Tyson, J. A.; Ivezic, Z.; Jones, L.; LSST Collaboration
2009-01-01
The LSST Project has developed an operations simulator to investigate how best to observe the sky to achieve its multiple science goals. The simulator has a sophisticated model of the telescope and dome to properly constrain potential observing cadences. This model has also proven useful for investigating various engineering issues ranging from sizing of slew motors, to design of cryogen lines to the camera. The simulator is capable of balancing cadence goals from multiple science programs, and attempts to minimize time spent slewing as it carries out these goals. The operations simulator has been used to demonstrate a 'universal' cadence which delivers the science requirements for a deep cosmology survey, a Near Earth Object Survey and good sampling in the time domain. We will present the results of simulating 10 years of LSST operations using realistic seeing distributions, historical weather data, scheduled engineering downtime and current telescope and camera parameters. These simulations demonstrate the capability of the LSST to deliver a 25,000 square degree survey probing the time domain including 20,000 square degrees for a uniform deep, wide, fast survey, while effectively surveying for NEOs over the same area. We will also present our plans for future development of the simulator--better global minimization of slew time and eventual transition to a scheduler for the real LSST.
Advances in Planetary Protection at the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.
2018-02-01
Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.
Learning as change: Responding to socio-scientific issues through informal education
NASA Astrophysics Data System (ADS)
Allen, Lauren Brooks
Informal learning is an important venue for educating the general public about complex socio-scientific issues: intersections of scientific understanding and society. My dissertation is a multi-tiered analysis of how informal education, and particularly informal educators, can leverage learning to respond to one particular socio-scientific issue: climate change. Life-long, life-wide, and life-deep learning not only about the science of climate change, but how communities and society as a whole can respond to it in ways that are commensurate with its scale are necessary. In my three-article dissertation, I investigated the changes in practice and learning that informal educators from a natural history museum underwent in the process of implementing a new type of field trip about climate change. This study focused on inquiry-based learning principles taken on by the museum educators, albeit in different ways: learner autonomy, conversation, and deep investigation. My second article, a short literature review, makes the argument that climate change education must have goals beyond simply increasing learners' knowledge of climate science, and proposes three research-based principles for such learning: participation, relevance, and interconnectedness. These principles are argued to promote learning to respond to climate change as well as increased collective efficacy, necessary for responding. Finally, my third article is an in-depth examination of a heterogeneous network of informal educators and environmental professionals who worked together to design and implement a city-wide platform for informal climate change learning. By conceptualizing climate change learning at the level of the learning ecology, educators and learners are able to see how it can be responded to at the community level, and understand how climate change is interconnected with other scientific, natural, and social systems. I briefly discuss a different socio-scientific issue to which these principles can be applied: heritable, human manipulation of other biological entities; in other words, genetic engineering.
Informal science education: lifelong, life-wide, life-deep.
Sacco, Kalie; Falk, John H; Bell, James
2014-11-01
Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.
NASA Astrophysics Data System (ADS)
Mitton, S. A.
2017-12-01
Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society's energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth's variable and uncertain climate. Yet in spite of carbon's importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth's carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines, forging a new, integrative field of deep carbon science. As a historian of science, I specialise in the history of planetary science and astronomy since 1900. This is directed toward understanding of the history of the steps on the road to discovering the internal dynamics of our planet. Within a framework that describes the historical background to the new field of Earth System Science, I present the first history of deep carbon science. This project will identifies the key discoveries of deep carbon science. It will assess the impact of new knowledge on geochemistry, geodynamics, and geobiology. The project will lead to publication, in book form in 2019, of an illuminating narrative that will highlight the engaging human stories of many remarkable scientists and natural philosophers from whom we have learned about the complexity of Earth's internal world. On this journey of discovery we will encounter not just the pioneering researchers of deep carbon science, but also their institutions, their instrumental inventiveness, and their passion for exploration. The book is organised thematically around the four communities of the Deep Carbon Observatory: Deep Life, Extreme Physics and Chemistry, Reservoirs and Fluxes, and Deep Energy. The presentation has a gallery and list of Deep Carbon Pioneers. As a biographer, I am keenly searching for people who may have been overlooked in the standard accounts of the historical development of geology, geodynamics, and the study of subsurface life. Whom would you choose as pioneers? Can you nominate a colleague, or even add a selfie? Do you have a standout story or personal recollection to enrich my chronicle?
NASA Astrophysics Data System (ADS)
Emanuel, R. E.
2016-12-01
The study of coupled natural and human systems in a changing world can benefit greatly from indigenous perspectives, which have the potential to bring deep, placed-based understanding to complex environmental issues while promoting sustainable solutions to pressing socio-environmental problems. In recent years, scientists have begun to embrace indigenous knowledge and perspectives, but indigenous voices in the sciences remain relatively few. At the same time, indigenous communities face wide ranging and unique vulnerabilities to global environmental change on a variety of fronts, particularly where water resources are concerned. Given this situation, indigenous scientists often find themselves bridging both western scientific and indigenous communities, sometimes embodying the nexus in a literal sense. Here I reflect on this nexus from the perspective of an indigenous hydrologist collaborating with American Indian communities in North Carolina, which has the largest American Indian population of any state in the eastern US. Intertwining case studies of coupled natural and human systems illustrate some of the the challenges, complexities, and successes of ongoing collaborations with tribal communities and Native-serving organizations on water resource issues, environmental impacts of food and energy production, and broadening participation of American Indians in the sciences.
Matroshka AstroRad Radiation Experiment (MARE) on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Gaza, R.; Hussein, H.; Murrow, D.; Hopkins, J.; Waterman, G.; Milstein, O.; Berger, T.; Przybyla, B.; Aeckerlein, J.; Marsalek, K.; Matthiae, D.; Rutczynska, A.
2018-02-01
The Matroshka AstroRad Radiation Experiment is a science payload on Orion EM-1 flight. A research platform derived from MARE is proposed for the Deep Space Gateway. Feedback is invited on desired Deep Space Gateway design features to maximize its science potential.
Designing Innovative Lessons Plans to Support the Next Generation Science Standards (NGSS)
NASA Astrophysics Data System (ADS)
Passow, M. J.
2013-12-01
The Next Generation Science Standards (NGSS) issued earlier in 2013 provide the opportunity to enhance pre-college curricula through a new focus on the ';Big Ideas' in Science, more attention to reading and writing skills needed for college and career readiness, and incorporation of engineering and technology. We introduce a set of lesson plans about scientific ocean drilling which can serve as a exemplars for developing curricula to meet NGSS approaches. Designed for middle and high school students, these can also be utilized in undergraduate courses. Development of these lessons was supported through a grant from the Deep Earth Academy of the Consortium for Ocean Leadership. They will be disseminated through websites of the Deep Earth Academy (http://www.oceanleadership.org/education/deep-earth-academy/) and Earth2Class Workshops for Teachers (http://www.earth2class.org), as well as through workshops at science education conferences sponsored by the National Earth Science Teachers Association (www.nestanet.org) and other organizations. Topics include 'Downhole Logging,' 'Age of the Ocean Floors,' 'Tales of the Resolution,' and 'Continental Shelf Sediments and Climate Change Patterns.' 'Downhole Logging' focuses on the engineering and technology utilized to obtain more information about sediments and rocks cored by the JOIDES Resolution scientific drilling vessel. 'Age of the Ocean Floor' incorporates the GeoMap App visualization tools (http://www.geomapapp.org/) to compare sea bottom materials in various parts of the world. 'Tales of the Resolution' is a series of ';graphic novels' created to describe the scientific discoveries, refitting of the JOIDES Resolution, and variety of careers available in the marine sciences (http://www.ldeo.columbia.edu/BRG/outreach/media/tales/). The fourth lesson focuses on discoveries made during Integrated Ocean Drilling Program Expedition 313, which investigated patterns in the sediments beneath the continental shelf off New Jersey with respect to climate changes. The lesson plans include examples of addressing new demands to incorporate more English Language Arts and Math Common Core Standards, engineering design, and cutting-edge scientific investigations.
Artificial Intelligence in planetary spectroscopy
NASA Astrophysics Data System (ADS)
Waldmann, Ingo
2017-10-01
The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.
Planetary protection and the search for life beneath the surface of Mars
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Planetary protection and the search for life beneath the surface of Mars.
Mancinelli, Rocco L
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Visit to the Deep Underground Science and Engineering Laboratory
None
2017-12-09
U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).
Visit to the Deep Underground Science and Engineering Laboratory
None
2018-05-16
U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).
The Deep Space Gateway: The Next Stepping Stone to Mars
NASA Astrophysics Data System (ADS)
Cassady, R. J.; Carberry, C.; Cichan, T.
2018-02-01
Human missions to Mars will benefit from precursor missions such as the Deep Space Gateway (DSG) that achieve important science and human health and safety milestones. The DSG can perform lunar science and prepare for future Mars mission science.
Theories of the Earth and the Nature of Science.
ERIC Educational Resources Information Center
Williams, James
1991-01-01
Describes the history of the science of geology. The author expounds upon the discovery of deep time and plate tectonics, explaining how the theory of deep time influenced the development of Darwin and Wallace's theory of evolution. Describes how the history of earth science helps students understand the nature of science. (PR)
Lunar Science Enabled by the Deep Space Gateway and PHASR Rover
NASA Astrophysics Data System (ADS)
Bakambu, J. N.; Shaw, A.; Fulford, P.; Osinski, G.; Bourassa, M.; Rehmatullah, F.; Zanetti, M.; Rembala, R.
2018-02-01
The Deep Space Gateway will be a tremendous boon to lunar surface science. It will enable the PHASR Rover, a concept for a Canadian rover system, with international contributions and the goal of sample acquisition and lunar surface science.
WFIRST: Science from Deep Field Surveys
NASA Astrophysics Data System (ADS)
Koekemoer, Anton M.; Foley, Ryan; WFIRST Deep Field Working Group
2018-06-01
WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.
WFIRST: Science from Deep Field Surveys
NASA Astrophysics Data System (ADS)
Koekemoer, Anton; Foley, Ryan; WFIRST Deep Field Working Group
2018-01-01
WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.
Law, evolution and the brain: applications and open questions.
Jones, Owen D
2004-01-01
This paper discusses several issues at the intersection of law and brain science. It focuses principally on ways in which an improved understanding of how evolutionary processes affect brain function and human behaviour may improve law's ability to regulate behaviour. It explores sample uses of such 'evolutionary analysis in law' and also raises questions about how that analysis might be improved in the future. Among the discussed uses are: (i) clarifying cost-benefit analyses; (ii) providing theoretical foundation and potential predictive power; (iii) assessing comparative effectiveness of legal strategies; and (iv) revealing deep patterns in legal architecture. Throughout, the paper emphasizes the extent to which effective law requires: (i) building effective behavioural models; (ii) integrating life-science perspectives with social-science perspectives; (iii) considering the effects of brain biology on behaviours that law seeks to regulate; and (iv) examining the effects of evolutionary processes on brain design. PMID:15590611
Law, evolution and the brain: applications and open questions.
Jones, Owen D
2004-11-29
This paper discusses several issues at the intersection of law and brain science. It focuses principally on ways in which an improved understanding of how evolutionary processes affect brain function and human behaviour may improve law's ability to regulate behaviour. It explores sample uses of such 'evolutionary analysis in law' and also raises questions about how that analysis might be improved in the future. Among the discussed uses are: (i) clarifying cost-benefit analyses; (ii) providing theoretical foundation and potential predictive power; (iii) assessing comparative effectiveness of legal strategies; and (iv) revealing deep patterns in legal architecture. Throughout, the paper emphasizes the extent to which effective law requires: (i) building effective behavioural models; (ii) integrating life-science perspectives with social-science perspectives; (iii) considering the effects of brain biology on behaviours that law seeks to regulate; and (iv) examining the effects of evolutionary processes on brain design.
Implementation of heaters on thermally actuated spacecraft mechanisms
NASA Technical Reports Server (NTRS)
Busch, John D.; Bokaie, Michael D.
1994-01-01
This paper presents general insight into the design and implementation of heaters as used in actuating mechanisms for spacecraft. Problems and considerations that were encountered during development of the Deep Space Probe and Science Experiment (DSPSE) solar array release mechanism are discussed. Obstacles included large expected fluctuations in ambient temperature, variations in voltage supply levels outgassing concerns, heater circuit design, materials selection, and power control options. Successful resolution of these issues helped to establish a methodology which can be applied to many of the heater design challenges found in thermally actuated mechanisms.
Radiation Analysis for the Human Lunar Return Mission
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.; Dubey, R. R.; Jordan, W.
1997-01-01
An analysis of the radiation hazards that are anticipated on an early Human Lunar Return (HLR) mission in support of NASA deep space exploration activities is presented. The HLR mission study emphasized a low cost lunar return to expand human capabilities in exploration, to answer fundamental science questions, and to seek opportunities for commercial development. As such, the radiation issues are cost related because the parasitic shield mass is expensive due to high launch costs. The present analysis examines the shield requirements and their impact on shield design.
Monetary economics from econophysics perspective
NASA Astrophysics Data System (ADS)
Yakovenko, Victor M.
2016-12-01
This is an invited article for the Discussion and Debate special issue of The European Physical Journal Special Topics on the subject "Can Economics be a Physical Science?" The first part of the paper traces the personal path of the author from theoretical physics to economics. It briefly summarizes applications of statistical physics to monetary transactions in an ensemble of economic agents. It shows how a highly unequal probability distribution of money emerges due to irreversible increase of entropy in the system. The second part examines deep conceptual and controversial issues and fallacies in monetary economics from econophysics perspective. These issues include the nature of money, conservation (or not) of money, distinctions between money vs. wealth and money vs. debt, creation of money by the state and debt by the banks, the origins of monetary crises and capitalist profit. Presentation uses plain language understandable to laypeople and may be of interest to both specialists and general public.
Science Highlights from the First Year of Advanced Camera for Surveys
NASA Technical Reports Server (NTRS)
Clampin, M.; Ford, H. C.; Illingworth, G. D.; Hartig, G.; Ardila, D. R.; Blakeslee, J. P.; Bouwens, R. J.; Cross, N. J. G.; Feldman, P. D.; Golimowski, D. A.
2003-01-01
The Advanced Camera for Surveys (ACS) is a deep imaging camera installed on the Hubble Space Telescope during the fourth HST servicing mission. ACS recently entered its second year of science operations and continues to perform beyond pre-launch expectations. We present science highlights from the ACS Science Team's GTO program. These highlights include the evolution of Z approx. 6 galaxies from deep imaging observations; deep imaging of strongly lensed clusters which have been used to determine cluster mass, and independently constraint the geometry of the Universe; and coronagraphic observations of debris disks.
NASA Astrophysics Data System (ADS)
Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.
2013-12-01
The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF's STEP Center in the geosciences. The module goals are: 1) Pre-service teachers will apply classification methods, testing procedures and interdisciplinary systems thinking to analyze and evaluate a relevant societal issue in the context of soils, 2) Pre-service teachers will design, develop, and facilitate a standards-based K-8 soils unit, incorporating a relevant broader societal issue that applies authentic geoscientific data, and incorporates geoscientific habits of mind. In addition, pre-service teachers will look toward the NGSS and align activities with content standards, systems thinking, and science and engineering practices. This poster will provide an overview of module development to date as well as a summary of pre-semester survey results indicating pre-service elementary teachers' ideas (beliefs, attitudes, preconceptions, and content knowledge) about teaching soils, and making science relevant in a K-8 classroom.
Evaluating Primary School Student's Deep Learning Approach to Science Lessons
ERIC Educational Resources Information Center
Ilkörücü Göçmençelebi, Sirin; Özkan, Muhlis; Bayram, Nuran
2012-01-01
This study examines the variables which help direct students to a deep learning approach to science lessons, with the aim of guiding programmers and teachers in primary education. The sample was composed of a total of 164 primary school students. The Learning Approaches to Science Scale developed by Ünal (2005) for Science and Technology lessons…
From big data to deep insight in developmental science.
Gilmore, Rick O
2016-01-01
The use of the term 'big data' has grown substantially over the past several decades and is now widespread. In this review, I ask what makes data 'big' and what implications the size, density, or complexity of datasets have for the science of human development. A survey of existing datasets illustrates how existing large, complex, multilevel, and multimeasure data can reveal the complexities of developmental processes. At the same time, significant technical, policy, ethics, transparency, cultural, and conceptual issues associated with the use of big data must be addressed. Most big developmental science data are currently hard to find and cumbersome to access, the field lacks a culture of data sharing, and there is no consensus about who owns or should control research data. But, these barriers are dissolving. Developmental researchers are finding new ways to collect, manage, store, share, and enable others to reuse data. This promises a future in which big data can lead to deeper insights about some of the most profound questions in behavioral science. © 2016 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.
Science in the Looking Glass - What Do Scientists Really Know?
NASA Astrophysics Data System (ADS)
Davies, E. Brian
2003-10-01
In this wide-ranging book, Brian Davies discusses the basis for scientists' claims to knowledge about the world. He looks at science historically, emphasizing not only the achievements of scientists from Galileo onwards, but also their mistakes. He rejects the claim that all scientific knowledge is provisional, by citing examples from chemistry, biology and geology. A major feature of the book is its defense of the view that mathematics was invented rather than discovered. A large number of examples are used to illustrate these points, and many of the deep issues in today's world discussed-from psychology and evolution to quantum theory, consciousness and even religious belief. Disentangling knowledge from opinion and aspiration is a hard task, but this book provided a clear guide to the difficulties.
Ten Simple Rules for Effective Online Outreach: What a decade at Deep Sea News has taught us.
NASA Astrophysics Data System (ADS)
Martini, K. I.; McClain, C. R.; Bik, H.; Helm, R. R.; Long, D.; Warneke, A. M.; Dove, A. D.; Goldstein, M. C.; MacPherson, R.; Zelnio, K. A.
2016-12-01
Deep Sea News was established in 2005 and has become one of the most popular marine science blogs on the internet, with 7000 hits/day and over 8 million cumulative hits. Written by 6 practicing Marine Scientists with diverse interests, expertise and a deep curiosity for science, our mission statement is " Demystifying and humanizing science in an open conversation that instills passion, awe, and responsibility for the oceans." We leverage humor and popular culture to make complex science and conservation stories accessible. We will discuss what worked, what didn't, and our path forward in the changing social media landscape
In memory of Jean-François Stéphan
NASA Astrophysics Data System (ADS)
Blanchet, René
2016-01-01
This thematic issue of Comptes rendus Geoscience has been assembled to honor the memory of our late colleague and friend Jean-François Stéphan, whose remarkable scientific and community-directed activity has left a deep imprint on both the French and the International Earth Science communities. This volume brings together contributions of colleagues of Jean-François who were also close friends. Naturally, tectonics is the common theme of these contributions. Some of the papers presented here focus on tectonic questions and/or regions Jean-François worked on during his career; other papers present studies Jean-François motivated or encouraged in one way or another. Taken together, the papers of this thematic issue take the reader on a beautiful trip, from past to current tectonics.
ERIC Educational Resources Information Center
Shen, Ji; Liu, Ou Lydia; Chang, Hsin-Yi
2017-01-01
This paper presents a transformative modeling framework that guides the development of assessment to measure students' deep understanding in physical sciences. The framework emphasizes 3 types of connections that students need to make when learning physical sciences: (1) linking physical states, processes, and explanatory models, (2) integrating…
Advancing Navigation, Timing, and Science with the Deep Space Atomic Clock
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Seubert, Jill; Bell, Julia
2014-01-01
NASA's Deep Space Atomic Clock mission is developing a small, highly stable mercury ion atomic clock with an Allan deviation of at most 1e-14 at one day, and with current estimates near 3e-15. This stability enables one-way radiometric tracking data with accuracy equivalent to and, in certain conditions, better than current two-way deep space tracking data; allowing a shift to a more efficient and flexible one-way deep space navigation architecture. DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC would be a key component to fully-autonomous onboard radio navigation useful for time-sensitive situations. Potential deep space applications of DSAC are presented, including orbit determination of a Mars orbiter and gravity science on a Europa flyby mission.
NASA Astrophysics Data System (ADS)
Han, Jung; Amano, Hiroshi; Schowalter, Leo
2014-06-01
Deep ultraviolet (DUV) photons interact strongly with a broad range of chemical and biological molecules; compact DUV light sources could enable a wide range of applications in chemi/bio-sensing, sterilization, agriculture, and industrial curing. The much shorter wavelength also results in useful characteristics related to optical diffraction (for lithography) and scattering (non-line-of-sight communication). The family of III-N (AlGaInN) compound semiconductors offers a tunable energy gap from infrared to DUV. While InGaN-based blue light emitters have been the primary focus for the obvious application of solid state lighting, there is a growing interest in the development of efficient UV and DUV light-emitting devices. In the past few years we have witnessed an increasing investment from both government and industry sectors to further the state of DUV light-emitting devices. The contributions in Semiconductor Science and Technology 's special issue on DUV devices provide an up-to-date snapshot covering many relevant topics in this field. Given the expected importance of bulk AlN substrate in DUV technology, we are pleased to include a review article by Hartmann et al on the growth of AlN bulk crystal by physical vapour transport. The issue of polarization field within the deep ultraviolet LEDs is examined in the article by Braut et al. Several commercial companies provide useful updates in their development of DUV emitters, including Nichia (Fujioka et al ), Nitride Semiconductors (Muramoto et al ) and Sensor Electronic Technology (Shatalov et al ). We believe these articles will provide an excellent overview of the state of technology. The growth of AlGaN heterostructures by molecular beam epitaxy, in contrast to the common organo-metallic vapour phase epitaxy, is discussed by Ivanov et al. Since hexagonal boron nitride (BN) has received much attention as both a UV and a two-dimensional electronic material, we believe it serves readers well to include the article by Jiang et al on using BN for UV devices; potentially as a p-type wide band gap semiconductor contact. Finally, an in-depth discussion of one DUV application in defense, the non-line-of-sight (NLOS) communication, is given by Drost and Sadler. Overall, we believe that this special issue of Semiconductor Science and Technology provides a useful overview of the state-of-art in the field on DUV materials and devices. In view of the rapidly growing interest in this field, the demonstrated enhanced device performance, and the wide range of applications, this special issue can be considered a very timely contribution. Finally, we would like to thank the IOP editorial staff, in particular Alice Malhador, for their support and also like to thank all contributors for their efforts to make this special issue possible.
Clementine: An inexpensive mission to the Moon and Geographos
NASA Astrophysics Data System (ADS)
Shoemaker, Eugene M.; Nozette, Stewart
1993-03-01
The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.
NASA Astrophysics Data System (ADS)
Colter, Tabitha
2017-01-01
As an undergraduate physics major who spent 2015 deep in a quantum optics lab at Oak Ridge National Laboratory, I knew my 2016 experience with the House of Representatives Energy and Commerce Committee would be a completely new challenge. I have long had a passion for the bridge of communication between the technical and non-technical worlds but it was only through my AIP Mather internship this summer that I was able to see that passion come to life in the realm of science policy. Suddenly, I went from squeezing political philosophy classes into my packed schedule to witnessing the political process first-hand. I was thrilled to find that the skills of critical thinking and communicating complex issues I have developed throughout my training as a physicist were directly applicable to my work in Congress. Overall, my experience this summer has given me insight into the inner workings of the federal policy process, deepened my appreciation for the work of government employees to keep Congressional members informed on the pressing current issues, and exposed me to a whole range of alternative careers within science. AIP and SPS
North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea
2016-06-21
the "Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical Society of America (Vol. 134, No . 4, Pt. 2 of 2 , October20 13...also listed. Fourteen (14) of these publications appeared in the " Special Issue on Deep-water Ocean Acoustics" in the Journal of the Acoustical
Prolonging life: legal, ethical, and social dilemmas.
Paulson, Steve; Comfort, Christopher P; Lee, Barbara Coombs; Shemie, Sam; Solomon, Mildred Z
2014-11-01
The ability of modern medicine to prolong life has raised a variety of difficult legal, ethical, and social issues on which reasonable minds can differ. Among these are the morality of euthanasia in cases of deep coma or irreversible injury, as well as the Dead Donor Rule with respect to organ harvesting and transplants. As science continues to refine and develop lifesaving technologies, questions remain as to how much medical effort and financial resources should be expended to prolong the lives of patients suspended between life and death. At what point should death be considered irreversible? What criteria should be used to determine when to withhold or withdraw life-prolonging treatments in cases of severe brain damage and terminal illness? To explore these complex dilemmas, Steve Paulson, executive producer and host of To the Best of Our Knowledge, moderated a discussion panel. Pediatrician Sam Shemie, hospice medical director Christopher P. Comfort, bioethicist Mildred Z. Solomon, and attorney Barbara Coombs Lee examined the underlying assumptions and considerations that ultimately shape individual and societal decisions surrounding these issues. The following is an edited transcript of the discussion that occurred November 12, 2013, 7:00-8:30 PM, at the New York Academy of Sciences in New York City. © 2014 New York Academy of Sciences.
Science teachers teaching socioscientific issues (SSI): Four case studies
NASA Astrophysics Data System (ADS)
Lee, Hyunju
Socioscientific issues (SSI) are a class of issues that represent the social, ethical, and moral aspects of science in society. The need for the inclusion of SSI into science curricula has been generally accepted, but relatively few science teachers have incorporated SSI into their courses. Most science teachers feel that their most important task by far is to teach the principles of science, and any substantive pedagogical changes represent a burden. However, there are some teachers who address SSI out of personal initiatives. This dissertation study investigates four high school science teachers who address SSI out of their own initiative and explores their deeper inspirations, values, philosophies, and personal ideals that lead them to teach SSI. The overall approach is based on essentialist methodology (Witz, Goodwin, Hart, & Thomas, 2001; Witz, 2006a) with its focus on "the participant as ally" and "essentialist portraiture." The primary data source is four to six in-depth interviews with individual teachers (about 40-90 minutes for each interview). The interviews are complemented by extensive classroom observations of individual teachers' teaching SSI and by document analysis (including teaching materials, rubrics, student group projects and journals, etc.). There are two major findings. First, the teachers' deeper values and ideals are a source of larger inspiration that plays a significant role in changing their teaching practice. This inspiration may involve higher aspects (e.g., deep concern for students' development, unselfishness, caring, etc.) and commitment. Their teaching represents an integration of their personal experiences, values, concerns, and worldviews, which forms a larger inspiration for teaching. Teaching SSI is a part of this larger process. Second, the current curriculum reforms (STS, SSI, and NOS) only suggest theoretical ideals and do not effectively touch teachers' deeper values and ideals. Basically, the teachers are doing what they think is important for students and are developing their own approaches without any contact with the reform efforts. This brings some consequences in their teaching of SSI. Overall, this study suggests that real changes in science education can be achieved only if they are synchronized with individual teachers' deeper motivations.
Future Visions for Scientific Human Exploration
NASA Technical Reports Server (NTRS)
Garvin, James
2005-01-01
Today, humans explore deep-space locations such as Mars, asteroids, and beyond, vicariously here on Earth, with noteworthy success. However, to achieve the revolutionary breakthroughs that have punctuated the history of science since the dawn of the Space Age has always required humans as "the discoverers," as Daniel Boorstin contends in this book of the same name. During Apollo 17, human explorers on the lunar surface discovered the "genesis rock," orange glass, and humans in space revamped the optically crippled Hubble Space Telescope to enable some of the greatest astronomical discoveries of all time. Science-driven human exploration is about developing the opportunities for such events, perhaps associated with challenging problems such as whether we can identify life beyond Earth within the universe. At issue, however, is how to safely insert humans and the spaceflight systems required to allow humans to operate as they do best in the hostile environment of deep space. The first issue is minimizing the problems associated with human adaptation to the most challenging aspects of deep space space radiation and microgravity (or non-Earth gravity). One solution path is to develop technologies that allow for minimization of the exposure time of people to deep space, as was accomplished in Apollo. For a mission to the planet Mars, this might entail new technological solutions for in-space propulsion that would make possible time-minimized transfers to and from Mars. The problem of rapid, reliable in-space transportation is challenged by the celestial mechanics of moving in space and the so-called "rocket equation." To travel to Mars from Earth in less than the time fuel-minimizing trajectories allow (i.e., Hohmann transfers) requires an exponential increase in the amount of fuel. Thus, month-long transits would require a mass of fuel as large as the dry mass of the ISS, assuming the existence of continuous acceleration engines. This raises the largest technological stumbling block to moving humans on site as deep-space explorers, delivering the masses required for human spaceflight systems to LEO or other Earth orbital vantage points using the existing or projected fleet of Earth-to-orbit (ETO) launch vehicles. Without a return to Saturn V-class boosters or an alternate path, one cannot imagine emplacing the masses that would be required for any deep-space voyage without a prohibitive number of Shuttle-class launches. One futurist solution might involve mass launch systems that could be used to move the consumables, including fuel, water, food, and building materials, to LEO in pieces rather than launching integrated systems. This approach would necessitate the development of robotic assembly and fuel-storage systems in Earth orbit, but could provide for a natural separation of low-value cargo (e.g., fuel, water).
Research Ethics with Undergraduates in Summer Research Training Programs
NASA Astrophysics Data System (ADS)
Cheung, I.; Yalcin, K.
2016-02-01
Many undergraduate research training programs incorporate research ethics into their programs and some are required. Engaging students in conversations around challenging topics such as conflict of interest, cultural and gender biases, what is science and what is normative science can difficult in newly formed student cohorts. In addition, discussing topics with more distant impacts such as science and policy, intellectual property and authorship, can be difficult for students in their first research experience that have more immediate concerns about plagiarism, data manipulation, and the student/faculty relationship. Oregon State University's Research Experience for Undergraduates (REU) in Ocean Sciences: From Estuaries to the Deep Sea as one model for incorporating a research ethics component into summer undergraduate research training programs. Weaved into the 10-week REU program, undergraduate interns participate in a series of conversations and a faculty mentor panel focused on research ethics. Topics discussed are in a framework for sharing myths, knowledge and personal experiences on issues in research with ethical implications. The series follows guidelines and case studies outlined from the text, On Being A Scientist: Responsible Conduct In Research Committee on Science, Engineering, and Public Policy, National Academy of Sciences.
Deep Space Gateway Science Opportunities
NASA Astrophysics Data System (ADS)
Quincy, C. D.; Charles, J. B.; Hamill, D. L.; Sun, S. C.
2018-02-01
Life sciences see the Deep Space Gateway as an opportunity to investigate biological organisms in a unique environment that cannot be replicated in Earth-based labs or on LEO platforms. The needed capabilities must be built into the Gateway facility.
NASA Astrophysics Data System (ADS)
Weiss, N. K.; Wood, J. H.
2017-12-01
TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.
Concentrators Enhance Solar Power Systems
NASA Technical Reports Server (NTRS)
2013-01-01
"Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions in orbit around the Earth or Moon, to planets or asteroids, on deep space science missions, and even on exploration missions. In fact, electric propulsion is already being used on Earth-orbiting satellites for positioning.
Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions
NASA Technical Reports Server (NTRS)
Newhouse, Marilyn E.; McDougal, John; Barley, Bryan; Stephens Karen; Fesq, Lorraine M.
2010-01-01
Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the findings and recommendations from that workshop, particularly as fault management development issues affect operations and the development of operations capabilities.
Parallel Distributed Processing Theory in the Age of Deep Networks.
Bowers, Jeffrey S
2017-12-01
Parallel distributed processing (PDP) models in psychology are the precursors of deep networks used in computer science. However, only PDP models are associated with two core psychological claims, namely that all knowledge is coded in a distributed format and cognition is mediated by non-symbolic computations. These claims have long been debated in cognitive science, and recent work with deep networks speaks to this debate. Specifically, single-unit recordings show that deep networks learn units that respond selectively to meaningful categories, and researchers are finding that deep networks need to be supplemented with symbolic systems to perform some tasks. Given the close links between PDP and deep networks, it is surprising that research with deep networks is challenging PDP theory. Copyright © 2017. Published by Elsevier Ltd.
Science and Exploration Deep Space Gateway Workshop
NASA Technical Reports Server (NTRS)
Spann, James F.
2017-01-01
We propose a workshop whose outcome is a publically disseminated product that articulates SMD investigations and HEOMD Life Science research, including international collaborations, that are made possible by the new opportunities in space that result from the Deep Space Gateway.
NASA Astrophysics Data System (ADS)
Buckingham, Brandy L. E.
The goal of science education is to prepare students to make decisions about the complicated socioscientific issues that are an inescapable part of modern life, from personal medical decisions to evaluating a political candidate's environmental platform. We cannot expect adults to maintain a deep conceptual understanding of the current state of every branch of science that might prove relevant to their lives, so we must prepare them to rely on other knowledge to make these decisions. Epistemological beliefs about scientific knowledge--what it is, its purpose, how it is constructed--are one type of knowledge that could be brought to bear when evaluating scientific claims. Complicating this situation is the fact that most adults will get most of their information about these socioscientific issues from the news media. Journalists do not have the same goals or norms as scientists, and this media lens can distort scientific issues. This dissertation addresses the question of whether we can assess epistemological change in a way that gives us meaningful information about how people will apply their epistemological understanding of science when they make decisions in the real world. First, I designed a written assessment made up of performance tasks to assess middle school students' implicit epistemological beliefs, and looked at whether we can use such an assessment to see epistemological change over two years. I then gave the same students news articles about whether there is a link between vaccines and autism and looked at their reasoning about this issue and how the journalistic features of two different articles impacted their reasoning. Finally, I examined the external validity of the epistemology assessment by looking at whether it predicted anything about students' responses to the news articles. While I was able to find evidence of differences between eighth graders' and sixth graders' use of epistemological resources within the performance tasks, I found that their reasoning about the socioscientific issue was heavily dependent on the choices made by the journalists who wrote the news articles. The epistemological assessment gave us some information about their reasoning about the news articles, but this, too, was very highly dependent on the article itself. If our goal is to facilitate reasoning about socioscientific issues in the real world, we need to keep in mind the impact of the media on that process. These findings have implications both for how we teach science toward that goal and how we assess our progress.
Optical Communications in Support of Science from the Moon, Mars, and Beyond
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.
2005-01-01
Optical communications can provide high speed communications throughout the solar system. Enable new science missions and human exploration. The technology suitable for near-earth optical communications, including communications to and from the Moon, is different than for deep space optical. NASA could leverage DoD investments for near-earth applications, including the moon. NASA will have to develop its own technology for deep space. The Mars laser communication demonstration is a pathfinder. NASA,s science mission directorate, under the leadership of Dr. Barry Geldzahler, is developing a roadmap for the development of deep space optical communications.
Deep Knowledge: Learning to Teach Science for Understanding and Equity. Teaching for Social Justice
ERIC Educational Resources Information Center
Larkin, Douglas B.
2013-01-01
"Deep Knowledge" is a book about how people's ideas change as they learn to teach. Using the experiences of six middle and high school student teachers as they learn to teach science in diverse classrooms, Larkin explores how their work changes the way they think about students, society, schools, and science itself. Through engaging case stories,…
ERIC Educational Resources Information Center
Hodges, Georgia W.; Tippins, Deborah; Oliver, J. Steve
2013-01-01
Science teacher retention, attrition, and migration continue to perplex educational scholars, political entities, as well as the general public. This study utilized an interpretive methodological design to generate assertions regarding career choice made by highly qualified science teachers in the deep, rural South through analysis of documents,…
A New Generation of Telecommunications for Mars: The Reconfigurable Software Radio
NASA Technical Reports Server (NTRS)
Adams, J.; Horne, W.
2000-01-01
Telecommunications is a critical component for any mission at Mars as it is an enabling function that provides connectivity back to Earth and provides a means for conducting science. New developments in telecommunications, specifically in software - configurable radios, expand the possible approaches for science missions at Mars. These radios provide a flexible and re-configurable platform that can evolve with the mission and that provide an integrated approach to communications and science data processing. Deep space telecommunication faces challenges not normally faced by terrestrial and near-earth communications. Radiation, thermal, highly constrained mass, volume, packaging and reliability all are significant issues. Additionally, once the spacecraft leaves earth, there is no way to go out and upgrade or replace radio components. The reconfigurable software radio is an effort to provide not only a product that is immediately usable in the harsh space environment but also to develop a radio that will stay current as the years pass and technologies evolve.
The treatment of Parkinson's disease with deep brain stimulation: current issues.
Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars
2015-07-01
Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients' mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.
Using the Deep Space Atomic Clock for Navigation and Science.
Ely, Todd A; Burt, Eric A; Prestage, John D; Seubert, Jill M; Tjoelker, Robert L
2018-06-01
Routine use of one-way radiometric tracking for deep space navigation and radio science is not possible today because spacecraft frequency and time references that use state-of-the-art ultrastable oscillators introduce errors from their intrinsic drift and instability on timescales past 100 s. The Deep Space Atomic Clock (DSAC), currently under development as a NASA Technology Demonstration Mission, is an advanced prototype of a space-flight suitable, mercury-ion atomic clock that can provide an unprecedented frequency and time stability in a space-qualified clock. Indeed, the ground-based results of the DSAC space demonstration unit have already achieved an Allan deviation of at one day; space performance on this order will enable the use of one-way radiometric signals for deep space navigation and radio science.
Enhancing Return from Lunar Surface Missions via the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Chavers, D. G.; Whitley, R. J.; Percy, T. K.; Needham, D. H.; Polsgrove, T. T.
2018-02-01
The Deep Space Gateway (DSG) will facilitate access to and communication with lunar surface assets. With a science airlock, docking port, and refueling capability in an accessible orbit, the DSG will enable high priority science across the lunar surface.
NASA Astrophysics Data System (ADS)
Huang, Bor-Shouh; Liu, Chun-Chi; Yen, Eric; Liang, Wen-Tzong; Lin, Simon C.; Huang, Win-Gee; Lee, Shiann-Jong; Chen, Hsin-Yen
Experience from the 1994 giant Sumatra earthquake, seismic and tsunami hazard have been considered as important issues in the South China Sea and its surrounding region, and attracted many seismologist's interesting. Currently, more than 25 broadband seismic instruments are currently operated by Institute of Earth Sciences, Academia Sinica in northern Vietnam to study the geodynamic evolution of the Red river fracture zone and rearranged to distribute to southern Vietnam recently to study the geodynamic evolution and its deep structures of the South China Sea. Similar stations are planned to deploy in Philippines in near future. In planning, some high quality stations may be as permanent stations and added continuous GPS observations, and instruments to be maintained and operated by several cooperation institutes, for instance, Institute of Geophysics, Vietnamese Acadamy of Sciences and Technology in Vietnam and Philippine Institute of Volcanology and Seismology in Philippines. Finally, those stations will be planed to upgrade as real time transmission stations for earthquake monitoring and tsunami warning. However, high speed data transfer within different agencies is always a critical issue for successful network operation. By taking advantage of both EGEE and EUAsiaGrid e-Infrastructure, Academia Sinica Grid Computing Centre coordinates researchers from various Asian countries to construct a platform to high performance data transfer for huge parallel computation. Efforts from this data service and a newly build earthquake data centre for data management may greatly improve seismic network performance. Implementation of Grid infrastructure and e-science issues in this region may assistant development of earthquake research, monitor and natural hazard reduction. In the near future, we will search for new cooperation continually from the surrounding countries of the South China Sea to install new seismic stations to construct a complete seismic network of the South China Sea and encourage studies for earthquake sciences and natural hazard reductions.
Girls on Ice: Using Immersion to Teach Fluency in Science
NASA Astrophysics Data System (ADS)
Pettit, E. C.; Mortenson, C.; Stiles, K.; Coryell-Martin, M.; Long, L.
2010-12-01
Young women choose not to pursue science careers for several reasons; two important ones are that they more often lack the confidence in their own ability to succeed or they perceive many science jobs as isolated (working alone in a lab) or lacking in altruistic values of helping other people or communities. We developed an immersion-science program, Girls on Ice, to provide young women with strong, female role models; with an opportunity to see what a career in the Earth sciences is like; with one-on-one interactions with scientists; with facilitated discussions on the value of Earth science in societal issues such as climate change; and with challenges that will build their self-confidence in multiple ways. Girls on Ice is field-based program for teenage young women with the theme of Glaciers, Climate, and the Alpine Landscape. The concepts we cover range from glacier dynamics to alpine plant ecology to mountain weather. The educational goals are 1. to increase young women's self-efficacy and interest in pursuing science as a career, 2. to create life-long advocates for the scientific process and its role in public policy 3. to teach critical thinking skills which will be important for all of their future pursuits 4. to enhance their leadership self-confidence so that they have a higher likelihood of becoming community leaders in the future. The educational philosophy of Girls on Ice consists of three core values: that teaching the whole process of science gives students ownership of the science; that teaching to the whole student puts the science in context; and that diversity inspires new ideas, new approaches, and better science in the end. We use a field-based immersion format -- the science equivalent of language-immersion course - in order to achieve the goals listed above in a setting that emphasizes this educational philosophy. The immersion-style course creates a deep connection between science and daily life for these young women. Combined with climate change content, this style of teaching guides these young women toward becoming scientifically-literate leaders and decision makers and strengthens the connection between scientists and decision makers, educators, and communicators in regard to modern society-science issues.
NASA Astrophysics Data System (ADS)
Chambers, Kenneth C.
2014-01-01
Pan-STARRS1 is approaching the completion of the PS1 Science Mission. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The Pan-STARRS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered the sky north of dec=-30 with more than 12 visits in five bands: g,r,i,z and y or over ~60 epochs per 0.25 arcsec resolution element on the sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the Pan-STARRS1 Surveys will be presented as well as progress in reprocessing of the data taken to date and the plans for the public release of all Pan-STARRS1 data products in the spring of 2015. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).
Global Lunar Topography from the Deep Space Gateway for Science and Exploration
NASA Astrophysics Data System (ADS)
Archinal, B.; Gaddis, L.; Kirk, R.; Edmundson, K.; Stone, T.; Portree, D.; Keszthelyi, L.
2018-02-01
The Deep Space Gateway, in low lunar orbit, could be used to achieve a long standing goal of lunar science, collecting stereo images in two months to make a complete, uniform, high resolution, known accuracy, global topographic model of the Moon.
NASA Astrophysics Data System (ADS)
Merritt, Donald R.; Cardesin Moinelo, Alejandro; Marin Yaseli de la Parra, Julia; Breitfellner, Michel; Blake, Rick; Castillo Fraile, Manuel; Grotheer, Emmanuel; Martin, Patrick; Titov, Dmitri
2018-05-01
This paper summarizes the changes required to the science planning of the Mars Express spacecraft to deal with the second-half of 2017, a very restrictive period that combined low power, low data rate and deep eclipses, imposing very limiting constraints for science operations. With this difficult operational constraint imposed, the ESAC Mars Express science planning team worked very hard with the ESOC flight control team and all science experiment teams to maintain a minimal level of science operations during this difficult operational period. This maintained the integrity and continuity of the long term science observations, which is a hallmark and highlight of such long-lived missions.
Remote observing with NASA's Deep Space Network
NASA Astrophysics Data System (ADS)
Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.
2012-09-01
The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.
The Deep Space Network as an instrument for radio science research
NASA Technical Reports Server (NTRS)
Asmar, S. W.; Renzetti, N. A.
1993-01-01
Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.
NASA Astrophysics Data System (ADS)
Bourassa, M.; Osinski, G. R.; Cross, M.; Hill, P.; King, D.; Morse, Z.; Pilles, E.; Tolometti, G.; Tornabene, L. L.; Zanetti, M.
2018-02-01
Canadian contributions to the science goals and objectives of a lunar precursor rover for HERACLES, an international mission concept, are discussed. Enabled by the Deep Space Gateway, this rover is a technical demonstrator for robotic sample return.
The treatment of Parkinson's disease with deep brain stimulation: current issues
Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars
2015-01-01
Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients’ mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation. PMID:26330809
Is Debunking Intelligent Design an Effective Approach to Teaching?
NASA Astrophysics Data System (ADS)
Storrs, Alex; Slater, T. F.; CAPER Team
2006-12-01
Good teaching demands that faculty establish students’ prior knowledge and beliefs and use this to guide instruction. One of the most important beliefs many students bring with them into science instruction is religious faith. Over 80% of undergraduates claim some sort of religious affiliation (Lindholm 2004) and a fifth of these rely on a literal interpretation of the Bible. Instructors must acknowledge the deep convictions of many undergraduates, and not dismiss them as “unscientific”. It is our position that teaching a science course while pretending that human affairs and convictions do not impact the scientific enterprise is not only misguided, but ineffective at providing students a liberal undergraduate education. While including “Intelligent Design” (ID) in public school classes has been thoroughly repudiated (e.g Kitzmuller v. Dover) many students equate ID to “God”. Debunking ID thus appears to prove that “God” doesn’t exist. When faced with a choice between beliefs developed over a lifetime and a single science course, the natural position for students will be to discard science when it seems in direct conflict. We propose a short discussion at the start of the first class which elicits and values student perspectives. This can defuse some of the tension experienced by students of faith and allow them to learn more science, developing better attitudes toward science. This is in contrast to simply telling students that “there is no room for faith in the objective pursuit of science.” At minimum we should provide students with references to modern discussions of science and religion issues and examples of scientists of faith who are able to fully resolve seemingly disparate issues between their scientific life and their religious convictions, even when full exploration of these topics is beyond the scope of the course. References: Lindholm, J. (2004): http://www.spirituality.ucla.edu/Publication%20&%20Reports/Lindholm%20USC%20chapter.doc
How Many Women Scientists Does It Take?
NASA Astrophysics Data System (ADS)
Zelikova, T. J.; Ramirez, K. S.; Pendergrass, A. G.; Vijayaraghavan, R.; Weintraub, S. R.; Bohon, W.; Bartel, B. A.
2017-12-01
Science and activism are not mutually exclusive. In today's political and cultural landscape, scientists must become advocates. But we cannot simply support the scientific enterprise while ignoring marginalized groups in science. We must promote diversity and confront the structural inequalities and discrimination that are prevalent in science today. How do we begin to confront this challenge? 500 Women Scientists is a grassroots organization that formed in the wake of the 2016 US election. We quickly grew to more than 20,000 supporters from across the globe and moved towards a broader mission to serve society by making science open, inclusive, and accessible. Ensuring women's inclusion and an explicit consideration of diversity improves science and spurs innovation. A focus on diversity means that the best minds and talent are in the room and that we implement the most effective solutions to solve the complex global challenges we face. We accomplish our mission by bringing together communities to foster real change that comes from small groups, not large crowds. Across the world, groups of 500 Women Scientists - pods - help create deep roots through strong, personal relationships and focus on issues that resonate in their communities. Pod members meet regularly to carry out our mission through 3 types of activities: 1. Empowering women to succeed in science through mentorship, networking, and support; 2. Advocating for science through participation in marches and efforts like the "#ourEPA" and "Summer of Op-Eds" campaigns; and 3. Local outreach at schools, local community events, and more. We are building a powerful voice in conversations at the intersection of science and our most pressing issues: environmental degradation, gender politics, structural inequalities and cultural diversity. We tell our own story so that we do not remain `hidden figures,' and so that future generations can inherit and advance the knowledge that we work so hard to produce.
NASA Astrophysics Data System (ADS)
Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.
2017-12-01
In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing volunteer resources, (4) meeting new state curricular standards, (5) developing publicly available lesson plans for other teachers and outreach programs, (6) institutionalizing the outreach program within the DEEPS community, and (7) cultivating STEM retention at the grassroots level.
NASA Astrophysics Data System (ADS)
Padden, M.; Whalen, K.
2013-12-01
Students in a large, second-year environmental earth science class made significant changes to their daily lives over a three-week period to learn how small-scale actions interact with global-scaled issues such as water and energy supplies, waste management and agriculture. The Lifestyle Project (Kirk and Thomas, 2003) was slightly adapted to fit a large-class setting (350 students). Students made changes to their lifestyle in self-selected categories (water, home heating, transportation, waste, food) and created journals over a three-week period as the changes increased in difficulty. The goal of this study is to gain an understanding of which aspects of the project played a pivotal role in impacting long-term learning. Content analysis of the journal entries and follow-up interviews are used to investigate if the Lifestyle Project is having a lasting impact on the students 18 months after the initial assignment.
Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions
NASA Technical Reports Server (NTRS)
Langhoff, Stephanie R. (Editor)
2008-01-01
The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.
The Deep Space Atomic Clock: Ushering in a New Paradigm for Radio Navigation and Science
NASA Technical Reports Server (NTRS)
Ely, Todd; Seubert, Jill; Prestage, John; Tjoelker, Robert
2013-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the on-orbit performance of a high-accuracy, high-stability miniaturized mercury ion atomic clock during a year-long experiment in Low Earth Orbit. DSAC's timing error requirement provides the frequency stability necessary to perform deep space navigation based solely on one-way radiometric tracking data. Compared to a two-way tracking paradigm, DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC also enables fully-autonomous onboard navigation useful for time-sensitive situations. The technology behind the mercury ion atomic clock and a DSAC mission overview are presented. Example deep space applications of DSAC, including navigation of a Mars orbiter and Europa flyby gravity science, highlight the benefits of DSAC-enabled one-way Doppler tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojick, D E; Warnick, W L; Carroll, B C
With the United States federal government spending billions annually for research and development, ways to increase the productivity of that research can have a significant return on investment. The process by which science knowledge is spread is called diffusion. It is therefore important to better understand and measure the benefits of this diffusion of knowledge. In particular, it is important to understand whether advances in Internet searching can speed up the diffusion of scientific knowledge and accelerate scientific progress despite the fact that the vast majority of scientific information resources continue to be held in deep web databases that manymore » search engines cannot fully access. To address the complexity of the search issue, the term global discovery is used for the act of searching across heterogeneous environments and distant communities. This article discusses these issues and describes research being conducted by the Office of Scientific and Technical Information (OSTI).« less
NASA Astrophysics Data System (ADS)
Humborg, C.
2017-12-01
The Baltic Sea is especially susceptible to multiple human impacts due to its estuarine mixing patterns and long water residence times. Temporally and spatially, it is one of the best investigated marginal seas worldwide allowing for a deep knowledge of natural and human processes forming this unique brackish ecosystem. In this presentation, we shortly summarize the physical, biogeochemical and ecological settings of the Baltic Sea and address major human drivers and pressures threatening its ecosystem. Further, we summarize the scientific and political efforts that led to the formulation of Baltic Sea Action Plan, a milestone for eutrophication management and European environmental governance. Further, we summarize the efforts and societal pitfalls towards an Ecosystem Based Fisheries Management, strategies to decrease loads of environmental pollutants and management of marine biodiversity/habitat issues in the unique Baltic Sea context.
Interactions of microplastic debris throughout the marine ecosystem.
Galloway, Tamara S; Cole, Matthew; Lewis, Ceri
2017-04-20
Marine microscopic plastic (microplastic) debris is a modern societal issue, illustrating the challenge of balancing the convenience of plastic in daily life with the prospect of causing ecological harm by careless disposal. Here we develop the concept of microplastic as a complex, dynamic mixture of polymers and additives, to which organic material and contaminants can successively bind to form an 'ecocorona', increasing the density and surface charge of particles and changing their bioavailability and toxicity. Chronic exposure to microplastic is rarely lethal, but can adversely affect individual animals, reducing feeding and depleting energy stores, with knock-on effects for fecundity and growth. We explore the extent to which ecological processes could be impacted, including altered behaviours, bioturbation and impacts on carbon flux to the deep ocean. We discuss how microplastic compares with other anthropogenic pollutants in terms of ecological risk, and consider the role of science and society in tackling this global issue in the future.
Science-Driven NanoSats Design for Deep Space
NASA Astrophysics Data System (ADS)
Klesh, A. T.; Castillo, J. C.
2012-12-01
CubeSat-based exploration of Earth has driven the development of miniaturized systems and research-grade instruments. The current performance of CubeSats raises the question of their potential contribution to planetary exploration. Two possible applications can be foreseen. One would take advantage of the readily availability of the CubeSat deployer Poly Picosatellite Orbital Deployer (P-POD) for planetary-related observations around Earth (e.g., O/OREOS mission, ExoPlanetSat), and, when propulsion systems develop, for interplanetary exploration. However, the CubeSat formfactor restricts payloads to be in an undeployed volume of 10x10x10 (1U) to 10x20x30 (6U) cm, based on the qualified and accepted P-POD. As a possible alternative, one may leverage the CubeSat-tailored subsystems to operate that platform as a secondary payload on a deep space mission. Whether the CubeSat formfactor constraint might be adjusted to accommodate a broader range of science applications or specific tailoring is required remains to be quantified. Through consultation with a wide range of scientists and engineers, we have examined the possible applications of secondary deep space NanoSats, and what derived requirements stem from these missions. Applications and requirements, together with existing technology, inform on common formfactors that could be useful for future planetary missions. By examining these formfactors, we have identified different categories of NanoSat explorer (additionally imposing discrete requirements on the mothership) that directly support scientific endeavors. In this paper, we outline some of the scientific applications that would drive the NanoSat formfactor design, as well as describe how the requirements affect programmatic issues. Several mission types are considered: passive deployment, active propulsion, targeted landing, and sample return. Each scenario changes the risk posture, and can impose additional considerations. Our goal has been to identify appropriate science driven designs that might serve a similar purpose to the "CubeSat standard", but not bound by the current specification adopted for launch vehicles. Additionally we consider the various technologies needed to successfully carry out deep space NanoSat missions including communication infrastructure (either direct-to-Earth or via relay), navigation / position determination, and avionics survivability. A brief survey of existing systems is presented, with recommendations for development toward future needs. As CubeSats demonstrate greater and greater science capability in low-Earth orbit, it is only natural to attempt to use this technology-driven formfactor to investigate the solar system. Here we merge desired science applications with existing CubeSat lessons-learned and technological ability to determine how we might explore intelligently and efficiently, yet not lose the wisdom we have gained from "thinking inside the box". Acknowledgement: This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.
Primary Science Teaching--Is It Integral and Deep Experience for Students?
ERIC Educational Resources Information Center
Timoštšuk, Inge
2016-01-01
Integral and deep pedagogical content knowledge can support future primary teachers' ability to follow ideas of education for sustainability in science class. Initial teacher education provides opportunity to learn what and how to teach but still the practical experiences of teaching can reveal uneven development of student teachers'…
NASA Astrophysics Data System (ADS)
Bleacher, J. E.; Gendreau, K.; Arzoumanian, Z.; Young, K. E.; McAdam, A.
2018-02-01
Science instruments to be used during human exploration should be designed to serve as multipurpose tools that are of use throughout a mission. Here we discuss a multipurpose tool approach to using contact XRD/XRF onboard the Deep Space Gateway.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Advisory Board can be found at the EPA SAB Web site at http://www.epa.gov/sab . SUPPLEMENTARY INFORMATION..., and human health effects. The Deep Water Horizon spill identified the need for additional research on alternative spill response technologies; environmental impacts of chemical dispersants under deep sea...
The Gateway Garden — A Prototype Food Production Facility for Deep Space Exploration
NASA Astrophysics Data System (ADS)
Fritsche, R. F.; Romeyn, M. W.; Massa, G.
2018-02-01
CIS-lunar space provides a unique opportunity to perform deep space microgravity crop science research while also addressing and advancing food production technologies that will be deployed on the Deep Space Transport.
Implementing Distributed Operations: A Comparison of Two Deep Space Missions
NASA Technical Reports Server (NTRS)
Mishkin, Andrew; Larsen, Barbara
2006-01-01
Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption of web-based and telecommunication tools has been critical to the success of Cassini operations.
NASA Astrophysics Data System (ADS)
Hernández-Molina, Francisco Javier; Stow, Dorrik A. V.; Llave, Estefanía; Rebesco, Michele; Ercilla, Gemma; van Rooij, David; Mena, Anxo; Vázquez, Juan-Tomás; Voelker, Antje H. L.
2011-12-01
Deep-water circulation is a critical part of the global conveyor belt that regulates Earth's climate. The bottom (contour)-current component of this circulation is of key significance in shaping the deep seafloor through erosion, transport, and deposition. As a result, there exists a high variety of large-scale erosional and depositional features (drifts) that together form more complex contourite depositional systems on continental slopes and rises as well as in ocean basins, generated by different water masses flowing at different depths and at different speeds either in the same or in opposite directions. Yet, the nature of these deep-water processes and the deposited contourites is still poorly understood in detail. Their ultimate decoding will undoubtedly yield information of fundamental importance to the earth and ocean sciences. The international congress Deep-water Circulation: Processes & Products was held from 16-18 June 2010 in Baiona, Spain, hosted by the University of Vigo. Volume 31(5/6) of Geo-Marine Letters is a special double issue containing 17 selected contributions from the congress, guest edited by F.J. Hernández-Molina, D.A.V. Stow, E. Llave, M. Rebesco, G. Ercilla, D. Van Rooij, A. Mena, J.-T. Vázquez and A.H.L. Voelker. The papers and discussions at the congress and the articles in this special issue provide a truly multidisciplinary perspective of interest to both academic and industrial participants, contributing to the advancement of knowledge on deep-water bottom circulation and related processes, as well as contourite sedimentation. The multidisciplinary contributions (including geomorphology, tectonics, stratigraphy, sedimentology, paleoceanography, physical oceanography, and deep-water ecology) have demonstrated that advances in paleoceanographic reconstructions and our understanding of the ocean's role in the global climate system depend largely on the feedbacks among disciplines. New insights into the link between the biota of deep-water ecosystems and bottom currents confirm the need for this field to be investigated and mapped in detail. Likewise, it is confirmed that deep-water contourites are not only of academic interest but also potential resources of economic value. Cumulatively, both the congress and the present volume serve to demonstrate that the role of bottom currents in shaping the seafloor has to date been generally underestimated, and that our understanding of such systems is still in its infancy. Future research on contourites, using new and more advanced techniques, should focus on a more detailed visualization of water-mass circulation and its variability, in order to decipher the physical processes involved and the associations between drifts and other common bedforms. Moreover, contourite facies models should be better established, including their associations with other deep-water sedimentary environments both in modern and ancient submarine domains. The rapid increase in deep-water exploration and the new deep-water technologies available to the oil industry and academic institutions will undoubtedly lead to spectacular advances in contourite research in terms of processes, morphology, sediment stacking patterns, facies, and their relationships with other deep-marine depositional systems.
Conference comments by the Editors
NASA Astrophysics Data System (ADS)
Zhao, Jing-Tai; Nikl, Martin; Williams, Richard T.; Auffray, Etiennette; Bizarri, Greg; Gu, Mu; Nagirnyi, Vitali; Pejchal, Jan; Sidletskiy, Oleg; Vedda, Anna
2014-02-01
The international community of researchers on fundamentals, development, and applications of inorganic scintillator materials has found the biennial meetings of the SCINT series to be an excellent chance to exchange data and ideas. These can range from very basic physical concepts and atomistic mechanisms in the materials under study up to truly application-minded tasks and problems defined by the modern needs for radiation detection, imaging, and spectroscopy of many kinds. The 12th International Conference on Inorganic Scintillators and their Applications (SCINT 2013) was organized by the Shanghai Institute of Ceramics, Chinese Academy of Sciences, in Shanghai, April 15-19, 2013. There were in total 180 scientific contributions, 85 oral presentations, 17 invited talks, and 95 poster exhibitions presented by 147 participants from 18 different countries. This special issue of the IEEE TRANSACTIONS ON NUCLEAR SCIENCE comprises the selected and refereed original works based on the SCINT 2013 presentations, altogether 51 papers. The conference was technically and financially co-sponsored by the Chinese Academy of Sciences, and Nuclear and Plasma Sciences Society (IEEE). The SCINT 2013 conference organizers acknowledge with deep thanks also the sponsorship and support of seven domestic and foreign industrial companies participating in the conference exhibition.
From big data to deep insight in developmental science
2016-01-01
The use of the term ‘big data’ has grown substantially over the past several decades and is now widespread. In this review, I ask what makes data ‘big’ and what implications the size, density, or complexity of datasets have for the science of human development. A survey of existing datasets illustrates how existing large, complex, multilevel, and multimeasure data can reveal the complexities of developmental processes. At the same time, significant technical, policy, ethics, transparency, cultural, and conceptual issues associated with the use of big data must be addressed. Most big developmental science data are currently hard to find and cumbersome to access, the field lacks a culture of data sharing, and there is no consensus about who owns or should control research data. But, these barriers are dissolving. Developmental researchers are finding new ways to collect, manage, store, share, and enable others to reuse data. This promises a future in which big data can lead to deeper insights about some of the most profound questions in behavioral science. WIREs Cogn Sci 2016, 7:112–126. doi: 10.1002/wcs.1379 For further resources related to this article, please visit the WIREs website. PMID:26805777
NASA Astrophysics Data System (ADS)
Piotrowski, A. M.; Elderfield, H.; Howe, J. N. W.
2014-12-01
The last few million years saw changing boundary conditions to the Earth system which set the stage for bi-polar glaciation and Milankovich-forced glacial-interglacial cycles which dominate Quaternary climate variability. Recent studies have highlighted the relative importance of temperature, ice volume and ocean circulation changes during the Mid-Pleistocene Transition at ~900 ka (Elderfield et al., 2012, Pena and Goldstein, 2014). Reconstructing the history of global deep water mass propagation and its carbon content is important for fully understanding the ocean's role in amplifying Milankovich changes to cause glacial-interglacial transitions. A new foraminiferal-coating Nd isotope record from ODP Site 1123 on the deep Chatham Rise is interpreted as showing glacial-interglacial changes in the bottom water propagation of Atlantic-sourced waters into the Pacific via the Southern Ocean during the last 1 million years. This is compared to globally-distributed bottom water Nd isotope records; including a new deep western equatorial Atlantic Ocean record from ODP Site 929, as well as published records from ODP 1088 and Site 1090 in the South Atlantic (Pena and Goldstein, 2014), and ODP 758 in the deep Indian Ocean (Gourlan et al., 2010). Atlantic-to-Pacific gradients in deep ocean neodymium isotopes are constructed for key time intervals to elucidate changes in deep water sourcing and circulation pathways through the global ocean. Benthic carbon isotopes are used to estimate deep water nutrient contents of deep water masses and constrain locations and modes of deep water formation. References: Elderfield et al. Science 337, 704 (2012) Pena and Goldstein, Science 345, 318 (2014) Gourlan et al., Quaternary Science Reviews 29, 2484-2498 (2010)
Enhanced Experience Replay for Deep Reinforcement Learning
2015-11-01
ARL-TR-7538 ● NOV 2015 US Army Research Laboratory Enhanced Experience Replay for Deep Reinforcement Learning by David Doria...Experience Replay for Deep Reinforcement Learning by David Doria, Bryan Dawson, and Manuel Vindiola Computational and Information Sciences Directorate...
None Available
2018-02-06
To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.
The context of learning anatomy: does it make a difference?
Smith, Claire F; Martinez-Álvarez, Concepción; McHanwell, Stephen
2014-01-01
This study set out to ascertain whether the context in which anatomy is learnt made a difference to students' perceptions of learning. An Approach to Learning Inventory (ASSIST) and a 31-item Anatomy Learning Experience Questionnaire (ALE) were administered to 224 students (77 dental, 132 medical and 19 speech and language) as a multi-site study. Results revealed that 45% adopted a strategic, 39% a deep and 14% a surface approach. Trends between professions are similar for a deep or strategic approach (both ∼ 40%). However, a surface approach differed between professions (7% dentistry, 16% medicine, 26% speech and language science). Dental students responded more to being able to use their knowledge than did other groups (P = 0.0001). Medical students found the dissecting environment an intimidating one and subsequently reported finding online resources helpful (P = 0.015 and P = 0.003, respectively). Speech and language science students reported that they experienced greater difficulties with learning anatomy; they reported finding the amount to learn daunting (P = 0.007), struggled to remember what they did last semester (P = 0.032) and were not confident in their knowledge base (P = 0.0001). All students responded strongly to the statement ‘I feel that working with cadaveric material is an important part of becoming a doctor/dentist/health care professional’. A strong response to this statement was associated with students adopting a deep approach (P = 0.0001). This study has elucidated that local curriculum factors are important in creating an enabling learning environment. There are also a number of generic issues that can be identified as being inherent in the learning of anatomy as a discipline and are experienced across courses, different student groups and institutions. PMID:23930933
The context of learning anatomy: does it make a difference?
Smith, Claire F; Martinez-Álvarez, Concepción; McHanwell, Stephen
2014-03-01
This study set out to ascertain whether the context in which anatomy is learnt made a difference to students' perceptions of learning. An Approach to Learning Inventory (ASSIST) and a 31-item Anatomy Learning Experience Questionnaire (ALE) were administered to 224 students (77 dental, 132 medical and 19 speech and language) as a multi-site study. Results revealed that 45% adopted a strategic, 39% a deep and 14% a surface approach. Trends between professions are similar for a deep or strategic approach (both ~ 40%). However, a surface approach differed between professions (7% dentistry, 16% medicine, 26% speech and language science). Dental students responded more to being able to use their knowledge than did other groups (P = 0.0001). Medical students found the dissecting environment an intimidating one and subsequently reported finding online resources helpful (P = 0.015 and P = 0.003, respectively). Speech and language science students reported that they experienced greater difficulties with learning anatomy; they reported finding the amount to learn daunting (P = 0.007), struggled to remember what they did last semester (P = 0.032) and were not confident in their knowledge base (P = 0.0001). All students responded strongly to the statement 'I feel that working with cadaveric material is an important part of becoming a doctor/dentist/health care professional'. A strong response to this statement was associated with students adopting a deep approach (P = 0.0001). This study has elucidated that local curriculum factors are important in creating an enabling learning environment. There are also a number of generic issues that can be identified as being inherent in the learning of anatomy as a discipline and are experienced across courses, different student groups and institutions. © 2013 Anatomical Society.
Dynamic Radioisotope Power System Development for Space Explorations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A L
Dynamic power conversion offers the potential to produce radioisotope power systems (RPS) that generate higher power outputs and utilize the Pu-238 radioisotope more efficiently than Radioisotope Thermoelectric Generators (RTG). Additionally, dynamic systems also offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power will be available at the end of the mission when it is needed for both powering the science and transmitting the results. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust and reliable dynamic conversionmore » technology is challenging yet essential to building a suitable generator. Considerations include working within existing handling infrastructure where possible so that development costs can be kept low and integrating dynamic generators into spacecraft, which may be more complex than integration of static systems. Methods of interfacing to and controlling a dynamic generator must be considered and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development and adaption.Dynamic power conversion offers the potential to produce Radioisotope Power Systems (RPS) that generate higher power outputs and utilize the available heat source plutonium fuel more efficiently than Radioisotope Thermoelectric Generators. Additionally, dynamic systems offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power would be available at the end of the mission, when it is needed most for both powering science instruments and transmitting the resulting data. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust, and reliable dynamic conversion technology is challenging yet essential to building a suitable flight-ready generator. Considerations include working within existing hardware-handling infrastructure, where possible, so that development costs can be kept low, and integrating dynamic generators into spacecraft, which may be more complex than integration of static thermoelectric systems. Methods of interfacing to and controlling a dynamic generator must also be considered, and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development, and adaption.« less
Creating Deep Time Diaries: An English/Earth Science Unit for Middle School Students
ERIC Educational Resources Information Center
Jordan, Vicky; Barnes, Mark
2006-01-01
Students love a good story. That is why incorporating literary fiction that parallels teaching goals and standards can be effective. In the interdisciplinary, thematic six-week unit described in this article, the authors use the fictional book "The Deep Time Diaries," by Gary Raham, to explore topics in paleontology, Earth science, and creative…
Clementine, Deep Space Program Science Experiment
NASA Technical Reports Server (NTRS)
1993-01-01
Clementine, also called the Deep Space Program Science Experiment, is a joint Department of Defense (DoD)/National Aeronautics and Space Administration (NASA) mission with the dual goal of testing small spacecraft, subsystems, and sensors in the deep space environment and also providing a nominal science return. The Clementine mission will provide technical demonstrations of innovative lightweight spacecraft components and sensors, will be launced on a spacecraft developed within 2 years of program start, and will point a way for new planetary mission options under consideration by NASA. This booklet gives the background of the Clementine mission (including the agencies involved), the mission objectives, the mission scenario, the instruments that the mission will carry, and how the data will be analyzed and made accessible.
Introducing Deep Underground Science to Middle Schoolers: Challenges and Rewards
NASA Astrophysics Data System (ADS)
McMahan Norris, Margaret
2010-03-01
Work is in progress to define the mission, vision, scope and preliminary design of the Sanford Center for Science Education (SCSE), the education arm of the Deep Underground Science and Engineering Laboratory (DUSEL), a proposed major research facility of the National Science Foundation. If final funding is approved, DUSEL will be built at the site of the former Homestake Gold Mine in Lead, South Dakota beginning in 2012. The SCSE is envisioned to serve as a model for the integration of a science education center into the fabric of a new national laboratory. Its broad mission is to share the excitement and promise of deep underground science and engineering at Homestake with learners of all ages worldwide. The science to be pursued at DUSEL, whether in physics, astronomy, geomicrobiology, or geoscience, is transformational and sparks the imagination of learners of all ages. While the SCSE is under design, an early education program has been initiated that is designed to build capacity for the envisioned center, to prototype individual programs, and to build partnerships and community support. This talk will give an overview of the middle school portion of that program and its context within the overall content development plan of the SCSE.
A Proposed Borehole Scientific Laboratory in Quay County, New Mexico, USA
NASA Astrophysics Data System (ADS)
Nielson, Dennis; Eckels, Marc; Mast, Peter; Zellman, Mark; Creed, Robert
2017-04-01
Our team has received funding from the US Department of Energy to initiate a Deep Borehole Field Test that will develop a subsurface test site to evaluate the drilling and scientific aspects of deep borehole disposal of nuclear waste in crystalline rock. Phase 1 of the project will focus on Public Outreach and land acquisition whereas Phase 2 will generate a drilling and testing plan and secure regulatory approvals. Phase 3 will complete the Drilling and Testing Plan and Phase 4 will include the drilling and testing. Phase 5 will be devoted to borehole science and experiments with emplacement technology. Although we are specifically considering issues associated with the disposal of waste, this project is a proof of concept, and no waste will be emplaced at our site. In brief, the concept envisions an 8-1/2 inch open-hole completion at a depth of 5000 m in crystalline rock. There will be an extensive program of sample collection (including core) and analysis as well as geophysical logging and borehole testing. Critical issues will be low permeability in the crystalline rock as well as the ability to manage borehole quality. Our team has proposed a site in Quay County, New Mexico that has an 850 meter thick Paleozoic section overlying homogeneous Precambrian granite. A subsequent phase of the project may drill a second hole with a 17-1/2 inch completion located about 200 m from the first. Our long-term plan is that this site will be managed as a deep scientific observatory that also provides a facility for scientific experiments and testing of borehole infrastructure and drilling equipment.
Atmospheric Science Data Center
2015-03-16
Deep Convective Clouds and Chemistry (DC3) Data and Information The Deep Convective Clouds and Chemistry ( DC3 ) field campaign is investigating the impact of deep, ... processes, on upper tropospheric (UT) composition and chemistry. The primary science objectives are: To quantify and ...
Advantages of Science Cubesat and Microsat Deployment Using DSG Deep Space Exploration Robotics
NASA Astrophysics Data System (ADS)
Shaw, A.; Rembala, R.; Fulford, P.
2018-02-01
Important scientific missions can be accomplished with cubesats/microsats. These missions would benefit from advantages offered by having an independent cubesat/microsat deployment capability as part of Deep Space Gateway's Deep Space Exploration Robotics system.
NASA Technical Reports Server (NTRS)
Holmes, Dwight P.; Thompson, Tommy; Simpson, Richard; Tyler, G. Leonard; Dehant, Veronique; Rosenblatt, Pascal; Hausler, Bernd; Patzold, Martin; Goltz, Gene; Kahan, Daniel;
2008-01-01
Radio Science is an opportunistic discipline in the sense that the communication link between a spacecraft and its supporting ground station can be used to probe the intervening media remotely. Radio science has recently expanded to greater, cooperative use of international assets. Mars Express and Venus Express are two such cooperative missions managed by the European Space Agency with broad international science participation supported by NASA's Deep Space Network (DSN) and ESA's tracking network for deep space missions (ESTRAK). This paper provides an overview of the constraints, opportunities, and lessons learned from international cross support of radio science, and it explores techniques for potentially optimizing the resultant data sets.
Blood Clots That Kill: Preventing DVT | NIH MedlinePlus the Magazine
... please turn Javascript on. Feature: Deep Vein Thrombosis Blood Clots That Kill: Preventing DVT Past Issues / Spring 2011 ... Contents Deep vein thrombosis, or DVT, is a blood clot that forms in a vein deep in the ...
The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Stelzried, C. T.; Noreen, G. K.; Slobin, S. D.; Petty, S. M.; Trowbridge, D. L.; Donnelly, H.; Kinman, P. W.; Armstrong, J. W.; Burow, N. A.
1983-01-01
The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data.
Science and Technology Review December 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radousky, H B
2006-10-30
This month's issue has the following articles: (1) Livermore's Biosecurity Research Directly Benefits Public Health--Commentary by Raymond J. Juzaitis; (2) Diagnosing Flu Fast--Livermore's FluIDx device can diagnose flu and four other respiratory viruses in just two hours; (3) An Action Plan to Reopen a Contaminated Airport--New planning tools and faster sample analysis methods will hasten restoration of a major airport to full use following a bioterrorist attack; (4) Early Detection of Bone Disease--A Livermore technique detects small changes in skeletal calcium balance that may signal bone disease; and (5) Taking a Gander with Gamma Rays--Gamma rays may be the nextmore » source for looking deep inside the atom.« less
NASA Astrophysics Data System (ADS)
Enquist, C.; Jackson, S. T.; Garfin, G. M.
2017-12-01
Translational ecology is an approach by which ecologists, stakeholders, and decision-makers work collaboratively to develop and deliver ecological research that, ideally, results in actionable science that leads to improved environmental decision-making. We analyzed a diverse array of real-world case studies and distilled six principles that characterize the practice of translational ecology: communication, commitment, collaboration, engagement, process, and decision-framing. In this talk, we highlight a subset of the case studies that illustrate these principles. Notably, we found that translational ecology is distinct from both basic and applied ecological research. As a practice, the approach deliberately extends research beyond theory or opportunistic applications, motivated by a search for outcomes that directly serve the needs of natural resource managers and decision-makers. Translational ecology is also distinct from knowledge co-production in that it does not require deep engagement between collaborators, although incorporating differing modes of co-production relative to the decision context, associated time frame, and available financial resources can greatly enhance the translational approach. Although there is a need for incentives to pursue in this type of work, we found that the creativity and context-specific knowledge of resource managers, practitioners, and decision-makers informs and enriches the scientific process, helping shape actionable science. Moreover, the process of addressing research questions arising from on-the-ground management issues, rather than from the top-down or expert-oriented perspectives of traditional science, can foster the long-term trust and commitment that is critical for long-term, sustained engagement between partners. Now, perhaps more than ever, the climate and environmental issues facing society are complex, often politicized, and value-laden. We argue that ecological science should play a key role in informing these problems and ecologists can engage as important partners committed to finding solutions. More broadly, scientists that embrace translational approaches are poised to make science-informed decision-making a reality in the face of a rapidly changing global environment.
Deep Space Earth Observations from DSCOVR
NASA Astrophysics Data System (ADS)
Marshak, A.; Herman, J.
2018-02-01
The Deep Space Climate Observatory (DSCOVR) at Sun-Earth L1 orbit observes the full sunlit disk of Earth. There are two Earth science instruments on board DSCOVR — EPIC and NISTAR. We discuss if EPIC and NISAR-like instruments can be used in Deep Space Gateway.
Developing Deep Learning Applications for Life Science and Pharma Industry.
Siegismund, Daniel; Tolkachev, Vasily; Heyse, Stephan; Sick, Beate; Duerr, Oliver; Steigele, Stephan
2018-06-01
Deep Learning has boosted artificial intelligence over the past 5 years and is seen now as one of the major technological innovation areas, predicted to replace lots of repetitive, but complex tasks of human labor within the next decade. It is also expected to be 'game changing' for research activities in pharma and life sciences, where large sets of similar yet complex data samples are systematically analyzed. Deep learning is currently conquering formerly expert domains especially in areas requiring perception, previously not amenable to standard machine learning. A typical example is the automated analysis of images which are typically produced en-masse in many domains, e. g., in high-content screening or digital pathology. Deep learning enables to create competitive applications in so-far defined core domains of 'human intelligence'. Applications of artificial intelligence have been enabled in recent years by (i) the massive availability of data samples, collected in pharma driven drug programs (='big data') as well as (ii) deep learning algorithmic advancements and (iii) increase in compute power. Such applications are based on software frameworks with specific strengths and weaknesses. Here, we introduce typical applications and underlying frameworks for deep learning with a set of practical criteria for developing production ready solutions in life science and pharma research. Based on our own experience in successfully developing deep learning applications we provide suggestions and a baseline for selecting the most suited frameworks for a future-proof and cost-effective development. © Georg Thieme Verlag KG Stuttgart · New York.
75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
... Science Foundation's Nuclear Physics Office. Technical Talk on Deep Underground Science and Engineering... Energy's Office of Nuclear Physics Web site for viewing. Rachel Samuel, Deputy Committee Management...
Nano-Satellite Secondary Spacecraft on Deep Space Missions
NASA Technical Reports Server (NTRS)
Klesh, Andrew T.; Castillo-Rogez, Julie C.
2012-01-01
NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.
ERIC Educational Resources Information Center
Varunki, Maaret; Katajavuori, Nina; Postareff, Liisa
2017-01-01
Research shows that a surface approach to learning is more common among students in the natural sciences, while students representing the "soft" sciences are more likely to apply a deep approach. However, findings conflict concerning the stability of approaches to learning in general. This study explores the variation in students'…
ERIC Educational Resources Information Center
Australian Science Teachers Journal, 1976
1976-01-01
Presents synopses of five papers presented at a conference of the Science Teachers of Australia. Topics include the technology of wine making, integrated science, individualized science instruction, formal operational thinking, and deep ocean drilling. (MLH)
Change in Thinking Demands for Students Across the Phases of a Science Task: An Exploratory Study
NASA Astrophysics Data System (ADS)
Tekkumru-Kisa, Miray; Schunn, Christian; Stein, Mary Kay; Reynolds, Bertha
2017-08-01
Science education communities around the world have increasingly emphasized engaging students in the disciplinary practices of science as they engage in high levels of reasoning about scientific ideas. Consistently, this is a critical moment in time in the USA as it goes through a new wave of science education reform within the context of Next Generation Science Standards (NGSS). We argue that the placement of high demands on students' thinking (i.e., a high level of thinking) in combination with positioning students to use disciplinary practices as they try to make sense of scientific ideas (i.e., a deep kind of thinking) constitute critical aspects of the reform. The main purpose of this paper is to identify and describe the kinds and levels of thinking in which students engage when they are invited to think and reason as demanded by NGSS-aligned curricular tasks. Our analysis of video records of classrooms in which an NGSS-aligned, cognitively demanding task was used, revealed many ways in which the aspirational level and kind of student thinking will not be met in many science classrooms. We propose a way of characterizing and labeling the differences among these kinds and levels of thinking during the implementation of a reform-based biology curriculum. These categories, which focus on two important features emphasized in the NGSS, can help us to better understand, diagnose, and communicate issues during the implementation of high-level tasks in science classrooms.
76 FR 24923 - National Science Board; Sunshine Act Meetings; Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
...: Some portions open, some portions closed. UPDATES: Please refer to the National Science Board Web site... Information Item: Status Deep Underground Science and Engineering Laboratory Information Item: High...
Data Mining Research with the LSST
NASA Astrophysics Data System (ADS)
Borne, Kirk D.; Strauss, M. A.; Tyson, J. A.
2007-12-01
The LSST catalog database will exceed 10 petabytes, comprising several hundred attributes for 5 billion galaxies, 10 billion stars, and over 1 billion variable sources (optical variables, transients, or moving objects), extracted from over 20,000 square degrees of deep imaging in 5 passbands with thorough time domain coverage: 1000 visits over the 10-year LSST survey lifetime. The opportunities are enormous for novel scientific discoveries within this rich time-domain ultra-deep multi-band survey database. Data Mining, Machine Learning, and Knowledge Discovery research opportunities with the LSST are now under study, with a potential for new collaborations to develop to contribute to these investigations. We will describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. We also give some illustrative examples of current scientific data mining research in astronomy, and point out where new research is needed. In particular, the data mining research community will need to address several issues in the coming years as we prepare for the LSST data deluge. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night); multi-resolution methods for exploration of petascale databases; visual data mining algorithms for visual exploration of the data; indexing of multi-attribute multi-dimensional astronomical databases (beyond RA-Dec spatial indexing) for rapid querying of petabyte databases; and more. Finally, we will identify opportunities for synergistic collaboration between the data mining research group and the LSST Data Management and Science Collaboration teams.
Carbon from Crust to Core: A history of deep carbon science
NASA Astrophysics Data System (ADS)
Mitton, Simon
2017-04-01
As an academic historian of science, I am writing a history of the discovery of the interior workings of our dynamic planet. I am preparing a book, titled Carbon from Crust to Core: A Chronicle of Deep Carbon Science, in which I will present the first history of deep carbon science. I will identify and document key discoveries, the impact of new knowledge, and the roles of deep carbon scientists and their institutions from the 1400s to the present. This innovative book will set down the engaging human story of many remarkable scientists from whom we have learned about Earth's interior, and particularly the fascinating story of carbon in Earth. I will describe a great journey of discovery that has led to a better understanding of the physical, chemical, and biological behaviour of carbon in the vast majority of Earth's interior. My poster has a list of remarkable Deep Carbon Explorers, from Georgius Agricola (1494-1555) to Claude ZoBell (1904-1989). Come along to my poster and add to my compilation: choose pioneers from history, or nominate your colleagues, or even add a selfie! As a biographer, I am keen to add researchers who may have been overlooked in the standard histories of geology and geophysics. And I am always on the lookout for standout stories and personal recollections. I am equipped to do oral history interviews. What's your story? Cambridge University Press will publish the book in 2019.
Graduate Ethics Curricula for Future Geospatial Technology Professionals (Invited)
NASA Astrophysics Data System (ADS)
Wright, D. J.; Dibiase, D.; Harvey, F.; Solem, M.
2009-12-01
Professionalism in today's rapidly-growing, multidisciplinary geographic information science field (e.g., geographic information systems or GIS, remote sensing, cartography, quantitative spatial analysis), now involves a commitment to ethical practice as informed by a more sophisticated understanding of the ethical implications of geographic technologies. The lack of privacy introduced by mobile mapping devices, the use of GIS for military and surveillance purposes, the appropriate use of data collected using these technologies for policy decisions (especially for conservation and sustainability) and general consequences of inequities that arise through biased access to geospatial tools and derived data all continue to be challenging issues and topics of deep concern for many. Students and professionals working with GIS and related technologies should develop a sound grasp of these issues and a thorough comprehension of the concerns impacting their use and development in today's world. However, while most people agree that ethics matters for GIS, we often have difficulty putting ethical issues into practice. An ongoing project supported by NSF seeks to bridge this gap by providing a sound basis for future ethical consideration of a variety of issues. A model seminar curriculum is under development by a team of geographic information science and technology (GIS&T) researchers and professional ethicists, along with protocols for course evaluations. In the curricula students first investigate the nature of professions in general and the characteristics of a GIS&T profession in particular. They hone moral reasoning skills through methodical analyses of case studies in relation to various GIS Code of Ethics and Rules of Conduct. They learn to unveil the "moral ecologies" of a profession through actual interviews with real practitioners in the field. Assignments thus far include readings, class discussions, practitioner interviews, and preparations of original case studies. Curricula thus far are freely available via gisprofessionalethics.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None Available
To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.
The deep space network, volume 13
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The deep space instrumentation facility, the ground communications facility, and the network control system are described. Other areas reported include: Helios Mission support, DSN support of the Mariner Mars 1971 extended mission, Mariner Venus/Mercury 1973 mission support, Viking mission support, radio science, tracking and ground-based navigation, network control and data processing, and deep space stations.
The Hyper Suprime-Cam SSP Survey: Overview and survey design
NASA Astrophysics Data System (ADS)
Aihara, Hiroaki; Arimoto, Nobuo; Armstrong, Robert; Arnouts, Stéphane; Bahcall, Neta A.; Bickerton, Steven; Bosch, James; Bundy, Kevin; Capak, Peter L.; Chan, James H. H.; Chiba, Masashi; Coupon, Jean; Egami, Eiichi; Enoki, Motohiro; Finet, Francois; Fujimori, Hiroki; Fujimoto, Seiji; Furusawa, Hisanori; Furusawa, Junko; Goto, Tomotsugu; Goulding, Andy; Greco, Johnny P.; Greene, Jenny E.; Gunn, James E.; Hamana, Takashi; Harikane, Yuichi; Hashimoto, Yasuhiro; Hattori, Takashi; Hayashi, Masao; Hayashi, Yusuke; Hełminiak, Krzysztof G.; Higuchi, Ryo; Hikage, Chiaki; Ho, Paul T. P.; Hsieh, Bau-Ching; Huang, Kuiyun; Huang, Song; Ikeda, Hiroyuki; Imanishi, Masatoshi; Inoue, Akio K.; Iwasawa, Kazushi; Iwata, Ikuru; Jaelani, Anton T.; Jian, Hung-Yu; Kamata, Yukiko; Karoji, Hiroshi; Kashikawa, Nobunari; Katayama, Nobuhiko; Kawanomoto, Satoshi; Kayo, Issha; Koda, Jin; Koike, Michitaro; Kojima, Takashi; Komiyama, Yutaka; Konno, Akira; Koshida, Shintaro; Koyama, Yusei; Kusakabe, Haruka; Leauthaud, Alexie; Lee, Chien-Hsiu; Lin, Lihwai; Lin, Yen-Ting; Lupton, Robert H.; Mandelbaum, Rachel; Matsuoka, Yoshiki; Medezinski, Elinor; Mineo, Sogo; Miyama, Shoken; Miyatake, Hironao; Miyazaki, Satoshi; Momose, Rieko; More, Anupreeta; More, Surhud; Moritani, Yuki; Moriya, Takashi J.; Morokuma, Tomoki; Mukae, Shiro; Murata, Ryoma; Murayama, Hitoshi; Nagao, Tohru; Nakata, Fumiaki; Niida, Mana; Niikura, Hiroko; Nishizawa, Atsushi J.; Obuchi, Yoshiyuki; Oguri, Masamune; Oishi, Yukie; Okabe, Nobuhiro; Okamoto, Sakurako; Okura, Yuki; Ono, Yoshiaki; Onodera, Masato; Onoue, Masafusa; Osato, Ken; Ouchi, Masami; Price, Paul A.; Pyo, Tae-Soo; Sako, Masao; Sawicki, Marcin; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Shimono, Atsushi; Shirasaki, Masato; Silverman, John D.; Simet, Melanie; Speagle, Joshua; Spergel, David N.; Strauss, Michael A.; Sugahara, Yuma; Sugiyama, Naoshi; Suto, Yasushi; Suyu, Sherry H.; Suzuki, Nao; Tait, Philip J.; Takada, Masahiro; Takata, Tadafumi; Tamura, Naoyuki; Tanaka, Manobu M.; Tanaka, Masaomi; Tanaka, Masayuki; Tanaka, Yoko; Terai, Tsuyoshi; Terashima, Yuichi; Toba, Yoshiki; Tominaga, Nozomu; Toshikawa, Jun; Turner, Edwin L.; Uchida, Tomohisa; Uchiyama, Hisakazu; Umetsu, Keiichi; Uraguchi, Fumihiro; Urata, Yuji; Usuda, Tomonori; Utsumi, Yousuke; Wang, Shiang-Yu; Wang, Wei-Hao; Wong, Kenneth C.; Yabe, Kiyoto; Yamada, Yoshihiko; Yamanoi, Hitomi; Yasuda, Naoki; Yeh, Sherry; Yonehara, Atsunori; Yuma, Suraphong
2018-01-01
Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2-m Subaru telescope on the summit of Mauna Kea in Hawaii. A team of scientists from Japan, Taiwan, and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.
Integration and timing of basic and clinical sciences education.
Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian
2013-05-01
Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational/applied model may yield benefits in training widely competent future physicians.
75 FR 55617 - National Science Board; Sunshine Act Meetings Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... to the National Science Board Web site http://www.nsf.gov/nsb for additional information and schedule... of Deep Underground Science and Engineering Laboratory (DUSEL) on South Dakota Graduate Education in...
John Falk and Lynn Dierking: building the field of informal/free-choice science education
NASA Astrophysics Data System (ADS)
Rennie, Léonie J.
2016-03-01
This article establishes the importance of "context", a concept that underpins the academic contributions that John Falk and Lynn Dierking have made in building the field of informal/free-choice learning in science education. I consider, in turn, the individual contributions made by each of them prior to their seminal co-authored work, entitled The Museum Experience. I then document their joint contributions to the field, pointing out that although their interests and skills overlap in complementary ways to produce their jointly authored works, both have continued to make their individual contributions; Falk in his work on identity and impact, and Dierking in her work on community, youth, family and equity. Finally I come to the present, describing how they each continue their research and publication in lifelong, life-wide, and life-deep learning, with a particular focus on free-choice learning and the role it can play in addressing critical issues in the world.
The A to Z of pharmaceutical cocrystals: a decade of fast-moving new science and patents.
Almarsson, Örn; Peterson, Matthew L; Zaworotko, Michael
2012-07-01
From aspirin to zoledronic acid, pharmaceutical cocrystals emerged in the past decade as a promising new weapon in the arsenal of drug development. Resurgence of interest in multicomponent crystal compositions has led to significant advances in the science of cocrystal design and discovery. These advances have built upon crystal engineering, which provides a deep understanding of supramolecular interactions between molecules that govern crystal packing and physicochemical properties of crystalline materials. Concomitantly, the patent landscape of pharmaceutical cocrystals developed rapidly in the last decade. This review presents a broad survey of patents issued in the area of pharmaceutical cocrystals. In addition, the review contains analyses of key patents in the area involving compositions and methodologies. Along the way, the main events of the past decade representing a renaissance of cocrystals of pharmaceutical materials are chronicled. Future directions in the area are discussed in light of key pending patent applications and recent publications of seminal interest.
ERIC Educational Resources Information Center
Lunetta, Vincent N.; And Others
1984-01-01
Advocates including environmental issues balanced with basic science concepts/processes to provide a sound science foundation. Suggests case studies of regional environmental issues to sensitize/motivate students while reflecting complex nature of science/society issues. Issues considered include: fresh water quality, earthquake predication,…
Semantically-enabled Knowledge Discovery in the Deep Carbon Observatory
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, Y.; Ma, X.; Erickson, J. S.; West, P.; Fox, P. A.
2013-12-01
The Deep Carbon Observatory (DCO) is a decadal effort aimed at transforming scientific and public understanding of carbon in the complex deep earth system from the perspectives of Deep Energy, Deep Life, Extreme Physics and Chemistry, and Reservoirs and Fluxes. Over the course of the decade DCO scientific activities will generate a massive volume of data across a variety of disciplines, presenting significant challenges in terms of data integration, management, analysis and visualization, and ultimately limiting the ability of scientists across disciplines to make insights and unlock new knowledge. The DCO Data Science Team (DCO-DS) is applying Semantic Web methodologies to construct a knowledge representation focused on the DCO Earth science disciplines, and use it together with other technologies (e.g. natural language processing and data mining) to create a more expressive representation of the distributed corpus of DCO artifacts including datasets, metadata, instruments, sensors, platforms, deployments, researchers, organizations, funding agencies, grants and various awards. The embodiment of this knowledge representation is the DCO Data Science Infrastructure, in which unique entities within the DCO domain and the relations between them are recognized and explicitly identified. The DCO-DS Infrastructure will serve as a platform for more efficient and reliable searching, discovery, access, and publication of information and knowledge for the DCO scientific community and beyond.
77 FR 40586 - Coastal Programs Division
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... approval of extension of deep sea hard mineral exploration licenses and amended exploration plan. SUMMARY... FR 12245 on the request of Lockheed Martin Corp. to extend the deep seabed hard mineral exploration licenses USA-1 and USA-4 issued under the Deep Seabed Hard Mineral Resources Act (DSHMRA; 30 U.S.C. 1401...
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2003-01-01
Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.
Environmental hazards and public health: lessons for the practice of medicine and for public policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedeen, R.P.; Sheehan, H.E.
1992-01-01
The separation of occupational and environmental disease from the mainstream of medical practice has deep roots in the culture of the profession. Medical practice centered on individual patient care as nineteenth-century science yielded the therapeutic triumphs of the twentieth century. Social issues seemed remote to medical practitioners as the rewards of scientifically based therapies upstaged the unglamorous aspects of preventive medicine. Public health was left to politicians and bureaucrats. Victorian ambivalence toward the less successful members of society reinforced the isolation of medicine from public policy. As a consequence, physicians are largely ignored in contemporary debates about environmental hazards, tomore » the detriment of both society and the profession.« less
The intersection of risk assessment and neurobehavioral toxicity
NASA Technical Reports Server (NTRS)
Weiss, B.; Elsner, J.; Clarkson, T. W. (Principal Investigator)
1996-01-01
Neurobehavioral toxicology is now established as a core discipline of the environmental health sciences. Despite its recognized scientific prowess, stemming from its deep roots in psychology and neuroscience and its acknowledged successes, it faces additional demands and challenges. The latter, in fact, are a product of its achievements because success at one level leads to new and higher expectations. Now the discipline is counted upon to provide more definitive and extensive risk assessments than in the past. These new demands are the basis for the appraisals presented in the SGOMSEC 11 workshop. They extend beyond what would be offered in a primer of methodology. Instead, these appraisals are framed as issues into which what are usually construed as methodologies have been embedded.
Kuhn in the Classroom, Lakatos in the Lab: Science Educators Confront the Nature-of-Science Debate.
ERIC Educational Resources Information Center
Turner, Steven; Sullenger, Karen
1999-01-01
Examines how science educators and educational researchers have drawn on the fragmented teachings of science studies about the nature of science, and how they have used those teachings as a resource in their own projects. Analyzes some of the deep assumptions about the relationship between science, school science, and children's learning.…
Teaching Ethical Issues in Science.
ERIC Educational Resources Information Center
Levinson, Ralph
This paper presents a study that investigates the teaching and learning aspects of controversial issues in science education. Teaching ethical issues is mandatory for science teachers in England; however, teachers may experience difficulties in exploring contemporary issues in science due to rapid and unpredictable changes. The study carries an…
Exploiting Software Tool Towards Easier Use And Higher Efficiency
NASA Astrophysics Data System (ADS)
Lin, G. H.; Su, J. T.; Deng, Y. Y.
2006-08-01
In developing countries, using data based on instrument made by themselves in maximum extent is very important. It is not only related to maximizing science returns upon prophase investment -- deep accumulations in every aspects but also science output. Based on the idea, we are exploiting a software (called THDP: Tool of Huairou Data Processing). It is used for processing a series of issues, which is met necessary in processing data. This paper discusses its designed purpose, functions, method and specialities. The primary vehicle for general data interpretation is through various techniques of data visualization, techniques of interactive. In the software, we employed Object Oriented approach. It is appropriate to the vehicle. it is imperative that the approach provide not only function, but do so in as convenient a fashion as possible. As result of the software exploiting, it is not only easier to learn data processing for beginner and more convenienter to need further improvement for senior but also increase greatly efficiency in every phrases include analyse, parameter adjusting, result display. Under frame of virtual observatory, for developing countries, we should study more and newer related technologies, which can advance ability and efficiency in science research, like the software we are developing
James Webb Space Telescope - L2 Communications for Science Data Processing
NASA Technical Reports Server (NTRS)
Johns, Alan; Seaton, Bonita; Gal-Edd, Jonathan; Jones, Ronald; Fatig, Curtis; Wasiak, Francis
2008-01-01
JWST is the first NASA mission at the second Lagrange point (L2) to identify the need for data rates higher than 10 megabits per second (Mbps). JWST will produce approximately 235 Gigabits of science data every day that will be downlinked to the Deep Space Network (DSN). To get the data rates desired required moving away from X-band frequencies to Ka-band frequencies. To accomplish this transition, the DSN is upgrading its infrastructure. This new range of frequencies are becoming the new standard for high data rate science missions at L2. With the new frequency range, the issues of alternatives antenna deployment, off nominal scenarios, NASA implementation of the Ka-band 26 GHz, and navigation requirements will be discussed in this paper. JWST is also using Consultative Committee for Space Data Systems (CCSDS) standard process for reliable file transfer using CCSDS File Delivery Protocol (CFDP). For JWST the use of the CFDP protocol provides level zero processing at the DSN site. This paper will address NASA implementations of Ground Stations in support of Ka-band 26 GHz and lesson learned from implementing a file base (CFDP) protocol operational system.
Issues and Design Drivers for Deep Space Habitats
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Anderson, Molly
2012-01-01
A cross-disciplinary team of scientists and engineers applied expertise gained in Lunar Lander development to the conceptual design of a long-duration, deep space habitat for Near Earth Asteroid (NEA) missions. The design reference mission involved two launches to assemble 5-modules for a 380-day round trip mission carrying 4 crew members. The conceptual design process yielded a number of interesting debates, some of which could be significant design drivers in a detailed Deep Space Habitat (DSH) design. These issues included: Design to minimize crew radiation exposure, launch loads, communications challenges, docking system and hatch commonality, pointing and visibility, consumables, and design for contingency operations.
75 FR 61779 - National Science Board: Sunshine Act Meetings; Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
...:30 p.m. to 3 p.m. SUBJECT MATTER: Review of NSB Action Item (NSB/CPP-10-63) (Deep Underground Science... National Science Board Web site http://www.nsf.gov/nsb for additional information and schedule updates...
A Deep Space Network Portable Radio Science Receiver
NASA Technical Reports Server (NTRS)
Jongeling, Andre P.; Sigman, Elliott H.; Chandra, Kumar; Trinh, Joseph T.; Navarro, Robert; Rogstad, Stephen P.; Goodhart, Charles E.; Proctor, Robert C.; Finley, Susan G.; White, Leslie A.
2009-01-01
The Radio Science Receiver (RSR) is an open-loop receiver installed in NASA s Deep Space Network (DSN), which digitally filters and records intermediate-frequency (IF) analog signals. The RSR is an important tool for the Cassini Project, which uses it to measure perturbations of the radio-frequency wave as it travels between the spacecraft and the ground stations, allowing highly detailed study of the composition of the rings, atmosphere, and surface of Saturn and its satellites.
ClimateNet: A Machine Learning dataset for Climate Science Research
NASA Astrophysics Data System (ADS)
Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.
2017-12-01
Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.
Deep Space Gateway Science Opportunities
NASA Technical Reports Server (NTRS)
Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.
2018-01-01
The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.
NASA Astrophysics Data System (ADS)
Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar
2018-01-01
The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science, approaches to learning science, and self-efficacy. The exploratory factor analysis and confirmatory factor analysis were adopted to validate three instruments. The path analysis was employed to understand the relationships between conceptions of learning science, approaches to learning science, and self-efficacy. The findings indicated that students' lower level conceptions of learning science positively influenced their surface approaches in learning science. Higher level conceptions of learning science had a positive influence on deep approaches and a negative influence on surface approaches to learning science. Furthermore, self-efficacy was also a hierarchical construct and can be divided into the lower level and higher level. Only students' deep approaches to learning science had a positive influence on their lower and higher level of self-efficacy in learning science. The results were discussed in the context of the implications for teachers and future studies.
ERIC Educational Resources Information Center
Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.
2012-01-01
The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the…
Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions.
Loh, Brian C S; Then, Patrick H H
2017-01-01
Cardiovascular diseases are one of the top causes of deaths worldwide. In developing nations and rural areas, difficulties with diagnosis and treatment are made worse due to the deficiency of healthcare facilities. A viable solution to this issue is telemedicine, which involves delivering health care and sharing medical knowledge at a distance. Additionally, mHealth, the utilization of mobile devices for medical care, has also proven to be a feasible choice. The integration of telemedicine, mHealth and computer-aided diagnosis systems with the fields of machine and deep learning has enabled the creation of effective services that are adaptable to a multitude of scenarios. The objective of this review is to provide an overview of heart disease diagnosis and management, especially within the context of rural healthcare, as well as discuss the benefits, issues and solutions of implementing deep learning algorithms to improve the efficacy of relevant medical applications.
Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions
Then, Patrick H. H.
2017-01-01
Cardiovascular diseases are one of the top causes of deaths worldwide. In developing nations and rural areas, difficulties with diagnosis and treatment are made worse due to the deficiency of healthcare facilities. A viable solution to this issue is telemedicine, which involves delivering health care and sharing medical knowledge at a distance. Additionally, mHealth, the utilization of mobile devices for medical care, has also proven to be a feasible choice. The integration of telemedicine, mHealth and computer-aided diagnosis systems with the fields of machine and deep learning has enabled the creation of effective services that are adaptable to a multitude of scenarios. The objective of this review is to provide an overview of heart disease diagnosis and management, especially within the context of rural healthcare, as well as discuss the benefits, issues and solutions of implementing deep learning algorithms to improve the efficacy of relevant medical applications. PMID:29184897
NASA Astrophysics Data System (ADS)
Lakshmanan, S.; Monsanto, C.; Radjendirane, B.
2015-12-01
According to the Ancient Indian Science, the fundamental constituents of planet earth are the five elements (Solid, Liquid, Heat, Air and Akash (subtlest energy field)). The same five elements constitute the human body. The Chinese and many other native traditions have used their deep understanding of these elements to live in balance with the planet. David Suzuki has elaborated on this key issue in his classic book, The Legacy: "Today we are in a state of crisis, and we must join together to respond to that crisis. If we do so, Suzuki envisions a future in which we understand that we are the Earth and live accordingly. All it takes is imagination and a determination to live within our, and the planet's, means". Gravity, the common force that connects both the body and earth plays a major role in the metabolism as well as the autonomous function of different organs in the body. Gravity has a direct influence on the fruits and vegetables that are grown on the planet as well. As a result, there is a direct relationship among gravity, food and human health. My talk will cover the missing link between the Earth's Gravity and the human health. A new set of ancient axioms will be used to address this and many other issues that are remain as "major unsolved problems" linking modern Geophysical and Health sciences.
Instruments for Deep Space Weather Prediction and Science
NASA Astrophysics Data System (ADS)
DeForest, C. E.; Laurent, G.
2018-02-01
We discuss remote space weather monitoring system concepts that could mount on the Deep Space Gateway and provide predictive capability for space weather events including SEP events and CME crossings, and advance heliophysics of the solar wind.
Earth Observation and Science: Monitoring Vegetation Dynamics from Deep Space Gateway
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Park, T.; Hu, B.
2018-02-01
Retrieving diurnal courses of sunlit (SLAI) and shaded (ShLAI) leaf area indices, fraction of photosynthetically active radiation (PAR) absorbed by vegetation (FPAR), and Normalized Difference Vegetation Index (NDVI) from Deep Space Gateway data.
2001-05-10
NASA - 77M prototype hall thruster built under the High Voltage Hall accelerator development project funded by the Science Mission Directorate ; potential use is propulsion for deep space science missions
ERIC Educational Resources Information Center
Godor, Brian P.
2016-01-01
Student learning approaches research has been built upon the notions of deep and surface learning. Despite its status as part of the educational research canon, the dichotomy of deep/surface has been critiqued as constraining the debate surrounding student learning. Additionally, issues of content validity have been expressed concerning…
Protecting the Moon for research: ILEWG report
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
We give a report on recommendations with emphasis on environment protection, and since last COSPAR from ILEWG International conferences Exploration and Utilisation of the Moon on held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration, as debated at ILEWG. ILEWG Science task group has listed priorities for scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life; sciences from a biology lunar laboratory. We discuss how to preserve Moon research potential in these areas while operating with instruments, landers, rover during a cooperative robotic village, and during the transition form lunar human outpost to permanent sustainable human base. We discuss how Moon-Mars Exploration can inspire solutions to global Earth sustained development with the trade-off of In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental and planetary protection aspects and lessons for Mars; Life sciences laboratories, and support to human exploration. Co-authors: ILEWG Task Groups on Science, Technology and Human Lunar Bases ILEWG Reference documents: http://sci.esa.int/ilewg -10th ILEWG Conference on Exploration and Utilisation of the Moon, NASA Lunar Ex-ploration Analysis Group-PSace Resources Roundtable, Cape Canaveral October 2008, pro-gramme online at http://sci.esa.int/ilewg/ -9th ILEWG Conference on Exploration and Utilisation of the Moon, ICEUM9 Sorrento 2007, programme online at http://sci.esa.int/ilewg/ -8th ILEWG Conference on Exploration and Utilisation of the Moon, Beijing July 2006, programme online at http://sci.esa.int/ilewg/ -The Moon and Near Earth Objects (P. Ehrenfreund , B.H. Foing, A. Cellino Editors), Ad-vances in Space Research, Volume 37, Issue 1, pp 1-192, 2006 -7th ILEWG Conference on Exploration and Utilisation of the Moon, Toronto Sept 2005, Programme and Proceedings on line at www.ilewg.org, R. Richards et al Editors -6th ILEWG Conference on Exploration and Utilisation of the Moon, Udaipur Nov. 2004, Proceedings ( N. Bhandari Editor), Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841 -5th ILEWG Conference on Exploration and Utilisation of the Moon, Hawaii Nov 2003, Pro-ceedings ILC2005/ICEUM5 (S.M. Durst et al Editors), Vol 108, 1-576 pp, Science and Tech-nology Series, American Astronautical Society, 2004 -'The next steps in exploring deep space -A cosmic study by the IAA', W. Huntress, D. Stetson, R. Farquhar, J. Zimmerman, B. Clark, W. O'Neil, R. Bourke and B. Foing, Acta Astronautica, Vol 58, Issues 6-7, March-April 2006, p302-377 -IAA/ESA workshop on "Next Steps in Exploring Deep Space", ESTEC 22-23 sept. 2003 (B.H. Foing W. Huntress, conveners) Lunar Exploration, Planetary and Space Science, Vol 50, issue 14-15, Dec 2002 (B.H. Foing al) -ESLAB36 symposium on "Earth-like Planets and Moons", 2002, ESA-SP514, pp. 1-356, (B.H.Foing B. Battrick, editors) -'Lunar Exploration 2000', (B.H. Foing, D. Heather, Editors), Adv. Space Research Vol 30, Nr 8, 2002 -'Earth-Moon Relationships', Proceedings of the Conference held in Padova, Italy at the Ac-cademia Galileiana di Scienze Lettere ed Arti, Nov. 2000, (C. Barbieri and F. Rampazzi, Editors), in Earth, Moon , Planets Vol. 85-86, Nos 1-3, pp 1-575, 2001 -4th International Conference on Exploration and Utilisation of the Moon, ESTEC, 2000, ESA SP-462 (B.H. Foing M. Perry, editors) -Investing in Space: The Challenge for Europe. Long-Term Space Policy Committee, Second Report, May 1999. ESA-SP-2000 -2nd International Lunar Workshop, held at Kyoto in October 1996, Proceedings, H. Mizutani, editor, Japan Space Forum Publisher, 1997 International Lunar Workshop, 1994 May 31-June 3, Beatenberg, Switzerland. Proceedings. Ed. Balsiger, H. et al. European Space Agency, 1994. ESA-SP-1170 -Astronomy and Space Science from the Moon', Proceedings of COSPAR/IAF session at World Congress, Washington, (B.H. Foing et al editors), Advances in Space Research, Volume 14, Issue 6, 1994 -Mission to the Moon, Europe's Priorities for Scientific Exploration and Utilisation of the Moon', R.M. Bonnet et al, European Space Agency, ESA SP-1150, June 1992
Adapting to the Deep Sea: A Fun Activity with Bioluminescence
ERIC Educational Resources Information Center
Rife, Gwynne
2006-01-01
Over the past decade, much has been learned about the ocean's secrets and especially about the creatures of the deep sea. The deepest parts of the oceans are currently the focus of many new discoveries in both the physical and biological sciences. Middle school students find the deep sea fascinating and especially seem to enjoy its mysterious and…
Opportunities and challenges in studies of deep life (Invited)
NASA Astrophysics Data System (ADS)
Edwards, K. J.
2010-12-01
Over the past two decades, there has been an increasing awareness within the geological, microbiological, and oceanographic communities of the potentially vast microbial biosphere that is harbored beneath the surface of the Earth. With this awareness has come a mounting effort to study this potential biome - to better quantify biomass abundance, activity, and biogeochemical activity. In the Earth system, the largest deep subsurface biome is also the least accessible - the deep ocean subsurface biosphere. The oceanic deep biosphere also has greatest potential for influencing global scale biogeochemical processes -the carbon and energy cycles for example, and other elemental cycles. To address these topics and mount interdisciplinary efforts to study the deep subsurface marine biosphere, we have recently formed a center in support integrative, collaborative investigations. The national science foundation Center for Dark Biosphere Investigations (C-DEBI), has been initiated for the explicit purpose of resolving the extent, function, dynamics and implications of the subseafloor biosphere. This talk will discuss C-DEBI science, with focus on some of the opportunities and challenges in the study of deep life in the ocean, and the role that C-DEBI will play in meeting them
Deep learning for computational chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goh, Garrett B.; Hodas, Nathan O.; Vishnu, Abhinav
The rise and fall of artificial neural networks is well documented in the scientific literature of both the fields of computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on “deep” neural networks. Within the last few years, we have seen the transformative impact of deep learning the computer science domain, notably in speech recognition and computer vision, to the extent that the majority of practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. Inmore » this review, we provide an introductory overview into the theory of deep neural networks and their unique properties as compared to traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including QSAR, virtual screening, protein structure modeling, QM calculations, materials synthesis and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non neural networks state-of-the-art models across disparate research topics, and deep neural network based models often exceeded the “glass ceiling” expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a useful tool and may grow into a pivotal role for various challenges in the computational chemistry field.« less
Development of Socioscientific Issues-Based Teaching for Preservice Science Teachers
ERIC Educational Resources Information Center
Nuangchalerm, Prasart
2009-01-01
Problem statement: In the context of science education reform in Thailand, we need to prepare science teachers who can face science and social issues controversial; teachers can response the question socioscientific issues and let their students to meet the goal of science education. This study investigated the conception leading preservice…
[Statistics at the time of the crisis].
Saltelli, Andrea; Stark, Philip B
2017-01-01
Science lies nowadays in the centre of several storms. The better known is the finding of non-reproducibility of many scientific results, which stretches from the medical field (clinic and pre-clinic tests) to study on behaviour (priming research). Although the bad use of statistics is reported to be a patent cause of the reproducibility crisis, its deep reasons are to be sought elsewhere; particularly, in the passage from a regimen of little science - regulated by small communities of researchers - to the current big science - identified by a hypertrophic production of millions of research papers and by the imperative "publish or perish", in a setting dominated by market. While spirited debates (on vaccines, climate change, GMO) unfold in society, scientific articles which are bought or withdrawn are the signal of a deep crisis not only of science, but also of the expert thought. In this background, statistics is the main defendant, charged with using methods which experts themselves are not able to explain in an understandable way (p-test). Is there an escape? Yes, there is. Researchers can either court the power and defend the status quo, or contribute to a deep process of reformation, refusing both a vision of science as a religion and the idea that the problem is the poor scientific knowledge of the lay public.
Issue-Oriented Science: Using Socioscientific Issues to Engage Biology Students
ERIC Educational Resources Information Center
Lenz, Laura; Willcox, Maia K.
2012-01-01
In today's global society, with science and technology advancing at a rapid pace, issues about biological topics are common. A typical standards-based high school or general college-level biology classroom naturally lends itself to teaching issue-oriented science. In an issue-oriented classroom, students analyze and discuss personal, societal, and…
ERIC Educational Resources Information Center
Stolz, Miriam; Witteck, Torsten; Marks, Ralf; Eilks, Ingo
2013-01-01
Socio-scientific issue-based science education has been suggested for promoting general educational skills development in science classes. However, there is a lack of operationalized criteria, which can be used to reflect upon societal issues to whether turning them into issues for science classroom instruction. This paper describes a case study…
The wisdom of nature in integrating science, ethics and the arts.
Moser, A
2000-07-01
This paper deals with an approach to the integration of science (with technology and economics), ethics (with religion and mysticism), the arts (aesthetics) and Nature, in order to establish a world-view based on holistic, evolutionary ethics that could help with problem solving. The author suggests that this integration is possible with the aid of "Nature's wisdom" which is mirrored in the macroscopic pattern of the ecosphere. The corresponding eco-principles represent the basis for unifying soft and hard sciences resulting in "deep sciences". Deduction and induction will remain the methodology for deep sciences and will include conventional experiments and aesthetic and sentient experiences. Perception becomes the decisive factor with the senses as operators for the building of consciousness through the subconscious. In this paper, an attempt at integrating the concepts of the "true", the "right" and the "beautiful" with the aid of Nature's wisdom is explained in more detail along with consequences.
Assessing Teachers' Science Content Knowledge: A Strategy for Assessing Depth of Understanding
ERIC Educational Resources Information Center
McConnell, Tom J.; Parker, Joyce M.; Eberhardt, Jan
2013-01-01
One of the characteristics of effective science teachers is a deep understanding of science concepts. The ability to identify, explain and apply concepts is critical in designing, delivering and assessing instruction. Because some teachers have not completed extensive courses in some areas of science, especially in middle and elementary grades,…
ERIC Educational Resources Information Center
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-01-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected…
ERIC Educational Resources Information Center
Williams, Lewis
2013-01-01
Indigenous worldviews remain at the margins of education, science, and sustainability efforts. The emergence of sustainable science holds promise as a means of advancing deep sustainability and recentering Indigenous knowledge. Transformative learning's engagement with sustainable science has the potential to play an integral role in this…
Deep Learning in Medical Image Analysis
Shen, Dinggang; Wu, Guorong; Suk, Heung-Il
2016-01-01
The computer-assisted analysis for better interpreting images have been longstanding issues in the medical imaging field. On the image-understanding front, recent advances in machine learning, especially, in the way of deep learning, have made a big leap to help identify, classify, and quantify patterns in medical images. Specifically, exploiting hierarchical feature representations learned solely from data, instead of handcrafted features mostly designed based on domain-specific knowledge, lies at the core of the advances. In that way, deep learning is rapidly proving to be the state-of-the-art foundation, achieving enhanced performances in various medical applications. In this article, we introduce the fundamentals of deep learning methods; review their successes to image registration, anatomical/cell structures detection, tissue segmentation, computer-aided disease diagnosis or prognosis, and so on. We conclude by raising research issues and suggesting future directions for further improvements. PMID:28301734
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Jimmy
2014-05-31
In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meantmore » to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.« less
The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform
NASA Technical Reports Server (NTRS)
Bhattacharya, S.
2018-01-01
Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.
Teaching controversial issues in the secondary school science classroom
NASA Astrophysics Data System (ADS)
van Rooy, Wilhelmina
1993-12-01
A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.
Where civics meets science: building science for the public good through Civic Science.
Garlick, J A; Levine, P
2017-09-01
Public understanding of science and civic engagement on science issues that impact contemporary life matter more today than ever. From the Planned Parenthood controversy, to the Flint water crisis and the fluoridation debate, societal polarization about science issues has reached dramatic levels that present significant obstacles to public discussion and problem solving. This is happening, in part, because systems built to support science do not often reward open-minded thinking, inclusive dialogue, and moral responsibility regarding science issues. As a result, public faith in science continues to erode. This review explores how the field of Civic Science can impact public work on science issues by building new understanding of the practices, influences, and cultures of science. Civic Science is defined as a discipline that considers science practice and knowledge as resources for civic engagement, democratic action, and political change. This review considers how Civic Science informs the roles that key participants-scientists, public citizens and institutions of higher education-play in our national science dialogue. Civic Science aspires to teach civic capacities, to inform the responsibilities of scientists engaged in public science issues and to inspire an open-minded, inclusive dialogue where all voices are heard and shared commitments are acknowledged. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Gernhardt, M.; Shepard, R.; Brady, A. L.; Marinova, M. M.; Wilhelm, M.; Forrest, A.; Cardman, Z.; Abercromby, A.; Deans, M.; Lees, D.; Arnold, R.; Cowie, B.; Slater, G. F.; Laval, B.; Reid, D.; McKay, C. P.
2010-04-01
We present a synopsis of the analog science and exploration activities of the Pavilion Lake Research Project (PLRP). The activities include the deployment of single-person DeepWorker submersibles and the field science training of astronauts.
30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 200 meters deep and entirely less than 400 meters deep. (3) $4.08 per MMBtu (i) The first 20 BCF of... less than 400 meters of water, the $4.55 per MMBtu price threshold applies to the whole RSV (see... that is located in water partly or entirely less than 200 meters deep issued before December 18, 2008...
Science and Technology Review December 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blobaum, K M
This month's issue has the following articles: (1) More Insight to Better Understand Climate Change - Commentary by Tomas Diaz de la Rubia; (2) Strengthening Our Understanding of Climate Change - Researchers at the Center for Accelerator Mass Spectrometry are working to better understand climate variation and sharpen the accuracy of predictive models; (3) Precision Diagnostics Tell All - The National Ignition Facility relies on sophisticated diagnostic instruments for measuring the key physical processes that occur in high-energy-density experiments; (4) Quick Detection of Pathogens by the Thousands - Livermore scientists have developed a device that can simultaneously identify thousands ofmore » viruses and bacteria within 24 hours; and (5) Carbon Dioxide into the Briny Deep - A proposed technique for burying carbon dioxide underground could help mitigate the effects of this greenhouse gas while producing freshwater.« less
Proceedings of oceans 87. The ocean - an international workplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This book includes proceedings containing 347 papers. Some of the topics are: ICE -Cold ocean and ice research; ICE-1-Icebergs; ICE-2-Sea ice and structures; IE-3-Cold ocean instrumentation; ICE-4-Ocean and ice; INS-Oceanographic instrumentation; INS-1-Acoustic Doppler Current profilers; ENG-1-New solutions to old problems; ENG-2-energy from the ocean; ENG-3-Cables and connectors; POL-Policy, education and technology transfer; POL-1-International issues; POL-2-Ocean space utilization; POL-3-Economics, planning and management; SCI-6-fish stock assessment; ACI-7-Coastal currents and sediment; SCI-9-Satellite navigation; SCI-10-Deep sea minerals and methods of recovery; ODS-Fifth working symposium on oceanographic data system; ODS-1-Data base management; UND-Underwater work systems; UND-1-Diving for science.
NASA Astrophysics Data System (ADS)
Gibbs, M.
2016-12-01
The proposed Carrington mission to L5 will bring many benefits of space weather forecasting, some of them glimpsed from the NASA STEREO Mission. How can any new data from L5 be used to maximum benefit? But what about other areas of potential space weather impacts. I'll address future needs and requirements from our Government Stakeholder view, protecting Critical National Infrastructure and key sectors. What are their needs and how can the global space weather enterprise (research & development and operations) begin to tackle these challenges. What new observations will we need (space borne or ground based), what models need developing and how will we use them to best effect? I will explore the key issues without delving deep into the science required.
Simulating Autonomous Telecommunication Networks for Space Exploration
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.
2008-01-01
Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.
Biospheric Life Support - integrating biological regeneration into protection of humans in space.
NASA Astrophysics Data System (ADS)
Rocha, Mauricio; Iha, Koshun
2016-07-01
A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned retirement (2016). The extension will allow partner agencies to deploy new experiments there, resuming basic research focusing more forward-looking goals. For deep-space, since consumables logistics becomes more difficult- and habitability an issue, with diminishing Earth's view, further research has been recommended. Four major areas have been identified for human protection: (1) radiation mitigation; (2) highly recyclable bio-regenerative (BR) LSS; (3) micro-gravity countermeasures- including artificial gravity (AG), and (4) psychological safety. To contribute to the efforts to address these issues, a basic lab/virtual iterative research has been proposed, assuming (in a worst case scenario) that: I) It won't be possible to send people to long deep space missions, safely, with the current (low quality of life) support technology (ISS micro-gravity 'up-gradings'); II) The alternative to implant a Mars surface human supportive biosphere would also not be possible, due to environmental/ evolutionary restraints (life could adapt and survive, but not necessarily to favor humans). From the above considerations arises the question: Would an average approach be possible where, by applying the artificial gravity concept to S/Cs, a fragment of Earth bio-regenerative environment could be integrated inside reusable manned vehicles- thus enhancing its habitability/autonomy in long deep space missions? For this research question a provisory answer/hypothesis has been provided. And to test it, a small AG+BR bench simulator (plus computer methods) has been devised.
D.E.E.P. Learning: Promoting Informal STEM Learning through a Popular Gaming Platform
NASA Astrophysics Data System (ADS)
Simms, E.; Rohrlick, D.; Layman, C.; Peach, C. L.; Orcutt, J. A.
2011-12-01
The research and development of educational games, and the study of the educational value of interactive games in general, have lagged far behind efforts for games created for the purpose of entertainment. But evidence suggests that digital simulations and games have the "potential to advance multiple science learning goals, including motivation to learn science, conceptual understanding, science process skills, understanding of the nature of science, scientific discourse and argumentation, and identification with science and science learning." (NRC, 2011). It is also generally recognized that interactive digital games have the potential to promote the development of valuable learning and life skills, including data processing, decision-making, critical thinking, planning, communication and collaboration (Kirriemuir and MacFarlane, 2006). Video games are now played in 67% of American households (ESA, 2010), and across a broad range of ages, making them a potentially valuable tool for Science, Technology, Engineering and Mathematics (STEM) learning among the diverse audiences associated with informal science education institutions (ISEIs; e.g., aquariums, museums, science centers). We are attempting to capitalize on this potential by developing games based on the popular Microsoft Xbox360 gaming platform and the free Microsoft XNA game development kit. The games, collectively known as Deep-sea Extreme Environment Pilot (D.E.E.P.), engage ISEI visitors in the exploration and understanding of the otherwise remote deep-sea environment. Players assume the role of piloting a remotely-operated vehicle (ROV) to explore ocean observing systems and hydrothermal vent environments, and are challenged to complete science-based objectives in order to earn points under timed conditions. The current games are intended to be relatively brief visitor experiences (on the order of several minutes) that support complementary exhibits and programming, and promote interactive visitor experiences. In addition to creating a unique educational product, our efforts are intended to inform the broader understanding of the key elements of a successful STEM-based game experience at an ISEI. Which characteristics of the ISEI environment (e.g., age and cultural diversity, limited time of engagement) are conducive or inhibitive to learning via digital gaming? Which aspects of game design (e.g., challenge, curiosity, fantasy, personal recognition) are most effective at maximizing both learning and enjoyment? We will share our progress and assessment results to date, and discuss the potential benefits and challenges to interactive gaming as a tool to support STEM literacy at ISEIs.
BIOMETORE Project - Studying the Biodiversity in the Northeastern Atlantic Seamounts
NASA Astrophysics Data System (ADS)
Dos Santos, A.; Biscoito, M.; Campos, A.; Tuaty Guerra, M.; Meneses, G.; Santos, A. M. P. A.
2016-02-01
Understanding the deep-sea ecosystem functioning is a key issue in the study of ocean sciences. Bringing together researchers from several scientific domains, the BIOMETORE project aims to the increase knowledge on deep-sea ecosystems and biodiversity at the Atlantic seamounts of the Madeira-Tore and Great Meteor geological complexes. The project outputs will provide important information for the understanding and sustainable management of the target seamount ecosystems, thus contributing to fulfill knowledge gaps on their biodiversity, from bacteria to mammals, and food webs, as well as to promote future sustainable fisheries and sea-floor integrity. The plan includes the realization of eight multidisciplinary surveys, four done during the summer of 2015 and another four planned for the same season of 2016, in target seamounts: the Gorringe bank, the Josephine, and others in the Madeira-Tore, and selected ones in the Greta Meteor (northeastern Atlantic Ocean). The surveys cover a number of scientific areas in the domains of oceanography, ecology, integrative taxonomy, geology, fisheries and spatial mapping. We present and discuss BIOMETORE developments, the preliminary results from the four 2015 summer surveys, and the planning of the next four surveys.
New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert J.; /SLAC; Amini, Rashied
Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving themmore » unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.« less
Arnhart, Larry
2010-03-01
This article develops a theoretical framework for biopolitical science as a science of political animals. This science moves through three levels of deep political history: the universal political history of the species, the cultural political history of the group, and the individual political history of animals in the group. To illustrate the particular application of biopolitical science, this essay shows how this science would help us to understand Abraham Lincoln's Emancipation Proclamation of January 1, 1863.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
...: National Oceanic and Atmospheric Administration (NOAA). Title: Deep Seabed Mining Regulations for... the issuing and monitoring of exploration licenses under the Deep Seabed Hard Mineral Resources Act...
Preface to "Insights into the Earth's Deep Lithosphere"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M E
Dear Readers: I am pleased to present a special issue of Tectonophysics entitled 'Insights into the Earth's Deep Lithosphere.' This compilation sought to capture the flavor of the increasing number of studies that are emerging to investigate the complex lithospheric structure of the earth. This issue evolved out of a Fall 2007 AGU special session entitled 'Understanding the Earth's Deep Lithosphere' that I organized with Irina Artemieva from the University of Copenhagen. For that session, we solicited talks that discussed the increasing number of methods that have surfaced to study various aspects of the earth's deep lithosphere. These methods includemore » seismic, gravity, thermal, geochemical, and various combinations of these methods. The quality of the presentations (2 oral sessions with 16 talks and 23 associated poster presentations) was such that we felt that the emerging topic deserved a dedicated forum to address these questions in greater detail. The availability of new data sets has also improved the number and quality of lithospheric studies. With many new studies and methodologies, a better understanding of both continental and oceanic lithospheres is starting to emerge. Questions remain about the thickness and evolution of the lithosphere, the presence of lithospheric keels, the density and anisotropy of lithospheric roots, mechanisms of lithospheric thinning, and differences between mechanical, thermal and chemical boundary layers. While we did not get contributions on the full gamut of methods and regions, a lot of ground was covered in this issue's manuscripts. Like any collection of papers on the deep lithosphere, the topics are quite varied in methodology, geographic location, and what aspect of the lithosphere being studied. Still, the results highlight the rewarding aspects of earth structure, history, and evolution that can be gleaned. A brief synopsis of the papers contained in this issue is given.« less
Non-traditional approaches to teaching GPS online
NASA Astrophysics Data System (ADS)
Matias, A.; Wolf, D. F., II
2009-12-01
Students are increasingly turning to the web for quality education that fits into their lives. Nonetheless, online learning brings challenges as well as a fresh opportunity for exploring pedagogical practices not present on traditional higher education programs, particularly in the sciences. A team of two dozen Empire State College-State University of New York instructional designers, faculty, and other staff are working on making science relevant to non-majors who may initially have anxiety about general education science courses. One of these courses, GPS and the New Geography, focuses on how Global Positioning System (GPS) technology provides a base for inquiry and scientific discovery from a range of environmental issues with local, regional, and global scope. GPS and the New Geography is an introductory level course developed under a grant supported by the Charitable Leadership Foundation. Taking advantage of the proliferation of tools currently available for online learning management systems, we explore current trends in Web 2.0 applications to aggregate and leverage data to create a nontraditional, interactive learning environment. Using our best practices to promote on-line discussion and interaction, these tools help engage students and foster deep learning. During the 15-week term students learn through case studies, problem-based exercises, and the use of scientific data; thus, expanding their spatial literacy and gain experience using real spatial technology tools to enhance their understanding of real-world issues. In particular, we present how the use of Mapblogs an in-house developed blogging platform that uses GIS interplaying with GPS units, interactive data presentations, intuitive visual working environments, harnessing RSS feeds, and other nontraditional Web 2.0 technology has successfully promoted active learning in the virtual learning environment.
Enabling Global Lunar Sample Return and Life-Detection Studies Using a Deep-Space Gateway
NASA Astrophysics Data System (ADS)
Cohen, B. A.; Eigenbrode, J. A.; Young, K. E.; Bleacher, J. E.; Trainer, M. E.
2018-02-01
The Deep Space Gateway could uniquely enable a lunar robotic sampling campaign that would provide incredible science return as well as feed forward to Mars and Europa by testing instrument sterility and ability to distinguish biogenic signals.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
2002-01-01
NASA's Office of Safety and Mission Assurance sponsors an Agency-wide NDE Program that supports Aeronautics and Space Transportation Technology, Human Exploration and Development of Space, Earth Science, and Space Science Enterprises. For each of these Enterprises, safety is the number one priority. Development of the next generation aero-space launch and transportation vehicles, satellites, and deep space probes have highlighted the enabling role that NDE plays in these advanced technology systems. Specific areas of advanced component development, component integrity, and structural heath management are critically supported by NDE technologies. The simultaneous goals of assuring safety, maintaining overall operational efficiency, and developing and utilizing revolutionary technologies to expand human activity and space-based commerce in the frontiers of air and space places increasing demands on the Agencies NDE infrastructure and resources. In this presentation, an overview of NASA's NDE Program will be presented, that includes a background and status of current Enterprise NDE issues, and the NDE investment areas being developed to meet Enterprise safety and mission assurance needs through the year 2009 and beyond.
NASA Astrophysics Data System (ADS)
Konstantinidou, Aikaterini; Macagno, Fabrizio
2013-05-01
The purpose of this paper is to investigate the argumentative structure of students' arguments using argumentation schemes as an instrument for reconstructing the missing premises underlying their reasoning. Building on the recent literature in science education, in order for an explanation to be persuasive and achieve a conceptual change it needs to proceed from the interlocutor's background knowledge to the analysis of the unknown or wrongly interpreted phenomena. Argumentation schemes represent the abstract forms of the most used and common forms of human reasoning, combining logical principles with semantic concepts. By identifying the argument structure it is possible to retrieve the missing premises and the crucial concepts and definition on which the conclusion is based. This method of analysis will be shown to provide the teacher with an instrument to improve his or her explanations by taking into consideration the students' intuitions and deep background knowledge on a specific issue. In this fashion the teacher can advance counterarguments or propose new perspectives on the subject matter in order to persuade the students to accept new scientific concepts.
Deep brain stimulation for disorders of consciousness: Systematic review of cases and ethics.
Vanhoecke, Jonathan; Hariz, Marwan
A treatment for patients suffering from prolonged severely altered consciousness is not available. The success of Deep Brain Stimulation (DBS) in diseases such as Parkinson's, dystonia and essential tremor provided a renewed impetus for its application in Disorders of Consciousness (DoC). To evaluate the rationale for DBS in patients with DoC, through systematic review of literature containing clinical data and ethical considerations. Articles from PubMed, Embase, Medline and Web of Science were systematically reviewed. The outcomes of 78 individual patients reported in 19 articles from 1968 onwards were pooled and elements of ethical discussions were compared. There is no clear clinical evidence that DBS is a treatment for DoC that can restore both consciousness and the ability to communicate. In patients who benefitted, the outcome of DBS is often confounded by the time frame of spontaneous recovery from DoC. Difficult ethical considerations remain, such as the risk of increasing self-awareness of own limitations, without improving overall wellbeing, and the issues of proxy consent. DBS is far from being evident as a possible future therapeutic avenue for patients with DoC. Double-blind studies are lacking, and many clinical and ethical issues have to be addressed. In the rare cases when DBS for patients with DoC is considered, this needs to be evaluated meticulously on a case by case basis, with comprehensive overall outcome measures including psychological and quality-of-life assessments, and with the guidance of an ethical and interdisciplinary panel, especially in relation to proxy consent. Copyright © 2017 Elsevier Inc. All rights reserved.
An Integrated Science Glovebox for the Gateway Habitat
NASA Astrophysics Data System (ADS)
Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.
2018-02-01
A Deep Space Gateway astromaterials glovebox facility would enable science to return to Earth collected astromaterials from the Moon and ultimately Mars. Next generation habitats will benefit from on-board glovebox capability.
Yucca Mountain nuclear waste repository prompts heated congressional hearing
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-11-01
Although the final report of the Blue Ribbon Commission on America's Nuclear Future is not expected until January 2012, the tentative conclusions of the commission's draft report were dissected during a recent joint hearing by two subcommittees of the House of Representatives' Committee on Science, Space, and Technology. Among the more heated issues debated at the hearing was the fate of the stalled Yucca Mountain nuclear waste repository in Nevada. The Blue Ribbon Commission's (BRC) draft report includes recommendations for managing nuclear waste and for developing one or more permanent deep geological repositories and interim storage facilities, but the report does not address the future of Yucca Mountain. The BRC charter indicates that the commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." However, the draft report states that the commission was not asked to consider, and therefore did not address, several key issues. "We have not rendered an opinion on the suitability of the Yucca Mountain site or on the request to withdraw the license application for Yucca Mountain," the draft report states.
Considerations on Geospatial Big Data
NASA Astrophysics Data System (ADS)
LIU, Zhen; GUO, Huadong; WANG, Changlin
2016-11-01
Geospatial data, as a significant portion of big data, has recently gained the full attention of researchers. However, few researchers focus on the evolution of geospatial data and its scientific research methodologies. When entering into the big data era, fully understanding the changing research paradigm associated with geospatial data will definitely benefit future research on big data. In this paper, we look deep into these issues by examining the components and features of geospatial big data, reviewing relevant scientific research methodologies, and examining the evolving pattern of geospatial data in the scope of the four ‘science paradigms’. This paper proposes that geospatial big data has significantly shifted the scientific research methodology from ‘hypothesis to data’ to ‘data to questions’ and it is important to explore the generality of growing geospatial data ‘from bottom to top’. Particularly, four research areas that mostly reflect data-driven geospatial research are proposed: spatial correlation, spatial analytics, spatial visualization, and scientific knowledge discovery. It is also pointed out that privacy and quality issues of geospatial data may require more attention in the future. Also, some challenges and thoughts are raised for future discussion.
On Teaching Energy: Preparing Students Better for their Role as Citizens
NASA Astrophysics Data System (ADS)
Myers, J. D.; Lyford, M. E.; Buss, A.
2009-12-01
Supplying energy to an expanding population with a rising standard of living and maintaining human and natural systems is an increasingly difficult task. Thus, energy is often listed as one of the grand challenges facing humankind. Energy‘s grand challenges are many, complex, multifaceted and of variable scale. It is not surprising then that their solutions must be multi-dimensional as well. Historically, energy solutions have focused on energy science (a multidisciplinary topic spanning biology, chemistry, Earth science, physics, and math), technology or economics. In the real world, focusing solely on these aspects of energy has rarely produced energy projects that are just and fair. Sustainable, equitable and effective energy projects are only created when additional perspectives are considered, e.g. environment, culture, social institutions, politics, etc. The natures of these other perspectives are determined largely by the social context of any particular energy issue. For example, petroleum production has had vastly different impacts in Norway than it does in Nigeria. Thus, solutions to energy issues are, in fact, multidimensional functions. Given this complexity, preparing students to deal with the energy issues they will face in the future requires an instructional approach that integrates a multidisciplinary science approach with technology and social context. Yet this alone will not ensure that students leave the classroom with the skills necessary to equitably, effectively and logically deal with energy issues. Rather, teaching energy also requires sound pedagogy. Effective pedagogy ensures student success in the classroom and facilitates transfer of classroom knowledge to real world situations. It includes, but also goes beyond, employing classroom strategies that promote deep and lasting learning. In this arena, it fosters the development of a skill set that enables students to transfer classroom knowledge to real world issues. It prepares students to handle the uncertainty and ambiguity of the real world while promoting critical thinking and problem solving. Fundamental literacies, a type of QR, prepare students to handle data, perform simple calculations and evaluate critically quantitative claims. They are crucial to working in the real world as well as the scientific realm. Understanding and using scientific content also requires mastering a series of technical literacies. Although they may vary between scientific disciplines, some technical literacies are shared by a number of sciences. Although most science courses assume students can transfer what they have learned to societal applications without further assistance, this is rare, even for the best students. Rather, this classroom-to-real world transfer skill set, i.e. citizenship literacies, must be explicitly taught and practiced. Mastering critical thinking, understanding social context and practicing informed engagement provides students the skills to use their scientific understanding to address energy problems in meaningful and effective ways while enabling them to communicate effectively their ideas to others and work co-operatively with stakeholders with different views.
From Orthodoxy to Plurality in the Nature of Science (NOS) and Science Education: A Metacommentary
ERIC Educational Resources Information Center
Bazzul, Jesse
2017-01-01
This article provides a metacommentary on the special issue on nature of science (NOS). The issue is composed of senior scholars discussing Hodson and Wong's (2017, this issue) critique of the consensus view of nature of science, which on a basic level states that there are agreed-upon aspects of science that can be taught in K-12 schools. Each…
Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications
NASA Technical Reports Server (NTRS)
Morabito, David; Hastrup, Rolf
2004-01-01
This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.
Conceptual Metaphor and Embodied Cognition in Science Learning: Introduction to Special Issue
ERIC Educational Resources Information Center
Amin, Tamer G.; Jeppsson, Fredrik; Haglund, Jesper
2015-01-01
This special issue of "International Journal of Science Education" is based on the theme "Conceptual Metaphor and Embodied Cognition in Science Learning." The idea for this issue grew out of a symposium organized on this topic at the conference of the European Science Education Research Association (ESERA) in September 2013.…
DSN radio science system design and testing for Voyager-Neptune encounter
NASA Technical Reports Server (NTRS)
Ham, N. C.; Rebold, T. A.; Weese, J. F.
1989-01-01
The Deep Space Network (DSN) Radio Science System presently implemented within the Deep Space Network was designed to meet stringent requirements imposed by the demands of the Voyager-Neptune encounter and future missions. One of the initial parameters related to frequency stability is discussed. The requirement, specification, design, and methodology for measuring this parameter are described. A description of special instrumentation that was developed for the test measurements and initial test data resulting from the system tests performed at Canberra, Australia and Usuda, Japan are given.
FUTURO REMOTO 2015: researchers meet people.
NASA Astrophysics Data System (ADS)
De Lucia, Maddalena; Fedele, Alessandro; Esposito, Roberta; Torello, Vincenzo; Nave, Rosella; Pino, Nicola Alessandro; Russo, Massimo; Alessio, Giuliana; Gaudiosi, Germana; Nappi, Rosa; Belviso, Pasquale; Carandente, Antonio; De Cesare, Walter; Sansivero, Fabio; Siniscalchi, Valeria; Borgstrom, Sven; Milano, Girolamo; Pasquale Ricciardi, Giovanni; De Natale, Giuseppe
2016-04-01
As participant of the 29th Edition of the cultural initiative "Futuro Remoto 2015", the INGV section of Naples Osservatorio Vesuviano has realized a temporary exhibition aimed to build bridges between the scientific community and the public. The event, a festival of art, culture, science and technology, has taken place on October 15th - 19th 2015, in Naples, Italy, in the city center, and was organized by "Città della Scienza", the science center of the city of Naples, belonging to the ECSITE netwok.. The total number of visitors was about 130.000 people. It was a free and open access event, funded by public institutions. Sharing their scientific expertise with the public, in the "Terra" ("Earth") stand the INGV-OV researchers have shown, with interactive labs, how progress in technology and research develope and allow a better understanding of the dynamic processes and of the evolution of our planet. Popularizing science, when widely accessible to the people, make the knowledge not remaining confined to an elite, being efficiently spread in society, with deep implications in the social role of researchers. Practical activities and labs, dialogues and interaction with researchers of INGV-OV have allowed young and adult public, schools, students, experts or simply curious people to deepen burning issues in an area exposed to high seismic and volcanic risk.
Middle School Science: Working in a Confused Context.
ERIC Educational Resources Information Center
Berns, Barbara Brauner; Swanson, Judy
This paper presents the stories of two urban middle school science teachers, both identified as leaders in their districts. Both bring substantial expertise to science education, though neither has experienced optimal conditions for flourishing as teacher leaders. One teacher has strong content knowledge and a deep understanding of standards. The…
The Science in Science Fiction.
ERIC Educational Resources Information Center
Nicholls, Peter, Ed.
This 12-chapter book discusses the scientific facts behind the ideas included in the novels of Robert Heinlein, Isaac Asimov, Frederik Pohl, Arthur C. Clark and other science fiction writers. Areas explored in the first 11 chapters include: exploration of deep space; energy and exotic power sources; likelihood of extra-terrestrial life and the…
ERIC Educational Resources Information Center
Crockett, Dillon
2017-01-01
Using an extended text in an upper-level science course is not a revolutionary idea. Introducing a novel or nonfiction book into the curriculum can reward both teacher and student, offering deep immersion into science content, but may seem daunting to many teachers, especially those with little training in literacy instruction. This article offers…
In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.
Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J
2015-01-01
The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.
NASA Astrophysics Data System (ADS)
Pulling, Azalie Cecile
The purpose of this study was to use deep time, that is geologic time as a mechanism to explore middle school students' understanding of the natural history of the earth and the evolution of life on earth. Geologic time is a logical precursor to middle school students' understanding of biological evolution. This exploratory, mixed model study used qualitative and quantitative methods in each stage of the research to explore sixth grade students, understanding of geologic time, their worldviews (e.g., conceptual ecology), and conceptual change. The study included fifty-nine students in the large group study and four case studies. The primary data collection instrument was the Geologic Timeline Survey. Additional data collection instruments and methods (e.g., concept evaluation statement, journal entries, word associations, interviews, and formal tests) were used to triangulate the study findings. These data were used to create narrative modal profiles of the categories of student thinking that emerged from the large group analysis: Middle School (MS) Scientists (correct science), MS Protoscientists (approaching correct science), MS Prescientists (dinosaur understanding), and MS Pseudoscientists (fundamental religious understanding). Case studies were used to provide a thick description of each category. This study discovered a pattern of student thinking about geologic time that moved along a knowledge continuum from pseudoscience (fundamental creationist understanding) to prescience (everyday-science understanding) to science (correct or approaching correct science). The researcher described the deep-seated misconceptions produced by the prescience thinking level, e.g., dinosaur misconceptions, and cautioned the science education community about using dinosaurs as a glamour-science topic. The most limiting conceptual frameworks found in this study were prescience (a dinosaur focus) and pseudoscience (a fundamental religious focus). An understanding of geologic time as Piaget's system of time (e.g., chronological ordering of events, before and after relationships, duration or evolutionary time) was a necessary conceptual framework for students to develop a scientific understanding of deep time. An examination of students, worldviews and the interface of science and religion indicated that students often successfully applied a demarcation between science and religion in their public thinking (e.g., the formal classroom setting), but in their private thinking, the demarcation was often blurred.
Ocean science: Radiocarbon variability in the western North Atlantic during the last deglaciation
Robinson, L.F.; Adkins, J.F.; Keigwin, L.D.; Southon, J.; Fernandez, D.P.; Wang, S.-L.; Scheirer, D.S.
2005-01-01
We present a detailed history of glacial to Holocene radiocarbon in the deep western North Atlantic from deep-sea corals and paired benthic-planktonic foraminifera. The deglaciation is marked by switches between radiocarbon-enriched and -depleted waters, leading to large radiocarbon gradients in the water column. These changes played an important role in modulating atmospheric radiocarbon. The deep-ocean record supports the notion of a bipolar seesaw with increased Northern-source deep-water formation linked to Northern Hemisphere warming and the reverse. In contrast, the more frequent radiocarbon variations in the intermediate/deep ocean are associated with roughly synchronous changes at the poles.
Intelmann, Steven S.; Cochrane, Guy R.; Bowlby, C. Edward; Brancato, Mary Sue; Hyland, Jeffrey
2007-01-01
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral-sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises, Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed.
Building a Future-Oriented Science Education System in New Zealand: How Are We Doing?
ERIC Educational Resources Information Center
Gilbert, Jane; Bull, Ally
2013-01-01
This paper makes the case for deep and radical change to New Zealand's approach to science education. It discusses the implications of recent science education research and policy work, and argues New Zealand still has a long way to go to developing a future-oriented science education system. It explores what needs to change and contains…
Ethical Issues and the Life Sciences. Test Edition. AAAS Study Guides on Contemporary Problems.
ERIC Educational Resources Information Center
Kieffer, George H.
This is one of several study guides on contemporary problems produced by the American Association for the Advancement of Science with support of the National Science Foundation. This study guide on Ethical Issues and the Life Sciences includes the following sections: (1) Introduction; (2) The Search for an Ethic; (3) Biomedical Issues including…
Sustainable Life on the Blue Frontier
NASA Astrophysics Data System (ADS)
Helvarg, D.
2002-05-01
Environmental trends such as declining sources of potable fresh-water and the recognized need to restore and give full economic value to natural water recharging services derived from watersheds, forests, wetlands, etc. pose global security issues. Fifty years ago top White House Science and technology advisors saw the solution to future water shortages, not in water conservation but rather in building a series of nuclear powered desalination plants along America's shorelines. This reflected the popular belief that we could compensate for any land-based resource shortfalls in protein, energy and fresh water by turning to the seas, while also using these same waters as dumping sites for our wastes and toxins. The world's largest habitat, the deep seas, are threatened by commercial trawling and deep-drilling for oil and gas, as well as revived interest in deep ocean mineral mining. The collapse of global fisheries suggests a need for restoration of marine wildlife and limited sustainable wild harvests (from a vastly decapitalized fishing fleet) combined with sustainable forms of aquaculture. Ocean mineral mining has proven environmental risks, and we have now begun the shift to mineral substitution using various composites and petrochemical derivatives. My old metal bathtub for example, rather than being replaced, was recently covered with a plastic liner, extending its life for years to come. This would suggest that petroleum is far too valuable a substance needed for the manufacture of things like sailcloth and hot-tubs, to be frittered away as a (climate altering) fuel. Deep ocean drilling technology in the Gulf of Mexico and elsewhere is extending projected oil resources even as it creates new and unmanageable risks both to climate and to the marine environment (as does oil industry interest in mining methane hydrates from the abyssal depths). The role of whale oil in the US economy of the 1850s (as the lubricant of the machine age) and "rock oil" (petroleum) in the 1950s suggest we now have the technological capacity for a new energy transition to non-carbon systems including photovoltaics, wind-turbines, biofuels and hydrogen fuel-cells. A (largely) hydrogen based economy could also lead to a decentralized power grid less vulnerable to terrorism and the increased natural disasters we can expect in the coming greenhouse century. Sustainable development of limited resources and the shift to renewable forms of agriculture, water-planning, energy and other technologies will ultimately depend not simply on earth science, but on a highly political process which will (hopefully) combine the best-available science, and society's values to determine public policy that benefits the long-term interests of our blue planet's varied residents, recognizing that our economy is a fully owned subsidiary of our environment.
Lessons from Earth's Deep Time
ERIC Educational Resources Information Center
Soreghan, G. S.
2005-01-01
Earth is a repository of data on climatic changes from its deep-time history. Article discusses the collection and study of these data to predict future climatic changes, the need to create national study centers for the purpose, and the necessary cooperation between different branches of science in climatic research.
High-Resolution Measurements of Coastal Bioluminescence
2006-09-30
cover) Dunn, C.W., P.R. Pugh, and S.H.D. Haddock (2005) Marrus claudanielis, a new species of deep- sea physonect siphonophore (Siphonophora...in a deep-sea siphonophore . Science. 309:263 Haddock, S.H.D., C.W. Dunn, P.R. Pugh. (2005) A reexamination of siphonophore terminology and
Li, Xinzheng
2017-07-01
This paper reviews the taxonomic and biodiversity studies of deep-sea invertebrates in the South China Sea based on the samples collected by the Chinese manned deep-sea submersible Jiaolong. To date, 6 new species have been described, including the sponges Lophophysema eversa, Saccocalyx microhexactin and Semperella jiaolongae as well as the crustaceans Uroptychus jiaolongae, Uroptychus spinulosus and Globospongicola jiaolongi; some newly recorded species from the South China Sea have also been reported. The Bathymodiolus platifrons-Shinkaia crosnieri deep-sea cold seep community has been reported by Li (2015), as has the mitochondrial genome of the glass sponge L. eversa by Zhang et al. (2016). The population structures of two dominant species, the shrimp Shinkaia crosnieri and the mussel Bathymodiolus platifrons, from the cold seep Bathymodiolus platifrons-Shinkaia crosnieri community in the South China Sea and the hydrothermal vents in the Okinawa Trough, were compared using molecular analysis. The systematic position of the shrimp genus Globospongicola was discussed based on 16S rRNA gene sequences. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Learning approaches as predictors of academic performance in first year health and science students.
Salamonson, Yenna; Weaver, Roslyn; Chang, Sungwon; Koch, Jane; Bhathal, Ragbir; Khoo, Cheang; Wilson, Ian
2013-07-01
To compare health and science students' demographic characteristics and learning approaches across different disciplines, and to examine the relationship between learning approaches and academic performance. While there is increasing recognition of a need to foster learning approaches that improve the quality of student learning, little is known about students' learning approaches across different disciplines, and their relationships with academic performance. Prospective, correlational design. Using a survey design, a total of 919 first year health and science students studying in a university located in the western region of Sydney from the following disciplines were recruited to participate in the study - i) Nursing: n = 476, ii) Engineering: n = 75, iii) Medicine: n = 77, iv) Health Sciences: n = 204, and v) Medicinal Chemistry: n = 87. Although there was no statistically significant difference in the use of surface learning among the five discipline groups, there were wide variations in the use of deep learning approach. Furthermore, older students and those with English as an additional language were more likely to use deep learning approach. Controlling for hours spent in paid work during term-time and English language usage, both surface learning approach (β = -0.13, p = 0.001) and deep learning approach (β = 0.11, p = 0.009) emerged as independent and significant predictors of academic performance. Findings from this study provide further empirical evidence that underscore the importance for faculty to use teaching methods that foster deep instead of surface learning approaches, to improve the quality of student learning and academic performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Noé, Frank
2018-06-01
Inspired by the success of deep learning techniques in the physical and chemical sciences, we apply a modification of an autoencoder type deep neural network to the task of dimension reduction of molecular dynamics data. We can show that our time-lagged autoencoder reliably finds low-dimensional embeddings for high-dimensional feature spaces which capture the slow dynamics of the underlying stochastic processes—beyond the capabilities of linear dimension reduction techniques.
ERIC Educational Resources Information Center
Roy, Ken
2006-01-01
Science education is a changing landscape. Changes over the past ten years alone have been both evolutionary and revolutionary--Science Education Standards, new required assessments, science teacher certification issues, science teacher shortages and retirements, molecular approach to Biology, etc. These changes and issues range from…
Rabins, Peter; Appleby, Brian S; Brandt, Jason; DeLong, Mahlon R; Dunn, Laura B; Gabriëls, Loes; Greenberg, Benjamin D; Haber, Suzanne N; Holtzheimer, Paul E; Mari, Zoltan; Mayberg, Helen S; McCann, Evelyn; Mink, Sallie P; Rasmussen, Steven; Schlaepfer, Thomas E; Vawter, Dorothy E; Vitek, Jerrold L; Walkup, John; Mathews, Debra J H
2009-09-01
A 2-day consensus conference was held to examine scientific and ethical issues in the application of deep brain stimulation for treating mood and behavioral disorders, such as major depression, obsessive-compulsive disorder, and Tourette syndrome. The primary objectives of the conference were to (1) establish consensus among participants about the design of future clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and (2) develop standards for the protection of human subjects participating in such studies. Conference participants identified 16 key points for guiding research in this growing field. The adoption of the described guidelines would help to protect the safety and rights of research subjects who participate in clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and have further potential to benefit other stakeholders in the research process, including clinical researchers and device manufactures. That said, the adoption of the guidelines will require broad and substantial commitment from many of these same stakeholders.
ERIC Educational Resources Information Center
Young, Hollie
2005-01-01
To maintain the legacy of cutting edge scientific innovation in the United States our country must address the many pressing issues facing science education today. One of the most important issues relating to science education is the under-representation of African Americans and Hispanics in the science, technology, and engineering workforce.…
Does Formative Assessment Improve Student Learning and Performance in Soil Science?
ERIC Educational Resources Information Center
Kopittke, Peter M.; Wehr, J. Bernhard; Menzies, Neal W.
2012-01-01
Soil science students are required to apply knowledge from a range of disciplines to unfamiliar scenarios to solve complex problems. To encourage deep learning (with student performance an indicator of learning), a formative assessment exercise was introduced to a second-year soil science subject. For the formative assessment exercise, students…
Weight, Mass, and Gravity: Threshold Concepts in Learning Science
ERIC Educational Resources Information Center
Bar, Varda; Brosh, Yaffa; Sneider, Cary
2016-01-01
Threshold concepts are essential ideas about the natural world that present either a barrier or a gateway to a deep understanding of science. Weight, mass, and gravity are threshold concepts that underpin students' abilities to understand important ideas in all fields of science, embodied in the performance expectations in the Next Generation…
NASA Astrophysics Data System (ADS)
Xiao, Sihan; Sandoval, William A.
2017-05-01
Science educators are typically dismayed by the failure of students to use relevant scientific knowledge when reasoning about socioscientific issues. Except for the well-documented association between having more knowledge about a topic and a tendency to use that knowledge, the influences on students' evaluation of information in socioscientific issues are not well understood. This study presents an initial investigation into the associations between upper elementary students' attitudes towards science and their evaluation of information about a socioscientific issue. We surveyed the science attitudes of 49 sixth grade students and then asked them to evaluate information about a socioscientific issue (alternative energy use). Positive attitudes were associated with a more scientific approach to evaluating information in the task. When trying to make judgments, students with generally positive attitudes towards science were more likely to attend to scientific information than other sources. Scientific information, nonetheless, served a variety of socially oriented goals in students' evaluations. These findings warrant further research on the relationship between science attitudes and reasoning about socioscientific issues and support the argument for connecting school science more clearly with everyday concerns.
Implementation of the NCSS Guidelines for Teaching Science-Related Social Issues: Exemplar Lessons.
ERIC Educational Resources Information Center
Otto, Robert A., Ed.
This document contains the Guidelines for Teaching Science-Related Social Issues adopted in 1982 by the National Council for the Social Studies and 10 examplar lessons each keyed to particular guidelines and drawing upon contemporary issues. The premise upon which the guidelines are based is that science is a social issue and that the examination…
ERIC Educational Resources Information Center
Morris, Helen
2014-01-01
Socio-scientific issues, which are often controversial, involve the use of science and are of interest to society, raising ethical and moral dilemmas. Examples of these issues could include genetic technology or air pollution. Following a curriculum reform in England in 2006, socioscientific issues now have a heightened presence in the 14-16…
Reflection Fosters Deep Learning: The 'Reflection Page & Relevant to You' Intervention
ERIC Educational Resources Information Center
Young, Mark R.
2018-01-01
Cognitive science indicates that the millennial generation's behavior of instant messaging and multitasking may provide inadequate cognitive capabilities for thoughtful processing of experiences that lead to deep learning. This study describes a teaching innovation that explicitly stimulates reflection and critical self-assessment, along with…
The deep space network, Volume 11
NASA Technical Reports Server (NTRS)
1972-01-01
Deep Space Network progress in flight project support, Tracking and Data Acquisition research and technology, network engineering, hardware and software implementation, and operations are presented. Material is presented in each of the following categories: description of DSN; mission support; radio science; support research and technology; network engineering and implementation; and operations and facilities.
NASA Astrophysics Data System (ADS)
Head, J. W.; Pieters, C. M.; Scott, D. R.
2018-02-01
We outline an Orientale Basin Human/Robotic Architecture that can be facilitated by a Deep Space Gateway International Science Operations Center (DSG-ISOC) (like McMurdo/Antarctica) to address fundamental scientific problems about the Moon and Mars.
Radiometric Calibration of Earth Science Imagers Using HyCalCam on the Deep Space Gateway Platform
NASA Astrophysics Data System (ADS)
Butler, J. J.; Thome, K. J.
2018-02-01
HyCalCam, an SI-traceable imaging spectrometer on the Deep Space Gateway, acquires images of the Moon and Earth to characterize the lunar surface and terrestrial scenes for use as absolute calibration targets for on-orbit LEO and GEO sensors.
Measuring Student Understanding of Geological Time
ERIC Educational Resources Information Center
Dodick, Jeff; Orion, Nir
2003-01-01
There have been few discoveries in geology more important than "deep time"--the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology,…
NASA Technical Reports Server (NTRS)
Asmar, Sami
1997-01-01
Telecommunication systems of spacecraft on deep space missions also function as instruments for Radio Science experiments. Radio scientists utilize the telecommunication links between spacecraft and Earth to examine very small changes in the phase/frequency, amplitude, and/or polarization of radio signals to investigate a host of physical phenomena in the solar system. Several missions augmented the radio communication system with an Ultra-Stable Oscillator (USO) in order to provide a highly stable reference signal for oneway downlink. This configuration is used in order to enable better investigations of the atmospheres of the planets occulting the line-of-sight to the spacecraft; one-way communication was required and the transponders' built-in auxiliary oscillators were neither sufficiently stable nor spectrally pure for the occultation experiments. Since Radio Science instrumentation is distributed between the spacecraft and the ground stations, the Deep Space Network (DSN) is also equipped to function as a world-class instrument for Radio Science research. For a detailed account of Radio Science experiments, methodology, key discoveries, and the DSN's historical contribution to the field, see Asmar and Renzetti (1993). The tools of Radio Science can be and have also been utilized in addressing several mission engineering challenges; e.g., characterization of spacecraft nutation and anomalous motion, antenna calibrations, and communications during surface landing phases. Since the first quartz USO was flown on Voyager, the technology has advanced significantly, affording future missions higher sensitivity in reconstructing the temperature pressure profiles of the atmospheres under study as well as other physical phenomena of interest to Radio Science. This paper surveys the trends in stability and spectral purity performance, design characteristics including size and mass, as well as cost and history of these clocks in space.
Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.
2016-12-01
Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.
In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust
Salas, Everett C.; Bhartia, Rohit; Anderson, Louise; Hug, William F.; Reid, Ray D.; Iturrino, Gerardo; Edwards, Katrina J.
2015-01-01
The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities. PMID:26617595
Science Education Attuned to Social Issues: Challenge for the '80s.
ERIC Educational Resources Information Center
Yager, Robert E.; And Others
1981-01-01
Provides rationale for interdisciplinary science curricula which emphasize decision-making skills. Includes examples of interdisciplinary curricula using an issue-centered approach: Unified Science and Mathematics for Elementary School (USMES), Health Activities Program (HAP), Human Sciences Program (HSP), Individualized Science Instructional…
A Participative Tool for Sharing, Annotating and Archiving Submarine Video Data
NASA Astrophysics Data System (ADS)
Marcon, Y.; Kottmann, R.; Ratmeyer, V.; Boetius, A.
2016-02-01
Oceans cover more than 70 percent of the Earth's surface and are known to play an essential role on all of the Earth systems and cycles. However, less than 5 percent of the ocean bottom has been explored and many aspects of the deep-sea world remain poorly understood. Increasing our ocean literacy is a necessity in order for specialists and non-specialists to better grasp the roles of the ocean on the Earth's system, its resources, and the impact of human activities on it. Due to technological advances, deep-sea research produces ever-increasing amounts of scientific video data. However, using such data for science communication and public outreach purposes remains difficult as tools for accessing/sharing such scientific data are often lacking. Indeed, there is no common solution for the management and analysis of marine video data, which are often scattered across multiple research institutes or working groups and it is difficult to get an overview of the whereabouts of those data. The VIDLIB Deep-Sea Video Platform is a web-based tool for sharing/annotating time-coded deep-sea video data. VIDLIB provides a participatory way to share and analyze video data. Scientists can share expert knowledge for video analysis without the need to upload/download large video files. Also, VIDLIB offers streaming capabilities and has potential for participatory science and science communication in that non-specialists can ask questions on what they see and get answers from scientists. Such a tool is highly valuable in terms of scientific public outreach and popular science. Video data are by far the most efficient way to communicate scientific findings to a non-expert public. VIDLIB is being used for studying the impact of deep-sea mining on benthic communities as well as for exploration in polar regions. We will present the structure and workflow of VIDLIB as well as an example of video analysis. VIDLIB (http://vidlib.marum.de) is funded by the EU EUROFLEET project and the Helmholtz Alliance ROBEX.
Understanding the Deep Earth: Slabs, Drips, Plumes and More - An On the Cutting Edge Workshop
NASA Astrophysics Data System (ADS)
Williams, M. L.; Mogk, D. W.; McDaris, J. R.
2010-12-01
Exciting new science is emerging from the study of the deep Earth using a variety of approaches: observational instrumentation (e.g. EarthScope’s USArray; IRIS), analysis of rocks (xenoliths, isotopic tracers), experimental methods (COMPRES facilities), and modeling (physical and computational, e.g. CIG program). New images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring a new excitement about deep Earth processes and connections between Earth’s internal systems, the plate tectonic system, and the physiography of Earth’s surface. The integration of these lines of research presents unique opportunities and also challenges in geoscience education. How can we best teach about the architecture, composition, and processes of Earth where it is hidden from direct observation. How can we make deep Earth science relevant and meaningful to students across the geoscience curriculum? And how can we use the exciting new discoveries about Earth processes to attract new students into science? To explore the intersection of research and teaching about the deep Earth, a virtual workshop was convened in February 2010 for experts in deep Earth research and undergraduate geoscience education. The six-day workshop consisted of online plenary talks, large and small group discussions, asynchronous contributions using threaded listservs and web-based work spaces, as well as development and review of new classroom and laboratory activities. The workshop goals were to: 1) help participants stay current about data, tools, services, and research related to the deep earth, 2) address the "big science questions" related to deep earth (e.g. plumes, slabs, drips, post-perovskite, etc.) and explore exciting new scientific approaches, 3) to consider ways to effectively teach about "what can't be seen", at least not directly, and 4) develop and review classroom teaching activities for undergraduate education using these data, tools, services, and research results to facilitate teaching about the deep earth across the geoscience curriculum. Another goal of the workshop was to experiment with, and evaluate the effectiveness of, the virtual format. Although there are advantages to face-to-face workshops, the virtual format was remarkably effective. The interactive discussions during synchronous presentations were vibrant, and the virtual format allowed participants to introduce references, images and ideas in real-time. The virtual nature of the workshop allowed participation by those who are not able to attend a traditional workshop, with an added benefit that participants had direct access to all their research and teaching materials to share with the workshop. Some participants broadcast the workshop ‘live’ to their classes and many brought discussions directly from the presentation to the classroom. The workshop webpage includes the workshop program with links to recordings of all presentations, discussion summaries, a collection of recommended resources about deep Earth research, and collections of peer-reviewed instructional activities. http://serc.carleton.edu/NAGTWorkshops/deepearth/index.html
The Great Observatories Origins Deep Survey Spitzer Legacy Science Program
NASA Astrophysics Data System (ADS)
Dickinson, M.; GOODS Team
2005-12-01
The Great Observatories Origins Deep Survey (GOODS) is a multiwavelength anthology of deep field programs using NASA's Great Observatories and the most powerful ground-based facilities to create a public data resource for studying the formation and evolution of galaxies and active galactic nuclei (AGN) throughout cosmic history. GOODS incorporates a Spitzer Legacy Program, which has obtained the deepest observations with that telescope at 3.6 to 24 microns. The Spitzer/IRAC data detect the rest-frame near-infrared light from galaxies out to z ˜ 6, providing valuable information on their stellar populations and masses. The MIPS 24μ m data are a sensitive probe of re-emitted energy from dust-obscured star formation and AGN out to z ˜ 3. I will very briefly introduce the survey and summarize science highlights from the Spitzer data.
ERIC Educational Resources Information Center
Santau, Alexandra O.; Maerten-Rivera, Jaime L.; Bovis, Stephanie; Orend, Jacob
2014-01-01
Since the beginning of the reform movement in science education, there has been concern that elementary teachers lack the science content knowledge (SCK) needed to engage students in authentic scientific inquiry. This study included 19 preservice elementary teachers and examined the development of their SCK within the context of a uniquely…
Using a Very Big Rocket to take Very Small Satellites to Very Far Places
NASA Technical Reports Server (NTRS)
Cohen, Barbara
2017-01-01
Planetary science cubesats are being built. Insight (2018) will carry 2 cubesats to provide communication links to Mars. EM-1 (2019) will carry 13 cubesat-class missions to further smallsat science and exploration capabilities. Planetary science cubesats have more in common with large planetary science missions than LEO cubesats- need to work closely with people who have deep-space mission experience
NASA Astrophysics Data System (ADS)
de Groot, R. M.; Benthien, M. L.
2006-12-01
The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently have gained visibility via television news coverage in Southern California. These types of visualizations are becoming pervasive in the teaching and learning of concepts related to earth science. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin &Brick, 2002). Earthquakes are ideal candidates for visualization products: they cannot be predicted, are completed in a matter of seconds, occur deep in the earth, and the time between events can be on a geologic time scale. For example, the southern part of the San Andreas fault has not seen a major earthquake since about 1690, setting the stage for an earthquake as large as magnitude 7.7 -- the "big one." Since no one has experienced such an earthquake, visualizations can help people understand the scale of such an event. Accordingly, SCEC has developed a revolutionary simulation of this earthquake, with breathtaking visualizations that are now being distributed. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.
High-Rate Laser Communications for Human Exploration and Science
NASA Astrophysics Data System (ADS)
Robinson, B. S.; Shih, T.; Khatri, F. I.; King, T.; Seas, A.
2018-02-01
Laser communication links has been successfully demonstrated on recent near-Earth and lunar missions. We present a status of this development work and its relevance to a future Deep Space Gateway supporting human exploration and science activities.
A Tool for Adopting a Different Perspective on Classroom Observation and Feedback on Science Lessons
ERIC Educational Resources Information Center
Haynes, Lyn
2014-01-01
This article outlines the development of a tool designed to take forward the practice of science teachers through subject-specific guidance and discourse that promotes dialogue and deep critical reflection on practice.
Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model
NASA Astrophysics Data System (ADS)
Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming
Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.
Science as an Ideal: Teachers' Orientations to Science and Science Education Reform
ERIC Educational Resources Information Center
Witz, Klaus G.; Lee, Hyunju
2009-01-01
Two policy trends have characterized US science education in the last two decades: a strong movement to examine issues of science in society, and widespread adoption of state standards mandating curriculum courses related to science, technology and society, scientific literacy, and socio-scientific issues. However, these changes have not found an…
ERIC Educational Resources Information Center
Smith, Mike U.; Siegel, Harvey
2016-01-01
The issue of the proper goals of science education and science teacher education have been a focus of the science education and philosophy of science communities in recent years. More particularly, the issue of whether belief/acceptance of evolution and/or understanding are the appropriate goals for evolution educators and the issue of the precise…
ERIC Educational Resources Information Center
Campbell, Todd; Oh, Phil Seok
2015-01-01
This article provides an introduction for the special issue of the "Journal of Science Education and Technology" focused on science teaching and learning with models. The article provides initial framing for questions that guided the special issue. Additionally, based on our careful review of each of these articles, some discussion of…
ERIC Educational Resources Information Center
Teich, Albert H., Ed.; Thornton, Ray, Ed.
Recognizing that science and technology (S/T) have become increasingly relevant to important public policy issues, Congress has mandated the periodic preparation of a "Five Year Outlook for Science and Technology" to help U.S. policymakers anticipate and deal with these issues more effectively. This book, the result of a study conducted by the…
The deep ocean under climate change.
Levin, Lisa A; Le Bris, Nadine
2015-11-13
The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin
2012-01-01
A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... longitude in water depths entirely less than 400 meters deep. (b) The lease has not produced gas or oil from... than 200 meters and entirely less than 400 meters deep. (c) In the case of a lease located partly or... less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and not...
Low Gravity Issues of Deep Space Refueling
NASA Technical Reports Server (NTRS)
Chato, David J.
2005-01-01
This paper discusses the technologies required to develop deep space refueling of cryogenic propellants and low cost flight experiments to develop them. Key technologies include long term storage, pressure control, mass gauging, liquid acquisition, and fluid transfer. Prior flight experiments used to mature technologies are discussed. A plan is presented to systematically study the deep space refueling problem and devise low-cost experiments to further mature technologies and prepare for full scale flight demonstrations.
The deep space network, volume 6
NASA Technical Reports Server (NTRS)
1971-01-01
Progress on Deep Space Network (DSN) supporting research and technology is presented, together with advanced development and engineering, implementation, and DSN operations of flight projects. The DSN is described. Interplanetary and planetary flight projects and radio science experiments are discussed. Tracking and navigational accuracy analysis, communications systems and elements research, and supporting research are considered. Development of the ground communications and deep space instrumentation facilities is also presented. Network allocation schedules and angle tracking and test development are included.
ERIC Educational Resources Information Center
Amirshokoohi, Aidin
2016-01-01
The purpose of the study was to investigate the impact of Science, Technology, Society (STS) issue oriented science methods course on pre-service teachers' views and perceptions toward STS issues and instruction as well as their levels of environmental literacy. The STS issue oriented curriculum was designed to help pre-service teachers improve…
Addiction and its sciences-philosophy.
Foddy, Bennett
2011-01-01
Philosophers have been writing about addiction continually since the 1990s, and a number of much older, broader philosophical theories are of direct relevance to the study of addiction. Yet the developments in the philosophical study of addiction have seldom been incorporated into the science of addiction. In this paper I focus upon two issues in the scientific literature: the disease classification of addiction and the claim that addictive behaviour is compulsive. While each of these views is open to debate on empirical grounds, there is a long history of philosophical work which must be engaged if these claims are to be justified in a philosophical sense. I begin by showing how the conceptual work of philosophers such as Boorse and Nordenfelt can be used to critique the claim that addiction is a disease. Following this, I demonstrate how deep philosophical concepts of freedom and willpower are embedded into scientists' claims about compulsion in drug addiction. These concepts are paradoxical and difficult, and they have consumed numerous contemporary philosophers of mind, such as Audi, Arpaly, Frankfurt, Mele, Wallace and Watson, among many others. I show how problems can arise when scientists sidestep the work of these philosophers, and I explain where scientists should seek to include, and sometimes exclude, philosophical concepts. Many philosophical concepts and theories can be of use to addiction science. The philosophical work must be understood and acknowledged if the science is to progress. © 2010 The Author, Addiction © 2010 Society for the Study of Addiction.
News Focus: Presidential Candidates Give Views on Science and Technology.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1984
1984-01-01
Presents the views of Ronald Reagan and Walter Mondale on various science issues. Major areas examined include: science policy goals; science education; adequate research and development funding; importance of research activities; role of science and technology in solving national problems; and other issues. (JN)
76 FR 66089 - Notice of Permit Modification Issued Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... NATIONAL SCIENCE FOUNDATION Notice of Permit Modification Issued Under the Antarctic Conservation Act of 1978 AGENCY: National Science Foundation. ACTION: Notice of permit modification issued under the Antarctic Conservation of 1978, Public Law 95-541. SUMMARY: The National Science Foundation (NSF...
77 FR 64831 - Notice of Permits Issued Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... NATIONAL SCIENCE FOUNDATION Notice of Permits Issued Under the Antarctic Conservation Act of 1978 AGENCY: National Science Foundation. ACTION: Notice of permits issued under the Antarctic Conservation Act of 1978, Public Law 95-541. SUMMARY: The National Science Foundation (NSF) is required to publish...
77 FR 64831 - Notice of Permits Issued Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... NATIONAL SCIENCE FOUNDATION Notice of Permits Issued Under the Antarctic Conservation Act of 1978 AGENCY: National Science Foundation. ACTION: Notice of a permit modification issued under the Antarctic Conservation Act of 1978, Public Law 95-541. SUMMARY: The National Science Foundation (NSF) is required to...
76 FR 67485 - Notice of Permit Modification Issued Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
... NATIONAL SCIENCE FOUNDATION Notice of Permit Modification Issued Under the Antarctic Conservation Act of 1978 AGENCY: National Science Foundation. ACTION: Notice of permit issued under the Antarctic Conservation of 1978, Public Law 95-541. SUMMARY: The National Science Foundation (NSF) is required to publish...
77 FR 50533 - Notice of Permits Issued Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... NATIONAL SCIENCE FOUNDATION Notice of Permits Issued Under the Antarctic Conservation Act of 1978 AGENCY: National Science Foundation. ACTION: Notice of permits issued under the Antarctic Conservation of 1978, Public Law 95-541. SUMMARY: The National Science Foundation (NSF) is required to publish notice...
76 FR 47611 - Notice of Permit Modification Issued Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... NATIONAL SCIENCE FOUNDATION Notice of Permit Modification Issued Under the Antarctic Conservation Act of 1978 AGENCY: National Science Foundation. ACTION: Notice of permit modification issued under the Antarctic Conservation Act of 1978, Public Law 95-541. SUMMARY: The National Science Foundation...
77 FR 35068 - Notice of Permits Issued Under the Antarctic Conservation Act of 1978
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... NATIONAL SCIENCE FOUNDATION Notice of Permits Issued Under the Antarctic Conservation Act of 1978 AGENCY: National Science Foundation. ACTION: Notice of permits issued under the Antarctic Conservation of 1978, Public Law 95-541. SUMMARY: The National Science Foundation (NSF) is required to publish notice...
Organizing High School Biology Experiences around Contemporary Bioethical Issues: An STS Approach.
ERIC Educational Resources Information Center
Dass, Pradeep Maxwell
1997-01-01
The need for a citizenry capable of comprehending and tackling contemporary issues related to science and technology demands science education experiences that are fundamentally different from traditional experiences in school science. Argues that high school biology experiences organized around contemporary bioethical issues can meet this need.…
On the road to science education for sustainability?
NASA Astrophysics Data System (ADS)
Albe, Virginie
2013-03-01
In this paper I discuss three issues relevant to the ideas introduced by Colucci-Gray, Perazzone, Dodman and Camino (2012) in their three-part paper on epistemological reflections and educational practice for science education for sustainability: (1) social studies of science for science education, (2) education for sustainability or sustainable development, and (3) curriculum studies and action-research. For the first issue, I address the need for science education efforts dedicated to an epistemological renewal to take seriously into consideration the contributions of the social studies of science. This perspective may be fruitful for an education for sustainability that also requires one to consider the political dimension of environmental issues and their intrinsic power relationships. It also encourages the abandonment of dichotomies that hamper democratic participation: experts/lay people, science/society, scientific knowledge/values, etc. For the second issue, my commentary focuses on the challenges that education for sustainability or sustainable development pose to science education with a shift from subject matter contents to socio-educative aims and socio-political actions. These challenges lead to the third issue with an invitation to apprehend science education for sustainability within the frameworks of curriculum theory and design-based research.
ERIC Educational Resources Information Center
McNeill, Katherine L.; Vaughn, Meredith Houle
2012-01-01
This study investigates how the enactment of a climate change curriculum supports students' development of critical science agency, which includes students developing deep understandings of science concepts and the ability to take action at the individual and community levels. We examined the impact of a four to six week urban ecology curriculum…
ERIC Educational Resources Information Center
Djonko-Moore, Cara M.; Leonard, Jacqueline; Holifield, Quintaniay; Bailey, Elsa B.; Almughyirah, Sultan M.
2018-01-01
Background: Children living in urban areas often have limited opportunities to experience informal science environments. As a result, some do not have a deep understanding of the environment, natural resources, ecosystems, and the ways human activities affect nature. Purpose: This article examines how experiential science education supported urban…
ERIC Educational Resources Information Center
Horton, Robert M.; Leonard, William H.
2005-01-01
In science, inquiry is used as students explore important and interesting questions concerning the world around them. In mathematics, one contemporary inquiry approach is to create models that describe real phenomena. Creating mathematical models using spreadsheets can help students learn at deep levels in both science and mathematics, and give…
NASA Astrophysics Data System (ADS)
Paling, Sean; Sadler, Stephen
2015-05-01
The deep underground laboratories of the world are no longer the scientific realm of astroparticle physics alone. From Mars rovers to muon tomography, and from radioactive dating to astrobiology, Sean Paling and Stephen Sadler describe the renaissance in the science taking place far beneath our feet.
(The Ethics of) Teaching Science and Ethics: A Collaborative Proposal.
Kabasenche, William P
2014-12-01
I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains-the relevant science(s) and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.
Invasive Species Science Update (No. 2)
Mee-Sook Kim; Jack Butler
2008-01-01
Mee-Sook and I received several favorable comments regarding the first issue of the Invasive Species Science Update. In true Government form, the newsletter is now often referenced by the acronym ISSU. So, this is the second issue of ISSU.
ERIC Educational Resources Information Center
Yu, Yuqing
2010-01-01
Socio-scientific issues have become increasingly important in Science-Technology-Society (STS) education as a means to make science learning more relevant to students' lives. This study used the e-waste issue as a context to investigate two aspects of socio-scientific decision-making: (1) the relationship between the nature of science (NOS)…
Outside the pipeline: reimagining science education for nonscientists.
Feinstein, Noah Weeth; Allen, Sue; Jenkins, Edgar
2013-04-19
Educational policy increasingly emphasizes knowledge and skills for the preprofessional "science pipeline" rather than helping students use science in daily life. We synthesize research on public engagement with science to develop a research-based plan for cultivating competent outsiders: nonscientists who can access and make sense of science relevant to their lives. Schools should help students access and interpret the science they need in response to specific practical problems, judge the credibility of scientific claims based on both evidence and institutional cues, and cultivate deep amateur involvement in science.
NASA Astrophysics Data System (ADS)
Galluzzi, M. C.
2018-02-01
Three goals can be achieved by 2030: 1. NASA will have the capability for remote on-demand 3d printing of critical hardware using regolith material as feedstock, 2. Logistics footprint reduced by 35%, 3. Deep Space Gateway will become 75% self-sustaining.
NASA Astrophysics Data System (ADS)
Sibille, L.; Mantovani, J. G.; Townsend, I. I.; Mueller, R. P.
2018-02-01
The concepts describe hardware and instrumentation for the study of planetary surface materials at the Deep Space Gateway as a progressive evolution of capabilities for eliminating the need for special handling and Planetary Protection (PP) protocols inside the habitats.
2006-09-01
also been reported for northern bottlenose whales (Hooker and Baird 1999), and for deep- diving beluga whales, Delphinapterus leucas (Martin and...Smith. 1992. Deep diving in wild, free-ranging beluga whales, Delphinapterus leucas . Canadian Journal of Fisheries and Aquatic Sciences 49:462-466
D.E.E.P. Learning: Promoting Informal STEM Learning through Ocean Research Simulation Games
NASA Astrophysics Data System (ADS)
Simms, E.; Rohrlick, D.; Layman, C.; Peach, C. L.; Orcutt, J. A.; Keen, C. S.; Matthews, J.; Nsf Ooi-Ci Education; Public Engagement Team
2010-12-01
It is generally recognized that interactive digital games have the potential to promote the development of valuable learning and life skills, including data processing, decision-making, critical thinking, planning, communication and collaboration (Kirriemuir and MacFarlane, 2006). But the research and development of educational games, and the study of the educational value of interactive games in general, have lagged far behind the same efforts for games created for the purpose of entertainment. Our group is attempting to capitalize on the facts that games are now played in 67% of American households (ESA, 2010), and across a broad range of ages, by developing effective and engaging simulation games that promote Science, Technology, Engineering and Mathematics (STEM) literacy in informal science education institutions (ISEIs; e.g., aquariums, museums, science centers). In particular, we are developing games based on the popular Microsoft Xbox360 gaming platform and the free Microsoft XNA game development kit, which engage ISEI visitors in the exploration and understanding of the deep-sea environment. Known as Deep-sea Extreme Environment Pilot (D.E.E.P.), the games place players in the role of piloting a remotely-operated vehicle (ROV) to complete science-based objectives associated with the exploration of ocean observing systems and hydrothermal vent environments. In addition to creating a unique educational product, our efforts are intended to identify 1) the key elements of a successful STEM-based simulation game experience in an informal science education institution, and 2) which aspects of game design (e.g., challenge, curiosity, fantasy, personal recognition) are most effective at maximizing both learning and enjoyment. We will share our progress to date, including formative assessment results from testing the game prototypes at Birch Aquarium at Scripps, and discuss the potential benefits and challenges to interactive gaming as a tool to support STEM literacy.
Science Objectives and Mission Concepts for Europa Exploration
NASA Astrophysics Data System (ADS)
Tamppari, L. K.; Senske, D. A.; Johnson, T. V.; Oberto, R.; Zimmerman, W.; JPL's Team-X Team
2000-10-01
Since the arrival of the Galileo spacecraft to the Jovian system in 1995, evidence indicating a liquid water ocean beneath the icy Europan crust has become much stronger. This evidence combined with the fact that Europa is greater than 90 wt% water [1] makes it a candidate body to harbor extant or extinct life. The outstanding Europa science questions [2] are to determine whether or not there is or has been a liquid water layer under the ice and whether or not liquid water currently exists on the surface or has in the geologically recent past, what geological processes create the ice rafts and other ice-tectonic processes that affect the surface, the composition of the deep interior , geochemical sources of energy, the nature of the neutral atmosphere and ionosphere, and the nature of the radiation environment, especially with regard to its implications for organic and biotic chemistry. In addition, in situ studies of the surface of Europa would offer the opportunity to characterize the chemistry of the ice including organics, pH, salinity, and redox potential. In order to address these scientific objectives, a Europa program, involving multiple spacecraft, is envisioned. The JPL Outer Planets program has been helping to lay the groundwork for such a program. This effort is being conducted with particular emphasis on compiling and identifying science objectives which will flow down to a Europa mission architecture. This poster will show the tracability of observational methods from the science objectives. Also in support of developing a Europa mission architecture, JPL's Team-X has conducted a variety of Europa mission studies . A comparison of the studies done to date will be presented, highlighting science objectives accomplished, technological challenges, and cost. A more detailed presentation will be given on a Europa Lander concept study. First, the science objectives and instrumentation will be shown, including instrument mass, power usage, volume, and data rate. Second, the mission design will be discussed, including candidate launch and arrival dates and landing ellipse issues. Third, the technology developments required and other issues will be presented. This poster presentation will provide an opportunity for the science community to influence future work on developing a Europa architecture, including refinements to a Europa Lander , other mission concepts, and further science objective identification and prioritization. This work was carried out at Caltech's Jet Propulsion Laboratory under a contract from NASA. [1] Morrison, D., Introduction to the Satellites of Jupiter in Satellites of Jupiter, Morrison ed., 1982. [2] Space Studies Board, A Strategy for the Exploration of Europa, National Academy Press, Washington D. C., 1999.
NASA Astrophysics Data System (ADS)
Lane, A. L.; Behar, A.; Bhartia, R.; Conrad, P. G.; Hug, W. F.
2007-12-01
The quest to study and understand extremophiles has led to many quite different research paths in the past 30 years. One of the more difficult directions has been the study of biochemical material in deep glacial ice and in subglacial lakes. Lake Vostok in Eastern Antarctica has been perhaps the most discussed subglacial lake because of its large size (~14,000 sq km), deep location under >3700 m of overlying ice, and thick sediment bed (~200m). Once the physical conditions of the Lake were assessed, questions immediately arose about the potential existence of biological material - either extinct or possibly extant under conditions of extremely limited energy and nutrients [1-2]. To investigate the biology of Vostok, via in-situ methods, is a major issue that awaits proven techniques that will not contaminate the Lake beyond what may have occurred to date. Lake Ellsworth, in West Antarctica, also discovered by ice penetrating radar, is of significantly smaller size, but is also >3500 m below the overlying ice. It represents a wonderful opportunity to design, engineer and build in-situ delivery systems that consider bio-cleanliness approaches to enable examination of its water, sediment bed and the "roof" area accretion ice for biochemicals [3]. Our laboratory has been developing deep UV fluorescence and UV Raman instrumentation to locate and classify organic material at a variety of extremophile locations. The confluence of the measurement techniques and the engineering for high external pressure instrument shells has enabled us to design and begin prototype fabrication of a biochemical sensing probe that can be inserted into a hot-water drilled ice borehole, functioning as a local area mapper in water environments as deep as 6000 m. Real-time command and control is conducted from a surface science station. We have been using the deep Vostok ice cores at the U.S. National Ice Core Lab to validate our science and data analysis approaches with an "inverted" system that has recently generated spatially resolved spectral images of material inside the Vostok cores without extraction or disturbance to the material in the ice. We will describe the instrumentation we will have available for the British Antarctica Survey Lake Ellsworth Exploration field campaign, provide a possible operational scenario and show examples of the kinds of possible measurement results that might be obtained, based upon our Lake Vostok core studies. [1] Siegert, M.J., Tranter, M., Ellis-Evans, C.J., Priscu, J.C. & Lyons, W.B. (2003) The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrological Processes, 17, 795-814. [2] Priscu, J.C. and B.C. Christner (2004). Earth's icy biosphere, pp. 130-145, In "Microbial Diversity and Bioprospecting", A. Bull (editor). Chap 13. ASM Press, Washington, D.C. [3] Siegert M.J., Hindmarsh, R., Corr H., Smith, A., Woodward, J., King, E., Payne, A.J., and Joughin, I.(2004) Subglacial Lake Ellsworth: a candidate for in situ exploration in West Antarctica. Geophysical Research Letters, 31 (23), L23403, 10.1029/2004GL021477.
Using Socioscientific Issues in Primary Classrooms
ERIC Educational Resources Information Center
Dolan, Thomas J.; Nichols, Bryan H.; Zeidler, Dana L.
2009-01-01
In this article, we provide three examples of the use of socioscientific issues (SSI) in a 5th-grade classroom. Taken from Earth science (beach sand replacement), life science (the Canadian seal hunt), and physical science (speed limits), the examples show how teachers can embed scientific content in controversial social issues that engage younger…
Code of Federal Regulations, 2010 CFR
2010-07-01
... 400 meters deep. (b) The lease has not produced gas or oil from a deep well or an ultra-deep well, except as provided in § 203.31(b). (c) If the lease is located entirely in more than 200 meters and entirely less than 400 meters of water, it must either: (1) Have been issued before November 28, 1995, and...
Study of alternative probe technologies
NASA Technical Reports Server (NTRS)
1977-01-01
A number of implied technologies for a deep probe mission was examined; i.e., one that would provide the capability to scientifically examine planetary atmospheres at the 1000 bar level. Conditions imposed by current Jupiter, Saturn, and Uranus atmospheric models were considered. The major thrust of the measurements was to determine lower atmosphere composition, even to trace constituents of one part per billion. Two types of instruments having the necessary accuracy to meet the science objectives were considered and integrated into a deep probe configuration. One deep probe option that resulted was identified as a Minimum Technology Development approach. The significant feature of this option is that only three technology developments are required to enable the mission, i.e., (1) science instrument development, (2) advanced data processing, and (3) external high pressure/thermal insulation. It is concluded that a probe designed for a Jupiter mission could, with minor changes, be used for a Saturn or Uranus mission.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Environmental Effects § 971.600... in a significant adverse environmental effect. In addition, each permit issued must contain TCRs... (section 109(b)), to prevent a significant adverse environmental effect. Furthermore, each permit issued...
Breakthrough Science Enabled by Regular Access to Orbits Beyond Earth
NASA Astrophysics Data System (ADS)
Gorjian, V.
2018-02-01
Regular launches to the Deep Space Gateway (DSG) will enable smallsats to access orbits not currently easily available to low cost missions. These orbits will allow great new science, especially when using the DSG as an optical hub for downlink.
Methods & Strategies: Deep Assessment
ERIC Educational Resources Information Center
Haas, Alison; Hollimon, Shameka; Lee, Okhee
2015-01-01
The "Next Generation Science Standards" ("NGSS") push students to have "a deeper understanding of content" (NGSS Lead States 2013, Appendix A, p. 4). However, with the reality of high-stakes assessments that rely primarily on multiple-choice questions, how can a science teacher analyze students' written responses…
Professional Development Leadership and the Diverse Learner. Issues in Science Education.
ERIC Educational Resources Information Center
Rhoton, Jack, Ed.; Bowers, Patricia, Ed.
This book focuses on the professional development of teachers and discusses issues related to science education reform. The content of the book is divided into two parts. Part 1, Professional Development: Implications for Science Leadership, chapters include: (1) "The Role of the Science Leader in Implementing Standards-Based Science Programs"…
NASA Astrophysics Data System (ADS)
Buck, Gayle A.
1998-12-01
The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the roles and responsibilities of the partners, (c) a clear and understandable goal, and (d) time to collaborate. If not addressed, these are the issues that may prohibit the establishment of a successful collaboration, thus affecting the development of a top quality middle childhood science teacher education program.
Useful theories make predictions.
Howes, Andrew
2012-01-01
Stephen and Van Orden (this issue) propose that there is a complex system approach to cognitive science, and collectively the authors of the papers presented in this issue believe that this approach provides the means to drive a revolution in the science of the mind. Unfortunately, however illuminating, this explanation is absent and hyperbole is all too extensive. In contrast, I argue (1) that dynamic systems theory is not new to cognitive science and does not provide a basis for a revolution, (2) it is not necessary to reject cognitive science in order to explain the constraints imposed by the body and the environment, (3) it is not necessary, as Silberstein and Chemero (this issue) appear to do, to reject cognitive science in order to explain consciousness, and (4) our understanding of pragmatics is not advanced by Gibbs and Van Orden's (this issue) "self-organized criticality".? Any debate about the future of cognitive science could usefully focus on predictive adequacy. Unfortunately, this is not the approach taken by the authors of this issue. Copyright © 2012 Cognitive Science Society, Inc.
The deep underground science and engineering laboratory at Homestake
NASA Astrophysics Data System (ADS)
Lesko, Kevin T.
2009-06-01
The US National Science Foundation and the US underground science community are well into the campaign to establish a world-class, multi-disciplinary deep underground science and engineering laboratory — DUSEL. The NSF's review committee, following the first two NSF solicitations, selected Homestake as the prime site to be developed into an international, multidisciplinary, world-class research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer of the former Homestake Gold Mine and has initiated re-entry and rehabilitation of the facility to host a modest interim science program with state funds and those from a substantial philanthropic donor. I review the scientific case for DUSEL and the progress in developing the preliminary design of DUSEL in Homestake and the initial suite of experiments to be funded along with the facility.
The Deep Underground Science and Engineering Laboratory at Homestake
NASA Astrophysics Data System (ADS)
Lesko, Kevin T.
2009-12-01
The US National Science Foundation and the US underground science community are well into the campaign to establish a world-class, multi-disciplinary deep underground science and engineering laboratory—DUSEL. The NSF's review committee, following the first two NSF solicitations, selected Homestake as the prime site to be developed into an international, multidisciplinary, world-class research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at different depths to satisfy the research requirements for the coming decades. The State of South Dakota demonstrates remarkable support for the project and has secured the site with the transfer of the former Homestake Gold Mine and has initiated re-entry and rehabilitation of the facility to host a modest interim science program with state funds and those from a substantial philanthropic donor. I review the scientific case for DUSEL and the progress in developing the preliminary design of DUSEL in Homestake and the integrated suite of experiments to be funded along with the facility.
NASA Astrophysics Data System (ADS)
Loehr, John Francis
The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.
ERIC Educational Resources Information Center
Shively, Christopher
2013-01-01
The National Science Education Standards (NSES) state that students must "experience scientific inquiry directly to gain a deep understanding of its characteristics" (Olson & Loucks-Horsley, 2000, p. 14). The standards also emphasize the use of technology to help students collect, organize, analyze, interpret and present data in ways…
NASA Technical Reports Server (NTRS)
Buckles, B. J.
1981-01-01
The Radio Science experiments at Voyager 1 Saturn encounter which included two atmospheric occultations, a planetary ring occultation, and ring scattering experiment were supported by Deep Space Stations in Australia (DSS 43) and Spain (DSS 63). The DSN Radio Science System data flow from receipt of the radio signals at the antenna to delivery of the recorded data to the project are described.
Using Science as a Motivator for Underperforming Students: A Personal Story
ERIC Educational Resources Information Center
McGee, Christy D.
2012-01-01
In this article, the author shares the story about her son who has advanced intellectual ability and how she used science to motivate him. She says for advanced learners, the study of science encourages them to ask those deep questions without feeling as though they are out of step with their peers. Parents can support their children's natural…
NASA Astrophysics Data System (ADS)
Dooley, J.
2013-12-01
In the high-stakes-testing world of one-size-fits-most educational practices, it is often the needs of the most able students that are unmet, yet these high ability learners can benefit greatly from exploration in the area of polar science. With school schedules and budgets already stretched to the breaking point and Common Core (CCSS) subjects are the focus, very few resources remain for topics considered by some as unimportant. Polar and climate science are prime examples. Here, a council member of Polar Educators International and Gifted Education Teacher, shares resources and ideas to engage this unique group of students and others. She draws from experiences and knowledge gained through ANDRILL's Arise Educator program, IPY Oslo and Montreal PolarEDUCATOR workshops, and Consortium for Ocean Leadership's Deep Earth Academy. Topics include School-wide Enrichment through use of ANDRILL's Flexhibit material and participation in Antarctica Day, afterschool Deep Freeze clubs that presented in public outreach venues for polar science events at the Maryland Science Center in Baltimore and NYC's Museum of Natural History, group project work using IODP core data from Antarctica, interaction with polar scientists via Skype, and other projects.
Visualization experiences and issues in Deep Space Exploration
NASA Technical Reports Server (NTRS)
Wright, John; Burleigh, Scott; Maruya, Makoto; Maxwell, Scott; Pischel, Rene
2003-01-01
The panelists will discuss their experiences in collecting data in deep space, transmitting it to Earth, processing and visualizing it here, and using the visualization to drive the continued mission. This closes the loop, making missions more responsive to their environment, particularly in-situ operations on planetary surfaces and within planetary atmospheres.
ERIC Educational Resources Information Center
Ohlsson, Stellan; Cosejo, David G.
2014-01-01
The problem of how people process novel and unexpected information--"deep learning" (Ohlsson in "Deep learning: how the mind overrides experience." Cambridge University Press, New York, 2011)--is central to several fields of research, including creativity, belief revision, and conceptual change. Researchers have not converged…
How Enterprise Education Can Promote Deep Learning to Improve Student Employability
ERIC Educational Resources Information Center
Moon, Rob; Curtis, Vic; Dupernex, Simon
2013-01-01
This paper focuses on identifying the approaches students take to their learning, with particular regard to issues of enterprise, entrepreneurship and innovation when comparing the traditional lecture format to a more applied, practice-based case study format. The notions of deep and surface learning are used to explain student learning. More…
Who Prophets from Big Data in Education? New Insights and New Challenges
ERIC Educational Resources Information Center
Lynch, Collin F.
2017-01-01
Big Data can radically transform education by enabling personalized learning, deep student modeling, and true longitudinal studies that compare changes across classrooms, regions, and years. With these promises, however, come risks to individual privacy and educational validity, along with deep policy and ethical issues. Education is largely a…
Challenges and Opportunities for Education about Dual Use Issues in the Life Sciences
ERIC Educational Resources Information Center
National Academies Press, 2011
2011-01-01
The Challenges and Opportunities for Education About Dual Use Issues in the Life Sciences workshop was held to engage the life sciences community on the particular security issues related to research with dual use potential. More than 60 participants from almost 30 countries took part and included practicing life scientists, bioethics and…
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Issue 3, March Issue 2, February Issue 1, January A U.S. Department of Energy National Laboratory
Yes! There are resilient generalizations (or "laws") in ecology.
Linquist, Stefan; Gregory, T Ryan; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Cottenie, Karl
2016-06-01
ABSTRACT It is often argued that ecological communities admit of no useful generalizations or "laws" because these systems are especially prone to contingent historical events. Detractors respond that this argument assumes an overly stringent definition of laws of nature. Under a more relaxed conception, it is argued that ecological laws emerge at the level of communities and elsewhere. A brief review of this debate reveals an issue with deep philosophical roots that is unlikely to be resolved by a better understanding of generalizations in ecology. We therefore propose a strategy for transforming the conceptual question about the nature of ecological laws into a set of empirically tractable hypotheses about the relative re- silience of ecological generalizations across three dimensions: taxonomy, habitat type, and scale. These hypotheses are tested using a survey of 240 meta-analyses in ecology. Our central finding is that generalizations in community ecology are just as prevalent and as resilient as those in population or ecosystem ecology. These findings should help to establish community ecology as a generality-seeking science as opposed to a science of case studies. It also supports the capacity for ecologists, working at any of the three levels, to inform matters of public policy.
Rocket Science in 60 Seconds: Insulating NASA's New Deep-space Rocket
2018-02-09
Rocket Science in 60 Seconds gives you an inside look at work being done at NASA to explore deep space like never before. In the first episode, we take a look at the thermal protection application on the launch vehicle stage adapter for the first flight of NASA's new rocket, the Space Launch System. Engineer Amy Buck takes us behind the scenes at Marshall Space Flight Center in Huntsville, Alabama, for a peek at how she is helping build the rocket and protect it as extreme hot and cold collide during launch! For more information about SLS and the OSA, visit nasa.gov/sls.
The impact of economic issues on Nigerian health sciences libraries.
Belleh, G S; Akhigbe, O O
1991-01-01
Economic issues are among the most important factors affecting health sciences libraries in Nigeria. These issues are influenced by the political, cultural, geographic, and demographic characteristics of the country. Significant economic issues are the dependence of the national economy on a single commodity, large foreign debt and spiraling inflation, stringent foreign exchange control measures, and inadequate realization by authorities of the role and importance of health sciences libraries. With shrinking budgets, resources, and staff, health sciences libraries can neither grow nor afford library automation. Health sciences librarians must take initiatives for cooperative activities to increase and make the most of resources, pursue nontraditional methods of fund-raising, educate authorities about the role and importance of libraries, and develop and implement a plan for the development and growth of health sciences libraries in the country. PMID:1884083
Socioscientific Issues and Multidisciplinarity in School Science Textbooks
NASA Astrophysics Data System (ADS)
Morris, Helen
2014-05-01
The inclusion of socioscientific issues (SSIs) in the science curriculum is a well-established trend internationally. Apart from claims about its innate value, one of the rationales for this approach is its potential for helping to counter declining interest and participation. SSIs involve the use of science and are of interest to society, also raising ethical and moral dilemmas. Introducing such problems presents a significant and usually cross-disciplinary challenge to curriculum developers and teachers. The aim of this paper is to examine how this challenge has been met when judged against contemporary views of the issues concerned. It first explores how SSIs have been interpreted in an important and innovative science course for students aged 14-16 in England, entitled Twenty First Century Science. This paper analyses the Twenty First Century Science textbooks, focusing in detail on two SSIs, reproductive genetic technology and climate change. For each of these issues, the key ideas present in the social science literature surrounding the problems are outlined. This review is then used as an analytical framework to examine how the issues are presented in the textbooks. It is argued in this paper that the perspectives the textbooks take on these issues largely do not include perspectives from social science disciplines. It goes on to suggest that the development of future SSI-based curricula needs to take account of these wider, often interdisciplinary, perspectives.
School Culture: "The Hidden Curriculum." Issue Brief
ERIC Educational Resources Information Center
Jerald, Craig D.
2006-01-01
This is the sixth in a series of issue briefs to be written for The Center for Comprehensive School Reform and Improvement during 2006. The impact of organizational culture on student achievement is discussed in this issue brief. Gaining a deep understanding of what a strong, positive organizational culture looks like and how it works can help…
ERIC Educational Resources Information Center
Pegrum, Mark; Bartle, Emma; Longnecker, Nancy
2015-01-01
This paper examines the effect of a podcasting task on the examination performance of several hundred first-year chemistry undergraduate students. Educational researchers have established that a deep approach to learning that promotes active understanding of meaning can lead to better student outcomes, higher grades and superior retention of…
Deep drilling; Probing beneath the earth's surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, J.250
1991-06-01
This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.
Conceptual Tutoring Software for Promoting Deep Learning: A Case Study
ERIC Educational Resources Information Center
Stott, Angela; Hattingh, Annemarie
2015-01-01
The paper presents a case study of the use of conceptual tutoring software to promote deep learning of the scientific concept of density among 50 final year pre-service student teachers in a natural sciences course in a South African university. Individually-paced electronic tutoring is potentially an effective way of meeting the students' varied…
2009-04-01
primarily deep-water species ap- pear to exhibit high levels of fidelity to the islands, including rough-toothed dol- phins ( Steno bredanensis), and...and association patterns in a deep-water dolphin: Rough- toothed dolphins ( Steno bredanensis) in the Hawaiian Archipelago. Marine Mammal Science 24:535
NASA Technical Reports Server (NTRS)
1976-01-01
Various phases of planetary operations related to the Viking mission to Mars are described. Topics discussed include: approach phase, Mars orbit insertion, prelanding orbital activities, separation, descent and landing, surface operations, surface sampling and operations starting, orbiter science and radio science, Viking 2, Deep Space Network and data handling.
ERIC Educational Resources Information Center
Yochum, Hank; Vinion-Dubiel, Arlene; Granger, Jill; Lindsay, Lynne; Maass, Teresa; Mayhew, Sarah
2013-01-01
Engaging children in authentic investigation opens the doors for them to gain deep conceptual understanding in science. As students engage in investigation, they experience the practices employed by scientists and engineers, as highlighted in the Next Generation Science Standards (Achieve Inc. 2013). They also begin to understand the nature of…
Methodology issues in implementation science.
Newhouse, Robin; Bobay, Kathleen; Dykes, Patricia C; Stevens, Kathleen R; Titler, Marita
2013-04-01
Putting evidence into practice at the point of care delivery requires an understanding of implementation strategies that work, in what context and how. To identify methodological issues in implementation science using 4 studies as cases and make recommendations for further methods development. Four cases are presented and methodological issues identified. For each issue raised, evidence on the state of the science is described. Issues in implementation science identified include diverse conceptual frameworks, potential weaknesses in pragmatic study designs, and the paucity of standard concepts and measurement. Recommendations to advance methods in implementation include developing a core set of implementation concepts and metrics, generating standards for implementation methods including pragmatic trials, mixed methods designs, complex interventions and measurement, and endorsing reporting standards for implementation studies.
Bookwatch: A Candid Review of Science Textbooks. Volume I, February-December 1988.
ERIC Educational Resources Information Center
Mayer, William V., Ed.; Bennetta, William J., Ed.
1988-01-01
Each issue in this set of newsletters is devoted exclusively to reviews of a science textbook. Each text is reviewed by two scientists and one science educator. Textbooks reviewed by issue are: (1) "Scott, Foresman Biology" (1988); (2) "Heath Life Science" (1987); (3) "Prentice-Hall Biology" (1987); (4) "Scott, Foresman Life Science" (1987); (5)…
Low Cost Electric Propulsion Thruster for Deep Space Robotic Science Missions
NASA Technical Reports Server (NTRS)
Manzella, David
2008-01-01
Electric Propulsion (EP) has found widespread acceptance by commercial satellite providers for on-orbit station keeping due to the total life cycle cost advantages these systems offer. NASA has also sought to benefit from the use of EP for primary propulsion onboard the Deep Space-1 and DAWN spacecraft. These applications utilized EP systems based on gridded ion thrusters, which offer performance unequaled by other electric propulsion thrusters. Through the In-Space Propulsion Project, a lower cost thruster technology is currently under development designed to make electric propulsion intended for primary propulsion applications cost competitive with chemical propulsion systems. The basis for this new technology is a very reliable electric propulsion thruster called the Hall thruster. Hall thrusters, which have been flown by the Russians dating back to the 1970s, have been used by the Europeans on the SMART-1 lunar orbiter and currently employed by 15 other geostationary spacecraft. Since the inception of the Hall thruster, over 100 of these devices have been used with no known failures. This paper describes the latest accomplishments of a development task that seeks to improve Hall thruster technology by increasing its specific impulse, throttle-ability, and lifetime to make this type of electric propulsion thruster applicable to NASA deep space science missions. In addition to discussing recent progress on this task, this paper describes the performance and cost benefits projected to result from the use of advanced Hall thrusters for deep space science missions.
Evaluating the Usability of a Professional Modeling Tool Repurposed for Middle School Learning
NASA Astrophysics Data System (ADS)
Peters, Vanessa L.; Songer, Nancy Butler
2013-10-01
This paper reports the results of a three-stage usability test of a modeling tool designed to support learners' deep understanding of the impacts of climate change on ecosystems. The design process involved repurposing an existing modeling technology used by professional scientists into a learning tool specifically designed for middle school students. To evaluate usability, we analyzed students' task performance and task completion time as they worked on an activity with the repurposed modeling technology. In stage 1, we conducted remote testing of an early modeling prototype with urban middle school students (n = 84). In stages 2 and 3, we used screencasting software to record students' mouse and keyboard movements during collaborative think-alouds (n = 22) and conducted a qualitative analysis of their peer discussions. Taken together, the study findings revealed two kinds of usability issues that interfered with students' productive use of the tool: issues related to the use of data and information, and issues related to the use of the modeling technology. The study findings resulted in design improvements that led to stronger usability outcomes and higher task performance among students. In this paper, we describe our methods for usability testing, our research findings, and our design solutions for supporting students' use of the modeling technology and use of data. The paper concludes with implications for the design and study of modeling technologies for science learning.
NASA Astrophysics Data System (ADS)
Dong, Shaochun; Xu, Shijin; Lu, Xiancai
2009-06-01
Educators around the world are striving to make science more accessible and relevant to students. Online instructional resources have become an integral component of tertiary science education and will continue to grow in influence and importance over the coming decades. A case study in the iterative improvement of the online instructional resources provided for first-year undergraduates taking " Introductory Earth System Science" at Nanjing University in China is presented in this paper. Online instructional resources are used to conduct a student-centered learning model in the domain of Earth system science, resulting in a sustainable online instructional framework for students and instructors. The purpose of our practice is to make Earth system science education more accessible and exciting to students, changing instruction from a largely textbook-based teacher-centered approach to a more interactive and student-centered approach, and promoting the integration of knowledge and development of deep understanding by students. Evaluation on learning performance and learning satisfaction is conducted to identify helpful components and perception based on students' learning activities. The feedbacks indicate that the use of online instructional resources has positive impacts on mitigating Earth system science education challenges, and has the potential to promote deep learning.
Mental Disorder-The Need for an Accurate Definition.
Telles-Correia, Diogo; Saraiva, Sérgio; Gonçalves, Jorge
2018-01-01
There are several reasons why a definition for mental disorder is essential. Among these are not only reasons linked to psychiatry itself as a science (nosology, research) but also to ethical, legal, and financial issues. The first formal definition of mental disorder resulted from a deep conceptual analysis led by Robert Spitzer. It emerged to address several challenges that psychiatry faced at the time, namely to serve as the starting point for an atheoretical and evidence-based classification of mental disorders, to justify the removal of homosexuality from classifications, and to counter the arguments of antipsychiatry. This definition has been updated, with some conceptual changes that make it depart from the main assumptions of Spitzer's original definition. In this article, we intend to review the factors that substantiated the emergence of the first formal definition of mental disorder that based all its later versions.
James Webb Space Telescope Ka-Band Trade
NASA Technical Reports Server (NTRS)
Gal-Edd, Jonathan; Luers, Ed
2004-01-01
In August 2003 James Webb Space Telescope (JWST) had its Initial Review Confirmation Assessment Briefing with NASA HQ management. This is a major milestone as the project was approved to proceed from Phase A to B, and NASA will commit funds for the project towards meeting its science goals from the Earth-Sun s Lagrange 2 (L2) environment. At this briefing, the Project was asked, "to take another look" into using, the JPL s Deep Space Network (DSN) as the provider of ground stations and evaluate other ground station options. The current operations concept assumes S-band and X-band communications with a daily &hour contact using the DSN with the goal of transmitting over 250 Gigabit (Gb) of data to the ground. The Project has initiated a trade study to look at this activity, and we would like to share the result of the trade in the conference. Early concept trades tends to focus on the "normal" operation mode of supporting telemetry (science and engineering), command and radio metrics. Entering the design phase, we find that we have the unique ranging requirement for our L2 orbit using alternating ground stations located in different hemispheres. The trade must also address emergency operations (which are covered when using the DSN). This paper describes the issues confronting this Project and how the DSN and the JWST Project are working together to find an optimized approach for meeting these issues. We believe this trade is of major interest for future Code S and other L2 missions in that JWST will set the standard.
NASA Astrophysics Data System (ADS)
Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na
2016-05-01
Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.
The Science of Addiction: Drugs, Brains, and Behavior
... Issue Past Issues The Science of Addiction: Drugs, Brains, and Behavior Past Issues / Spring 2007 Table of ... Americans understand addiction as a chronic but treatable brain disease. The eye-opening documentary, Addiction , first aired ...
Education in Marine Science and Technology--Historical and Current Issues.
ERIC Educational Resources Information Center
Abel, Robert B.
This review of marine science and technology education and related issues was presented to the American Association for the Advancement of Science, December 27, 1967. Areas reviewed include manpower supply and demand, oceanography education history, oceanography and the social sciences, training of technicians, the ocean engineer, education for…
Science and Society: Knowing, Teaching, Learning. Bulletin 57.
ERIC Educational Resources Information Center
Charles, Cheryl, Ed.; Samples, Bob, Ed.
The document presents 12 essays dealing with social implications of science-related issues. Intended for use by social studies/social science educators, the book focuses on curriculum, instruction, and learning environments as well as on intellectual issues related to science and society. The essays are organized into four sections. Section I…
Avoiding the Issue of Gender in Japanese Science Education
ERIC Educational Resources Information Center
Scantlebury, Kathryn; Baker, Dale; Sugi, Ayumi; Yoshida, Atsushi; Uysal, Sibel
2007-01-01
This paper describes how the patriarchal structure of Japanese society and its notions of women, femininity, and gendered stereotypes produced strong cultural barriers to increasing the participation of females in science education. Baseline data on attitudes toward science and the perceptions of gender issues in science education, academic major…
Critical Issues in Empirical Human Science: The Contribution of Phenomenology.
ERIC Educational Resources Information Center
Sexton-Hesse, Charlene A.
Issues that are central to science when the object of inquiry is the human being need clarification and analysis. These issues can be formulated as a question, such as, "How can researchers in adult and continuing education conduct research that is empirical human science; that is, how can they study human beings as persons with values, will,…
Analysis of large optical ground stations for deep-space optical communications
NASA Astrophysics Data System (ADS)
Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.
2017-11-01
Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the performance. The different configurations are compared from the technical point of view, taking into account the effect of atmospheric conditions. Finally a very preliminary cost analysis for a large aperture OGS is presented.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Yuen, Joseph H. (Editor)
1996-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). TMOD also performs work funded by other NASA program offices through and with the cooperation of OSC. The first of these is the Orbital Debris Radar Program funded by the Office of Space Systems Development. It exists at Goldstone only and makes use of the planetary radar capability when the antennas are configured as science instruments making direct observations of the planets, their satellites, and asteroids of our solar system. The Office of Space Sciences funds the data reduction and science analyses of data obtained by the Goldstone Solar System Radar. The antennas at all three complexes are also configured for radio astronomy research and, as such, conduct experiments funded by the National Science Foundation in the U.S. and other agencies at the overseas complexes. These experiments are either in microwave spectroscopy or very long baseline interferometry. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve TMOD are included. This and each succeeding issue of 'The Telecommunications and Data Acquisition Progress Report' will present material in some, but not necessarily all, of the aforementioned programs.
[Italy of miracles. Does the renaissaince of Italian science pass by the Vatican?].
Naldi, Luigi
2016-03-01
In a commentary published in The Lancet on January 2016, Giuseppe Remuzzi and Richard Horton, analyse the origin of the decline of the Italian primacy in biomedical science. Among the others, the existence of Italian political groups «which oppose science simply to please the Church and to achieve political gain» was considered as detrimental for advancing research in such areas as assisted reproduction or embryonic stem cell research. Some hope for a change is raised, in the opinion of Remuzzi and Horton, by the more open attitude toward science of pope Francis. Hence, the two authors conclude that the time has come to promote a dialogue between Italian scientists and the Vatican and, by that, to see «if conditions are ripe to create a renaissance in Italian intellectual life». I humbly challange the analyses and conclusions of Remuzzi and Horton on the Italian scientific decline and the possible way forward. The rooth of the Italian decline in science are deep-seated into the chronic lack of resources, into the under-development of academic institutions, and into the lack of motivations for young researchers. As for bioethical paradigms, they are the end result of a co-production between social norms and scientific development, and their definition would ideally involve the participation of large sectors of the society. One example of such a process is offered by the "Les Etats généraux de la bioéthique" in France in 2009. The ethical discussion concerning biotech innovations is not limited to theological issues, but involves social aspects such as public health priorities, equity, and information strategies to avoid creating unrealistic expectations.
Strategic Science for Coral Ecosystems 2007-2011
,
2010-01-01
Shallow and deep coral ecosystems are being imperiled by a combination of stressors. Climate change, unsustainable fishing practices, and disease are transforming coral communities at regional to global scales. At local levels, excessive amounts of sediments, nutrients, and contaminants are also impacting the many benefits that healthy coral ecosystems provide. This Plan, Strategic Science for Coral Ecosystems, describes the information needs of resource managers and summarizes current research being conducted by U.S. Geological Survey (USGS) scientists and partners. It outlines important research actions that need to be undertaken over the next five years to achieve more accurate forecasting of future conditions and develop more effective decision-support tools to adaptively manage coral ecosystems. The overarching outcome of this Plan, if fully implemented, would be in transferring relevant knowledge to decision-makers, enabling them to better protect and sustain coral ecosystem services. These services include sources of food, essential habitat for fisheries and protected species, protection of coastlines from wave damage and erosion, recreation, and cultural values for indigenous communities. The USGS has a long history of research and monitoring experience in studying ancient and living coral communities and serving many stakeholders. The research actions in this Plan build on the USGS legacy of conducting integrated multidisciplinary science to address complex environmental issues. This Plan is responsive to Federal legislation and authorities and a variety of external and internal drivers that include the President's Ocean Action Plan, the recommendations of the Coral Reef Task Force, the information needs of Bureaus in the Department of Interior, the USGS Bureau Science Strategy (USGS 2007) and the formal plans of several USGS Programs. To achieve this Plan's desired outcomes will require increased funding and more effective coordination and collaboration among USGS managers and scientists within a national and international framework of partnerships in coral ecosystem science.
Study on super-long deep-hole drilling of titanium alloy.
Liu, Zhanfeng; Liu, Yanshu; Han, Xiaolan; Zheng, Wencui
2018-01-01
In this study, the super-long deep-hole drilling of a titanium alloy was investigated. According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy's machining were also evaluated. Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.
ERIC Educational Resources Information Center
Settelmaier, Elisabeth
Traditionally, many science educators have taught science without addressing ethical questions. However, the inclusion of moral discourse in science teaching may help educators to bring to the fore problematic issues in relation to science, and it may offer an opportunity for students to practice their future engagement in the public discourse…
ERIC Educational Resources Information Center
Genel, Abdulkadir; Topçu, Mustafa Sami
2016-01-01
Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…
Saudi Science Teachers' Views and Teaching Strategies of Socioscientific Issues
NASA Astrophysics Data System (ADS)
Alamri, Aziz S.
Scientific developments such as cloning and nuclear energy have generated many controversial issues pertain to many political, social, environmental, ethical and cultural values in different societies around the globe. These controversies delimited and encircled the potential of including and teaching some important aspects of science in schools and therefore caused less consideration to the influence of these issues on enhancing the scientific literacy of people in general. The purpose of this study was to investigate how Saudi science teachers in the city of Tabuk in Saudi Arabia view and teach SSI in Saudi Arabia. This study employed semi-structured interviews with Saudi science teachers. Methodologically, this study used a constructivist grounded theory as a method for analysis to generate in-depth descriptive data about Saudi science teachers' views and teaching strategies of socio-scientific issues. Some direct and indirect benefits pertain to teaching science, understanding the relationship between science, religion, and society and some other topics are discussed in this study.
Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D
2008-05-01
A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.
78 FR 40396 - Safety Zone; America's Cup Safety Zone and No Loitering Area, San Francisco, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
... were issued for this series of races. Only after the Coast Guard learned that the racing vessels.... Additionally, members of the deep-draft commercial shipping community raised concerns pertaining to the... associated with the viewing of the America's Cup in vicinity of buoys ``1'' and ``2'', marking the deep water...
Scharpf, Danielle Teresa; Sharma, Mayur; Deogaonkar, Milind; Rezai, Ali; Bergese, Sergio D
2015-08-01
The field of functional neurosurgery has expanded in last decade to include newer indications, new devices, and new methods. This advancement has challenged anesthesia providers to adapt to these new requirements. This review aims to discuss the nuances and practical issues that are faced while administering anesthesia for deep brain stimulation surgery.
NASA Astrophysics Data System (ADS)
Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.
2017-04-01
The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.
ERIC Educational Resources Information Center
Lingvay, Mónika; Timofte, Roxana S.; Ciascai, Liliana; Predescu, Constantin
2015-01-01
Development of pupils' deep learning approach is an important goal of education nowadays, considering that a deep learning approach is mediating conceptual understanding and transfer. Different performance at PISA tests of Romanian and Hungarian pupils cause us to commence a study for the analysis of learning approaches employed by these pupils.…
ERIC Educational Resources Information Center
Peng, Ren
2017-01-01
To promote graduate students' active learning, deep reading of high quality papers was done by graduate students enrolled in biochemistry and microbiology pharmacy curriculum offered by college of life science, Jiangxi Normal University from 2013 to 2015. The number of graduate students, who participated in the course in 2013, 2014, and 2015 were…
Examining Learning Approaches of Science Student Teachers According to the Class Level and Gender
ERIC Educational Resources Information Center
Tural Dincer, Guner; Akdeniz, Ali Riza
2008-01-01
There are many factors influence the level of students' achievement in education. Studies show that one of these factors is "learning approach of a student". Research findings generally have identified two approaches of learning: deep and surface. When a student uses the deep approach, he/she has an intrinsic interest in subject matter and is…
Deep Impact: 19 gigajoules can make quite an impression
NASA Technical Reports Server (NTRS)
Kubitschek, D.; Bank, T.; Frazier, W.; Blume, W.; Null, G.; Mastrodemos, N.; Synnott, S.
2001-01-01
Deep Impact will impact the comet Tempel-1 on July 4, 2005. The impact event will be clearly visible from small telescopes on Earth, especially in the IR bands. When combined with observations taken from the Flyby spacecraft, this science data set will provide unique insight into the materials and structure within the comet, and the strength of the surface.
NASA Astrophysics Data System (ADS)
Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.
2018-01-01
Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.
The Contemporary Issues Module: Its Use in the Science Methods Class
ERIC Educational Resources Information Center
Kuhn, David J.
1973-01-01
Author conducts preservice education for science teachers by engaging students in modules stressing contemporary issues. Basic features of the modules include providing individualized instruction and stressing the interdisciplinary aspects of pure applied and social sciences. (PS)
CDC Vital Signs: Prescription Painkiller Overdoses (Methadone)
... or www.samhsa.gov/treatment/ ). Top of Page Science Behind the Issue MMWR Science Clips Related Pages Vital Signs Issue details: Morbidity ... factsheet [PDF – 1.34 MB] Read the MMWR Science Clips File Formats Help: How do I view ...
Science/Technology/Society: Model Lessons for Secondary Science Classes.
ERIC Educational Resources Information Center
Pearson, Janice V., Ed.
This volume contains 35 lessons designed to be used in secondary science classes to introduce the science/technology/society (STS) themes and issues. While the first 11 lessons focus on general STS themes, the other 24 lessons cover specific STS issues that fall under such categories as population growth, water resources, world hunger, food…
Domesticating Biotechnology: How London's Science Museum Has Framed the Controversy.
ERIC Educational Resources Information Center
Levidow, Les
1998-01-01
Exhibits in London's Science Museum are critiqued in this discussion of the problem of balance in presenting controversial issues in museum exhibits. Science museums claim to portray controversial issues in a neutral manner, but neutrality is impossible. Asks how science museums can involve visitors in the controversy and how the museum's role can…
How Science, Technology and Society Issues Are Presented in Science Textbooks.
ERIC Educational Resources Information Center
Hamm, Mary; Adams, Dennis
1988-01-01
Ten science textbooks (4,393 pages) for grades 6 and 7 were examined for their treatment of five top-ranked global problem issues (population growth, war technology, world hunger and food resources, air quality and atmosphere, and water resources). Implications for science education curricula from this content analysis are discussed. (SLD)
Science is Elementary, A Science Teaching Resource Publication, 1992-1993.
ERIC Educational Resources Information Center
Science is Elementary, 1993
1993-01-01
These resource magazines for K-6 educators are published to promote the teaching of science, mathematics, and technology through participatory, inquiry-based methods. Each issue provides resources and hands-on activities for educators that focus on one theme. Issues in volume 5 cover the themes of geology, math and science integration, tropical…
Drummond, Caitlin; Fischhoff, Baruch
2017-09-05
Although Americans generally hold science in high regard and respect its findings, for some contested issues, such as the existence of anthropogenic climate change, public opinion is polarized along religious and political lines. We ask whether individuals with more general education and greater science knowledge, measured in terms of science education and science literacy, display more (or less) polarized beliefs on several such issues. We report secondary analyses of a nationally representative dataset (the General Social Survey), examining the predictors of beliefs regarding six potentially controversial issues. We find that beliefs are correlated with both political and religious identity for stem cell research, the Big Bang, and human evolution, and with political identity alone on climate change. Individuals with greater education, science education, and science literacy display more polarized beliefs on these issues. We find little evidence of political or religious polarization regarding nanotechnology and genetically modified foods. On all six topics, people who trust the scientific enterprise more are also more likely to accept its findings. We discuss the causal mechanisms that might underlie the correlation between education and identity-based polarization.
Sandifer, Paul A; Trtanj, Juli M; Collier, Tracy K
2013-05-01
We review recent history and evolution of Oceans and Human Health programs and related activities in the USA from a perspective within the Federal government. As a result of about a decade of support by the US Congress and through a few Federal agencies, notably the National Science Foundation, National Institute of Environmental Health Sciences, and National Ocean and Atmospheric Administration, robust Oceans and Human Health (OHH) research and application activities are now relatively widespread, although still small, in a number of agencies and academic institutions. OHH themes and issues have been incorporated into comprehensive federal ocean research plans and are reflected in the new National Ocean Policy enunciated by Executive Order 13547. In just a decade, OHH has matured into a recognized "metadiscipline," with development of a small, but robust and diverse community of science and practice, incorporation into academic educational programs, regular participation in ocean and coastal science and public health societies, and active engagement with public health decision makers. In addition to substantial increases in scientific information, the OHH community has demonstrated ability to respond rapidly and effectively to emergency situations such as those associated with extreme weather events (e.g., hurricanes, floods) and human-caused disasters (e.g., the Deep Water Horizon oil spill). Among many other things, next steps include development and implementation of agency health strategies and provision of specific services, such as ecological forecasts to provide routine early warnings for ocean health threats and opportunities for prevention and mitigation of these risks.
NASA Astrophysics Data System (ADS)
Moussas, X.; Coustenis, A.; Solomonidou, A.; Bampasidis, G.; Bratsolis, E.; Stamogiorgos, S.
2012-04-01
People have always been charmed by the beauty of the starry sky, the Sun, the Moon, the planets, the Solar System and the mystery of the birth and the evolution of the Cosmos. As the deep space is believed to be the only territory unexplored by the mankind, the humanity has always been looking forward to the discoveries of Space Science. However, due to the complicated character of modern Science and Technology, people usually are alienated from scientific issues. Dealing with this situation, the Space Group of the National and Kapodistrian University of Athens in collaboration with LESIA of the Observatoire de Paris-Meudon, have been performing several campaigns to raise the public awareness of Science and Astronomy with emphasis to the Solar System exploration. The Space Group of the University of Athens has scientific impact in both the Space Physics field and the public outreach of Astronomy throughout Europe, Northern Africa and the United States of America. Using the Antikythera Mechanism as central object and as a great attractor of children and the general public to astronomy and even philosophy, we have performed numerous outreach activities focalized on the general audience in order to conceptualize astronomical phenomena and change their prior usually not very clear knowledge and intuition. These Solar System events, conducted by our Group, help young people to develop their critical thinking, self-expression and creative talents and eventually to love astronomy and to develop an interest the planets. Their introduction into the space field seems essential for cultivation of these skills.
The Possibility of a Contracting Science
1986-12-01
SCIENCE 58 G. SUMMARY 59 IV. SOCIAL SCIENCE ISSUES 61 A. INTRODUCTION 61 B. EVOLUTION 62 C. BEHAVIORAL SCIENCE ISSUES 66 D. ACHIEVEMENTS OF SCIENCE 7 6 E...for this phase. The second phase involved the selection and examination of disciplines in the social science field that had gone 14 through or were...environmental abuses, promote health, education and scientific progress, assimilate 24 underprivileged groups into the mainstream of social life and so on
Moving Apart and Coming Together: Discourse, Engagement, and Deep Learning
ERIC Educational Resources Information Center
Gomoll, Andrea S.; Hmelo-Silver, Cindy E.; Tolar, Erin; Šabanovic, Selma; Francisco, Matthew
2017-01-01
An important part of "doing" science is engaging in collaborative science practices. To better understand how to support these practices, we need to consider how students collaboratively construct and represent shared understanding in complex, problem-oriented, and authentic learning environments. This research presents a case study…
A Model of Effective Teaching in Arts, Humanities, and Social Sciences
ERIC Educational Resources Information Center
Tahir, Khazima; Ikram, Hamid; Economos, Jennifer; Morote, Elsa-Sophia; Inserra, Albert
2017-01-01
The purpose of this study was to examine how graduate students with undergraduate majors in arts, humanities, and social sciences perceived individualized consideration, Student-Professor Engagement in Learning (SPEL), intellectual stimulation, and student deep learning, and how these variables predict effective teaching. A sample of 251 graduate…
Using a Water Purification Activity to Teach the Philosophy and Nature of Technology
ERIC Educational Resources Information Center
Kruse, Jerrid; Wilcox, Jesse
2017-01-01
Next Generation Science Standards (NGSS), with new emphasis on engineering, reflects broadening definitions of scientific and technological literacy. However, engaging in science and engineering practices is necessary, but insufficient, for developing technological literacy. Just as robust scientific literacy includes a deep understanding of the…
ERIC Educational Resources Information Center
Campbell, Ashley
2012-01-01
Engaging students in the study of genetics is essential to building a deep understanding of heredity, a core idea in the life sciences (NRC 2012). By integrating into the curriculum the stories of famous scientists who studied genetics (e.g., Mendel, Franklin, Watson, and Crick), teachers remind their students that science is a human endeavor.…
75 FR 38079 - National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... Board (SAB) AGENCY: Office of Oceanic and Atmospheric Research (OAR), National Oceanic and Atmospheric... Atmosphere on strategies for research, education, and application of science to operations and information... Deep Water Horizon Oil Spill in the Gulf of Mexico; (2) Grand Scientific Challenges: Results From the...
ERIC Educational Resources Information Center
Murphy, Phil
2012-01-01
A very limited questioning of undergraduate Environmental Science students at the start of their studies suggests the age of the Earth is being successfully taught in high schools. The same cannot be said for the teaching of the structure of the Earth.
ERIC Educational Resources Information Center
Stapp, Alicia; Chessin, Debby; Deason, Rebecca
2018-01-01
The authors represent the life cycle of the butterfly through writing, drawing, dance, and math. The Next Generation Science Standards (NGSS) (NGSS Lead States 2013) emphasize college and career readiness as well as critical thinking and problem-solving skills. Students must develop a deep understanding of science concepts and engage in scientific…
Reducing cost with autonomous operations of the Deep Space Network radio science receiver
NASA Technical Reports Server (NTRS)
Asmar, S.; Anabtawi, A.; Connally, M.; Jongeling, A.
2003-01-01
This paper describes the Radio Science Receiver system and the savings it has brought to mission operations. The design and implementation of remote and autonomous operations will be discussed along with the process of including user feedback along the way and lessons learned and procedures avoided.
DCO-VIVO: A Collaborative Data Platform for the Deep Carbon Science Communities
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, Y.; West, P.; Erickson, J. S.; Ma, X.; Fox, P. A.
2014-12-01
Deep Carbon Observatory (DCO) is a decade-long scientific endeavor to understand carbon in the complex deep Earth system. Thousands of DCO scientists from institutions across the globe are organized into communities representing four domains of exploration: Extreme Physics and Chemistry, Reservoirs and Fluxes, Deep Energy, and Deep Life. Cross-community and cross-disciplinary collaboration is one of the most distinctive features in DCO's flexible research framework. VIVO is an open-source Semantic Web platform that facilitates cross-institutional researcher and research discovery. it includes a number of standard ontologies that interconnect people, organizations, publications, activities, locations, and other entities of research interest to enable browsing, searching, visualizing, and generating Linked Open (research) Data. The DCO-VIVO solution expedites research collaboration between DCO scientists and communities. Based on DCO's specific requirements, the DCO Data Science team developed a series of extensions to the VIVO platform including extending the VIVO information model, extended query over the semantic information within VIVO, integration with other open source collaborative environments and data management systems, using single sign-on, assigning of unique Handles to DCO objects, and publication and dataset ingesting extensions using existing publication systems. We present here the iterative development of these requirements that are now in daily use by the DCO community of scientists for research reporting, information sharing, and resource discovery in support of research activities and program management.
Stable architectures for deep neural networks
NASA Astrophysics Data System (ADS)
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
A. V. Peyve — the founder of the concept of deep faults
NASA Astrophysics Data System (ADS)
Sherman, S. I.
2009-03-01
The further development of Peyve’s concept of deep faults in the Earth’s crust and brittle part of the lithosphere is discussed. Three aspects are accentuated in this paper: (1) the modern definition of the term deep fault; (2) the parameters of deep faults as ruptures of the geological medium and three-dimensional, often boundary, geological bodies; and (3) reactivation of deep faults, including the development of this process in real time. Peyve’s idea of deep faults readily fitted into the concept of new global tectonics (plate tectonics). This was facilitated, first of all, by the extensive efforts made to elaborate Peyve’s ideas by a large group of researchers at the Geological Institute of the Russian Academy of Sciences (GIN RAS) and other scientists. At present, the term deep fault has been extended and transformed to cover three-dimensional geological bodies; the geological and geophysical properties and parameters of these bodies, as well as their reactivation (recurrent activation) in real time, have been studied.
System performance testing of the DSN radio science system, Mark 3-78
NASA Technical Reports Server (NTRS)
Berman, A. L.; Mehta, J. S.
1978-01-01
System performance tests are required to evaluate system performance following initial system implementation and subsequent modification, and to validate system performance prior to actual operational usage. Non-real-time end-to-end Radio Science system performance tests are described that are based on the comparison of open-loop radio science data to equivalent closed-loop radio metric data, as well as an abbreviated Radio Science real-time system performance test that validates critical Radio Science System elements at the Deep Space Station prior to actual operational usage.
[The new history of science: an interview with Dominique Pestre].
Pestre, Dominique; Romero, Mariza
2016-01-01
Originally a physicist, Dominique Pestre is now a leading historian of science, particularly in the realm of the transformations that have marked the history of science and technology in recent decades. In this interview, he offers some of his thoughts on the role of science and knowledge in our contemporary world. He underscores the deep bonds between scientific knowledge and political and economic power and makes clear society's participation in this production. Critical of the notion of progress, Pestre invites us to also take the prejudicial effects of science into account.
The Power and Pleasure of Visual Arts in Exploring Remote Environments
NASA Astrophysics Data System (ADS)
Robigou-Nelson, V.; Ellins, K. K.
2012-12-01
With society's dependence on technological and scientific advances comes the challenging responsibility of sharing scientific discoveries and issues in a manner that is accessible to public understanding. The proliferation of scientific topics and specializations combined with the fast pace of our modern lifestyle result in the public's lack of interest in, time for, and appreciation of complex material including science. Our overall quality of life, more than ever, depends on scientific literacy and placing the scientific process in a broader context relevant to everyone's everyday life. Associating science with artistic endeavors may offer the public less intimidating ways to appreciate science topics. It could also provide scientists and educators with more effective ways to engage audiences in science learning. The relationship between learning and the experience of art is not well understood but is currently a focus of research in neuroscience. What is known is that aesthetics inspire, inform and engage the emotions, which facilitates learning by choice and desire rather than by requirement and fear - unfortunately often associated with science education. Inspiration is an integral aspect of the scientific and artistic endeavor. It rewards scientist, artist and participant in artistic experiences with emotion for the activity they are involved in. It also motivates both professions to pursue career goals and often encourages avocational interests in non-experts. As scientists, artists and educators, the authors are interested in the impact that connections between the visual arts and research-based science can bring to science, technology, engineering and mathematics (STEM) education and public engagement. In this presentation, they discuss projects created by scientists exploring the deepest parts of the ocean and artists and exhibit designers whose collaborations bring scientific discoveries to the public. These projects skillfully link science and art to share the complexity of the geological and chemical processes at mid-ocean ridges and the beauty of marine organisms that thrive in the inhospitable seafloor environment to audiences that would never have access to such remote ecosystems. Examples include (1) a series of first-of-its-kind, high-impact films on deep-sea exploration produced in collaboration with masterful storytellers of the documentary (PBS-NOVA) and entertainment (IMAX) industries that captures the imagination of large audiences with stunning imagery, (2) the "Beyond the Edge of the Sea" traveling art exhibit that features watercolor illustrations of hydrothermal vents and immerses contemplative audiences deep into the intricacies of a painted subject and (3) a permanent exhibit centered on two iconic sulfide chimneys in the Gottesman Hall of Planet Earth at the American Museum of Natural History (AMNH) in New York City. Designed to encourage visitors to think like scientists, the interactive activities of the multimedia exhibit entrain hundreds of thousands of families and students of all ages to explore the question "Why is Earth habitable?"
Radio Science from an Optical Communications Signal
NASA Technical Reports Server (NTRS)
Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal
2013-01-01
NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.
2014-06-23
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, Heather Hava, who is working on a doctorate in aerospace engineering sciences at the University of Colorado Boulder, makes adjustments on a Remotely Operated Gardening Rover, or ROGR, which could tend plants on a deep-space habitat. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper
... Home Current Issue Past Issues Special Section CAM Acupuncture From Ancient Practice to Modern Science Past Issues / ... percent of U.S. adults use acupuncture. What Is Acupuncture? Dr. Adeline Ge adjusts placement of acupuncture needles ...
ExplorOcean H2O SOS: Help Heal the Ocean-Student Operated Solutions: Operation Climate Change
NASA Astrophysics Data System (ADS)
Weiss, N.; Wood, J. H.
2016-12-01
The ExplorOcean H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to ExplorOcean where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by ExplorOcean, including ExplorOcean's annual World Oceans Day Expo.
Heritage Science: A Future-Oriented Cross-Disciplinary Field.
Strlič, Matija
2018-06-18
"Heritage science is the study of interpretation and management of the material evidence of the humankind. It enables both society and individuals to exercise their right to cultural heritage and contributes to our understanding of who we are and our sense of place. Heritage science demonstrates its relevance to, as well as its deep roots in chemistry, and in other physical and engineering sciences …" Read more in the Guest Editorial by Matija Strlič. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiscale deep features learning for land-use scene recognition
NASA Astrophysics Data System (ADS)
Yuan, Baohua; Li, Shijin; Li, Ning
2018-01-01
The features extracted from deep convolutional neural networks (CNNs) have shown their promise as generic descriptors for land-use scene recognition. However, most of the work directly adopts the deep features for the classification of remote sensing images, and does not encode the deep features for improving their discriminative power, which can affect the performance of deep feature representations. To address this issue, we propose an effective framework, LASC-CNN, obtained by locality-constrained affine subspace coding (LASC) pooling of a CNN filter bank. LASC-CNN obtains more discriminative deep features than directly extracted from CNNs. Furthermore, LASC-CNN builds on the top convolutional layers of CNNs, which can incorporate multiscale information and regions of arbitrary resolution and sizes. Our experiments have been conducted using two widely used remote sensing image databases, and the results show that the proposed method significantly improves the performance when compared to other state-of-the-art methods.
Introduction: From pathogenesis to therapy, deep endometriosis remains a source of controversy.
Donnez, Jacques
2017-12-01
Deep endometriosis remains a source of controversy. A number of theories may explain its pathogenesis and many arguments support the hypothesis that genetic or epigenetic changes are a prerequisite for development of lesions into deep endometriosis. Deep endometriosis is frequently responsible for pelvic pain, dysmenorrhea, and/or deep dyspareunia, but can also cause obstetrical complications. Diagnosis may be improved by high-quality imaging. Therapeutic approaches are a source of contention as well. In this issue's Views and Reviews, medical and surgical strategies are discussed, and it is emphasized that treatment should be designed according to a patient's symptoms and individual needs. It is also vital that referral centers have the knowledge and experience to treat deep endometriosis medically and/or surgically. The debate must continue because emerging trends in therapy need to be followed and investigated for optimal management. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Deep Direct Reinforcement Learning for Financial Signal Representation and Trading.
Deng, Yue; Bao, Feng; Kong, Youyong; Ren, Zhiquan; Dai, Qionghai
2017-03-01
Can we train the computer to beat experienced traders for financial assert trading? In this paper, we try to address this challenge by introducing a recurrent deep neural network (NN) for real-time financial signal representation and trading. Our model is inspired by two biological-related learning concepts of deep learning (DL) and reinforcement learning (RL). In the framework, the DL part automatically senses the dynamic market condition for informative feature learning. Then, the RL module interacts with deep representations and makes trading decisions to accumulate the ultimate rewards in an unknown environment. The learning system is implemented in a complex NN that exhibits both the deep and recurrent structures. Hence, we propose a task-aware backpropagation through time method to cope with the gradient vanishing issue in deep training. The robustness of the neural system is verified on both the stock and the commodity future markets under broad testing conditions.
Neuroscience and Brain Science Special Issue begins in the Malaysian Journal of Medical Sciences
ABDULLAH, Jafri Malin
2014-01-01
The Malaysian Journal of Medical Sciences and the Orient Neuron Nexus have amalgated to publish a yearly special issue based on neuro- and brain sciences. This will hopefully improve the quality of peer-reviewed manuscripts in the field of fundamental, applied, and clinical neuroscience and brain science from Asian countries. One focus of the Universiti Sains Malaysia is to strengthen neuroscience and brain science, especially in the field of neuroinformatics. PMID:25941457
Thomism and science education: history informs a modern debate.
Kondrick, Linda C
2008-08-01
There is no debate over the Theory of Evolution. Among biologists the Theory of Evolution is a settled principle. Yet, the issue is far from settled in the larger context of society; between sectors of lay society and biological scientists in the United States there is evidence of a deep divide. Faith and reason, religion, and science at odds-that is hardly a recent divide. It is the premise of the author that the origin of the current conflict over the teaching of evolution stems from a fundamental philosophical divide that began long before Darwin first proposed his Theory of Evolution. It predates the inclusion of physical and biological sciences in the curriculum of western universities. It is older than either Islam or Christianity. The conflict goes back to Plato's Academy in 385 BC where the schools of Idealism and Realism first emerged as two distinct philosophical systems. Idealism and Realism diverged over essential issues of philosophy: What are we, what is true, and how do we know? Answers to these questions about the natural order are framed within philosophical constructs, themselves based upon essential assumptions about the essence of being, the essence of truth, and the nature of learning. Idealism and Realism developed independently for over 1500 years into two competing schools: the Augustinians (fundamentally Idealists) and the Latin Averroists (fundamentally Realists). It was over the place of natural philosophy in the curriculum that these two competing schools collided violently at the University of Paris in 1252. It was Thomas Aquinas who brokered a ceasefire between two embattled schools. Aquinas forged a philosophical system, called Thomism, that allowed the two schools to agree to disagree to the extent that in the graduate curriculum of the University Natural Philosophy could be taught apart from theology. This separation of secular or natural philosophy from theology opened the way for the development of the empirical sciences, the effects of which are evident today. All but forgotten, however, is that Thomism provided a system for resolving the disparities between these two separate ways of knowing, not by compartmentalizing them into separate domains, but by proving the domains to be philosophically complementary, creating a holistic framework in which to reconcile apparent conflicts between theology (religion) and natural philosophy (science). The essence of this historic compromise and its implications for the teaching of the Theory of Evolution form the core of this article.
Promoting Argumentative Practice in Socio-Scientific Issues through a Science Inquiry Activity
ERIC Educational Resources Information Center
Nam, Younkyeong; Chen, Ying-Chih
2017-01-01
This study examines how the use of a science inquiry activity in an environmental socio-scientific issue (SSI) impacts pre-service teachers' argumentative practice in two ways: social negotiation and epistemic understanding of arguments. Twenty pre-service science teachers participated in this study as a part of their science methods class. Small…
Science Teachers' Use of Mass Media to Address Socio-Scientific and Sustainability Issues
ERIC Educational Resources Information Center
Klosterman, Michelle L.; Sadler, Troy D.; Brown, Julie
2012-01-01
The currency, relevancy and changing nature of science makes it a natural topic of focus for mass media outlets. Science teachers and students can capitalize on this wealth of scientific information to explore socio-scientific and sustainability issues; however, without a lens on how those media are created and how representations of science are…
ERIC Educational Resources Information Center
Sadler, Troy D.; Romine, William L.; Topçu, Mustafa Sami
2016-01-01
Science educators have presented numerous conceptual and theoretical arguments in favor of teaching science through the exploration of socio-scientific issues (SSI). However, the empirical knowledge base regarding the extent to which SSI-based instruction supports student learning of science content is limited both in terms of the number of…
Conceptual Change Research and Science Education Practice: A Response from Educators
ERIC Educational Resources Information Center
Siry, Christina; Horowitz, Gail; Otulaja, Femi S.; Gillespie, Nicole; Shady, Ashraf; Augustin, Line A.
2008-01-01
We discuss the eight papers in this issue of "Cultural Studies of Science Education" focusing on the debate over conceptual change in science education and explore the issues that have emerged for us as we consider how conceptual change research relates to our practice as science educators. In presenting our interpretations of this research, we…
A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale
NASA Astrophysics Data System (ADS)
Li, Zhi-Quan; Piao, Rui-Qi; Zhao, Jing-Jing; Meng, Xiao-Yun; Tong, Kai
2015-07-01
A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale. By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology. Project supported by the National Natural Science Foundation of China (Grant No. 61172044) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014501150).
Dosimetry of a Deep-Space (Mars) Mission using Measurements from RAD on the Mars Science Laboratory
NASA Astrophysics Data System (ADS)
Hassler, D.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Guo, J.; Matthiae, D.; Reitz, G.
2017-12-01
The space radiation environment is one of the outstanding challenges of a manned deep-space mission to Mars. To improve our understanding and take us one step closer to enabling a human Mars to mission, the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been characterizing the radiation environment, both during cruise and on the surface of Mars for the past 5 years. Perhaps the most significant difference between space radiation and radiation exposures from terrestrial exposures is that space radiation includes a significant component of heavy ions from Galactic Cosmic Rays (GCRs). Acute exposures from Solar Energetic Particles (SEPs) are possible during and around solar maximum, but the energies from SEPs are generally lower and more easily shielded. Thus the greater concern for long duration deep-space missions is the GCR exposure. In this presentation, I will review the the past 5 years of MSL RAD observations and discuss current approaches to radiation risk estimation used by NASA and other space agencies.
European Science Notes Information Bulletin Reports on Current European/Middle Eastern Science
1990-02-01
Exploitation and Optimum Use of discussed the relationship of the Framework program to Biological Resources the 1992 single European market. This...operation: Shared-cost contracts]. hancement of food quality; (2) food hygiene, safety, and D. The Exploitation and optimum use or Biological toxicology...Table 9), and dis- bracing the biological sciences, agriculture, geologi- semination of research results (see Table 10). cal, and marine and deep sea
The Deep Underground Science and Engineering Laboratory at Homestake
NASA Astrophysics Data System (ADS)
Lesko, Kevin T.
2008-11-01
The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.
7 CFR 3430.310 - Allocation of AFRI funds.
Code of Federal Regulations, 2014 CFR
2014-01-01
... integrated multifunctional projects in an appropriate manner and in accordance with the allocation... agricultural sciences. (d) Rapid Response Food and Agricultural Science for Emergency Issues Awards. The Secretary may allocate some funding to address emergency issues in the food and agricultural sciences as...
7 CFR 3430.310 - Allocation of AFRI funds.
Code of Federal Regulations, 2012 CFR
2012-01-01
... integrated multifunctional projects in an appropriate manner and in accordance with the allocation... agricultural sciences. (d) Rapid Response Food and Agricultural Science for Emergency Issues Awards. The Secretary may allocate some funding to address emergency issues in the food and agricultural sciences as...
7 CFR 3430.310 - Allocation of AFRI funds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... integrated multifunctional projects in an appropriate manner and in accordance with the allocation... agricultural sciences. (d) Rapid Response Food and Agricultural Science for Emergency Issues Awards. The Secretary may allocate some funding to address emergency issues in the food and agricultural sciences as...
30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Oil, Gas, and Sulfur General Royalty Relief for Drilling Ultra-Deep Wells on Leases Not Subject to... drills and begins producing from a qualified phase 2 ultra-deep well in 2008 on a lease issued in 2004 in... which was exceeded. Example 2: Assume that a lessee: (1) Drills and produces from well no.1, a qualified...
Another Challenge for Africa: Ethnic Stability
2011-03-24
is a cultural , deep-seated personal matter to the African people. Still, ethnicity is a key foundational challenge for Africa to adequately address...Issues, Diplomacy as an Element of National Power CLASSIFICATION: Unclassified Ethnicity is a cultural , deep-seated personal matter to the...history, geography, political system, economics, demographics, culture , and languages. From a U.S. perspective, most know of Africa from news
Update on Deep Brain Stimulation for Dyskinesia and Dystonia: A Literature Review
TODA, Hiroki; SAIKI, Hidemoto; NISHIDA, Namiko; IWASAKI, Koichi
2016-01-01
Deep brain stimulation (DBS) has been an established surgical treatment option for dyskinesia from Parkinson disease and for dystonia. The present article deals with the timing of surgical intervention, selecting an appropriate target, and minimizing adverse effects. We provide an overview of current evidences and issues for dyskinesia and dystonia as well as emerging DBS technology. PMID:27053331
NASA Astrophysics Data System (ADS)
Farmer, J. R.; Hoenisch, B.; Haynes, L.; Kroon, D.; Bell, D. B.; Jung, S.; Seguí, M. J.; Raymo, M. E.; Goldstein, S. L.; Pena, L. D.
2016-12-01
Pleistocene glaciations underwent a profound transition from lower amplitude 40 kyr cycles to high amplitude 100 kyr cycles between 1.2 and 0.8 Ma, an interval termed the Mid-Pleistocene Transition (MPT). While the underlying causes of the MPT are uncertain, previous studies show quasi-contemporaneous reductions in North Atlantic Deep Water (NADW) export1 and glacial atmospheric pCO22 around 0.9 Ma. Although this suggests a possible role for enhanced deep-ocean carbon storage in amplifying climate change across the MPT, few direct records of deep ocean carbonate chemistry exist for this interval to test this hypothesis. Here we present South Atlantic benthic foraminiferal B/Ca and Cd/Ca records from International Ocean Discovery Program Sites 1088, 1264 and 1267 (2.1 to 4.3 km water depth) as part of a larger study of Atlantic-wide changes in deep ocean chemistry and circulation spanning the MPT. Results show an abrupt 15-20% decrease in benthic B/Ca and 40-50% increase in Cd/Ca at 4.3 km depth (Site 1267) between 1.0 and 0.9 Ma. Site 1088, which at 2.1 km depth is sensitive to input of southern-sourced Upper Circumpolar Deep Water, shows a prolonged 25% decrease in B/Ca and 50% increase in Cd/Ca from 1.0 to 0.6 Ma. In contrast, at Site 1264 ( 2.5 km depth within the core of modern NADW) B/Ca and Cd/Ca changes across the MPT are more modest (-5% and +10%, respectively). These observations reflect on the accumulation of regenerated carbon and nutrients in the deep South Atlantic, and varying contributions of northern- and southern-sourced watermasses to each core site. Implications for deep-ocean carbon storage and forcing of the MPT will be discussed. 1Pena, L. and Goldstein, S. (2014), Science 345, 318 2Hönisch, B. et al. (2009), Science 324, 1551
Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas
NASA Astrophysics Data System (ADS)
Zeidler, Dana L.; Walker, Kimberly A.; Ackett, Wayne A.; Simmons, Michael L.
2002-05-01
The purpose of this study was to investigate the relationships between students' conceptions of the nature of science and their reactions to evidence that challenged their beliefs about socioscientific issues. This study involved 41 pairs of students representing critical cases of contrasting ethical viewpoints. These 82 students were identified from a larger sample of 248 students from 9th and 10th grade general science classes, 11th and 12th grade honors biology, honors science, and physics classes, and upper-level college preservice science education classes. Students responded to questions aimed at revealing their epistemological views of the nature of science and their belief convictions on a selected socioscientific issue. The smaller subset of students was selected based on varying degrees of belief convictions about the socioscientific issues and the selected students were then paired to discuss their reasoning related to the issue while being exposed to anomalous data and information from each other and in response to epistemological probes of an interviewer. Taxonomic categories of students' conceptions of the nature of science were derived from the researchers' analysis of student responses to interviews and questionnaires. In some instances, students' conceptions of the nature of science were reflected in their reasoning on a moral and ethical issue. This study stimulated students to reflect on their own beliefs and defend their opinions. The findings suggest that the reactions of students to anomalous socioscientific data are varied and complex, with notable differences in the reasoning processes of high school students compared to college students. A deeper understanding of how students reason about the moral and ethical context of controversial socioscientific issues will allow science educators to incorporate teaching strategies aimed at developing students' reasoning skills in these crucial areas.
NASA Astrophysics Data System (ADS)
Kolst, Stein D.
2001-05-01
This article offers a general framework for examining the science dimension of controversial socioscientific issues. Eight specific content-transcending topics to be emphasized in science education are proposed. The topics are grouped under the headings science as a social process, limitations of science, values in science, and critical attitude. Each topic is explored, and it is argued that knowledge of the topics can serve as tools for students' examination of science-related claims in controversial socioscientific issues. The underlying perspective here is empowerment and the needs of students as lay people. The need of society as a whole for decisions to be made on a broad and firm basis is nevertheless also included. The main reason for suggesting the eight content-transcending topics is to provide focal points for the future development of teaching models aimed at science education for citizenship.
Frontier Fields: Bringing the Distant Universe into View
NASA Astrophysics Data System (ADS)
Eisenhamer, Bonnie; Lawton, Brandon L.; Summers, Frank; Ryer, Holly
2014-06-01
The Frontier Fields is a multi-cycle program of six deep-field observations of strong-lensing galaxy clusters that will be taken in parallel with six deep “blank fields.” The three-year long collaborative program centers on observations from NASA’s Great Observatories, who will team up to look deeper into the universe than ever before, and potentially uncover galaxies that are as much as 100 times fainter than what the telescopes can typically see. Because of the unprecedented views of the universe that will be achieved, the Frontier Fields science program is ideal for informing audiences about scientific advances and topics in STEM. For example, the program provides an opportunity to look back on the history of deep field observations and how they changed (and continue to change) astronomy, while exploring the ways astronomers approach big science problems. As a result, the Space Telescope Science Institute’s Office of Public Outreach has initiated an education and public outreach (E/PO) project to follow the progress of the Frontier Fields program - providing a behind-the-scenes perspective of this observing initiative. This poster will highlight the goals of the Frontier Fields E/PO project and the cost-effective approach being used to bring the program’s results to both the public and educational audiences.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.
2013-01-01
At the 2011 Applied Science Public Health review held in Santa Fe, NM, it was announced that Dr. Dale Quattrochi from the NASA Marshall Space Flight Center, John Haynes, Program Manager for the Applied Sciences Public Health program at NASA Headquarters, and Sue Estes, Deputy Program Manager for the NASA Applied Sciences Public Health Program located at the Universities Space Research Association (USRA) at the National Space Science and Technology Center (NSSTC) in Huntsville, AL, would edit a special issue of the journal Geocarto International on "NASA Earth Science Satellite Data for Applications to Public Health". This issue would be focused on compiling research papers that use NASA Earth Science satellite data for applications to public health. NASA's Public Health Program concentrates on advancing the realization of societal and economic benefits from NASA Earth Science in the areas of infectious disease, emergency preparedness and response, and environmental health (e.g., air quality). This application area as a focus of the NASA Applied Sciences program, has engaged public health institutions and officials with research scientists in exploring new applications of Earth Science satellite data as an integral part of public health decision- and policy-making at the local, state and federal levels. Of interest to this special issue are papers submitted on are topics such as epidemiologic surveillance in the areas of infectious disease, environmental health, and emergency response and preparedness, national and international activities to improve skills, share data and applications, and broaden the range of users who apply Earth Science satellite data in public health decisions, or related focus areas.. This special issue has now been completed and will be published n early 2014. This talk will present an overview of the papers that will be published in this special Geocarto International issue.
The Telecommunications and Data Acquisition Report. [Deep Space Network
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1988-01-01
In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network and its associated Ground Communications Facility in planning, in supporting research and technology, in implementation, and in operations are reported. Also included is TDA funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA.
Ocean chemistry. Dilution limits dissolved organic carbon utilization in the deep ocean.
Arrieta, Jesús M; Mayol, Eva; Hansman, Roberta L; Herndl, Gerhard J; Dittmar, Thorsten; Duarte, Carlos M
2015-04-17
Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Pedretti, Erminia G.; Bencze, Larry; Hewitt, Jim; Romkey, Lisa; Jivraj, Ashifa
2008-09-01
Although science, technology, society and environment (STSE) education has gained considerable force in the past few years, it has made fewer strides in practice. We suggest that science teacher identity plays a role in the adoption of STSE perspectives. Simply put, issues-based STSE education challenges traditional images of a science teacher and science instructional ideologies. In this paper, we briefly describe the development of a multimedia documentary depicting issues-based STSE education in a teacher’s class and its subsequent implementation with 64 secondary student-teachers at a large Canadian university. Specifically, we set out to explore: (1) science teacher candidates’ responses to a case of issues-based STSE teaching, and (2) how science teacher identity intersects with the adoption of STSE perspectives. Findings reveal that although teacher candidates expressed confidence and motivation regarding teaching STSE, they also indicated decreased likelihood to teach these perspectives in their early years of teaching. Particular tensions or problems of practice consistently emerged that helped explain this paradox including issues related to: control and autonomy; support and belonging; expertise and negotiating curriculum; politicization and action; and biases and ideological bents. We conclude our paper with a discussion regarding the lessons learned about STSE education, teacher identity and the role of multimedia case methods.
NASA Astrophysics Data System (ADS)
Leroux, Estelle; Gorini, Christian; Aslanian, Daniel; Rabineau, Marina; Blanpied, Christian; Rubino, Jean-Loup; Robin, Cécile; Granjeon, Didier; Taillepierre, Rachel
2016-04-01
The post-rift (~20-0 Ma) vertical movements of the Provence Basin (West Mediterranean) are quantified on its both conjugate (the Gulf of Lion and the West Sardinia) margins. This work is based on the stratigraphic study of sedimentary markers using a large 3D grid of seismic data, correlations with existing drillings and refraction data. The post-rift subsidence is measured by the direct use of sedimentary geometries analysed in 3D [Gorini et al., 2015; Rabineau et al., 2014] and validated by numerical stratigraphic modelling. Three domains were found: on the platform (1) and slope (2), the subsidence takes the form of a seaward tilting with different amplitudes, whereas the deep basin (3) subsides purely vertically [Leroux et al., 2015a]. These domains correspond to the deeper crustal domains respectively highlighted by wide angle seismic data. The continental crust (1) and the thinned continental crust (2) are tilted, whereas the intermediate crust, identified as lower continental exhumed crust [Moulin et al., 2015, Afhilado et al., 2015] (3) sagged. The post-break-up subsidence re-uses the initial hinge lines of the rifting phase. This striking correlation between surface geologic processes and deep earth dynamic processes emphasizes that the sedimentary record and sedimentary markers is a window into deep geodynamic processes and dynamic topography. Pliocene-Pleistocene seismic markers enabled high resolution quantification of sediment budgets over the past 6 Myr [Leroux et al., in press]. Sediment budget history is here completed on the Miocene interval. Thus, the controlling factors (climate, tectonics and eustasy) are discussed. Afilhado, A., Moulin, M., Aslanian, D., Schnürle, P., Klingelhoefer, F., Nouzé, H., Rabineau, M., Leroux, E. & Beslier, M.-O. (2015). Deep crustal structure across a young 1 passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) - II. Sardinia's margin. Bull. Soc. géol. France, 186, ILP Spec. issue, 4-5, 331-351. Gorini, C., Montadert, L., Rabineau, M., (2015) New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean, Marine and Petroleum Geology (2015), doi: 10.1016/j.marpetgeo.2015.01.009. Leroux, E., Aslanian, D., Rabineau, M., Moulin, M., Granjeon, D., Gorini C. & Droz, L. (2015a). Sedimentary markers in the Provençal basin (Western Mediterranean): a window into deep geodynamic processes. Terra Nova, 27(2), 122-129. Leroux, E., Rabineau, M., Aslanian, D., Gorini, C., Molliex, S., Bache, F., Robin, C., Droz, L., Moulin, M., Poort, J., Rubino, J.-L. & Suc, J.P. (2016, in press). High resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6 Ma: relation with climate and tectonic. Basin Research, xx, xx-xx (ID: 4759575-1545130). Moulin, M., Klingelhoefer, F., Afiladho, A., Aslanian, D., Schnürle, P., Nouze, H., Beslier, M.-O. & Feld, A. (2015). Deep crustal structure across an young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) - I. Gulf of Lion's margin, Bull. Soc. géol. France., 186, ILP Spec. issue, 4-5,309-330. Rabineau, M., Leroux, E., Aslanian, D., Bache, F., Gorini, C., Moulin, M., Molliex, S., Droz, L., Reis, T. D., Rubino, J.-L., Guillocheau, F. & Olivet, J.-L. (2014). Quantifying subsidence and isostatic readjustment using sedimentary markers (example in the Gulf of Lion). Earth and Planetary Science Letters, 388, 1-14.
77 FR 31044 - Permits Issued Under the Antarctic Conservation Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-24
... NATIONAL SCIENCE FOUNDATION Permits Issued Under the Antarctic Conservation Act AGENCY: National... 95-541. SUMMARY: The National Science Foundation (NSF) is required to publish notice of permits... CONTACT: Nadene G. Kennedy, Permit Office, Office of Polar Programs, Rm. 755, National Science Foundation...
How Do Science and Technology Affect International Affairs?
ERIC Educational Resources Information Center
Weiss, Charles
2015-01-01
Science and technology influence international affairs by many different mechanisms. Both create new issues, risks and uncertainties. Advances in science alert the international community to new issues and risks. New technological capabilities transform war, diplomacy, commerce, intelligence, and investment. This paper identifies six basic…
To naturalize or not to naturalize? An issue for cognitive science as well as anthropology.
Stenning, Keith
2012-07-01
Several of Beller, Bender, and Medin's (2012) issues are as relevant within cognitive science as between it and anthropology. Knowledge-rich human mental processes impose hermeneutic tasks, both on subjects and researchers. Psychology's current philosophy of science is ill suited to analyzing these: Its demand for ''stimulus control'' needs to give way to ''negotiation of mutual interpretation.'' Cognitive science has ways to address these issues, as does anthropology. An example from my own work is about how defeasible logics are mathematical models of some aspects of simple hermeneutic processes. They explain processing relative to databases of knowledge and belief-that is, content. A specific example is syllogistic reasoning, which raises issues of experimenters' interpretations of subjects' reasoning. Science, especially since the advent of understandings of computation, does not have to be reductive. How does this approach transfer onto anthropological topics? Recent cognitive science approaches to anthropological topics have taken a reductive stance in terms of modules. We end with some speculations about a different cognitive approach to, for example, religion. Copyright © 2012 Cognitive Science Society, Inc.
The inclusion of Science Technology Society topics in junior high school earth science textbooks
NASA Astrophysics Data System (ADS)
Fadhli, Fathi Ali
2000-10-01
The Science Technology Society (STS) approach is a major science education reform through which a scientifically literate citizen could be produced. The teaching of science through STS approach is centered on science and technology related issues and problems. The purpose of this study was to analyze five earth science textbooks published in the 1990's for their inclusion of twelve sciences and technology related issues and problems and for their inclusion of activities focused on STS. The selected earth science textbooks were; Scott Foresman, Heath, Holt, Merrill and Prentice-Hall. The targeted twelve issues and problems were identified by Bybee (1987), as the most important global science and technology related issues and problems. The numbers of full text pages devoted to each topic were determined by classifying each segment to one of the targeted topics. In addition, the numbers of STS activities were also determined by using criteria developed for this study. ANOVA statistical analyses and t-tests showed that the analyzed earth science textbooks treated the studied STS issues and problems and treated the STS activities differently. It was found that six of the studied issues and problems were constantly receiving more attention in all the analyzed earth science textbooks than the rest of the topics. These topics were; Air Quality and Atmosphere, Energy Shortages, Water Resources, Land Use, Hazardous Substances, and Mineral Resources. The overall results revealed that only an average of 8.82% of the text pages in all the analyzed earth science textbooks were devoted to STS topics and 5.49% of the activities in all the analyzed earth science textbooks were focused on STS topics. However, none of the activities focused on STS topics were presented in STS approach as defined by NSTA. The percentage of STS topics inclusion and the percentage of activities focused on STS topics were considered to be very low. Accordingly, the objectives and goals of STS approach will not be achieved through using the analyzed earth science textbooks. The low percentages of STS activities and topics indicated also that the STS approach would not be fairly presented in science classrooms as long as science teachers depend on science textbooks 90% of their teaching time. Moreover, the results of this study revealed also that the inclusion of STS approach in science textbooks is still considered to be very low despite the support provided to the STS approach by science teachers, educators, organizations, and education departments and also despite of the publishing of Project Syntheses (1977) since twenty eight years ago.
A Survey of Computer Science Capstone Course Literature
ERIC Educational Resources Information Center
Dugan, Robert F., Jr.
2011-01-01
In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software…
Mindfulness and Discussing "Thorny" Issues in the Classroom
ERIC Educational Resources Information Center
Alexakos, Konstantinos; Pride, Leah D.; Amat, Arnau; Tsetsakos, Panagiota; Lee, Kristi J.; Paylor-Smith, Christian; Zapata, Corinna; Wright, Shequana; Smith, Theila
2016-01-01
Being in the moment, showing compassion, being non-judgmental, acknowledging deep emotional challenges without getting stuck: these are mindfulness characteristics important to us as teachers, yet not often included in teacher preparation. These concerns become magnified when we focus on difficult knowledge and thorny issues, like topics related…
The Retreat of the State and the Future of Social Science
ERIC Educational Resources Information Center
Baars, Sam
2014-01-01
Amidst deep cuts to public spending, the UK Coalition government announced in 2010 that it would be substantially reducing its subsidy of social science within higher education. As part of the same deficit reduction strategy, the government is cutting funding to local authorities, disproportionately hitting urban councils in the most deprived…
Scaffolded Inquiry-Based Instruction with Technology: A Signature Pedagogy for STEM Education
ERIC Educational Resources Information Center
Crippen, Kent J.; Archambault, Leanna
2012-01-01
Inquiry-based instruction has become a hallmark of science education and increasingly of integrated content areas, including science, technology, engineering, and mathematics (STEM) education. Because inquiry-based instruction very clearly contains surface, deep, and implicit structures as well as engages students to think and act like scientists,…
The Science of Raising Courageous Kids
ERIC Educational Resources Information Center
Brokenleg, Martin; Van Bockern, Steve
2003-01-01
The Circle of Courage is a holistic approach to reclaiming youth, which is grounded in resilience science and in values of deep respect for the dignity of children and youth. This article identifies the core assumptions of the Circle of Courage model and its research foundation in positive youth development. In order to thrive, all children need…
Deep Understanding of Electromagnetism Using Crosscutting Concepts
ERIC Educational Resources Information Center
De Poorter, John; De Lange, Jan; Devoldere, Lies; Van Landeghem, Jouri; Strubbe, Katrien
2017-01-01
Crosscutting concepts like patterns and models are fundamental parts in both the American framework of science education (from the AAAS) and our proposals for a new science education framework in Flanders. These concepts deepen the insight of both students and teachers. They help students to ask relevant questions during an inquiry and they give…
A Guided Inquiry on Hubble Plots and the Big Bang
ERIC Educational Resources Information Center
Forringer, Ted
2014-01-01
In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…
The Natural Sciences in the University: Change and Variation over the 20th Century
ERIC Educational Resources Information Center
Gabler, Jay; Frank, David John
2005-01-01
The changing academic priorities of universities are often discussed but little investigated by social scientists: What accounts for the striking expansions and contractions in disciplinary fields over time? Focusing specifically on the natural sciences, this article articulates a global-institutional argument that holds that deep shifts in…
ERIC Educational Resources Information Center
Pitiporntapin, Sasithep; Lankford, Deanna Marie
2015-01-01
This paper addresses using social media to promote pre-service science teachers' practices of Socio-Scientific Issue (SSI) based teaching in a science classroom setting. We designed our research in two phases. The first phase examined pre-service science teachers' perceptions about using social media to promote their SSI-based teaching. The…
ERIC Educational Resources Information Center
Furtak, Erin Marie
2017-01-01
Wide-scale adoption of the "Next Generation Science Standards" has raised new challenges for classroom teachers as they learn not only how to engage students in this new vision of science learning, but also how to assess students' engagement in that learning. This paper introduces a virtual special issue of "Science Education"…
ERIC Educational Resources Information Center
Pitiporntapin, Sasithep; Yutakom, Naruemon; Sadler, Troy D.
2016-01-01
In educational reform, teaching through socio-scientific issues (SSIs) is considered the best way to promote scientific literacy for citizenship as the goal of science teaching. To bring SSIs into the science classroom, Thai pre-service science teachers (PSTs) are expected to understand the concept of SSI-based teaching and to use it effectively…
The Integration of HIV and AIDS as a Socio-Scientific Issue in the Life Sciences Curriculum
ERIC Educational Resources Information Center
Wolff, Eugenie; Mnguni, Lindelani
2015-01-01
The potential of science to transform lives has been highlighted by a number of scholars. This means that critical socio-scientific issues (SSIs) must be integrated into science curricula. Development of context-specific scientific knowledge and twenty-first-century learning skills in science education could be used to address SSIs such as…
2017-01-01
Although Americans generally hold science in high regard and respect its findings, for some contested issues, such as the existence of anthropogenic climate change, public opinion is polarized along religious and political lines. We ask whether individuals with more general education and greater science knowledge, measured in terms of science education and science literacy, display more (or less) polarized beliefs on several such issues. We report secondary analyses of a nationally representative dataset (the General Social Survey), examining the predictors of beliefs regarding six potentially controversial issues. We find that beliefs are correlated with both political and religious identity for stem cell research, the Big Bang, and human evolution, and with political identity alone on climate change. Individuals with greater education, science education, and science literacy display more polarized beliefs on these issues. We find little evidence of political or religious polarization regarding nanotechnology and genetically modified foods. On all six topics, people who trust the scientific enterprise more are also more likely to accept its findings. We discuss the causal mechanisms that might underlie the correlation between education and identity-based polarization. PMID:28827344
Deep learning in bioinformatics.
Min, Seonwoo; Lee, Byunghan; Yoon, Sungroh
2017-09-01
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Sharma, Ajay
2008-01-01
In this response to commentaries by Ali Sammel, Jhumki Basu and Alberto Rodriguez, I present my perspective on three important issues raised by the commentators. These issues relate to the role of a researcher in her field settings and society, the critique of science and science education as oppressive dominant discourses, and co-opting…
Science FEST: Preservice Teachers link Math and Science in Astronomy Lessons
NASA Astrophysics Data System (ADS)
DeMuth, N. H.; Kasabian, J.; Hacking, P. B.
2005-12-01
Funded by the National Science Foundation and corporate sponsored by Northrop Grumman, Science FEST (Science for Future Elementary School Teachers) aims to develop the science content and pedagogy for project participants by connecting their college coursework to the science they will eventually teach. Working individually and in pairs, future elementary and secondary school teachers design a comprehensive module in astronomy that is inquiry-based and reflects national and state science standards. Project participants then teach their module in local elementary or middle school classrooms. Science FEST project participants report gaining a deep understanding of the science they are teaching, learning to engage all students to explore science concepts, and reflecting on their teaching and how it can be improved. The project's website can be found at www.science-fest.org.
Being as an iceberg: hypertensive treatment adherence experiences in southeast of Iran
Nayeri, Nahid Dehghan; Dehghan, Mahlagha; Iranmanesh, Sedigheh
2015-01-01
Background Treatment adherence is often an important issue in the management of hypertension. Deep understanding of adherence behavior as well as its influential factors can expand knowledge about treatment adherence among hypertensives. Objective The aim of this study was to explore patients, their families, and healthcare providers’ experiences about hypertension treatment adherence in southeast of Iran. Design A qualitative study was conducted to explore the experience of patients, family members, and healthcare providers (n=18) by using a conventional content analysis. The purposive sampling method was used. Data were collected through semi-structured and deep interviews. Results Data analysis showed that hypertensive treatment adherence in an Iranian context is like an iceberg with two subthemes. The first subtheme relates to the upper and clear part of this iceberg and it consists of two categories, including 1) healthy and 2) unhealthy regimens. The second subtheme associates with under-water and unanticipated part and it consists of four categories, including 1) the nature of disease and treatment, 2) the individual resources, 3) the healthcare organization, and 4) the socio-cultural environment. Conclusions The treatment adherence features emerged in this study can be useful in designing and developing context-based hypertension interventions. Further qualitative and quantitative studies with a closer collaboration between the social, natural, and medical sciences in other Iranian populations are needed to confirm the findings. PMID:26395925
NASA Astrophysics Data System (ADS)
Doraiswamy, Nithya
This qualitative case study focused on the multifaceted issue of exploring science teacher leaders understanding and addressing of issues of diversity and equity with peers through professional development. The purpose of the study was to highlight the opportunities and barriers to the addressing of issues of diversity and equity through the work of a community of teachers leaders in science professional development. To frame this study, the researcher drew from the interdisciplinary field of multicultural education, transformative learning, and teacher leadership. In drawing out the connections from these vast bodies of literature, the study speaks to the need of both, creating teacher leaders in science education who are capable of meeting the twin demands of excellence and equity, and also attending to the challenges in the professional learning continuums of teachers leaders and their peers towards addressing issues of diversity and equity in science education.
Perspectives on learning through research on critical issues-based science center exhibitions
NASA Astrophysics Data System (ADS)
Pedretti, Erminia G.
2004-07-01
Recently, science centers have created issues-based exhibitions as a way of communicating socioscientific subject matter to the public. Research in the last decade has investigated how critical issues-based installations promote more robust views of science, while creating effective learning environments for teaching and learning about science. The focus of this paper is to explore research conducted over a 10-year period that informs our understanding of the nature of learning through these experiences. Two specific exhibitions - Mine Games and A Question of Truth - provide the context for discussing this research. Findings suggest that critical issues-based installations challenge visitors in different ways - intellectually and emotionally. They provide experiences beyond usual phenomenon-based exhibitions and carry the potential to enhance learning by personalizing subject matter, evoking emotion, stimulating dialogue and debate, and promoting reflexivity. Critical issues-based exhibitions serve as excellent environments in which to explore the nature of learning in these nonschool settings.
Trajectory design for the Deep Space Program Science Experiment (DSPSE) mission
NASA Astrophysics Data System (ADS)
Carrington, D.; Carrico, J.; Jen, J.; Roberts, C.; Seacord, A.; Sharer, P.; Newman, L.; Richon, K.; Kaufman, B.; Middour, J.
In 1994, the Deep Space Program Science Experiment (DSPSE) spacecraft will become the first spacecraft to perform, in succession, both a lunar orbiting mission and a deep-space asteroid encounter mission. The primary mission objective is to perform a long-duration flight-test of various new-technology lightweight components, such as sensors, in a deep-space environment. The mission has two secondary science objectives: to provide high-resolution imaging of the entire lunar surface for mapping purposes and flyby imaging of the asteroid 1620 Geographos. The DSPSE mission is sponsored by the Strategic Defense Initiative Organization (SDIO). As prime contractor, the Naval Research Laboratory (NRL) is building the spacecraft and will conduct mission operations. The Goddard Space Flight Center's (GSFC) Flight Dynamics Division is supporting NRL in the areas of The Deep Space Network (DSN) will provide tracking support. The DSPSE mission will begin with a launch from the Western Test Range in late January 1994. Following a minimum 1.5-day stay in a low-Earth parking orbit, a solid kick motor burn will boost DSPSE into an 18-day, 2.5-revolution phasing orbit transfer trajectory to the Moon. Two burns to insert DSPSE into a lunar polar orbit suitable for the mapping mission will be followed by mapping orbit maintenance and adjustment operations over a period of 2 sidereal months. In May 1994, a lunar orbit departure maneuver, in conjunction with a lunar swingby 26 days later, will propel DSPSE onto a heliocentric transfer that will intercept Geographos on September 1, 1994. This paper presents the characteristics, deterministic delta-Vs, and design details of each trajectory phase of this unique mission, together with the requirements, constraints, and design considerations to which each phase is subject. Numerous trajectory plots and tables of significant trajectory events are included. Following a discussion of the results of a preliminary launch window analysis, a summary of the deterministic impulsive delta-V budget required to establish the baseline mission trajectory design is presented.
NASA Technical Reports Server (NTRS)
Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra
2015-01-01
The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.
2016-01-22
This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.
Major technological innovations introduced in the large antennas of the Deep Space Network
NASA Technical Reports Server (NTRS)
Imbriale, W. A.
2002-01-01
The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.
A Pedagogical Model for Ethical Inquiry into Socioscientific Issues in Science
ERIC Educational Resources Information Center
Saunders, Kathryn J.; Rennie, Leonie J.
2013-01-01
Internationally there is concern that many science teachers do not address socioscientific issues (SSI) in their classrooms, particularly those that are controversial. However with increasingly complex, science-based dilemmas being presented to society, such as cloning, genetic screening, alternative fuels, reproductive technologies and…
Teaching Research Integrity and Bioethics to Science Undergraduates
ERIC Educational Resources Information Center
Turrens, Julio F.
2005-01-01
Undergraduate students in the Department of Biomedical Sciences at the University of South Alabama, Mobile, are required to take a course entitled "Issues in Biomedical Sciences," designed to increase students' awareness about bioethical questions and issues concerning research integrity. This paper describes the main features of this…
ERIC Educational Resources Information Center
Danielowich, Robert M.
2014-01-01
Science teachers are aware of many social issues that intersect with science. These socio-scientific issues (SSIs) are "open-ended problems without clear-cut solutions [that] can be informed by scientific principles, theories, and data, but…cannot be fully determined by [them]" (Sadler 2011, p. 4). This article describes the SSI lessons…
The science of teamwork: Introduction to the special issue.
McDaniel, Susan H; Salas, Eduardo
2018-01-01
Provides an introduction to this special issue which explores the Science of Teamwork-what psychological science in 2018 tells us about the process and outcomes of teamwork in a variety of contexts. This work draws from and affects all areas of psychology. The science and practice of teamwork is now an interdisciplinary activity. Teamwork is a complex phenomenon requiring multiple lenses and approaches. What follows is a description of our process in putting together the issue and a brief description of the articles that compose it. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Mansour, Nasser
2010-03-01
The debate about Islam and science extends to a debate about the relationship between Islam and science education. In this paper, I explore Egyptian teachers' views of the relationship between science and religion within the Islamic context. Teachers' key vision of the relationship between science and religion was that "religion comes first and science comes next. I will argue that teachers' personal religious beliefs are among the major constructs that drive teachers' ways of thinking and interpretation of scientific issues related with religion. Then, I discuss how teachers' personal religious beliefs have been formed and influenced their pedagogical beliefs related to science and religion issues. Finally, I will argue, how we use the personal religious beliefs model as a framework of teaching/learning scientific issues related with religion within sociocultural (Islamic) context. [InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.
Juth, Niklas; Lindblad, Anna; Lynöe, Niels; Sjöstrand, Manne; Helgesson, Gert
2010-09-13
The aim of this paper is to critically discuss some of the ethically controversial issues regarding continuous deep palliative sedation at the end of life that are addressed in the EAPC recommended framework for the use of sedation in palliative care. We argue that the EAPC framework would have benefited from taking a clearer stand on the ethically controversial issues regarding intolerable suffering and refractory symptoms and regarding the relation between continuous deep palliative sedation at the end of life and euthanasia. It is unclear what constitutes refractory symptoms and what the relationship is between refractory symptoms and intolerable suffering, which in turn makes it difficult to determine what are necessary and sufficient criteria for palliative sedation at the end of life, and why. As regards the difference between palliative sedation at the end of life and so-called slow euthanasia, the rationale behind stressing the difference is insufficiently demonstrated, e.g. due to an overlooked ambiguity in the concept of intention. It is therefore unclear when palliative sedation at the end of life amounts to abuse and why. The EAPC framework would have benefited from taking a clearer stand on some ethically controversial issues regarding intolerable suffering and refractory symptoms and regarding the relation between continuous deep palliative sedation at the end of life and euthanasia. In this text, we identify and discuss these issues in the hope that an ensuing discussion will clarify the EAPC's standpoint.
Promoting Preservice Teachers' Attitudes toward Socioscientific Issues
ERIC Educational Resources Information Center
Yerdelen, Sundus; Cansiz, Mustafa; Cansiz, Nurcan; Akcay, Hakan
2018-01-01
In this study, we aimed to improve preservice teachers' attitudes toward socioscientific issues through socioscientific issue course. Moreover, we investigated whether this course influences preservice teachers studying in a science education and non-science education in a similar way. For this purpose, a semester-long socioscientific issues…
Raus, Kasper; Chambaere, Kenneth; Sterckx, Sigrid
2016-06-29
Continuous deep sedation at the end of life is a practice that has been the topic of considerable ethical debate, for example surrounding its perceived similarity or dissimilarity with physician-assisted dying. The practice is generally considered to be legal as a form of symptom control, although this is mostly only assumed. France has passed an amendment to the Public Health Act that would grant certain terminally ill patients an explicit right to continuous deep sedation until they pass away. Such a framework would be unique in the world. In this paper we will highlight and reflect on four relevant aspects and shortcomings of the proposed bill. First, that the bill suggests that continuous deeps sedation should be considered as a sui generis practice. Second, that it requires that sedation should always be accompanied by the withholding of all artificial nutrition and hydration. In the most recently amended version of the legal proposal it is stated that life sustaining treatments are withheld unless the patient objects. Third, that the French bill would not require that the suffering for which continuous deep sedation is initiated is unbearable. Fourth, the question as to whether the proposal should be considered as a way to avoid having to decriminalise euthanasia and/or PAS or, on the contrary, as a veiled way to decriminalise these practices. The French proposal to amend the Public Health Act to include a right to continuous deep sedation for some patients is a unique opportunity to clarify the legality of continuous deep sedation as an end-of-life practice. Moreover, it would recognize that the practice of continuous deep sedation raises ethical and legal issues that are different from those raised by symptom control on the one hand and assisted dying on the other hand. Nevertheless, there are still various issues of significant ethical concern in the French legislative proposal.
An Integrated Science Glovebox for the Gateway Habitat
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.
2018-01-01
Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.
Spheres of Knowledge that Require Open-mindedness and Open Data
NASA Astrophysics Data System (ADS)
Branch, B. D.
2009-05-01
The progress of social knowledge is impeded if not paralyzed at present by two fundamental factors, one impinging from knowledge without, and the other operating within the world of science itself' (Mannheim, Wirth, and Shils, p. xi). Hence, a Sphere of Knowledge (SK) defined here as a pseudo-ontology, may require a societal open-mindedness as defined by Dewey (1912). With professional open-mindedness and open data use, such social constructs may bridge and build relations towards efficient and effective societal problem solving. Open data use is defined where information has to be gathered from many sources to provided input for latter decision-making in the public interest. Here, spatial thinking may be the heart of data collection, analysis, and reporting that sustains an informatics experience among all parts of society. Here, at risk may be human survival and sustainability if policy and politics has hindered scientific or evidence-based transfer. Executive Order 12096, Coordinating Geographical Data Acquisition and Access: The National Spatial Data Infrastructure, by the federal government in 1994, may be an example of an informatics gap of knowledge where a federal mandate is not being connected to geosciences tools and community leaders that could benefit an open society. Critical in a SK is how an open society makes effective decisions if the issues it faces are new with unpredictable outcomes. Policy and politics should not impede the scientific or evidence based knowledge transfer but should be a root of democratic tools. Policy development and implementation should reflect such complexities' (Gardner, et al, 2003, p. 2). Conceptually, a SK may be too broad for any one disciplinary to address effectively as a next generation concern. The demand for deep integration of scientific data within and between disciplines is also growing, as larger and broader science questions are becoming more common. Concurrent with the growing demand for next generation information technology for science is a growth in semantic technologies' (McGuinness, Fox, and Brodaric, 2008, p. 1). Thus, if human survivability and sustainability exist in this manner as a societal issue, then effective interdisciplinary collaboration among social and hard sciences must effectively value the other to see an advance of evidence based and science based habits in the citizenry. The effective decision making of society may be dependent on the skills of science, its data sharing, and collaboration skills of multiple disciplines to reach feasible solutions for the public interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.
Many numerical weather prediction (NWP) and climate models exhibit too warm lower tropospheres near the mid-latitude continents. This warm bias has been extensively studied before, but evidence about its origin remains inconclusive. Some studies point to deficiencies in the deep convective or low clouds. Other studies found an important contribution from errors in the land surface properties. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. Documenting these radiation errors is hence an important step towards understanding and alleviating themore » warm bias. This paper presents an attribution study to quantify the net radiation biases in 9 model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, integrated water vapor (IWV) and aerosols are quantified, using an array of radiation measurement stations near the ARM SGP site. Furthermore, an in depth-analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface SW radiation is overestimated (LW underestimated) in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation in all but one model, which has a dominant albedo issue. Using a cloud regime analysis, it was shown that missing deep cloud events and/or simulating deep clouds with too weak cloud-radiative effects account for most of these cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud, but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly however, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, the deep cloud problem in many models could be related to too weak convective cloud detrainment and too large precipitation efficiencies. This does not rule out that previously documented issues with the evaporative fraction contribute to the warm bias as well, since the majority of the models underestimate the surface rain rates overall, as they miss the observed large nocturnal precipitation peak.« less
NASA Tech Briefs, October 1995. Volume 19, No. 10
NASA Technical Reports Server (NTRS)
1995-01-01
A special focus in this issue is Data acquisition and analysis. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. Also included in this issue are Laser Tech Briefs and Industry Focus: Motion Control/ Positioning Equipment
Global Issues in an Introductory Earth Science Course.
ERIC Educational Resources Information Center
Pierce, James P.
Information is provided explaining the incorporation of global issues units into an introductory earth science course at Skagit Valley Community College (Mount Vernon, Washington). First, a short description is provided of the original format of the earth science course, which was designed as an introductory level survey course covering topics in…
In Defense of Societal Issues as Organizers for School Science.
ERIC Educational Resources Information Center
Yager, Robert E.
1983-01-01
Offers a defense of societal issues as organizers for school science programs in response to criticisms of this thesis discussed in SE 534 649. Indicates that there appears to be no evidence that using nontraditional topics as organizers will make science more subject to manipulation and perversion. (JN)
Issue-Oriented Science Using CEPUP.
ERIC Educational Resources Information Center
California Univ., Berkeley. Lawrence Hall of Science.
CEPUP in the Schools is a project of the Chemical Education for Public Understanding Program (CEPUP) at the Lawrence Hall of Science, University of California-Berkeley. CEPUP is a diverse educational program highlighting chemicals and their uses in the context of societal issues, so that learners experience the reality of science. This booklet…
NASA Technical Reports Server (NTRS)
1995-01-01
This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Sciences
Diversity Digest. Volume 9, Number 3
ERIC Educational Resources Information Center
Musil, Caryn McTighe, Ed.; Hovland, Kevin, Ed.
2006-01-01
This issue of "Diversity Digest" grows out of one recent effort to raise the visibility of science in diversity and global learning initiatives. Articles in this issue include: (1) Science, Diversity, and Global Learning: Untangling Complex Problems (Kevin Hovland); (2) Breaking the Pyramid: Putting Science in the Core (Darcy Kelley);…
Controversial Issues in the Science Classroom
ERIC Educational Resources Information Center
Owens, David C.; Sadler, Troy D.; Zeidler, Dana L.
2018-01-01
As the partisan divide becomes more toxic to civil discourse, the role of science in that conversation also suffers from collateral damage, becoming suspect at best, and marginalized at worse, in terms of its contribution to resolving issues rooted in science having national and global significance. The authors suggest ameliorating that damage by…
NASA Astrophysics Data System (ADS)
Munroe, C. H.
2010-12-01
Through involvement in authentic research experiences teachers improve their content knowledge, deepen their understanding of the research process, and rejuvenate their interest in science. These positive results of fieldwork transfer into the classroom, directly benefiting students. The ARMADA project provided me with a three week research experience aboard the Amundsen (Canadian Coast Guard science vessel) which enriched and strengthened me professionally. Guided by master and early career scientists, I took part in specific research techniques and deep scientific discourse. My immersion in ocean science was so stimulating that I was inspired to share that excitement with my students. The fascination my students showed for basic experiments and ocean related activities fueled my interest further and I began to research more deeply which led to Climate Literacy and Polar Studies as essentials in my science curriculum. Over the following years I continued to expand and refine the workshops and activities students take part in. Three years after the research experience students still love the science explorations we embark upon together. This past year a group of students became so excited about Polar Science and Climate that they authored a 36 page non fiction book for upper elementary and middle school students entitled, "Changing Poles, Changing Planet: Climate Change vs. The Earth". Seven of the authors decided to continue their science outreach work by creating an educational video focusing on the basics of climate science and what children can do to lower carbon emissions. The book and video were distributed to educators as well as scientists at the International Polar Year Science Conference in June, 2010. In August some of these students presented their work at a Sustainability festival that was organized by M-CAN a local climate action group. Two of these students (who have left my class and started 6th grade at the middle school)recently decided to form a Climate Club and their goal is to continue to research and teach others about climate science. Their enthusiasm and desire to teach others is a result of exposure to authentic science issues in school and my research experience is what changed the way I teach science which made this possible.
30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Office of Natural Resources Revenue royalties on all gas production to which an RSV otherwise would be... BCF of RSV earned under § 203.31(a) by a phase 2 ultra-deep well on a lease that is located in water partly or entirely less than 200 meters deep issued before December 18, 2008; and (ii) Any RSV earned...
30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Office of Natural Resources Revenue royalties on all gas production to which an RSV otherwise would be... BCF of RSV earned under § 203.31(a) by a phase 2 ultra-deep well on a lease that is located in water partly or entirely less than 200 meters deep issued before December 18, 2008; and (ii) Any RSV earned...
30 CFR 203.36 - Do I keep royalty relief if prices rise significantly?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Office of Natural Resources Revenue royalties on all gas production to which an RSV otherwise would be... BCF of RSV earned under § 203.31(a) by a phase 2 ultra-deep well on a lease that is located in water partly or entirely less than 200 meters deep issued before December 18, 2008; and (ii) Any RSV earned...
James Cameron discusses record dive and science concerns
NASA Astrophysics Data System (ADS)
Showstack, Randy; Balcerak, Ernie
2012-12-01
James Cameron, the explorer and filmmaker, led a 4 December panel at the AGU Fall Meeting in San Francisco to discuss his daring dive on 26 March to the bottom of the ocean in a one-person vertical "torpedo" submarine, the Deepsea Challenger, and to present some initial science findings from expedition samples and data. The dive touched the bottom of the Challenger Deep, a valley in the floor of the nearly 11-kilometer-deep Mariana Trench in the western Pacific Ocean. The vessel landed close to the same depth and at a location similar to where Don Walsh and Jacques Piccard descended in the Trieste bathyscaphe on 23 January 1960 at a then record-setting depth of 10,911 meters.
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Abercromby, A.; Beaton, K.; Brady, A. L.; Cardman, Z.; Chappell, S.; Cockell, C. S.; Cohen, B. A.; Cohen, T.; Deans, M.; Deliz, I.; Downs, M.; Elphic, R. C.; Hamilton, J. C.; Heldmann, J.; Hillenius, S.; Hoffman, J.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Lees, D. S.; Marquez, J.; Miller, M.; Milovsoroff, C.; Payler, S.; Sehlke, A.; Squyres, S. W.
2016-12-01
Analogs are destinations on Earth that allow researchers to approximate operational and/or physical conditions on other planetary bodies and within deep space. Over the past decade, our team has been conducting geobiological field science studies under simulated deep space and Mars mission conditions. Each of these missions integrate scientific and operational research with the goal to identify concepts of operations (ConOps) and capabilities that will enable and enhance scientific return during human and human-robotic missions to the Moon, into deep space and on Mars. Working under these simulated mission conditions presents a number of unique challenges that are not encountered during typical scientific field expeditions. However, there are significant benefits to this working model from the perspective of the human space flight and scientific operations research community. Specifically, by applying human (and human-robotic) mission architectures to real field science endeavors, we create a unique operational litmus test for those ConOps and capabilities that have otherwise been vetted under circumstances that did not necessarily demand scientific data return meeting the rigors of peer-review standards. The presentation will give an overview of our team's recent analog research, with a focus on the scientific operations research. The intent is to encourage collaborative dialog with a broader set of analog research community members with an eye towards future scientific field endeavors that will have a significant impact on how we design human and human-robotic missions to the Moon, into deep space and to Mars.
Animal Experimentation: Issues for the 1980s.
ERIC Educational Resources Information Center
Zola, Judith C.; And Others
1984-01-01
Examines the extent to which issues related to animal experimentation are in conflict and proposes choices that might least comprise them. These issues include animal well-being, human well-being, self-interest of science, scientific validity and responsibility, progress in biomedical and behavioral science, and the future quality of medical care.…
Contemporary Issues in Science. Implementation Manual.
ERIC Educational Resources Information Center
Staten Island Continuum of Education, NY.
Contemporary Issues in Science Program (CIIS) is designed to provide teachers and students with the necessary tools and strategies for bringing contemporary scientific issues into the classroom. Provided in this document are discussions of the three major elements in the program, support elements, and major activities. Major elements include the…
76 FR 66720 - Public Meeting of the Presidential Commission for the Study of Bioethical Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... Viers, Communications Director, Presidential Commission for the Study of Bioethical Issues, 1425 New... nation's leaders in medicine, science, ethics, religion, law, and engineering. The Commission advises the President on bioethical issues arising from advances in biomedicine and related areas of science and...
78 FR 71615 - Public Meeting of the Presidential Commission for the Study of Bioethical Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... Issues, 1425 New York Avenue NW, Suite C-100, Washington, DC 20005. Telephone: 202-233-3960. Email... bioethics, science, medicine, technology, engineering, law, philosophy, theology, or other areas of the humanities or social sciences. The Commission advises the President on bioethical issues arising from...
The Impact of the Issue of Demarcation on Pre-Service Teachers' Beliefs on the Nature of Science
ERIC Educational Resources Information Center
Turgut, Halil; Akcay, Hakan; Irez, Serhat
2010-01-01
The arguments about the dimensions of nature of science and the strategies for teaching it are still controversial. In this research, as part of these arguments, a context based on the issue of demarcation of science from pseudoscience was offered and questioned for its effectiveness in nature of science teaching. The research was planned for an…
Comets, Charisma, and Celebrity: Reflections on Their Deep Impact
NASA Astrophysics Data System (ADS)
Olson, R. J. M.; Pasachoff, J. M.
In celebration of the Deep Impact Mission, this essay explores the influence of comets on the arts and sciences since the beginning of recorded time. Through images, ranging from the sublime to the humorous, it probes the reasons why comets are among the most charismatic visual spectacles in the universe and why, even as scientific missions unmask their mysteries, they remain iconic symbols and harbingers of change.
Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning
NASA Astrophysics Data System (ADS)
Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.
NASA Astrophysics Data System (ADS)
Kopf, A.
2009-04-01
The Deep-Sea and Sub-Seafloor Frontiers project, DS3F, represents the continuation of the DSF roadmap towards the sustainable management of oceanic resources on a European scale. It will develop strategies for sub-seafloor sampling to contribute to a better understanding of deep-sea and sub-seafloor processes by connecting marine research in life and geosciences, climate and environmental change, as well as socio-economic issues and policy building. We propose to establish a long-lived research approach that considers (i) the need for a sustainable management of the ocean, and particularly the deep sea with enhanced activity (fishery, hydrocarbon exploration), (ii) the necessity to unravel deep-seated geological processes that drive seafloor ecosystems, and (iii) the value of seabed archives for the reconstruction of paleo-environmental conditions and the improved prediction of future climate change. Sub-seafloor drilling and sampling can provide two key components in understanding how deep-sea ecosystems function at present, and how they will respond to global change: (a) an inventory of present subsurface processes and biospheres, and their links to surface ecosystems, including seafloor observation and baseline studies, and (b) a high resolution archive of past variations in environmental conditions and biodiversity. For both components, an international effort is needed to share knowledge, methods and technologies, including mission-specific platforms to increase the efficiency, coverage and accuracy of sub-seafloor sampling and exploration. The deep biosphere has been discovered only within the past two decades and comprises the last major frontier for biological exploration. We lack fundamental knowledge of composition, diversity, distribution and metabolism in sub-seafloor biological communities at Earth's extremes, and their repercussions on seafloor ecosystems and life in the deep sea. There is equally an emerging need to shed light on geodynamic processes fuelling biological activity, and how such processes tie into the emission of geofuels and the formation of hydrocarbons and other resources. In addition, geodynamic processes may be cause natural hazards such as earthquake slip, submarine landslides, or tsunamis with a profound effect for humans and ecosystems. Their governing principles and potential triggers are poorly understood and often related to the sub-seafloor environment. In summary, the three main research areas in the Integrated Ocean Drilling Program (IODP; see Initial Science Plan www.iodp.org/isp/), i.e. geodynamics, climate and deep biosphere, as well as the goals of DS3F show a strong overlap and suggest an emerging need to join forces. This will result in the most efficient use of sub-seafloor sampling techniques and existing marine infrastructure to study the geosystem and its effects on biosphere and marine ecosystems. The DS3F initiative aims at providing a comprehensive "white paper" for a sustainable use of the oceans, an European Maritime Policy, and a strong link between European mission-specific drilling projects including IODP, IMAGES, ESF-EuroMARC and EC campaigns.
Extracting Databases from Dark Data with DeepDive.
Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng
2016-01-01
DeepDive is a system for extracting relational databases from dark data : the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data - scientific papers, Web classified ads, customer service notes, and so on - were instead in a relational database, it would give analysts a massive and valuable new set of "big data." DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.
The Deep Space Atomic Clock Mission
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill
2012-01-01
The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.
Breakup of last glacial deep stratification in the South Pacific.
Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F; Molina-Kescher, Mario; Pahnke, Katharina
2018-02-23
Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO 2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO 2 through upwelling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Assessing the Linguistic Productivity of Unsupervised Deep Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Lawrence A.; Hodas, Nathan O.
Increasingly, cognitive scientists have demonstrated interest in applying tools from deep learning. One use for deep learning is in language acquisition where it is useful to know if a linguistic phenomenon can be learned through domain-general means. To assess whether unsupervised deep learning is appropriate, we first pose a smaller question: Can unsupervised neural networks apply linguistic rules productively, using them in novel situations. We draw from the literature on determiner/noun productivity by training an unsupervised, autoencoder network measuring its ability to combine nouns with determiners. Our simple autoencoder creates combinations it has not previously encountered, displaying a degree ofmore » overlap similar to actual children. While this preliminary work does not provide conclusive evidence for productivity, it warrants further investigation with more complex models. Further, this work helps lay the foundations for future collaboration between the deep learning and cognitive science communities.« less
Updated science issues and observation plans of BepiColombo Mercury Magnetosphere Orbiter (MMO)
NASA Astrophysics Data System (ADS)
Murakami, G.; Fujimoto, M.; Hayakawa, H.
2017-12-01
After the successful observation by the first Mercury orbiter MESSENGER ended in 2015, Mercury becomes one of the most curious planets to investigate. MESSENGER raised new science issues, such as the northward offset of planetary dipole magnetic filed, the highly dynamic magnetosphere, and the year-to-year constant exosphere. These outstanding discoveries still remain as open issues due to some limitations of instruments onboard MESSENGER and its extended elliptical orbit with apherm in southern hemisphere. The next Mercury exploration project BepiColombo will address these open issues. BepiColombo is an ESA-JAXA joint mission to Mercury with the aim to understand the process of planetary formation and evolution as well as to understand Mercury's extreme environment in the solar system. Two spacecraft, i.e. the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be launched in October 2018 by an Ariane-5 launch vehicle and arrive at Mercury in December 2025. The mechanical test in a complete stack configuration has been performed in the ESA test center and successfully finished. MMO is mainly designed for plasma observations and is expected to extract essential elements of space plasma physics that become visible in the Hermean environment. MMO has large constraints on science operations, such as thermal issue and limited telemetry rate. Due to the thermal issue each science instrument cannot always be turned on. In addition, due to the low telemetry rate in average, only a part ( 20-30%) of science mission data with high resolution can be downlinked. Therefore, in order to maximize the scientific results and outcomes to be achieved by MMO, we are now working to optimize the science observation and downlink plans in detail. Here we present the updated science goals for MMO based on the latest MESSENGER results and the current observation plans how to approach these science issues.
Science communication in the field of fundamental biomedical research (editorial).
Illingworth, Sam; Prokop, Andreas
2017-10-01
The aim of this special issue on science communication is to inspire and help scientists who are taking part or want to take part in science communication and engage with the wider public, clinicians, other scientists or policy makers. For this, some articles provide concise and accessible advice to individual scientists, science networks, or learned societies on how to communicate effectively; others share rationales, objectives and aims, experiences, implementation strategies and resources derived from existing long-term science communication initiatives. Although this issue is primarily addressing scientists working in the field of biomedical research, much of it similarly applies to scientists from other disciplines. Furthermore, we hope that this issue will also be used as a helpful resource by academic science communicators and social scientists, as a collection that highlights some of the major communication challenges that the biomedical sciences face, and which provides interesting case studies of initiatives that use a breadth of strategies to address these challenges. In this editorial, we first discuss why we should communicate our science and contemplate some of the different approaches, aspirations and definitions of science communication. We then address the specific challenges that researchers in the biomedical sciences are faced with when engaging with wider audiences. Finally, we explain the rationales and contents of the different articles in this issue and the various science communication initiatives and strategies discussed in each of them, whilst also providing some information on the wide range of further science communication activities in the biomedical sciences that could not all be covered here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Understandings of the nature of science and decision making on science and technology-based issues
NASA Astrophysics Data System (ADS)
Bell, Randy Lee
Current reforms emphasize the development of scientific literacy as the principal goal of science education. The nature of science is considered a critical component of scientific literacy and is assumed to be an important factor in decision making on science and technology based issues. However, little research exists that delineates the role of the nature of science in decision making. The purpose of this investigation was to explicate the role of the nature of science in decision making on science and technology based issues and to delineate the reasoning and factors associated with these types of decisions. The 15-item, open-ended "Decision Making Questionnaire" (DMQ) based on four different scenarios concerning science and technology issues was developed to assess decision making. Twenty-one volunteer participants purposively selected from the faculty of geographically diverse universities completed the questionnaire and follow-up interviews. Participants were subsequently grouped according to their understandings of the nature of science, based on responses to a second open-ended questionnaire and follow-up interview. Profiles of each group's decision making were constructed, based on their previous responses to the DMQ and follow-up interviews. Finally, the two groups' decisions, decision making factors, and decision making strategies were compared. No differences were found between the decisions of the two groups, despite their disparate views of the nature of science. While their reasoning did not follow formal lines of argumentation, several influencing factors and general reasoning patterns were identified. Participants in both groups based their decisions primarily on personal values, morals/ethics, and social concerns. While all participants said they considered scientific evidence in their decision making, most did not require absolute "proof," even though Group B participants held more absolute conceptions of the nature of science. Overall, the nature of science did not figure prominently in either group's decisions. These findings contrast with the assumptions of the science education community and current reform efforts and call for a reexamination of the goals of nature of science instruction. Developing better decision making skills---even on science and technology based issues---may involve other factors, including more values-based instruction and attention to intellectual/moral development.
Finding Common Ground Between Earth Scientists and Evangelical Christians
NASA Astrophysics Data System (ADS)
Grant Ludwig, L.
2015-12-01
In recent decades there has been some tension between earth scientists and evangelical Christians in the U.S., and this tension has spilled over into the political arena and policymaking on important issues such as climate change. From my personal and professional experience engaging with both groups, I find there is much common ground for increasing understanding and communicating the societal relevance of earth science. Fruitful discussions can arise from shared values and principles, and common approaches to understanding the world. For example, scientists and Christians are engaged in the pursuit of truth, and they value moral/ethical decision-making based on established principles. Scientists emphasize the benefits of research "for the common good" while Christians emphasize the value of doing "good works". Both groups maintain a longterm perspective: Christians talk about "the eternal" and geologists discuss "deep time". Both groups understand the importance of placing new observations in context of prior understanding: scientists diligently reference "the literature" while Christians quote "chapter and verse". And members of each group engage with each other in "fellowship" or "meetings" to create a sense of community and reinforce shared values. From my perspective, earth scientists can learn to communicate the importance and relevance of science more effectively by engaging with Christians in areas of common ground, rather than by trying to win arguments or debates.
Atmospheric Science Data Center
2018-05-05
... Raw and calibrated radiometer science and engineering data. Project Title: DSCOVR Discipline: ... Level: L1 Platform: DEEP SPACE CLIMATE OBSERVATORY Instrument: PHOTODIODE RADIOMETER ...
Machine Learning, deep learning and optimization in computer vision
NASA Astrophysics Data System (ADS)
Canu, Stéphane
2017-03-01
As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.
Hoefler, Vaughan; Nagaoka, Hiroko; Miller, Craig S
2016-11-01
A systematic review was performed to compare the long-term survival of deep dentine caries-affected permanent teeth treated with partial-caries-removal (PCR) versus similar teeth treated with stepwise-caries-removal techniques (SWT). Clinical studies investigating long-term PCR and SWT outcomes in unrestored permanent teeth with deep dentine caries were evaluated. Failures were defined as loss of pulp vitality or restorative failures following treatment. PubMed, Web of Science, Dentistry and Oral Sciences Source, and Central databases were systematically searched. From 136 potentially relevant articles, 9 publications utilizing data from 5 studies (2 RCTs, and 3 observational case-series) reporting outcomes for 426 permanent teeth over two to ten years were analyzed. Regarding restorative failures, >88% success at two years for both techniques was reported. For loss of pulp vitality, observational studies reported >96% vitality at two years for each technique, while one RCT reported significantly higher vitality (p<0.05) at three years for PCR (96%) compared to SWT (83%). Risk of bias was high in all studies. Successful vitality and restorative outcomes for both PCR and SWT have been demonstrated at two years and beyond in permanent teeth with deep dentine caries. Partial-caries-removal may result in fewer pulpal complications over a three year period than SWT, although claims of a therapeutic advantage are based on very few, limited-quality studies. Partial-caries-removal and SWT are deep caries management techniques that reduce pulp exposure risk. Permanent teeth with deep dentine caries treated with either technique have a high likelihood for survival beyond two years. Copyright © 2016 Elsevier Ltd. All rights reserved.
The philosophy of scientific experimentation: a review
2009-01-01
Practicing and studying automated experimentation may benefit from philosophical reflection on experimental science in general. This paper reviews the relevant literature and discusses central issues in the philosophy of scientific experimentation. The first two sections present brief accounts of the rise of experimental science and of its philosophical study. The next sections discuss three central issues of scientific experimentation: the scientific and philosophical significance of intervention and production, the relationship between experimental science and technology, and the interactions between experimental and theoretical work. The concluding section identifies three issues for further research: the role of computing and, more specifically, automating, in experimental research, the nature of experimentation in the social and human sciences, and the significance of normative, including ethical, problems in experimental science. PMID:20098589
[Long-term care of Parkinson patients with deep brain stimulation].
Allert, N; Barbe, M T; Timmermann, L; Coenen, V A
2011-12-01
For more than 15 years deep brain stimulation of the subthalamic nucleus and globus pallidus internus have become therapeutic options in advanced Parkinson's disease. The number of patients with long-term treatment is increasing steadily. This review focuses on issues of the long-term care of these Parkinson's patients, including differences of the available deep brain stimulation systems, recommendations for follow-up examinations, implications for medical diagnostics and therapies and an algorithm for symptom deterioration. Today, there is no profound evidence that deep brain stimulation prevents disease progression. However, symptomatic relief from motor symptoms is maintained during long-term follow-up and interruption of the therapy remains an exception. © Georg Thieme Verlag KG Stuttgart · New York.
Deep Learning in Medical Image Analysis.
Shen, Dinggang; Wu, Guorong; Suk, Heung-Il
2017-06-21
This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
Expanding Horizons--Into the Future with Confidence!
ERIC Educational Resources Information Center
Volk, Valerie
2006-01-01
Gifted students often show a deep interest in and profound concern for the complex issues of society. Given the leadership potential of these students and their likely responsibility for solving future social problems, they need to develop this awareness and also a sense of confidence in dealing with future issues. The Future Problem Solving…
Character Education of the Most Developed Countries in ASEAN
ERIC Educational Resources Information Center
Istiningsih
2016-01-01
Character education into an international issue, especially in developing countries. More specifically in Indonesia, character education is a major issue in the 2012's to the present. What kind of education that may build character? To be able to answer this question, we need a broad and deep research. Research simpler related to character…
Hot Spots and Mantle Plumes: A Window Into the Deep Earth and a Lesson on How Science Really Works
NASA Astrophysics Data System (ADS)
Caplan-Auerbach, J.
2010-12-01
Despite years of discussion, debate and controversy over the causes of ocean island volcanism, most students simply learn that such features form from fixed plumes of hot material rising from the core mantle boundary. Although we know that the Hawaiian plume exhibited substantial southward motion, most introductory geology textbooks still report that hot spots are fixed and that the Hawaiian-Emperor bend reflects a change in plate motion. That mantle plumes are the focus of significant controversy within the scientific community is rarely, if ever, discussed, and alternative models for the formation of intraplate volcanoes are ignored. Students may thus complete their studies without learning about the dynamic debate focused on the existence and formation of mantle plumes. This issue represents an opportunity for students to see how science really works, how new models are constructed, and what distinguishes a hypothesis from a theory. The culminating project in Western Washington University’s Introduction to Geophysics class, a course required for the BS degree in geology, focuses on the hot spot and mantle plume debate. For the first nine weeks of the quarter students learn about general topics in geophysics including plate tectonics, magnetism, seismology, gravity and heat flow. At the end of the course, students break into small research groups with the goal of investigating how geophysics may be used to address three questions: (1) Do ocean island volcanoes form from mantle plumes? (2) Are “hot spots” actually hot? (3) Are hot spots stationary? Each group examines how these questions may be addressed using a specific geophysical tool. In addition to the five topics described above, a sixth group investigates the question of “if not hot spots/mantle plumes, how do ocean island volcanoes form?” Students read the current literature on the topic and present their results to their classmates. Presentations focus on topics such as the use of seismic tomography to image deep plumes, the use of magnetic data to determine plume paleolatitude, and the search for heat flow anomalies near hot spots. On the final day of the class students revisit the three questions presented above and discuss whether their thoughts on the topic have changed as a result of studying the geophysics. Finally, the class discusses the issue in terms of Thomas Kuhn’s phases of scientific study, considering whether or not the mantle plumes paradigm is in crisis. As evidenced by comments in student course evaluations, the project is very popular and students appreciate the opportunity to investigate a modern scientific controversy. The project not only helps students learn how geophysics may be used to study the deep earth, it familiarizes them with current scientific literature, and perhaps most importantly, it allows them to learn about and engage in a critical scientific debate.